Class numbers and representations by quadratic forms

Kathrin Bringmann University of Cologne

Joint work with Ben Kane (University of Hong Kong).

June 4, 2020

2. Class numbers and mock modular forms

- 2. Class numbers and mock modular forms
- 3. Generalizations

- 2. Class numbers and mock modular forms
- 3. Generalizations
- 4. 7-core partitions

- 1. Representation numbers and modular forms
- 2. Class numbers and mock modular forms
- 3. Generalizations
- 4. 7-core partitions

Let for
$$n \in \mathbb{N}_0$$
 ($\mathbf{x} = (x_1, x_2, x_3)$)
 $r(n) := \# \{ \mathbf{x} \in \mathbb{Z}^3 : x_1^2 + x_2^2 + x_3^2 = n \}.$

Let for
$$n \in \mathbb{N}_0$$
 ($\mathbf{x} = (x_1, x_2, x_3)$)
 $r(n) := \# \{ \mathbf{x} \in \mathbb{Z}^3 : x_1^2 + x_2^2 + x_3^2 = n \}.$

Example n = 9

$$(\pm 3)^2 = (\pm 2)^2 + (\pm 2)^2 + (\pm 1)^2 = 9$$

Let for
$$n \in \mathbb{N}_0$$
 ($\mathbf{x} = (x_1, x_2, x_3)$)
 $r(n) := \# \{ \mathbf{x} \in \mathbb{Z}^3 : x_1^2 + x_2^2 + x_3^2 = n \}.$

Example n = 9

$$(\pm 3)^2 = (\pm 2)^2 + (\pm 2)^2 + (\pm 1)^2 = 9$$

$$\Rightarrow r(9) = 6 + 3 \cdot 2^3 = 30$$

$$\sum_{n\geq 0} r(n)q^n = \sum_{n_1,n_2,n_3\in\mathbb{Z}} q^{n_1^2+n_2^2+n_3^2} = \left(\sum_{n\in\mathbb{Z}} q^{n^2}\right)^3$$

$$\sum_{n\geq 0} r(n)q^n = \sum_{n_1,n_2,n_3\in\mathbb{Z}} q^{n_1^2+n_2^2+n_3^2} = \left(\sum_{n\in\mathbb{Z}} q^{n^2}\right)^3$$
$$= 1 + 6q + 12q^2 + 8q^3 + 6q^4 + 24q^5 + 24q^6 + 12q^8$$
$$+ 30q^9 + O\left(q^{10}\right)$$

$$\sum_{n\geq 0} r(n)q^n = \sum_{n_1,n_2,n_3\in\mathbb{Z}} q^{n_1^2+n_2^2+n_3^2} = \left(\sum_{n\in\mathbb{Z}} q^{n^2}\right)^3$$

= 1 + 6q + 12q^2 + 8q^3 + 6q^4 + 24q^5 + 24q^6 + 12q^8
+ 30q^9 + O(q^{10})

Confirms that r(9) = 30.

$$\sum_{n\geq 0} r(n)q^n = \sum_{n_1, n_2, n_3 \in \mathbb{Z}} q^{n_1^2 + n_2^2 + n_3^2} = \left(\sum_{n \in \mathbb{Z}} q^{n^2}\right)^3$$

= 1 + 6q + 12q^2 + 8q^3 + 6q^4 + 24q^5 + 24q^6 + 12q^8
+ 30q^9 + O(q^{10})

Confirms that r(9) = 30.

Goal Use symmetry properties.

$$f\left(rac{a au+b}{c au+d}
ight)=\left(c au+d
ight)^kf(au)$$

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau)$$

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau)$$

plus growth condition

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau)$$

plus growth condition

Generalization include multiplier and half-integral weight

Examples

Fourier expansion
$$(q := e^{2\pi i \tau}, \tau \in \mathbb{H})$$

$$f(\tau) = \sum_{n \in \mathbb{Z}} c(n) q^n$$

Examples

Fourier expansion
$$(q := e^{2\pi i \tau}, \tau \in \mathbb{H})$$

$$f(\tau) = \sum_{n \in \mathbb{Z}} c(n) q^n$$

Examples

1. Dedekind η -function

$$\eta(au):=q^{rac{1}{24}}\prod_{n\geq 1}\left(1-q^n
ight)$$

Modularity:

$$\eta(au+1)= extbf{e}^{rac{\pi i}{12}}\eta(au), \qquad \eta\left(-rac{1}{ au}
ight)=\sqrt{-i au}\eta(au).$$

2. Theta function

$$\Theta(au) := \sum_{n \in \mathbb{Z}} q^{n^2}$$

 $\Theta \text{ is modular of weight } \tfrac{1}{2} \text{ for } \Gamma_0(4) := \{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \operatorname{SL}_2(\mathbb{Z}) : 4 \mid c \}.$

2. Theta function

$$\Theta(au) := \sum_{n \in \mathbb{Z}} q^{n^2}$$

 $\Theta \text{ is modular of weight } \frac{1}{2} \text{ for } \Gamma_0(4) := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : 4 \mid c \}.$ Thus

$$\sum_{n\geq 0}r(n)q^n=\Theta^3(\tau)$$

is a modular form of weight $\frac{3}{2}$.

Valence formula

 $f \neq 0$ modular of weight k for Γ satisfies

$$\sum_{\tau\in\Gamma\backslash\mathbb{H}}\frac{\mathrm{ord}_{\tau}(f)}{\omega_{\tau}}+\sum_{\varrho\in\Gamma\backslash(\mathbb{Q}\cup\{i\infty\})}\mathrm{ord}_{\varrho}(f)=[\mathsf{SL}_2(\mathbb{Z}):\Gamma]\frac{k}{12}.$$

Identity of Gauss

Have

$$r(n) = \begin{cases} 12H(4n) & \text{if } n \equiv 1,2 \pmod{4}, \\ 24H(n) & \text{if } n \equiv 3 \pmod{8}, \\ r\left(\frac{n}{4}\right) & \text{if } 4 \mid n, \\ 0 & \text{otherwise,} \end{cases}$$

.

Have

$$r(n) = \begin{cases} 12H(4n) & \text{if } n \equiv 1,2 \pmod{4}, \\ 24H(n) & \text{if } n \equiv 3 \pmod{8}, \\ r\left(\frac{n}{4}\right) & \text{if } 4 \mid n, \\ 0 & \text{otherwise,} \end{cases}$$

with

$$\begin{split} H(n) &:= \#\{\operatorname{SL}_2(\mathbb{Z})\text{-equivalence classes of integral binary quadratic} \\ & \text{forms of discriminant } n \text{ weighted by } \frac{1}{2} \text{ times the order} \\ & \text{ of their automorphism group}\}. \end{split}$$

Have

$$r(n) = \begin{cases} 12H(4n) & \text{if } n \equiv 1,2 \pmod{4}, \\ 24H(n) & \text{if } n \equiv 3 \pmod{8}, \\ r\left(\frac{n}{4}\right) & \text{if } 4 \mid n, \\ 0 & \text{otherwise,} \end{cases}$$

with

 $H(n) := \# \{ SL_2(\mathbb{Z}) \text{-equivalence classes of integral binary quadratic} \\ \text{forms of discriminant } n \text{ weighted by } \frac{1}{2} \text{ times the order} \\ \text{of their automorphism group} \}.$

Question Why is the generating function of the right-hand side a modular form?

$$\sum_{n \in \mathbb{Z}} r(n)q^n = 1 + 6q + 12q^2 + 8q^3 + 6q^4 + 24q^5 + 24q^6 + 12q^8 + O\left(q^9\right)$$

$$\sum_{n\in\mathbb{Z}}r(n)q^{n}=1+6q+12q^{2}+8q^{3}+6q^{4}+24q^{5}+24q^{6}+12q^{8}+O\left(q^{9}\right)$$

Gives

$$H(4) = \frac{1}{12}r(1) = \frac{1}{12},$$

$$\sum_{n\in\mathbb{Z}}r(n)q^{n}=1+6q+12q^{2}+8q^{3}+6q^{4}+24q^{5}+24q^{6}+12q^{8}+O\left(q^{9}\right)$$

Gives

$$H(4) = \frac{1}{12}r(1) = \frac{1}{12},$$

$$H(3) = \frac{1}{24}r(3) = \frac{1}{3},$$

$$\sum_{n \in \mathbb{Z}} r(n)q^n = 1 + 6q + 12q^2 + 8q^3 + 6q^4 + 24q^5 + 24q^6 + 12q^8 + O\left(q^9\right)$$

Gives

$$H(4) = \frac{1}{12}r(1) = \frac{1}{12},$$

$$H(3) = \frac{1}{24}r(3) = \frac{1}{3},$$

$$H(8) = \frac{1}{12}r(2) = 1.$$

- 2. Class numbers and mock modular forms
- 3. Generalizations
- 4. 7-core partitions

Definition

 $F : \mathbb{H} \to \mathbb{C}$ real-analytic is a weight k harmonic Maass form if it is modular of weight k and

J. Bruinier

J. Funke

Definition

 $F : \mathbb{H} \to \mathbb{C}$ real-analytic is a weight k harmonic Maass form if it is modular of weight k and

$$\Delta_k(F) = 0$$

J. Bruinier

J. Funke

with $(\tau = \tau_1 + i\tau_2)$

$$\Delta_k := -\tau_2^2 \left(\frac{\partial^2}{\partial \tau_1^2} + \frac{\partial^2}{\partial \tau_2^2} \right) + ik\tau_2 \left(\frac{\partial}{\partial \tau_1} + i\frac{\partial}{\partial \tau_2} \right).$$

Definition

 $F : \mathbb{H} \to \mathbb{C}$ real-analytic is a weight k harmonic Maass form if it is modular of weight k and

 $\Delta_k(F) = 0$

J. Bruinier

J. Funke

with
$$(au = au_1 + i au_2)$$

$$\Delta_{k} := -\tau_{2}^{2} \left(\frac{\partial^{2}}{\partial \tau_{1}^{2}} + \frac{\partial^{2}}{\partial \tau_{2}^{2}} \right) + ik\tau_{2} \left(\frac{\partial}{\partial \tau_{1}} + i\frac{\partial}{\partial \tau_{2}} \right).$$

plus growth condition

weight 2 Eisenstein series

$$\widehat{E}_{2}(\tau) := E_{2}(\tau) - \frac{3}{\pi\tau_{2}}$$
quasimodular

weight 2 Eisenstein series

$$\widehat{E}_{2}(\tau) := E_{2}(\tau) - \frac{3}{\pi\tau_{2}}$$
quasimodular

where

$$E_2(\tau) := 1 - 24 \sum_{n \ge 1} \sigma(n) q^n$$

weight 2 Eisenstein series

$$\widehat{E}_{2}(\tau) := E_{2}(\tau) - \frac{3}{\pi\tau_{2}}$$
quasimodular

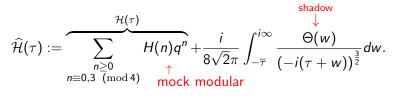
where

$$E_2(\tau) := 1 - 24 \sum_{n \ge 1} \sigma(n) q^n$$

$$\downarrow$$

$$\sum_{\substack{n \ge 1 \\ \downarrow \\ \sigma(n)}} d$$

Class number generating function



Natural splitting

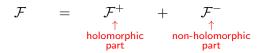
 ${\mathcal F}$ harmonic Maass form

$\mathcal{F} = \mathcal{F}^+ + \mathcal{F}^-$

•

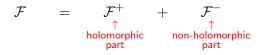
Natural splitting

 ${\mathcal F}$ harmonic Maass form



•

 ${\mathcal F}$ harmonic Maass form

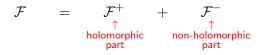


with

$$\mathcal{F}^+(\tau) := \sum_{n \gg -\infty} c^+(n) q^n,$$

$$\mathcal{F}^-(au) := \sum_{n\geq 1} c^-(n) \Gamma(k-1;4\pi|n| au_2) q^n.$$

 ${\mathcal F}$ harmonic Maass form



with

$$\mathcal{F}^+(\tau) := \sum_{n \gg -\infty} c^+(n) q^n,$$

$$\mathcal{F}^-(au) := \sum_{n\geq 1} c^-(n) \Gamma(k-1;4\pi|n| au_2) q^n.$$

"I am extremely sorry for not writing you a single letter up to now. I recently discovered very interesting functions which I call "Mock" ϑ-functions. Unlike the "False" ϑ-functions they enter into mathematics as beautifully as the theta functions. I am sending you with this letter some examples."

S. Ramanujan

These mock theta functions are 22 peculiar q-series.

These mock theta functions are 22 peculiar q-series.

Example

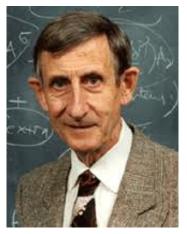
$$f(q) := \sum_{n \ge 0} \frac{q^{n^2}}{(-q;q)_n^2}$$

with

$$(a;q)_n := \prod_{m=0}^{n-1} (1 - aq^m).$$

Dyson's challenge for the future

"The mock theta-functions give us tantalizing hints of a grand synthesis still to be discovered. Somehow it should be possible to build them into a coherent group-theoretical structure, analogous to the structure of modular forms which Hecke built around the old theta functions of Jacobi. This remains a challenge for the future..."



F. Dyson

Theorem (Zwegers)

The function f(q) is a mock modular form.

S. Zwegers

1. Representation numbers and modular forms

- 2. Class numbers and mock modular forms
- 3. Generalizations
- 4. 7-core partitions

Let for $\pmb{a}, \pmb{h} \in \mathbb{N}^3$

$$r_{a,h,N}(n) \\ := \# \left\{ \mathbf{x} \in \mathbb{Z}^3 : a_1 x_1^2 + a_2 x_2^2 + a_3 x_3^2 = n, \, x_j \equiv h_j \pmod{N} \right\}.$$

Let for $\pmb{a}, \pmb{h} \in \mathbb{N}^3$

$$r_{a,h,N}(n) \\ := \# \left\{ \mathbf{x} \in \mathbb{Z}^3 : a_1 x_1^2 + a_2 x_2^2 + a_3 x_3^2 = n, \, x_j \equiv h_j \pmod{N} \right\}.$$

Motivation Question of Petersson

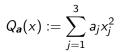
Let for $\pmb{a}, \pmb{h} \in \mathbb{N}^3$

$$r_{a,h,N}(n) \\ := \# \left\{ \mathbf{x} \in \mathbb{Z}^3 : a_1 x_1^2 + a_2 x_2^2 + a_3 x_3^2 = n, \, x_j \equiv h_j \pmod{N} \right\}.$$

Motivation Question of Petersson

Example We have for $n \equiv 2 \pmod{8}$

 $r_{\mathbf{1},\boldsymbol{h},N}(n)=H(4n).$



$$Q_{\boldsymbol{a}}(x) := \sum_{j=1}^{3} a_j x_j^2$$

 $\mathcal{C} := \{ \boldsymbol{a} : \boldsymbol{Q}_{\boldsymbol{a}} \text{ has class number one} \},$

$$Q_{\boldsymbol{a}}(x) := \sum_{j=1}^{3} a_j x_j^2$$

 $\mathcal{C} := \{ \boldsymbol{a} : \boldsymbol{Q}_{\boldsymbol{a}} \text{ has class number one} \},$

 S_a certain set of (h, N) (explicit),

$$Q_{\boldsymbol{a}}(x) := \sum_{j=1}^{3} a_j x_j^2$$

 $\mathcal{C} := \{ \boldsymbol{a} : \boldsymbol{Q_a} \text{ has class number one} \},$

 S_a certain set of (h, N) (explicit),

 $d_{a,h,N}$ explicit constant only depending on $n \pmod{N}$.

Theorem

For each $\boldsymbol{a} \in \mathcal{C}$, $(h, N) \in S_{\boldsymbol{a}}$, $n \in \mathbb{N}$

$$r_{\boldsymbol{a},\boldsymbol{h},N}(n) = d_{\boldsymbol{a},\boldsymbol{h},N}(n)r_{\boldsymbol{a}}(n).$$

Theorem

For each $\boldsymbol{a} \in \mathcal{C}$, $(h, N) \in S_{\boldsymbol{a}}$, $n \in \mathbb{N}$

$$r_{\boldsymbol{a},\boldsymbol{h},N}(n)=d_{\boldsymbol{a},\boldsymbol{h},N}(n)r_{\boldsymbol{a}}(n).$$

Corollary

We have many relations to class numbers.

Theorem

For each $\boldsymbol{a} \in \mathcal{C}$, $(h, N) \in S_{\boldsymbol{a}}$, $n \in \mathbb{N}$

$$r_{\boldsymbol{a},\boldsymbol{h},N}(n)=d_{\boldsymbol{a},\boldsymbol{h},N}(n)r_{\boldsymbol{a}}(n).$$

Corollary

We have many relations to class numbers.

Gives an efficient way to compute class numbers!

Have

$$\Theta_{\boldsymbol{a},\boldsymbol{h},N}(\tau) := \prod_{j=1}^{3} \vartheta_{h_j,N}(2Na_j\tau) = \sum_{\boldsymbol{n} \ge 0} r_{\boldsymbol{a},\boldsymbol{h},N}(\boldsymbol{n})q^{\boldsymbol{n}},$$

Have

$$\Theta_{\boldsymbol{a},\boldsymbol{h},N}(\tau) := \prod_{j=1}^{3} \vartheta_{h_j,N}(2Na_j\tau) = \sum_{n\geq 0} r_{\boldsymbol{a},\boldsymbol{h},N}(n)q^n,$$

where

$$\vartheta_{h,N}(\tau) := \sum_{m \equiv h \pmod{N}} q^{\frac{m^2}{2N}}.$$

Have

$$\Theta_{\boldsymbol{a},\boldsymbol{h},N}(\tau) := \prod_{j=1}^{3} \vartheta_{h_j,N}(2Na_j\tau) = \sum_{\boldsymbol{n}\geq 0} r_{\boldsymbol{a},\boldsymbol{h},N}(\boldsymbol{n})q^{\boldsymbol{n}},$$

where

$$\vartheta_{h,N}(\tau) := \sum_{m \equiv h \pmod{N}} q^{\frac{m^2}{2N}}.$$

Let

$$\Theta_{\boldsymbol{a}} := \Theta_{\boldsymbol{a}, \boldsymbol{1}, 1}.$$

Step 1: Take generating functions

$$\Theta_{\boldsymbol{a},\boldsymbol{h},N} = \sum_{\boldsymbol{m} \pmod{N}} d_{\boldsymbol{a},\boldsymbol{h},N}(\boldsymbol{m}) \Theta_{\boldsymbol{a}} \big| S_{M,m},$$

Step 1: Take generating functions

$$\Theta_{\boldsymbol{a},\boldsymbol{h},N} = \sum_{\boldsymbol{m} \pmod{N}} d_{\boldsymbol{a},\boldsymbol{h},N}(\boldsymbol{m}) \Theta_{\boldsymbol{a}} | S_{M,m},$$

where for $f(\tau) = \sum_{n} c(n)q^{n}$,

$$f \big| S_{M,m}(au) := \sum_{n \equiv m \pmod{M}} c(n) q^n.$$

Idea of proof

Step 2: Show modularity

 $\frac{A \text{ key lemma}}{\text{Let for } N, M} \in \mathbb{N}$

$$\Gamma_{N,M} := \Gamma_0(N) \cap \Gamma_1(M).$$

 $\frac{A \text{ key lemma}}{\text{Let for } N, M} \in \mathbb{N}$

$$\Gamma_{N,M} := \Gamma_0(N) \cap \Gamma_1(M).$$

Let
$$\ell := \operatorname{lcm}(a_1, a_2, a_3), d := a_1 a_2 a_3.$$

 $\frac{A \text{ key lemma}}{\text{Let for } N, M} \in \mathbb{N}$

$$\Gamma_{N,M} := \Gamma_0(N) \cap \Gamma_1(M).$$

Let
$$\ell := \operatorname{lcm}(a_1, a_2, a_3), d := a_1 a_2 a_3.$$

Lemma

 $\Theta_{a,h,N}$ is modular of weight $\frac{3}{2}$ on $\Gamma_{4\ell N^2,N}$ with character $(\frac{d}{\cdot})$.

 $\frac{A \text{ key lemma}}{\text{Let for } N, M} \in \mathbb{N}$

$$\Gamma_{N,M} := \Gamma_0(N) \cap \Gamma_1(M).$$

Let
$$\ell := \operatorname{lcm}(a_1, a_2, a_3), d := a_1 a_2 a_3.$$

Lemma

 $\Theta_{a,h,N}$ is modular of weight $\frac{3}{2}$ on $\Gamma_{4\ell N^2,N}$ with character $(\frac{d}{\cdot})$. $\Theta_a | S_{M,n}$ has weight $\frac{3}{2}$ on $\Gamma_{\text{lcm}(4\ell,M^2,MN_{(\frac{d}{\cdot})}),M}$, with N_{χ} the conductor of character χ .

Lemma For M | N

$$[\operatorname{SL}_{2}(\mathbb{Z}): \Gamma_{N,M}] = N \prod_{p|N} \left(1 + \frac{1}{p}\right) \varphi(M).$$

Lemma For M | N

$$[\mathrm{SL}_2(\mathbb{Z}): \Gamma_{N,M}] = N \prod_{p \mid N} \left(1 + \frac{1}{p}\right) \varphi(M).$$

Euler's Phi-Funktion

Lemma For M | N

$$[\operatorname{SL}_2(\mathbb{Z}): \Gamma_{N,M}] = N \prod_{p \mid N} \left(1 + \frac{1}{p}\right) \varphi(M).$$

Euler's Phi-Funktion

Problem: Bounds too big in some cases, new ideas required.

Example

$$r_{(1,1,1),(0,0,1),3}(n) = \frac{1}{6} \delta_{n \equiv 1 \pmod{3}} r_{(1,1,1)}(n)$$

$$r_{(1,1,1),(0,0,1),3}(n) = \frac{1}{6}\delta_{n\equiv 1 \pmod{3}}r_{(1,1,1)}(n)$$

Generating functions

$$\Theta_{(1,1,1),(0,1,1),3} = rac{1}{6} \Theta_{(1,1,1)} |S_{3,1}|$$

 $\ell=d=1$,

$\frac{\text{Modularity}}{\text{left-hand side: modular on }\Gamma_{4\cdot3^2,3},}$ right-hand side: $\Gamma_{\underbrace{\text{lcm}(4,3^2,3)}_{4\cdot3^2},3}$

 $\frac{\text{Modularity}}{\text{left-hand side: modular on }\Gamma_{4\cdot3^2,3},}$ right-hand side: $\Gamma_{\underbrace{\text{Icm}(4,3^2,3)}_{4\cdot3^2},3},3^{\cdot}$

Valence formula

$$\begin{aligned} \#\text{coefficients} &= \frac{1}{8} \left[\text{SL}_2(\mathbb{Z}) : \Gamma_{4 \cdot 3^2, 3} \right] \\ &= \frac{1}{8} 4 \cdot 3^2 \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{3} \right) 2 = 18 \end{aligned}$$

$\underbrace{ Step \ 1 }_{modular.} \quad \ Corresponding \ linear \ combination \ of \ class \ numbers \ is \ modular. }$

Step 1 Corresponding linear combination of class numbers is modular.

Define for $f : \mathbb{H} \to \mathbb{C}$

$$f|V_d(\tau):=f(d\tau).$$

Key lemma

Lemma

For $\ell_1, \ell_2 \in \mathbb{N}$ with $gcd(\ell_1, \ell_2) = 1$ and ℓ_2 square-free

$$\mathcal{H}_{\ell_1,\ell_2} := \mathcal{H} \big| (U_{\ell_1\ell_2} - \ell_2 U_{\ell_1} V_{\ell_2})$$

is a modular form of weight $\frac{3}{2}$ on $\Gamma_0(4\ell_2 \prod_{p|\ell_1} p)$ with character $(\frac{\ell_1\ell_2}{\cdot})$.

Proof (of key lemma).

1. Show modularity of

$$\widehat{\mathcal{H}}_{\ell_1,\ell_2} := \widehat{\mathcal{H}} \big| (U_{\ell_1\ell_2} - \ell_2 U_{\ell_1} V_{\ell_2}).$$

Proof (of key lemma).

1. Show modularity of

$$\begin{aligned} \widehat{\mathcal{H}}_{\ell_1,\ell_2} &:= \widehat{\mathcal{H}} \big| (U_{\ell_1\ell_2} - \ell_2 U_{\ell_1} V_{\ell_2}). \end{aligned}$$
where for $f(\tau) = \sum_n c_{\tau_2}(n) q^n$,
$$f \big| U_d(\tau) = \sum_n c_{\frac{\tau_2}{d}}(dn) q^n. \end{aligned}$$

Proof (of key lemma).

1. Show modularity of

$$\begin{aligned} \widehat{\mathcal{H}}_{\ell_1,\ell_2} &:= \widehat{\mathcal{H}} \big| (U_{\ell_1\ell_2} - \ell_2 U_{\ell_1} V_{\ell_2}). \end{aligned}$$
where for $f(\tau) = \sum_n c_{\tau_2}(n) q^n$,
$$f \big| U_d(\tau) = \sum_n c_{\frac{\tau_2}{d}}(dn) q^n. \end{aligned}$$

2. Show that the corresponding non-holomorphic parts cancel.

Proof (of key lemma).

1. Show modularity of

$$\begin{aligned} \widehat{\mathcal{H}}_{\ell_1,\ell_2} &:= \widehat{\mathcal{H}} \big| (U_{\ell_1\ell_2} - \ell_2 U_{\ell_1} V_{\ell_2}). \end{aligned}$$
where for $f(\tau) = \sum_n c_{\tau_2}(n) q^n$,
$$f \big| U_d(\tau) = \sum_n c_{\frac{\tau_2}{d}}(dn) q^n. \end{aligned}$$

- 2. Show that the corresponding non-holomorphic parts cancel.
- Step 2 Valence formula.

$$r_{(1,1,1)}(n) = 12(H(4n) - 2H(n))$$

$$r_{(1,1,1)}(n) = 12(H(4n) - 2H(n))$$

Generating functions

$$\begin{split} \Theta_{(1,1,1)} &= 12 \left(\mathcal{H} \big| U_4 - 2\mathcal{H} \right) \stackrel{V_2 U_2 = \mathsf{id}}{=} 12 \left(\mathcal{H} \big| U_2 - 2\mathcal{H} \big| V_2 \right) \big| U_2 \\ &= 12\mathcal{H}_{1,2} \big| U_2 \end{split}$$

$$r_{(1,1,1)}(n) = 12(H(4n) - 2H(n))$$

Generating functions

$$\begin{split} \Theta_{(1,1,1)} &= 12 \left(\mathcal{H} \big| U_4 - 2\mathcal{H} \right) \stackrel{V_2 U_2 = \mathsf{id}}{=} 12 \left(\mathcal{H} \big| U_2 - 2\mathcal{H} \big| V_2 \right) \big| U_2 \\ &= 12\mathcal{H}_{1,2} \big| U_2 \end{split}$$

Modularity

 $\Theta_{(1,1,1)}$ is a modular form of weight $\frac{3}{2}$ on $\Gamma_0(4)$, $\mathcal{H}_{1,2}$ is a modular form of weight $\frac{3}{2}$ on $\Gamma_0(8)$, U_2 keeps that property

$$\# \text{coefficients} = \frac{1}{8} \left[\mathrm{SL}_2(\mathbb{Z}) : \Gamma_0(8) \right] = \frac{1}{8} 4 = \frac{1}{2}$$

Check 1 coefficient!

$$\#\mathsf{coefficients} = \frac{1}{8}\left[\mathrm{SL}_2(\mathbb{Z}): \mathsf{\Gamma}_0(8)\right] = \frac{1}{8}4 = \frac{1}{2}$$

Check 1 coefficient!

Piecing together

$$r_{(1,1,1),(0,0,1),3}(n) = \frac{1}{6}\delta_{n \equiv 1 \pmod{3}} r_{(1,1,1)}(n)$$

$$\#\mathsf{coefficients} = \frac{1}{8}\left[\mathrm{SL}_2(\mathbb{Z}): \mathsf{\Gamma}_0(8)\right] = \frac{1}{8}4 = \frac{1}{2}$$

Check 1 coefficient!

Piecing together

$$r_{(1,1,1),(0,0,1),3}(n) = \frac{1}{6} \delta_{n \equiv 1 \pmod{3}} r_{(1,1,1)}(n)$$
$$= 2\delta_{n \equiv 1 \pmod{3}} (H(4n) - 2H(n))$$

1. Representation numbers and modular forms

- 2. Class numbers and mock modular forms
- 3. Generalizations
- 4. 7-core partitions

A partition of $n \in \mathbb{N}_0$ is a non-increasing sequence of positive integers whose sum is n. Denote

p(n) := # of partitions of n.

A partition of $n \in \mathbb{N}_0$ is a non-increasing sequence of positive integers whose sum is n. Denote

p(n) := # of partitions of n.

Example

n = 4 $4 \quad 3+1, \quad 2+2, \quad 2+1+1 \quad 1+1+1+1$ p(4) = 5

<u>Euler</u>

$$P(q) := \sum_{n \ge 0} p(n)q^n = \prod_{n \ge 1} \frac{1}{1 - q^n}$$

<u>Euler</u>

$$P(q) := \sum_{n \ge 0} p(n)q^n = \prod_{n \ge 1} \frac{1}{1 - q^n} = \frac{q^{\frac{1}{24}}}{\eta(\tau)}$$

a modular form of weight $-\frac{1}{2}$.

Let $n_1 + n_2 + \ldots + n_\ell$ be a partition of n.

Ferrers-Young diagram

٠	٠	٠	٠	٠	•	n_1	nodes
٠	٠	٠	٠	٠		<i>n</i> ₂	nodes
÷							
•	٠					n_ℓ	nodes

The partition 3 + 3 + 2 + 1 has Ferrers-Young diagram

Hook numbers

$$H(j,\ell) = n_j + n'_\ell - j - \ell + 1$$

Hook numbers

$$H(j, \ell) = n_j + n'_{\ell} - j - \ell + 1$$

$$\stackrel{\uparrow}{\text{#of nodes in column } \ell}$$

- . •••
- .

• • • • • •

H(1,1) = 3 + 4 - 1 - 1 + 1 = 6H(1,2) = 3 + 3 - 1 - 2 + 1 = 4H(1,3) = 3 + 2 - 1 - 3 + 1 = 2

• • • • • • • •

H(1,1) = 3 + 4 - 1 - 1 + 1 = 6H(1,2) = 3 + 3 - 1 - 2 + 1 = 4H(1,3) = 3 + 2 - 1 - 3 + 1 = 2 H(2,1) = 3 + 4 - 2 - 1 + 1 = 5H(2,2) = 3 + 3 - 2 - 2 + 1 = 3H(2,3) = 3 + 2 - 2 - 3 + 1 = 1

• • • • • • • •

H(1,1) = 3 + 4 - 1 - 1 + 1 = 6H(1,2) = 3 + 3 - 1 - 2 + 1 = 4H(1,3) = 3 + 2 - 1 - 3 + 1 = 2

- H(2,1) = 3 + 4 2 1 + 1 = 5H(2,2) = 3 + 3 - 2 - 2 + 1 = 3H(2,3) = 3 + 2 - 2 - 3 + 1 = 1
- H(3,1) = 2 + 4 3 1 + 1 = 3 H(3,2) = 2 + 3 - 3 - 2 + 1 = 1H(3,3) = 2 + 2 - 3 - 3 + 1 = -1

• • • • • • • •

H(1,1) = 3 + 4 - 1 - 1 + 1 = 6H(1,2) = 3 + 3 - 1 - 2 + 1 = 4H(1,3) = 3 + 2 - 1 - 3 + 1 = 2 H(2,1) = 3 + 4 - 2 - 1 + 1 = 5 H(2,2) = 3 + 3 - 2 - 2 + 1 = 3H(2,3) = 3 + 2 - 2 - 3 + 1 = 1

H(3,1) = 2 + 4 - 3 - 1 + 1 = 3 H(3,2) = 2 + 3 - 3 - 2 + 1 = 1H(3,3) = 2 + 2 - 3 - 3 + 1 = -1 H(4,1) = 1 + 4 - 4 - 1 + 1 = 1H(4,2) = 1 + 3 - 4 - 2 + 1 = -1H(4,3) = 1 + 2 - 4 - 3 + 1 = -3 *t*-core of *n* if $t \nmid H(j, \ell) \forall j, \ell$

 $c_t(n) := #t$ -core partitions of n

t-core of *n* if $t \nmid H(j, \ell) \forall j, \ell$

 $c_t(n) := #t$ -core partitions of n

 $\frac{\text{Example}}{3+3+2+1}$ is a 7-core partition of 9.

Arise in:

Combinatorics

e.g. combinatorial proof of Ramanujan congruences

Arise in:

- Combinatorics
 - e.g. combinatorial proof of Ramanujan congruences
- representation theory
 - e.g. Nakayama's conjecture

Arise in:

- Combinatorics
 - e.g. combinatorial proof of Ramanujan congruences
- representation theory

·

e.g. Nakayama's conjecture

Generating function

$$\sum_{n\geq 0} c_t(n)q^n = \prod_{n\geq 1} \frac{(1-q^{tn})^t}{1-q^n} = q^{\frac{1-t^2}{24}} \frac{\eta(t\tau)^t}{\eta(\tau)}$$

A modular form of weight $\frac{1}{2}(t^2-1)$.

Generating function

$$\sum_{n\geq 0} c_t(n)q^n = \prod_{n\geq 1} \frac{(1-q^{tn})^t}{1-q^n} = q^{\frac{1-t^2}{24}} \frac{\eta(t\tau)^t}{\eta(\tau)}$$

A modular form of weight $\frac{1}{2}(t^2 - 1)$.

Known facts:

▶ For $t \in \{2,3\}$, $c_t(n) = 0$ for almost all $n \in \mathbb{N}$.

Generating function

$$\sum_{n\geq 0} c_t(n)q^n = \prod_{n\geq 1} \frac{(1-q^{tn})^t}{1-q^n} = q^{\frac{1-t^2}{24}} \frac{\eta(t\tau)^t}{\eta(\tau)}$$

A modular form of weight $\frac{1}{2}(t^2-1)$.

Known facts:

- For $t \in \{2,3\}$, $c_t(n) = 0$ for almost all $n \in \mathbb{N}$.
- For $t \ge 4$, $c_t(n) > 0$ for all $n \in \mathbb{N}$.

$\frac{\text{Relation to class numbers}}{\text{For } 8n + 5 \text{ square-free}} (Ono-Sze)$

$$c_4(n) = \frac{1}{2}H(32n+20).$$

Self-conjugate *t*-cores: *t*-cores that are symmetric when switching rows and columns in the Ferrers-young diagram.

Self-conjugate *t*-cores: *t*-cores that are symmetric when switching rows and columns in the Ferrers-young diagram.

 $sc_t(n) := #$ of self-conjugate *t*-cores of *n*

Self-conjugate *t*-cores: *t*-cores that are symmetric when switching rows and columns in the Ferrers-young diagram.

 $sc_t(n) := #$ of self-conjugate *t*-cores of *n*

Example

3 + 3 + 2 + 1 is not self-conjugate.

Theorem (Ono-Raji) If $n \in \mathbb{N}$, $n \not\equiv 5 \pmod{7}$, n odd, then $\operatorname{sc}_7(n) = \begin{cases} \frac{1}{4}H(28n+56) & \text{if } n \equiv 1 \pmod{2} \\ \frac{1}{2}H(7n+14) & \text{if } n \equiv 3 \pmod{2} \\ 0 & \text{otherwise.} \end{cases}$

Let $H_7(D)$ denote the number of 7-primitive quadratic forms (for [a, b, c], 7 \nmid gcd(a, b, c)) with discriminant -D and the same weighting as H(D).

Let $H_7(D)$ denote the number of 7-primitive quadratic forms (for [a, b, c], 7 \nmid gcd(a, b, c)) with discriminant -D and the same weighting as H(D).

Lemma

$$H_7(D) = H(D) - H\left(\frac{D}{7^2}\right).$$

Let

$$D_n := \begin{cases} 28n + 56 & \text{if } n \equiv 0, 1 \pmod{4}, \\ 7n + 14 & \text{if } n \equiv 3 \pmod{4}, \\ D_{\frac{n+2}{2^{2\ell}}-2} & \text{if } n \equiv 2 \pmod{4}, \end{cases}$$

Let

$$D_n := \begin{cases} 28n + 56 & \text{if } n \equiv 0, 1 \pmod{4}, \\ 7n + 14 & \text{if } n \equiv 3 \pmod{4}, \\ D_{\frac{n+2}{2^{2\ell}-2}} & \text{if } n \equiv 2 \pmod{4}, \\ \frac{1}{2} & \text{if } n \equiv 0, 1 \pmod{4}, \\ \frac{1}{2} & \text{if } n \equiv 3 \pmod{8}, \\ \nu_{\frac{n+2}{2^{2\ell}-2}} & \text{if } n \equiv 2 \pmod{4}, \\ 0 & \text{otherwise,} \end{cases}$$

Let

$$D_n := \begin{cases} 28n + 56 & \text{if } n \equiv 0, 1 \pmod{4}, \\ 7n + 14 & \text{if } n \equiv 3 \pmod{4}, \\ D_{\frac{n+2}{2^{2\ell}}-2} & \text{if } n \equiv 2 \pmod{4}, \\ \frac{1}{2} & \text{if } n \equiv 0, 1 \pmod{4}, \\ \frac{1}{2} & \text{if } n \equiv 3 \pmod{8}, \\ \nu_{\frac{n+2}{2^{2\ell}}-2} & \text{if } n \equiv 2 \pmod{4}, \\ 0 & \text{otherwise,} \end{cases}$$

where $\ell \in \mathbb{N}$ is maximal s.t. $n \equiv -2 \pmod{2^{2\ell}}$.

Theorem (B.-Kane) We have for $n \in \mathbb{N}$

$$\operatorname{sc}_7(n) = \nu_n H_7(D_n).$$

Theorem (B.-Kane) We have for $n \in \mathbb{N}$

$$\operatorname{sc}_7(n) = \nu_n H_7(D_n).$$

Remark

Includes result by Ono/ Raji since $H(D_n) = H_7(D_n)$ for $n \not\equiv -2 \pmod{7}$.

Key theorem

Theorem (B.-Kane) For every $n \in \mathbb{N}$, we have

$$sc_7(n) = \frac{1}{4} \left(H(28n+56) - H\left(\frac{4n+8}{7}\right) - 2H(7n+14) + 2H\left(\frac{n+2}{7}\right) \right).$$

Corollary For $n \in \mathbb{N}$ with n + 2 square-free

$$sc_{7}(n) = -\frac{\nu_{n}}{D_{n}} \begin{cases} \sum_{m=1}^{D_{n}-1} \left(\frac{-D_{n}}{m}\right) m & \text{if } n \not\equiv -2 \pmod{7}, \\ 7^{2} \left(7 + \left(\frac{\frac{D_{n}}{7^{2}}}{7}\right)\right) \sum_{m=1}^{\frac{D_{n}}{7^{2}}-1} \left(\frac{-\frac{D_{n}}{7^{2}}}{m}\right) m & \text{if } n \equiv -2 \pmod{7}. \end{cases}$$

Corollary

For $n \in \mathbb{N}$ with n+2 square-free, $\ell, r \in \mathbb{N}_0$, $f \in \mathbb{N}$ with gcd(f, 14) = 1

$$\operatorname{sc}_{7}\left((n+2)2^{2\ell}f^{2}7^{2r}-2\right)=7^{r}\operatorname{sc}_{7}(n)\sum_{1\leq d\mid f}\mu(d)\left(\frac{-D_{n}}{d}\right)\sigma_{1}\left(\frac{f}{d}\right).$$

1. Find all class number identities.

- 1. Find all class number identities.
- 2. Find bijective proofs for the *t*-core identities (work in progress with Males).

Thank you for your attention