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ISTVÁN JUHÁSZ, PIOTR KOSZMIDER, AND LAJOS SOUKUP

Abstract. We force a first countable, normal, locally compact,
initially ω1-compact but non-compact space X of size ω2. The one-
point compactification of X is a non-first countable compactum
without any (non-trivial) converging ω1-sequence.

1. Introduction

A topological space is initially κ-compact if any open cover of size
≤ κ has a finite subcover or, equivalently, any subset of size ≤ κ has
a complete accumulation point. Under CH an initially ω1-compact T3

space of countable tightness is compact, this was observed by E. van
Douwen and, independently, A. Dow [4]. They both raised the natural
question whether this is actually provable in ZFC. In [2] D. Fremlin
and P. Nyikos proved this implication under PFA and in [5] this was
established in numerous other models as well.

However, in [9] M. Rabus gave a negative answer to the van Douwen–
Dow question. He generalized the method of J. Baumgartner and S.
Shelah, which had been used in [3] to force a thin very tall superatomic
Boolean algebra, and constructed by forcing a Boolean algebra B such
that the Stone space St(B) minus a suitable point is a counterexample
of size ω2 to the van Douwen–Dow question. In both forcings the use
of a so-called ∆-function plays an essential role.

In [6] we directly forced a topology τf on ω2 that yields a locally
compact and normal counterexample from any ∆-function f , provided
that CH holds in the ground model. Moreover, it was also shown in [6]
that, with some extra work and extra set-theoretic assumptions, the
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counterexample can be made not just countably tight but even Frèchet-
Urysohn. In this paper we get a further improvement by forcing a
first countable, normal, locally compact, initially ω1-compact but non-
compact space X.

Actually, Alan Dow conjectured that applying the method of [8]
(that ”turns” a compact space into a first countable one) to the space
of Rabus in [9] yields an ω1-compact but non-compact first countable
space. How one can carry out such a construction was outlined by
the second author in the preprint [7]. However, [7] only sketches some
arguments as the language adopted there, which follows that of [9], does
not seem to allow direct combinatorial control over the space which is
forced. This explains why the second author hesitated to publish [7].

One missing element of [7] was a language similar to that of [6]
which allows working with the points of the forced space in a direct
combinatorial way. In this paper we combine the approach of [6] with
the ideas of [7] to obtain directly an ω1-compact but non-compact first
countable space. Consequently, our proofs follow much more closely
the arguments of [6] than those of [9] or their analogues in [7].

As before, we again use a ∆-function to make our forcing CCC but we
need both CH and a ∆-function with some extra properties to obtain
first countability.

It is immediate from the countable compactness of X that its one-
point compactification X∗ is not first countable. In fact, one can show
that the character of the point at infinity ∗ in X∗ is ω2. As X is initially
ω1-compact, this means that every (transfinite) sequence converging
from X to ∗ must be of type cofinal with ω2. Since X is first countable,
this trivially implies that there is no non-trivial converging sequence
of type ω1 in X∗. In other words: the convergence spectrum of the
compactum X∗ omits ω1. As far as we know, this is the first and only
(consistent) example of this sort.

2. A general construction

First we introduce a general method to construct locally compact,
zero-dimensional spaces. This generalizes the method for the construc-
tion of locally compact right-separated (i.e. scattered) spaces that was
described in [6].

Definition 2.1. Let ϑ be an ordinal, X be a 0-dimensional space, and
fix a clopen subbase (i.e. a subbase consisting of clopen sets) S of X
such that X ∈ S and

(1) S ∈ S \ {X} implies (X \ S) ∈ S.
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Let K : ϑ× S −→ P(ϑ) be a function satisfying

(2) K(δ, S) ⊂ K(δ,X) ⊂ δ,

for any δ ∈ ϑ and S ∈ S, and set

(3) U(δ, S) = ({δ} × S) ∪ (K(δ, S)×X).

We shall denote by τK the topology on ϑ×X generated by the family

(4) UK = {U(δ, S) , (ϑ×X) \ U(δ, S) : δ < ϑ, S ∈ S}
as a subbase. Write XK = 〈ϑ×X, τK〉.

If a is a set of ordinals and s is an arbitrary set we write

(5)
[
a
]2 ⊗ s = {〈ζ, ξ, σ〉 : ζ, ξ ∈ a, ζ < ξ, σ ∈ s}.

Theorem 2.2. (1) Assume that ϑ, X, S and K are as in definition
2.1 above. Then the space XK = 〈ϑ×X, τK〉 is 0-dimensional and
Hausdorff and the subspace {α} × X is homeomorphic to X for each
α < ϑ.
(2) Assume, in addition, that X is compact and

(K1) if S ∩ S ′ = ∅ then K(δ, S) ∩K(δ, S ′) = ∅,
(K2) if X = ∪S ′ for some S ′ ∈ [S]<ω

then

K(δ,X) = ∪{K(δ, S) : S ∈ S ′},
(K3) there is a function i with dom(i) =

[
ϑ
]2 ⊗ S such that for each

〈δ, δ′, S〉 ∈ [
ϑ
]2 ⊗ S we have

(i1) i(δ, δ′, S) ∈ [
δ
]<ω

and
(i2) K(δ,X) ∗K(δ′, S) ⊂ ∪{K(ν, X) : ν ∈ i(δ, δ′, S)},

where

(6) K(δ,X) ∗K(δ′, S) =

{
K(δ,X) ∩K(δ′, S) if δ /∈ K(δ′, S),
K(δ,X) \K(δ′, S) if δ ∈ K(δ′, S).

Then all members of UK are compact, hence XK is locally compact.

Proof. (1). XK is 0-dimensional because it is generated by a clopen
subbase. To see that XK is Hausdorff, assume that 〈δ, x〉 6= 〈δ′, x′〉 ∈
ϑ × X, δ ≤ δ′. If δ < δ′ then U(δ,X) ⊂ (δ + 1) × X separates these
points. If δ = δ′ then there is S ∈ S with x ∈ S and x′ /∈ S, but then
U(δ, S) separates 〈δ, x〉 and 〈δ, x′〉. The trivial proof that {α} × X is
homeomorphic to X is left to the reader.

(2). We write U(δ) = U(δ,X) for δ < ϑ and U [F ] = ∪{U(α) : α ∈ F}
for F ⊂ ϑ. We shall prove, by induction on δ, that U(δ) is compact;
this clearly implies that every U(δ, S) is also compact. We note that
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(K1) and (K2) together imply U(δ,X\S) = U(δ)\U(δ, S) whenever
S ∈ S\{X}.

Assume now that U(α) is compact for each α < δ. To see that then
U(δ) is also compact, by Alexander’s subbase lemma, it suffices to show
that any cover of U(δ) by members of UK has a finite subcover.

So let

U(δ) ⊂
⋃
{Ui : i ∈ I} ∪

⋃
{Uj : j ∈ J} ,

where Ui = U(δi, Si) for i ∈ I and Uj = (ϑ×X) \ U(δj, Sj) for j ∈ J .

Case 1: δj < δ for some j ∈ J .
Then we have

U(δ) \ Uj = U(δ) \ ((ϑ×X) \ U(δj, Sj)) ⊂ U(δj, Sj) ⊂ U(δj),

hence U(δ) \ Uj is compact because U(δj) is by the inductive assump-
tion.

Case 2: ({δ} ×X) ∩ Uj 6= ∅ for some j ∈ J with δj > δ.

Then ({δ} ×X) ⊂ Uj and δ /∈ K(δj, Sj), so by (K3)

K(δ,X) ∩K(δj, Sj) = K(δ,X) ∗K(δj, Sj) ⊂ K[i(δ, δj, Sj)].

Consequently, we have

U(δ) \ Uj = U(δ) ∩ U(δj, Sj) ⊂ U [i(δ, δj, Sj)]

and U [i(δ, δj, Sj)] is compact by the inductive assumption.

Case 3: ({δ} ×X) ∩ Ui 6= ∅ for some i ∈ I with δi 6= δ.

In this case δ < δi and δ ∈ K(δi, Si), hence by (K3)

K(δ,X) \K(δi, Si) = K(δ,X) ∗K(δi, Si) ⊂ K[i(δ, δi, Si)].

Thus

U(δ) \ Ui = U(δ) \ U(δi, Si) ⊂ U [i(δ, δi, Si)]

and U [i(δ, δi, Si)] is compact by the inductive assumption.

Now, in all the three cases it is clear that {Uk : k ∈ I ∪ J} contains
a finite subcover of U(δ).

Case 4: If ({δ} ×X) ∩ Uk 6= ∅ then δk = δ for each k ∈ I ∪ J .

Since X is compact there are finite sets I ′ ∈ [
I
]<ω

and J ′ ∈ [
J
]<ω

such that δk = δ for each k ∈ I ′ ∪ J ′, moreover

X = ∪{Si : i ∈ I ′} ∪ ∪{X \ Sj : j ∈ J ′},
and then, by (K2),

K(δ,X) = ∪{K(δ, Si) : i ∈ I ′} ∪ ∪{K(δ,X \ Sj) : j ∈ J ′}.
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But these equalities clearly imply

U(δ) ⊂ ∪{Ui : i ∈ I ′} ∪ ∪{Uj : j ∈ J ′}.
¤

To describe a natural base of the space XK, we fix some more nota-
tion. For δ < ϑ, S ′ ∈ [S]<ω

and F ∈ [
δ
]<ω

we shall write

B(δ,S ′, F ) = ∩{U(δ, S) : S ∈ S ′} \ U [F ].

For a point x ∈ X we set S(x) = {S ∈ S : x ∈ S}, moreover we put

(7) B(δ, x) = {B(δ,S ′, F ) : S ′ ∈ [S(x)
]<ω

, F ∈ [
δ
]<ω}.

Lemma 2.3. Assume that ϑ, X, S and K are as in part (2) of the
previous theorem 2.2. Then for each δ < ϑ and x ∈ X the family
B(δ, x) forms a neighbourhood base of the point 〈δ, x〉 in XK.

Proof. Since B(δ, x) consists of compact neighbourhoods of the point
〈δ, x〉 and is closed under finite intersections, it suffices to show that
∩B(δ, x) = {〈δ, x〉}. To see this, consider any 〈δ′, x′〉 ∈ ϑ×X distinct
from 〈δ, x〉.

If δ′ > δ then 〈δ′x′〉 /∈ U(δ) = B(δ,X, ∅) ∈ B(δ, x). If δ′ < δ then
〈δ′, x′〉 /∈ U(δ)\U(δ′) = B(δ,X, {δ′}) ∈ B(δ, x). Finally, if δ′ = δ then
pick S ∈ S with x ∈ S and x′ /∈ S. Then

〈δ′, x′〉 /∈ U(δ, S) = B(δ, S, ∅) ∈ B(δ, x).

¤

As we already mentioned above, our construction of the locally com-
pact spaces XK generalizes the construction of locally compact right-
separated spaces given in [6]. In fact, the latter is the special case when
X is a singleton space (and S is the only possible subbase {X}). We
may actually say that in the space XK the compact open sets U(δ)
right separate the copies {δ} ×X of X rather than the points.

Actually, a locally compact, right separated, and initially ω1-compact
but non-compact space cannot be first countable. (Indeed, this is be-
cause the scattered height of such a space must exceed ω1.) So the
transition to a more complicated procedure is necessary if we want to
make our example first countable but keep it locally compact.

We now present a much more interesting example of our general
construction, where X will be the Cantor set C and S will be a natural
subbase of C. For technical reasons, we put C = 2N instead of 2ω,
where N = ω\{0}.
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The clopen subbase S of C is the one that determines the product
topology and is defined as follows. If n > 0 and ε < 2 then let [n, ε] =
{f ∈ C : f(n) = ε}. We then put

S = {[n, ε] : n > 0 , ε < 2} ∪ {C}.

Then S satisfies 2.1.(1), moreover if S ′ ⊂ S \ {C} covers C = 2N then
there is n ∈ N such that both [n, 0], [n, 1] ∈ S ′.

In order to apply our general scheme, we still need to fix an ordinal ϑ,
a function K : ϑ× S −→ P(ϑ) satisfying 2.1.(2), and another function

i with dom(i) =
[
ϑ
]2⊗S such that all the requirements of theorem 2.1

are satisfied. In our present particular case this may be achieved in a
slightly different form that turns out to be simpler and more convenient
for the purposes of our forthcoming forcing argument.

If h is a function and a ⊂ dom(h) we write h[a] = ∪{h(ξ) : ξ ∈ a}
(this piece of notation has been used before). If x and y are two non-
empty sets of ordinals with sup x < sup y then we let

x ∗ y =

{
x ∩ y if sup x /∈ y,
x \ y if sup x ∈ y.

Note that this operation ∗ is not symmetric, on the contrary, if x ∗ y is
defined then y ∗ x is not.

Definition 2.4. A pair of functions H : ϑ × ω −→ P(ϑ) and i :[
ϑ
]2 ⊗ ω −→ [

ϑ
]<ω

are said to be ϑ-suitable if the following three
conditions hold for all α, β ∈ ϑ and n ∈ ω:

(H1) α ∈ H(α, n) ⊂ H(α, 0) ⊂ α + 1,

(H2) i(α, β, n) ∈ [
α
]<ω

,
(H3) if α < β then H(α, 0) ∗H(β, n) ⊂ H[i(α, β, n)].

Concerning (H3) note that we have

max H(α, 0) = α < max H(β, n) = β,

hence H(α, 0) ∗H(β, n) is defined.

Given a ϑ-suitable pair (H, i) as above, let us define the functions

K : ϑ× S −→ P(ϑ) and i′ :
[
ϑ
]2 ⊗ S −→ [

ϑ
]<ω



FIRST COUNTABLE, INITIALLY ω1-COMPACT BUT NON-COMPACT 7

as follows:

K(α,C) = H(α, 0) ∩ α,(8)

K(α, [n, 1]) = H(α, n) ∩ α,(9)

K(α, [n, 0]) = H(α, 0) \H(α, n),(10)

i′(α, β,C) = i(α, β, 0),(11)

i′(α, β, [n, ε]) = i(α, β, 0) ∪ i(α, β, n).(12)

It is straightforward to check then that K and i′ satisfy all the require-
ments of theorem 2.2. Because of this, with some abuse of notation,
we shall denote the topology τK also by τH and the space 〈ϑ× C, τK〉
by XH .

For our subbasic compact open sets we have

(13) U(α) = U(α,C) = H(α, 0)× C,

and to simplify notation we write

(14) U(α, [n, ε]) = U(α, n, ε).

Using this terminology, we may now formulate lemma 2.3 for this
example in the following manner.

Lemma 2.5. If (H, i) is an ϑ-suitable pair then for every 〈α, x〉 ∈ ϑ×C
the compact open sets

B(α, x, n, F ) =
⋂
{U(α, j, x(j)) : 1 ≤ j ≤ n, } \ U [F ]

with n ∈ N and F ∈ [α]<ω form a neighbourhood base of the point 〈α, x〉
in the space XH .

What we are set out to do now is to force an ω2-suitable pair (H, i)
such that the space XH is as required. As mentioned, for this we need a
special kind of ∆-function and this will be discussed in the next section.

3. ∆-functions

Definition 3.1. Let f :
[
ω2

]2 −→ [
ω2

]≤ω
be a function with f({α, β}) ⊂

α ∩ β for {α, β} ∈ [
ω2

]2
. Actually, in what follows, we shall simply

write f(α, β) instead of f({α, β}) .
We say that two finite subsets x and y of ω2 are very good for f

provided that for τ, τ1, τ2 ∈ x ∩ y, α ∈ x \ y, β ∈ y \ x and γ ∈
(x \ y) ∪ (y \ x) we always have

∆1) τ < α, β =⇒ τ ∈ f(α, β),
∆2) τ < α =⇒ f(τ, β) ⊂ f(α, β),
∆3) τ < β =⇒ f(τ, α) ⊂ f(β, α),
∆4) γ, τ1 < τ2 =⇒ f(γ, τ1) ⊂ f(γ, τ2).
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∆5) τ1 < γ < τ2 =⇒ τ1 ∈ f(γ, τ2).

The sets x and y are said to be good for f iff ∆1)–∆3) hold.

We say that f :
[
ω2

]2 −→ [
ω2

]≤ω
with f(α, β) ⊂ α ∩ β is a strong

∆-function, or a ∆-function, respectively, if every uncountable family
of finite subsets of ω2 contains two sets x and y which are very good
for f , or good for f , respectively.

We will prove in Lemma 3.3 that it is consistent with CH that there
is a strong ∆-function.

In the proof of the countable compactness of our space we shall
need the following simple consequence of [6, Lemma 1.2] that yields an
additional property of ∆-functions provided that CH holds.

Lemma 3.2. Assume that CH holds, f is a ∆-function, and B ∈[
ω2

]ω
. Then for any finite collection {Ti : i < m} ⊂ [

ω2

]ω2 we may
select a strictly increasing sequence 〈γi : i < m〉 with γi ∈ Ti such that
B ⊂ f(γi, γj) whenever i < j < m .

Proof. Fix a family {cα : α < ω2} ⊂
[
ω2

]m
such that cα < cβ for α < β,

moreover cα = {γα
i : i < m} and γi

α ∈ Ti for all α < ω2 and i < m. By
[6, Lemma 1.2] there are m ordinals α0 < α1 < · · · < αm−1 < ω2 such
that

B ⊂
⋂
{f(ξ, η) : ξ ∈ cαi

, η ∈ cαj
, i < j < m}.

Clearly, then γi = γi
αi for i < m are as required. ¤

Now, we have come to the main result of this section.

Lemma 3.3. It is consistent with CH that there is a strong ∆-function.

Proof of Lemma 3.3. There are several natural ways of constructing
such a strong ∆-function f . One can do it by forcing, following and
modifying a bit the construction given in [3]. One can use Velleman’s
simplified morasses (see [11]) and put

f(α, β) = X ∩ α ∩ β

where X is an element of minimal rank of the morass that contains
both α and β.

In this paper we chose to follow Todorčevic̀’s approach that uses his
canonical coloring ρ : [ω2]

2 → ω1 obtained from a ¤ω1-sequence (see
[10, 7.3.2 and 7.4.8]). From this coloring ρ he defines f by

f(α, β) = {ξ < α : ρ(ξ, β) ≤ ρ(α, β)}
and proves that this f is a ∆-function in our terminology of 3.1 (see
[10, 7.4.9 and 7.4.10]). (We should warn the reader, however, that he
calls this a D-function instead of a ∆-function in [10].)
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He also establishes the following canonical inequalities for ρ (see [10,
7.3.7 and 7.3.8]):

(i) |{ξ < α : ρ(ξ, α) ≤ ν}| < ω1

(ii) ρ(α, γ) ≤ max{ρ(α, β), ρ(β, γ)}

(iii) ρ(α, β) ≤ max{ρ(α, γ), ρ(β, γ)}
for α < β < γ < ω2 and ν < ω1. We will now use these inequalities to
prove that this f is even a strong ∆-function.

Let A be an uncountable family of finite subsets of ω2. Note that it
is enough to find an uncountable A′ ⊆ A such that ∆4) and ∆5) of 3.1
hold for every two elements of A′, since then we may apply to A′ the
fact that f is a ∆-function to obtain two elements of A that are very
good for f .

We may assume w.l.o.g. that A forms a ∆-system with root ∆ ⊆ ω2.
Note that then the set

D = {ξ ∈ ω2 : ∃τ1, τ2, τ3 ∈ ∆, ξ < τ1, ρ(ξ, τ1) ≤ ρ(τ2, τ3)}
is countable by (i). Define A′ ⊆ A to be the set of all elements a ∈ A
which satisfy (a−∆) ∩D = ∅. The countability of D implies that A′

is uncountable, moreover we have

(1) ρ(γ, τ1) > ρ(τ2, τ3)

for all τ1, τ2, τ3 ∈ ∆ and γ ∈ a−∆ with a ∈ A′ and γ < τ1.
Now we prove that both ∆4) and ∆5) of 3.1 hold for every two sets

x, y ∈ A′ which will complete the proof of the lemma. Let τ1, τ2 ∈ ∆ =
x ∩ y and γ ∈ (x \ y) ∪ (y \ x).

Note that if τ1, γ < τ2, then

(2) ρ(γ, τ1) ≤ ρ(γ, τ2).

This follows from (iii) and (1).
Now we prove ∆4). Consider two cases. First when τ1 < γ < τ2.

Assume ξ ∈ f(τ1, γ), that is ξ < τ1 and

(3) ρ(ξ, γ) ≤ ρ(τ1, γ),

By (ii) we have ρ(ξ, τ2) ≤ max(ρ(ξ, γ), ρ(γ, τ2)) which by (3) is less
or equal to max(ρ(τ1, γ), ρ(γ, τ2)) = ρ(γ, τ2) by (2). But this means
that ξ ∈ f(γ, τ2) and so gives the inclusion of ∆4).

The second case is when γ < τ1 < τ2. Assume ξ ∈ f(γ, τ1), that is
ξ < γ and

(4) ρ(ξ, τ1) ≤ ρ(γ, τ1) .
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By (ii) we have that ρ(ξ, τ2) ≤ max(ρ(ξ, τ1), ρ(τ1, τ2)) which by (4)
is less or equal to max(ρ(γ, τ1), ρ(τ1, τ2)). But we have

max(ρ(γ, τ1), ρ(τ1, τ2)) ≤ ρ(γ, τ2)

by (1) and (2), hence ρ(ξ, τ2) ≤ ρ(γ, τ2) and so ξ ∈ f(γ, τ2) that again
gives the inclusion of ∆4).

Finally, we prove ∆5). Assume τ1 < γ < τ2, then by (1) we have
ρ(τ1, τ2) ≤ ρ(γ, τ2) and so the definition of f gives that τ1 ∈ f(γ, τ2),
as required in ∆5).

¤

4. The forcing notion

Now we describe a natural notion of forcing with finite approxima-
tions that produces an ω2-suitable pair (H, i). The forcing depends on
a parameter f that will be chosen to be a strong ∆-function, like the
one constructed in 3.3.

Definition 4.1. For each function f :
[
ω2

]2 −→ [
ω2

]≤ω
satisfying

f(α, β) ⊂ α ∩ β for any {α, β} ∈ [
ω2

]2
we define the poset (Pf , ≤) as

follows. The elements of Pf are all quadruples p = 〈a, h, n, i〉 satisfying
the following five conditions (P1) – (P5):

(P1) a ∈ [ω2]
<ω, n ∈ ω, h : a× n → P(a), i :

[
a
]2 ⊗ n → P(a),

(P2) max h(ξ, j) = ξ for all 〈ξ, j〉 ∈ a× n,
(P3) h(ξ, j) ⊂ h(ξ, 0) for all 〈ξ, j〉 ∈ a× n,

(P4) i(ξ, η, j) ⊆ f(ξ, η) whenever 〈ξ, η, j〉 ∈ [
a
]2 ⊗ n,

(P5) if 〈ξ, η, j〉 ∈ [
a
]2 ⊗ n then h(ξ, 0) ∗ h(η, j) ⊂ h[i(ξ, η, j)],

where, with some abuse of our earlier notation, we write

(15) h[b] = ∪{h(α, 0) : α ∈ b}
for b ⊂ a. We say that p ≤ q if and only if ap ⊇ aq, np ≥ nq,
hp(ξ, j) ∩ aq = hq(ξ, j) for all 〈ξ, j〉 ∈ aq × nq, moreover ip ⊃ iq.

Assume that the sets

Dα,n = {p ∈ Pf : α ∈ ap and n < np}
are dense in Pf for all pairs 〈α, n〉 ∈ ω2 × ω. Then if G is a Pf -
generic filter over V we may define , in V [G], the function H with

dom H = ω2×ω and the function i with dom(i) =
[
ω2

]2⊗ω as follows:

H(α, n) = ∪{hp(α, n) : p ∈ G, 〈α, n〉 ∈ dom(hp)},(16)

i = ∪{ip : p ∈ G}.(17)
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Theorem 4.2. Assume that CH holds and f is a strong ∆-function.
Then Pf is CCC and (H, i) is an ω2-suitable pair in V [G]. More-
over, the locally compact, 0-dimensional, and Hausdorff space XH =
〈ω2 × C, τH〉 defined as in 2.4 satisfies, in V [G], the following proper-
ties:

(i) U(δ) = H(δ, 0)× C is compact open for each δ ∈ ω2,
(ii) XH is first countable,

(iii) ∀A ∈ [ω2 × C]ω1 ∃α ∈ ω2 |A ∩ U(α)| = ω1,
(iv) ∀Y ∈ [ω2×C]ω either the closure Y is compact or there is α < ω2

such that (ω2 \ α)× C ⊂ Y .

Consequently, XH is a locally compact, 0-dimensional, normal, first
countable, initially ω1-compact but non-compact space in V [G].

The rest of this paper is devoted to the proof of Theorem 4.2.

5. The forcing is CCC

The CCC property of Pf is crucial for us because it implies that ω2 is
preserved in the generic extension V [G]. Indeed, properties (H1)–(H3)
of definition 2.4 (for ϑ = ωV

2 ) are easily deduced from of conditions
(P1)–(P5) in 4.1 using straight-forward density arguments. So if ω2 is
preserved then we immediately conclude that (H, i) is an ω2-suitable
pair in V [G].

Definition 5.1. Two conditions p0 = 〈a0, h0, n, i0〉 and p1 = 〈a1, h1, n, i1〉
from Pf are said to be good twins provided that

(1) p0 and p1 are isomorphic, i.e. |a0| = |a1| and the natural order-
preserving bijection e between a0 and a1 is an isomorphism between
p0 and p1:

(i) h1(e(ξ), j) = e[h0(ξ, j)] for ξ ∈ a0 and j < n,

(ii) i1(e(ξ), e(η), j)) = e[i0(ξ, η, j)] for 〈ξ, η, j〉 ∈ [
a0

]2 ⊗ n,
(iii) e(ξ) = ξ whenever ξ ∈ a0 ∩ a1 and j < n ;

(2) i1(ξ, η, j) = i0(ξ, η, j) for each {ξ, η} ∈ [
a0 ∩ a1

]2
;

(3) a0 and a1 are good for f .

The good twins p0 and p1 are called very good twins if a0 and a1 are
very good for f .

Definition 5.2. If p = 〈a, h, n, i〉 and p′ = 〈a′, h′, n, i′〉 are good twins
we define the amalgamation p∗ = 〈a∗, h∗, n, i∗〉 of p and p′ as follows:

Let a∗ = a ∪ a′. For η ∈ h[a ∩ a′] ∪ h′[a ∩ a′] define

δη = min{δ ∈ a ∩ a′ : η ∈ h(δ, 0) ∪ h′(δ, 0)}.
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Now, for any ξ ∈ a∗ and m < n let
(18)

h∗(ξ, m) =





h(ξ,m) ∪ h′(ξ,m) if ξ ∈ a ∩ a′,
h(ξ,m) ∪ {η ∈ a′ \ a : δη is defined and δη ∈ h(ξ, m)} if ξ ∈ a \ a′,
h′(ξ, m) ∪ {η ∈ a \ a′ : δη is defined and δη ∈ h′(ξ, m)} if ξ ∈ a′ \ a.

Finally for 〈ξ, η,m〉 ∈ [
a∗

]2 ⊗ n let

(19) i∗(ξ, η,m) =





i(ξ, η, m) if ξ, η ∈ a,
i′(ξ, η, m) if ξ, η ∈ a′,
f(ξ, η) ∩ a∗ otherwise.

(Observe that i∗ is well-defined because p and p′ are good twins). We
will write p∗ = p + p′ for the amalgamation of p and p′.

Lemma 5.3. If p and p′ are good twins then their amalgamation, p∗ =
p + p′, is a common extension of p and p′ in Pf .

Proof. First we prove a claim.

Claim 5.3.1. Let α ∈ a, η ∈ a ∩ a′, and m < ω. Assume that δα is
defined and either m = 0 or δα < η. Then

(20) α ∈ h(η, m) iff δα ∈ h(η, m).

(Clearly, we also have a symmetric version of this statement for α ∈
a′.)

Proof of claim 5.3.1. Assume first that α ∈ h(η, m) ⊂ h(η, 0). Then
clearly δα ∈ h(η, m) if δα = η. So assume δα < η. Since i(δα, η, m) ⊂
a∩ a′ and max i(δα, η,m) < δα we have α /∈ h[i(δα, η,m)] by the choice
of δα. Thus from p ∈ Pf we have

(21) α /∈ h(δα, 0) ∗ h(η, m),

hence h(δα, 0) ∗ h(η,m) 6= h(δα, 0) ∩ h(η, m). But then h(δα, 0) ∗
h(η, m) = h(δα, 0) \ h(η, m), so δα ∈ h(η,m).

If, on the other hand, δα ∈ h(η, m) then either δα = η and so α ∈
h(η, 0) = h(η,m) because m = 0, or δα < η and we have

α /∈ h[i(δα, η,m)] ⊃ h(δα, 0) ∗ h(η, m) = h(δα, 0) \ h(η, m).

Thus α ∈ h(η, m) in both cases. ¤
Next we check p∗ ∈ Pf . Conditions 4.1.(P1)–(P4) for p∗ are clear by

the construction, so we should verify 4.1.(P5). Let 〈ξ, η, m〉 ∈ [
a∗

]2⊗n
and α ∈ h∗(ξ, 0) ∗ h∗(η, m), we need to show that α ∈ h∗[i∗(ξ, η, m].
We will distinguish several cases.

Case 1. ξ, η ∈ a (or symmetrically, ξ, η ∈ a′).
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Since h∗(ξ, 0) ∩ a = h(ξ, 0) and h∗(η, m) ∩ a = h(η,m) we have
[h∗(ξ, 0) ∗ h∗(η, m)] ∩ a = h(ξ, 0) ∗ h(η,m) by the definition of the
operation ∗ . Thus we have α ∈ h[i(ξ, η,m)] ⊂ h∗[i∗(ξ, η,m)] in case
α ∈ a.

Assume now that α ∈ a′ \ a. Then α ∈ h∗(ξ, 0) implies that δα is
defined and δα ∈ h(ξ, 0). Indeed, if ξ ∈ a \ a′ this is immediate from
(18). For ξ ∈ a ∩ a′, however, this follows from (the second version of)
Claim 5.3.1 and the fact that δα ∈ h′(ξ, 0) implies δα ∈ h(ξ, 0).

We also have α ∈ h∗(η, m) iff δα ∈ h(η,m), by (18) if η ∈ a\a′ and by
Claim 5.3.1 if η ∈ a∩a′ (as δα ≤ ξ < η). But then α ∈ h∗(ξ, 0)∗h∗(η, m)
implies δα ∈ h(ξ, 0) ∗ h(η,m), hence there is ν ∈ i(ξ, η,m) such that
δα ∈ h(ν, 0). This again implies α ∈ h∗(ν, 0) either by (18) or by Claim
5.3.1, consequently, α ∈ h∗[i(ξ, η, m)] = h∗[i∗(ξ, η, m)].

Case 2. ξ ∈ a \ a′, η ∈ a′ \ a, and α ∈ a (or the same with a and a′

switched).

If ξ ∈ h∗(η,m) then δξ is defined and δξ < η, moreover

(22) α ∈ h∗(ξ, 0) ∗ h∗(η,m) = h∗(ξ, 0) \ h∗(η, m)

implies α /∈ h∗(η, m). If ξ /∈ h∗(η, m) then

(23) α ∈ h∗(ξ, 0) ∗ h∗(η,m) = h∗(ξ, 0) ∩ h∗(η, m),

implies α ∈ h∗(η, m), hence δα is defined and δα < η. Thus

(24) δ∗ = min
{
δ ∈ a ∩ a′ : {α, ξ} ∩ h(δ, 0) 6= ∅}

is defined and δ∗ < η. If δ∗ < ξ then we must have δ∗ = δα and so, as
p and p′ are good twins, δα ∈ f(ξ, η) ∩ a∗ = i∗(ξ, η, m). Consequently,
α ∈ h(δα, 0) ⊂ h∗[i∗(ξ, η,m)] holds.

Now, assume that ξ < δ∗. We know that δ∗ = δα or δ∗ = δξ, but not
both because |{α, ξ} ∩ h∗(η, m)| = 1. But then we also have

(25) |{α, ξ} ∩ h(δ∗, 0)| = 1.

Indeed, |{α, ξ} ∩ h(δ∗, 0)| > 0 is obvious and {α, ξ} ⊂ h(δ∗, 0) would
imply that δα and δξ are both defined and distinct, contradicting the
definition of the bigger of the two. Now, (25) and α ∈ a ∩ h∗(ξ, 0) =
h(ξ, 0) together imply α ∈ h(ξ, 0) ∗ h(δ∗, 0) ⊂ h[i(ξ, δ∗, 0)]. But

i(ξ, δ∗, 0) ⊂ f(ξ, δ∗) ⊂ f(ξ, η)

because a and a′ are good for f . Consequently, i(ξ, δ∗, 0) ⊂ i∗(ξ, η, m),
implying that α ∈ h∗[i∗(ξ, η, m)].

Case 3. ξ ∈ a \ a′, η ∈ a′ \ a, and α ∈ a′ (or the same with a and a′

switched).
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In this case α ∈ h∗(ξ, 0) implies that δα is defined and δα < ξ,
hence δα ∈ f(ξ, η) because a and a′ are good for f . Since i∗(ξ, η, m) =
f(ξ, η) ∩ a∗ we conclude that α ∈ h′(δα, 0) ⊂ h∗[i∗(ξ, η, m)].

Since we have covered all the possible cases, it follows that p∗ satisfies
4.1.(P5), that is, p∗ ∈ Pf . That p∗ ≤ p, p′ is then immediate from the
construction, hence the proof of our lemma is completed. ¤
Proof of theorem 4.2: Pf is CCC. In every uncountable collection of
conditions from Pf there are two which are good twins for f and, by
Lemma 5.3, they are compatible. ¤

As was pointed out at the beginning of this section, we may now
conclude that (H, i) is an ω2-suitable pair in V [G]. This establishes the
first part of Theorem 4.2 up to and including (i).

6. First countability

Proof of theorem 4.2: XH is first countable. Since XH is locally com-
pact and Hausdorff it suffices to show that every point of XH has
countable pseudo-character or, in other words, every singleton is a Gδ.

To see this, fix 〈α, x〉 ∈ ω2 × C. We claim that there is a countable
set Γ ⊂ α such that

(26)
⋂

n∈N
U(α, n, x(n)) ⊂ U [Γ] ∪ {〈α, x〉}.

Since every U(γ) is clopen, this implies that

{〈α, x〉} =
⋂

n∈N
U(α, n, x(n)) ∩

⋂
{XH \ U(γ) : γ ∈ Γ}

is indeed a Gδ.
Our following lemma clearly implies (26). To formulate it, we first

fix some notation. In V [G] , for α ∈ ω2, 1 ≤ m < ω and Γ ⊂ ω2 we
write

H1(α, m) = H(α,m) \ {α},(27)

H0(α, m) = H(α, 0) \H(α,m),(28)

H[Γ] = ∪{H(γ, 0) : γ ∈ Γ}.(29)

Recall that with this notation we have

U(α, n, ε) = (Hε(α, n)× C) ∪ ({α} × [n, ε]) .

Lemma 6.1. In V [G], for each 〈α, x〉 ∈ ω2×C there is a countable set
Γ ⊂ α such that

(30)
⋂

n∈N
Hx(n)(α, n) ⊂ H[Γ] .
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Proof. Suppose, arguing indirectly, that the lemma is false. Then, in
V [G], for each countable set A ⊂ α there is γA ∈ α such that

(31) γA ∈
⋂

n∈N
Hx(n)(α, n) \H[A].

From now on, we work in the ground model V . For every ζ < ω1 let
Aζ ⊆ α be a countable subset such that ζ ′ ≤ ζ < ω1 implies Aζ′ ⊆ Aζ

and
⋃

ζ<ω1
Aζ = α.

Let pζ = 〈aζ , hζ , nζ , iζ〉 ∈ Pf be a condition such that α ∈ aζ and
for some γζ ∈ α ∩ aζ we have

(32) pζ ° γζ ∈
⋂

n∈N
Hx(n)(α, n) \H[Aζ ].

Using standard ∆-system and counting arguments and the properties
of the strong ∆-function f , we may find ζ1 < ζ2 < ω1 such that

(33) α ∩ aζ1 ⊂ Aζ2 ,

moreover pζ1 , pζ2 are very good twins for f .
Let p = pζ1 +pζ2 with p = 〈a, h, n, i〉 be their amalgamation as in 5.2.

We now further extend p to a condition of the form r = 〈a, hr, n + 1, ir〉
with the following stipulations:

(r1) hr ⊃ h,
(r2) hr(ξ, n) = {ξ} for ξ ∈ a \ {α},
(r3) hr(α, n) = {α} ∪ (

h(α, 0) ∩ h[α ∩ aζ1 ]
)
,

(r4) ir ⊃ i,
(r5) ir(η, ξ, n) = ∅ for η < ξ ∈ a \ {α},
(r6) ir(η, α, n) = a ∩ f(η, α) for η < α.

It is not clear at all that r is a condition, but if it is we have reached
a contradiction. Indeed, if r ∈ Pf then r ≤ pζ2 , so r ° γζ2 /∈ H[Aζ2 ],
hence γζ2 /∈ h[α ∩ aζ1 ] by (33). But then by (r3) we have

(34) γζ2 /∈ hr(α, n).

On the other hand, since γζ1 ∈ α ∩ aζ1 ⊂ h[α ∩ aζ1 ] we have

(35) γζ1 ∈ hr(α, n)

by (r3). But this is a contradiction because, by (32), the first of these
relations implies r ° x(n) = 0 while the second implies r ° x(n) = 1.

So it remains to show that r ∈ Pf . Items (P1) - (P4) of Definition 4.1
are clear. Also, (P5) holds if j < n because p ∈ Pf . Thus we only have
to check (P5) for triples of the form 〈η, ξ, n〉.

If η < ξ 6= α we have η 6∈ h(ξ, n) = {ξ}, and so hr(η, 0) ∗ hr(ξ, n) =
hr(η, 0) ∩ hr(ξ, n) ⊆ η ∩ {ξ} = ∅, hence (P5) of Definition 4.1 holds
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trivially. So assume now that η < α. In view of the definition of r, our
task is to show the following two assertions:

(I) if η ∈ hr(α, n) then h(η, 0) \ hr(α, n) ⊂ h[a ∩ f(η, α)],

(II) if η 6∈ hr(α, n) then h(η, 0) ∩ hr(α, n) ⊂ h[a ∩ f(η, α)].

The fact that p = pζ1 + pζ2 and properties ∆4) and ∆5) of our strong
∆-function f will play an essential role in the proofs of (I) and (II).

Proof of (I). First note that by the definition of r we have

(36) h(η, 0) \ hr(α, n) = h(η, 0) \ (h(α, 0) ∩ h[α ∩ aζ1 ]) =

(h(η, 0) \ h(α, 0)) ∪ (h(η, 0) \ h[α ∩ aζ1 ]).

Since h(η, 0) \ h(α, 0) ⊂ h[i(η, α, 0)] ⊂ h[a ∩ f(η, α)] is obvious, it is
enough to show that

(I’) if η ∈ hr(α, n), then h(η, 0) \ h[α ∩ aζ1 ] ⊂ h[a ∩ f(η, α)].

If η ∈ aζ1 then h(η, 0) \ h[α ∩ aζ1 ] = ∅ and we are done. So assume
now that η 6∈ aζ1 , that is η ∈ aζ2 \ aζ1 . Now η ∈ h[α ∩ aζ1 ] means that
there is a ξ ∈ α ∩ aζ1 with η ∈ h(ξ, 0). By the definition 5.2 (18) of
the amalgamation then there is δ ∈ aζ1 ∩ aζ2 such that η < δ ≤ ξ and
η ∈ hζ2(δ, 0). Since pζ2 ∈ Pf this implies

(37) hζ2(η, 0) \ hζ2(δ, 0) ⊆ hζ2 [iζ2(η, δ, 0)].

A similar argument, referring back to definition 5.2 (18), yields us that
h(η, 0) \hζ2(η, 0) ⊂ h[α∩ aζ1 ], and as hζ2(δ, 0) ⊂ h(δ, 0) ⊂ h[α∩ aζ1 ] we
may conclude that

(38) h(η, 0) \ h[α ∩ aζ1 ] ⊂ hζ2 [iζ2(η, δ, 0)] ⊂ h[iζ2(η, δ, 0)].

Since η ∈ aζ2 \ aζ1 and δ, α ∈ aζ1 ∩ aζ2 , we have f(η, δ) ⊂ f(η, α) by
∆4). Consequently,

(39) iζ2(η, δ, 0) ⊂ aζ2 ∩ f(η, δ) ⊂ a ∩ f(η, α),

completing the proof of (I’) and hence of (I).

Proof of (II). If η 6∈ hr(α, n) then either η 6∈ h(α, 0) or η 6∈ h[α ∩ aζ1 ].
If η 6∈ h(α, 0) then p ∈ Pf implies

(40) h(η, 0) ∩ hr(α, n) ⊂ h(η, 0) ∩ h(α, 0) =

h(η, 0) ∗ h(α, 0) ⊂ h[i(η, α, 0)] ⊂ h[a ∩ f(η, α]).

So assume that η /∈ h[α∩ aζ1 ] , clearly then η 6∈ aζ1 as well. Consider
any β ∈ h(η, 0) ∩ hr(α, n), we have to show that β ∈ h[a ∩ f(η, α)].

Case 1. β ∈ aζ1 . By using definition 5.2 (18) again, then β ∈ h(η, 0)
implies that there is a δ ∈ η ∩ aζ1 ∩ aζ2 with β ∈ hζ2(δ, 0). But then
δ ∈ f(η, α) by property ∆5) of strong ∆-functions, hence we are done.
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Case 2. β 6∈ aζ1 . In this case β ∈ h[α ∩ aζ1 ] implies that there is a
δ ∈ α ∩ aζ1 ∩ aζ2 such that β ∈ hζ2(δ, 0), hence β ∈ hζ2(η, 0)∩ hζ2(δ, 0).
Moreover, η /∈ h[α∩aζ1 ] implies η 6∈ hζ2(δ, 0). Thus if η < δ then pζ2 ∈
Pf and hζ2(η, 0)∩hζ2(δ, 0) = hζ2(η, 0)∗hζ2(δ, 0) imply that β ∈ hζ2(γ, 0)
for some γ ∈ i(η, δ, 0) ⊂ f(η, δ). But we have f(η, δ) ⊂ f(η, α) by ∆4),
so γ ∈ a ∩ f(η, α) and we are done.

Finally, if δ < η then δ ∈ f(η, α) because f satisfies ∆5), moreover
we have β ∈ hζ2(δ, 0) ⊂ h(δ, 0) and the proof of (II) is completed. ¤

This then completes the proof of Lemma 6.1 and thus of the first
countability of the space XH . ¤

7. ω1-compactness

In this section we establish part (iii) of theorem 4.2. This implies
that every uncountable subset of XH has uncountable intersection with
a compact set, hence every set of size ω1 has a complete accumulation
point.

Lemma 7.1. If p = 〈a, h, n, i〉 ∈ Pf and β ∈ ω2 with β > max a then
there is a condition q ≤ p such that a ⊂ hq(β, 0).

Proof. We define the condition q = 〈a ∪ {β}, hq, n, iq〉 with the fol-
lowing stipulations: hq ⊃ h, iq ⊃ i, hq(β, j) = a ∪ {β} for j < n,
iq(α, β, j) = ∅ for α ∈ a and j < n. It is straight-forward to check that
q ∈ Pf is as required. ¤
Lemma 7.2. In V [G], for each set A ∈ [ω2×C]ω1 there is β ∈ ω2 such
that |A ∩ U(β)| = ω1.

Proof. Let Ȧ be a Pf -name for A and assume that p ∈ G with

p ° Ȧ = {żξ : ξ < ω1} ∈
[
ω2 × C

]ω1 .

We may assume that p also forces that {żξ : ξ < ω1} is a one-one

enumeration of Ȧ. For each ξ < ω1 we may pick pξ ≤ p and αξ ∈ ω2

with αξ ∈ apξ
such that pξ ° żξ = 〈αξ, ẋξ〉. Let sup{αξ : ξ < ω1} <

β < ω2. By lemma 7.1 for each ξ < ω1 there is a condition qξ ≤ pξ

such that αξ ∈ hqξ
(β, 0), hence qξ ° żξ ∈ U(β). But Pf satisfies CCC,

so there is q ∈ G such that q ° |{ξ ∈ ω1 : qξ ∈ G}| = ω1. Clearly, then

q ° |Ȧ ∩ U(β)| = ω1. ¤

8. Countable compactness

In this section we show that part (iv) of theorem 4.2 holds: in V [G],
the closure of any infinite subset of XH is either compact or contains
a ”tail” of XH , that is (ω2 \ α) × C for some α < ω2. Of course,
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this implies that XH is countably compact and thus, together with the
results of the previous section, establishes the initial ω1-compactness
of XH . Moreover, it also implies that XH is normal, for of any two
disjoint closed sets in XH (at least) one has to be compact.

We start by proving an extension result for conditions in Pf . We
shall use the following notation that is analogous to the one that was
introduced before lemma 6.1.

h1(α, m) = h(α, m),(41)

h0(α, m) = h(α, 0) \ h(α, m).(42)

Lemma 8.1. Assume that p = 〈a, h, n, i〉 ∈ Pf , α ∈ a, and ε : n −→ 2
is a function with ε(0) = 1. Then for every η ∈ α\a there is a condition
of the form q = 〈a ∪ {η}, hq, n, iq〉 ∈ Pf such that q ≤ p and

(43) η ∈
⋂

m<n

hε(m)
q (α,m) \ hq[a ∩ α].

Proof. We define hq and iq with the following stipulations:

hq(η, m) = {η} for m < n,

hq(α, m) = h(α, m) ∪ {η} if m < n and ε(m) = 1,

hq(α, m) = h(α, m) if m < n and ε(m) = 0,

hq(ν, m) = h(ν, m) ∪ {η} if ν ∈ a \ {α}, m < n, and α ∈ h(ν, m),

hq(ν, m) = h(ν, m) if ν ∈ a \ {α}, m < n, and α /∈ h(ν,m),

iq ⊃ i, iq(η, ν, m) = ∅ if ν ∈ a \ η , and iq(ν, η, m) = ∅ if ν ∈ a ∩ η .

To show q ∈ Pf we need to check only (P5). But this follows from the
fact that if η ∈ hq(ν, 0)∗hq(µ,m) then, as can be checked by examining
a number of cases, we have ν, µ ∈ a and α ∈ h(ν, 0) ∗ h(µ,m) as well.
By p ∈ Pf then there is a ξ ∈ i(ν, µ, m) with α ∈ h(ξ, 0) which implies
η ∈ hq(ξ, 0) because ε(0) = 1, so we are done. Thus q ∈ Pf , q ≤ p,
and q clearly satisfies all our requirements. ¤

Lemmas 7.1 and 8.1 can be used to show that

Dα,n = {p ∈ Pf : α ∈ ap and n < np}
is dense in Pf for all pairs 〈α, n〉 ∈ ω2 × ω, showing that dom(H) =

ω2 × ω and dom(i) =
[
ω2

]2 ⊗ ω.
Our next lemma is a partial result on the way to what we promised

to show in this section.
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Lemma 8.2. Assume that, in V [G], we have D ∈ V ∩ [
ω2

]ω
and

Y = {〈δ, xδ〉 : δ ∈ D} ⊂ ω2 × C. Then

(ω2 \ sup(D))× C ⊂ Y .

Proof. By lemma 2.5 it suffices to prove that

(44) V [G] |= ( ⋂
1≤m<n

U(α, m, ε(m)) \ U [b]
) ∩ Y 6= ∅

whenever α ∈ ω2 \ sup D , n ∈ N, ε : n −→ 2 with ε(0) = 1, and

b ∈ [
α
]<ω

. So fix these and pick a condition p = 〈a, h, k, i〉 ∈ Pf such
that α ∈ a, b ⊂ a , and n < k. (We know that the set E of these
conditions is dense in Pf .) Let us then choose δ ∈ D \ a. By lemma
8.1 there is a condition q ≤ p such that

(45) δ ∈
⋂

1≤m<n

hε(m)
q (α,m) \ hq[b].

Then

(46) q ° 〈δ, xδ〉 ∈
⋂

1≤m<n

U(α, m, ε(m)) \ U [b],

hence

(47) q °
( ⋂

1≤m<n

U(α,m, ε(m)) \ U [b]
) ∩ Y 6= ∅ .

Since p ∈ E was arbitrary, the set of q’s satisfying the last forcing
relation is also dense in Pf , so we are done. ¤

We need a couple more, rather technical, results before we can turn
to the proof of part (iv) of theorem 4.2. First we give a definition.

Definition 8.3. (1) Assume that p = 〈a, h, n, i〉 ∈ Pf and a < b ∈
[ω2]

<ω are such that a ⊂ f(γ, γ′) for any {γ, γ′} ∈ [b]2. Then we define
the b-extension of p to be the condition q of the form q = 〈a∪b, hq, n, iq〉
with h ⊂ hq, i ⊂ iq, and the following stipulations:

(R1) hq(γ, `) = a ∪ {γ} for γ ∈ b and ` < n,
(R2) iq(γ

′, γ, `) = a for γ′, γ ∈ b with γ′ < γ and ` < n,
(R3) iq(ξ, γ, `) = ∅ for ξ ∈ a, γ ∈ b, and ` < n.

(2) If q ∈ Pf and b ⊂ aq then s ≤ q is said to be a b-fair extension
of q iff hs(γ, j) = hs(γ, 0) holds for any γ ∈ b and nq ≤ j < ns.

Our following result shows that the b-extension severely restricts any
further extensions.
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Lemma 8.4. Assume that p = 〈a, h, n, i〉 ∈ Pf , a < b, and q is the
b-extension of p. If s ≤ q is any extension of q then

(48) hs[a] = hs(γ
′, 0) ∩ hs(γ, `)

whenever 〈γ′, γ, `〉 ∈ [
b
]2⊗ n. If, in addition, s is a b-fair extension of

q then (48) holds for all 〈γ′, γ, `〉 ∈ [
b
]2 ⊗ ns.

Proof. We have γ′ /∈ hs(γ) by (R1) and s ≤ q, hence if ` < n then (P5)
and (R2) imply

(49) hs(γ
′, 0) ∩ hs(γ, `) = hs(γ

′, 0) ∗ hs(γ, `) ⊂ hs[is(γ
′, γ, `)] = hs[a].

Similarly, for all ξ ∈ a, γ′′ ∈ b, and `′′ < n we have
(50)
hs(ξ, 0) \ hs(γ

′′, `′′) = hs(ξ, 0) ∗ hs(γ
′′, `′′) ⊂ hs[is(ξ, γ

′′, `′′)] = hs[∅] = ∅,
which implies hs[a] ⊂ hs(γ

′′, `′′). But then hs[a] ⊂ hs(γ
′, 0) ∩ hs(γ, `)

which together with (49) yields (48).

Now, if s is a b-fair extension of q and 〈γ′, γ, `〉 ∈ [
b
]2 ⊗ ns with

n ≤ ` < ns then we have (48) because hs(γ, 0) = hs(γ, `) and hs[a] =
hs(γ

′, 0) ∩ hs(γ, 0). ¤

In our next result we are going to make use of the following simple
observation.

Fact 8.5. If p = 〈a, h, n, i〉 ∈ Pf and X ⊂ a is an initial segment of a

then p ¹ X =
〈
X, h ¹ X × n, n, i ¹

[
X

]2 ⊗ n
〉
∈ Pf as well.

Lemma 8.6. Let p, q, s ∈ Pf be conditions and Q ⊂ S < E < F be
sets of ordinals such that

ap = Q ∪ E , aq = Q ∪ E ∪ F , as = S ∪ E ∪ F ,

q is the F -extension of p , and s is an F -fair extension of q. Assume,
moreover, that |E| = k with E = {γi : i < k} the increasing enu-
meration of E and |F | = 2k, F = {γi,0, γi,1 : i < k} with γi,0 < γi,1

satisfying

(51) ∀i < k ∀ξ ∈ S [ f(ξ, γi) = f(ξ, γi,0) = f(ξ, γi,1) ].

Let us now define r = 〈ar, hr, nr, ir〉 as follows:

(A) ar = S ∪ E, nr = ns,
(B) for ξ ∈ ar and j < nr let

hr(ξ, j) =

{
hs(ξ, j) ∪ (S \ hs[ap]) if ξ = γi and γ0 ∈ hs(γi, j),
hs(ξ, j) otherwise,
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(C) for 〈ξ, η, j〉 ∈ [
ar

]2 ⊗ nr

ir(ξ, η, j) =

{
is(ξ, η, j) if ξ, η ∈ ap or ξ, η ∈ S,
f(ξ, η) ∩ as otherwise.

Then r ∈ Pf , r ≤ p, r ≤ s ¹ S ∈ Pf , and S \ hs[ap] ⊂ hr(γ0, 0).

Proof. It is clear from our assumptions and the construction of r that
the only thing we need to establish is r ∈ Pf . To see that, it suffices to
check that r satisfies (P5) because the other requirements are obvious.

So let 〈ξ, η, j〉 ∈ [
ar

]2 ⊗ nr. We have to show

(52) hr(ξ, 0) ∗ hr(η, j) ⊂ hr[ir(ξ, η, j)].

If η ∈ S then hr(ξ, 0)∗hr(η, j) ⊂ hr[ir(ξ, η, j)] holds because r ¹ S =
s ¹ S ∈ Pf . So, from here on, we assume that η = γi for some i < k.

Let us first point out that, as q is the F -extension of p and s is an
F -fair extension of q, by lemma 8.4 we have

(53) hs[ap] = hs(γi,0, 0) ∩ hs(γi,1, j)

for any i < k and j < nr. Also, to shorten notation, we shall write

C = S \ hs[ap].

Case 1. ξ ∈ S.

Subcase 1.1. ξ /∈ hr(γi, j).

Then ξ /∈ hs(γi, j) as well, so we have both

(54) hr(ξ, 0) ∗ hr(γi, j) = hr(ξ, 0) ∩ hr(γi, j)

and

(55) hs(ξ, 0) ∗ hs(γi, j) = hs(ξ, 0) ∩ hs(γi, j) ⊂
hs[is(ξ, γi, j)] ⊂ hr[ir(ξ, γi, j)].

If γ0 /∈ hs(γi, j) then hr(γi, j) = hs(γi, j) and also hr(ξ, 0) = hs(ξ, 0),
hence (54) and (55) imply (52).

Assume now that γ0 ∈ hs(γi, j), hence hr(γi, j) = hs(γi, j) ∪ C.

Claim. hs(ξ, 0) ∩ C ⊂ hr[ir(ξ, γi, j)].
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Since now ξ /∈ C, by (53) we have ξ ∈ hs(γi,0, 0) ∩ hs(γi,1, 0). Thus,
using twice that s satisfies (P5), we have

(56) hs(ξ, 0) ∩ C = hs(ξ, 0) \ (hs(γi,0, 0) ∩ hs(γi,1, 0)) =

(hs(ξ, 0) \ hs(γi,0, 0)) ∪ (hs(ξ, 0) \ hs(γi,1, 0)) =

(hs(ξ, 0) ∗ hs(γi,0, 0)) ∪ (hs(ξ, 0) ∗ hs(γi,1, 0)) ⊂
hs[is(ξ, γi,0, 0)] ∪ hs[is(ξ, γi,1, 0)].

If ξ ∈ Q ⊂ ap then hr(ξ, 0)∩C = ∅, so the Claim holds trivially. So we
can assume that ξ /∈ Q. Then, by clause (C) of 8.6, for each ε ∈ {0, 1}
we have

(57) ir(ξ, γi, j) = f(ξ, γi) ∩ as = f(ξ, γi,ε) ∩ as ⊃ is(ξ, γi,ε, 0).

Clearly, (56) and (57) together yield the Claim.

But then we have

(58) hr(ξ, 0) ∗ hr(γi, j) = hr(ξ, 0) ∩ (hs(γi, j) ∪ C) =

(hs(ξ, 0) ∩ hs(γi, j)) ∪ (hs(ξ, 0) ∩ C) ⊂ hr[ir(ξ, η, j)]

by (54), (55), and the Claim.

Subcase 1.2. ξ ∈ hr(γi, j).

If ξ ∈ hs(γi, j) then

hr(ξ, 0) ∗ hr(γi, j) = hr(ξ, 0) \ hr(γi, j) ⊂ hs(ξ, 0) \ hs(γi, j)

= hs(ξ, 0) ∗ hs(γi, j) ⊂ hs[is(ξ, γi, j)] ⊂ hr[ir(ξ, γi, j)]

and we are done.
So we can assume that ξ /∈ hs(γi, j). Then ξ ∈ C, hr(γi, j) =

hs(γi, j) ∪ C, and γ0 ∈ hs(γi, j). By (53) we can fix ε < 2 such that
ξ /∈ hs(γi,ε, 0), consequently we have

(59) hr(ξ, 0) ∗ hr(γi, j) = hs(ξ, 0) \ (hs(γi, j) ∪ C) ⊂ hs(ξ, 0) \ C =

hs(ξ, 0) \ (S \ (hs(γi,0, 0 ∩ hs(γi,1, 0))) =

hs(ξ, 0) ∩ (hs(γi,0, 0 ∩ hs(γi,1, 0))) ⊂
hs(ξ, 0) ∩ hs(γi,ε, 0) = hs(ξ, 0) ∗ hs(γi,ε, 0) = hs[is(ξ, γi,ε, 0)].

But then again by clause (C) of 8.6

(60) ir(ξ, γi, j) = f(ξ, γi) ∩ as = f(ξ, γi,ε) ∩ as ⊃ is(ξ, γi,ε, 0).

(59) and (60) clearly imply (52).

Case 2. ξ = γ` for some ` < i.
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Then is(γ`, γi, j) = ir(γ`, γi, j), hence we have

(61) hs(γ`, 0) ∗ hs(γi, j) ⊂ hr[ir(γ`, γi, j)].

Examining the definition of hr in clause (B) of 8.6 and using that
C ∩ hs(γ`, 0) = ∅ we get
(62)

hr(γ`, 0)∗hr(γi, j) =

{
hs(γ`, 0) ∗ hs(γi, j) if γ0 /∈ hs(γ`, 0) ∗ hs(γi, j),
(hs(γ`, 0) ∗ hs(γi, j)) ∪ C if γ0 ∈ hs(γ`, 0) ∗ hs(γi, j).

This and (61) show that we are done if γ0 /∈ hs(γ`, 0) ∗ hs(γi, j).
So assume that γ0 ∈ hs(γ`, 0)∗hs(γi, j). Then there is ζ ∈ is(γ`, γi, j)

with γ0 ∈ hs(ζ). But then γ0 ≤ ζ < γ` implies that ζ ∈ E, hence
ζ = γm for some m < `. Because of this and by the choice of hr we
have

(63) C ⊂ hr(γm) ⊂ hr[ir(γ`, γi, j)].

But (61), (62), and (63) together imply (52), completing the proof of
r ∈ Pf . ¤

Proof of theorem 4.2: Property (iv). Our aim is to prove that the fol-
lowing statement holds in V [G]:

(iv) If the closure Y of a set Y ∈ [XH ]ω is not compact then there is
α < ω2 such that (ω2 \ α)× C ⊂ Y .

We shall make use of the following easy lemma.

Lemma 8.7. A set Z ⊂ XH has compact closure if and only if

Γ = {γ : ∃ x 〈γ, x〉 ∈ Z} ⊂ H[F ]

for some finite set F ⊂ ω2.

Proof of the lemma. If Z is compact then there is a finite set F ⊂ ω2

such that Z ⊂ U [F ]. Clearly, then Γ ⊂ H[F ].
Conversely, if Γ ⊂ H[F ] for a finite F ⊂ ω2 then Z ⊂ U [F ], hence

Z ⊂ U [F ] as well. But as U [F ] is compact, so is Z. ¤

Given two sets X,E ⊂ ω2 with X < E we shall write

(64) clf (X,E) = (the f -closure of X ∪ E) ∩ sup(X).

Fact 8.8. If ξ ∈ clf (X, E) and η ∈ clf (X, E) ∪ E then f(ξ, η) ⊂
clf (X, E).

Let us now fix a regular cardinal ϑ that is large enough so that
Hϑ, the structure of sets whose transitive closure has cardinality < ϑ,
contains everything relevant.
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Lemma 8.9. Assume that

(65) V [G] |= Γ ∈ [
ω2

]ω
is not covered by finitely many H(ξ, 0)

and Γ̇ is a Pf -name for Γ. If M is a σ-closed elementary submodel of

Hθ (in V ) such that f, Γ̇ ∈ M , |M | = ω1, and δ = M ∩ ω2 ∈ ω2 then

(66) V [G] |= Γ ∩H(δ, 0) \H[D] 6= ∅ for each finite D ⊂ δ.

Proof of the lemma 8.9. Fix D ∈ [δ]<ω and a condition p ∈ Pf with
D ∪ {δ} ⊂ ap such that

(67) p ° “Γ̇ ∈ [
ω2

]ω
is not covered by finitely many H(ξ, 0)”.

We shall be done if we can find a condition r ≤ p and an ordinal α ∈ ar

such that

(68) r ° “α ∈ Γ̇” and α ∈ hr(δ, 0) \ hr[D].

Let Q = ap ∩ δ, E = ap \ δ, and {γi : i < k} be the increasing
enumeration of E. In particular, then we have γ0 = δ.

To achieve our aim, we first choose a countable elementary submodel
N of Hθ such that M, Γ̇, p ∈ N and put

A = δ ∩N and B = clf (A ∪Q, E) .

Note that we have A, B ∈ M because M is σ-closed. For each i < k
the function f( . , γi) ¹ B is in M , hence so is the set

Ti = {γ ∈ ω2 : ∀β ∈ B f(β, γ) = f(β, γi)} ,

and γi ∈ Ti \M implies |Ti| = ω2.
By Lemma 3.2 there is a set of 2k ordinals

F = {γi, ε : i < k, ε < 2}
with γi, ε ∈ Ti and γi,0 < γi,1 for each i < k such that

(69) B ∪ E ⊂
⋂
{f(γi, ε , γi′, ε′) : {〈i, ε〉 , 〈i′, ε′〉} ∈ [k × 2]2}.

Since ap ⊂ B∪E < F , (69) implies that we can form the F -extension
q = 〈ap ∪ F, hq, np, iq〉 ∈ Pf of p , see definition 8.3.

As p ° “H[Q ∪ E] 6⊃ Γ̇”, there is a condition t ≤ q and an ordinal α
such that

(70) t ° “α ∈ Γ̇ \H[Q ∪ E]′′.

Clearly we can assume that α ∈ at, and then

(71) t ° “α ∈ Γ̇” and α ∈ at \ ht[Q ∪ E].

Since Γ̇ ∈ N ∩M and Pf is CCC, we have α ∈ M ∩N ∩ω2 = N ∩ δ.

As Pf is CCC and α, Γ̇ ∈ M ∩N we may choose a maximal antichain
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W ⊂ {w ≤ p : w ° α ∈ Γ̇} with W ∈ N ∩M and hence W ⊂ N ∩M .
By taking a further extension we can assume that t ≤ w for some
w ∈ W .

We claim that, putting S = B ∩ at, we have

(72) it(ξ, η, j) ⊂ S ∪ E for each 〈ξ, η, j〉 ∈ [
S ∪ E ∪ F

]2 ⊗ np .

Indeed, if ξ ∈ S ⊂ B then fact 8.8 and γi , ε ∈ Ti imply f(ξ, η) ⊂ B and
so it(ξ, η, j) ⊂ S, and if ξ, η ∈ E ∪ F then

it(ξ, η, j) = iq(ξ, η, j) ⊂ ap = Q ∪ E ⊂ S ∪ E

because q is the F -extension of p.
Let us now make the following definitions:

(s1) as = S ∪ E ∪ F ,
(s2) hs(ξ, j) = ht(ξ, j) ∩ S = ht(ξ, j) ∩ as for ξ ∈ S and j < nt,

(s3) is ¹
[
S
]2 ⊗ nt = it ¹

[
S
]2 ⊗ nt,

(s4) for η ∈ E ∪ F and j < nt let

(73) hs(η, j) =

{
ht(η, j) ∩ as if j < np,
ht(η, 0) ∩ as if np ≤ j < nt,

(s5) for η ∈ E ∪ F , ξ ∈ as ∩ η and j < nt let

(74) is(ξ, η, j) =

{
it(ξ, η, j) if j < np,
it(ξ, η, 0) if np ≤ j < nt.

Then (72) and t ∈ Pf imply that s = 〈as, hs, nt, is〉 ∈ Pf , moreover s is
an F -fair (even E ∪ F -fair) extension of q.

Note that t ≤ w and aw ⊂ A ⊂ B implies aw ⊂ S, hence by the
definition of the condition s we have s ≤ w and even s ¹ S ≤ w.

Things were set up in such a way that we can apply lemma 8.6 to
the three conditions s ≤ q ≤ p and the sets Q ⊂ S < E < F to get a
condition r ∈ Pf such that

• r ≤ p, r ≤ s ¹ S ≤ w,
• α ∈ S \ hs[ap] ⊂ hs(γ0).

Since δ = γ0 and D ⊂ ap, we have α ∈ hr(δ) \ hr[D]. Moreover,

r ≤ s ¹ S ≤ w implies r ° “α ∈ Γ̇”. So r satisfies (68), which completes
the proof of our lemma. ¤

Assume now, to finish the proof of (iv), that

(75) V [G] |= Y ∈ [
ω2 × C

]ω
and Y is not compact.

Then, by lemma 8.7, Γ = {γ : ∃x ∈ C 〈γ, x〉 ∈ Y } ∈ [ω2]
ω can not be

covered by finitely many H(ξ, 0). Let Γ̇ be a Pf -name for Γ.
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Claim: If M is a σ-closed elementary submodel of Hθ with f, Γ̇ ∈ M ,
|M | = ω1, δ = M ∩ ω2 ∈ ω2 then ({δ} × C) ∩ Y 6= ∅.

Assume, on the contrary, that ({δ}×C)∩Y = ∅. Then, as U(δ)∩Y
is compact, U(δ) ∩ Y ⊂ U(δ) ∩ Y ⊂ U [D] for some finite set D ⊂ δ
consequently we have Γ ∩ H(δ, 0) ⊂ H[D]. this, however, contradicts
lemma 8.9 by which

(76) Γ ∩H[δ,D] 6= ∅ for each finite D ⊂ δ.

This contradiction proves our claim.

Since CH holds in V , the set S of ordinals δ ∈ ω2 that arise in the
form δ = M ∩ ω2 for an elementary submodel M ≺ Hθ as in the above
claim is unbounded (even stationary) in ω2. Let A be the set of the
first ω elements of S. Then A ∈ V ∩ [ω2]

ω and our claim implies that,
in V [G], for each δ ∈ A there is xδ ∈ C with 〈δ, xδ〉 ∈ Y . But then, by
lemma 8.2, for α = sup A we have

(77) (ω2 \ α)× C ⊂ {〈δ, xδ〉 : δ ∈ A} ⊂ Y .

This completes the proof of theorem 4.2. ¤
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