
INFINITE COMBINATORICS:

FROM FINITE TO INFINITE

LAJOS SOUKUP

Abstract. We investigate the relationship between some theo-
rems in finite combinatorics and their infinite counterparts: given
a “finite” result how one can get an “infinite” version of it? We
will also analyze the relationship between the proofs of a “finite”
theorem and the proof of its “infinite” version.

Besides these comparisons, the paper gives a proof of a theorem
of Erdős, Grünwald and Vázsonyi giving the full descriptions of
graphs having one/two-way infinite Euler lines. The last section
contains some new results: an infinite version of a multiway-cut
theorem is included.

1. Introduction

The introduction should be started with a negative statement: this
paper is not a survey of the most important results of infinite combi-
natorics. Some surveys can be found in [15], [7] or in [8].

In this paper we intend to investigate the relationship between some
theorems in finite combinatorics and their infinite counterparts: given
a “finite” theorem how one cat get a “infinite” version of it? So we
study the methods of generalizations. We will survey some problems
from finite combinatorics and we will analyze the relationship between
their proofs and the proofs of their “infinite” versions.

Although this paper is not a guide how to get new “infinite” results
we will give examples of applications of some basic proof methods from
infinite combinatorics.

Beside the investigation of these connections, in section 3.1 we will
recall some “forgotten” results of Erdős, Grünwald and Vázsonyi, (see
[9] and [10]) with full proof because these theorems are not easily ac-
cessible in the literature (originally they were published in Hungarian,
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[9], then in German, [10]). Moreover, in section 4, we give an infinite
version of a theorem from [11] concerning the minimal size of multi-way
cuts.

The results from section 1-3 are folklore if no references are given.
Only section 4 contains a new result of the author.

Our notation is standard. See e.g. [4].
The set of neighbouring vertices of a vertex v in a graph G is denoted

by ΓG(v). If A is a set of vertices then ΓG(A) = ∪{ΓG(v) : v ∈ A}.
The degree dG(v) of a vertex v is |ΓG(v)|.

A trail T in a graph G is a sequence T = 〈x0, x1 . . . , xn〉 of vertices
such that E(T ) = 〈xixi+1 : i < n〉 is a family of pairwise different edges
of G. The vertices x0 and xn are the end-vertices of the trail. A circuit
is a trail whose end-vertices coincide. A path is a trail with distinct
vertices.

A graph is connected iff there is a path between any two of its vertices.
The maximal connected subgraphs of a graph are the components of
the graph.

Directed trails and directed paths are defined similarly in directed
graphs (digraphs, in short).

If G is a directed graph and p = 〈x0, x1, . . . , xn〉 is a directed path in
G then we write first(p) = x0, last(p) = xn and E(p) = {x0x1, . . . , xn−1xn}.

If G = (V,E) is a directed graph and A ⊂ V then

In(A) = {v : ∃a ∈ A va ∈ E}

and in(A) = | In(A)|; similarly,

Out(A) = {v : ∃a ∈ A av ∈ E}

and out(A) = |Out(A)|.
Since we will discuss theorems in finite combinatorics and their infi-

nite counterparts side by side we introduce the following terminology:
theorems in finite combinatorics will be enumerated as Finite Theorem
1, Finite Theorem 2, etc, and the corresponding results from infinite
combinatorics will be enumerated as Infinite Theorem 1, Infinite The-
orem 2, etc.

2. Method of proofs, transfer principles.

The first example illustrates the simplest case: there is no difference
between the finite and infinite theorems, moreover the same proof works
in both cases, all we should do is to remove the word “finite” from both
the theorem and from its proof.
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2.1. Connectedness.

Finite Theorem 1. A finite graph G = (V,E) is connected iff given
any partition (V0, V1) of the vertices into two non-empty sets there is
an edge between V0 and V1.

Proof. A connected graph clearly has this property.
To see the other direction let x ∈ V and put

A = {z ∈ V : there is an x-z-path in G}.

Since there is no edge between A and V \A and a ∈ A, we have A = V .
Thus from x there is a path to each vertex of G. �

Infinite Theorem 1. A graph G = (V,E) is connected iff given any
partition (V0, V1) of the vertices into two non-empty sets there is an
edge between V0 and V1.

The same proof works.

The next example is - at least for the first sight - very similar.

2.2. Spanning trees.

Finite Theorem 2. Every finite connected graph G = (V,E) has a
spanning tree.

We “know” that the same statement holds for arbitrary graphs:

Infinite Theorem 2. Every connected graph G = (V,E) has a span-
ning tree.

But, as we will see soon, the relationship between theirs proofs is
more delicate. The “finite theorem” has (at least) two different proofs:

First Proof. Let T = (V, F ) be a minimal connected subgraph of G.
Then T can not contain a circle, so it is a spanning tree. �

The method of this proof can not be applied to get the “infinite”
version because it is not easy to guarantee that there is a minimal con-
nected subgraph of an infinite graph: an infinite graph G may contain
a decreasing chain G0, G1, . . . of connected subgraphs of G such that
V (Gi) = V (G) but ∩i∈NE(Gi) = ∅.

Now consider the second proof of the finite theorem.

Second Proof. Let T = (V ′, E ′) be a maximal subtree of G. Since
there is no edge between V ′ and V \ V ′ we have V ′ = V . Hence T is a
spanning tree. �

This proof can be modified to get the infinite theorem:



4 L. SOUKUP

Proof. Let T be the family of subtrees of G. For T, T ′ ∈ T write T ≺ T ′

iff T is a subtree of T ′.
Since T is closed under increasing union, 〈T ,≺〉 has a maximal ele-

ment T = (V ′, E ′) by Zorn’s Lemma. Since there is no edge between
V ′ and V \ V ′ we have V ′ = V . Hence T is a spanning tree. �

So almost the same proof works, but we used Zorn’s Lemma (i.e.
Axiom of Choice) It is a natural question whether we really need the
Axiom of Choice? The next theorem gives the answer:

Theorem 2.1. (ZF) If every connected graph has a spanning tree then
Axiom of Choice holds.

Proof. Let A = {Ai : i ∈ I} be a family of non-empty sets. We want
to find a choice function.

First we can assume that the elements of A are pairwise disjoint.
Construct a graph G = (V,E) as follows. Let

V = {x} ∪ {yi, zi : i ∈ I} ∪ ∪{Ai : i ∈ I},

where {x}∪{yi, zi : i ∈ I} are new, pairwise different vertices, and put

E = {xyi : i ∈ I} ∪ ∪i∈I{xia, ayi : a ∈ Ai}.

Then G is connected, so, by the assumption, it has a spanning tree
T = (V, F ). Then

(i) {xyi : i ∈ I} ⊂ F ,
(ii) for each i ∈ I there is exactly one ai ∈ Ai such that xiai, aiyi ∈ F ,
(iii) for each a ∈ Ai \ {ai} we have xia ∈ F iff ayi /∈ F .

Thus f(i) = ai is a choice function for A and f is definable using T . �

So it was a case when we have the same theorem for finite and infinite.
Even the proofs are almost the same, but in the infinite case we should
use Axiom of Choice to get some maximal structure.

Next we will see an example when the finite case has a straightfor-
ward generalization for the countable case, but there is no way to get
some similar result for uncountable graphs.

2.3. Normal spanning tree. A normal spanning tree ( or depth-first
search tree) of a connected graph G = (V,E) is a rooted subtree T of G
such that for each edge xy ∈ E the endpoints x and y are comparable
in the rooted tree order.

Finite Theorem 3. Every finite connected graph has a normal span-
ning tree.

Proof. Apply the depth-first algorithm to construct a normal spanning
tree. �
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What about the infinite graphs? Well, the complete graph on ℵ1,
Kℵ1

, does not have a normal spanning tree. On the other hand, we
have

Infinite Theorem 3. Every countable connected graph has a normal
spanning tree.

The simple greedy depth-first algorithm may not work even in Kℵ0

because it may find an infinite path which does not contain all the
vertices. However an inductive algorithm may works: using a carefully
chosen ordering we can guarantee that all the vertices is included in
some finite step into the spanning tree.

So far we have seen examples when either we have the same statement
for finite and infinite graph, or it was clear that certain statements
simply fail for uncountable graphs.

2.4. Pseudo-winners in tournaments. Given a directed graph G =
(V,E) forA ⊂ V let Out1(A) = A∪Out(A) and Outn(A) = Out1(Outn−1(A))
for n > 1, i.e. v ∈ Outn(A) iff there is a path of length at most n which
leads from some elements of A to v. Similarly, let In1(A) = A ∪ In(A)
and Inn(A) = In1(Inn−1(A)) for n > 1. If A = {v} write Outn(v) for
Outn({v}), and Inn(v) for Inn({v}).

Let T = (V,E) be a tournament and let t ∈ V . We say that t is a
pseudo-winner iff Out2(t) = V .

Finite Theorem 4. Every finite tournament has a pseudo-winner.

Proof. If t has maximal out-degree then t is a pseudo-winner.
Indeed, Let v ∈ V . If tv ∈ E then v ∈ Out(t) ⊂ Out2(t).
If vt ∈ E then t ∈ Out(v) \ Out(t), so there is s ∈ Out(t) \ Out(v)

because |Out(t)| was maximal. But then tsv is a directed path of
length 2, and so v ∈ Out2(t). �

Now consider the infinite case. The simplest generalization fails be-
cause

Observation 2.2. There is no pseudo-winner in the tournament (Z, <
).

However, in (Z, <) we have Z = In(0)∪Out(1). As it turns out, this
behavior of Z is not exceptional.

Infinite Theorem 4. A tournament T = (V,E) contains a pseudo-
winner or there are x 6= y ∈ V such that V = Out(x) ∪ In(y).

Proof. Indeed, if y is not a pseudo-winner witnessed by x, i.e. x 6∈
Out2(y), then V = Out(x) ∪ In(y). �
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One can find other interesting results concerning the structure of
infinite tournaments, see e.g. [13]:

Theorem 2.3. (1) Let T = (V,E) be an infinite tournament. If V =
Outn(v) for some n ≥ 3 and v ∈ V then V = Out3(w) for some w ∈ V .
(2) There is an infinite tournament T = (V,E) such that V = Out3(v)
for some v ∈ V but V 6= Out2(w) for any w ∈ V .

This was an example when the finite and the infinite theorems are
quite different. But the infinite case is also easy provided you know
what you have to prove.

The next subsection contains an example when the infinite theorem
is still open.

2.5. Quasi-kernels in digraphs. LetG = (V,E) be a digraph, A,B ⊂
V . An independent set A ⊂ V is a quasi-kernel (quasi-sink) iff V =
Out2(A) (V = In2(A)).

Finite Theorem 5 (Chvátal, Lovász, [5]). Every finite digraph has a
quasi-kernel.

The simple generalization fails even for infinite tournaments: the
tournament (Z, <) is a counterexample.

For infinite tournament it was easy to find an infinite version of this
theorem but what is the right generalization for infinite digraphs?

Theorem 4 implies that if G = (V,E) is an infinite tournament then
there are point x 6= y ∈ V s.t. V = Out2({x})∪In2({y}). One can guess
that this formulation gives us the right infinite version of the theorem of
Chvátal and Lovász, namely we conjectured that every digraph contains
two disjoint independent sets, A and B such that V = Out2(A)∪In2(B).

For a while we tried to find a counterexample, but at some point
we’ve found a quite easy way to show that :

Infinite Theorem 5 (P. L. Erdős, A. Hajnal, –, [13]). Every di-
graph contains two disjoint independent sets, A and B such that V =
Out2(A) ∪ In2(B).

However, during hunting counterexamples we realized that all the
digraphs we could construct have a much stronger property which led
us to the formulation of the following conjecture.
Kernel-Sink Conjecture: Given a directed graph G = (V,E) there
is a partition (W0,W1) of V such that G[W0] has a quasi-kernel and
G[W1] has a quasi-sink.

Let us remark that theorem 4 implies this statement for infinite
tournaments. In [13] we prove that this conjecture holds for different
classes of infinite graphs, but the conjecture is still open.



INFINITE COMBINATORICS 7

In the next subsection we will see a problem when the finite case is
trivial, the general infinite case is hard but solved, however the count-
able case is completely open.

2.6. Unfriendly partitions. Let G = (V,E) be a graph. A partition
(A,B) of V is called unfriendly iff every vertex has at least as many
neighbor in the other class as in its own.

Finite Theorem 6. Every finite graph has an unfriendly partition.

Proof. Take a partition having maximal number of edges between the
classes of the partition. This partition should be unfriendly. �

After proving that large classes of infinite graphs have unfriendly
partitions it was natural to formulate the following conjecture, [2]
Unfriendly Partition Conjecture. Every graph has an unfriendly
partition.

However, this conjecture was refuted:

Infinite Theorem 6.1 (Shelah, [18]). There is an uncountable graph
without unfriendly partitions.

Having disproved the plain generalization what are the other possi-
bilities?

Infinite Theorem 6.2 (Shelah[18]). Every graph has a partition into
three pieces such that every vertex has at least as many neighbor in the
two other classes as in its own.

Or you can get a positive theorem for infinite graphs provided you
consider only graphs which are similar to a finite graph. A graph is
called locally finite iff every vertex has finite degree.

Infinite Theorem 6.3. Every locally finite graph has an unfriendly
partition.

Proof. We will apply Gödel’s Compactness Theorem below.

Gödel’s Compactness Theorem. A first order theory T has a model
iff every finite subset of T has a model.

In many cases (including this one) you can substitute Gödel’s Com-
pactness Theorem by other results, e.g. by König’s Lemma, but I think
that the familiarity with Gödel’s Compactness Theorem is very useful
if one wants to do infinite combinatorics.

So let G = (V,E) a locally finite graph.
Consider the following first order language L: {cv : v ∈ V } is the set

of constant symbols, and RA and RB are unary relation symbols.
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Define the following formulas:
ψ: ∀x

(

RA(x) ↔ ¬RB(x)
)

,
for all v ∈ V write Fv = {F ⊂ E(v) : |F | ≥ d(v)/2} and put
ϕv,A: RA(cv) →

∨

F∈Fv

∧

x∈F RB(cx),
ϕv,B: RB(cv) →

∨

F∈Fv

∧

x∈F RA(cx).
Now define our theory T as follows: T = {ψ, ϕv,A, ϕv,B : v ∈ V }

Claim 1. Every T ′ ∈
[

T
]<ω

has a model.

Indeed, let W = {v : cv occurs in T ′}. Then G[W ] has an unfriendly
partition (A,B). Let M be the following model: the underlying set M
is W , cv is interpreted as v for v ∈ W , and RA is interpreted as A and
RB is interpreted as B. Then M |= T ′.

Using the Claim and Gödel’s Compactness Theorem we obtain that
T has a model M . Let A = {v ∈ V : M |= RA(cv)} and B = {v ∈ V :
M |= RB(cv)}.

Then (A,B) is a partition because ψ holds in M . Moreover if v ∈ A
then v has at least as many neighbor in b as in A because ϕv,A holds.

Hence (A,B) is an unfriendly partition of G. �

Shelah’s counterexample is uncountable which led to the following
reformulation of the refuted conjecture:
Unfriendly Partition Conjecture, Revised: Every countable graph
has an unfriendly partition.

Let us remark that if G = (V,E) is countable and every v ∈ V has
infinite degree then G clearly has an unfriendly partition. We have seen
that G has an unfriendly partition if every vertex has finite degree. So
the hard case is the “mixed” countable case.

So far the revised unfriendly partition conjecture is completely open.

2.7. Splitting antichains. Given a poset P an element y ∈ P is a
cutting point iff ∃x, z ∈ P such that x <P y <P z and [x, z] =
[x, y] ∪ [y, z]. P is cut-free if there is no cutting point in P .

A maximal antichain A ⊂ P splits iff A has a partition A = B ∪∗ C
such that P = B↑ ∪ C↓, i.e for each p ∈ P we have either b ≤ p for
some b ∈ B or p ≤ c for some c ∈ C.

Finite Theorem 7 (Ahlswede, R ; Erdős, P. L.; Graham, Niall, [3]).
In a finite cut-free poset every finite maximal antichain splits.

The plain generalization fails for infinite posets. In fact, in [12] it was
proved that if P is an infinite cut-free poset whose order structure is
“rich enough” then there are both splitting and non-splitting maximal
antichains in P .
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As usual, the method of a successful generalization for infinite posets
was to keep finite certain key structures as follows.

An antichain A in a poset P is locally finite iff every element of P is
comparable to only finitely many elements of the antichain.

Infinite Theorem 7 (P. L. Erdős, –, [12]). In a cut-free poset every
locally finite maximal antichain splits.

The interesting point in this generalization is that we do not know
how to prove this infinite theorem from the finite one just using Gödel
Compactness Theorem! The problem is that if P is cut-free and Q ⊂ P
is finite then there is no way to find a cut-free finite Q′ ⊃ Q.

In the next section we will see a problem when we have theorems for
the uncountable infinite case but the finite case is harder than even the
countable infinite.

2.8. Chromatic number of product of graphs.

Hedetniemi’s Conjecture: If G and H are finite graphs then χ(G×
H) = min{χ(G), χ(M)}.

There are only partial results, e.g.

Finite Theorem 8 (El-Sahar, Sauer). If min{χ(G), χ(H)} ≥ 4 then
χ(G×H) ≥ 4.

Consider first the countable infinite case.

Infinite Theorem 8.1 (Hajnal). If χ(G), χ(H) ≥ ω then χ(G×H) ≥
ω.

On the other hand, there are counterexamples for uncountable car-
dinalities:

Infinite Theorem 8.2 (Hajnal, [16]). There are two ω1-chromatic
graphs G and H on ω1 such that χ(G×H) = ω.

The construction is based on the existence of disjoint stationary sub-
sets of ω1.

Infinite Theorem 8.3 (–, [19]). It is consistent with GCH that there
are two ω2-chromatic graphs G and H on ω2 s. t. χ(G×H) = ω.

The proof is a forcing construction.
However, there are open problems even for the uncountable cases,

e.g.:

Problem 2.4. Is it consistent with GCH that there are two ω3-chromatic
graphs G and H on ω3 s. t. χ(G×H) = ω?
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3. Classical theorems

In this section we investigate the relation between four classical the-
orems and their infinite versions.

3.1. Euler trails and Euler circles. In a graph G an Euler circuit
is a circuit containing all the edges of G. An Euler trail is a trail
containing all the edges of G.

Finite Theorem 9. (1) A finite connected graph has an Euler-circle
iff the graph is Eulerian, i.e. each vertex has even degree.
(2) A finite connected graph has an Euler-trail with end-vertices v 6= w
iff v and w are the only vertices of odd degree.

First one should find an infinite version of the notion of Euler trails
(Euler circuits).

A one-way infinite Euler trail T in a graph G is a one-way infinite
sequence T = (x0, x1 . . . , ) of vertices such that E(T ) = {xixi+1 : i ∈
N} is a 1–1 enumeration of the edges of G. x0 is the end-vertex of
the trail. A two-way infinite Euler trail T in a graph G is a two-way
infinite sequence T = (. . . , x−2, x−1, x0, x1 . . . , ) of vertices such that
{xixi+1 : i ∈ Z} is a 1–1 enumeration of the edges of G.

Problem 3.1 (König). When does a countable infinite graph G contain
a one/two-way infinite Euler trail?

The plain generalizations of the finite theorems fail for infinite graphs
(see Figure 1 below): in the first graph G each vertex has even degree,
but there is no two-way infinite Euler trail, in the second graph H there
is exactly one vertex with odd degree but there is no one-way infinite
Euler trail.

G

C4

G2

H

Kℵ0 Kℵ0

Figure 1

Infinite Theorem 9 (Erdős, P.; Grünwald, T.; Vázsonyi, E., 1938, [9]
and [10]). A graph G = (V,E) has a one-way infinite Euler trail with
end-vertex v ∈ V iff (o1)-(o4) below hold:

(o1) G is connected, |E(G)| = ℵ0,
(o2) dG(v) is odd or infinite,
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(o3) dG(v′) is even or infinite for each v′ ∈ V (G) \ {v},
(o4) G \E ′ has one infinite component for each finite E ′ ⊂ E.

To simplify our notation we will write owit(G, v) to mean that (o1)-
(o4) above hold for G and v.

If G = (V,E) is a graph and T is a trail in G define the graph G\T =
(V ′, E ′) as follows: E ′ = E \ E(T ) and V ′ = {v ∈ V : dE\E(T )(v) > 0},
i.e. remove the isolated vertices from the graph (V,E \ E(T )).

Proof. The assumptions (o1)–(o4) are clearly necessary.
Assume now that owit(G, v) holds. The key step of the proof is the

following lemma:

Lemma 3.2. Assume that G is a graph, v ∈ V (G), e ∈ E(G) and
owit(G, v) holds. Then there is a trail T with endpoints v and v′ such
that e ∈ E(T ) and owit(G \ T, v′) holds.

Proof. Since G is connected, there is an endpoint v∗ of e and a trail T ′

in G from v to v∗ such that e is the last edge of T .
Let G∗ = G\T ′. In T ′ two vertices, v and v∗ have odd degree. Hence,

by (o2) and (o3), in G∗ only one vertex, v∗ may have odd degree, and
the degree of v∗ in G∗ is either infinite or odd. So the component
G′ of v∗ in G∗ should be infinite because a finite component can not
contain exactly one vertex with odd degree. By (o4), all the other
components of G∗ are finite. Moreover, all these finite components
should be Eulerian because in G∗ only one vertex, v∗ may have odd
degree. Let H be the union of T and the finite components of G∗. This
is a connected finite graph in which exactly two vertices, v and v∗ have
odd degrees. Hence in H there is an Euler-trail T from v to v∗. Then
G\T = G′. We show that owit(G\T, v∗) holds. (o1) holds because G′ is
a component ofG∗ so it is connected. Since dG(x) = dG\T (x)+dT (x) for
each x ∈ V , and dT (x) is odd iff x = v or x = v∗, an easy computation
gives that (o2) and (o3) also hold for G \T . If F is a finite set of edges
of G \T then (G \T ) \F = G \ (E(T )∪F ) so, applying (o4) for G, we
obtain that (G \ T ) \ F has only one infinite component. Hence (o4)
also holds for G \ T . Hence T satisfies the requirements. �

Using this lemma an easy inductive construction gives a one-way
infinite Euler trail in G because G has just countably many edges. �

Infinite Theorem 10 (Erdős, P; Grünwald, T.; Vázsonyi, E., 1938,
[9] and [10]). A graph G has a two-way infinite Euler trail iff (t1)–(t4)
below hold:

(t1) G is connected, |E(G)| = ℵ0,
(t2) dG(v) is even or infinite for each v′ ∈ V (G)
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(t3) G\E ′ has at most two infinite components for each finite E ′ ⊂ E.
(t4) G \ E ′ has one infinite component for a finite E ′ ⊂ E provided

that every degree is even in (V,E ′).

We will write twit(G) to mean that the stipulations (t1)-(t4) above
hold for G.

The third graph G2 on figure 1 shows that we really need to assume
(t4): G2 satisfies (t1)-(t3) but it does not have a two-way infinite Euler
trail.

Proof. The assumptions (t1)–(t3) are clearly necessary. To check (t4)
assume that E ′ ⊂ E is finite such that every degree is even in (V,E ′).
Let T = (. . . , x−2, x−1, x0, x1 . . . , ) be a two-way infinite Euler line in
G. Fix n ∈ N such that E ′ ⊂ En, where En = {xixi+i : −n ≤ i < n}.
Consider the graph Gn = (Vn, En \ E ′) where Vn = {xi : −n ≤ i ≤ n}.
Then in Gn only the vertices x−n and xn have odd degree, hence they
are in the same connected component. Hence in G \ E ′ the connected
component of x−n and xn contains V \ Vn, and so there is only one
infinite component.

Assume now that twit(G) holds. We should distinguish two cases.
Case 1:

(∗) For each finite trail T the graph G \ T has one infinite component.

Lemma 3.3. Let G be a graph, v ∈ V (G) and e ∈ E(G). If twit(G)
and (∗) hold then there is a circuit T in G such that v ∈ V (T ), e ∈ E(T )
and twit(G \ T ).

Proof of the Lemma. Since G is connected, there is a trail T ′ in G from
v to some endpoint v′ of e such that e is the last edge of that trail.

Then in G \ T ′ at most two vertices, v and v′ may have odd degree.
The vertices v and v′ can not be in different connected component of
G \ T ′. Otherwise one of that components would be finite and would
contain exactly one vertex with odd degree, which is impossible. So
there is a path S from v to v′ in G \ T ′. Then T ′′ = S ∪ T ′ is a
circuit. Let G′ be the infinite component of G \ T ′′. Clearly all the
finite components of G \ T ′′ should be Eulerian. Let H is the union of
T ′′ and the finite components of G \ T ′′. This is a connected Eulerian
finite graph. Let T be an Euler circle of H . Since G \ T ′ had exactly
one infinite component, the graph G\T is just that component. Hence
twit(G\T ) holds. Hence T satisfies the requirements of the lemma. �

By the lemma above there are a sequence {vi : i < ω} of vertices
and edge-disjoint circuits {Ti : i < ω} in G such that

(a) xi, xi+1 ∈ V (Ti) for i < ω,
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(b) E(G) =
⋃

{E(Ti) : i < ω}.

Using these circuits we can easily put together a two-way infinite
Euler trail.
Case 2:

(∗) There is a finite trail T such that the graph G \ T has two infinite
components.

Let v1 and v2 be the endpoints of T . These vertices should be in
different components of G \ T otherwise there were a circuit T ′ ⊃ T
containing v1 and v2 and so G\T ′ would have two infinite components,
which contradicts (t4).

Let G1 and G2 be the components of v1 and v2, respectively, in G\T .
G1 and G2 should be infinite since a finite graph can not contain exactly
one vertex with odd degree.

Hence all the finite components of G \ T should be Eulerian. Let H
be the union of T and these finite components. This is a connected
finite graph in which exactly two vertices, v and v′ have odd degree.
Hence in H there is an Euler-trail T ′ from v1 to v2. Then the graphs
G1, G2 and T ′ are edge disjoint,

(A) E(G) = E(G1) ∪ E(G2) ∪ E(T ′),
(B) owit(G1, v1) and owit(G2, v2) hold.

Hence in Gi there is a one way infinite Euler trail Ti with end-vertex
vi, for i = 1, 2. Thus the concatenation of T1, T

′ and T2 is a two-way
infinite Euler trail in G. �

3.2. Covering and matching. Given a graph G = (V,E) a set of
edges is independent if no two elements are adjacent. If an edge e is
incident with a vertex x we say that x covers e and e covers x. Given
a graph G = (V,E) a set A ⊂ V is matchable into B ⊂ V iff there is
a set F of independent edges between A and B such that F covers A,
i.e. every a ∈ A is covered by some e ∈ F .

If G is bipartite with bipartition V = W ∪∗ M we will write G =
(M,W,E).

Hall’s Theorem. In a finite bipartite graph G = (M,W,E) the set M
is matchable into W iff |ΓG(A)| ≥ |A| for each A ⊂M .

König’s Theorem. In a finite bipartite graph G = (M,W,E)

max{|F | : F ⊂ E is independent }

= min{|C| : C ⊂M ∪W and C covers E}.
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Menger’s Theorem. If G = (V,E) is a finite graph, and v and w are
non-adjacent vertices in G then

min{|X| : X ⊂ V separates v and w} =

max{|P| : P is a family of vertex-disjoint v-w-paths}.

The plain generalizations of König’s and Menger’s Theorems hold
for infinite graphs, but as Erdős observed these “generalizations” says
almost nothing about infinite graphs. Indeed, consider the infinite
version of König’s Theorem: if a maximal independent family F of
edges of G is infinite then let C be just the set of end-points of the
elements of F . Then C clearly covers all the edges by the maximality
of F and |C| = 2|F | = |F | because |F | was infinite.

However, (finite) König’s and Menger’s Theorems can be reformu-
lated in such a way that the plain infinite versions of the reformulated
theorems are deep results.

König’s Theorem, reformulated. In a finite bipartite graph G =
(M,W,E) there is an independent set F ⊂ E and a set C ⊂ M ∪W
which covers E such that |e ∩ C| = 1 for each e ∈ F .

In 1984 Aharoni proved the infinite version of this reformulation:

Infinite König’s Theorem (R. Aharoni). Every bipartite graph G =
(M,W,E) has an independent set F of edges and a set C ⊂ M ∪W
which covers E such that |e ∩ C| = 1 for each e ∈ F .

Menger’s Theorem, reformulated. If G = (V,E) is a finite graph,
and v and w are non-adjacent vertices in G, then there is a v-w-
separating set X and there is a family P of vertex-disjoint v-w-paths
such that |P ∩X| = 1 for each P ∈ P.

Based on this reformulation Erdős formulated the Erdős-Menger con-
jecture, which was proved by Aharoni and Berger in 2005:

Infinite Menger’s Theorem (Aharoni, Berger, [1]). If G = (V,E) is
an arbitrary graph, and v and w are non-adjacent vertices in G, then
there is a v-w-separating set X and there is a family P of vertex-disjoint
v-w-paths such that |P ∩X| = 1 for each P ∈ P.

There is a different problem with the plain generalization of Hall’s
Theorem: namely it fails! Indeed, consider the following “playboy”
example: M = {mi : i ≥ 0} W = {wi : i ≥ 1} E = {(mi, wi) : i ≥
1} ∪ {(m0, wi) : i ≥ 1)}, and let G = (M,W,E). Then |ΓG(A)| ≥ |A|
for each A ⊂M , but M is not matchable into W . The problem is that
A = {mi : i ≥ 1} =( M has the property that every matching of A
covers W .



INFINITE COMBINATORICS 15

But as it turned out, this is the only possible problem:

Infinite Hall’s Theorem (Aharoni, 1984). If in a bipartite graph
G = (M,W,E) the set M does not have a matching then there is
X ⊂M such that X is unmatchable but ΓG(X) is matchable into X.

It is worth to note that for finite graphs Aharoni’s theorem above is
just the classical Hall’s Theorem. Indeed, if ΓG(X) is matchable into
X then |ΓG(X)| ≤ |X|. So since the matching is not a bijection and
|X| is finite we have |ΓG(X)| < |X|.

4. Multi-way cuts

In this section we will see that some plain generalization holds, the
countable case is not harder than the finite. However, the uncountable
case will demand a model-theoretic method.

Given a graph G = (V,E) and S ⊂ V let G − S = G[V \ S], i.e.
the induced subgraph on V \ S. An S-colouring of G is a function
f : V −→ S with f ↾ S = idS, i.e. f is the identity on S. The value
eG(f) of an S-colouring f is the number of bi-chromatic edges, i.e. the
number of edges whose endpoints have different colours.

If G is finite, let

πG,S = min{eG(f) : f is an S-colouring.}

Multiway Cut Problem . Given a finite graph G = (V,E) and a
nonempty set S ⊂ V determine πG,S!

This problem is NP-complete, [6]. However, there are some lower
bounds for πG,S.

The lower bound νG,S was introduced and studied in [14] and in [11].

Let ~G be a directed graph obtained by an orientation of the edges
of G. For each s ∈ S let Ps be a family of edge-disjoint directed paths
from s into some element of S \ {s} in ~G. Put P = ∪{Ps : s ∈ S}. Let
f be an arbitrary S-colouring. Then

(•) there is an injection e ~G from P into the set of f -bi-chromatic edges.

Indeed, for each P ∈ Ps ⊂ P let e ~G(P ) be the first f -bi-chromatic edge
of the path P .

Hence, if we define νG,S as the maximum of |P| where the maximum

is taken over all orientations ~G of G, then we have

νG,S ≤ πG,S.

Finite Theorem 10 (Erdős, P. L,; Frank, A; Székely, L [11]). If G =
(V,E) is a finite graph and S ⊂ V has at least two elements such that
G− S is a tree then νG,S = πG,S.
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If you want to find an infinite version of this theorem you can easily
recognize that cardinality is “too coarse” invariant, see just the argu-
ment after the first infinite version of König’s Theorem.

However, (•) holds even for an infinite graphs, and the finite theorem
can be reformulated as follows: if G = (V,E) is a finite graph and
S ⊂ V has at least two elements such that G− S is a tree then

- there is an orientation ~G of G, and
- there is a family P = ∪{Ps : s ∈ S}, where Ps is a family of edge-

disjoint directed paths from s into some element of S \ {s} in ~G,

such that e ~G (as it was defined above) is a bijection between P and the
f -bi-chromatic edges.

This is the version of the theorem which is meaningful and non-trivial
even for infinite graphs.

Infinite Theorem 11. Assume that G = (V,E) is an infinite graph
and S ⊂ V is a finite subset having at least two elements such that
G− S is a tree which does not contain infinite paths. Then

- there is an orientation ~G of G, and
- there is a family P = ∪{Ps; s ∈ S}, where Ps is a family of edge-

disjoint directed paths from s into some element of S \ {s} in ~G,

such that e ~G is a bijection between P and the f -bi-chromatic edges.

Proof. The proof tries to imitate the arguments from [11].
Consider the tree T = G− S.
We can assume that if ws is an edge for some s ∈ S and w ∈ T then

w is a leaf of T and dG(w) = 2 because we can subdivide the edge ws
by a new node.

We can assume that every leaf of T is connected to some element of
S.

Fix a vertex r as the root of T , and let ~T be the rooted tree order
of T . Since T does not contain infinite paths, we have that ~T ∗, the
inverse order of ~T is well-founded. Hence we can define a function
L : T −→ P (S) \ {∅} by the following well-founded induction.

Assume that L(w′) is defined for w <~T w
′. If w is a leaf, let L(w) =

{s ∈ S : (s, w) ∈ E}. By our assumption, we have |L(w)| = 1.
Assume that w is not a leaf. For each s ∈ S let

K(w, s) = {w′ : (w,w′) ∈ E,w <~T w
′, s ∈ L(w′)},

then put
κw = max{|K(w, s)| : s ∈ S}

and
L(w) = {s ∈ S : |K(w, s)| = κw}.



INFINITE COMBINATORICS 17

Since S is finite, κw is always defined and so L(w) 6= ∅.
Since a rooted tree order is always well-founded we can define the

S-colouring f of G as follows.
For the root r ∈ T let f(r) ∈ L(r) be arbitrary. Assume that f(w′)

is defined for the immediate ~T -predecessor w′ of w.
If f(w′) ∈ L(w) then let f(w) = f(w′). If f(w′) /∈ L(w) then let

f(w) ∈ L(w) be arbitrary.

Next we determine the orientation of the edges of G in ~G. We will
say that an edge uv in ~G is an up-edge iff u <~T v, it is a down-edge
otherwise.

The bi-chromatic edges are defined to be down-edges. Now for
each bi-chromatic edge uw, w <~T u, fix an f(u)-monochromatic, <T -
increasing path Qu from u to f(u) in G. Let the edges of Qu be all

down edges. So Qu is a directed path from f(u) into u in ~G and the
edges in Qu are all f(u)-monochromatic. All the other edges of T are
defined to be up-edges.

If us is an edge in G for some s ∈ S and u ∈ T then orient us such
that in ~G(u) = out ~G(u) = 1.

In this way we obtained an orientation ~G of G. Let us denote the
families of up-edges and the down-edges by ~Eup and ~Edown, respectively.

For each s ∈ S let

Fs = {uw ∈ ~G : w <~T u, s = f(u) 6= f(w)}.

and

As = {u ∈ V : ∃w ∈ V uw ∈ Fs}.

Then Qs = {Qu : u ∈ As} is a family of edge disjoint directed paths

in ~G. It is enough to find a family Rs = {Ru : u ∈ As} of directed

paths in ~G such that

(A) Ru is a directed path from u to some element of S \ {s} and the
first edge in Ru is just uw ∈ Fs,

(B) the paths Rs ∪ Qs are pairwise edge-disjoint.

Indeed, let Ps = {Qu
⌢Ru} for s ∈ S. Then e ~G

(Qu
⌢Ru) = uw where

w is the <~T -predecessor of u. Hence e′′~GPs = Fs and so e′′~GP is just the
family of bi-chromatic edges.

Let Vs = As ∪ {v ∈ T : f(v) 6= s},

Es = ({yw ∈ ~Eup : s /∈ L(w)} ∪ {yw ∈ ~Edown : s ∈ L(y) ∧ f(w) 6= s}),

and

Bs = {y ∈ T : yt ∈ ~E for some t ∈ S \ {s}}.
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Let ~Hs = (Vs, Es). We want to use Theorem 4.1 below for ~H, As

and Bs to get the desired family Rs of directed paths.

Theorem 4.1. Assume that G = (V,E) is a directed graph which does
not contain directed infinite walks, and A and B are disjoint vertex sets
such that

(1) in(a) = 0 and out(a) = 1 for each a ∈ A,
(2) in(b) = 1 and out(b) = 0 for each b ∈ B,
(3) in(x) ≤ out(x) for each x ∈ V \ (A ∪ B).

Then there is a family R of edge-disjoint paths such that

(4) {first(p) : p ∈ R} = A,
(5) {last(p) : p ∈ R} ⊂ B.

We postpone the proof of this theorem.
It is clear that (1) and (2) hold for ~Hs, As and Bs. To check (3) let

u ∈ Vs \ (As ∪Bs).
If f(u) = s then in ~Hs

(u) = 0.
Assume that f(u) = t 6= s.
Let

C = K(u, s) \K(u, t) and D = K(u, t) \K(u, s).

Since f(u) ∈ L(u) we have

(∗) |D| ≥ |C| and |C| = |D| implies s ∈ L(u).

Let x be the predecessor of u in ~T provided u 6= r.
Case 1: u = r or xu ∈ ~G, i.e. xu is an up-edge.

Then In ~Hs

(u) \ {x} = C. Indeed, if y ∈ K(u, t) then f(y) = t. So
yu can not be an edge from some path Qz for some z ∈ At because xu
is an up-edge.

Hence In ~Hs

(u) ≤ |C| + 1 and In ~Hs

(u) = |C| if u = r.
Moreover Out ~Hs

(u) ⊃ D. Hence Out ~Hs

(u) ≥ |D|.
If u = r or |C| < |D| then we are done. If u 6= r and |C| = |D| then

s ∈ L(u) and so xu /∈ Es. Thus in ~Hs

(u) ≤ |C| ≤ |D| ≤ out ~Hs

(u).

Case 2: ux ∈ ~G, i.e. ux is a down-edge.
Let us start with an observation:

(∗) If |C| = |D| then ux ∈ Es.

Indeed, if |C| = |D| then s ∈ L(u). Now f(x) 6= s because f(u) 6= s
and s ∈ L(u). Hence ux ∈ Es.

Now for some u <~T z we have that zu is a down-edge from some
path Q ∈ Qt.

If z ∈ D then s /∈ L(z) hence zu /∈ Es. Hence In ~Hs

(u) = C. Moreover
D \ {z} ⊃ Out ~Hs

(u).
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If |D| > |C| then Out ~Hs

(u) ≥ |D| − 1 ≥ |C| ≥ In ~Hs

(u).
If |D| = |C| then ux ∈ Es by (∗) and so Out ~Hs

(u) ≥ (|D| − 1) + 1 =
|D| ≥ |C| ≥ In ~Hs

(u).
Finally, if z /∈ D then In ~Hs

(u) ≤ |C| + 1. If |D| ≥ |C| + 1 then
Out ~Hs

(u) ≥ |D| ≥ |C| + 1 ≥ In ~Hs

(u).
If |D| = |C| then ux ∈ Es by (∗) and so Out ~Hs

(u) ≥ |D| + 1 ≥
|C| + 1 ≥ In ~Hs

(u).
Hence 4.1(3) also holds, so we apply theorem 4.1 to get a family

R′
s = {R′

u : u ∈ As} of edge-disjoint paths from As into Bs. The only
problem is that the end-points of these paths are leaves of T instead of
elements of S. This problem is cured in the next step.

Let Ru = {R′
u

⌢f(last(Ru)) : u ∈ U}. Then Ru satisfies our require-
ments. �

Proof of Theorem 4.1. We prove the theorem by transfinite induction
on |A|.

Assume first that A is countable, A = {an : n < ω}.
Let p′ be a maximal directed walk from a0. Since G does not contain

infinite walks it follows that p′ is finite. Conditions (1)–(3) imply b0 =
last(p′) ∈ B. Thus there is a directed path p0 ⊂ p′ with first(p0) = a0

and last(p0) = b0.
Let V ′ = V \{a0, b0}, A

′ = A\{a0}, B
′ = B\{b0} and E ′ = E\E(p0).

Then the directed graph G′ = (V ′, E ′) and the disjoint vertex sets A′

and B′ satisfy (1)-(3), so we can repeat the procedure above to find a
directed path p1 in G′ with first(p1) = a1 and last(p1) ∈ B′.

Repeating this procedure we obtain a family R = {pn : n ∈ ω} of
edge-disjoint paths with first(pn) = an. Thus R satisfies the require-
ments.

Assume now that |A| = κ > ω. The natural idea is just to fix an
enumeration {aξ : ξ < κ} of A and try to simulate the procedure above.

However, in this case we can stuck even in the case κ = ω1.
Consider the following example: A = {aξ : ξ < ω1}, B = {bξ : ξ <

ω1}, V = A ∪ B ∪ {v}, and

E = {(an, v), (v, bn) : n < ω} ∪ {(aω, v)} ∪ {(aξ, bξ) : ω + 1 ≤ ξ < ω1}

If for each n < ω in the nth step we pick the path pn = anvbn then
in the ωth step there is no edge-disjoint path from aω into B.

So instead of the direct approach we use some induction.
Let |A| = κ > ω and assume that the theorem holds for all triples

(G′, A′, B′) with |A′| < κ.
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We will partition A into some pieces and will use the inductive hy-
pothesis inside the pieces. However we need some tool to find the right
partition.

Let θ be a large regular cardinal, typically θ = (2|G|)+ is enough.
The transitive closure, TC(x), of a set x is the set

x ∪ (∪(x) ∪ (∪ ∪ x) . . . ,

i.e. the smallest transitive set containing x as a subset.
LetH(θ) be the family of sets whose transitive closure has cardinality

less than θ. Put H(θ) = 〈H(θ),∈, ⊳〉, where ⊳ is a well-ordering ofH(θ).

Lemma 4.2. If G,A,B ∈ M ≺ N ≺ H(θ), M ∈ N , |M | ⊂ M ,
|N | ⊂ N and |N | < κ then there is a family R of edge disjoint paths
such that

(i) {first(p) : p ∈ R} = A ∩ (N \M),
(ii) {last(p) : p ∈ R} ⊂ B ∩ (N \M),
(iii) E(p) ⊂ N \M for p ∈ R.

Proof of the lemma. Let

V ′ = (V ∩ (N \M)) ∪ {w ∈ (V ∩M) : ∃v ∈ V ∩ (N \M) vw ∈ E},

E ′ = E ∩ (N \M) and G′ = (V ′, E ′)

Claim 4.2.1. The graph G′ and the vertex sets A ∩ (N \ M) and
B ∩ (N \M) satisfy (1)-(3).

Proof of the Claim. If a ∈ A ∩ (N \M) then there is exactly one edge
av ∈ E for some v ∈ V . Then e ∈ N but e /∈M because a is definable
from e. Hence (1) holds. Similarly, we can obtain (2).

To check (3) let x ∈ V ′ \ (A ∪ B).
Assume first that x ∈ N \M . If outG(x) > |N | then outG′(x) = |N |

because N |=“|OutG(x) \ (OutG(x)∩M)| = outG(x).” Since inG′(x) ≤
|N ] we have (3).

If outG(x) ≤ |N | then inG(x) ≤ |N | and so OutG(x) ∪ InG(x) ⊂ N .
But xy /∈M for y ∈ OutG(x)∪ InG(x) because xy ∈M implies x ∈ M .
Hence OutG′(x) = OutG(x) and InG′(x) ⊆ InG(x) and so (3) holds.

Assume finally that x ∈ V ′ ∩M . Then InG(x) 6⊂M and so inG(x) >
|M |. If outG(x) > |N | then outG′(x) = |N | and so inG′(x) ≤ |N | =
outG′(x). If outG(x) ≤ |N | then OutG(x) ⊂ N . Since |M | < inG(x) ≤
outG(x) ≤ |N | we have outG′(x) = outG(x) ≥ inG(x) ≥ inG′(x).

�

Since |A∩(N \M)| ≤ |N ] < κ we can apply the inductive hypothesis
to find a family R of edge disjoint directed G′-paths satisfying (4) and
(5), i.e. (i) and (ii) hold for R. But the elements of R are G′-paths, so
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E(p) ⊂ E ∩ (N ∩M) and so (iii) also holds. This completes the proof
of Lemma 4.2. �

Let 〈Mα : α < κ〉 be an increasing continuous chain of elementary
submodels of 〈H(θ),∈〉, i.e.,

(1) Mα is a elementary submodel of H(θ) for α < κ
(2) 〈Mβ : β ≤ α〉 ∈Mα+1 for α < κ,
(3) Mα =

⋃

{Mβ : β < α} for limit α,

such that α ⊂ Mα, |Mα| = α + ω and G,A,B ∈M0.
For each α < κ apply the Lemma above for M = Nα and N = Nα+1

to obtain a family Rα of edge-disjoint paths such that

(i) {first(p) : p ∈ Rα} = A ∩ (Nα+1 \Nα),
(ii) {last(p) : p ∈ Rα} ⊂ B ∩ (Nα+1 \Nα),
(iii) E(p) ⊂ Nα+1 \Nα for p ∈ R.

Then R = ∪{Rα : α < κ} satisfies the requirements. (4) is clear
because because A = ∪{A ∩ (Nα+1 \ Nα) : α < κ} by the continuity.
(5) is trivial. Finally the elements of R are edge-disjoint because if
p ∈ Rα and q ∈ Rβ for some α < β < κ then E(p) ⊂ Nα+1 ⊂ Nβ and
E(q) ∩Nβ = ∅. �
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Paul Erdős, 373–384, Cambridge Univ. Press, Cambridge, 1990.
[19] Soukup, L. On chromatic number of product of graphs. Comment. Math. Univ.

Carolin. 29 (1988), no. 1, 1–12.

Alfréd Rényi Institute of Mathematics

E-mail address : soukup@renyi.hu


