On the first negative Hecke eigenvalue of automorphic forms on GL(2,R)

JUNE 1, 2020

Yuk-Kam Lau The University of Hong Kong

Content

- 0. The least quadratic nonresidue
- 1. The problem and known results
- 2. Our interest and new result
- 3. Review the methods
- 4. Our work

0. The least quadratic nonresidue

Let $p \ge 2$ be a prime. Linnik considered in 1942 the least quadratic non-residue problem – to evaluate the smallest size of n_p for which $\left(\frac{n_p}{p}\right) = -1$.

Under GRH, Ankeny showed $n_p \ll (\log p)^2$.

Unconditionally, $n_p \ll p^{\frac{1}{2}} \log p$ by Pólya-Vinogradov's inequality.

What's new

Updates on my research and expository papers, discussion of open problems, and other mathsrelated topics. By Terence Tao

Subscribe to feed		Home About Career advice On writing Books Applets
		The least quadratic nonresidue, and the square
	Usman Nizami on Applets	root barrier
	Anonymous on 247B, Notes 3:	18 August, 2009 in expository, math.NT Tags: Burgess inequality, least quadratic nonresidue, Polya- Vinogradov inequality, square root barrier

Probabilistic heuristics (presuming that each non-square integer has a 50-50 chance of being a quadratic residue) suggests that n_p should have size $O(\log p)$, and indeed Vinogradov conjectured that $n_p = O_\varepsilon(p^\varepsilon)$ for any $\varepsilon > 0$. Using the Pólya-Vinogradov inequality, one can get the bound $n_p = O(\sqrt{p}\log p)$ (and can improve it to $n_p = O(\sqrt{p})$ using smoothed sums); combining this with a sieve theory argument (exploiting the multiplicative nature of quadratic residues) one can boost this to $n_p = O(p^{\frac{1}{2\sqrt{\varepsilon}}}\log^2 p)$. Inserting Burgess's amplification trick one can boost this to $n_p = O_\varepsilon(p^{\frac{1}{4\sqrt{\varepsilon}}+\varepsilon})$ for any $\varepsilon > 0$. Apart from refinements to the ε factor, this bound has stood for five decades as the "world record" for this problem, which is a testament to the difficulty in breaching the square root barrier.

0. The least quadratic nonresidue

1.1 Set-up

Let $S_k(N) :=$ the space of holo. cusp forms of weight k, level N. and $\{T_n\}_{n\geq 1}$ be the family of all Hecke operators.

The space $S_k(N)$ contains a special set of Hecke eigenforms, called the **primitive forms**, which are the common eigenfunctions of all T_n 's and whose Fourier coefficients $a(n) = \lambda_f(n)n^{(k-1)/2}$ where $T_n f = \lambda_f(n) f$.

Write $H_k^*(N) = \{ \text{all primitive forms of weight } k \text{ for } \Gamma_0(N) \}.$

Then $S_{\mathbf{k}}(N) = \bigoplus_{M|N} \operatorname{Span}\{f(dz) : d | \frac{N}{M}, f \in H_{k}^{*}(M)\}$

1.2 Problem – The first negative Hecke eigenvalue

For $f \in H_k^*(N)$, let $\lambda_f(n)$ be its *n*th Hecke eigenvalue.

Then $\lambda_f(n)$ is a real multiplicative function.

Question:

What's the smallest size of n in terms of k and N such that $\lambda_f(n) < 0$? Write n_- for the first n that $\lambda_f(n) < 0$.

Want to get $n_{-} \ll k^{?} N^{?}$ with ? and ? as small as possible.

1. The problem and known results

1.3 Known results on the first negative Hecke eigenvalue

Let $f \in H_k^*(N)$, $\lambda_f(n_-) = 1$ st negative Hecke eigenvalue.

Kohnen & Sengupta (2006): $n_{-} \ll kN(\log k)^{27} \exp(c\sqrt{\frac{\log N}{\log\log 3N}}).$

Iwaniec, Kohnen & Sengupta (2007): $n_{-} \ll (k^2 N)^{\frac{1}{2}}$. Note: $k^2 N$ is the (analytic) conductor of L(s, f). $n_{-} \ll (k^2 N)^{\frac{1}{2} - \frac{1}{60}}$.

Kowalski, L., Soundararajan & Wu (2010): $n_{-} \ll (k^2 N)^{\frac{1}{2} - \frac{1}{20}}$.

Matomaki (2012): $n_{-} \ll (k^2 N)^{\frac{1}{2} - \frac{1}{8}}$.

2. Our interest and New result

Question: Study the same problem for Hecke-Maass primitive forms

Qu (2010): $n_{-} \ll \left(\left|\frac{1}{2} + i\nu\right|^2 N\right)^{\frac{1}{2}-\delta}$ for some unspecified $\delta > 0$.

This $\delta > 0$ comes from the subconvexity bound of Michel & Venkatesh for L(s, f) uniformly for all aspects. Its value is very small.

<u>Goal</u>: Adapt the method for holomorphic forms to Maass forms.

L., Ng, Tang, Wang (submitted): $n_{-} \ll (\left|\frac{1}{2} + i\nu\right|^2 N)^{\frac{1}{2} - \frac{1}{10}}$.

3.1 Overview

Basic idea:

Give an upper bound for $\sum_{n \leq x} \lambda_f(n)$ Derive a lower bound for $\sum_{n \leq x} \lambda_f(n)$ subject to $\lambda_f(n) \geq 0$

3.1 Overview (cont'd)

Upper bound:

$$\sum_{n \le x} \lambda_f(n) \Phi(\frac{n}{x}) = \frac{1}{2\pi i} \int_{\Re e} \int_{\Re e} \varphi(s) L(s, f) x^s \, dx$$

Known: $L(s, f) \ll_{\varepsilon} (|s|^2 k^2 N)^{\eta + \varepsilon}$ with $0 \le \eta \le \frac{1}{4}$ on $\Re e s = \frac{1}{2}$

Convexity bound :
$$\eta = \frac{1}{4}$$

Subconvexity bound : $\eta = \frac{1}{4} - \delta$
GRH : $\eta = 0$

Consequence:

$$\sum_{n \le x} \lambda_f(n) \Phi(\frac{n}{x}) \ll_{\varepsilon} x^{1/2} (k^2 N)^{\eta + \varepsilon}$$

3.2 Kohnen & Sengupta's method

Let $x \leq n_-$. So $\lambda_f(n) \geq 0$ for $n \leq x$.

$$\begin{split} \sum_{\substack{n \leq x \\ (n,N)=1}} \lambda_f(n)^2 \log^2(x/n) \\ &\leq \left(\sum_{\substack{n \leq x \\ (n,N)=1}} \lambda_f(n) \log^2(x/n)\right)^{1/2} \left(\sum_{\substack{n \leq x \\ (n,N)=1}} \lambda_f(n)^3 \log^2(x/n)\right)^{1/2} \\ \text{Use } L(s, \text{sym}^2 f) \ll |s|^{\frac{3}{4} + \varepsilon} (kN)^{\frac{1}{2} + \varepsilon} \text{ on } \Re e \, s = \frac{1}{2} \\ &\sum_{\substack{n \leq x \\ (n,N)=1}} \lambda_f(n)^2 \log^2(x/n) = C_{k,N} x + O((kN)^{\frac{1}{2} + \varepsilon} x^{\frac{1}{2}}) \\ & \bigotimes_{kN)^{-\varepsilon}} \\ (kN)^{-\varepsilon} x^{1+\varepsilon} + (kN)^{\frac{1}{2} + \varepsilon} x^{\frac{1}{2}} \ll x^{\frac{3}{4}} (k^2N)^{\frac{1}{8} + \varepsilon} \end{split}$$

3.3 Iwaniec, Kohnen & Sengupta's method I Let $x \leq n_-$. Use $\lambda_f(p)^2 = \lambda_f(p^2) + 1$. $\sum_{\substack{n \le x \\ (n,N)=1}} \lambda_f(n) \ge \frac{1}{2} \left(\sum_{\substack{p \le \sqrt{x/3} \\ p \nmid N}} \lambda_f(p)\right)^2 - \frac{1}{2} \sum_{\substack{p \le \sqrt{x/3} \\ p \nmid N}} \lambda_f(p)^2 + \sum_{\substack{p \le \sqrt{x/3} \\ p \nmid N}} \lambda_f(p^2)$ $\gg \left(\sum_{p \le \sqrt{x/3}} \lambda_f(p)\right)^2 - \sum_{p \le \sqrt{x/3}} 1.$

For $p \leq \sqrt{x}/3$, $\lambda_f(p) \geq 1$.

Hence
$$\frac{x}{\log^2 x} \ll x^{\frac{1}{2}} (k^2 N)^{\eta + \varepsilon} \Rightarrow x \ll (k^2 N)^{2\eta + \varepsilon}$$
.

3.3' Iwaniec, Kohnen & Sengupta's method II

Suppose $\lambda_f(n) \ge 0$ for $1 \le n \le y$. Write $x = y^{1+\delta}$ where $0 < \delta \le \frac{1}{4}$.

$$\sum_{\substack{n \le x \\ (n,N)=1}} \lambda_f(n) \log \frac{x}{n} = \left(\sum_{\substack{n \le x, (n,N)=1 \\ \lambda_f(n)>0}} + \sum_{\substack{n \le x, (n,N)=1 \\ \lambda_f(n)<0}}\right) = S^+(x) + S^-(x)$$
$$S^-(x) = \sum_{\substack{p^a m \le x, \lambda_f(p^a)<0, \\ (p,m)=(mp,N)=1}} \lambda_f(p^a m) \log \frac{x}{p^a m}$$
$$\geq -\sum_{\substack{m \le y^\delta \\ (m,N)=1}} \lambda_f(m) \sum_{\substack{p^a < x/m \\ p^a < x/m}} (a+1) \log \frac{x/m}{p^a}.$$
Hence $S^-(x) \ge -2 \sum_{\substack{m \le y^\delta \\ (m,N)=1}} \frac{\lambda_f(m)}{m} \frac{x}{\log y} \left(1 + O(\frac{1}{\log y})\right)$

4.3 Iwaniec, Kohnen & Sengupta's method II (cont'd)

By positivity, for any $Y \ge y^{\delta}$,

$$S^{+}(x) = \sum_{\substack{n \leq x, (n,N)=1 \\ \lambda_{f}(n) > 0}} \lambda_{f}(n) \log \frac{x}{n}$$

$$\geq \sum_{\substack{m < y^{\delta} \\ (m,N)=1}} \lambda_{f}(m) \sum_{\substack{\ell < x/m \text{ squarefree} \\ p | \ell \Rightarrow y^{\delta} < p \leq Y, p \nmid N}} \lambda_{f}(\ell) \log \frac{x/m}{\ell}$$

$$Note \lambda_{f}(p)^{2} = \lambda_{f}(p^{2}) + 1$$

$$\Rightarrow \lambda_{f}(p) \geq 1 \text{ for } p \leq y^{\frac{1}{2}}$$

$$Set Y \leq \sqrt{y}. \text{ Use } \sum_{\substack{n \leq x \\ p \mid n \Rightarrow p > z}} 1 = \omega \left(\frac{\log x}{\log z}\right) \frac{x}{\log z} + O(\frac{z}{\log z} + \frac{x}{\log^{2} z})$$

$$\Rightarrow \sum_{\substack{n \leq x \\ p \mid n \Rightarrow z \alpha \frac{x}{\log z} - \frac{x}{\log Y} + O(\frac{x}{\log^{2} x}) \quad (\alpha > \frac{1}{7})$$

$$4. \text{ Review the methods}$$

3.3' Iwaniec, Kohnen & Sengupta's method II (cont'd)

Consequently,

$$S^{+}(x) \ge \left(\frac{1}{7\delta} - 2\right) \sum_{\substack{m < y^{\delta} \\ (m,N) = 1}} \frac{\lambda_f(m)}{m} \frac{x}{\log y} \left(1 + O\left(\frac{1}{\log y}\right)\right)$$

When
$$\frac{1}{7\delta} > 4$$
, $S(x) = S^+(x) + S^-(x) \gg \frac{x}{\log x}$

Hence
$$\frac{x}{\log x} \ll x^{\frac{1}{2}} (k^2 N)^{\eta + \varepsilon}$$
 if $\delta := \frac{1}{29} < \frac{1}{28}$.

Recall $\lambda_f(n) \ge 0$ for $1 \le n \le y$ and $x = y^{1+\delta}$.

 $\Rightarrow \quad y \ll (k^2 N)^{\frac{2\eta}{1+\delta}+\varepsilon}.$

4.4 Kowalski, L., Soundararajan & Wu's method Suppose $\lambda_f(n) \ge 0$ for $1 \le n \le y$. $\lambda_f(p) \ge 1 \ge 0 \ge -2$ $p = \sqrt{y}$

Write $x = y^u$ where $1 < u \le \frac{3}{2}$. Consider $S^{\flat}(x) = \sum_{\substack{n \le x \\ (n,N)=1}} {}^{\flat} \lambda_f(n)$

Upper bound: $S^{\flat}(x) \ll x^{\frac{1}{2}+\varepsilon} (k^2 N)^{\eta+\varepsilon}$.

Lower bound: Construct multiplicative $h_y(n)$ with $h_y(p^{\nu}) = 0, \nu \ge 2$

$$h_y(p) := \begin{cases} -2 & \text{if } p > y, \\ 0 & \text{if } \sqrt{y}$$

3.4 Kowalski, L., Soundararajan & Wu's method (cont'd)

For any y > 0 and $\varepsilon > 0$,

 $\sum_{\substack{n \leq y^{u} \\ (n,N)=1}} h_{y}(n) = C_{N} \cdot y^{u}(\rho(2u) - 2\log u) \left\{ 1 + O\left(\frac{\log^{2} y}{\log y}\right) \right\}$ uniformly for $1 \leq u \leq \frac{3}{2}$ and $y \geq N^{\frac{1}{3}}$ where $C_{N} = \prod_{p \nmid N} (1 - p^{-2})^{-1} \frac{\phi(N)}{N}$ and $\rho(u)$ is the Dickman function – the unique continuous solution of the difference-differential equation

 $u\rho'(u) + \rho(u-1) = 0 \ (u > 1), \quad \rho(u) = 1 \ (0 < u \le 1).$

Let κ be the solution to $\rho(2\kappa) = 2\log \kappa$. We have $\kappa > \frac{10}{9}$.

Then $\rho(2u) - 2\log u > 0 \quad \forall \ u < \kappa$.

3.4 Kowalski, L., Soundararajan & Wu's method (cont'd)

Claim:
$$S^{\flat}(y^u) \ge \sum_{\substack{n \le y^u \\ (n,N)=1}} h_y(n)$$
 when $u < \kappa$.

Proof: Define $g_y(n)$ so that $\lambda_f = g_y * h_y$ for squarefree n.

Thus $g_y(p) = \lambda_f(p) - h_y(p)$, so $g_y(p) \ge 0 \forall$ prime p.

Then
$$S^{\flat}(x) = \sum_{d \le y^u} {}^{\flat}g_y(d) \sum_{\ell \le y^u/d} {}^{\flat}h_y(\ell) \ge \sum_{\ell \le y^u} {}^{\flat}h_y(\ell).$$

3.4 Kowalski, L., Soundararajan & Wu's method (cont'd)

Take
$$u = \frac{10}{9}^{+} < \kappa$$
, then
 $\frac{y^{u}}{\log_2 N} \ll S^{\flat}(y^{u}) \ll y^{\frac{u}{2} + \varepsilon} (k^2 N)^{\eta + \varepsilon}$
 $\Rightarrow y \ll (k^2 N)^{\frac{2\eta}{u} + \varepsilon}$

Remark: Use $\lambda_f(p)^2 = \lambda_f(p^2) + 1$ to yield $\lambda_f(p) \ge 1$ for $p \le \sqrt{y}$.

Deligne's bound $|\lambda_f(p)| \leq 2$ plays a crucial role in the positivity of g_y and hence in $S^{\flat}(y^u) \geq \sum_{\substack{n \leq y^u \\ (n,N)=1}} h_y(n)$.

3.5 Matomaki's method Let $m \in \mathbb{N}$. If $\lambda_f(p^j) \ge 0$ where $1 \le j \le m$ and $y^{\frac{1}{m+1}} \le p < y^{\frac{1}{m}}$, then $\lambda_f(p) \ge 2 \cos \frac{\pi}{m+1}$. Write $\lambda_f(p) = 2\cos\theta$ with $\theta \in [0,\pi]$. Then, $0 \le \lambda_f(p^j) = \frac{\sin((j+1)\theta)}{\sin\theta} \quad \Rightarrow \quad \theta \le \frac{\pi}{m+1}$ Thus $\lambda_f(p) \ge 2\cos\frac{\pi}{m+1}$ for $y^{\frac{1}{m+1}} \le p < y^{\frac{1}{m}}, p \nmid N.$ $\lambda_f(p) \ge \begin{array}{ccc} 2\cos\frac{\pi}{M+1} & \cdots & 2\cos\frac{\pi}{M+1} & \cdots \\ p & & & \\ y^{\frac{1}{M+1}} & \cdots & y^{\frac{1}{m+1}} & y^{\frac{1}{m}} & \cdots & \sqrt{y} \end{array}$ 0 \boldsymbol{y} 3. Review the methods

3.5 Matomaki's method (cont'd)

Let $M \geq 2$. Define the multiplicative function $h_y(n)$ by

$$h_{y}(p) := \begin{cases} -2 & \text{if } p > y, \\ 2\cos\frac{\pi}{m+1} & \text{if } y^{\frac{1}{m+1}}$$

and $h_y(p^{\nu}) = 0$, $\nu \ge 2$ and $h_y(p) = 0 \quad \forall p | N$

Let $\kappa > 0, N \in \mathbb{N}$. \exists constant $C_{\kappa} > 0$, uniformly for $x \ge \exp(C_{\kappa} \log \omega(N) + 3)^{e\kappa+2}),$ $\sum_{\substack{n \le x \\ (n,N)=1}} {}^{\flat} \kappa^{\omega(n)} = \frac{\prod_{N,\kappa}}{\Gamma(\kappa)} x (\log x)^{\kappa-1} (1 + o(1))$ where $\Gamma(\cdot)$ Gamma function and $\prod_{N,\kappa} = \left(\frac{\varphi(N)}{N}\right)^{\kappa} \prod_{p \nmid N} \left(1 - \frac{1}{p}\right)^{\kappa} \left(1 + \frac{\kappa}{p}\right) \gg (\log \log N)^{-\kappa}.$

3.5 Matomaki's method (cont'd)

Let $\chi_0 = 2 \cos \frac{\pi}{M+1}$. Uniformly for $\exp(C_0(\log \omega(N) + 3)^{e\chi_0 + 4}) \le y$ and $u \in [1, \frac{3}{2}],$ $\sum_{\substack{n \le y^u \\ (n,N)=1}} {}^{\flat} h_y(n) = (\sigma_M(u) + o_M(1)) \frac{\prod_{N,\chi_0}}{\Gamma(\chi_0)} (\log y)^{\chi_0 - 1} y^u$

where $C_0 = C_0(M)$ suitably large constant, $\sigma_M(u)$ is a continuous function.

In particular for M = 100, we have

Set $\kappa = \frac{4}{3}$. Then $y^{\kappa} \ll (k^2 N)^{\eta + \varepsilon} y^{\kappa/2 + \varepsilon}$. Thus $y \ll (k^2 N)^{\frac{2\eta}{\kappa} + \varepsilon}$.

4.1 Start-up

Let ϕ be a primitive maass cusp form of eigenvalue $\frac{1}{4} + \nu^2$ and level N. Write $\lambda_{\phi}(n)$ for its *n*th Hecke eigenvalue.

Question: What is the size of n_{-} in terms of ν and N if $\lambda_{\phi}(n_{-})$ is the first negative Hecke eigenvalue?

Suppose $\lambda_{\phi}(n) \ge 0$ for $1 \le n \le y$. Write $x = y^u$ where $1 \le u \le \frac{3}{2}$. Consider $S^{\flat}(x) = \sum_{\substack{n \le x \\ (n,N)=1}} {}^{\flat}\lambda_{\phi}(n)$ Upper bound: $S^{\flat}(x) \ll x^{\frac{1}{2} + \varepsilon} (|\nu|^2 N)^{\eta + \varepsilon}$. (Assume $|\nu| \ge 1$) Iwaniec, Kohnen & Sengupta's method I applies: $Take \ x = y,$ $x \ll (|\nu|^2 N)^{2\eta + \varepsilon}.$

(i) Auxiliary function for lower bound estimation:

Let $M \geq 2$. Define the multiplicative function $w_y(n)$ by

$$w_{y}(p) := \begin{cases} -|\lambda_{\phi}(p)| & \text{if } p > y, \\ 2\cos\frac{\pi}{m+1} & \text{if } y^{\frac{1}{m+1}}$$

and $w_y(p^{\nu}) = 0, \ \nu \ge 2$ and $w_y(p) = 0 \ \forall \ p|N$

Then $g_y(p) = \lambda_{\phi}(p) - w_y(p) \ge 0$, and $\lambda_{\phi} = w_y * g_y$.

Consequently $S^{\flat}(y^u) \ge \sum_{\substack{n \le y^u \\ (n,N)=1}} {}^{\flat}w_y(n)$ when $u < u_0$.

 u_0 is the first zero

of $\sum {}^{\flat} w_y(n)$.

(ii) Connect $\sum {}^{\flat} w_y(n)$ to $\sum {}^{\flat} h_y(n)$: $\begin{array}{cc} n \leq y^u & n \leq y^u \\ (n,N) = 1 & (n,N) = 1 \end{array}$ $\sum^{\flat} w_y(n) = \sum^{\flat} w_y(n) - \sum |\lambda_{\pi}(p)| \sum^{\flat} w_y(n)$ $\begin{array}{ccc} n \leq y^u & n \leq y^u & y$ (n,N)=1 $= \sum_{i=1}^{\flat} h_y(n) + 2 \sum_{i=1}^{\flat} h_y(n) - \sum_{i=1}^{\flat} |\lambda_\phi(p)| \sum_{i=1}^{\flat} h_y(n)$ $=\sum_{k=1}^{\flat}h_{y}(n)-\sum_{k=1}^{\flat}(|\lambda_{\phi}(p)|-2)\sum_{k=1}^{\flat}h_{y}(n)$ $\begin{array}{ccc} n \leq y^u & y$ $n \leq \frac{y^u}{n}$ (n,N)=1 S_2

(iii)
$$S_2 = \sum_{\substack{y :$$

Write $S_2 = S_{2,1} + S_{2,2}$. Set $\log Z = o(1)(\log y)^{(\chi_0 - 1/8)/(\chi_0 + 7/8)}$.

(iii)' $S_{2,2} \leq \sum_{\substack{y^u/Z$ $\leq y^{u} \sum_{\substack{y^{u}/Z$ $\leq y^{u} \frac{(\log Z)^{\chi_{0}+7/8}}{(\log y^{u})^{7/8}} \bigg(\sum_{y^{u}/Z \leq n \leq y^{u}} \frac{\lambda_{\phi}(p)^{8}}{p}\bigg)^{1/8} = o(1)y^{u}(\log y)^{\chi_{0}-1}$

(iii)"
$$S_{2,1} \leq \sum_{\substack{y
$$= (1 + o(1)) \frac{\prod_{N,\chi_{0}}}{\Gamma(\chi_{0})} y^{u} (\log y)^{\chi_{0}-1} \sum_{\substack{y$$$$

Note:
$$\succ \sum_{\substack{n \le y^u/p \\ (n,N)=1}} {}^{\flat} h_y(n) = \left(\sigma_M(u - \frac{\log p}{\log y}) + o_M(1)\right) \frac{\prod_{N,\chi_0}}{\Gamma(\chi_0)} (\log y)^{\chi_0 - 1} \frac{y^u}{p}$$

$$\succ$$
 $0 \le \sigma_M(u) \le u^{\chi_0 - 1}$

5. Our work

(iv) Bounding Σ_2

$$\sum_{\substack{y
$$\leq \left(\sum_{\substack{y$$$$

 $L(s, \operatorname{sym}^{j} \phi), 1 \leq j \leq 4$, is automorphic. $L(s, \operatorname{sym}^{j} \phi \times \operatorname{sym}^{j} \phi)$ has the standard properties.

(v) Connect
$$\sum_{\substack{y to $\sum_{\substack{y $\lambda_\phi(p)^{2R} = \sum_{j=0}^R a_{R,j} \lambda_{sym^{2(R-j)}\phi}(p)$ $\lambda_{sym^{2r}\phi}(p) = \lambda_{sym^r \phi \times sym^r \phi}(p)$
 $-\lambda_{sym^{r-1}\phi \times sym^{r-1}\phi}(p)$$$$

$$\operatorname{sym}^r \pi_p \otimes \operatorname{sym}^r \pi_p = \bigoplus_{j=0}^r \operatorname{sym}^{2j} \pi_p$$

We have no good control on the conductors of $L(s, \operatorname{sym}^r \phi)$ and $L(s, \operatorname{sym}^r \phi \times \operatorname{sym}^r \phi)$ for large r.

Note
$$(x-2)^8_+ \le x^8 - 6x^6 + \frac{3^7}{16} + \frac{1}{2^8}$$

 $\lambda_{\phi}(p)^8 - 6\lambda_{\phi}(p)^6 = \sum_{j=0}^4 b_{4,j}\lambda_{\text{sym}^{4-j}\phi \times \text{sym}^{4-j}\phi}(p)$

where $b_{4,0} = 1$, $b_{4,1} = 0$, $b_{4,2} = -11$, $b_{4,3} = -16$, $b_{4,4} = 10$.

$$\sum_{\substack{y$$

 $B_8 = \frac{3^7}{16} + \frac{1}{2^8} + 10$

4. Our work

(vi) Relate
$$\sum_{\substack{y Rankin's trick:
$$\leq \frac{y^{\delta u}}{\log y} \sum_{p} \lambda_{\text{sym}^{4}\phi \times \text{sym}^{4}\phi}(p) \frac{\log p}{p^{1+\delta}}$$
$$-\frac{L'}{L}(1+\delta, \text{sym}^{4}\phi \times \text{sym}^{4}\phi) + O(1)$$
$$\leq \frac{y^{\delta u}}{\log y} \left\{ \delta^{-1} + \frac{1}{2} \log \mathcal{Q}_{\text{sym}^{4}\phi \times \text{sym}^{4}\phi} + O(1) \right\}$$$$

Remark we shall take $y = (|\nu|^2 N)^?$. Want $\log \mathcal{Q} \leq ? \log(|\nu|^2 N)$.

(vii) Evaluate ? in $\log Q \le ? \log(|\nu|^2 N)$: ? = 108

Bushnell & Henniart: Let q_{π} , $q_{\pi'}$ be the conductors of $L(s,\pi)$, $L(s,\pi')$.

The conductor $q_{\pi \times \pi'}$ of $L(s, \pi \times \pi')$ is $\leq \frac{q_{\pi}^{d'} q_{\pi'}^{d}}{(q_{\pi}, q_{\pi'})}$.

 $d = \deg L(s, \pi)$ $d' = \deg L(s, \pi')$

Hence $\mathcal{Q}_{\operatorname{sym}^4\phi \times \operatorname{sym}^4\phi} \leq q_{\operatorname{sym}^4\phi}^9 \leq (|\nu|^2 N)^{108}.$

 $L(s, \phi \times \phi) = \zeta(s)L(s, \text{sym}^2\phi)$ $L(s, \text{sym}^2\phi \times \text{sym}^2\phi) = \zeta(s)L(s, \text{sym}^2\phi)L(s, \text{sym}^4\phi)$

 $q_{\mathrm{sym}^2\phi} \le (|\nu|^2 N)^3$

$$q_{\text{sym}^4\phi} \le q_{\text{sym}^2\phi}^4 \le (|\nu|^2 N)^{12}$$

4. Our work

(viii) Round up :

By (v)-(vii) :

$$\sum_{\substack{y$$

With (iv):

$$\sum_{\substack{y$$

Recall (iii): $S_{2} \leq (1+o(1))(131u+138\log u)^{\frac{1}{8}} \left(\int_{1}^{u} (u-t)^{\frac{8}{7}(\chi_{0}-1)} \frac{dt}{t}\right)^{\frac{7}{8}}$ $\times \frac{\Pi_{N,\chi_{0}}}{\Gamma(\chi_{0})} y^{u} (\log y)^{\chi_{0}-1}.$

With (i)-(ii):
$$S^{\flat}(y^u) \ge \sum_{\substack{n \le y^u \\ (n,N)=1}} {}^{\flat}h_y(n) - S_2$$

$$\ge \left(\sigma_M(u) - ***\right) \frac{\prod_{N,\chi_0}}{\Gamma(\chi_0)} y^u (\log y)^{\chi_0 - 1}$$

$$\begin{aligned} \frac{u}{\sigma_{100}(u)} &= \frac{11}{9} \frac{5}{4} \frac{9}{7} \frac{4}{3} \\ \hline \sigma_{100}(u) &\geq 0.0924 \quad 0.0718 \quad 0.0445 \quad 0.008 \\ *** &= (131u + 138 \log u)^{\frac{1}{8}} \times \left(\int_{1}^{u} (u - t)^{\frac{8}{7}(\chi_{0} - 1)} \frac{dt}{t}\right)^{\frac{7}{8}} \\ \text{Take } u &= \frac{5}{4}^{+}, \text{ then } \sigma_{100}(u) - *** > 2.5 \times 10^{-3}. \\ y^{u}(\log y)^{\chi_{0} - 1} \ll S^{\flat}(y^{u}) \ll y^{\frac{u}{2} + \varepsilon} (|\nu|^{2}N)^{\eta + \varepsilon} \\ &\Rightarrow y \ll (|\nu|^{2}N)^{\frac{8\eta}{5} - \varepsilon} \\ \text{Hence } n_{-} \ll (|\nu|^{2}N)^{\frac{2}{5}} \end{aligned}$$

4. Our work

