Small Scale Equidistribution of Lattice Points on the Sphere

Peter Humphries (joint with Maksym Radziwiłł)

June 3, 2020

Peter Humphries Small Scale Equidistribution of Lattice Points on the Sphere

Question

When can a positive integer n be written as the sum of three squares?

Want to determine when the set

$$\mathcal{E}(n) := \left\{ (x_1, x_2, x_3) \in \mathbb{Z}^3 : x_1^2 + x_2^2 + x_3^2 = n \right\}$$

is nonempty.

Geometric viewpoint: $\mathcal{E}(n)$ is the set of points on the lattice \mathbb{Z}^3 in \mathbb{R}^3 that lie on the sphere centred at the origin of radius \sqrt{n} .

Example
$$x_1^2+x_2^2+x_3^2=11 \text{ with } (x_1,x_2,x_3) \in \{(3,1,1),(1,3,1),\ldots\}.$$

Example $x_1^2 + x_2^2 + x_3^2 = 7$ has no integral solutions.

If
$$x \in \mathbb{Z}$$
, then $x^2 \equiv 0, 1$, or 4 (mod 8). So if $(x_1, x_2, x_3) \in \mathbb{Z}^3$, then $x_1^2 + x_2^2 + x_3^2 \equiv 0, 1, 2, 3, 4, 5$, or 6 (mod 8).

Theorem (Legendre (1798))

Any positive integer n can be written as a sum of three squares if and only if n is not of the form $n = 4^{a}(8b + 7)$ for some nonnegative integers a, b.

Question

Given a positive integer n, how many ways are there to write n as the sum of three squares?

Given n, want to determine

$$r_3(n) := \#\mathcal{E}(n) = \#\left\{(x_1, x_2, x_3) \in \mathbb{Z}^3 : x_1^2 + x_2^2 + x_3^2 = n\right\}.$$

Some obvious symmetries: permutations, multiplication of a coordinate by -1.

Sums of Three Squares: Number of Solutions

Interesting case is *n* squarefree.

Theorem (Gauss (1801))

For odd squarefree $n \not\equiv 7 \pmod{8}$,

$$r_3(n) = \begin{cases} 12h(D) & \text{for } n \equiv 1,2 \pmod{4} \text{ with } D = -4n, \\ 24h(D) & \text{for } n \equiv 3 \pmod{8} \text{ with } D = -n. \end{cases}$$

h(D) is the class number of the imaginary quadratic number field $\mathbb{Q}(\sqrt{D})$.

Sums of Three Squares: Number of Solutions

Corollary For all $\varepsilon > 0$, we have that $n^{\frac{1}{2}-\varepsilon} \ll_{\varepsilon} r_3(n) \ll \sqrt{n} \log n.$

Upper bound is easy; not hard to show that $h(D) \ll \sqrt{|D|} \log |D|$.

Lower bound is nontrivial; Dirichlet class number formula (1839) plus Siegel ineffective bound (1935)

 $L(1,\chi_D) \gg_{\varepsilon} |D|^{-\varepsilon}.$

Sums of Three Squares: Limiting Behaviour

Let

$$\widehat{\mathcal{E}}(n) := \left\{ \left(\frac{x_1}{\sqrt{n}}, \frac{x_2}{\sqrt{n}}, \frac{x_3}{\sqrt{n}}\right) \in \mathbb{R}^3 : (x_1, x_2, x_3) \in \mathcal{E}(n) \right\}$$

denote the projection of $\mathcal{E}(n)$ onto the unit sphere

$$S^2 := \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1
ight\}.$$

Question

What are the limiting statistical properties of $\widehat{\mathcal{E}}(n) \subset S^2$ as $n \to \infty$?

Examples: n = 101

Examples: n = 104851

The normalised lattice points $\widehat{\mathcal{E}}(n) \subset S^2$ appear to behave just like *random* points on the sphere.

Goal

Quantify the limiting behaviour of $\widehat{\mathcal{E}}(n)$ as $n \to \infty$ in ways that are shared by *randomly chosen* points.

As $n \to \infty$ along squarefree integers with $n \not\equiv 7 \pmod{8}$, the lattice points on the sphere $\widehat{\mathcal{E}}(n)$ equidistribute on S^2 .

Informally, the points $\widehat{\mathcal{E}}(n)$ spread out randomly on S^2 .

Proved earlier by Linnik (1968) for certain subsequences of n.

Let M be a topological space and μ a probability measure on M. Let μ_n be a sequence of probability measures on M.

Definition

The probability measures μ_n equidistribute on M w.r.t. μ if

$$\lim_{n\to\infty}\mu_n(B)=\mu(B)$$

for every continuity set $B \subset M$ (boundary has μ -measure zero).

Let M be a topological space and μ a probability measure on M. Let μ_n be a sequence of probability measures on M.

Definition

The probability measures μ_n equidistribute on M w.r.t. μ if

$$\lim_{n\to\infty}\int_M f(x)\,d\mu_n(x)=\int_M f(x)\,d\mu(x)$$

for all $f \in C_b(M)$ (continuous bounded).

Definition

We define a probability measure μ_n on S^2 by

$$\mu_n := \frac{1}{\#\widehat{\mathcal{E}}(n)} \sum_{x \in \widehat{\mathcal{E}}(n)} \delta_x.$$

So for $B \subset S^2$ and $f: S^2 \to \mathbb{C}$,

$$\mu_n(B) := \frac{\#(\widehat{\mathcal{E}}(n) \cap B)}{\#\widehat{\mathcal{E}}(n)},$$
$$\int_{S^2} f(y) \, d\mu_n(y) := \frac{1}{\#\widehat{\mathcal{E}}(n)} \sum_{x \in \widehat{\mathcal{E}}(n)} f(x).$$

As $n \to \infty$ along squarefree integers with $n \not\equiv 7 \pmod{8}$, the probability measures μ_n equidistribute on S^2 with respect to the normalised surface measure μ on S^2 .

As $n \to \infty$ along squarefree integers with $n \not\equiv 7 \pmod{8}$,

$$\frac{\#(\widehat{\mathcal{E}}(n)\cap B)}{\#\widehat{\mathcal{E}}(n)}\to \mathrm{vol}(B)$$

for every continuity set $B \subset S^2$.

As $n \to \infty$ along squarefree integers with $n \not\equiv 7 \pmod{8}$,

$$\frac{1}{\#\widehat{\mathcal{E}}(n)}\sum_{x\in\widehat{\mathcal{E}}(n)}f(x)\to\int_{S^2}f(y)\,dy$$

for every continuous function f on S^2 .

Proof of Duke's Theorem

Idea of proof.

Approximate $f \in C(S^2)$ by spherical harmonics.

x

Reduces problem to showing that for every spherical harmonic ϕ ,

$$\frac{1}{\#\widehat{\mathcal{E}}(n)}\sum_{x\in\widehat{\mathcal{E}}(n)}\phi(x)\to\int_{\mathcal{S}^2}\phi(y)\,dy.$$

Trivial if ϕ is constant. RHS is zero if ϕ is nonconstant.

Since $\#\widehat{\mathcal{E}}(n) \gg_{\varepsilon} n^{1/2-\varepsilon}$, suffices to show that there exists $\delta > 0$ such that

$$\sum_{\in \widehat{\mathcal{E}}(n)} \phi(x) \ll_{\phi} n^{rac{1}{2} - \delta}.$$

Theorem (Waldspurger (1981))

Given a spherical harmonic ϕ of degree $m_{\phi} \ge 1$, there exists a holomorphic modular form f of weight $2 + 2m_{\phi}$ such that

$$\left|\sum_{x\in\widehat{\mathcal{E}}(n)}\phi(x)\right|^2\approx\sqrt{n}L\left(\frac{1}{2},f\right)L\left(\frac{1}{2},f\otimes\chi_{-n}\right).$$

Waldspurger's identity proceeds in two steps.

Proposition

Given a spherical harmonic ϕ of degree $m_{\phi} \ge 1$, there exists a half-integral weight modular form g of weight $m_{\phi} + 1/2$ and level 4 lying in the Kohnen minus space such that

- the ratio of Petersson norms is $\approx L(1/2, f)$, and
- the n-th Fourier coefficient $\rho_g(n)$ of g satisfies

$$\rho_g(n) = \sum_{x \in \widehat{\mathcal{E}}(n)} \phi(x).$$

This is a special case of the Rallis inner product formula.

Proposition

Given a half-integral weight modular form g of weight m + 1/2 and level 4 lying in the Kohnen minus space, there exists a holomorphic modular form f of level 2 + 2m and level 2 such that

$$|
ho_{g}(n)|^{2} \approx \sqrt{n}L\left(\frac{1}{2}, f \otimes \chi_{-n}\right).$$

Remark

Alternatively, one can circumvent the need for half-integral weight modular forms via work of Martin–Whitehouse (following Waldspurger, Gross, Böcherer–Schulze-Pillot, Zhang, Jacquet–Nan, Popa,...)

Theorem (Iwaniec (1987))

There exists $\delta > 0$ such that

$$L\left(\frac{1}{2}, f\otimes\chi_{-n}\right)\ll_f n^{\frac{1}{2}-\delta}.$$

This is a case of subconvexity. Trivial bound is

$$L\left(\frac{1}{2}, f \otimes \chi_{-n}\right) \ll_{f,\varepsilon} n^{\frac{1}{2}+\varepsilon}$$

Consequence of the Phragmén–Lindelöf convexity principle. Generalisation of the bound

$$\zeta\left(\frac{1}{2}+it\right)\ll_{\varepsilon}(|t|+1)^{\frac{1}{4}+\varepsilon}.$$

Rate of Equidistribution: Decay of Error Term

What is the rate of equidistribution of μ_n on S^2 w.r.t. μ ?

Goal

Find the most rapidly decreasing function $\alpha(n)$ for which

$$\mu_n(B) = \frac{\#(\widehat{\mathcal{E}}(n) \cap B)}{\#\widehat{\mathcal{E}}(n)}$$

is equal to

 $\operatorname{vol}(B) + O_B(\alpha(n))$

for a fixed continuity set $B \subset S^2$.

Informally, determine how quickly the points $\widehat{\mathcal{E}}(n)$ spread out randomly on S^2 .

Heuristic

Like *random* points, we should expect square-root cancellation: since $\#\widehat{\mathcal{E}}(n) \approx \sqrt{n}$, we should hope for $\alpha(n) \approx n^{-1/4}$.

Rate of Equidistribution: Decay of Error Term

Theorem (Conrey–Iwaniec (2000)) For a fixed continuity set $B \subset S^2$, $\frac{\#(\widehat{\mathcal{E}}(n) \cap B)}{\#\widehat{\mathcal{E}}(n)} = \operatorname{vol}(B) + O_{B,\varepsilon} \left(n^{-\frac{1}{12}+\varepsilon}\right)$ for all $\varepsilon > 0$.

Follows from Waldspurger's identity together with the *Weyl-strength* subconvex bound

$$L\left(\frac{1}{2}, f \otimes \chi_{-n}\right) \ll_{f,\varepsilon} n^{\frac{1}{3}+\varepsilon}.$$

Rate of Equidistribution: Decay of Error Term

Assuming the generalised Lindelöf hypothesis, we instead have

$$L\left(\frac{1}{2}, f\otimes\chi_{-n}\right)\ll_{f,\varepsilon} n^{\varepsilon}.$$

Theorem

For a fixed continuity set $B \subset S^2$,

$$\frac{\#(\widehat{\mathcal{E}}(n)\cap B)}{\#\widehat{\mathcal{E}}(n)} = \operatorname{vol}(B) + O_{B,\varepsilon}\left(n^{-\frac{1}{4}+\varepsilon}\right)$$

for all $\varepsilon > 0$ under the assumption of the generalised Lindelöf hypothesis.

Optimal.

Rate of Equidistribution: Small Scale Equidistribution

What is the rate of equidistribution of μ_n on S^2 w.r.t. μ ?

Goal Find the most rapidly decreasing function $\alpha(n)$ for which $\lim_{n \to \infty} \frac{1}{\operatorname{vol}(B_n)} \frac{\#(\widehat{\mathcal{E}}(n) \cap B_n)}{\#\widehat{\mathcal{E}}(n)} = 1$ for a family of sets $B = B_n$ with $\operatorname{vol}(B_n) = \alpha(n)$.

Informally, determine the scale at which the points $\widehat{\mathcal{E}}(n)$ no longer look random. How small does a set B_n have to be to **not** contain the expected number of points?

Heuristic

Like random points, we should expect small scale equidistribution provided we are at a scale for which $\#(\widehat{\mathcal{E}}(n) \cap B_n) \to \infty$. Since $\#\widehat{\mathcal{E}}(n) \approx \sqrt{n}$, the optimal scale should be $\alpha(n) \approx n^{-1/2}$.

Proposition

Generically, $\widehat{\mathcal{E}}(n)$ cannot equidistribute on shrinking sets B_n for which $\operatorname{vol}(B_n) \leq n^{-\frac{1}{2}-\delta}$ for some $\delta > 0$.

Sketch of Proof.

There are $\approx \sqrt{n}$ points in $\widehat{\mathcal{E}}(n)$, so if $\operatorname{vol}(B_n) \leq n^{-\frac{1}{2}-\delta}$, then generically $\widehat{\mathcal{E}}(n) \cap B_n = \emptyset$ by the pigeonhole principle.

Example: $n \le 2048$

Conjecture

Lattice points $\widehat{\mathcal{E}}(n)$ equidistribute on shrinking sets B_n for which $\operatorname{vol}(B_n) \gg n^{-\frac{1}{2}+\delta}$ for some $\delta > 0$.

Optimal scale.

Remark

Conjecture does *not* follow from the generalised Lindelöf hypothesis!

Small Scale Equidistribution

Conjecture looks very hard, especially for balls $B_n = B_R(w)$.

Theorem (H.-Radziwiłł (2019)) Fix $w \in S^2$. If $R \ge n^{-\delta}$ for some fixed $\delta < \frac{1}{24}$, $\lim_{n \to \infty} \frac{1}{\operatorname{vol}(B_R(w))} \frac{\#(\widehat{\mathcal{E}}(n) \cap B_R(w))}{\#\widehat{\mathcal{E}}(n)} = 1.$

Assuming the generalised Lindelöf hypothesis, this holds for $\delta < \frac{1}{8}$.

Under Lindelöf, implies small scale equidistribution at scales down to $\operatorname{vol}(B_n) \approx n^{-1/4}$; far shy of the optimal scale $\operatorname{vol}(B_n) \approx n^{-1/2}$.

What about for annuli?

Conjecture (Linnik (1968))

Fix $\delta > 0$. For all sufficiently large squarefree $n \not\equiv 7 \pmod{8}$,

$$x_1^2 + x_2^2 + x_3^2 = n$$

has an integral solution $(x_1, x_2, x_3) \in \mathbb{Z}^3$ with $|x_3| < n^{\delta}$.

Special case of optimal small scale equidistribution: B_n the annulus (belt about the equator) of optimally shrinking width.

Conjecture (Linnik (1968))

Fix $\delta > 0$. For all sufficiently large squarefree $n \not\equiv 7 \pmod{8}$, there exists $(x_1, x_2, x_3) \in \widehat{\mathcal{E}}(n)$ with $|x_3| < n^{-\frac{1}{2} + \delta}$.

Special case of optimal small scale equidistribution: B_n the annulus (belt about the equator) of optimally shrinking width.

Example: n = 104851

Theorem (H.–Radziwiłł (2019))

Fix $\delta > 0$. For all sufficiently large squarefree $n \not\equiv 7 \pmod{8}$,

$$x_1^2 + x_2^2 + x_3^2 = n$$

has an integral solution $(x_1, x_2, x_3) \in \mathbb{Z}^3$ with $|x_3| < n^{\frac{4}{9}+\delta}$.

Assuming the generalised Lindelöf hypothesis, the same result is true with $|x_3| < n^{\frac{1}{4}+\delta}$.

Still fall well short of Linnik's conjecture $|x_3| < n^{\delta}$.

Proof shows small scale equidistribution when $vol(B_n) \gg n^{-\frac{1}{18}+\delta}$.

Linnik's conjecture is small scale equidistribution on thin annuli around the equator, with respect to the north pole $(0, 0, 1) \in S^2$.

Nothing special about this choice of north pole; could also choose any other equator with respect to a point $w = (w_1, w_2, w_3) \in S^2$.

Conjecture (Rotated Linnik's Conjecture)

Fix $\delta > 0$. For all sufficiently large squarefree $n \not\equiv 7 \pmod{8}$,

$$x_1^2 + x_2^2 + x_3^2 = n$$

has an integral solution $x = (x_1, x_2, x_3) \in \mathbb{Z}^3$ with $|x \cdot w| < n^{\delta}$.

Theorem (H.–Radziwiłł (2019))

Fix $\delta > 0$ and $w \in S^2$. For all sufficiently large squarefree $n \not\equiv 7 \pmod{8}$,

$$x_1^2 + x_2^2 + x_3^2 = n$$

has an integral solution $x = (x_1, x_2, x_3) \in \mathbb{Z}^3$ with $|x \cdot w| < n^{\frac{4}{9} + \delta}$.

Assuming the generalised Lindelöf hypothesis, the same result is true with $|x \cdot w| < n^{\frac{1}{4}+\delta}$.

Question

Can we do better for "most"
$$w \in S^2$$
?

Averaged Rotated Linnik's Conjecture

Theorem (H.–Radziwiłł (2019))

Fix $\delta > 0$. For squarefree $n \not\equiv 7 \pmod{8}$, the volume of the set of $w \in S^2$ for which

$$x_1^2 + x_2^2 + x_3^2 = n$$

has no integral solutions $x = (x_1, x_2, x_3) \in \mathbb{Z}^3$ with $|x \cdot w| < n^{\delta}$ is o(1) as $n \to \infty$.

Unconditionally resolves the rotated Linnik's conjecture for *almost* every pole $w \in S^2$.

Optimal. Fails if instead one demands $|x \cdot w| < 1000$.

Optimal Small Scale Equidistribution on Annuli

Theorem follows from the following result on the equidistribution of lattice points in the annulus $B_n = B_n(w)$ around the equator with respect to the north pole $w = (w_1, w_2, w_3) \in S^2$ of volume $n^{-\frac{1}{2}+\delta}$.

Theorem For any fixed $\varepsilon > 0$, $\lim_{n \to \infty} \operatorname{vol} \left(\left\{ w \in S^2 : \left| \frac{1}{\operatorname{vol}(B_n)} \frac{\#(\widehat{\mathcal{E}}(n) \cap B_n(w))}{\#\mathcal{E}(n)} - 1 \right| > \varepsilon \right\} \right) = 0.$ In particular, the normalised lattice points $\widehat{\mathcal{E}}(n)$ equidistribute on the shrinking annulus $B_n(w)$ of volume $n^{-\frac{1}{2} + \delta}$ for almost every $w \in S^2$.

Rate of shrinking is **optimal**.

Method of proof.

By Chebyshev's inequality, this result follows upon showing that

$$\mathsf{Var}(\widehat{\mathcal{E}}(n); B_n) := \int_{S^2} \left(\#(\widehat{\mathcal{E}}(n) \cap B_n(w)) - \mathrm{vol}(B_n) \# \widehat{\mathcal{E}}(n) \right)^2 \, dw$$

is
$$O(\operatorname{vol}(B_n)^2 n^{1-\delta})$$
 as $n \to \infty$.

Can ask for more refined results about this variance.

Conjecture (Bourgain–Rudnick–Sarnak (2017))

Let $B_n(w)$ be a sequence of balls (spherical caps) or annuli on S^2 of shrinking volume as $n \to \infty$. Then as $n \to \infty$,

$$\operatorname{Var}(\widehat{\mathcal{E}}(n); B_n) \sim \operatorname{vol}(B_n) \# \widehat{\mathcal{E}}(n).$$

Motivation

Such an asymptotic holds for *random* points.

Highly refined quantification of randomness of lattice points on the sphere; far beyond equidistribution!

Theorem (H.–Radziwiłł (2019))

Let $B_n(w)$ be a sequence of annuli on S^2 with fixed inner radius for which $\operatorname{vol}(B_n) \ll n^{-\frac{5}{12}-\delta}$ for some $\delta > 0$. Then as $n \to \infty$,

 $\operatorname{Var}(\widehat{\mathcal{E}}(n); B_n) \sim \operatorname{vol}(B_n) \# \widehat{\mathcal{E}}(n).$

Resolves the Bourgain–Rudnick–Sarnak conjecture for *small* annuli, namely $vol(B_n) \ll n^{-\frac{5}{12}-\delta}$.

For less small annuli, namely $n^{-\frac{5}{12}-\delta} \ll \operatorname{vol}(B_n) \ll 1$, we still get nontrivial upper bounds in place of asymptotics for the variance.

Idea of Proof

First step of proof to bound the variance: spectral expansion on $L^2(S^2)$ plus Waldspurger's formula.

Lemma

We have that

$$\operatorname{Var}(\widehat{\mathcal{E}}(n); B_n) \approx \operatorname{vol}(B_n)^2 \sqrt{n} \sum_f L\left(\frac{1}{2}, f\right) L\left(\frac{1}{2}, f \otimes \chi_{-n}\right) |h(k_f)|^2$$

where the sum is over modular forms of even weight $k_f \in 2\mathbb{N}$, and

$$h(k) \ll egin{cases} rac{1}{\sqrt{k}} & ext{for } k \leq rac{1}{ ext{vol}(B_n)}, \ rac{1}{ ext{vol}(B_n)k^{3/2}} & ext{for } k \geq rac{1}{ ext{vol}(B_n)}. \end{cases}$$

The function $h : 2\mathbb{N} \to \mathbb{C}$ is the Selberg–Harish-Chandra transform of the indicator function of the annulus; can be explicitly written in terms of integrals of Legendre polynomials.

Break up sum into dyadic ranges; reduces problem to bounding moments of L-functions.

Corollary

Good bounds for $Var(\hat{\mathcal{E}}(n); B_n)$ follow from good bounds for the moment of L-functions

$$\sum_{T \leq k_f \leq 2T} L\left(\frac{1}{2}, f\right) L\left(\frac{1}{2}, f \otimes \chi_{-n}\right)$$

associated to modular forms f of even weight $k_f \in [T, 2T] \cap 2\mathbb{N}$.

Need uniformity in T and n; hybrid problem.

Bounds for Moments of L-Functions

Lemma

Assuming the generalised Lindelöf hypothesis,

$$\sum_{T\leq k_f\leq 2T} L\left(\frac{1}{2},f\right) L\left(\frac{1}{2},f\otimes\chi_{-n}\right) \ll_{\varepsilon} n^{\varepsilon} T^{2+\varepsilon}.$$

Would like results of this strength unconditionally.

Lemma

Unconditionally, the moment above is

$$\ll_{\varepsilon} \begin{cases} n^{\frac{1}{3}+\varepsilon} T^{2+\varepsilon} & \text{for } T \ll n^{\frac{1}{12}}, \\ n^{\frac{1}{2}+\varepsilon} & \text{for } n^{\frac{1}{12}} \ll T \ll n^{\frac{1}{4}}, \\ n^{\varepsilon} T^{2+\varepsilon} & \text{for } T \gg n^{\frac{1}{4}}. \end{cases}$$

"Lindelöf on average" for T sufficiently large. Dropping all but one term yields subconvexity.

Asymptotics for Moments of *L*-Functions

For the Bourgain–Rudnick–Sarnak conjecture on the variance, we need *asymptotics* instead of upper bounds for this moment.

Lemma

The moment

$$\sum_{\Gamma \leq k_f \leq 2T} L\left(\frac{1}{2}, f\right) L\left(\frac{1}{2}, f \otimes \chi_{-n}\right)$$

is exactly equal to the sum of the main term $L(1,\chi_{-n})T^2$

and an error term

$$\frac{T}{\sqrt{n}}\sum_{m=1}^{n}\lambda_{\chi,1}(m)\lambda_{\chi,1}(n-m)\sum_{T\leq k\leq 2T}P_{k-1}\left(1-\frac{2m}{n}\right),$$

a shifted convolution sum weighted by a (smoothed) sum of Legendre polynomials.

Asymptotics for Moments of L-Functions

Idea of proof.

- Dirichlet series for $L(s,f)L(s,f\otimes\chi_{-n})$ with $\Re(s)\gg 1$,
- Petersson trace formula,
- open up Kloosterman sums and use the Poisson summation formula twice/Voronoĭ summation formula once,
- analytically continue to s = 1/2.

Diagonal term and zero frequency from Poisson gives main term. Off-diagonal gives error term.

Well trodden road: Bykovskiĭ, Goldfeld-Zhang, Nelson.

Could instead use approximate functional equations: Holowinsky–Templier, H.–Khan.

Could also use relative trace formula: Ramakrishnan–Rogawski, Feigon–Whitehouse, Michel–Ramakrishnan.

Bounding the Error Term

Error term is

$$\frac{T}{\sqrt{n}}\sum_{m=1}^{n}\lambda_{\chi,1}(m)\lambda_{\chi,1}(n-m)\sum_{T\leq k\leq 2T}P_{k-1}\left(1-\frac{2m}{n}\right).$$

Insert the trivial bound for the Hecke eigenvalues and *nontrivial* bounds for the sum over $k \in [T, 2T]$.

Major issue: special functions behave differently in various regimes, so many separate cases to deal with.

- Bound Legendre polynomials by 1 when m « n/T² (no oscillation),
- Mellin inversion plus Poisson summation when $m \gg n/T^2$ (oscillatory), yielding integrals of Bessel functions, then stationary phase. Many subcases to deal with due to uniformity in T, m, n.

End up with

$$\sum_{T\leq k_f\leq 2T} L\left(\frac{1}{2},f\right) L\left(\frac{1}{2},f\otimes\chi_{-n}\right) = L(1,\chi_{-n})T^2 + O_{\varepsilon}\left(n^{\frac{1}{2}+\varepsilon}\right).$$

Main term dominates when $T \gg n^{\frac{1}{4}}$.

Alternative strategy: Hölder's inequality plus bounds for cubic moments of *L*-functions (Conrey–Iwaniec (2000), Young (2017), Petrow–Young (2019)) yields

$$\sum_{T\leq k_f\leq 2T} L\left(\frac{1}{2},f\right) L\left(\frac{1}{2},f\otimes\chi_{-n}\right) \ll_{\varepsilon} n^{\frac{1}{3}+\varepsilon} T^{2+\varepsilon}$$

Better when $T \ll n^{\frac{1}{12}}$.

Question

What about small scale equidistribution on balls (spherical caps) instead of annuli?

Equidistribution implied by

$$\operatorname{Var}(\widehat{\mathcal{E}}(n);B_n)=o(\operatorname{vol}(B_n)^2n)$$

for $\operatorname{vol}(B_n) \gg n^{-\frac{1}{2}+\delta}.$ For $T \ll n^{\frac{1}{4}-\delta},$ we need

$$\sum_{T\leq k_f\leq 2T}L\left(\frac{1}{2},f\right)L\left(\frac{1}{2},f\otimes\chi_{-n}\right)=o(\sqrt{n}).$$

Unfortunately, can only prove $O_{\varepsilon}\left(n^{\frac{1}{2}+\varepsilon}\right)$ for $n^{\frac{1}{12}} \ll T \ll n^{\frac{1}{4}}$. Need to find additional cancellation from error term.

Method also works for ternary quadratic forms other than just

$$x_1^2 + x_2^2 + x_3^2 = n.$$

Can instead work with the indefinite ternary quadratic form

$$x_2^2 - 4x_1x_3 = D.$$

Involves different geometric objects in place of normalised lattice points $\widehat{\mathcal{E}}(n)$ on the sphere S^2 :

- Heegner points on the modular surface $\Gamma \setminus \mathbb{H}$ when D < 0,
- Closed geodesics on $\Gamma \setminus \mathbb{H}$ when D > 0.

Equidistribution as $|D| \to \infty$ along fundamental discriminants: Duke's theorem.

Example: D = 19

Example: D = 377

Theorem (H.-Radziwiłł (2019))

- (1) Exact same results hold for Heegner points as for lattice points on the sphere.
- (2) For closed geodesics, we obtain stronger results: small scale equidistribution on almost every shrinking ball down to the optimal scale.

Geometric difference between closed geodesics compared to Heegner points and lattice points on the sphere: codimension 1 instead of 2.

Analytic difference for closed geodesics: gamma factors arising from Waldspurger's formula are different; Stirling's formula implies *better* decay as Laplacian eigenvalue increases.

More Optimal Small Scale Equidistribution

Method of proof is very similar. Main differences:

- spectral expansion of the variance involves Maaß forms instead of modular forms, so use the Kuznetsov formula instead of the Petersson formula,
- error term has integrals of associated Legendre functions $P_{-\frac{1}{2}+it}(1+\frac{2m}{|D|})$ instead of sums of Legendre polynomials $P_{k-1}(1-\frac{2m}{n})$.

For closed geodesics on shrinking balls, we end up needing to show that for $T\ll D^{\frac{1}{2}-\delta}$,

$$\frac{1}{T}\sum_{T\leq t_f\leq 2T}L\left(\frac{1}{2},f\right)L\left(\frac{1}{2},f\otimes\chi_D\right)=o(\sqrt{D}).$$

Presence of $\frac{1}{T}$ comes from gamma factors and is why we win.

Thank you!