INTERPOLATION OF κ -COMPACTNESS AND PCF

ISTVÁN JUHÁSZ AND ZOLTÁN SZENTMIKLÓSSY

ABSTRACT. We call a topological space κ -compact if every subset of size κ has a complete accumulation point in it. Let $\Phi(\mu, \kappa, \lambda)$ denote the following statement: $\mu < \kappa < \lambda = \operatorname{cf}(\lambda)$ and there is $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ such that $|\{\xi : |S_{\xi} \cap A| = \mu\}| < \lambda$ whenever $A \in [\kappa]^{<\kappa}$. We show that if $\Phi(\mu, \kappa, \lambda)$ holds and the space Xis both μ -compact and λ -compact then X is κ -compact as well. Moreover, from PCF theory we deduce $\Phi(\operatorname{cf}(\kappa), \kappa, \kappa^+)$ for every singular cardinal κ . As a corollary we get that a linearly Lindelöf and \aleph_{ω} -compact space is uncountably compact, that is κ -compact for all uncountable cardinals κ .

We start by recalling that a point x in a topological space X is said to be a *complete accumulation point* of a set $A \subset X$ iff for every neighbourhood U of x we have $|U \cap A| = |A|$. We denote the set of all complete accumulation points of A by A° .

It is well-known that a space is compact iff every infinite subset has a complete accumulation point. This justifies to call a space κ -compact if every subset of cardinality κ in it has a complete accumulation point. Now, let κ be a singular cardinal and $\kappa = \sum \{\kappa_{\alpha} : \alpha < cf(\kappa)\}$ with $\kappa_{\alpha} < \kappa$ for each $\alpha < cf(\kappa)$. Clearly, if a space X is both κ_{α} -compact for all $\alpha < cf(\kappa)$ and $cf(\kappa)$ -compact then X is κ -compact as well. This trivial "extrapolation" property of κ -compactness (for singular κ) implies that in the above characterization of compactness one may restrict to subsets of regular cardinality.

The aim of this note is to present a new "interpolation" result on κ -compactness, i.e. one in which $\mu < \kappa < \lambda$ and we deduce κ compactness of a space from its μ - and λ -compactness. Again, this
works for singular cardinals κ and the proof uses non-trivial results
from Shelah's PCF theory.

²⁰⁰⁰ Mathematics Subject Classification. 03E04, 54A25, 54D30.

Key words and phrases. complete accumulation point, κ -compact space, linearly Lindelöf space, PCF theory.

Research on this paper was supported by OTKA grants no. 61600 and 68262.

Definition 1. Let κ, λ, μ be cardinals, then $\Phi(\mu, \kappa, \lambda)$ denotes the following statement: $\mu < \kappa < \lambda = \operatorname{cf}(\lambda)$ and there is $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ such that $|\{\xi : |S_{\xi} \cap A| = \mu\}| < \lambda$ whenever $A \in [\kappa]^{<\kappa}$.

As we can see from our next theorem, this property Φ yields the promised interpolation result for κ -compactness.

Theorem 2. Assume that $\Phi(\mu, \kappa, \lambda)$ holds and the space X is both μ -compact and λ -compact. Then X is κ -compact as well.

Proof. Let Y be any subset of X with $|Y| = \kappa$ and, using $\Phi(\mu, \kappa, \lambda)$, fix a family $\{S_{\xi} : \xi < \lambda\} \subset [Y]^{\mu}$ such that $|\{\xi : |S_{\xi} \cap A| = \mu\}| < \lambda$ whenever $A \in [Y]^{<\kappa}$. Since X is μ -compact we may then pick a complete accumulation point $p_{\xi} \in S_{\xi}^{\circ}$ for each $\xi < \lambda$.

Now we distinguish two cases. If $|\{p_{\xi} : \xi < \lambda\}| < \lambda$ then the regularity of λ implies that there is $p \in X$ with $|\{\xi < \lambda : p_{\xi} = p\}| = \lambda$. If, on the other hand, $|\{p_{\xi} : \xi < \lambda\}| = \lambda$ then we can use the λ -compactness of X to pick a complete accumulation point p of this set. In both cases the point $p \in X$ has the property that for every neighbourhood U of p we have $|\{\xi : |S_{\xi} \cap U| = \mu\}| = \lambda$.

Since $S_{\xi} \cap U \subset Y \cap U$, this implies using $\Phi(\mu, \kappa, \lambda)$ that $|Y \cap U| = \kappa$, hence p is a complete accumulation point of Y, hence X is indeed κ -compact.

Our following result implies that if $\Phi(\mu, \kappa, \lambda)$ holds then κ must be singular.

Theorem 3. If $\Phi(\mu, \kappa, \lambda)$ holds then we have $cf(\mu) = cf(\kappa)$.

Proof. Assume that $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ witnesses $\Phi(\mu, \kappa, \lambda)$ and fix a strictly increasing sequence of ordinals $\eta_{\alpha} < \kappa$ for $\alpha < \operatorname{cf}(\kappa)$ that is cofinal in κ . By the regularity of $\lambda > \kappa$ there is an ordinal $\xi < \lambda$ such that $|S_{\xi} \cap \eta_{\alpha}| < \mu$ holds for each $\alpha < \operatorname{cf}(\kappa)$. But this S_{ξ} must be cofinal in κ , hence from $|S_{\xi}| = \mu$ we get $\operatorname{cf}(\mu) \leq \operatorname{cf}(\kappa) \leq \mu$.

Now assume that we had $\operatorname{cf}(\mu) < \operatorname{cf}(\kappa)$ and set $|S_{\xi} \cap \eta_{\alpha}| = \mu_{\alpha}$ for each $\alpha < \operatorname{cf}(\kappa)$. Our assumptions then imply $\mu^* = \sup\{\mu_{\alpha} : \alpha < \operatorname{cf}(\kappa)\} < \mu$ as well as $\operatorname{cf}(\kappa) < \mu$, contradicting that $S_{\xi} = \bigcup\{S_{\xi} \cap \eta_{\alpha} : \alpha < \operatorname{cf}(\kappa)\}$ and $|S_{\xi}| = \mu$. This completes our proof.

According to theorem 3 the smallest cardinal μ for which $\Phi(\mu, \kappa, \lambda)$ may hold for a given singular cardinal κ is $cf(\kappa)$. Our main result says that this actually does happen with the natural choice $\lambda = \kappa^+$.

Theorem 4. For every singular cardinal κ we have $\Phi(cf(\kappa), \kappa, \kappa^+)$.

Proof. We shall make use of the following fundamental result of Shelah from his PCF theory: There is a strictly increasing sequence of length

 $cf(\kappa)$ of regular cardinals $\kappa_{\alpha} < \kappa$ cofinal in κ and such that in the product

$$\mathbb{P} = \prod \{ \kappa_{\alpha} : \alpha < \mathrm{cf}(\kappa) \}$$

there is a scale $\{f_{\xi} : \xi < \kappa^+\}$ of length κ^+ . (This is Main Claim 1.3 on p. 46 of [2].)

Spelling it out, this means that the κ^+ -sequence $\{f_{\xi} : \xi < \kappa^+\} \subset \mathbb{P}$ is increasing and cofinal with respect to the partial ordering $<^*$ of eventual dominance on \mathbb{P} . Here for $f, g \in \mathbb{P}$ we have $f <^* g$ iff there is $\alpha < \operatorname{cf}(\kappa)$ such that $f(\beta) < g(\beta)$ whenever $\alpha \leq \beta < \operatorname{cf}(\kappa)$.

Now, to show that this implies $\Phi(cf(\kappa), \kappa, \kappa^+)$, we take the set $H = \bigcup \{\{\alpha\} \times \kappa_\alpha : \alpha < cf(\kappa)\}$ as our underlying set. Note that then $|H| = \kappa$ and every function $f \in \mathbb{P}$, construed as a set of ordered pairs (or in other words: identified with its graph) is a subset of H of cardinality $cf(\kappa)$.

We claim that the scale sequence $\{f_{\xi} : \xi < \kappa^+\} \subset [H]^{\mathrm{cf}(\kappa)}$ witnesses $\Phi(\mathrm{cf}(\kappa), \kappa, \kappa^+)$. Indeed, let A be any subset of H with $|A| < \kappa$. We may then choose $\alpha < \mathrm{cf}(\kappa)$ in such a way that $|A| < \kappa_{\alpha}$. Clearly, then there is a function $g \in \mathbb{P}$ such that we have $A \cap (\{\beta\} \times \kappa_{\beta}) \subset \{\beta\} \times g(\beta)$ whenever $\alpha \leq \beta < \mathrm{cf}(\kappa)$. Since $\{f_{\xi} : \xi < \kappa^+\}$ is cofinal in \mathbb{P} w.r.t. $<^*$, there is a $\xi < \kappa^+$ with $g <^* f_{\xi}$ and obviously we have $|A \cap f_{\eta}| < \mathrm{cf}(\kappa)$ whenever $\xi \leq \eta < \kappa^+$.

Note that the above proof actually establishes the following more general result: If for some increasing sequence of regular cardinals { κ_{α} : $\alpha < cf(\kappa)$ } that is cofinal in κ there is a scale of length $\lambda = cf(\lambda)$ in the product $\prod \{\kappa_{\alpha} : \alpha < cf(\kappa)\}$ then $\Phi(cf(\kappa), \kappa, \lambda)$ holds.

Before giving some further interesting application of the property $\Phi(\mu, \kappa, \lambda)$, we present a result that enables us to "lift" the first parameter $cf(\kappa)$ in theorem 4 to higher cardinals.

Theorem 5. If $\Phi(cf(\kappa), \kappa, \lambda)$ holds for some singular cardinal κ then we also have $\Phi(\mu, \kappa, \lambda)$ whenever $cf(\kappa) < \mu < \kappa$ with $cf(\mu) = cf(\kappa)$.

Proof. Let us put $cf(\kappa) = \rho$ and fix a strictly increasing and cofinal sequence $\{\kappa_{\alpha} : \alpha < \rho\}$ of cardinals below κ . We also fix a partition of κ into disjoint sets $\{H_{\alpha} : \alpha < \rho\}$ with $|H_{\alpha}| = \kappa_{\alpha}$ for each $\alpha < \rho$.

Let us now choose a family $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\varrho}$ that witnesses $\Phi(cf(\kappa), \kappa, \lambda)$. Since λ is regular, we may assume without any loss of generality that $|H_{\alpha} \cap S_{\xi}| < \varrho$ holds for every $\alpha < \varrho$ and $\xi < \lambda$. Note that this implies $|\{\alpha : H_{\alpha} \cap S_{\xi} \neq \emptyset\}| = \varrho$ for each $\xi < \lambda$.

Now take a cardinal μ with $cf(\mu) = \rho < \mu < \kappa$ and fix a strictly increasing and cofinal sequence $\{\mu_{\alpha} : \alpha < \rho\}$ of cardinals below μ .

To show that $\Phi(\mu, \kappa, \lambda)$ is valid, we may use as our underlying set $S = \bigcup \{H_{\alpha} \times \mu_{\alpha} : \alpha < \varrho\}$, since clearly $|S| = \kappa$.

For each $\xi < \lambda$ let us now define the set $T_{\xi} \subset S$ as follows:

$$T_{\xi} = \cup \{ (S_{\xi} \cap H_{\alpha}) \times \mu_{\alpha} : \alpha < \varrho \}.$$

Then we have $|T_{\xi}| = \mu$ because $|\{\alpha : H_{\alpha} \cap S_{\xi} \neq \emptyset\}| = \varrho$. We claim that $\{T_{\xi} : \xi < \lambda\}$ witnesses $\Phi(\mu, \kappa, \lambda)$.

Indeed, let $A \subset S$ with $|A| < \kappa$. For each $\alpha < \rho$ let B_{α} denote the set of all first co-ordinates of the pairs that occur in $A \cap (H_{\alpha} \times \mu_{\alpha})$ and set $B = \bigcup \{B_{\alpha} : \beta < \varrho\}$. Clearly, we have $B \subset \kappa$ and $|B| \leq |A| < \kappa$, hence $|\{\xi : |S_{\xi} \cap B| = \varrho\}| < \lambda$

Now, consider any ordinal $\xi < \lambda$ with $|S_{\xi} \cap B| < \varrho$. If $\langle \gamma, \delta \rangle \in (T_{\xi} \cap A) \cap (H_{\alpha} \times \mu_{\alpha})$ for some $\alpha < \varrho$ then we have $\gamma \in S_{\xi} \cap B_{\alpha}$, consequently $H_{\alpha} \cap S_{\xi} \cap B \neq \emptyset$. This implies that

$$W = \{ \alpha : (T_{\xi} \cap A) \cap (H_{\alpha} \times \mu_{\alpha}) \neq \emptyset \}$$

has cardinality $\leq |S_{\xi} \cap B| < \varrho$. But for each $\alpha \in W$ we have

$$|T_{\xi} \cap (H_{\alpha} \times \mu_{\alpha})| \le \varrho \cdot \mu_{\alpha} < \mu,$$

hence

$$T_{\xi} \cap A = \bigcup \{ (T_{\xi} \cap A) \cap (H_{\alpha} \times \mu_{\alpha}) : \alpha \in W \}$$

implies $|T_{\xi} \cap A| < \mu$ as well. But this shows that $\{T_{\xi} : \xi < \lambda\}$ indeed witnesses $\Phi(\mu, \kappa, \lambda)$.

Arhangel'skii has recently introduced and studied in [1] the class of spaces that are κ -compact for all uncountable cardinals κ and, quite appropriately, called them *uncountably compact*. In particular, he showed that these spaces are Lindelöf.

We recall that the spaces that are κ -compact for all uncountable *regular* cardinals κ have been around for a long time and are called linearly Lindelöf. Moreover, the question under what conditions is a linearly Lindelöf space Lindelöf is important and well-studied. Note, however, that a linearly Lindelöf space is obviously compact iff it is countably compact, i.e. ω -compact. This should be compared with our next result that, we think, is far from being obvious.

Theorem 6. Every linearly Lindelöf and \aleph_{ω} -compact space is uncountably compact hence, in particular, Lindelöf.

Proof. Let X be a linearly Lindelöf and \aleph_{ω} -compact space. According to the (trivial) extrapolation property of κ -compactness that we mentioned in the introduction, X is κ -compact for all cardinals κ of uncountable cofinality. Consequently, it only remains to show that X

is κ -compact whenever κ is a singular cardinal of countable cofinality with $\aleph_{\omega} < \kappa$.

But, according to theorems 4 and 5, we have $\Phi(\aleph_{\omega}, \kappa, \kappa^+)$ and X is both \aleph_{ω} -compact and κ^+ -compact, hence theorem 2 implies that X is κ -compact as well.

Arhangel'skii gave in [1] the following surprising result which shows that the class of uncountably compact T_3 -spaces is rather restricted: Every uncountably compact T_3 -space X has a (possibly empty) compact subset C such that for every open set $U \supset C$ we have $|X \setminus U| < \aleph_{\omega}$. Below we show that in this result the T_3 separation axiom can be replaced by T_1 plus van Douwen's property wD, see e.g. 3.12 in [3]. Since uncountably compact T_3 -spaces are normal, being also Lindelöf, and the wD property is a very weak form of normality, this indeed is an improvement.

Definition 7. A topological space X is said to be κ -concentrated on its subset Y if for every open set $U \supset Y$ we have $|X \setminus U| < \kappa$.

So what we claim can be formulated as follows.

Theorem 8. Every uncountably compact T_1 space X with the wD property is \aleph_{ω} -concentrated on some (possibly empty) compact subset C.

Proof. Let C be the set of those points $x \in X$ for which every neighbourhood has cardinality at least \aleph_{ω} . First we show that C, as a subspace, is compact. Indeed, C is clearly closed in X, hence Lindelöf, so it suffices to show for this that C is countably compact.

Assume, on the contrary, that C is not countably compact. Then, as X is T_1 , there is an infinite closed discrete $A \in [C]^{\omega}$. But then by the wD property there is an infinite $B \subset A$ that expands to a discrete (in X) collection of open sets $\{U_x : x \in B\}$. By the definition of C we have $|U_x| \geq \aleph_{\omega}$ for each $x \in B$.

Let $B = \{x_n : n < \omega\}$ be any one-to-one enumeration of B. Then for each $n < \omega$ we may pick a subset $A_n \subset U_{x_n}$ with $|A_n| = \aleph_n$ and set $A = \bigcup \{A_n : n < \omega\}$. But then $|A| = \aleph_{\omega}$ and A has no complete accumulation point, a contradiction.

Next we show that X is \aleph_{ω} concentrated on C. Indeed, let $U \supset C$ be open. If we had $|X \setminus U| \ge \aleph_{\omega}$ then any complete accumulation point $X \setminus U$ is not in U but is in C, again a contradiction.

The following easy result, that we add or the sake of completeness, yields a partial converse to theorem 8.

Theorem 9. If a space X is κ -concentrated on a compact subset C then X is λ -compact for all cardinals $\lambda \geq \kappa$.

Proof. Let $A \subset X$ be any subset with $|A| = \lambda \geq \kappa$. We claim that we even have $A^{\circ} \cap C \neq \emptyset$. Assume, on the contrary, that every point $x \in C$ has an open neighbourhood U_x with $|A \cap U_x| < \lambda$. Then the compactness of C implies $C \subset U = \bigcup \{U_x : x \in F\}$ for some finite subset F of C. But then we have $|A \cap U| < \lambda$, hence $|A \setminus U| = \lambda \geq \kappa$, contradicting that X is κ -concentrated on C. \Box

Putting all these theorems together we immediately obtain the following result.

Corollary 10. Let X be a T_1 space with property wD that is \aleph_n compact for each $0 < n < \omega$. Then X is uncountably compact if and
only if it is \aleph_{ω} -concentrated on some compact subset.

References

- A. V. Arhangel'skii, Homogeneity and Complete Accumulation Points, Topology Proceedings 32 (2008), pp. 239–243
- [2] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994
- [3] E. van Douwen, The Integers and Topology, In: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan editors, Elsevier, 1984, pp. 111–167

Alfréd Rényi Institute of Mathematics, P.O. Box 127, 1364 Budapest, Hungary

E-mail address: juhasz@renyi.hu

EÖTVÖS LORÁNT UNIVERSITY, DEPARTMENT OF ANALYSIS,, 1117 BUDAPEST, PÁZMÁNY PÉTER SÉTÁNY 1/A, HUNGARY

E-mail address: zoli@renyi.hu