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Macdonald’s formula
Extra functional equation



3/26

Moments of quadratic Dirichlet L-functions

For d 6= 0 square-free, let χd(n) the quadratic Dirichlet character
(of modulus d or 4d) associated with the quadratic field Q(

√
d).

Its L-function

L(s, χd) =
∑
n>1

χd(n)

ns

has analytic continuation to C and satisfies a functional equation
under s 7→ 1− s.

Conjecture (CFKRS Moment conjecture )

For r > 1 one has the asymptotic∑
|d |<x

d square-free

L(1/2, χd)r ∼ xPr (log x)

for an explicit polynomial Pr of degree r(r + 1)/2.

Known for r = 1, 2 (Jutila 1981) and r = 3 (Soundararajan 2000
and Diaconu-Goldfeld-Hoffstein 2001).
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Beyond leading terms

Diaconu-Goldfeld-Hoffstein used multiple Dirichlet series, and
conjectured the existence of another term in the asymptotics for
the third moment, of order x3/4. The existence of this lower order
term was recently established:

Theorem (Diaconu-Whitehead 2019)

Let W : (0,∞)→ (0, 1) be a “nice” function with Mellin

transform Ŵ . Then∑
d

L
(1

2
, χ2d

)3
W
(d

x

)
= xQW (log x) + RŴ

(3

4

)
x

3
4 + O

(
x

2
3

+ε
)

where QW is a polynomial of degree 6, R = −0.0034..., and the
sum is over square-free odd d.
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Remarks

A similar asymptotics holds over the rational function
field Fq(T ) (Diaconu 2019) for the moments∑

d∈Fq [T ] monic, square-free
deg d=D

L(1/2, χd)3.

The proof over Q is parallel to that over Fq(T ). This is in
agreement with the general philosophy, that results over
Fq(T ) have correspondents over Q, but are usually easier to
prove.

Over Fq(T ) asymptotics for the 3rd and 4th moments were
proven by A. Florea (2017).
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Multiple Dirichlet series

Consider multiple Dirichlet series (MDS) of the type:

Zarithm(s1, s2, . . . , sr+1) =
∑
d

L(s1, χd)L(s2, χd) . . . L(sr , χd)

|d |sr+1

where si ∈ C and the sum is over discriminants d in the number
field setting (over Q), or over monic polynomials d in the rational
function field setting (over Fq(T )). In the latter case, |d | = qdeg d .

The term in the summation for d not square-free has to be
adjusted by suitable correction factors, so that Zarithm has a large
group of functional equations. The correction factors are unique
for r = 1, 2, 3, but not so for r > 4.



6/26

Multiple Dirichlet series

Consider multiple Dirichlet series (MDS) of the type:

Zarithm(s1, s2, . . . , sr+1) =
∑
d

L(s1, χd)L(s2, χd) . . . L(sr , χd)

|d |sr+1

where si ∈ C and the sum is over discriminants d in the number
field setting (over Q), or over monic polynomials d in the rational
function field setting (over Fq(T )). In the latter case, |d | = qdeg d .

The term in the summation for d not square-free has to be
adjusted by suitable correction factors, so that Zarithm has a large
group of functional equations. The correction factors are unique
for r = 1, 2, 3, but not so for r > 4.



7/26

Multiple Dirichlet series

The most general construction of Zarithm is due to Diaconu-Paşol
(2018), who give a set of axioms that determine uniquely the
correction factors for every r (using some of the geometric
machinery used by Deligne in the proof of the Weil conjectures).

Strategy of MDS method: Obtain meromorphic continuation of
Zarithm to a region containing (1/2, . . . , 1/2, 1). Tauberian
theorems then give the desired asymptotics from knowledge of the
residues of Zarithm at poles.

Remark: When r 6 3, the functional equations form a finite group
and give meromorphic continuation to Cr+1 by means of Böchner’s
theorem, but for r > 4 the group is infinite, and there is a natural
boundary of singularities.
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Functional equations

From now on assume the function field setting. The
functional equations

L(s, χd) 7→ |d |1/2−sL(1− s, χd)

imply that Zarithm has a group of functional equations under the
transformations :

σi : (s1, . . . , si , . . . , sr+1) 7→ (s1, . . . , 1− si , . . . , sr+1 + si − 1/2)

for i = 1, . . . , r and

σr+1 : (s1, . . . , sr+1) 7→ (s1+sr+1−1/2, s2+sr+1−1/2, . . . , 1−sr+1)

(for this latter equation one needs the correction factors in
definition of Zarithm).
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Coxeter groups and their root systems

These transformations form a Weyl-Coxeter group Wr with
Coxeter graph:

r+11 r-2

2

r

Wr = 〈σi | σ2
i = 1, (σiσj)

3 = 1 for i ∼ j , (σiσj)
2 = 1 for i 6∼ j〉.

Key fact: Wr is finite for r = 1, 2, 3 and infinite if r > 4.

Remark: The case r = 4 is special in that the Weyl group is
affine. The corresponding root system is denoted D̃4.
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Another construction of MDS

Our goal is to study another construction of MDS, obtained as a
Chinta-Gunnels average over the Weyl group, and to relate it to
Zarithm.

What is known beyond the case of finite Weyl group:

Diaconu-Bucur (2009) studied such an MDS associated to
W4 = D̃4, proved its meromorphic continuation up to the
natural boundary, and related it to Zarithm up to a “diagonal
factor”;

Lee-Zhang (2012) established meromorphic continuation for
such a Chinta-Gunnels average, attached to symmetrizable
Kac-Moody root systems.
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Setting

We consider simply laced Coxeter root systems (all the roots have
the same length), which are of affine type. The irreducible ones
are Ãr , D̃r and those associated with the finite exceptional root
systems of type Er , 6 6 r 6 8.

r + 1

21 r
Ãr , r > 2:

3

1

2

r − 1

r

r + 1

D̃r , r > 4:
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Weyl group and root system associated to a diagram

Let α1, . . . , αr+1 be a basis of Rr+1 (called simple roots), and
define an inner product: all the αi have the same length, αi

and αj are orthogonal to each other if i 6∼ j and they make a
2π/3 angle if i ∼ j . The inner-product is positive
semi-definite in the affine case.

The Weyl-Coxeter group W : generated by the reflections σi
in the plane orthogonal to αi (Tits representation).

Root system Φ ⊂ Rr+1: generated by the images of simple
roots αi under the Weyl group W .

Φ is contained in the root lattice
r+1⊕
i=1

Zαi , and it decomposes

Φ = Φ+ ∪ Φ−, into positive and negative roots.
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Structure of affine Weyl groups

For affine root systems there is a special element in the root lattice
(“imaginary root”) fixed by the entire Weyl group. For Ãr it is:

δ = α1 + . . .+ αr+1.

Assume W comes from a finite Weyl group W0 (e.g Ãr ). We have

W = W0 n T

with T ' Zr a normal subgroup of translations.
Elements t ∈ T act on simple roots by

tαi = αi + niδ, ni ∈ Z.
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The Chinta-Gunnels action

Assume Φ is an irreducible, simply laced Coxeter root system, with
Weyl group W generated by simple reflections σ1, . . . , σr+1.

For x = (x1, . . . , xr+1), and α =
∑r+1

i=1 kiαi in the root lattice:

xα :=
r+1∏
i=1

xki
i .

The Weyl group W acts on variables x by

(wx)i = xw
−1αi .

The action of generators σi correspond precisely to the functional
equations of the MDS for xi = q1/2−si .
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The Chinta-Gunnels action

Also define the sign function on multivariables x:

(εi (x))j =

{
−xj if j ∼ i

xj otherwise

Chinta-Gunnels action (2006): for a rational function f (x)

f |σi (x) = f (σix)J(xi , 0) + f (εiσix)J(xi , 1)

J(x , δ) =
x

2

( √
q − x

1−√qx
− (−1)δ

)
,

and the action extends to W by f |w1|w2 = f |w1w2 .
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Zeta function

Form the zeta function (Chinta-Gunnels average)

Z (x) =
∑
w∈W

1|w(x).

In the affine case, we want to:

compute its residues at poles;

relate it to Zarithm that encodes moments.
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The case Ãr

We restrict to Ãr for simplicity. Let

I =

{
{2, 4, . . . , r + 1} for r odd

{3, 5, . . . , r + 1} for r even.

and let J be the complement of I in the set of indices
{1, . . . , r + 1}. Let xI , xJ the corresponding multivariables.

Set u =
√

q. The zeta function has poles at xi = 1/
√

u and it is
completely determined by its functional equations, plus knowledge
of the iterated residue:

R(xJ ; u) =
∏
i∈I

1− uxi
1− x2

i

Z (x)

∣∣∣∣∣
xi=1/u, i∈I

.
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A conjecture

Let P =
∏

j∈J xj/u|I | (specialization of xδ for xi = 1/u, i ∈ I ).

Conjecture (Diaconu-Paşol-P.)

For Ãr , we have

R(xJ ; u) = f (P; u) · R0(xJ ; u)

where f (P; u) is an explicit power series in P, and R0 is an explicit
residue, common to all zeta functions satisfying the same group of
functional equations. Both R0 and P are products of Pochhammer
symbols.
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Partial result

Denote by (a; b)∞ =
∏∞

k=0(1− abk), the b-Pochhammer symbol.

Theorem (Diaconu-Paşol-P.)

The conjecture holds for Ã2, Ã3. For example, for Ã2 we have

R(x1, x2; u) =
(
P2; P2

)
∞
(
P2/u2; P2

)
∞

2∏
i=1

(
x2
i /u2; P2

)
∞

where P = x1x2/u (recall u =
√

q).
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Remarks

R(xJ ; u) = f (P; u) · R0(xJ ; u)

We expect a similar result to hold in all affine cases. We
proved it for D̃4.

The factor R0 is computed using the functional equations of
Z under translations in affine Weyl group.

The determination of the “diagonal factor” f (P; u) is more
subtle, and it requires a new type of functional equation.

The multiple residue of Zarithm for Ãr , in the same variables,
was computed by Whitehead (2014). Both Z and Zarithm

satisfy the same affine Weyl group of functional equations,
and proving the conjecture would also determine the
proportionality factor between the two.
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Connection with Macdonald’s formula

The length function on a Coxeter group W has the property:

`(w) = #Φ(w), Φ(w) := {α ∈ Φ+ : wα ∈ Φ−}.

Set s(w) =
∑

β∈Φ(w) β, an element in the root lattice.

Z (x; q = 1) =
∑
w∈W

(−1)`(w)(−x)s(w) =: FMD(−x).

Key fact: For q = 1, the residue conjecture specializes to
Macdonald’s formula for FMD(−x) in the case Ãr (specialized at
xi = 1 for i ∈ I ). It can be regarded as a q-deformation of it.
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Macdonald’s formula

For finite W , we have the well-known Weyl denominator formula:

FMD(x) :=
∑
w∈W

(−1)`(w)xs(w) =
∏
β>0

(1− xβ)

where the product is over all positive roots in Φ.

Theorem (Macdonald 1972)

For affine W associated to a finite, irreducible root system of
rank r :

FMD(x) =
∏
k>1

(1− xkδ)r
∏
β>0

(1− xβ)

where δ is the minimal positive imaginary root, fixed by all of W .

Ideea of proof: both sides have the same functional equations
under suitable Weyl group elements, and they agree when variables
are appropriately specialized.
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A cocycle associated to the Chinta-Gunnels action

Assume Φ is of type Ã2, Ã3 or D̃4. For a function F (x) we denote

−→
F (x) :=

 F (x)
F (εr+1x)
F (ε1x)

F (ε1εr+1x)


and we consider a matrix valued cocycle Mw (x) such that

−−→
F |w(x) = Mw (x)

−→
F (wx).

The function Mw is defined initially on the generators of W , and
then extended to the whole group by the cocycle relation

Mw ′w (x) = Mw (x)Mw ′(wx), for w ,w ′ ∈W .
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Functional equations

For the zeta function Z =
∑

w∈W 1|w , we have

~Z (x) =
∑
w∈W

Mw (x)~1

The cocycle relation for Mw implies the functional equations

Mw (x)~Z (wx) = ~Z (x)

(when x = q1/2−si these are of the same type as before in si ).
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Main result: an additional symmetry

The vector ~Z has an extra functional equation, when viewing
u =
√

q as an additional variable and making the transformation
u 7→ u/xδ.

Theorem (Diaconu-Paşol-P.)

Assume Φ is of type Ã2, Ã3 or D̃4. Then there exists a 4× 4
matrix with rational function entries A(x) such that

A(x)~Z (x; u/xδ) = ~Z (x; u).
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Applications

Our explicit formulas for the residue (including for D̃4) follow
from the functional equations, together with Macdonald’s
formula.

All the analytic information of the Chinta-Gunnels average Z
transfers to Zarithm.
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