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Sums of Three Squares: Classification

Question
When can a positive integer n be written as the sum of three
squares?

Want to determine when the set

E(n) ··=
{

(x1, x2, x3) ∈ Z3 : x2
1 + x2

2 + x2
3 = n

}
is nonempty.

Geometric viewpoint: E(n) is the set of points on the lattice Z3 in
R3 that lie on the sphere centred at the origin of radius

√
n.
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Sums of Three Squares: Classification

Example
x2

1 + x2
2 + x2

3 = 11 with (x1, x2, x3) ∈ {(3, 1, 1), (1, 3, 1), . . .}.

Example
x2

1 + x2
2 + x2

3 = 7 has no integral solutions.
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Sums of Three Squares: Classification

If x ∈ Z, then x2 ≡ 0, 1, or 4 (mod 8). So if (x1, x2, x3) ∈ Z3,
then x2

1 + x2
2 + x2

3 ≡ 0, 1, 2, 3, 4, 5, or 6 (mod 8).

Theorem (Legendre (1798))
Any positive integer n can be written as a sum of three squares if
and only if n is not of the form n = 4a(8b + 7) for some
nonnegative integers a, b.
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Sums of Three Squares: Number of Solutions

Question
Given a positive integer n, how many ways are there to write n as
the sum of three squares?

Given n, want to determine

r3(n) ··= #E(n) = #
{

(x1, x2, x3) ∈ Z3 : x2
1 + x2

2 + x2
3 = n

}
.

Some obvious symmetries: permutations, multiplication of a
coordinate by −1.
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Sums of Three Squares: Number of Solutions

Interesting case is n squarefree.

Theorem (Gauss (1801))
For odd squarefree n 6≡ 7 (mod 8),

r3(n) =
{

12h(D) for n ≡ 1, 2 (mod 4) with D = −4n,
24h(D) for n ≡ 3 (mod 8) with D = −n.

h(D) is the class number of the imaginary quadratic number field
Q(
√

D).
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Sums of Three Squares: Number of Solutions

Corollary
For all ε > 0, we have that

n
1
2−ε �ε r3(n)�

√
n log n.

Upper bound is easy; not hard to show that h(D)�
√
|D| log |D|.

Lower bound is nontrivial; Dirichlet class number formula (1839)
plus Siegel ineffective bound (1935)

L(1, χD)�ε |D|−ε.
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Sums of Three Squares: Limiting Behaviour

Let

Ê(n) ··=
{( x1√

n ,
x2√

n ,
x3√

n

)
∈ R3 : (x1, x2, x3) ∈ E(n)

}
denote the projection of E(n) onto the unit sphere

S2 ··=
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1

}
.

Question
What are the limiting statistical properties of Ê(n) ⊂ S2 as
n→∞?
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Examples: n = 101 (Image: Ellenberg–Michel–Venkatesh)
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Examples: n = 104851 (Image: Ellenberg–Michel–Venkatesh)
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Sums of Three Squares: Limiting Behaviour

The normalised lattice points Ê(n) ⊂ S2 appear to behave just like
random points on the sphere.

Goal
Quantify the limiting behaviour of Ê(n) as n→∞ in ways that are
shared by randomly chosen points.
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Duke’s Theorem

Theorem (Duke (1988), Duke–Schulze-Pillot (1990),
Golubeva–Fomenko (1990))
As n→∞ along squarefree integers with n 6≡ 7 (mod 8), the
lattice points on the sphere Ê(n) equidistribute on S2.

Informally, the points Ê(n) spread out randomly on S2.

Proved earlier by Linnik (1968) for certain subsequences of n.
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Equidistribution

Let M be a topological space and µ a probability measure on M.
Let µn be a sequence of probability measures on M.

Definition
The probability measures µn equidistribute on M w.r.t. µ if

lim
n→∞

µn(B) = µ(B)

for every continuity set B ⊂ M (boundary has µ-measure zero).
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Equidistribution

Let M be a topological space and µ a probability measure on M.
Let µn be a sequence of probability measures on M.

Definition
The probability measures µn equidistribute on M w.r.t. µ if

lim
n→∞

∫
M

f (x) dµn(x) =
∫

M
f (x) dµ(x)

for all f ∈ Cb(M) (continuous bounded).
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Equidistribution

Definition
We define a probability measure µn on S2 by

µn ··=
1

#Ê(n)
∑

x∈Ê(n)

δx .

So for B ⊂ S2 and f : S2 → C,

µn(B) ··=
#(Ê(n) ∩ B)

#Ê(n)
,∫

S2
f (y) dµn(y) ··=

1
#Ê(n)

∑
x∈Ê(n)

f (x).

Peter Humphries Small Scale Equidistribution of Lattice Points on the Sphere



Duke’s Theorem

Theorem (Duke (1988), Duke–Schulze-Pillot (1990),
Golubeva–Fomenko (1990))
As n→∞ along squarefree integers with n 6≡ 7 (mod 8), the
probability measures µn equidistribute on S2 with respect to the
normalised surface measure µ on S2.
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Duke’s Theorem

Theorem (Duke (1988), Duke–Schulze-Pillot (1990),
Golubeva–Fomenko (1990))
As n→∞ along squarefree integers with n 6≡ 7 (mod 8),

#(Ê(n) ∩ B)
#Ê(n)

→ vol(B)

for every continuity set B ⊂ S2.
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Duke’s Theorem

Theorem (Duke (1988), Duke–Schulze-Pillot (1990),
Golubeva–Fomenko (1990))
As n→∞ along squarefree integers with n 6≡ 7 (mod 8),

1
#Ê(n)

∑
x∈Ê(n)

f (x)→
∫

S2
f (y) dy

for every continuous function f on S2.
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Proof of Duke’s Theorem

Idea of proof.
Approximate f ∈ C(S2) by spherical harmonics.

Reduces problem to showing that for every spherical harmonic φ,

1
#Ê(n)

∑
x∈Ê(n)

φ(x)→
∫

S2
φ(y) dy .

Trivial if φ is constant. RHS is zero if φ is nonconstant.

Since #Ê(n)�ε n1/2−ε, suffices to show that there exists δ > 0
such that ∑

x∈Ê(n)

φ(x)�φ n
1
2−δ.
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Waldspurger’s Identity

Theorem (Waldspurger (1981))
Given a spherical harmonic φ of degree mφ ≥ 1, there exists a
holomorphic modular form f of weight 2 + 2mφ such that∣∣∣∣∣∣∣

∑
x∈Ê(n)

φ(x)

∣∣∣∣∣∣∣
2

≈
√

nL
(1

2 , f
)

L
(1

2 , f ⊗ χ−n

)
.
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Waldspurger’s Identity: Step 1

Waldspurger’s identity proceeds in two steps.

Proposition
Given a spherical harmonic φ of degree mφ ≥ 1, there exists a
half-integral weight modular form g of weight mφ + 1/2 and level
4 lying in the Kohnen minus space such that

the ratio of Petersson norms is ≈ L(1/2, f ), and
the n-th Fourier coefficient ρg (n) of g satisfies

ρg (n) =
∑

x∈Ê(n)

φ(x).

This is a special case of the Rallis inner product formula.
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Waldspurger’s Identity: Step 2

Proposition
Given a half-integral weight modular form g of weight m + 1/2 and
level 4 lying in the Kohnen minus space, there exists a holomorphic
modular form f of level 2 + 2m and level 2 such that

|ρg (n)|2 ≈
√

nL
(1

2 , f ⊗ χ−n

)
.

Remark
Alternatively, one can circumvent the need for half-integral weight
modular forms via work of Martin–Whitehouse (following
Waldspurger, Gross, Böcherer–Schulze-Pillot, Zhang,
Jacquet–Nan, Popa,. . . )
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Iwaniec’s Subconvex Bound

Theorem (Iwaniec (1987))
There exists δ > 0 such that

L
(1

2 , f ⊗ χ−n

)
�f n

1
2−δ.

This is a case of subconvexity. Trivial bound is

L
(1

2 , f ⊗ χ−n

)
�f ,ε n

1
2 +ε.

Consequence of the Phragmén–Lindelöf convexity principle.
Generalisation of the bound

ζ

(1
2 + it

)
�ε (|t|+ 1)

1
4 +ε.
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Rate of Equidistribution: Decay of Error Term

What is the rate of equidistribution of µn on S2 w.r.t. µ?

Goal
Find the most rapidly decreasing function α(n) for which

µn(B) = #(Ê(n) ∩ B)
#Ê(n)

is equal to
vol(B) + OB(α(n))

for a fixed continuity set B ⊂ S2.

Informally, determine how quickly the points Ê(n) spread out
randomly on S2.
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Rate of Equidistribution: Decay of Error Term

Heuristic
Like random points, we should expect square-root cancellation:
since #Ê(n) ≈

√
n, we should hope for α(n) ≈ n−1/4.
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Rate of Equidistribution: Decay of Error Term

Theorem (Conrey–Iwaniec (2000))
For a fixed continuity set B ⊂ S2,

#(Ê(n) ∩ B)
#Ê(n)

= vol(B) + OB,ε
(

n−
1
12 +ε

)
for all ε > 0.

Follows from Waldspurger’s identity together with the
Weyl-strength subconvex bound

L
(1

2 , f ⊗ χ−n

)
�f ,ε n

1
3 +ε.
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Rate of Equidistribution: Decay of Error Term

Assuming the generalised Lindelöf hypothesis, we instead have

L
(1

2 , f ⊗ χ−n

)
�f ,ε nε.

Theorem
For a fixed continuity set B ⊂ S2,

#(Ê(n) ∩ B)
#Ê(n)

= vol(B) + OB,ε
(

n−
1
4 +ε
)

for all ε > 0 under the assumption of the generalised Lindelöf
hypothesis.

Optimal.
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Rate of Equidistribution: Small Scale Equidistribution

What is the rate of equidistribution of µn on S2 w.r.t. µ?

Goal
Find the most rapidly decreasing function α(n) for which

lim
n→∞

1
vol(Bn)

#(Ê(n) ∩ Bn)
#Ê(n)

= 1

for a family of sets B = Bn with vol(Bn) = α(n).

Informally, determine the scale at which the points Ê(n) no longer
look random.
How small does a set Bn have to be to not contain the expected
number of points?
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Rate of Equidistribution: Small Scale Equidistribution

Heuristic
Like random points, we should expect small scale equidistribution
provided we are at a scale for which #(Ê(n) ∩ Bn)→∞. Since
#Ê(n) ≈

√
n, the optimal scale should be α(n) ≈ n−1/2.
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Optimal Small Scale Equidistribution

Proposition

Generically, Ê(n) cannot equidistribute on shrinking sets Bn for
which vol(Bn) ≤ n− 1

2−δ for some δ > 0.

Sketch of Proof.

There are ≈
√

n points in Ê(n), so if vol(Bn) ≤ n− 1
2−δ, then

generically Ê(n) ∩ Bn = ∅ by the pigeonhole principle.
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Example: n ≤ 2048 (Image: Stefan Kohl)
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Optimal Small Scale Equidistribution

Conjecture

Lattice points Ê(n) equidistribute on shrinking sets Bn for which
vol(Bn)� n− 1

2 +δ for some δ > 0.

Optimal scale.

Remark
Conjecture does not follow from the generalised Lindelöf
hypothesis!
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Small Scale Equidistribution

Conjecture looks very hard, especially for balls Bn = BR(w).

Theorem (H.–Radziwi l l (2019))
Fix w ∈ S2. If R ≥ n−δ for some fixed δ < 1

24 ,

lim
n→∞

1
vol(BR(w))

#(Ê(n) ∩ BR(w))
#Ê(n)

= 1.

Assuming the generalised Lindelöf hypothesis, this holds for δ < 1
8 .

Under Lindelöf, implies small scale equidistribution at scales down
to vol(Bn) ≈ n−1/4; far shy of the optimal scale vol(Bn) ≈ n−1/2.

What about for annuli?
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Linnik’s conjecture

Conjecture (Linnik (1968))
Fix δ > 0. For all sufficiently large squarefree n 6≡ 7 (mod 8),

x2
1 + x2

2 + x2
3 = n

has an integral solution (x1, x2, x3) ∈ Z3 with |x3| < nδ.

Special case of optimal small scale equidistribution:
Bn the annulus (belt about the equator) of optimally shrinking
width.
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Linnik’s conjecture

Conjecture (Linnik (1968))
Fix δ > 0. For all sufficiently large squarefree n 6≡ 7 (mod 8),
there exists (x1, x2, x3) ∈ Ê(n) with |x3| < n− 1

2 +δ.

Special case of optimal small scale equidistribution:
Bn the annulus (belt about the equator) of optimally shrinking
width.
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Example: n = 104851 (Image: Ellenberg–Michel–Venkatesh)
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Linnik’s Conjecture

Theorem (H.–Radziwi l l (2019))
Fix δ > 0. For all sufficiently large squarefree n 6≡ 7 (mod 8),

x2
1 + x2

2 + x2
3 = n

has an integral solution (x1, x2, x3) ∈ Z3 with |x3| < n 4
9 +δ.

Assuming the generalised Lindelöf hypothesis, the same result is
true with |x3| < n 1

4 +δ.

Still fall well short of Linnik’s conjecture |x3| < nδ.

Proof shows small scale equidistribution when vol(Bn)� n− 1
18 +δ.
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Rotated Linnik’s Conjecture

Linnik’s conjecture is small scale equidistribution on thin annuli
around the equator, with respect to the north pole (0, 0, 1) ∈ S2.

Nothing special about this choice of north pole; could also choose
any other equator with respect to a point w = (w1,w2,w3) ∈ S2.

Conjecture (Rotated Linnik’s Conjecture)
Fix δ > 0. For all sufficiently large squarefree n 6≡ 7 (mod 8),

x2
1 + x2

2 + x2
3 = n

has an integral solution x = (x1, x2, x3) ∈ Z3 with |x · w | < nδ.
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Rotated Linnik’s Conjecture

Theorem (H.–Radziwi l l (2019))
Fix δ > 0 and w ∈ S2. For all sufficiently large squarefree n 6≡ 7
(mod 8),

x2
1 + x2

2 + x2
3 = n

has an integral solution x = (x1, x2, x3) ∈ Z3 with |x · w | < n 4
9 +δ.

Assuming the generalised Lindelöf hypothesis, the same result is
true with |x · w | < n 1

4 +δ.

Question
Can we do better for “most” w ∈ S2?
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Averaged Rotated Linnik’s Conjecture

Theorem (H.–Radziwi l l (2019))
Fix δ > 0. For squarefree n 6≡ 7 (mod 8), the volume of the set of
w ∈ S2 for which

x2
1 + x2

2 + x2
3 = n

has no integral solutions x = (x1, x2, x3) ∈ Z3 with |x · w | < nδ is
o(1) as n→∞.

Unconditionally resolves the rotated Linnik’s conjecture for almost
every pole w ∈ S2.

Optimal. Fails if instead one demands |x · w | < 1000.
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Optimal Small Scale Equidistribution on Annuli

Theorem follows from the following result on the equidistribution of
lattice points in the annulus Bn = Bn(w) around the equator with
respect to the north pole w = (w1,w2,w3) ∈ S2 of volume n− 1

2 +δ.

Theorem
For any fixed ε > 0,

lim
n→∞

vol
({

w ∈ S2 :
∣∣∣∣∣ 1
vol(Bn)

#(Ê(n) ∩ Bn(w))
#E(n) − 1

∣∣∣∣∣ > ε

})
= 0.

In particular, the normalised lattice points Ê(n) equidistribute on
the shrinking annulus Bn(w) of volume n− 1

2 +δ for almost every
w ∈ S2.

Rate of shrinking is optimal.
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Optimal Small Scale Equidistribution on Annuli

Method of proof.
By Chebyshev’s inequality, this result follows upon showing that

Var(Ê(n); Bn) ··=
∫

S2

(
#(Ê(n) ∩ Bn(w))− vol(Bn)#Ê(n)

)2
dw

is O(vol(Bn)2n1−δ) as n→∞.

Can ask for more refined results about this variance.
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Bourgain–Rudnick–Sarnak Conjecture

Conjecture (Bourgain–Rudnick–Sarnak (2017))
Let Bn(w) be a sequence of balls (spherical caps) or annuli on S2

of shrinking volume as n→∞. Then as n→∞,

Var(Ê(n); Bn) ∼ vol(Bn)#Ê(n).

Motivation
Such an asymptotic holds for random points.

Highly refined quantification of randomness of lattice points on the
sphere; far beyond equidistribution!
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Bourgain–Rudnick–Sarnak Conjecture

Theorem (H.–Radziwi l l (2019))
Let Bn(w) be a sequence of annuli on S2 with fixed inner radius
for which vol(Bn)� n− 5

12−δ for some δ > 0. Then as n→∞,

Var(Ê(n); Bn) ∼ vol(Bn)#Ê(n).

Resolves the Bourgain–Rudnick–Sarnak conjecture for small annuli,
namely vol(Bn)� n− 5

12−δ.

For less small annuli, namely n− 5
12−δ � vol(Bn)� 1, we still get

nontrivial upper bounds in place of asymptotics for the variance.
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Idea of Proof
First step of proof to bound the variance: spectral expansion on
L2(S2) plus Waldspurger’s formula.

Lemma
We have that

Var(Ê(n); Bn) ≈ vol(Bn)2√n
∑

f
L
(1

2 , f
)

L
(1

2 , f ⊗ χ−n

)
|h(kf )|2

where the sum is over modular forms of even weight kf ∈ 2N, and

h(k)�


1√
k

for k ≤ 1
vol(Bn) ,

1
vol(Bn)k3/2 for k ≥ 1

vol(Bn) .

The function h : 2N→ C is the Selberg–Harish-Chandra transform
of the indicator function of the annulus; can be explicitly written in
terms of integrals of Legendre polynomials.
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Reduction to Bounds for Moments of L-Functions

Break up sum into dyadic ranges; reduces problem to bounding
moments of L-functions.

Corollary

Good bounds for Var(Ê(n); Bn) follow from good bounds for the
moment of L-functions∑

T≤kf≤2T
L
(1

2 , f
)

L
(1

2 , f ⊗ χ−n

)

associated to modular forms f of even weight kf ∈ [T , 2T ] ∩ 2N.

Need uniformity in T and n; hybrid problem.
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Bounds for Moments of L-Functions

Lemma
Assuming the generalised Lindelöf hypothesis,∑

T≤kf≤2T
L
(1

2 , f
)

L
(1

2 , f ⊗ χ−n

)
�ε nεT 2+ε.

Would like results of this strength unconditionally.

Lemma
Unconditionally, the moment above is

�ε


n

1
3 +εT 2+ε for T � n 1

12 ,

n
1
2 +ε for n 1

12 � T � n 1
4 ,

nεT 2+ε for T � n 1
4 .

“Lindelöf on average” for T sufficiently large.
Dropping all but one term yields subconvexity.
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Asymptotics for Moments of L-Functions
For the Bourgain–Rudnick–Sarnak conjecture on the variance, we
need asymptotics instead of upper bounds for this moment.

Lemma
The moment ∑

T≤kf≤2T
L
(1

2 , f
)

L
(1

2 , f ⊗ χ−n

)

is exactly equal to the sum of the main term
L(1, χ−n)T 2

and an error term
T√

n

n∑
m=1

λχ,1(m)λχ,1(n −m)
∑

T≤k≤2T
Pk−1

(
1− 2m

n

)
,

a shifted convolution sum weighted by a (smoothed) sum of
Legendre polynomials.
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Asymptotics for Moments of L-Functions

Idea of proof.
Dirichlet series for L(s, f )L(s, f ⊗ χ−n) with <(s)� 1,
Petersson trace formula,
open up Kloosterman sums and use the Poisson summation
formula twice/Voronŏı summation formula once,
analytically continue to s = 1/2.

Diagonal term and zero frequency from Poisson gives main term.
Off-diagonal gives error term.

Well trodden road: Bykovskĭı, Goldfeld–Zhang, Nelson.

Could instead use approximate functional equations:
Holowinsky–Templier, H.–Khan.

Could also use relative trace formula: Ramakrishnan–Rogawski,
Feigon–Whitehouse, Michel–Ramakrishnan.
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Bounding the Error Term

Error term is

T√
n

n∑
m=1

λχ,1(m)λχ,1(n −m)
∑

T≤k≤2T
Pk−1

(
1− 2m

n

)
.

Insert the trivial bound for the Hecke eigenvalues and nontrivial
bounds for the sum over k ∈ [T , 2T ].

Major issue: special functions behave differently in various regimes,
so many separate cases to deal with.

Bound Legendre polynomials by 1 when m� n/T 2 (no
oscillation),
Mellin inversion plus Poisson summation when m� n/T 2

(oscillatory), yielding integrals of Bessel functions, then
stationary phase. Many subcases to deal with due to
uniformity in T ,m, n.
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Sketch of Proof

End up with

∑
T≤kf≤2T

L
(1

2 , f
)

L
(1

2 , f ⊗ χ−n

)
= L(1, χ−n)T 2 + Oε

(
n

1
2 +ε
)
.

Main term dominates when T � n 1
4 .

Alternative strategy: Hölder’s inequality plus bounds for cubic
moments of L-functions (Conrey–Iwaniec (2000), Young (2017),
Petrow–Young (2019)) yields

∑
T≤kf≤2T

L
(1

2 , f
)

L
(1

2 , f ⊗ χ−n

)
�ε n

1
3 +εT 2+ε.

Better when T � n 1
12 .
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Optimal Small Scale Equidistribution on Balls

Question
What about small scale equidistribution on balls (spherical caps)
instead of annuli?

Equidistribution implied by

Var(Ê(n); Bn) = o(vol(Bn)2n)

for vol(Bn)� n− 1
2 +δ. For T � n 1

4−δ, we need

∑
T≤kf≤2T

L
(1

2 , f
)

L
(1

2 , f ⊗ χ−n

)
= o(
√

n).

Unfortunately, can only prove Oε

(
n 1

2 +ε
)

for n 1
12 � T � n 1

4 . Need
to find additional cancellation from error term.
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Related Problems: Heegner Points and Closed Geodesics

Method also works for ternary quadratic forms other than just

x2
1 + x2

2 + x2
3 = n.

Can instead work with the indefinite ternary quadratic form

x2
2 − 4x1x3 = D.

Involves different geometric objects in place of normalised lattice
points Ê(n) on the sphere S2:

Heegner points on the modular surface Γ\H when D < 0,
Closed geodesics on Γ\H when D > 0.

Equidistribution as |D| → ∞ along fundamental discriminants:
Duke’s theorem.
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Example: D = 19 (Image: Constantin Kogler)
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Example: D = 377 (Image: Einsiedler–Lindenstrauss–Michel–Venkatesh)
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More Optimal Small Scale Equidistribution

Theorem (H.–Radziwi l l (2019))
(1) Exact same results hold for Heegner points as for lattice

points on the sphere.
(2) For closed geodesics, we obtain stronger results: small scale

equidistribution on almost every shrinking ball down to the
optimal scale.

Geometric difference between closed geodesics compared to
Heegner points and lattice points on the sphere: codimension 1
instead of 2.

Analytic difference for closed geodesics: gamma factors arising
from Waldspurger’s formula are different; Stirling’s formula implies
better decay as Laplacian eigenvalue increases.
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More Optimal Small Scale Equidistribution

Method of proof is very similar. Main differences:
spectral expansion of the variance involves Maaß forms
instead of modular forms, so use the Kuznetsov formula
instead of the Petersson formula,
error term has integrals of associated Legendre functions
P− 1

2 +it(1 + 2m
|D|) instead of sums of Legendre polynomials

Pk−1(1− 2m
n ).

For closed geodesics on shrinking balls, we end up needing to show
that for T � D 1

2−δ,

1
T

∑
T≤tf≤2T

L
(1

2 , f
)

L
(1

2 , f ⊗ χD

)
= o(
√

D).

Presence of 1
T comes from gamma factors and is why we win.
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Thank you!
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