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Abstract. Let D denote the partially ordered sets of homomor-
phism classes of finite directed graphs, ordered by the homomor-
phism relation. Order theoretic properties of this poset have been
studied extensively, and have interesting connections to familiar
graph properties and parameters. This paper studies the general-
ized duality pairs in D: it gives a new, short proof for the Foniok
- Nešetřil - Tardif theorem (characterizing all finite-finite duality
pairs in D), and shows, that there is no finite-infinite duality pair
- where the pairs form antichains - in the digraph-poset.

1. Introduction

Let ~G and ~H be two directed graphs and write ~G ≤ ~H or ~G → ~H
provided that there is a homomorphism from ~G to ~H, that is, a map
f : V ( ~G)→ V ( ~H) such that for all 〈x, y〉 ∈ E( ~G), 〈f(x), f(y)〉 ∈ E( ~H).
(Since in this paper we deal mainly with directed graphs - or digraphs
for short - therefore, with some abuse of notation, we do not use the
arrow notation when we can do it without danger of misunderstanding.)
When we have G → H then we say that G admits an H-coloration.
(The origin of this notion is the fact that an undirected graph G has
a homomorphism into the ℓ-vertices (undirected) complete graph iff G
is ℓ-colorable in the usual sense.)

The relation ≤ is a quasi-order and so it induces an equivalence
relation: we say that G and H are homomorphism-equivalent or hom-
equivalent and write G ∼ H if and only if G ≤ H and H ≤ G. The
homomorphism poset D is the partially ordered set of all equivalence
classes of finite directed graphs, ordered by the ≤. We will often abuse
notation by replacing the classes that comprise D with their members.
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This partially ordered set is of significant intrinsic interest and is
useful tool in the study of directed graph properties. For instance, it
is easily seen that it is a countable distributive lattice: the supremum,
or join, of any pair is their disjoint sum, and the infimum, or meet,
is their categorical or relational product. Poset D is “predominantly”
dense – it is shown by Nešetřil and Tardif [17]. Furthermore it embeds
all countable partially ordered sets – see [20] for a presentation. The
latter statement holds for the posets of all directed trees or paths,
respectively, see [13] and [14].

The maximal chains and antichains of an ordered set are well known
objects of interest. In this case, maximal antichains are particularly
relevant because of their relationship to the notion of a homomorphism
duality, introduced by Nešetřil and Pultr [15]: say that an ordered pair
〈F, D〉 of directed graphs, is a duality pair if

(1) F→ = 9 D

where F → = {G : F → G} and 9 D = {G : G 9 D}. Equiv-
alently, the set of all structures is partitioned by the upset [or final
segment] F→ and the downset [or initial segment] →D. [Here we also
use the other common notation F ↑ and D↓ for upsets and downsets,
respectively.]

In the lattice D of directed graphs, each tree can play the role of
F in (1). In fact, in [17], Nešetřil and Tardif obtain a correspondence
between duality pairs and gaps in the homomorphism order for general
relational structures. They note, among others, in [18] that the 2-
element maximal antichains in D are exactly the duality pairs 〈F, D〉
where F is a tree and D is its dual, where the dual can be directly
constructed.

Foniok, Nešetřil and Tardif [9, 10] are concerned with the most gen-
eral circumstance. Let F and D both be finite antichains in the poset
D. Call 〈F ,D〉 a generalized finite duality if

(2)
⋃

F∈F

F→ =
⋂

D∈D

9D.

Here one can assume - without extra cost - that both classes are an-
tichains. Indeed, since F is finite therefore the set F ′ of minimum
elements is an antichain, and F↑ = (F ′)↑. Similarly, the maximal ele-
ments of D form the antichain D′ for which D↓ = (D′)↓. Furthermore
an easy consequence of (2) is that any element of F is incomparable
with each element of D.
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Another consequence of this definition is the following formula:

(3) D =

(

⋃

F∈F

F→

)

∪

(

⋃

D∈D

→D

)

.

(Here, of course, the incomparability of the elements of F and D is
not an immanent requirement.) The generalized finite dualities are
characterized in [9, 10]. Foniok, Nešetřil and Tardif also show that all
maximal finite antichains A (with three exceptional cases) yields the
generalized finite duality 〈F , A \ F〉.

It is quite natural to ask, in more general circumstances, if maximal
antichains possess these sorts of partitions.

Indeed, Ahlswede, P.L. Erdős and N. Graham [1] introduced the no-
tion of “splitting” a maximal antichain. Say that a maximal antichain
A of a poset P splits if A can be partitioned into two subsets B and
C such that P = B↑ ∪ C↓; and say that P has the splitting property if
all of its maximal antichains split. They obtained sufficient conditions
for the splitting property in finite posets, from which they proved, in
particular, that all finite Boolean lattices possess it. It is also a natural
notion for infinite posets; see [5, 6].

On one hand side the correspondence between generalized dualities
and maximal antichains obtained in [9, 10] and the partition in (3)
demonstrate that for D essentially all finite maximal antichains split.
On the other side: dropping the finiteness condition in the definition (2)
one may have the notion of generalized duality. Using techniques from
[6], Duffus, P.L. Erdős, Nešetřil and Soukup studied this further gen-
eralized notion. They proved, that under rather mild conditions, any
finite, non-maximal antichain of D can be extended, on one hand side,
into a generalized duality pair of antichains or, on the other side, into
a maximal infinite antichain what does not split.

In case of general duality one has to take special care for the antichain
properties since the procedure described after formula (2) can not be
done in case of infinite classes.

In this paper we study the remaining cases, where at least one class
of 〈F ,D〉 is finite. We include a simplified short proof of the Foniok -
Nešetřil - Tardif’s theorem on generalized finite duality pairs (Section
3). In Section 2 we give the technical prerequisites for the proofs. In
Section 4 we show the somewhat surprising fact, that there exists no
generalized duality pair in D where F is a finite while D is an infinite
antichain. Finally in Section 5 we introduce the problem of the infinite
- finite duality pairs.
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In addition to the selected individual papers, we refer the reader to
the book [13] by Hell and Nešetřil that is devoted to graph homomor-
phisms. Chapter 3 of it gives a thorough introduction and many of the
key results on maximal antichains and dualities in posets of (undirected
or directed) finite graphs.

A preliminary, extended abstract version of this paper was published
in 2008 ([7]).

2. Prerequisites

Given a poset P = (P,≤) and A ⊂ P let

A↑ = {p ∈ P : ∃a ∈ A a ≤P p}; A↓ = {p ∈ P : ∃a ∈ A p ≤P a}.

Let A be a maximal antichain in P . A partition (B, C) of A is a split
of A iff P = B↑ ∪ C↓. We say that A splits if A has a split.

The equivalence classes of finite directed forests and directed trees in
D will be denoted by F and by T, respectively. Given a directed graph
D denote by Comp(D) the set of connected components of D.

For a given oriented walk (directed walk where the edges are not
necessarily are directed consecutively) its net-length is the (absolute)
difference between the numbers of edges oriented in one way or the
other. Given D ∈ D let the net-length ℓ(D) of D be the supremum
of the net-length of the oriented walks in D. Clearly ℓ(D) = ∞ iff D
contains an unbalanced circle.

Write B = {D ∈ D : ℓ(D) < ∞} and U = {D ∈ D : ℓ(D) = ∞}.
The graphs in B are the balanced ones. Clearly F & B.

We need a result of J. Nešetřil and C. Tardif ([17]) which shows that
each directed tree has a unique dual:

Theorem 2.1. For each T ∈ T\{~P0, ~P1, ~P2, } there is a unique DT ∈ D
such that 〈T, DT 〉 is a duality, i.e. T and DT are incomparable and
T →= 6→ DT .

We will use the Directed Sparse Incomparability Lemma in the follow-
ing form (see [2]):

Theorem 2.2 (Directed Sparse Incomparability Lemma). For each
directed graph H ∈ D \ F and for all integers m, k ∈ N there is a
directed graph H ′ such that

(1) k < girth(H ′) < ∞, (this is the girth of the underlying undirected
graph, the girth of a tree is ∞),

(2) for each directed graph G with |V (G)| < m we have H ′ → G if and
only if H → G.

(3) H 6→ H ′.
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3. The Foniok-Nešetřil-Tardif Theorem

In this Section we give a simplified short proof for the Foniok-Nešetřil-
Tardif Theorem using only the Directed Sparse Incomparability Lemma
(Theorem 2.2) and the Nesetril-Tardif Theorem (Theorem 2.1).

Lemma 3.1. Let G be a balanced kernel with G 6→ ~P2. Then it contains
no component C with C 6→ ~P2.

Proof. Assume the contrary. Due to the condition the kernel contains
component C ′ of net-length ≥ 3 and C → ~P2 → C ′ would happen, a
contradiction. �

Lemma 3.2. If B ⊂ D is finite and X ∈ B with X /∈ B\{X}↓\B\{X}
then ({X}↓ \ {X}) 6⊂ (B \ {X})↓ \ (B \ {X}) for X ∈ B \ F.

Proof. Let n = max{|Q| : Q ∈ B}. Since X /∈ F we can apply the
Directed Sparse Incomparability Lemma for X and k = m = n + 1 to
obtain a graph Y . Then Y → Q implies X → Q for Q ∈ B because
|Q| < m. Thus Y ∈

[

{X}↓ \ {X}
]

\
[

(B \ {X})↓ \ (B \ {X})
]

. �

Theorem 3.3 (Foniok, Nesetril Tardif, [8]).

(A) If F ⊂ F is a finite antichain of forests, F 6= {~P0}, {~P1}, {~P2},
then it has a “finite dual” DF , i.e. there is a finite antichain DF ⊂ D
such that F ∪DF is an antichain and (F↑ \F , D↓

D \DD) is a partition
of D.
(B) If F and D are finite antichains in D, F 6= {~P0}, {~P1}, {~P2}, and
(→ F ,D →) is a partition of D, then F ∪ D is an antichain.

(C) Let A ⊂ D be a finite maximal antichain in D, A 6= {~P0}, {~P1},

{~P2}. Then A splits and 〈A ∩ F,A ∩ U〉 is the unique split of A. Es-
pecially A = (A∩ F) ∪DA∩F. Moreover A∩ (B \ F) = ∅.

Proof of Theorem 3.3. (A) Write F = {F i : i < n} and Comp(Fi) =
{F i

j : j < ki} for i < n. (In this paper the indices run from 0 to

upper-bound−1.) By Theorem 2.1 we have D \ (F i
j →) =→ DF i

j
. Then

D \
⋃

i<n

(F i →) =
⋂

i<n

(D \ (F i →)) =
⋂

i<n

(D \
⋂

j<ki

(F i
j →)) =

⋂

i<n

(
⋃

j<ki

(D \ (F i
j →))) =

⋂

i<n

⋃

j<ki

(→ DF i
j
) =

⋃

f∈
Q

i<n ki

⋂

i<n

(→ DF i
f(i)

) =

⋃

f∈
Q

i<n ki

(→
∏

i<n

DF i
f(i)

).
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So DF is just the D-maximal elements of
{

∏

i<n DF i
f(i)

: f ∈
∏

i<n ki

}

,

which proves (A).

Next we prove (B).
Let B = A∪D. If X ∈ F then X /∈ B\{X}↓ \B\{X}. So, by Lemma
3.2, if X /∈ F then there is Y ∈ D such that D /∈ F↑ \F ∪D↓ \D, which
is a contradiction. So F ⊂ F.

Hence, by (A), the finite antichain F ⊂ D has the finite dual DA such

that (A↑ \ A, D↓
A \DA) is a partition of D. Hence D↓

A \DA = D↓ \ D.
Since D and DA are antichains we have D = DA. Thus F∪D = F∪DF

is an antichain which was to be proved.

Finally we prove (C).

Let ~P (2, n) be the following oriented path: ~P2 then n zigzag steps,

then ~P2 again, then n zigzag steps, etc, up to n recursion, that is

~P (2, n) = 1
(

(10)n1
)n

1.

Clearly ℓ(~P (2, n)) = n + 1.

Figure 1. Graph ~P (2, 3)

Let ℓ = max{ℓ(Q) : Q ∈ A ∩ B} and n = max{|Q| : Q ∈ A}.

Lemma 3.4. A↓ \ A = (A ∩ U)↓ \ (A ∩ U).

Proof of the Lemma. Assume on the contrary that there exists X ∈
(A↓ \ A) \

[

(A∩ U)↓ \ (A ∩ U)
]

. Let Y = X + ~P (2, ℓ + 1).

For Q ∈ A if Q→ Y then some component C of Q maps into ~P (2, ℓ)

and so C → ~P2 because ℓ is large enough. But this is excluded by
Lemma 3.1, a contradiction.

Moreover Y 6→ Q for Q ∈ A∩B because ℓ(Y ) > ℓ(Q). For Q ∈ A∩U
we have Y 6→ Q because X → Y and X 6→ Q.

Hence Y is incomparable to any element of the maximal antichain
A. Contradiction. �
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Since A is an antichain, o applying Lemma 3.2 for B = A we obtain

Lemma 3.5. ({X}↓ \ {X}) 6⊂ (A \ {X})↓ \ (A \ {X}) for X ∈ A \ F.

Lemmas 3.4 and 3.5 together yield

(4) A ∩ F = A ∩ B,

that is every balanced element in A is a directed forest.

Lemma 3.6. (A∩ F)↑ \ (A ∩ F) = A↑ \ A.

Proof. Assume on the contrary that

(5) X ∈
[

A↑ \ A
]

\
[

(A∩ F)↑ \ (A ∩ F)
]

.

Then Q → X for some Q ∈ A ∩ U and so X ∈ U. Hence we can
apply the Directed Sparse Incomparability Lemma for X and k = m =
max{n + 1, |X|+ 1} to obtain a graph Y .

Assume first that Q′ → Y for some Q′ ∈ A. Then the image of Q′ is
a forest in Y because girth(Y ) > |Q′|. Hence Q′ ∈ B. Thus Q′ ∈ F by
(4). But Q′ → Y → X which is not possible by our assumption (5).

Hence Y → Q for some Q ∈ A. But then X → Q because |Q| <
n + 1. Contradiction because X ∈ (A↑ \ A). �

Lemma 3.7. ({F}↑ \ {F}) 6⊂ (A \ {F})↑ \ (A \ {F}) for F ∈ A ∩ F.

Proof. Let F ∈ A∩F. Let Y = F + ~P (2, max(ℓ, n) + 1). Then F → Y
but ℓ(Y ) > ℓ(F ) so Y 6→ F . So Y ∈ F ↑ \ F .

Assume now that there exists a Q ∈ A \ {F} with Q → Y . Then
every connected component C of Q can be mapped either into F or
into ~P (2, ℓ). In the latter, however, C → ~P2 because ℓ is large enough.
But this contradicts to Lemma 3.1. �

By equation (4) (A ∩ F,A ∩ U) is a partition of A. Hence Lemmas
3.4 and 3.6 imply that 〈A ∩ F,A∩ U〉 is a split in D.

If 〈B, C〉 is a split of A then C ⊃ A∩U by Lemma 3.5, and B ⊃ A∩F
by Lemma 3.7. Hence 〈B, C〉 = 〈A ∩ F,A∩ U〉. This proves Theorem
3.3. �

4. There is no finite-infinite duality pair

In the remaining part of this paper we will study those generalized
dualities, where one class is finite while the other one is infinite.

In this Section we will show that there exists no generalized duality
pair 〈F ,D〉 in D such that F is finite while D is infinite.

In the coming proof we will apply the following week version of a the-
orem of Neštřil and Tardif:
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Proposition 4.1 ([17]). Assume that F, G ∈ D are incomparable, G
is connected, and there exists no directed graph H such that F < H <
F + G (in this case the pair F, F + G is called a gap). Then G is a
directed tree.

Here we give an easy and short proof of it: Assume that G 6∈ T.
Then the Directed Sparse Incomparability Lemma is applicable: let
k = m = max{|G|, |F |} + 1. Then Theorem 2.2 supplies an H ′ ∈ D
such that H ′ → G but not vice versa, and H ′ and F are incomparable.
Then F + H ′ would be an H denied in the Proposition 4.1. �

Theorem 4.2. There is no generalized duality pair 〈F ,D〉 forming an
antichain where |F| < ω and |D| = ω,

Proof. Assume on the contrary that 〈F ,D〉 is such a pair. If F ⊂ F
then D = D(F) is finite, so we can assume that F1 ∈ F \ F.

Let T =
⋃

{Comp(F ) : F ∈ F} ∩ T and C =
⋃

{Comp(F ) : F ∈
F}\T and let A = {DT : T ∈ T}, where DT is the dual of the directed
tree T . (Let’s recall, that Comp(F ) denotes the set of the connected
components of F .) Let

A∗ =
{

∏

B′ : B′ ⊂ A
}

.

Let D1 = D ∩A∗.
Let n = max{|F | : F ∈ F ∪ D1} and apply the Sparse Incom-

parability Lemma (Theorem 2.2) for the graph F1 with parameters
k = m = n + 1 to get the graph X1. Then F1 6→ X1 by Theo-
rem 2.2 (3) and X1 → F1 by Theorem 2.2 (2). Furthermore for each
G ∈ (F ∪ D1) \ {F1} we have X1 6→ G by Theorem 2.2 (2). Further-
more if G → X1 then G → F1 would happen, a contradiction. So X1

is incomparable with each G ∈ (F ∪ D1) \ {F1}.

Now, since 〈F ,D〉 is a duality pair, therefore there is an X ′
1 ∈ D \ D1

such that X1 → X ′
1 and X ′

1 is incomparable with all elements of F
by definition. We are going to find an X ′′

1 ∈ {X
′
1}

↑ \ {X ′
1} such that

it is incomparable with F . The existence of such X ′′
1 contradicts the

assumption that 〈F ,D〉 is a split in D.
Let B = {DT : T ∈ T and T 6→ X ′

1}. If this is empty, then let T ∈ T
such that T 6→ X ′

1. Now the choice X ′′
1 = X ′

1 + T is satisfactory, the
Theorem is proved.

Otherwise X ′
1 → DT for each DT ∈ B. Thus X ′

1 →
∏

B. But
∏

B ∈ A∗ and X ′
1 /∈ A∗, so

∏

B and X ′
1 are not equivalent, i.e.

∏

B 6→
X ′

1. Due to Proposition 4.1, the pair (X ′
1,
∏

B) is not a gap, there are
elements in this interval. We will choose our X ′′

1 within this interval.
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Then for each F ∈ F , which F 6→ X ′
1 due to one of its tree-component,

will not map into X ′′
1 as well.

Enumerate C as {Ci : i < m}. By a finite induction on i ≤ m define
graphs G0, G1, .., Gm such that

(1) G0 =
∏

B,
(2) G0 ← G1 ← . . .← Gm ← X ′

1,
(3) if Ci 6→ X ′

1 then Ci 6→ Gi+1.

Assume that we have constructed Gi. If Ci 6→ X ′
1, but Ci → Gi then

consider the pair (X ′
1, X

′
1 + Ci). Since Ci is not a tree, this pair is not

a gap (Proposition 4.1). Let Gi+1 be any element strictly between X ′
1

and X ′
1 + Ci.

We claim that X ′′
1 = Gm is incomparable with any F ∈ F .

Assume on the contrary that F → Gm for some F ∈ F . By definition
there is Y ∈ Comp(F ) such that Y 6→ X ′

1.
If Y ∈ T then DY ∈ B, so

∏

B → DY , and so Gm → DY . Thus
Y 6→ Gm. Thus F 6→ Gm as well.

Assume now that Y ∈ C. Then Y = Ci for some i and so Y 6→ Gi

and so Y 6→ Gm. Thus F 6→ Gm.
Contradiction, the Theorem is proved. �

5. Does exist infinite-finite duality pairs?!

In this Section we discuss the last open case: the existence of infinite-
finite duality pairs in D where the classes form antichains. This case has
a huge theoretical interest due to its close connection to the constrain
satisfaction problems.

More specifically let 〈F ,D〉 be a generalized duality pair where F ⊂
T but it can be infinite, while D consists of preciously one element D.
Then we say that D has the tree duality. The following theorem is a
seminal result in the constrain satisfaction problem:

Theorem 5.1 (Hell - Nešetřil - Zhu [12]). If digraph D has the tree
duality then the D-colorability of each directed graph G can be decided
in polynomial time.

(Here the tree-duality can be strengthened to bounded treewidth dual-
ity.) The basic tool to prove this statement is the so-called consistency
check procedure. This procedure is always finite and it succeeds if and
only if G→ D. An even stronger result applies as well:

Theorem 5.2 (Hell - Nešetřil - Zhu [12]). The ”tree duality of H” is
equivalent to the following property: ∀G : (G → H if and only if the
consistency check for G with respect to H succeeds).
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As far as these authors are aware, it is still an open problem whether
there exists duality pair 〈F ,D〉 with infinite antichain F ⊂ T and
|D| = 1.
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[6] P. L. Erdős - L. Soukup: How to split antichains in infinite posets, Combina-

torica 27 (2) (2007), 147–161.
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