MORE ON CARDINAL INVARIANTS OF ANALYTIC P-IDEALS

BARNABÁS FARKAS AND LAJOS SOUKUP

Abstract. Given an ideal \mathcal{I} on ω let $\mathfrak{a}(\mathcal{I})(\overline{\mathfrak{a}}(\mathcal{I}))$ be minimum of the cardinalities of infinite (uncountable) maximal \mathcal{I}-almost disjoint subsets of $[\omega]^{\omega}$. We show that $\mathfrak{a}\left(\mathcal{I}_{h}\right)>\omega$ if \mathcal{I}_{h} is a summable ideal; but $\mathfrak{a}\left(\mathcal{Z}_{\vec{\mu}}\right)=\omega$ for any tall density ideal $\mathcal{Z}_{\vec{\mu}}$ including the density zero ideal \mathcal{Z}. On the other hand, you have $\mathfrak{b} \leq \overline{\mathfrak{a}}(\mathcal{I})$ for any analytic P-ideal \mathcal{I}, and $\overline{\mathfrak{a}}\left(\mathcal{Z}_{\vec{\mu}}\right) \leq \mathfrak{a}$ for each density ideal $\mathcal{Z}_{\vec{\mu}}$.

For each ideal \mathcal{I} on ω denote $\mathfrak{b}_{\mathcal{I}}$ and $\mathfrak{d}_{\mathcal{I}}$ the unbounding and dominating numbers of $\left\langle\omega^{\omega}, \leq_{\mathcal{I}}\right\rangle$ where $f \leq_{\mathcal{I}} g$ iff $\{n \in \omega: f(n)>$ $g(n)\} \in \mathcal{I}$. We show that $\mathfrak{b}_{\mathcal{I}}=\mathfrak{b}$ and $\mathfrak{d}_{\mathcal{I}}=\mathfrak{d}$ for each analytic P-ideal \mathcal{I}.

Given a Borel ideal \mathcal{I} on ω we say that a poset \mathbb{P} is \mathcal{I}-bounding iff $\forall x \in \mathcal{I} \cap V^{\mathbb{P}} \exists y \in \mathcal{I} \cap V x \subseteq y . \mathbb{P}$ is \mathcal{I}-dominating iff $\exists y \in \mathcal{I} \cap V^{\mathbb{P}}$ $\forall x \in \mathcal{I} \cap V x \subseteq^{*} y$.

For each analytic P-ideal \mathcal{I} if a poset \mathbb{P} has the Sacks property then \mathbb{P} is \mathcal{I}-bounding; moreover if \mathcal{I} is tall as well then the property \mathcal{I}-bounding $/ \mathcal{I}$-dominating implies ω^{ω}-bounding/adding dominating reals, and the converses of these two implications are false.

For the density zero ideal \mathcal{Z} we can prove more: (i) a poset \mathbb{P} is \mathcal{Z}-bounding iff it has the Sacks property, (ii) if \mathbb{P} adds a slalom capturing all ground model reals then \mathbb{P} is \mathcal{Z}-dominating.

1. Introduction

In this paper we investigate some properties of some cardinal invariants associated with analytic P-ideals. Moreover we analyze related "bounding" and "dominating" properties of forcing notions.

Let us denote fin the Frechet ideal on ω, i.e. fin $=[\omega]^{<\omega}$. Further we always assume that if \mathcal{I} is an ideal on ω then the ideal is proper, i.e. $\omega \notin \mathcal{I}$, and fin $\subseteq \mathcal{I}$, so especially \mathcal{I} is non-principal. Write $\mathcal{I}^{+}=$ $\mathcal{P}(\omega) \backslash \mathcal{I}$ and $\mathcal{I}^{*}=\{\omega \backslash X: X \in \mathcal{I}\}$.

[^0]An ideal \mathcal{I} on ω is analytic if $\mathcal{I} \subseteq \mathcal{P}(\omega) \simeq 2^{\omega}$ is an analytic set in the usual product topology. \mathcal{I} is a P-ideal if for each countable $\mathcal{C} \subseteq \mathcal{I}$ there is an $X \in \mathcal{I}$ such that $Y \subseteq^{*} X$ for each $Y \in \mathcal{C}$, where $A \subseteq^{*} B$ iff $A \backslash B$ is finite. \mathcal{I} is tall (or dense) if each infinite subset of ω contains an infinite element of \mathcal{I}.

A function $\varphi: \mathcal{P}(\omega) \rightarrow[0, \infty]$ is a submeasure on ω iff $\varphi(X) \leq$ $\varphi(Y)$ for $X \subseteq Y \subseteq \omega, \varphi(X \cup Y) \leq \varphi(X)+\varphi(Y)$ for $X, Y \subseteq \omega$, and $\varphi(\{n\})<\infty$ for $n \in \omega$. A submeasure φ is lower semicontinuous iff $\varphi(X)=\lim _{n \rightarrow \infty} \varphi(X \cap n)$ for each $X \subseteq \omega$. A submeasure φ is finite if $\varphi(\omega)<\infty$. Note that if φ is a lower semicontinuous submeasure on ω then $\varphi\left(\bigcup_{n \in \omega} A_{n}\right) \leq \sum_{n \in \omega} \varphi\left(A_{n}\right)$ holds as well for $A_{n} \subseteq \omega$. We assign the exhaustive ideal $\operatorname{Exh}(\varphi)$ to a submeasure φ as follows

$$
\operatorname{Exh}(\varphi)=\left\{X \subseteq \omega: \lim _{n \rightarrow \infty} \varphi(X \backslash n)=0\right\}
$$

Solecki, [So, Theorem 3.1], proved that an ideal $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is an analytic P-ideal or $\mathcal{I}=\mathcal{P}(\omega)$ iff $\mathcal{I}=\operatorname{Exh}(\varphi)$ for some lower semicontinuous finite submeasure. Therefore each analytic P-ideal is $F_{\sigma \delta}$ (i.e. Π_{3}^{0}) so a Borel subset of 2^{ω}. It is straightforward to see that if φ is a lower semicontinuous finite submeasure on ω then the ideal $\operatorname{Exh}(\varphi)$ is tall iff $\lim _{n \rightarrow \infty} \varphi(\{n\})=0$.

Let \mathcal{I} be an ideal on ω. A family $\mathcal{A} \subseteq \mathcal{I}^{+}$is \mathcal{I}-almost-disjoint $(\mathcal{I}$ - AD in short), if $A \cap B \in \mathcal{I}$ for each $\{A, B\} \in[\mathcal{A}]^{2}$. An \mathcal{I}-AD family \mathcal{A} is an \mathcal{I}-MAD family if for each $X \in \mathcal{I}^{+}$there exists an $A \in \mathcal{A}$ such that $X \cap A \in \mathcal{I}^{+}$, i.e. \mathcal{A} is \subseteq-maximal among the \mathcal{I}-AD families.

Denote $\mathfrak{a}(\mathcal{I})$ the minimum of the cardinalities of infinite \mathcal{I}-MAD families. In Theorem 2.2 we show that $\mathfrak{a}\left(\mathcal{I}_{h}\right)>\omega$ if \mathcal{I}_{h} is a summable ideal; but $\mathfrak{a}\left(\mathcal{Z}_{\vec{\mu}}\right)=\omega$ for any tall density ideal $\mathcal{Z}_{\vec{\mu}}$ including the density zero ideal

$$
\mathcal{Z}=\left\{A \subseteq \omega: \lim _{n \rightarrow \infty} \frac{|A \cap n|}{n}=0\right\} .
$$

On the other hand, if you define $\overline{\mathfrak{a}}(\mathcal{I})$ as minimum of the cardinalities of uncountable \mathcal{I}-MAD families then you have $\mathfrak{b} \leq \overline{\mathfrak{a}}(\mathcal{I})$ for any analytic P-ideal \mathcal{I}, and $\overline{\mathfrak{a}}\left(\mathcal{Z}_{\vec{\mu}}\right) \leq \mathfrak{a}$ for each density ideal $\mathcal{Z}_{\vec{\mu}}$ (see Theorems 2.6 and 2.8).

In Theorem 3.1 we prove under CH the existence of an uncountable Cohen-indestructible \mathcal{I}-MAD families for each analytic P-ideal \mathcal{I}.

A sequence $\left\langle A_{\alpha}: \alpha<\kappa\right\rangle \subset[\omega]^{\omega}$ is a tower if it is \subseteq^{*}-descending, i.e. $A_{\beta} \subseteq^{*} A_{\alpha}$ if $\alpha \leq \beta<\kappa$, and it has no pseudointersection, i.e. a set $X \in[\omega]^{\omega}$ such that $X \subseteq^{*} A_{\alpha}$ for each $\alpha<\kappa$. In Section 4 we show it is consistent that the continuum is arbitrarily large and for each tall analytic P-ideal \mathcal{I} there is towers of height ω_{1} whose elements are in \mathcal{I}^{*}.

Given an ideal \mathcal{I} on ω if $f, g \in \omega^{\omega}$ write $f \leq_{\mathcal{I}} g$ if $\{n \in \omega: f(n)>$ $g(n)\} \in \mathcal{I}$. As usual let $\leq^{*}=\leq_{\text {fin }}$. The unbounding and dominating numbers of the partially ordered set $\left\langle\omega^{\omega}, \leq_{\mathcal{I}}\right\rangle$, denoted by $\mathfrak{b}_{\mathcal{I}}$ and $\mathfrak{d}_{\mathcal{I}}$ are defined in the natural way, i.e. $\mathfrak{b}_{\mathcal{I}}$ is the minimal size of a $\leq_{\mathcal{I}^{-}}$ unbounded family, and $\mathfrak{o}_{\mathcal{I}}$ is the minimal size of a $\leq_{\mathcal{I}}$-dominating family. By these notations $\mathfrak{b}=\mathfrak{b}_{\text {fin }}$ and $\mathfrak{d}=\mathfrak{d}_{\text {fin }}$. In Section 5 we show that $\mathfrak{b}_{\mathcal{I}}=\mathfrak{b}$ and $\mathfrak{d}_{\mathcal{I}}=\mathfrak{d}$ for each analytic P-ideal \mathcal{I}. We also prove, in Corollary 6.8 , that for any analytic P -ideal \mathcal{I} a poset \mathbb{P} is $\leq_{\mathcal{I}}$-bounding iff it is ω^{ω}-bounding, and \mathbb{P} adds $\leq_{\mathcal{I}}$-dominating reals iff it adds dominating reals.

In Section 6 we introduce the \mathcal{I}-bounding and \mathcal{I}-dominating properties of forcing notions for Borel ideals: \mathbb{P} is \mathcal{I}-bounding iff any element of $\mathcal{I} \cap V^{\mathbb{P}}$ is contained in some element of $\mathcal{I} \cap V ; \mathbb{P}$ is \mathcal{I}-dominating iff there is an element in $\mathcal{I} \cap V^{\mathbb{P}}$ which mod-finite contains all elements of $\mathcal{I} \cap V$.

In Theorem 6.2 we show that for each tall analytic P-ideal \mathcal{I} if a forcing notion is \mathcal{I}-bounding then it is ω^{ω}-bounding, and if it is \mathcal{I} dominating then it adds dominating reals. Since the random real forcing is not \mathcal{I}-bounding for each tall summable and tall density ideal \mathcal{I} by Proposition 6.3, the converse of the first implication is false. Since a σ-centered forcing can not be \mathcal{I}-dominating for a tall analytic P-ideal \mathcal{I} by Theorem 6.4, the standard dominating real forcing \mathbb{D} witnesses that the converse of the second implication is also false.

We prove in Theorem 6.5 that the Sacks property implies the \mathcal{I} bounding property for each analytic P-ideal \mathcal{I}.

Finally, based on a theorem of Fremlin we show that the \mathcal{Z}-bounding property is equivalent to the Sacks property.

2. Around the almost disjointness number of ideals

For any ideal \mathcal{I} on ω denote $\mathfrak{a}(\mathcal{I})$ the minimum of the cardinalities of infinite \mathcal{I}-MAD families.

To start the investigation of this cardinal invariant we recall the definition of two special classes of analytic P-ideals: the density ideals and the summable ideals (see [Fa]).

Definition 2.1. Let $h: \omega \rightarrow \mathbb{R}^{+}$be a function such that $\sum_{n \in \omega} h(n)=$ ∞. The summable ideal corresponding to h is

$$
\mathcal{I}_{h}=\left\{A \subseteq \omega: \sum_{n \in A} h(n)<\infty\right\} .
$$

Let $\left\langle P_{n}: n<\omega\right\rangle$ be a decomposition of ω into pairwise disjoint nonempty finite sets and let $\vec{\mu}=\left\langle\mu_{n}: n \in \omega\right\rangle$ be a sequences of probability measures, $\mu_{n}: \mathcal{P}\left(P_{n}\right) \rightarrow[0,1]$. The density ideal generated by $\vec{\mu}$ is

$$
\mathcal{Z}_{\vec{\mu}}=\left\{A \subseteq \omega: \lim _{n \rightarrow \infty} \mu_{n}\left(A \cap P_{n}\right)=0\right\}
$$

A summable ideal \mathcal{I}_{h} is tall iff $\lim _{n \rightarrow \infty} h(n)=0$; and a density ideal $\mathcal{Z}_{\vec{\mu}}$ is tall iff

$$
\lim _{n \rightarrow \infty} \max _{i \in P_{n}} \mu_{n}(\{i\})=0
$$

Clearly the density zero ideal \mathcal{Z} is a tall density ideal, and the summable and the density ideals are proper ideals.
Theorem 2.2. (1) $\mathfrak{a}\left(\mathcal{I}_{h}\right)>\omega$ for any summable ideal \mathcal{I}_{h}.
(2) $\mathfrak{a}\left(\mathcal{Z}_{\vec{\mu}}\right)=\omega$ for any tall density ideal $\mathcal{Z}_{\vec{\mu}}$.

Proof. (1): We show that if $\left\{A_{n}: n<\omega\right\} \subseteq \mathcal{I}_{h}^{+}$is \mathcal{I}-AD then there is $B \in \mathcal{I}_{h}^{+}$such that $B \cap A_{n} \in \mathcal{I}$ for $n \in \omega$.

For each $n \in \omega$ let $B_{n} \subseteq A_{n} \backslash \cup\left\{A_{m}: m<n\right\}$ be finite such that $\sum_{i \in B_{n}} h(i)>1$, and put

$$
B=\cup\left\{B_{n}: n \in \omega\right\} .
$$

(2): Write $\vec{\mu}=\left\langle\mu_{n}: n \in \omega\right\rangle$ and μ_{n} concentrates on P_{n}. By (\dagger) we have $\lim _{n \rightarrow \infty}\left|P_{n}\right|=\infty$.

Now for each n we can choose $k_{n} \in \omega$ and a partition $\left\{P_{n, k}: k<k_{n}\right\}$ of P_{n} such that
(a) $\lim _{n \rightarrow \infty} k_{n}=\infty$,
(b) if $k<k_{n}$ then $\mu_{n}\left(P_{n, k}\right) \geq \frac{1}{2^{k+1}}$.

Put $A_{k}=\cup\left\{P_{n, k}: k<k_{n}\right\}$ for each $k \in \omega$. We show that $\left\{A_{k}: k \in \omega\right\}$ is a $\mathcal{Z}_{\vec{\mu}}$-MAD family.

If $k_{n}>k$ then $\mu_{n}\left(A_{k} \cap P_{n}\right)=\mu_{n}\left(P_{n, k}\right) \geq \frac{1}{2^{k+1}}$. Since for an arbitrary k for all but finitely many n we have $k_{n}>k$ it follows that

$$
\limsup _{n \rightarrow \infty} \mu_{n}\left(A_{k} \cap P_{n}\right)=\limsup _{n \rightarrow \infty} \mu_{n}\left(P_{n, k}\right) \geq \limsup _{n \rightarrow \infty} \frac{1}{2^{k+1}}=\frac{1}{2^{k+1}}>0,
$$

thus $A_{k} \in \mathcal{Z}_{\vec{\mu}}^{+}$.
Assume that $X \in \mathcal{Z}_{\vec{\mu}}^{+}$. Pick $\varepsilon>0$ with $\limsup _{n \rightarrow \infty} \mu_{n}\left(X \cap P_{n}\right)>\varepsilon$. For a large enough k we have $\frac{1}{2^{k+1}}<\frac{\varepsilon}{2}$ so if $k<k_{n}$ then

$$
\mu_{n}\left(P_{n} \backslash \cup\left\{P_{n, i}: i \leq k\right\}\right) \leq \frac{1}{2^{k+1}}<\frac{\varepsilon}{2} .
$$

So for each large enough n there is $i_{n} \leq k$ such that $\mu_{n}\left(X \cap P_{n, i_{n}}\right)>$ $\frac{\varepsilon}{2(k+1)}$. Then $i_{n}=i$ for infinitely many n, so $\lim \sup _{n \rightarrow \infty} \mu_{n}\left(X \cap A_{i}\right) \geq$ $\frac{\varepsilon}{2(k+1)}$, and so $X \cap A_{i} \in \mathcal{Z}_{\vec{\mu}}^{+}$.

This Theorem gives new proof of the following well-known fact:
Corollary 2.3. The density zero ideal \mathcal{Z} is not a summable ideal.
Given two ideals \mathcal{I} and \mathcal{J} on ω write $\mathcal{I} \leq_{\text {RK }} \mathcal{J}$ (see [Ru]) iff there is a function $f: \omega \rightarrow \omega$ such that

$$
\mathcal{I}=\left\{I \subseteq \omega: f^{-1} I \in \mathcal{J}\right\}
$$

and write $\mathcal{I} \leq_{\mathrm{RB}} \mathcal{J}$ (see [LaZh]) iff there is a finite-to-one function $f: \omega \rightarrow \omega$ such that

$$
\mathcal{I}=\left\{I \subseteq \omega: f^{-1} I \in \mathcal{J}\right\}
$$

The following Observations imply that there are \mathcal{I}-MAD families of cardinality \mathfrak{c} for each analytic P-ideal \mathcal{I}.
Observation 2.4. Assume that \mathcal{I} and \mathcal{J} are ideals on $\omega, \mathcal{I} \leq_{R K} \mathcal{J}$ witnessed by a function $f: \omega \rightarrow \omega$. If \mathcal{A} is an \mathcal{I} - $A D$ family then $\left\{f^{-1} A: A \in \mathcal{A}\right\}$ is a $\mathcal{J}-A D$ family.
Observation 2.5. fin $\leq_{\mathrm{RB}} \mathcal{I}$ for any analytic P-ideal \mathcal{I}.
Proof. Let $\mathcal{I}=\operatorname{Exh}(\varphi)$ for some lower semicontinuous finite submeasure φ on ω. Since $\omega \notin \mathcal{I}$ we have $\lim _{n \rightarrow \infty} \varphi(\omega \backslash n)=\varepsilon>0$. Hence by the lower semicontinuous property of φ for each $n>0$ there is $m>n$ such that $\varphi([n, m))>\varepsilon / 2$.

So there is a partition $\left\{I_{n}: n<\omega\right\}$ of ω into finite pieces such that $\varphi\left(I_{n}\right)>\varepsilon / 2$ for each $n \in \omega$. Define the function $f: \omega \rightarrow \omega$ by the stipulation $f^{\prime \prime} I_{n}=\{n\}$. Then f witnesses fin $\leq_{\mathrm{RB}} \mathcal{I}$.

For any analytic P-ideal \mathcal{I} denote $\overline{\mathfrak{a}}(\mathcal{I})$ the minimum of the cardinalities of uncountable \mathcal{I}-MAD families.

Clearly $\mathfrak{a}(\mathcal{I})>\omega$ implies $\mathfrak{a}(\mathcal{I})=\overline{\mathfrak{a}}(\mathcal{I})$, especially $\mathfrak{a}\left(\mathcal{I}_{h}\right)=\overline{\mathfrak{a}}\left(\mathcal{I}_{h}\right)$ for summable ideals.
Theorem 2.6. $\overline{\mathfrak{a}}\left(\mathcal{Z}_{\vec{\mu}}\right) \leq \mathfrak{a}$ for each density ideal $\mathcal{Z}_{\vec{\mu}}$.
Proof. Let $f: \omega \rightarrow \omega$ be the finite-to-one function defined by $f^{-1}\{n\}=$ P_{n} where $\vec{\mu}=\left\langle\mu_{n}: n \in \omega\right\rangle$ and $\mu_{n}: \mathcal{P}\left(P_{n}\right) \rightarrow[0,1]$. Specially f witnesses fin $\leq_{\mathrm{RB}} \mathcal{Z}_{\vec{\mu}}$.

Let \mathcal{A} be an uncountable (fin-)MAD family. We show that $f^{-1}[\mathcal{A}]=$ $\left\{f^{-1} A: A \in \mathcal{A}\right\}$ is a $\mathcal{Z}_{\vec{\mu}^{-}}$-MAD family.

By Observation 2.4, $f^{-1}[\mathcal{A}]$ is a $\mathcal{Z}_{\vec{\mu}}$ - AD family.
To show the maximality let $X \in \mathcal{Z}_{\vec{\mu}}^{+}$be arbitrary, limsup $\operatorname{sum}_{n \rightarrow \infty} \mu_{n}(X \cap$ $\left.P_{n}\right)=\varepsilon>0$. Thus

$$
J=\left\{n \in \omega: \mu_{n}\left(X \cap P_{n}\right)>\varepsilon / 2\right\}
$$

is infinite. So there is $A \in \mathcal{A}$ such that $A \cap J$ is infinite.

Then $f^{-1} A \in f^{-1}[\mathcal{A}]$ and $X \cap f^{-1} A \in \mathcal{Z}_{\vec{\mu}}^{+}$because there are infinitely many n such that we have $P_{n} \subseteq f^{-1} A$ and $\mu_{n}\left(X \cap P_{n}\right)>\varepsilon / 2$.

Problem 2.7. Does $\overline{\mathfrak{a}}(\mathcal{I}) \leq \mathfrak{a}$ hold for each analytic P-ideal \mathcal{I} ?
Theorem 2.8. $\mathfrak{b} \leq \overline{\mathfrak{a}}(\mathcal{I})$ provided that \mathcal{I} is an analytic P-ideal.
Remark. If $\mathcal{X} \subset[\omega]^{\omega}$ is an infinite almost disjoint family then there is a tall ideal \mathcal{I} such that \mathcal{X} is \mathcal{I}-MAD. So the Theorem above does not hold for an arbitrary tall ideal on ω.

Proof. $\mathcal{I}=\operatorname{Exh}(\varphi)$ for some lower semicontinuous finite submeasure φ.
Let \mathcal{A} be an uncountable \mathcal{I}-AD family of cardinality smaller than \mathfrak{b}. We show that \mathcal{A} is not maximal.

There exists an $\varepsilon>0$ such that the set

$$
\mathcal{A}_{\varepsilon}=\left\{A \in \mathcal{A}: \lim _{n \rightarrow \infty} \varphi(A \backslash n)>\varepsilon\right\}
$$

is uncountable. Let $\mathcal{A}^{\prime}=\left\{A_{n}: n \in \omega\right\} \subseteq \mathcal{A}_{\varepsilon}$ be a set of pairwise distinct elements of $\mathcal{A}_{\varepsilon}$. We can assume that these sets are pairwise disjoint. For each $A \in \mathcal{A} \backslash \mathcal{A}^{\prime}$ choose a function $f_{A} \in \omega^{\omega}$ such that

$$
\left(*_{A}\right) \varphi\left(\left(A \cap A_{n}\right) \backslash f_{A}(n)\right)<2^{-n} \text { for each } n \in \omega .
$$

Using the assumption $|\mathcal{A}|<\mathfrak{b}$ there exists a strictly increasing function $f \in \omega^{\omega}$ such that $f_{A} \leq^{*} f$ for each $A \in \mathcal{A} \backslash \mathcal{A}^{\prime}$. For each n pick $g(n)>f(n)$ such that $\varphi\left(A_{n} \cap[f(n), g(n))\right)>\varepsilon$, and let

$$
X=\bigcup_{n \in \omega}\left(A_{n} \cap[f(n), g(n))\right) .
$$

Clearly $X \in \mathcal{Z}_{\vec{\mu}}^{+}$because for each $n<\omega$ there is m such that $A_{m} \cap$ $[f(m), g(m)) \subseteq X \backslash n$ and so $\varphi(X \backslash n) \geq \varphi\left(A_{m} \cap[f(m), g(m))\right)>\varepsilon$, i.e. $\lim _{n \rightarrow \infty} \varphi(X \backslash n) \geq \varepsilon$.

We have to show that $X \cap A \in \mathcal{Z}_{\vec{\mu}}$ for each $A \in \mathcal{A}$. If $A=A_{n}$ for some n then $X \cap A=X \cap A_{n}=A_{n} \cap[f(n), g(n))$, i.e. the intersection is finite.

Assume now that $A \in \mathcal{A} \backslash \mathcal{A}^{\prime}$. Let $\delta>0$. We show that if k is large enough then $\varphi((A \cap X) \backslash k)<\delta$.

There is $N \in \omega$ such that $2^{-N+1}<\delta$ and $f_{A}(n) \leq f(n)$ for each $n \geq N$.

Let k be so large that k contains the finite set $\bigcup_{n<N}[f(n), g(n))$.

Now $(X \cap A) \backslash k=\bigcup_{n \in \omega}\left(A_{n} \cap A \cap[f(n), g(n))\right) \backslash k$ and $\left(A_{n} \cap A \cap\right.$ $[f(n), g(n))) \backslash k=\emptyset$ if $n<N$ so

$$
\begin{aligned}
(X \cap A) \backslash k=\bigcup_{n \geq N}\left(A_{n} \cap A \cap[f(n), g(n))\right) \backslash k & \subseteq \\
& \bigcup_{n \geq N}\left(\left(A_{n} \cap A\right) \backslash f(n)\right) \subseteq \bigcup_{n \geq N}\left(\left(A_{n} \cap A\right) \backslash f_{A}(n)\right) .
\end{aligned}
$$

Thus by $\left(*_{A}\right)$ we have

$$
\varphi((X \cap A) \backslash k) \leq \sum_{n \geq N} \varphi\left(A_{n} \cap A \backslash f_{A}(n)\right) \leq \sum_{n \geq N} \frac{1}{2^{n}}=2^{-N+1}<\delta
$$

3. Cohen-indestructible \mathcal{I}-mad families

If φ is a lower semicontinuous finite submeasure on ω then clearly φ is determined by $\varphi \upharpoonright[\omega]^{<\omega}$. Using this observation one can define forcing indestructibility of \mathcal{I}-MAD families for an analytic P-ideal \mathcal{I}. The following Theorem is a modification of Kunen's proof for existence of Cohen-indestructible MAD family from CH (see [Ku] Ch. VIII Th. 2.3.).

Theorem 3.1. Assume CH. For each analytic P-ideal I then there is an uncountable Cohen-indestructible \mathcal{I}-MAD family.

Proof. We will define the uncountable Cohen-indestructible \mathcal{I}-MAD family $\left\{A_{\xi}: \xi<\omega_{1}\right\} \subseteq \mathcal{I}^{+}$by recursion on $\xi \in \omega_{1}$. The family $\left\{A_{\xi}: \xi<\omega_{1}\right\}$ will be fin-AD as well. Our main concern is that we do have $\mathfrak{a}(\mathcal{I})>\omega$ so it is not automatic that $\left\{A_{\eta}: \eta<\xi\right\}$ is not maximal for $\xi<\omega_{1}$.

Denote \mathbb{C} the Cohen forcing. Let $\mathcal{I}=\operatorname{Exh}(\varphi)$ be an analytic P-ideal. Let $\left\{\left\langle p_{\xi}, \dot{X}_{\xi}, \delta_{\xi}\right\rangle: \omega \leq \xi<\omega_{1}\right\}$ be an enumeration of all triples $\langle p, \dot{X}, \delta\rangle$ such that $p \in \mathbb{C}, \dot{X}$ is a nice name for a subset of ω, and δ is a positive rational number.

Write $\varepsilon=\lim _{n \rightarrow \infty} \varphi(\omega \backslash n)>0$. Partition ω into infinite sets $\left\{A_{m}\right.$: $m<\omega\}$ such that $\lim _{n \rightarrow \infty} \varphi\left(A_{m} \backslash n\right)=\varepsilon$ for each $m<\omega$.

Assume $\xi \geq \omega$ and we have $A_{\eta} \in \mathcal{I}^{+}$for $\eta<\xi$ such that $\left\{A_{\eta}: \eta<\xi\right\}$ is a fin-AD so especially an \mathcal{I} - $A D$ family.
Claim: There is $X \in \mathcal{I}^{+}$such that $\left|X \cap A_{\zeta}\right|<\omega$ for $\zeta<\xi$.
Proof of the Claim. Write $\xi=\left\{\zeta_{i}: i<\omega\right\}$. Recursion on $j \in \omega$ we can choose $x_{j} \in\left[A_{\ell_{j}}\right]^{<\omega}$ for some $\ell_{j} \in \omega$ such that
(i) $\varphi\left(x_{j}\right) \geq \varepsilon / 2$,
(ii) $x_{j} \cap\left(\cup_{i \leq j} A_{\zeta_{i}}\right)=\emptyset$.

Assume that $\left\{x_{i}: i<j\right\}$ is chosen. Pick $\ell_{j} \in \omega \backslash\left\{\zeta_{i}: i<j\right\}$. Let $m \in \omega$ such that $A_{\ell_{j}} \cap \cup\left\{A_{\zeta_{i}}: i \leq j\right\} \subseteq m$. Since $\varphi\left(A_{\ell_{j}} \backslash m\right) \geq \varepsilon$ there is $x_{j} \in\left[A_{\ell_{j}} \backslash m\right]^{<\omega}$ with $\varphi\left(x_{j}\right) \geq \varepsilon / 2$.

Let $X=\cup\left\{x_{j}: j<\omega\right\}$. Then $\left|A_{\zeta} \cap X\right|<\omega$ for $\zeta<\xi$ and $\lim _{n \rightarrow \infty}(X \backslash n) \geq \varepsilon / 2$.

If p_{ξ} does not force (a) and (b) below then let A_{ξ} be X from the Claim.
(a) $\lim _{n \rightarrow \infty} \check{\varphi}\left(\dot{X}_{\xi} \backslash n\right)>\check{\delta}_{\xi}$,
(b) $\forall \eta<\check{\xi} \dot{X}_{\xi} \cap \check{A}_{\eta} \in \mathcal{I}$.

Assume $p_{\xi} \Vdash(\mathrm{a}) \wedge(\mathrm{b})$. Let $\left\{B_{k}^{\xi}: k \in \omega\right\}=\left\{A_{\eta}: \eta<\xi\right\}$ and $\left\{p_{k}^{\xi}: k \in \omega\right\}=\left\{p^{\prime} \in \mathbb{C}: p^{\prime} \leq p_{\xi}\right\}$ be enumerations. Clearly for each $k \in \omega$ we have

$$
p_{k}^{\xi} \Vdash \lim _{n \rightarrow \infty} \check{\varphi}\left(\left(\dot{X}_{\xi} \backslash \cup\left\{\check{B}_{l}^{\xi}: l \leq \check{k}\right\}\right) \backslash n\right)>\check{\delta}_{\xi},
$$

so we can choose a $q_{k}^{\xi} \leq p_{k}^{\xi}$ and a finite $a_{k}^{\xi} \subseteq \omega$ such that $\varphi\left(a_{k}^{\xi}\right)>\delta_{\xi}$ and $q_{k}^{\xi} \Vdash \check{a}_{k}^{\xi} \subseteq\left(\dot{X}_{\xi} \backslash \cup\left\{\check{B}_{l}^{\xi}: l \leq \check{k}\right\}\right) \backslash \check{k}$. Let $A_{\xi}=\cup\left\{a_{k}^{\xi}: k \in \omega\right\}$. Clearly $A_{\xi} \in \mathcal{I}^{+}$and $\left\{A_{\eta}: \eta \leq \xi\right\}$ is a fin-AD family.

Thus $\mathcal{A}=\left\{A_{\xi}: \xi<\omega_{1}\right\} \subseteq \mathcal{I}^{+}$is a fin-AD family.
We show that \mathcal{A} is a Cohen-indestructible \mathcal{I}-MAD. Assume otherwise there is a ξ such that $p_{\xi} \Vdash \lim _{n \rightarrow \infty} \check{\varphi}\left(\dot{X}_{\xi} \backslash n\right)>\check{\delta}_{\xi} \wedge \forall \eta<\omega_{1} \dot{X}_{\xi} \cap \check{A}_{\eta} \in \mathcal{I}$, specially $p_{\xi} \Vdash(\mathrm{a}) \wedge(\mathrm{b})$. There is a $p_{k}^{\xi} \leq p_{\xi}$ and an N such that $p_{k}^{\xi} \Vdash$ $\check{\varphi}\left(\left(\dot{X}_{\xi} \cap \check{A}_{\xi}\right) \backslash \check{N}\right)<\check{\delta}_{\xi}$. We can assume $k \geq N$, so $p_{k}^{\xi} \Vdash \check{\varphi}\left(\left(\dot{X}_{\xi} \cap \check{A}_{\xi}\right) \backslash \check{k}\right)<$ $\check{\delta}_{\xi}$. By the choice of q_{k}^{ξ} and a_{k}^{ξ} we have $q_{k}^{\xi} \Vdash \check{a}_{k}^{\xi} \subseteq\left(\dot{X}_{\xi} \cap \check{A}_{\xi}\right) \backslash \check{k}$, so $q_{k}^{\xi} \Vdash \check{\varphi}\left(\left(\dot{X}_{\xi} \cap \check{A}_{\xi}\right) \backslash \check{k}\right)>\check{\delta}_{\xi}$, contradiction.

4. Towers in \mathcal{I}^{*}

Let \mathcal{I} be an ideal on ω. $\mathrm{A} \subseteq^{*}$-decreasing sequence $\left\langle A_{\alpha}: \alpha<\kappa\right\rangle$ is a tower in \mathcal{I}^{*} if (a) it is a tower (i.e. there is no $X \in[\omega]^{\omega}$ with $X \subseteq^{*} A_{\alpha}$ for $\alpha<\kappa$), and (b) $A_{\alpha} \in \mathcal{I}^{*}$ for $\alpha<\kappa$. Under CH it is straightforward to construct towers in \mathcal{I}^{*} for each tall analytic P-ideal \mathcal{I}. The existence of such towers is consistent with $2^{\omega}>\omega_{1}$ as well by the Theorem 4.2 below. Denote \mathbb{C}_{α} the standard forcing adding α Cohen reals by finite conditions.

Lemma 4.1. Let $\mathcal{I}=\operatorname{Exh}(\varphi)$ be a tall analytic P-ideal in the ground model V. Then there is a set $X \in V^{\mathbb{C}_{1}} \cap \mathcal{I}$ such that $|X \cap S|=\omega$ for each $S \in[\omega]^{\omega} \cap V$.

Proof. Since \mathcal{I} is tall we have $\lim _{n \rightarrow \infty} \varphi(\{n\})=0$. Fix a partition $\left\langle I_{n}: n \in \omega\right\rangle$ of ω into finite intervals such that $\varphi(\{x\})<\frac{1}{2^{n}}$ for $x \in I_{n+1}$ (we can not say anything about $\varphi(\{x\})$ for $x \in I_{0}$). Then $X^{\prime} \in \mathcal{I}$ whenever $\left|X^{\prime} \cap I_{n}\right| \leq 1$ for each n.

Let $\left\{i_{k}^{n}: k<k_{n}\right\}$ be the increasing enumeration of I_{n}. Our forcing \mathbb{C} adds a Cohen real $c \in \omega^{\omega}$ over V. Let

$$
X_{\alpha}=\left\{i_{k}^{n}: c(n) \equiv k \bmod k_{n}\right\} \in V^{\mathbb{C}} \cap \mathcal{I} .
$$

A trivial density argument shows that $\left|X_{\alpha} \cap S\right|=\omega$ for each $S \in$ $V \cap[\omega]^{\omega}$.
Theorem 4.2. $\Vdash_{\mathbb{C}_{\omega_{1}}}$ "There exists a tower in \mathcal{I}^{*} for each tall analytic P-ideal I."
Proof. Let V be a countable transitive model and G be a $\mathbb{C}_{\omega_{1}}$-generic filter over V. Let $\mathcal{I}=\operatorname{Exh}(\varphi)$ be a tall analytic P-ideal in $V[G]$ with some lower semicontinuous finite submeasure φ on ω. There is a $\delta<\omega_{1}$ such that $\varphi \upharpoonright[\omega]^{<\omega} \in V\left[G_{\delta}\right]$ where $G_{\delta}=G \cap \mathbb{C}_{\delta}$, so we can assume $\varphi \upharpoonright[\omega]^{<\omega} \in V$.

Work in $V[G]$ recursion on ω_{1} we construct the tower $\bar{A}=\left\langle A_{\alpha}: \alpha<\right.$ $\left.\omega_{1}\right\rangle$ in \mathcal{I}^{*} such that $\bar{A} \upharpoonright \alpha \in V\left[G_{\alpha}\right]$.

Because \mathcal{I} contains infinite elements we can construct in V a sequence $\left\langle A_{n}: n \in \omega\right\rangle$ in \mathcal{I}^{*} which is strictly \subseteq^{*}-descending, i.e. $\left|A_{n} \backslash A_{n+1}\right|=\omega$ for $n \in \omega$. Assume $\left\langle A_{\xi}: \xi<\alpha\right\rangle$ are done.

Since \mathcal{I} is a P-ideal there is $A_{\alpha}^{\prime} \in \mathcal{I}^{*}$ with $A_{\alpha}^{\prime} \subseteq^{*} A_{\beta}$ for $\beta<\alpha$.
By lemma 4.1 there is a set $X_{\alpha} \in V\left[G_{\alpha+1}\right] \cap \mathcal{I}$ such that $X_{\alpha} \cap S \neq \emptyset$ for each $S \in[\omega]^{\omega} \cap V\left[G_{\alpha}\right]$.

Let $A_{\alpha}=A_{\alpha}^{\prime} \backslash X_{\alpha} \in V\left[G_{\alpha+1}\right] \cap \mathcal{I}^{*}$ so $S \not \not 一 ⿻^{*} A_{\alpha}$ for any $S \in V\left[G_{\alpha}\right] \cap$ $[\omega]^{\omega}$. Hence $V[G] \models "\left\langle A_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a tower in \mathcal{I}^{*}.
Problem 4.3. Do there exist towers in \mathcal{I}^{*} for some tall analytic P-ideal \mathcal{I} in ZFC?

5. Unbounding and dominating numbers of ideals

A supported relation (see $[\mathrm{Vo}]$) is a triple $\mathcal{R}=(A, R, B)$ where $R \subseteq$ $A \times B, \operatorname{dom}(R)=A, \operatorname{ran}(R)=B$, and we always assume that for each $b \in B$ there is an $a \in A$ such that $\langle a, b\rangle \notin R$.

The unbounding and dominating numbers of \mathcal{R} :

$$
\begin{gathered}
\mathfrak{b}(\mathcal{R})=\min \left\{\left|A^{\prime}\right|: A^{\prime} \subseteq A \wedge \forall b \in B A^{\prime} \nsubseteq R^{-1}\{b\}\right\}, \\
\mathfrak{d}(\mathcal{R})=\min \left\{\left|B^{\prime}\right|: B^{\prime} \subseteq B \wedge A=R^{-1} B^{\prime}\right\} .
\end{gathered}
$$

For example $\mathfrak{b}_{\mathcal{I}}=\mathfrak{b}\left(\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega}\right)$ and $\mathfrak{d}_{\mathcal{I}}=\mathfrak{d}\left(\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega}\right)$. Note that $\mathfrak{b}(\mathcal{R})$ and $\mathfrak{d}(\mathcal{R})$ are defined for each \mathcal{R}, but in general $\mathfrak{b}(\mathcal{R}) \leq \mathfrak{d}(\mathcal{R})$ does not hold.

We recall the definition of Galois-Tukey connection of relations.
Definition 5.1. ([Vo]) Let $\mathcal{R}_{1}=\left(A_{1}, R_{1}, B_{1}\right)$ and $\mathcal{R}_{2}=\left(A_{2}, R_{2}, B_{2}\right)$ be supported relations. A pair of functions $\phi: A_{1} \rightarrow A_{2}, \psi: B_{2} \rightarrow B_{1}$ is a Galois-Tukey connection from \mathcal{R}_{1} to \mathcal{R}_{2}, in notation $(\phi, \psi): \mathcal{R}_{1} \preceq \mathcal{R}_{2}$ if $a_{1} R_{1} \psi\left(b_{2}\right)$ whenever $\phi\left(a_{1}\right) R_{2} b_{2}$. In a diagram:

$$
\begin{array}{rll}
\psi\left(b_{2}\right) \in B_{1} & \psi & B_{2} \ni b_{2} \\
R_{1} & \Longleftarrow & R_{2} \\
a_{1} \in A_{1} & \stackrel{\phi}{\longleftrightarrow} & A_{2} \ni \phi\left(a_{1}\right)
\end{array}
$$

We write $\mathcal{R}_{1} \preceq \mathcal{R}_{2}$ if there is a Galois-Tukey connection from \mathcal{R}_{1} to \mathcal{R}_{2}. If $\mathcal{R}_{1} \preceq \mathcal{R}_{2}$ and $\mathcal{R}_{2} \preceq \mathcal{R}_{1}$ also hold then we say \mathcal{R}_{1} and \mathcal{R}_{2} are Galois-Tukey equivalent, in notation $\mathcal{R}_{1} \equiv \mathcal{R}_{2}$.

Fact 5.2. If $\mathcal{R}_{1} \preceq \mathcal{R}_{2}$ then $\mathfrak{b}\left(\mathcal{R}_{1}\right) \geq \mathfrak{b}\left(\mathcal{R}_{2}\right)$ and $\mathfrak{d}\left(\mathcal{R}_{1}\right) \leq \mathfrak{d}\left(\mathcal{R}_{2}\right)$.
Theorem 5.3. If $\mathcal{I} \leq_{\mathrm{RB}} \mathcal{J}$ then $\left(\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega}\right) \equiv\left(\omega^{\omega}, \leq_{\mathcal{J}}, \omega^{\omega}\right)$.
Proof. Fix a finite-to-one function $f: \omega \rightarrow \omega$ witnessing $\mathcal{I} \leq_{\mathrm{RB}} \mathcal{J}$.
Define $\phi, \psi: \omega^{\omega} \rightarrow \omega^{\omega}$ as follows:

$$
\begin{gathered}
\phi(x)(i)=\max \left(x^{\prime \prime} f^{-1}\{i\}\right), \\
\psi(y)(j)=y(f(j)) .
\end{gathered}
$$

We prove two claims.
Claim 5.3.1. $(\phi, \psi):\left(\omega^{\omega}, \leq_{\mathcal{J}}, \omega^{\omega}\right) \preceq\left(\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega}\right)$.
Proof of the claim. We show that if $\phi(x) \leq_{\mathcal{I}} y$ then $x \leq_{\mathcal{J}} \psi(y)$. Indeed, $I=\{i: \phi(x)(i)>y(i)\} \in \mathcal{I}$. Assume that $f(j)=i \notin I$. Then $\phi(x)(i)=\max \left(x^{\prime \prime} f^{-1}\{i\}\right) \leq y(i)$. Since $y(i)=\psi(y)(j)$, so

$$
x(j) \leq \max \left(x^{\prime \prime} f^{-1}\{f(j)\}\right) \leq y(f(j))=\psi(y)(j)
$$

Since $f^{-1} I \in \mathcal{J}$ this yields $x \leq_{\mathcal{J}} \psi(y)$.
Claim 5.3.2. $(\psi, \phi):\left(\omega^{\omega}, \leq_{\mathcal{I}}, \omega^{\omega}\right) \preceq\left(\omega^{\omega}, \leq_{\mathcal{J}}, \omega^{\omega}\right)$.
Proof of the claim. We show that if $\psi(y) \leq_{\mathcal{J}} x$ then $y \leq_{\mathcal{I}} \phi(x)$. Assume on the contrary that $y \not \mathbb{Z}_{\mathcal{I}} \phi(x)$. Then $A=\{i \in \omega: y(i)>$ $\phi(x)(i)\} \in \mathcal{I}^{+}$. By definition of ϕ, we have $A=\left\{i: y(i)>\max \left(x^{\prime \prime} f^{-1}\{i\}\right)\right\}$.

Let $B=f^{-1} A \in \mathcal{J}^{+}$. For $j \in B$ we have $f(j) \in A$ and so

$$
\psi(y)(j)=y(f(j))>\phi(x)(f(j))=\max \left(x^{\prime \prime} f^{-1}\{f(j)\}\right) \geq x(j)
$$

Hence $\psi(y) \not \mathbb{L}_{\mathcal{I}} x$, contradiction.

These claims prove the statement of the Theorem, so we are done.

By Fact 5.2 we have:
Corollary 5.4. If $\mathcal{I} \leq_{\mathrm{RB}} \mathcal{J}$ holds then $\mathfrak{b}_{\mathcal{I}}=\mathfrak{b}_{\mathcal{J}}$ and $\mathfrak{d}_{\mathcal{I}}=\mathfrak{d}_{\mathcal{J}}$.
By Observation 2.5 this yields:
Corollary 5.5. If \mathcal{I} is an analytic P-ideal then $\left(\omega^{\omega}, \leq^{*}, \omega^{\omega}\right) \equiv\left(\omega^{\omega}, \leq_{\mathcal{J}}\right.$, ω^{ω}), and $\mathfrak{b}_{\mathcal{I}}=\mathfrak{b}$ and $\mathfrak{d}_{\mathcal{I}}=\mathfrak{d}$.

6. \mathcal{I}-bounding and \mathcal{I}-dominating forcing notions

Definition 6.1. Let \mathcal{I} be a Borel ideal on ω. A forcing notion \mathbb{P} is \mathcal{I}-bounding if

$$
\Vdash_{\mathbb{P}} \forall A \in \mathcal{I} \exists B \in \mathcal{I} \cap V A \subseteq B
$$

\mathbb{P} is \mathcal{I}-dominating if

$$
\Vdash_{\mathbb{P}} \exists B \in \mathcal{I} \forall A \in \mathcal{I} \cap V A \subseteq^{*} B
$$

Theorem 6.2. Let \mathcal{I} be a tall analytic P-ideal. If \mathbb{P} is \mathcal{I}-bounding then \mathbb{P} is ω^{ω}-bounding as well; if \mathbb{P} is \mathcal{I}-dominating then \mathbb{P} adds dominating reals.

Proof. Assume that $\mathcal{I}=\operatorname{Exh}(\varphi)$ for some lower semicontinuous finite submeasure φ. For $A \in \mathcal{I}$ let

$$
d_{A}(n)=\min \left\{k \in \omega: \varphi(A \backslash k)<2^{-n}\right\} .
$$

Clearly if $A \subseteq B \in \mathcal{I}$ then $d_{A} \leq d_{B}$.
It is enough to show that $\left\{d_{A}: A \in \mathcal{I}\right\}$ is cofinal in $\left\langle\omega^{\omega}, \leq^{*}\right\rangle$. Let $f \in$ ω^{ω}. Since \mathcal{I} is a tall ideal we have $\lim _{k \rightarrow \infty} \varphi(\{k\})=0$ but $\lim _{m \rightarrow \infty}(\omega \backslash$ $m)=\varepsilon>0$. Thus for all but finite $n \in \omega$ we can choose a finite set $A_{n} \subseteq \omega \backslash f(n)$ such that $2^{-n} \leq \varphi\left(A_{n}\right)<2^{-n+1}$ so $A=\cup\left\{A_{n}: n \in \omega\right\} \in$ \mathcal{I} and $f \leq^{*} d_{A}$.

Why? We can assume if $k \geq f(n)$ then $\varphi(\{k\})<2^{-n}$. Let n be so large such that $2^{-n}<\varepsilon$. Now if there is no a suitable A_{n} then $\varphi(\omega \backslash f(n)) \leq 2^{-n}<\varepsilon$, contradiction.

The converse of the first implication of Theorem 6.2 is not true by the following Proposition.

Proposition 6.3. The random forcing is not \mathcal{I}-bounding for any tall summable and tall density ideal \mathcal{I}.

Proof. Denote \mathbb{B} the random forcing and λ the Lebesgue-measure.
If $\mathcal{I}=\mathcal{I}_{h}$ is a tall summable ideal then we can chose pairwise disjoint sets $H(n) \in[\omega]^{\omega}$ such that $\sum_{l \in H(n)} h(l)=1$ and $\max \{h(l): l \in$ $H(n)\}<2^{-n}$ for each $n \in \omega$. Let $H(n)=\left\{l_{k}^{n}: k \in \omega\right\}$. For each n fix a partition $\left\{\left[B_{k}^{n}\right]: k \in \omega\right\}$ of \mathbb{B} such that $\lambda\left(B_{k}^{n}\right)=h\left(l_{k}^{n}\right)$ for each $k \in \omega$. Let \dot{X} be a \mathbb{B}-name such that $\Vdash_{\mathbb{B}} \dot{X}=\left\{\check{l}_{k}^{n}:\left[\check{B_{k}^{n}}\right] \in \dot{G}\right\}$. Clearly $\Vdash_{\mathbb{B}} \dot{X} \in \mathcal{I}_{h}$. \dot{X} shows that \mathbb{B} is not \mathcal{I}_{h}-bounding.

Assume on the contrary that there is a $[B] \in \mathbb{B}$ and an $A \in \mathcal{I}_{h}$ such that $[B] \Vdash \dot{X} \subseteq \check{A}$. There is an $n \in \omega$ such that

$$
\sum_{l_{k}^{n} \in A} \lambda\left(B_{k}^{n}\right)=\sum_{l_{k}^{n} \in A} h\left(l_{k}^{n}\right)<\lambda(B) .
$$

Choose a k such that $l_{k}^{n} \notin A$ and $\left[B_{k}^{n}\right] \wedge[B] \neq[\emptyset]$. We have $\left[B_{k}^{n}\right] \wedge[B] \Vdash$ $\check{l}_{k}^{n} \in \dot{X} \backslash \check{A}$, contradiction.

If $\mathcal{I}=\mathcal{Z}_{\vec{\mu}}$ is a tall density ideal then for each n fix a partition $\left\{\left[B_{k}^{n}\right]: k \in P_{n}\right\}$ of \mathbb{B} such that $\lambda\left(B_{k}^{n}\right)=\mu_{n}(\{k\})$ for each k. Let \dot{X} be a \mathbb{B}-name such that $\Vdash_{\mathbb{B}} \dot{X}=\left\{\check{k}:\left[B_{k}^{n}\right] \in \dot{G}\right\}$. Clearly $\Vdash_{\mathbb{B}} \dot{X} \in \mathcal{Z}_{\vec{\mu}}$. \dot{X} shows that \mathbb{B} is not $\mathcal{Z}_{\vec{\mu}}$-bounding.

Assume on the contrary that there is a $[B] \in \mathbb{B}$ and an $A \in \mathcal{Z}_{\vec{\mu}}$ such that $[B] \Vdash \dot{X} \subseteq \check{A}$. There is an $n \in \omega$ such that

$$
\sum_{k \in A \cap P_{n}} \lambda\left(B_{k}^{n}\right)=\mu_{n}\left(A \cap P_{n}\right)<\lambda(B) .
$$

Choose a $k \in P_{n} \backslash A$ such that $\left[B_{k}^{n}\right] \wedge[B] \neq[\emptyset]$. We have $\left[B_{k}^{n}\right] \wedge[B] \Vdash$ $\check{k} \in \dot{X} \backslash \check{A}$, contradiction.

The converse of the second implication of Theorem 6.2 is not true as well: the Hechler forcing is a counterexample according to the following Theorem.

Theorem 6.4. If \mathbb{P} is σ-centered then \mathbb{P} is not \mathcal{I}-dominating for any tall analytic P-ideal \mathcal{I}.

Proof. Assume that $\mathcal{I}=\operatorname{Exh}(\varphi)$ for some lower semicontinuous finite submeasure φ. Let $\varepsilon=\lim _{n \rightarrow \infty} \varphi(\omega \backslash n)>0$.

Let $\mathbb{P}=\cup\left\{C_{n}: n \in \omega\right\}$ where C_{n} is centered for each n. Assume on the contrary that $\Vdash_{\mathbb{P}} \dot{X} \in \mathcal{I} \wedge \forall A \in \mathcal{I} \cap V A \subseteq^{*} \dot{X}$ for some \mathbb{P}-name \dot{X}.

For each $A \in \mathcal{I}$ choose a $p_{A} \in \mathbb{P}$ and a $k_{A} \in \omega$ such that

$$
\begin{equation*}
p_{A} \Vdash \check{A} \backslash \check{k}_{A} \subseteq \dot{X} \wedge \varphi\left(\dot{X} \backslash \check{k}_{A}\right)<\varepsilon / 2 . \tag{०}
\end{equation*}
$$

For each $n, k \in \omega$ let $\mathcal{C}_{n, k}=\left\{A \in \mathcal{I}: p_{A} \in C_{n} \wedge k_{A}=k\right\}$, and let $B_{n, k}=\bigcup \mathcal{C}_{n, k}$. We show that for each n and k

$$
\varphi\left(B_{n, k} \backslash k\right) \leq \varepsilon / 2
$$

Assume indirectly $\varphi\left(B_{n, k} \backslash k\right)>\varepsilon / 2$ for some n and k. There is a k^{\prime} such that $\varphi\left(B_{n, k} \cap\left[k, k^{\prime}\right)\right)>\varepsilon / 2$ and there is a finite $\mathcal{D} \subseteq \mathcal{C}_{n, k}$ such that $B_{n, k} \cap\left[k, k^{\prime}\right)=(\cup \mathcal{D}) \cap\left[k, k^{\prime}\right)$. Choose a common extension q of $\left\{p_{A}: A \in \mathcal{D}\right\}$. Now we have $q \Vdash \cup\{A \backslash \check{k}: A \in \mathscr{\mathcal { D }}\} \subseteq \dot{X}$ and so $q \Vdash \varepsilon / 2<\varphi\left(\check{B}_{n, k} \cap\left[\check{k}, \breve{k}^{\prime}\right)\right)=\varphi\left((\cup \check{\mathcal{D}}) \cap\left[\check{k}, \check{k}^{\prime}\right)\right) \leq \varphi\left(\dot{X} \cap\left[\check{k}, \check{k}^{\prime}\right)\right) \leq \varphi(\dot{X} \backslash \check{k})$, which contradicts (0).

So for each n and k the set $\omega \backslash B_{n, k}$ is infinite, so $\omega \backslash B_{n, k}$ contains an infinite $D_{n, k} \in \mathcal{I}$. Let $D \in \mathcal{I}$ such that $D_{n, k} \subseteq^{*} D$ for each $n, k \in \omega$.

Then there is no n, k such that $D \subseteq^{*} B_{n, k}$. Contradiction.
By this Theorem an by Lemma 4.1 the Cohen forcing is neither \mathcal{I} dominating nor \mathcal{I}-bounding for any tall analytic P-ideal \mathcal{I}.

Finally in the rest of the paper we compare the Sacks property and the \mathcal{I}-bounding property.

Theorem 6.5. If \mathbb{P} has the Sacks property then \mathbb{P} is \mathcal{I}-bounding for each analytic P-ideal \mathcal{I}.

Proof. Let $\mathcal{I}=\operatorname{Exh}(\varphi)$. Assume $\Vdash_{\mathbb{P}} \dot{X} \in \mathcal{I}$. Let $d_{\dot{X}}$ be a \mathbb{P}-name for an element of ω^{ω} such that $\Vdash_{\mathbb{P}} d_{\dot{X}}(\check{n})=\min \left\{k \in \omega: \varphi(\dot{X} \backslash k)<2^{-\check{n}}\right\}$. We know that \mathbb{P} is ω^{ω}-bounding. If $p \Vdash d_{\dot{X}} \leq \check{f}$ for some strictly increasing $f \in \omega^{\omega}$ then by the Sacks property there is a $q \leq p$ and a slalom $S: \omega \rightarrow\left[[\omega]^{<\omega}\right]^{<\omega},|S(n)| \leq n$ such that

$$
q \Vdash \forall^{\infty} n \dot{X} \cap[f(n), f(n+1)) \in S(n)
$$

Now let

$$
A=\bigcup_{n \in \omega}\left\{D \in S(n): \varphi(D)<2^{-n}\right\}
$$

$A \in \mathcal{I}$ because $\varphi(A \backslash f(n)) \leq \sum_{k \geq n} \varphi\left(A \cap[f(k), f(k+1)) \leq \sum_{k \geq n} \frac{k}{2^{k}}\right.$. Clearly $q \Vdash \dot{X} \subseteq^{*} \check{A}$.

A supported relation $\mathcal{R}=(A, R, B)$ is called Borel-relation iff there is a Polish space X such that $A, B \subseteq X$ and $R \subseteq X^{2}$ are Borel sets. Similarly a Galois-Tukey connection $(\phi, \psi): \mathcal{R}_{1} \preceq \mathcal{R}_{2}$ between Borelrelations is called Borel GT-connection iff ϕ and ψ are Borel functions. To be Borel-relation and Borel GT-connection is absolute for transitive models containing all relevant codes.

Some important Borel-relation:
(A): $(\mathcal{I}, \subseteq, \mathcal{I})$ and $\left(\mathcal{I}, \subseteq^{*}, \mathcal{I}\right)$ for a Borel ideal \mathcal{I}.
(B): Denote Slm the set of slaloms on ω, i.e. $S \in \operatorname{Slm}$ iff $S: \omega \rightarrow$ $[\omega]^{<\omega}$ and $|S(n)|=2^{n}$ for each n. Let \sqsubseteq and \sqsubseteq^{*} be the following relations on $\omega^{\omega} \times$ Slm:

$$
f \sqsubseteq^{(*)} S \Longleftrightarrow \forall^{(\infty)} n \in \omega f(n) \in S(n)
$$

The supported relations ($\omega^{\omega}, \sqsubseteq$, Slm $)$ and $\left(\omega^{\omega}, \sqsubseteq^{*}\right.$, Slm) are Borel-relations.
(C): Denote ℓ_{1}^{+}the set of positive summable series. Let \leqbe the coordinate-wise and \leq^{*} the almost everywhere coordinate-wise ordering on ℓ_{1}^{+}. $\left(\ell_{1}^{+}, \leq, \ell_{1}^{+}\right)$and $\left(\ell_{1}^{+}, \leq^{*}, \ell_{1}^{+}\right)$are Borel-relations.

Definition 6.6. Let $\mathcal{R}=(A, R, B)$ be a Borel-relation. A forcing notion \mathbb{P} is \mathcal{R}-bounding if

$$
\Vdash_{\mathbb{P}} \forall a \in A \exists b \in B \cap V a R b ;
$$

\mathcal{R}-dominating if

$$
\Vdash_{\mathbb{P}} \exists b \in B \forall a \in A \cap V a R b .
$$

For example the property \mathcal{I}-bounding/dominating is the same as $\left(\mathcal{I}, \subseteq^{*}, \mathcal{I}\right)$-bounding/dominating.

We can reformulate some classical properties of forcing notions:

$$
\begin{aligned}
\omega^{\omega} \text {-bounding } & \equiv\left(\omega^{\omega}, \leq^{(*)}, \omega^{\omega}\right) \text {-bounding } \\
\text { adding dominating reals } & \equiv\left(\omega^{\omega}, \leq^{*}, \omega^{\omega}\right) \text {-dominating } \\
\text { Sacks property } & \equiv\left(\omega^{\omega}, \sqsubseteq^{(*)}, \text { Slm }\right) \text {-bounding } \\
\text { adding a slalom capturing } & \equiv\left(\omega^{\omega}, \sqsubseteq^{*}, \text { Slm }\right) \text {-dominating }
\end{aligned}
$$ all ground model reals

If $\mathcal{R}=(A, R, B)$ is a supported relation then let $\mathcal{R}^{\perp}=\left(B, \neg R^{-1}, A\right)$ where $b\left(\neg R^{-1}\right) a$ iff not $a R b$. Clearly $\left(\mathcal{R}^{\perp}\right)^{\perp}=\mathcal{R}$ and $\mathfrak{b}(\mathcal{R})=\mathfrak{d}\left(\mathcal{R}^{\perp}\right)$. Now if \mathcal{R} is a Borel-relation then \mathcal{R}^{\perp} is a Borel-relation too, and a forcing notion is \mathcal{R}-bounding iff it is not \mathcal{R}^{\perp}-dominating.
Fact 6.7. Assume $\mathcal{R}_{1} \preceq \mathcal{R}_{2}$ are Borel-relations with Borel GT-connection and \mathbb{P} is a forcing notion. If \mathbb{P} is \mathcal{R}_{2}-bounding/dominating then \mathbb{P} is \mathcal{R}_{1}-bounding/dominating .

By Corollary 5.5 this yields
Corollary 6.8. For each analytic P-ideal \mathcal{I} (1) a poset \mathbb{P} is $\leq_{\mathcal{I}^{-}}$ bounding iff it is ω^{ω}-bounding, (2) forcing with a poset \mathbb{P} adds $\leq_{\mathcal{I}^{-}}$ dominating reals iff this forcing adds dominating reals.

We will use the following Theorem.
Theorem 6.9. ([Fr] 526B, 524I) There are Borel GT-connections $(\mathcal{Z}, \subseteq$ $, \mathcal{Z}) \preceq\left(\ell_{1}^{+}, \leq, \ell_{1}^{+}\right)$and $\left(\ell_{1}^{+}, \leq^{*}, \ell_{1}^{+}\right) \equiv\left(\omega^{\omega}, \sqsubseteq^{*}, \operatorname{Slm}\right)$.

Note that there is no any Galois-Tukey connection from $\left(\ell_{1}^{+}, \leq, \ell_{1}^{+}\right)$ to $(\mathcal{Z}, \subseteq, \mathcal{Z})$ so they are not GT-equivalent (see [LoVe]) Th. 7.).

Corollary 6.10. If \mathbb{P} adds a slalom capturing all ground model reals then \mathbb{P} is \mathcal{Z}-dominating.

Proof. By Fact 6.7 and Theorem 6.9 adding slalom is the same as $\left(\ell_{1}^{+}, \leq^{*}, \ell_{1}^{+}\right)$-dominating. Let \dot{x} be a \mathbb{P}-name such that $\Vdash_{\mathbb{P}} \dot{x} \in \ell_{1}^{+} \wedge \forall$ $y \in \ell_{1}^{+} \cap V y \leq^{*} \dot{x}$. Moreover let \dot{X} be a \mathbb{P}-name such that $\Vdash_{\mathbb{P}}$ $\dot{X}=\left\{z \in \ell_{1}^{+}:|z \backslash \dot{x}|<\omega, \forall n(z(n) \neq \dot{x}(n) \Rightarrow z(n) \in \omega)\right\}$. Let $(\phi, \psi):(\mathcal{Z}, \subseteq, \mathcal{Z}) \preceq\left(\ell_{1}^{+}, \leq, \ell_{1}^{+}\right)$be a Borel GT-connection. Now if \dot{A} is a \mathbb{P}-name such that $\Vdash_{\mathbb{P}} \forall z \in \dot{X} \psi(z) \subseteq * \dot{A}$ then \dot{A} shows that \mathbb{P} is \mathcal{Z}-dominating.

Denote \mathbb{D} the dominating forcing and $\mathbb{L O C}$ the Localization forcing.
Observation 6.11. If \mathcal{I} is an arbitrary analytic P-ideal then two step iteration $\mathbb{D} * \mathbb{L} \mathbb{O C}$ is \mathcal{I}-dominating.

Indeed, let $\mathcal{I} \in V \subseteq M \subseteq N$ be transitive models, $d \in M \cap \omega^{\omega}$ be strictly increasing and dominating over V, and $S \in N, S: \omega \rightarrow$ $\left[[\omega]^{<\omega}\right]^{<\omega},|S(n)| \leq n$ a slalom which captures all reals from M. Now

$$
X_{n}=\cup\left\{A \in S(n) \cap \mathcal{P}\left([d(n), d(n+1)): \varphi(A)<2^{-n}\right\}\right.
$$

then it is easy to see that $Y \subseteq^{*} \cup\left\{X_{n}: n \in \omega\right\} \in \mathcal{I} \cap N$ for each $Y \in V \cap \mathcal{I}$.

Problem 6.12. For which analytic P-ideal \mathcal{I} does $\left(\mathcal{I}, \subseteq^{(*)}, \mathcal{I}\right) \preceq\left(\ell_{1}^{+}, \leq^{(*)}\right.$, ℓ_{1}^{+}) hold, or "adding slaloms" imply \mathcal{I}-dominating, or at least $\mathbb{L O C}$ is \mathcal{I}-dominating?

Problem 6.13. Does \mathcal{Z}-dominating (or \mathcal{I}-dominating) imply adding slaloms?

We will use the following deep result of Fremlin to prove Theorem 6.15.

Theorem 6.14. ([Fr] 526G) There is a family $\left\{P_{f}: f \in \omega^{\omega}\right\}$ of Borel subsets of ℓ_{1}^{+}such that the following hold:
(i) $\ell_{1}^{+}=\cup\left\{P_{f}: f \in \omega^{\omega}\right\}$,
(ii) if $f \leq g$ then $P_{f} \subseteq P_{g}$,
(iii) $\left(P_{f}, \leq, \ell_{1}^{+}\right) \preceq(\mathcal{Z}, \subseteq, \mathcal{Z})$ with a Borel GT-connection for each f.

Theorem 6.15. \mathbb{P} is \mathcal{Z}-bounding iff \mathbb{P} has the Sacks property.

Proof. Let $\left\{P_{f}: f \in \omega^{\omega}\right\}$ be a family satisfying (i), (ii), and (iii) in Theorem 6.14, and fix Borel GT-connections $\left(\phi_{f}, \psi_{f}\right):\left(P_{f}, \leq, \ell_{1}^{+}\right) \preceq$ $(\mathcal{Z}, \subseteq, \mathcal{Z})$ for each $f \in \omega^{\omega}$. Assume \mathbb{P} is \mathcal{Z}-bounding and $\Vdash_{\mathbb{P}} \dot{x} \in \ell_{1}^{+} . \mathbb{P}$ is ω^{ω}-bounding by Theorem 6.2 so using (ii) we have $\Vdash_{\mathbb{P}} \ell_{1}^{+}=\cup\left\{P_{f}\right.$: $\left.f \in \omega^{\omega} \cap V\right\}$. We can choose a \mathbb{P}-name \dot{f} for an element of $\omega^{\omega} \cap V$ such that $\Vdash_{\mathbb{P}} \dot{x} \in P_{\dot{f}}$. By \mathcal{Z}-bounding property of \mathbb{P} there is a \mathbb{P}-name \dot{A} for an element of $\mathcal{Z} \cap V$ such that $\Vdash_{\mathbb{P}} \phi_{\dot{f}}(\dot{x}) \subseteq \dot{A}$, so $\Vdash_{\mathbb{P}} \dot{x} \leq \psi_{\dot{f}}(\dot{A}) \in \ell_{1}^{+} \cap V$. So we have \mathbb{P} is $\left(\ell_{1}^{+}, \leq^{(*)}, \ell_{1}^{+}\right)$-bounding. By Theorem 6.9 and Fact 6.7 \mathbb{P} has the Sacks property.

The converse implication was proved in Theorem 6.5.

Problem 6.16. Does the \mathcal{I}-bounding property imply the Sacks property for each tall analytic P-ideal \mathcal{I} ?

References

[Fa] Farah, Ilijas: Analytic quotients: theory of liftings for quotientsover analytic ideals on the integers, Memoirs of the American Mathematical Society 148 (2000), no $702,177 \mathrm{pp}$.
[Fr] Fremlin, David H.: Measure Theory. Set-theoretic Measure Theory. Torres Fremlin, Colchester, England, 2004. Available at http://www.essex.ac.uk/maths/staff/fremlin/mt.html
[Ku] Kunen, Kenneth: Set Theory, An Introduction to Independence Proofs, North Holland, Amsterdam, New York, Oxford 1980
[LaZh] Laflamme, Claude and Zhu, Jian-Ping: The Rudin-Blass ordering of ultrafilters, J. Symbolic Logic 63 (1998), no. 2, pages 584-592
[LoVe] Louveau, A. and Veličković, B.: Analytic ideals and cofinal types, Ann. Pure Appl. Logic 99 (1999), pages 171-195
[Ru] Rudin, M. E.: Partial orders on the types of $\beta \omega$, Trans. Amer. Math. Soc. 155 (1971), pages 353-362
[So] Solecki, Słamowir: Analytic P-ideals and their applications, Ann. Pure Appl. Logic 99 (1999), pages 51-72
[Vo] Vojtáš, Peter: Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis, Set theory of the reals (Ramat Gan, 1991), pages 619-643, Israel Math. Conf. Proc., 6, Bar-Ilan Univ., Ramat Gan, 1993.

Budapest University of Technology and Economics (BME)
E-mail address: barnabasfarkas@gmail.com
Alfréd Rényi Institute of Mathematics
E-mail address: soukup@renyi.hu

[^0]: 2000 Mathematics Subject Classification. 03E35, 03E17.
 Key words and phrases. analytic P-ideals, cardinal invariants, forcing.
 The preparation of this paper was supported by Hungarian National Foundation for Scientific Research grant no 61600 and 63066.

