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Abstract. We define a compactum X to be AB-compact if the
cofinality of the character χ(x, Y ) is countable whenever x ∈ Y
and Y ⊂ X. It is a natural open question if every AB-compactum
is necessarily first countable.

We strengthen several results from [Arhangel’skii and Buzyakova,
Convergence in compacta and linear Lindelöfness, CMUC 39 (1998),
no. 1, 159–166] by proving the following results.
(1) Every AB-compactum is countably tight.
(2) If p = c then every AB-compactum is Frèchet-Urysohn.
(3) If c < ℵω then every AB-compactum is first countable.
(4) The cardinality of any AB-compactum is at most 2<c.

1. Introduction

As usual, a compactum is an infinite compact Hausdorff space. Let
us say that x ∈ X is a K-point of X if for no uncountable regular
cardinal % is there a %-sequence in X\{x} converging to x. Clearly,
any point of first countability of X is a K-point of X. On the other
hand, Kunen constructed in ZFC compacta with K-points that are not
points of first countability. In fact, the methods of [6] and [7] can be
used to provide K-points in compacta of character λ for any singular
cardinal λ of countable cofinality. This result of Kunen answered a
problem that had been first raised in [2] and then in [1].

It is well-known that if x is a non-isolated point of a compactum
X of character χ(x,X) = κ(≥ ω) then there is a κ-sequence of points
of X distinct from x that converges to x. So, if x ∈ X is a K-point
then for every closed subspace F ⊂ X with x ∈ F we must have
cf(χ(x, F )) ≤ ω. In fact, since x ∈ Y ⊂ X implies χ(x, Y ) = χ(x, Y ),
we even have cf(χ(x, Y )) ≤ ω for all subspaces Y of X containing
x. Now, we say that x is an AB-point of X if it satisfies this latter
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condition. Moreover, an AB-compactum is one in which every point is
an AB-point.

Again, it is obvious that first countable compacta are AB and the
natural question if the converse is also true can be raised. Arhangel’skii
and Buzyakova have shown in [1] that under CH the answer to this
question is affirmative if all points of X are K-points, i.e. for K-
compacta. Contrasting this with Kunen’s above result shows that the
situation with the “global” question is quite different from the “local”
one. In [1] (see also [8]) some weaker questions concerning K-compacta
were also raised (but using different terminology): Are they of cardi-
nality ≤ c? Are they sequential? The aim of this note is to give some
partial answers to all of these questions that are significantly stronger
than those given in [1].

Our results are stronger than those of Arhangel’skii and Buzyakova
on one hand because they apply to the class all AB-compacta that is
(potentially) wider than that of K-compacta. Moreover, the assump-
tions of our results are strictly weaker than the ones used in [1]. But
before turning to our results let us formulate the following intriguing
questions that we could not answer.

Problem 1. Is there an AB-point of some compactum that is not a
K-point? Is there an AB-compactum that is not a K-compactum?

Note that if, as we conjecture, all AB-compacta are first countable
then the answer to the second question is negative.

Finally, let us note that the AB-property makes sense for arbitrary
topological spaces but it is easy to find (non-compact) ones that are not
first countable. Indeed, consider first Kunen’s example of a compactum

X having a K-point x of character λ > ω. Then the space X̃ obtained
from X by isolating all points of X\{x} is clearly a (non-compact)

AB-space with χ(x, X̃) = λ.

2. The results

We start with a result that, on one hand, may be considered as a
step towards verifying our above conjecture and, on the other hand,
will play a great role in establishing our other results.

Theorem 2. Every AB-compactum is countably tight.

Proof. Assume that X is a compactum with t(X) > ω. Then by the
main result of [5] there is a free sequence of length ω1 in X, say Y =
{xα : α < ω1}, converging to some point x ∈ X. But then we have

Y \{x} =
⋃
{{xβ : β < α} : α < ω1},
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hence χ(x, Y ) = ω1, which shows that X is not AB-compact. ¤
As we mentioned in the introduction, it was explicitly asked in [1] if

K-compacta are sequential; moreover an affirmative answer was given
to this question under MA. Our next result is a strengthening of this.
We note that the assumption p = c is equivalent to MA(σ− centered)
and so is strictly weaker than MA.

Theorem 3. If p = c holds then every AB-compactum X is Frèchet-
Urysohn.

Proof. Assume that x ∈ A with A ⊂ X. By Theorem 2 then there is
a countable set S ⊂ A with x ∈ S. But then χ(x, S) ≤ c and so the
AB-property and cf(c) > ω imply even χ(x, S) < c. However, in this
case p = c is known to imply that x is the limit of an ω-sequence of
points from S\{x}. ¤

It is well-known, see e.g. Corollary 3.4 of [3], that first countability of
any compactum X is decided by its subspaces of cardinality ω1. More
precisely: If all subspaces of X of size ω1 of X are first countable then
so is X. We shall need below a strengthening of this that we now turn
to.

In fact, we first present a reflection result concerning the pseudo-
character of a point in a T3-space. This may be of some independent
interest.

Theorem 4. Let X be a T3-space and κ be an uncountable regular
cardinal such that there is no free sequence of length κ in X. If p ∈ X
has pseudocharacter ψ(p,X) ≥ κ then either there is a discrete subspace
D ⊂ X with |D| < κ such that ψ(p,D) ≥ κ or there is a discrete E ⊂ X
with |E| = κ that converges to p.

Proof. By transfinite recursion on α < κ, we define a sequence of points
xα ∈ X\{p} and a decreasing sequence of closed G<κ-sets Hα con-
taining p with the properties xα ∈ Hα and Dα ∩ Hα ⊂ {p}, where
Dα = {xβ : β < α}. (A G<κ-set H is one that is the intersection of
fewer than κ open sets, i.e. satisfies ψ(H,X) < κ.)

Now assume that α < κ and both xβ and Hβ have been appropriately
defined for all β < α. Note that then Dα is a free sequence in the
subspace X\{p} and hence is discrete. So if we have p ∈ Dα and
ψ(p,Dα) ≥ κ then we are done and we simply stop the recursion.

Otherwise we have either p /∈ Dα or ψ(p, Dα) < κ and in either case
we may obviously find a closed G<κ-set Hα satisfying

p ∈ Hα ⊂ ∩{Hβ : β < α} and Dα ∩Hα ⊂ {p}.
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(We have to use here both the regularity of the cardinal κ and the
regularity of the space X.) Note that then Hα 6= {p} since we have
ψ(p,X) ≥ κ, consequently a point xα ∈ Hα\{p} can be chosen.

So if we do not stop for any α < κ then we obtain in this way the
κ-sequence E = {xα : α < κ}, which is a free sequence in X\{p} and
therefore discrete. It remains to show that E converges to p. Assume,
arguing indirectly, that for some open neighbourhood U of p we have
|E\U | = κ. Clearly, then E\U , as a subsequence of E, would be a free
sequence in X, contradicting our assumption. ¤

Note that in a compactum the character and the pseudocharacter of
any point coincide. Therefore, in this case we get from theorem 4 the
following corollary.

Corollary 5. Assume that some point p of a compactum X has char-
acter at least κ where κ is an uncountable regular cardinal. If there is
no convergent discrete κ-sequence in X then we have χ(p, D) ≥ κ for
some discrete D ⊂ X with |D| < κ.

Proof. By the main result of [5], if there is no convergent discrete (even
free) κ-sequence in X then there is no free κ-sequence in X, either.
Consequently, we may apply theorem 4 and from there only the first
alternative may hold. ¤

Let us say that a space is simple iff it has exactly one non-isolated
point. The following is then an immediate consequence of corollary 5.

Corollary 6. If κ is an uncountable regular cardinal and all simple
subspaces of size ≤ κ of a compactum X have character < κ then all
points of X have character < κ. In particular, if all simple subspaces
of size ≤ ω1 of a compactum X are first countable then so is X.

Our next result shows that for an AB-compactum first countability
is even decided by its countable simple subspaces.

Theorem 7. Let X be an AB-compactum in which the closure of any
countable discrete subspace is first countable, or equivalently : all count-
able simple subspaces of X are first countable. Then X is first count-
able, as well.

Proof. By corollary 6 it suffices to show that every simple subspace Y
of X with |Y | = ω1 is first countable. Consider an ω1-type enumeration
{xα : α < ω1} of Y where x0 is the unique non-isolated point of Y .
Then, putting Yα = {xβ : β < α}, for every 0 < α < ω1 we have by
our assumption that

χ(x0, Yα) = χ(x0, Yα) ≤ ω.
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Note that, as X is countably tight, we also have Y = ∪α<ω1Yα, conse-
quently

ψ(x0, Y ) = χ(x0, Y ) ≤ ω1.

But the AB-property then implies χ(x0, Y ) = χ(x0, Y ) = ω. ¤

Recall that a compactum is called weakly ω-monolithic if the closure
of any countable discrete subspace in it is second countable. So it
is immediate from Theorem 7 that every weakly ω-monolithic AB-
compactum is first countable. For the (potentially smaller) class of
K-compacta this weaker result was proved in [1].

Trivially, every point of a countable space has character ≤ c, so
another immediate corollary of Theorem 7 is the following.

Corollary 8. If c < ℵω then every AB-compactum is first countable.

Perhaps the main result of this paper is the following which, analo-
gously to Theorem 7, states that countable subspaces (or more precisely
their closures) control the size of any AB-compactum.

Theorem 9. For an arbitrary AB-compactum X we have

|X| ≤ (
sup{|S| : S ∈ [X]ω})ω

.

Proof. Set

µ =
(
sup{|S| : S ∈ [X]ω})ω

and assume, arguing indirectly, that |X| > µ. Since X is countably
tight and µ = µω implies µ+ = (µ+)ω, it is easy to show that for any
set A ⊂ X with |A| = µ+ we have |A| = µ+ as well. Consequently, we
may assume without any loss of generality that |X| = µ+.

Now, consider an ω-closed elementary submodel M of a suitably
chosen universe H(λ) with |M| = µ, where the regular cardinal λ is
sufficiently large, moreover we have both X ∈M and µ ⊂M.

We claim that then X∩M is closed in X. Indeed, for every countable
set S ∈ [X ∩M]ω we have S ∈ M as M is ω-closed and then S ∈ M
as well. But we have |S| ≤ µ and therefore S ⊂M.

Next, observe that for every point x ∈ X we trivially have χ(x,X) ≤
µ+ and so by the AB-property even χ(x,X) < µ, for both µ and µ+

have uncountable cofinality. Since µ ⊂M, this in turn implies that for
every point x ∈ X ∩M there is a neighbourhood base Vx ∈ M such
that |Vx| < µ and hence Vx ⊂M.

From this it is a standard procedure to show that X ⊂ M that is
clearly a contradiction. Indeed, assume that y ∈ X\M. Then for each
point x ∈ X ∩M there is a neighbourhood Vx ∈ Vx ⊂M with y /∈ Vx.
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As X∩M is compact, there are finitely many points x1, ..., xn ∈ X∩M
such that X ∩M ⊂ Vx1 ∪ ... ∪ Vxn , contradicting that

y /∈ Vx1 ∪ ... ∪ Vxn .

¤
Now, if X is a separable AB-compactum then w(X) ≤ c and con-

sequently χ(X) ≤ c. But cf(c) > ω implies that we actually have
χ(x,X) < c for all x ∈ X. It follows then that |X| ≤ 2<c =

∑
κ<c 2κ,

see e.g. 2.5 of [4]. Note also that (2<c)ω = 2<c, as can be easily checked.
As a consequence we obtain the following result that is remarkable

for in [1] no upper bound was given even for the size of K-compacta.

Corollary 10. Every AB-compactum has cardinality at most 2<c. This,
of course is optimal if 2<c = c, in particular if t = c holds (which is a
consequence e.g. of MA).

Another immediate consequence of Theorem 9 that is worth noting
reads as follows.

Corollary 11. If every separable subspace of an AB-compactum X has
cardinality at most c then |X| ≤ c as well.
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