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Representation numbers

Let for n ∈ N0 (x = (x1, x2, x3))

r(n) := #
{
x ∈ Z3 : x2

1 + x2
2 + x2

3 = n
}
.

Example n = 9

(±3)2 = (±2)2 + (±2)2 + (±1)2 = 9

⇒ r(9) = 6 + 3 · 23 = 30
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Representation numbers

Generating function

∑
n≥0

r(n)qn =
∑

n1,n2,n3∈Z
qn

2
1+n2

2+n2
3 =

(∑
n∈Z

qn
2

)3

= 1 + 6q + 12q2 + 8q3 + 6q4 + 24q5 + 24q6 + 12q8

+ 30q9 + O
(
q10
)

Confirms that r(9) = 30.

Goal Use symmetry properties.
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Modularity

f : H→ C holomorphic is modular of weight k∈ Z if for all(
a b
c d

)
∈ SL2(Z)

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ)

plus growth condition

Generalization include multiplier and half-integral weight
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Examples

Fourier expansion (q := e2πiτ , τ ∈ H)

f (τ) =
∑
n∈Z

c(n)qn

Examples
1. Dedekind η-function

η(τ) := q
1

24

∏
n≥1

(1− qn)

Modularity:

η(τ + 1) = e
πi
12 η(τ), η

(
−1

τ

)
=
√
−iτη(τ).
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Examples

2. Theta function

Θ(τ) :=
∑
n∈Z

qn
2

Θ is modular of weight 1
2 for Γ0(4) := {

(
a b
c d

)
∈ SL2(Z) : 4 | c}.

Thus ∑
n≥0

r(n)qn = Θ3(τ)

is a modular form of weight 3
2 .
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Valence formula

Valence formula

f 6= 0 modular of weight k for Γ satisfies∑
τ∈Γ\H

ordτ (f )

ωτ
+

∑
%∈Γ\(Q∪{i∞})

ord%(f ) = [SL2(Z) : Γ]
k

12
.
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Identity of Gauss

Have

r(n) =


12H(4n) if n ≡ 1, 2 (mod 4) ,

24H(n) if n ≡ 3 (mod 8) ,

r
(
n
4

)
if 4 | n,

0 otherwise,

with

H(n) := #{SL2(Z)-equivalence classes of integral binary quadratic

forms of discriminant n weighted by 1
2 times the order

of their automorphism group}

.

Question Why is the generating function of the right-hand side a
modular form?
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Compute class numbers

Gives efficient ways to compute class numbers!
Recall∑
n∈Z

r(n)qn = 1+6q+12q2+8q3+6q4+24q5+24q6+12q8+O
(
q9
)

Gives

H(4) =
1

12
r(1) =

1

12
,

H(3) =
1

24
r(3) =

1

3
,

H(8) =
1

12
r(2) = 1.
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1. Representation numbers and modular
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2. Class numbers and mock modular forms

3. Generalizations
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Harmonic Maass forms

Definition
F : H→ C real-analytic is a weight k harmonic
Maass form if it is modular of weight k and

∆k(F ) = 0

with (τ = τ1 + iτ2)

∆k := −τ2
2

(
∂2

∂τ2
1

+
∂2

∂τ2
2

)
+ ikτ2

(
∂

∂τ1
+ i

∂

∂τ2

)
.

plus growth condition

J. Bruinier

J. Funke
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Examples

I weight 2 Eisenstein series

Ê2(τ) := E2(τ)
↑

quasimodular

− 3

πτ2

where

E2(τ) := 1− 24
∑
n≥1

σ(n)

↓∑
d|n

d

qn
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Examples

I Class number generating function

Ĥ(τ) :=

H(τ)︷ ︸︸ ︷∑
n≥0

n≡0,3 (mod 4)

H(n)qn

↑
mock modular

+
i

8
√

2π

∫ i∞

−τ

Θ(w)

(−i(τ + w))
3
2

dw

shadow
↓

.
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Natural splitting

F harmonic Maass form

F = F+ + F−

with

F+(τ) :=
∑

n�−∞
c+(n)qn,

.
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Natural splitting

F harmonic Maass form

F = F+ + F−
↑

holomorphic
part

↑
non-holomorphic

part

with

F+(τ) :=
∑

n�−∞
c+(n)qn,

F−(τ) :=
∑
n≥1

c−(n)Γ(k − 1; 4π|n|τ2)qn

↑
incomplete gamma

function

.
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Ramanujan’s last letter

”I am extremely sorry for not
writing you a single letter up to
now. I recently discovered very

interesting functions which I call
“Mock” ϑ-functions. Unlike the
“False” ϑ-functions they enter
into mathematics as beautifully

as the theta functions. I am
sending you with this letter some

examples.”

S. Ramanujan
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Mock theta functions

These mock theta functions are 22 peculiar q-series.

Example

f (q) :=
∑
n≥0

qn
2

(−q; q)2
n

with

(a; q)n :=
n−1∏
m=0

(1− aqm) .
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Dyson’s challenge for the future

”The mock theta-functions give
us tantalizing hints of a grand
synthesis still to be discovered.

Somehow it should be possible to
build them into a coherent
group-theoretical structure,

analogous to the structure of
modular forms which Hecke built
around the old theta functions of
Jacobi. This remains a challenge

for the future. . . ”

F. Dyson
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Mock modularity of f (q)

Theorem (Zwegers)

The function f (q) is a mock modular form.

S. Zwegers
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Generalization

Let for a,h ∈ N3

ra,h,N(n)

:= #
{
x ∈ Z3 : a1x

2
1 + a2x

2
2 + a3x

2
3 = n, xj ≡ hj (modN)

}
.

Motivation Question of Petersson

Example We have for n ≡ 2 (mod 8)

r1,h,N(n) = H(4n).
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Main Theorem

Let

Qa(x) :=
3∑

j=1

ajx
2
j

C := {a : Qa has class number one},

Sa certain set of (h,N) (explicit),

da,h,N explicit constant only depending on n (modN) .

Kathrin Bringmann Class numbers and representations by quadratic forms



Main Theorem

Let

Qa(x) :=
3∑

j=1

ajx
2
j

C := {a : Qa has class number one},

Sa certain set of (h,N) (explicit),

da,h,N explicit constant only depending on n (modN) .

Kathrin Bringmann Class numbers and representations by quadratic forms



Main Theorem

Let

Qa(x) :=
3∑

j=1

ajx
2
j

C := {a : Qa has class number one},

Sa certain set of (h,N) (explicit),

da,h,N explicit constant only depending on n (modN) .

Kathrin Bringmann Class numbers and representations by quadratic forms



Main Theorem

Let

Qa(x) :=
3∑

j=1

ajx
2
j

C := {a : Qa has class number one},

Sa certain set of (h,N) (explicit),

da,h,N explicit constant only depending on n (modN) .

Kathrin Bringmann Class numbers and representations by quadratic forms



Class number relations

Theorem
For each a ∈ C, (h,N) ∈ Sa, n ∈ N

ra,h,N(n) = da,h,N(n)ra(n).

Corollary
We have many relations to class numbers.

Gives an efficient way to compute class numbers!
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Modularity

Have

Θa,h,N(τ) :=
3∏

j=1

ϑhj ,N(2Najτ) =
∑
n≥0

ra,h,N(n)qn,

where

ϑh,N(τ) :=
∑

m≡h (modN)

q
m2

2N .

Let
Θa := Θa,1,1.
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Idea of proof

Step 1: Take generating functions

Θa,h,N =
∑

m (modN)

da,h,N(m)Θa
∣∣SM,m,

where for f (τ) =
∑

n c(n)qn,

f
∣∣SM,m(τ) :=

∑
n≡m (modM)

c(n)qn.
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Idea of proof

Step 2: Show modularity

A key lemma
Let for N,M ∈ N

ΓN,M := Γ0(N) ∩ Γ1(M).

Let ` := lcm(a1, a2, a3), d := a1a2a3.

Lemma
Θa,h,N is modular of weight 3

2 on Γ4`N2,N with character (d· ).

Θa
∣∣SM,n has weight 3

2 on Γlcm(4`,M2,MN
( d· )

),M , with Nχ the

conductor of character χ.
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Lemma
Θa,h,N is modular of weight 3

2 on Γ4`N2,N with character (d· ).

Θa
∣∣SM,n has weight 3

2 on Γlcm(4`,M2,MN
( d· )

),M , with Nχ the

conductor of character χ.
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Idea of proof cont.

Step 3: Use valence formula.

Lemma
For M | N

[SL2(Z) : ΓN,M ] = N
∏
p|N

(
1 +

1

p

)
ϕ

↑
Euler’s Phi-Funktion

(M).

Problem: Bounds too big in some cases, new ideas required.
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Example

Example

r(1,1,1),(0,0,1),3(n) =
1

6
δn≡1 (mod 3)r(1,1,1)(n)

Generating functions

Θ(1,1,1),(0,1,1),3 =
1

6
Θ(1,1,1)

∣∣S3,1

` = d = 1,
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Example cont.

Modularity
left-hand side: modular on Γ4·32,3,
right-hand side: Γ

lcm(4, 32, 3)︸ ︷︷ ︸
4·32

,3
.

Valence formula

#coefficients =
1

8

[
SL2(Z) : Γ4·32,3

]
=

1

8
4 · 32

(
1 +

1

2

)(
1 +

1

3

)
2 = 18
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Idea of proof : Class number identities

Step 1 Corresponding linear combination of class numbers is
modular.

Define for f : H→ C

f
∣∣Vd(τ) := f (dτ).
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Idea of proof : Class number identities

Key lemma

Lemma
For `1, `2 ∈ N with gcd(`1, `2) = 1 and `2 square-free

H`1,`2 := H
∣∣(U`1`2 − `2U`1V`2)

is a modular form of weight 3
2 on Γ0(4`2

∏
p|`1

p) with character

( `1`2
· ).
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Idea of proof : Class number identities

Proof (of key lemma).

1. Show modularity of

Ĥ`1,`2 := Ĥ
∣∣(U`1`2 − `2U`1V`2).

where for f (τ) =
∑

n cτ2(n)qn,

f
∣∣Ud(τ) =

∑
n

c τ2
d

(dn)qn.

2. Show that the corresponding non-holomorphic parts
cancel.

Step 2 Valence formula.
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Example

r(1,1,1)(n) = 12 (H(4n)− 2H(n))

Generating functions

Θ(1,1,1) = 12
(
H
∣∣U4 − 2H

) V2U2=id
= 12

(
H
∣∣U2 − 2H

∣∣V2

) ∣∣U2

= 12H1,2

∣∣U2

Modularity

Θ(1,1,1) is a modular form of weight 3
2 on Γ0(4),

H1,2 is a modular form of weight 3
2 on Γ0(8), U2 keeps that

property
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Valence formula

#coefficients =
1

8
[SL2(Z) : Γ0(8)] =

1

8
4 =

1

2

Check 1 coefficient!

Piecing together

r(1,1,1),(0,0,1),3(n) =
1

6
δn≡1 (mod 3)r(1,1,1)(n)

= 2δn≡1 (mod 3)(H(4n)− 2H(n))
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Outline

1. Representation numbers and modular

forms

2. Class numbers and mock modular forms

3. Generalizations

4. 7-core partitions
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Partitions

A partition of n ∈ N0 is a non-increasing sequence of positive
integers whose sum is n. Denote

p(n) := # of partitions of n.

Example

n = 4

p(4) = 5
4 3 + 1, 2 + 2, 2 + 1 + 1 1 + 1 + 1 + 1
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A partition of n ∈ N0 is a non-increasing sequence of positive
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Example

n = 4 p(4) = 5
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Generating function

Euler

P(q) :=
∑
n≥0

p(n)qn =
∏
n≥1

1

1− qn

=
q

1
24

η(τ)

a modular form of weight −1
2 .
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Ferrers-Young diagram

Let n1 + n2 + . . .+ n` be a partition of n.

Ferrers-Young diagram

• • • • • • n1 nodes
• • • • • n2 nodes
...
• • n` nodes
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Example

The partition 3 + 3 + 2 + 1 has Ferrers-Young diagram

• • •
• • •
• •
•
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t-cores

Hook numbers

H(j , `) = nj + n′` − j − `+ 1
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t-cores

Hook numbers

H(j , `) = nj + n′`
↑

#of nodes in column `

− j − `+ 1
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Example

• • •
• • •
• •
•

H(1, 1) = 3 + 4− 1− 1 + 1 = 6

H(1, 2) = 3 + 3− 1− 2 + 1 = 4

H(1, 3) = 3 + 2− 1− 3 + 1 = 2

H(3, 1) = 2 + 4− 3− 1 + 1 = 3

H(3, 2) = 2 + 3− 3− 2 + 1 = 1

H(3, 3) = 2 + 2− 3− 3 + 1 = −1

H(2, 1) = 3 + 4− 2− 1 + 1 = 5

H(2, 2) = 3 + 3− 2− 2 + 1 = 3

H(2, 3) = 3 + 2− 2− 3 + 1 = 1

H(4, 1) = 1 + 4− 4− 1 + 1 = 1

H(4, 2) = 1 + 3− 4− 2 + 1 = −1

H(4, 3) = 1 + 2− 4− 3 + 1 = −3
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t-cores

t-core of n if t - H(j , `) ∀j , `

ct(n) := #t-core partitions of n

Example
3 + 3 + 2 + 1 is a 7-core partition of 9.
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Importance

Arise in:

I Combinatorics
e.g. combinatorial proof of Ramanujan congruences

I representation theory
e.g. Nakayama’s conjecture

...
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Generating function

Generating function

∑
n≥0

ct(n)qn =
∏
n≥1

(1− qtn)t

1− qn
= q

1−t2

24
η(tτ)t

η(τ)

A modular form of weight 1
2 (t2 − 1).

Known facts:

I For t ∈ {2, 3}, ct(n) = 0 for almost all n ∈ N.

I For t ≥ 4, ct(n) > 0 for all n ∈ N.
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Generating function

Relation to class numbers (Ono-Sze)
For 8n + 5 square-free

c4(n) =
1

2
H(32n + 20).
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Self-conjugate t-cores

Self-conjugate t-cores: t-cores that are symmetric when switching
rows and columns in the Ferrers-young diagram.

sct(n) := # of self-conjugate t-cores of n

Example

• • •
• • •
• •
•

3 + 3 + 2 + 1 is not self-conjugate.
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Result of Ono/ Raji

Theorem (Ono-Raji)

If n ∈ N, n 6≡ 5 (mod 7), n odd, then

sc7(n) =


1
4H(28n + 56) if n ≡ 1 (mod 4) ,
1
2H(7n + 14) if n ≡ 3 (mod 4) ,

0 otherwise.
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Extending the result of Ono/ Raji

Let H7(D) denote the number of 7-primitive quadratic forms (for
[a, b, c], 7 - gcd(a, b, c)) with discriminant −D and the same
weighting as H(D).

Lemma

H7(D) = H(D)− H

(
D

72

)
.
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Generalization

Let

Dn : =


28n + 56 if n ≡ 0, 1 (mod 4) ,

7n + 14 if n ≡ 3 (mod 4) ,

D n+2

22` −2 if n ≡ 2 (mod 4) ,

νn :=


1
4 if n ≡ 0, 1 (mod 4) ,
1
2 if n ≡ 3 (mod 8) ,

ν n+2

22` −2 if n ≡ 2 (mod 4) ,

0 otherwise,

where ` ∈ N is maximal s.t. n ≡ −2
(
mod 22`

)
.
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Generalization

Theorem (B.-Kane)

We have for n ∈ N
sc7(n) = νnH7(Dn).

Remark
Includes result by Ono/ Raji since H(Dn) = H7(Dn) for
n 6≡ −2 (mod 7).
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Generalization

Key theorem

Theorem (B.-Kane)
For every n ∈ N, we have

sc7(n) =
1

4

(
H(28n + 56)− H

(
4n + 8

7

)
− 2H(7n + 14)

+2H

(
n + 2

7

))
.
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Consequences

Corollary
For n ∈ N with n + 2 square-free

sc7(n) = − νn
Dn


∑Dn−1

m=1

(−Dn

m

)
m if n 6≡ −2 (mod 7) ,

72

(
7 +

(
Dn
72

7

))∑ Dn
72 −1

m=1

(
− Dn

72

m

)
m if n ≡ −2 (mod 7) .
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Consequences

Corollary
For n ∈ N with n + 2 square-free, `, r ∈ N0, f ∈ N with
gcd(f , 14) = 1

sc7

(
(n + 2)22`f 272r − 2

)
= 7r sc7(n)

∑
1≤d |f

µ(d)

(
−Dn

d

)
σ1

(
f

d

)
.
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Open questions

1. Find all class number identities.

2. Find bijective proofs for the t-core identities (work in progress
with Males).
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Thank you for your attention
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