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Abstract. An infinite set A in a space X converges to a point p
(denoted by A −→ p) if for every neighbourhood U of p we have
|A\U | < |A| . We call cS(p,X) =

{|A| : A ⊂ X and A −→ p
}

the
convergence spectrum of p in X and cS(X) = ∪{cS(x, X) : x ∈ X}
the convergence spectrum of X. The character spectrum of a point
p ∈ X is χS(p,X) = {χ(p, Y ) : p is non-isolated in Y ⊂ X} and
χS(X) = ∪{χS(x,X) : x ∈ X} is the character spectrum of X. If
κ ∈ χS(p,X) for a compactum X then {κ, cf(κ)} ⊂ cS(p,X).

A selection of our results (X is always a compactum):
(1) If χ(p,X) > λ = λ<t̂(X) then λ ∈ χS(p,X); in particular,

if X is countably tight and χ(p,X) > λ = λω then λ ∈
χS(p, X).

(2) If χ(X) > 2ω then ω1 ∈ χS(X) or {2ω, (2ω)+} ⊂ χS(X).
(3) If χ(X) > ω then χS(X) ∩ [ω1, 2ω] 6= ∅.
(4) If χ(X) > 2κ then κ+ ∈ cS(X), in fact there is a converging

discrete set of size κ+ in X.
(5) If we add λ Cohen reals to a model of GCH then in the

extension for every κ ≤ λ there is X with χS(X) = {ω, κ}. In
particular, it is consistent to have X with χS(X) = {ω,ℵω}.

(6) If all members of χS(X) are limit cardinals then

|X| ≤ (sup{|S| : S ∈ [X]ω})ω.

(7) It is consistent that 2ω is as big as you wish and there are
arbitrarily large X with χS(X) ∩ (ω, 2ω) = ∅.

It remains an open question if, for all X, min cS(X) ≤ ω1 (or
even min χS(X) ≤ ω1) is provable in ZFC.

1. Introduction

Let us start by recalling that a (transfinite) sequence 〈xα : α < κ〉
is said to converge to a point x in the topological space X if for every
neighbourhood U of x there is an index β < κ such that xα ∈ U
whenever β ≤ α < κ. As usual, this is denoted by xα −→ x. In this
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paper we shall only consider the convergence of one-to-one sequences
of cardinal length.

It is also customary to define when an infinite subset A of X con-
verges to the point x (in symbols: A −→ x). This means that for
every neighbourhood U of x we have |A\U | < |A| . Note that if X is a
compactum, i.e. an infinite compact Hausdorff space, then A −→ x is
equivalent to x being the unique complete accumulation point of A.

Obviously, if the one-to-one sequence 〈xα : α < κ〉 converges to x
then so does its range {xα : α < κ} as a set. Conversely, if |A| = κ is a
regular cardinal and A −→ x then every sequence of order type κ that
enumerates A in a one-to-one manner converges to x as well.

However, for singular κ this converse is simply false. Indeed, let κ
be singular with λ = cf(κ) < κ and consider the following topology on
κ+1: All points α < κ are isolated and the neighbourhoods of the last
point κ are of the form (κ + 1)\A where A ⊂ κ and |A| ≤ λ. Clearly,
in the resulting space X every subset of κ of size κ converges to the
last point κ but no one-to-one sequence of order type κ does. More
generally, if Y is any Hausdorff extension of X and y is any point of
Y different from the point κ then for some Y -neighbourhood U of y
we have |U ∩ κ| ≤ λ, hence such a sequence cannot converge to y as
well. Note that we could take as Y any Hausdorff compactification of
X, showing that, even in compacta, we can have a converging set of
singular size such that no one-to-one sequence enumerating it in the
order type of its cardinality converges.

We are now ready to give the definition of the convergence spectrum
both locally, at a point, and globally, in the whole space. So fix a
topological space X and a point p ∈ X.

Definition 1.1.

cS(p,X) =
{|A| : A ⊂ X and A −→ p

}

is the convergence spectrum of p in X. Moreover,

cS(X) = ∪{cS(x, X) : x ∈ X}
is the convergence spectrum of X.

It is well-known and easy to see that if χ(p,X) = ψ(p,X) = κ for
a non-isolated point p in the space X then there is a κ-type one-one
sequence in X converging to p, hence we have both χ(p,X) ∈ cS(p,X)
and cf(χ(p,X)) ∈ cS(p,X). It is also well-known that χ(p,X) =
ψ(p,X) holds for every point p of a compactum X. Consequently,
{χ(p,X), cf(χ(p, X))} ⊂ cS(p,X) whenever p is non-isolated in the
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compactum X. In particular, the convergence spectrum of a com-
pactum always contains a regular cardinal.

Note that if X is regular and p ∈ Y ⊂ X then we have χ(p, Y ) =
χ(p, Y ). Consequently, if X is a compactum and p is non-isolated in
the subspace Y ⊂ X then we have χ(p, Y ) ∈ cS(p, Y ) ⊂ cS(p,X) as
well. This motivated us to introduce the following definition.

Definition 1.2. For a non-isolated point p of the space X we let

χS(p,X) = {χ(p, Y ) : p is non-isolated in Y ⊂ X}
and we call χS(p,X) the character spectrum of p in X. Moreover,

χS(X) = ∪{χS(x,X) : x ∈ X non-isolated }
is the character spectrum of X.

It follows from our above considerations that χS(p,X) ⊂ cS(p,X)
holds true whenever p is a non-isolated point in a compactum X. It is
also obvious that we have ω ∈ χS(p,X) iff ω ∈ cS(p,X) but we shall
see that this equivalence fails for uncountable cardinals.

There have been several questions around that may be conveniently
formulated using the convergence or character spectra of compacta.
Perhaps the oldest such problem, raised by M. Hušek, can be put as
follows: Is min cS(X) ≤ ω1 for every compactum X? Of course, this is
equivalent to asking if in every compactum there is either a convergent
ω-sequence or a convergent ω1-sequence?

Let us note here that, as is shown by any non-isolated point in a
countable subset, we trivially have

min cS(X) ≤ min χS(X) ≤ 2ω

for every compactum X. Consequently, the answer to Hušek’s question
is trivially YES under CH,

A. Dow proved in [6] that if one adds any number of Cohen reals to
a model of CH then in the resulting extension, while the continuum is
as large as you wish, Hušek’s question is still answered affirmatively.

Actually, it is still open if, for any compactum X, even the stronger
inequality min χS(X) ≤ ω1 is provable in ZFC. This would easily follow
from the following conjecture that was formulated in [13] : In every
countably tight compactum there is a point of character ≤ ω1. It was
shown in [13] that if one adds ω1 Cohen reals to any ground model then
this conjecture holds in the resulting generic extension.

The following very interesting and natural question was raised by
Arhangel’skii and Buzyakova in [2] (we reformulate it using our above
terminology): Assume that for a compactum X we have % /∈ cS(X)
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for every uncountable regular cardinal % . (Such spaces were called
K-compacta in [9].) Is then X first countable?

We note that X is first countable iff χS(X) = {ω} iff cS(X) =
{ω} . Clearly, for a K-compactum X we have cf(λ) = ω for every
λ ∈ χS(X). A space with this apparently weaker property was called
an AB-compactum in [9], and the problem if an AB-compactum is a
K-compactum was also raised there. One of our main results, Corollary
3.7 below, gives consistent counterexamples to this.

The following local version of the above Arhangel’skii-Buzyakova
question, in a different disguise, was first raised in [3] and then, ap-
parently independently, in [2]: If for a point p in the compactum X
we have % /∈ cS(p,X) for every uncountable regular cardinal % , is then
χ(p,X) countable? Kunen gave a negative answer to this question by
constructing, in ZFC, compacta with such points of uncountable char-
acter. In fact, the methods of [19] and [20] can be used to construct a
compactum with such a point of character λ for every singular cardinal
λ of countable cofinality.

In sharp contrast to this, an affirmative answer can be given to the
above global question of Arhangel’skii and Buzyakova, consistently. In
fact, in [9] it was shown under the assumption 2ω < ℵω that even all
AB-compacta are first countable (see Corollary 2.9 below). On the
other hand, the consistent examples of non-K AB-compacta, provided
by Corollary 3.7, clearly cannot be first countable.

2. Inclusion in spectra

We start by recalling that a transfinite sequence 〈xα : α < κ〉 is said
to be a free sequence in the space X if for every α < κ we have

{xβ : β < α} ∩ {xβ : α ≤ β < κ} = ∅ .

Clearly, any free sequence is one-one and it is also easy to see that, as
a subset, every free sequence is discrete. In T1 spaces every countable
discrete set is free.

For any space X, we denote by F̂ (X) the smallest cardinal κ for
which there is no free sequence of size κ in X. By a well-known result
of Arhangel’skii, a compactum X is countably tight iff there are no

uncountable free sequences in X, that is iff F̂ (X) = ω1. On the other
hand, it was shown in [17] that if in a compactum X there is a free
sequence of length % = cf(%) > ω then there is also one that converges.
So the following simple result implies that if X is a compactum with

F̂ (X) > % = cf(%) > ω then ρ ∈ χS(X); in particular, if X is not
countably tight then ω1 ∈ χS(X).
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Proposition 2.1. If the free sequence 〈xα : α < κ〉 in the T2 space X
converges to the point p then

ψ(p, {xα : α < κ}) = cf(κ) .

Proof. Clearly, xα −→ p implies that even ψ(p , {xα : α < κ} ∪ {p}) ≥
cf(κ). On the other hand, since 〈xα : α < κ〉 is free we have

{xα : α < κ} \ {p} =
⋃
α<κ

{xβ : β < α} ,

and this equality obviously implies ψ(p, {xα : α < κ}) ≤ cf(κ) . ¤

Free sequences and the cardinal function F̂ play an important role
in the following technical but very basic result of ours as well.

Lemma 2.2. Assume that X is a T3 space and % , µ are cardinals such

that F̂ (X) ≤ % ≤ cf(µ), moreover p ∈ X with ψ(p, X) ≥ µ . Then
either
(i) there is a discrete set D ∈ [X]< % with p ∈ D and ψ(p, D) ≥ µ ,
or
(ii) there is a discrete set D ∈ [X]% such that D −→ p .

Proof. Let us assume that (i) fails, so that for every discrete D ⊂ X
with |D| < % we have p /∈ D or ψ(p, D) < µ. By transfinite recursion
we then define closed sets Hα and points xα for all α < % such that the
Hα’s are decreasing and the following three conditions are satisfied:

(1) ψ(Hα, X) < µ,

(2) p ∈ Hα and xα ∈ Hα \ {p},
(3) Hα ∩ {xβ : β < α} ⊂ {p}.

To see that this can be done, assume that α < % and Hβ , xβ have
been defined for all β < α and satisfy conditions (1)–(3). Let us set
H = ∩{Hβ : β < α}, then % ≤ cf(µ) and the inductive hypothesis
imply ψ(H, X) < µ.

It is also clear from the inductive hypothesis that D = {xβ : β < α}
is a free sequence in the subspace X \ {p} and hence is discrete. So,
as (i) fails, we have either p /∈ D or ψ(p, D) < µ. By the regularity of
X, for each open neighbourhood U of p there is a closed Gδ set V such
that p ∈ V ⊂ U , consequently, in either case, we may find a closed set
K with p ∈ K, ψ(K, X) < µ, and K ∩D ⊂ {p}.

Now, we define Hα = H ∩K. Then ψ(Hα, X) < µ ≤ ψ(p,X) imply
{p} $ Hα, hence we can pick xα ∈ Hα \{p} and complete the recursion
step.
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Similarly as above, the sequence 〈xα : α < %〉 is free in X \{p}, hence
D = {xα : α < %} is discrete. We claim that D −→ p, hence (ii) holds.
Indeed, for any open neighbourhood U of p the set A = {α : xα /∈ U}
has cardinality less than F̂ (X) ≤ % because 〈xα : α ∈ A〉 is a free
sequence in X (not just in X \ {p} ). ¤

As an immediate consequence of Lemma 2.2 we obtain the following
strengthening of the deep result 6.14 b) from [12].

Corollary 2.3. If F̂ (X) ≤ λ = cf(λ) ≤ χ(p, X) for a point p in a
compactum X then there is a discrete subset D ⊂ X with |D| ≤ λ such
that χ(p,D ∪ {p}) ≥ λ.

As it is pointed out in [10], Corollary 3.4, this readily implies that
the character χ reflects all infinite cardinals λ for the class of compacta.
This means that if χ(X) ≥ λ for a compactum X then χ(Y ) ≥ λ for
some Y ⊂ X with |Y | ≤ λ. If λ is regular then 2.3 implies the following
strengthening of this reflection result.

Corollary 2.4. If χ(p,X) ≥ λ = cf(λ) for a point p in a compactum
X then there is a point q ∈ X and a discrete D ⊂ X with |D| ≤ λ such
that χ(q,D ∪ {q}) ≥ λ.

Proof. Indeed, if F̂ (X) > λ then the main result of [17] yields a free

sequence of length λ converging to some point q ∈ X, and if F̂ (X) ≤ λ
then Corollary 2.3 applies. ¤

We think it is worth to formulate explicitly the particular case λ = ω1

of Corollary 2.4: If a compactum is not first countable then it has a
non-first countable subspace with a single non-isolated point and of
size at most ω1.

We now turn to the main result of this section. For this we need to
recall that for any space X the cardinal function t̂(X) is defined as the
smallest cardinal κ such that for any set A ⊂ X we have

A = ∪{B : B ∈ [A]<κ} .

Thus, a non-discrete space X is countably tight iff t̂(X) = ω1. It is

well-known that if X is a compactum then t̂(X) ≤ F̂ (X) ≤ t̂(X)+ and

if t̂(X) is regular then t̂(X) = F̂ (X), see e.g. 3.12 of [12].
We also need the following simple result concerning the cardinal

function t̂(X) on compacta.

Lemma 2.5. Let X be a compactum and λ be a cardinal with

λ = λ< t̂(X) =
∑

{λκ : κ < t̂(X)}.
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Then for every set Y ⊂ X with |Y | ≤ λ we have w(Y ) ≤ λ.

Proof. By the definition of t̂(X) we have Y = ∪{Z : Z ∈ [Y ]< t̂(X)}.
But

∣∣[Y ]< t̂(X)
∣∣ ≤ λ< t̂(X) = λ and for each Z ∈ [Y ]< t̂(X) we have w(Z) ≤

2|Z| ≤ 2< t̂(X) ≤ λ, hence we conclude that the net weight nw(Y )) ≤
λ. As weight equals net weight for compacta by a classical result of
Arhangel’skii, this completes the proof. ¤

Now we are ready to formulate and prove our promised result.

Theorem 2.6. Suppose that X is a compactum, λ is a cardinal sat-
isfying λ = λ< t̂(X), and p ∈ X has character χ(p,X) > λ. Then
λ ∈ χS(p,X).

Proof. Let us note first that λ = λ< t̂(X) and λcf(λ) > λ clearly imply

t̂(X) ≤ cf(λ) ≤ λ. From this we may deduce F̂ (X) ≤ λ. Indeed, to

see this we may use F̂ (X) ≤ t̂(X)+ if t̂(X) < λ. If, on the other hand,

t̂(X) = λ then λ = λ<λ implies that λ is regular, hence t̂(X) = F̂ (X) =
λ.

Case 1. λ is regular. We may now apply our main Lemma 2.2 for
X and p with % = λ and µ = λ+. Alternative (i) of Lemma 2.2 cannot
hold because, by Lemma 2.5, we have

ψ(p, D) = χ(p,D) ≤ w(D) ≤ λ < µ

whenever |D| < λ. Consequently, there is a (discrete) set D of size λ
such that D −→ p. Since λ is regular, this implies χ(p, D) ≥ λ. On
the other hand, by Lemma 2.5 again, we have χ(p, D) ≤ w(D) ≤ λ,
hence χ(p,D) = λ.

Case 2. λ is singular. Let us start by fixing a strictly increasing

sequence of regular cardinals {κα : α < cf(λ)} converging to λ with

t̂(X) ≤ cf(λ) < κ0 and hence F̂ (X) ≤ κ0.
Then, for each α < cf(λ), we may apply Lemma 2.2 for X and p

with % = κα and µ = λ+. Again, alternative (i) of Lemma 2.2 cannot
hold because, by Lemma 2.5, we have w(D) ≤ λ for any D ⊂ X with
|D| < κα. Consequently, there is a (discrete) set Dα of size κα such
that Dα −→ p.

Let us now set Y = ∪{Dα : α < cf(λ)}. Then Dα −→ p implies
χ(p, Y ) ≥ κα for all α < cf(λ), hence χ(p, Y ) ≥ λ. On the other hand,
we have |Y | = λ, so Lemma 2.5 implies χ(p, Y ) ≤ w(Y ) ≤ λ, hence
χ(p, Y ) = λ. ¤

Below we formulate separately the important special case t̂(X) = ω1

of our theorem.
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Corollary 2.7. If X is a countably tight compactum and p ∈ X has
character χ(p,X) > λ = λω then λ ∈ χS(p,X).

Corollary 2.8. If X is any compactum of character χ(X) > 2ω then
either ω1 ∈ χS(X) or {2ω, (2ω)+} ⊂ χS(X).

Proof. Indeed, if X is not countably tight then ω1 ∈ χS(X) by Propo-
sition 2.1. Otherwise Corollary 2.7 implies both 2ω ∈ χS(X) and
(2ω)+ ∈ χS(X). ¤
Corollary 2.9. If the compactum X is not first countable then

χS(X) ∩ [ω1, 2ω] 6= ∅.
Proof. If χ(X) ≤ 2ω then we have a point p ∈ X with ω1 ≤ χ(p,X) ≤
2ω. Otherwise, Corollary 2.8 implies that χS(X) includes at least one
of the end points of the closed interval [ω1, 2ω]. ¤

It is obvious from our last result that if 2ω < ℵω then the character
(and hence the convergence) spectrum of any non-first countable com-
pactum contains a successor and so an uncountable regular cardinal.

Before giving some further results, it is convenient to introduce the
concept of the discrete convergence spectrum. This is an obvious varia-
tion of the convergence spectrum: The discrete convergence spectrum
of the point p in the space X is defined by

dcS(p,X) =
{|D| : D ⊂ X is discrete and D −→ p

}
.

We also define the global version of this:

dcS(X) = ∪{dcS(x,X) : x ∈ X},
and we call it the discrete convergence spectrum of X.

Unlike the character and hence the convergence spectrum, the dis-
crete convergence spectrum of a compactum may be empty, at least
consistently. This is shown for instance by Fedorchuk’s compact S-
space constructed from ♦ in [7].

On the other hand, if 〈xα : α < κ〉 is a free sequence converging
to a point p in a compactum X then both κ and cf(κ) belong to
dcS(X). In particular, every compactum that is not countably tight
has ω1 in its discrete convergence spectrum. By Balogh’s celebrated
result in [4], under PFA every countably tight compactum is sequen-
tial, and hence has a convergent ω-sequence. Consequently, under PFA
dcS(X) ∩ {ω, ω1} 6= ∅ for every compactum X.

It is worth mentioning here that in the proof of Theorem 2.6, in
addition to λ ∈ χS(p,X) ⊂ cS(p,X), we also obtained λ ∈ dcS(p,X),
provided that λ is regular.
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Theorem 2.10. Suppose that X is a compactum and λ is an uncount-

able regular cardinal such that F̂ (X) ≤ λ. If a point p ∈ X has char-
acter

χ(p,X) ≥
∑

{(2κ)+ : κ < λ}
then λ ∈ dcS(p,X).

Proof. Let us set µ =
∑{(2κ)+ : κ < λ}. Then cf(µ) ≥ λ because

either λ is a limit cardinal and the exponentiation function 2κ increases
for cofinally many κ < λ, in which case cf(µ) = λ, or there is a κ∗ < λ
with 2κ = 2κ∗ whenever κ∗ ≤ κ < λ, and in this case µ = (2κ∗)+

satisfies cf(µ) > κ for all κ < λ.
This means that we may apply Lemma 2.2 for X and p with % = λ

and µ. But for every D ⊂ X with |D| < λ we have w(D) ≤ 2|D| < µ
which implies that alternative (i) of Lemma 2.2 cannot hold, hence we
have alternative (ii) that is exactly what we want. ¤

Corollary 2.11. If X is any compactum and λ is an uncountable reg-
ular cardinal such that

χ(p,X) ≥
∑

{(2κ)+ : κ < λ}
holds for some point p ∈ X, then λ ∈ dcS(X).

Proof. If F̂ (X) > λ, i.e. there is a free sequence of length λ in X, then
by the main result of [17] there is also one that converges and we are

done. If, on the other hand, F̂ (X) ≤ λ then we may apply Theorem
2.10 to conclude λ ∈ dcS(p,X). ¤

It is again worth while to formulate explicitly the particular case
λ = κ+ of this result:

Corollary 2.12. If a compactum X has character χ(X) > 2κ then
κ+ ∈ dcS(X).

3. Omission by spectra

Undoubtedly, the most widely known instance of omission of a cardi-
nal by a convergence or character spectrum of a compactum is the fact
that ω /∈ cS(βN). In general, we say that a set of cardinals S omits a
cardinal κ if κ /∈ S but there is a λ ∈ S with λ > κ.

Since χ(βN) = 2ω it follows that χS(βN) = cS(βN) = {ω1} un-
der CH. Actually, CH can be weakened to get such a compactum:
Fedorchuk constructed in [8] a compactum X satisfying χS(X) =
cS(X) = {ω1} from the assumption that the splitting number s = ω1.
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We note that Hušek’s problem that was mentioned in the introduc-
tion is equivalent to asking if there is a compactum X whose conver-
gence spectrum cS(X) omits both ω and ω1 .

Now, let us only assume that the character spectrum χS(X) of a
compactum X omits both ω and ω1. Then, by proposition 2.1, X is
countably tight. It follows that X ′, the derived set of X, has no iso-
lated point because such a point would have a neighbourhood homeo-
morphic to the one-point compactification of an infinite discrete space
and hence would include a converging ω-sequence. Consequently, X ′

is a countably tight compactum in which every point has character at
least ω2, i.e. X ′ is a counterexample to the conjecture from [13] that
was mentioned in the introduction.

Next, we shall study the question if one can find compacta whose
character spectra omit uncountable cardinals. By Corollary 2.9, CH
implies that ω1 cannot be omitted by χS(X) for any compactum X.
On the other hand, Hušek showed in [11] that the converse of this is
also true by constructing, in ZFC, a compactum X such that χS(X) =
{ω, 2ω}.

Below we shall give a general method for constructing (consistent)
examples of compacta whose character spectra omit various uncount-
able cardinals. Using this method we shall show, among other things,
that Hušek’s example can be easily obtained from an earlier construc-
tion of van Douwen.

First, however, we recall the perhaps most basic spectrum of a topo-
logical space X that was introduced and studied in [14]: the cardinality
spectrum S(X) of a space X is the set of cardinalities of all infinite
closed subspaces of X. Note that for a compactum X this is the same
as the set of sizes of all subcompacta of X.

Lemma 3.1. Let Y be a locally compact T2 space which is also locally
µ, that is every point of Y has a neighbourhood of cardinality at most
µ, and let X = Y ∪ {p} be the one-point compactification of Y . If
µ < κ < |Y | and κ /∈ S(Y ) then κ /∈ χS(X).

Proof. First, observe that every compact subset of Y also has cardi-
nality at most µ, hence we have |X \ U | ≤ µ for every neighbourhood
of p in X. This clearly implies that ψ(p,X) = χ(p,X) = |F | whenever
p is a non-isolated point of a closed subset F of X with |F | > µ. But
we have χ(p,X) ≤ |F | ≤ µ otherwise, hence κ /∈ χS(p,X). As we
trivially have χ(x,X) = χ(x, Y ) ≤ µ for all points x ∈ Y , we may
indeed conclude that κ /∈ χS(X).

Note that, as |X| = |Y | ∈ χS(X), this actually means that κ is
omitted by χS(X). ¤
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In the mid 70’s Eric van Douwen invented a technique for construct-
ing a locally compact and locally countable refinement Λ of the re-
als having, among many others, the property S(Λ) = {ω, 2ω}. This
construction was widely circulated in handwritten form but, as far as
we know, got never published by him. However, an early announce-
ment of the construction was published in [5]. Now, it is immediate
from Lemma 3.1 that the one-point compactification of Λ has character
spectrum {ω, 2ω}.
Corollary 3.2. (Hušek, [11]) There is a ZFC example of a compactum
X such that χS(X) = {ω, 2ω}.

In view of Proposition 2.1, any compactum X whose character spec-
trum omits ω1 must be countably tight, consequently, by Corollary 2.7,
if χS(X) = {ω, κ} then we must have κ ≤ 2ω. It is natural to ask if
the converse is also true: Does ω1 ≤ κ ≤ 2ω imply the existence of a
compactum whose character spectrum is {ω, κ} ? We are now going to
study this question and give important partial answers to it.

Definition 3.3. For any cardinal κ ≤ 2ω we let Φ(κ) denote the follow-
ing statement: There are a set of reals T ∈ [R]κ and a family A ⊂ [T ]ω

with |A| = κ such that (i) for every A ∈ A we have |T ∩ A| = κ and
(ii) for every B ∈ [T ]ω1 there is A ∈ A with A ⊂ B.

Note that Φ(2ω) is trivially true, as witnessed by T = R and A =
{A ∈ [R]ω : |A| > ω}.
Lemma 3.4. Φ(κ) implies that there is a locally countable and locally
compact T2 space Y with S(Y ) = {ω, κ} and hence a compactum X
with χS(X) = {ω, κ}.
Proof. Assume that T and A witness Φ(κ). For technical reasons we
assume that for some countable dense subset D of T we have D ∈ A.
Let us fix a κ-type well-ordering ≺ of T such that D is the first ω
elements of T with respect to ≺ .

Next we let A = {Aα : α < κ} be an enumeration of A such that for
every A ∈ A we have |{α < κ : A = Aα}| = κ.

By a generalization of van Douwen’s technique for κ = 2ω, we are
going to construct a locally countable and locally compact topology
on T that refines its Euclidean topology ε. This is done by transfinite
recursion on α < κ as follows.

Assume that α < κ and Yα = {yβ : β < α} ⊂ T and a locally
countable, locally compact topology τα on Yα refining ε ¹ Yα have been
defined in such a way that Yβ with τβ is an open subspace of Yα for all
β < α.
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Now, if Aα ⊂ Yα then we first define yα as the ≺-minimal member of
the clearly non-empty set T ∩ Aα \ Yα. By definition, then we may fix
a one-to-one sequence {xn : n < ω} ⊂ Aα ⊂ Yα that ε-converges to the
point yα. By the inductive hypothesis, we can also fix, for each n < ω,
a compact open neighbourhood Kn of xn with respect to τα such that
the diameter of Kn < 1/2n.

Let us then set Un = ∪i≥nKi ∪{yα} for all n < ω, and define τα+1 as
the topology on Yα+1 = Yα ∪ {yα} generated by τα ∪ {Un : n < ω}. It
is standard and easy to show that each Un is compact and open with
respect to τα+1 as well as that τα+1 ⊃ ε ¹ Yα+1.

If Aα is not a subset of Yα then the ≺-minimal element of T \ Yα is
chosen to be yα, and it is declared to be an isolated point of Yα+1 with
respect to τα+1, that is τα+1 is generated by τα ∪ {yα}.

This completes the description of any successor step of the recursion,
in the limit steps we simply take direct limits. Finally, we end up with
a locally countable and locally compact topology τ = ∪α<κτα ⊃ ε on
T . Indeed, the fact that for each x ∈ T there is an α < κ with x = yα

follows from D ∈ A and that |{α < κ : D = Aα}| = κ.
To complete the proof, we have to show that S(Y ) = {ω, κ} holds

for the space Y = 〈T, τ〉. This follows because we have added κ many
τ -limit points to every bounded member of A, moreover every uncount-
able subset B of T includes a bounded element of A. The latter state-
ment holds because if cf(κ) = ω then B has an uncountable bounded
subset. ¤

Now we consider a condition that implies Φ(κ) for certain cardinals
κ < 2ω.

Lemma 3.5. If the partial order 〈[κ]ω1 ,⊂〉 has a dense set of size κ
(we shall denote this by π([κ]ω1) = κ) for some κ < 2ω with cf(κ) 6= ω1

then Φ(κ) holds true.

Proof. Let B ⊂ [κ]ω1 with |B| = κ be dense in 〈[κ]ω1 ,⊂〉; since cf(κ) 6=
ω1 we may assume that every B ∈ B is bounded in κ. It will suffice to
construct a set of distinct points T = {xα : α < κ} ⊂ R such that for

every B ∈ B the subset B̃ = {xξ : ξ ∈ B} ⊂ T has κ limit points in
T . Indeed, if for each B ∈ B we pick a countable dense subset AB of

B̃ then T together with A = {AB : B ∈ B} clearly witness Φ(κ).
Now, to construct T as above fix {Bα : α < κ}, an enumeration of

B, such that for every B ∈ B we have |{α < κ : B = Bα}| = κ. The
points xα ∈ R are picked recursively as follows.

Assume that α < κ and Tα = {xβ : β < α} have been picked already.

If Bα ⊂ α then we define xα as any limit point of B̃α outside of Tα.
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Otherwise, if B̃α is not yet defined, we let xα be any element of R \Tα.
Since every B ∈ B is bounded, this will clearly work. ¤

Arnie Miller had shown in [21] that if one adds ℵω Cohen reals to a
ground model satisfying GCH then π([ℵω]ω1) = ℵω holds in the result-
ing generic extension. In fact, the same argument given in [21] yields
the following more general result whose proof we therefore leave to the
reader.

Proposition 3.6. Assume that λ is a singular cardinal of countable
cofinality that is ω1-inaccessible, i.e. µω1 < λ whenever µ < λ. Then
for every CCC partial order P with |P| = λ the equality π([λ]ω1) = λ
holds in the generic extension V P.

Corollary 3.7. Assume that GCH holds and λ is a singular cardinal of
countable cofinality in our ground model V . If we add λ Cohen reals to
V then in the generic extension Φ(λ) holds, hence there is a compactum
X such that χS(X) = {ω, λ}.

Note that Corollary 3.7 yields the consistency of the existence of
AB-compacta that are not first countable. In fact, as the example
X = Y ∪ {p} is the one-point compactification of a locally count-
able space Y , every uncountable subset of Y converges to p in X,
hence the convergence spectrum cS(X) = [ω, λ], showing that the AB-
compactum X is not a K-compactum. Thus Corollary 3.7 answers two
questions that were raised in [9].

It is probably worth mentioning that the spaces constructed in Corol-
lary 3.7 also yield examples for compacta whose weight spectrum is
{ω, λ}. These examples are very different from the ones constructed in
[15] that were first countable.

Motivated by Corollary 3.7, L. Soukup has recently proved the fol-
lowing: It is consistent that the continuum is arbitrarily large and Φ(κ)
holds for all κ ≤ 2ω. This non-trivial result is still unpublished but,
luckily, we may avoid using it in proving its following corollary: It is
consistent that 2ω is arbitrarily large and for every κ ≤ 2ω there is a
compactum X whose character spectrum χS(X) = {ω, κ}.

Before doing that, however, we point out that under Martin’s axiom
Φ(κ) fails whenever ω1 < κ < 2ω. Indeed, as is well-known, then every
subset of any T ∈ [R]κ is a relative Fσ and hence T has a relatively
closed subset of size ω1.

The following simple but crucial observation is due to Z. Szent-
miklóssy.

Lemma 3.8. Let X be an arbitrary topological space in the ground
model V and G be Cλ = Fn(λ, 2) generic over V . Then X has the
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following property in the extension V [G] : For every set A ∈ [X]ω1

there is an uncountable ground model set B ∈ V ∩ [X]ω1 such that
B′ ⊂ A , i.e. every limit point of B is in the closure of A.

Proof. Let Ȧ be a Cλ name for A and assume that p ° Ȧ ∈ [X]ω1 . It
is standard to find then a set B ∈ V ∩ [X]ω1 and for each point x ∈ B

a condition px ≤ p forcing x ∈ Ȧ such that {px : x ∈ B} forms a

∆-system with root q ≤ p. We claim that q forces B′ ⊂ Ȧ.
To see this, it suffices to show that for every condition s ≤ q, for

every point y ∈ B′, and for every neighbourhood U of y there is an
extension r of s that forces U ∩ Ȧ 6= ∅.

But as y is a limit point of B, the set U ∩B is infinite, consequently
there is an x ∈ U∩B for which px and s are compatible. Then r = s∪px

is clearly as required. ¤

Now, we are ready to formulate and prove the promised result.

Theorem 3.9. Assume that our ground model V satisfies GCH and
λ is an infinite cardinal in V . Then, in the generic extension V Cλ, for
every κ ≤ λ there is a locally countable and locally compact T2 space Y
with S(Y ) = {ω, κ} and hence there is a compactum X with character
spectrum χS(X) = {ω, κ}.
Proof. First observe that for every κ > ω the principle Φ(κ) holds in
V Cκ . Indeed, if cf(κ) > ω then this is because V Cκ ² κ = 2ω and
if cf(κ) = ω then this follows from corollary 3.7. So we conclude by
Lemma 3.4 that there is in V Cκ a locally countable and locally compact
T2 space Y with S(Y ) = {ω, κ}.

But, for any κ < λ, forcing with Cλ is the same as first forcing
with Cκ and then with Cλ\κ, hence Lemma 3.8 implies that all the
stated properties of the space Y obtained by the first forcing will be
preserved by the second forcing. (In fact, the locally countable and
locally T2 property is preserved in any extension.) Now, by Lemma 3.1,
the one-point compactification X of Y satisfies χS(X) = {ω, κ}. ¤

Corollary 3.10. It is consistent with 2ω as big as you wish that for
every countable set of cardinals C with ω ∈ C ⊂ [ω, 2ω] there is a
compactum X such that χS(X) = C.

Proof. Consider the model of Theorem 3.9 for any regular cardinal λ
and fix for each κ ≤ λ a compactum Xκ such that χS(Xκ) = {ω, κ}.
If C is finite then we may simply take X to be the topological sum of
the spaces {Xκ : κ ∈ C}. If C is infinite then the one-point compacti-
fication of the topological sum of {Xκ : κ ∈ C} will work. ¤
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We next examine the question what, if any, restrictions follow for
a compactum whose character or convergence spectrum omits certain
cardinals. For instance, I. Gorelic, in personal communication, raised
the question if there is an upper bound for the size of a K-compactum.
One of the main results of [9] was the following theorem that answered
Gorelic’s question: The cardinality of any AB-compactum X is at most
2<2ω

. The proof relies on showing that

|X| ≤ (sup{|S| : S ∈ [X]ω})ω.

Our next result shows that this inequality actually holds for a signifi-
cantly wider class of compacta, namely those whose character spectra
contain only limit cardinals.

Theorem 3.11. If X is a compactum such that every λ ∈ χS(X) is a
limit cardinal then |X| ≤ (sup{|S| : S ∈ [X]ω})ω.

Proof. Observe first of all that as ω1 /∈ χS(X), by Proposition 2.1, X
is countably tight. Let us put µ = (sup{|S| : S ∈ [X]ω})ω, then we
have both µ = µω and µ+ = (µ+)ω. It follows from the second equality
and Corollary 2.7 that we have χ(x,X) ≤ µ for every point x ∈ X. So
let us fix for each x ∈ X a neighbourhood base Bx with |Bx| ≤ µ.

Let ϑ be a large enough regular cardinal such that the space X (and
everything else that is relevant, e.g. the map x 7→ Bx) belongs to H(ϑ),
the structure of all sets hereditarily of size < ϑ.

Using µ = µω we can find a countably closed elementary submodel
M ≺ H(ϑ) of cardinality µ that again contains everything relevant and
satisfies µ ⊂ M . Note that for each x ∈ X ∩M we then have Bx ⊂ M
because |Bx| ≤ µ.

We claim that then X ⊂ M and that will complete our proof. To
see the claim, first note that X∩M is a closed subset of X. Indeed, for
every countable set S ⊂ X∩M we have S ∈ M because M is countably
closed, hence S ∈ M as well. But |S| ≤ µ by definition, consequently
we have S ⊂ X ∩M . Since X is countably tight, this indeed implies
that X ∩M is closed.

Now, assume indirectly that X * M and, say, q ∈ X \ M . Then
every point x ∈ X∩M has a neighbourhood Ux ∈ Bx such that q /∈ Ux.
But X ∩ M is compact, being closed in X, hence there are finitely
many points x1, ..., xn ∈ X ∩M for which Ux1 ∪ ...∪Uxn covers X ∩M .
However, as each Uxi

∈ M , this would imply Ux1 ∪ ... ∪ Uxn = X, that
clearly is a contradiction. ¤

Since every separable compactum has cardinality at most 22ω
, it is

immediate from our last result that if every λ ∈ χS(X) is a limit
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cardinal for a compactum X then we have |X| ≤ 22ω
. However, this

already follows from Corollary 2.8, just assuming that neither ω1 nor
(2ω)+ belongs to χS(X). Indeed, then we may conclude χ(X) ≤ 2ω

and apply Arhangel’skii’s theorem.
Similarly, Corollary 2.8 implies that if {ω1, 2

ω} ∩ χS(X) = ∅ for a
compactum X then χ(X) ≤ 2ω, and hence |X| ≤ 22ω

. So the following
natural question arises: If the character spectrum of a compactum X
omits all uncountable cardinals strictly below 2ω, does that put a bound
on the size (or character) of X? Perhaps surprisingly, the answer to
this question is, consistently, negative, as can be seen from our next
result.

Theorem 3.12. Let κ be any regular cardinal and Pκ be the standard
CCC partial order that iteratively adds κ dominating (or Hechler) reals
to the ground model V . Then, in V Pκ, there are arbitrarily large com-
pacta whose character spectrum omits each cardinal in the open interval
(ω, κ).

Proof. It is shown in [1] for the particular case κ = ω1 that, in V Pκ ,
there are arbitrarily large Jakovlev spaces. However, it is straight-
forward to check that essentially the same argument yields the same
conclusion for any cardinal κ (more details of this will appear in [18]).

Now, all the reader has to know about Jakovlev spaces is that they
are locally countable and locally compact T2 spaces, every closed sub-
space of a Jakovlev spaces is Jakovlev, moreover any uncountable Jakov-
lev space is of size at least b, see [1]. Consequently, the cardinality
spectrum of any uncountable Jakovlev space omits all members of the
interval (ω,b), and then by lemma 3.1 so does the character spectrum
of its one-point compactification.

Finally, it is obvious that for a regular κ we have b = κ in the generic
extension V Pκ . ¤

We have so far produced numerous (consistent) examples of com-
pacta whose character spectra omit lots of uncountable cardinals. All
these examples were one-point compactifications of locally countable,
locally compact spaces and therefore, as we already pointed out, their
convergence spectrum did not omit any cardinal.

In fact, while Theorem 3.12 shows that e.g. ω1 /∈ χS(X) does not
put any bound on the size of a compactum X, it is immediate from
Corollary 2.12 that even ω1 /∈ cS(X) implies χ(X) ≤ 2ω and hence
|X| ≤ 22ω

.
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We know only one example of a compactum whose convergence spec-
trum omits an uncountable regular cardinal: the one-point compacti-
fication X = Y ∪ {p} of the first countable, locally compact, initially
ω1-compact but non-compact space Y of cardinality ω2 that was con-
structed, with a considerable amount of efforts, in [16]. Indeed, if
A ∈ [Y ]ω1 then A cannot converge to any y ∈ Y because y has count-
able character and A cannot converge to p because it has a complete
accumulation point in Y , hence ω1 /∈ cS(X). In fact, as χ(p,X) = ω2,
we have χS(X) = cS(X) = {ω, ω2}. Just for curiosity, we mention
that Y has no discrete subset of size ω2, hence we have dcS(p,X) = ∅
and dcS(X) = {ω}.
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(2005), no. 1, pp. 193–198.
[21] A. W. Miller, The Baire Category Theorem and Cardinals of Countable

Cofinality, Journal of Symbolic Logic, Vol. 47, No. 2. (Jun., 1982), pp. 275-
288.
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