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Abstract. Looking at very recent developments in spacetime theory, we
can wonder whether these results exhibit features of hypercomputation
that traditionally seemed impossible or absurd. Namely, we describe a
physical device in relativistic spacetime which can compute a non-Turing
computable task, e.g. which can decide the halting problem of Turing ma-
chines or decide whether ZF set theory is consistent (more precisely, can
decide the theorems of ZF). Starting from this, we will discuss the impact
of recent breakthrough results of relativity theory, black hole physics and
cosmology to well established foundational issues of computability the-
ory as well as to logic. We find that the unexpected, revolutionary results
in the mentioned branches of science force us to reconsider the status of
the physical Church Thesis and to consider it as being seriously chal-
lenged. We will outline the consequences of all this for the foundation of
mathematics (e.g. to Hilbert’s programme).
Observational, empirical evidence will be quoted to show that the state-
ments above do not require any assumption of some physical universe
outside of our own one: in our specific physical universe there seem to ex-
ist regions of spacetime supporting potential non-Turing computations.
Additionally, new “engineering” ideas will be outlined for solving the
so-called blue-shift problem of GR-computing. Connections with related
talks at the Physics and Computation meeting, e.g. those of Jerome
Durand-Lose, Mark Hogarth and Martin Ziegler, will be indicated.

1 Introduction

We discuss here the impact of very recent developments in spacetime theory
and cosmology on well established foundational issues (and interpretations) of
logic and computability theory. The connections between computability theory,
logic and spacetime theory (general relativity theory, GR) cut both ways: logic
provides a tangible foundation for GR, cf. [1], while GR and its new developments
might profoundly influence our interpretation of basic results of computability
theory, as we will see in this paper. The new computability paradigms in turn
offer feedback to the foundation of mathematics and logic.

Because of the interdisciplinary character of this paper, the first two sections
are somewhat introductory, explaining the basic ideas for the nonspecialist. We
will start speeding up beginning with section 3.
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Two major new paradigms of computing arising from new physics are quan-
tum computing and general relativistic computing. Quantum computing chal-
lenges complexity barriers in computability, while general relativistic computing
challenges the physical Church-Turing Thesis itself. In this paper we concentrate
on relativistic computers and on the physical Church-Turing Thesis (PhCT).

The PhCT is the conjecture that whatever physical computing device (in the
broader sense) or physical thought-experiment will be designed by any future
civilization, it will always be simulateable by a Turing machine. The PhCT was
formulated and generally accepted in the 1930’s. At that time a general con-
sensus was reached declaring PhCT valid, and indeed in the succeeding decades
the PhCT was an extremely useful and valuable maxim in elaborating the foun-
dations of theoretical computer science, logic, foundation of mathematics and
related areas.1 But since PhCT is partly a physical conjecture, we emphasize
that this consensus of the 1930’s was based on the physical world-view of the
1930’s. Moreover, many thinkers considered PhCT as being based on mathemat-
ics + common sense. But “common sense of today” means “physics of 100 years
ago”. Therefore we claim that the consensus accepting PhCT in the 1930’s was
based on the world-view deriving from Newtonian mechanics. Einstein’s equa-
tions became known to a narrow circle of specialists around 1920, but about that
time the consequences of these equations were not even guessed at. The world-
view of modern black hole physics was very far from being generally known until
much later, until after 1980.

Our main point is that in the last few decades there has been a major
paradigm shift in our physical world-view. This started in 1970 by Hawking’s and
Penrose’s singularity theorem firmly establishing black hole physics and putting
general relativity into a new perspective. After that, discoveries and new results
have been accelerating. In the last 10 years astronomers have obtained firmer
and firmer evidence for the existence of ever larger, more and more exotic black
holes [39],[36] not to mention evidence supporting the assumption that the uni-
verse is not finite after all [41]. Nowadays the whole field is in a state of constant
revolution. If the background foundation on which PhCT was based has changed
so fundamentally, then it is desirable to re-examine the status and scope of appli-
cability of PhCT in view of the change of our general world-picture. A relevant
perspective is e.g. in Cooper [9]. Cf. also [19], [15], [31], [23], [37].

Assumption of an absolute time scale is a characteristic feature of the Newto-
nian world-view. Indeed, this absolute time has its mark on the Turing machine
as a model for computer. As a contrast, in general relativity there is no abso-
lute time. Kurt Gödel was particularly interested in the exotic behavior of time
in general relativity. Gödel [16] was the first to prove that there are models of
GR to which one cannot add a partial order satisfying some natural properties
of a “global time”. In particular, in GR various observers at various points of

1 As a contrast, one of the founding fathers of PhCT, László Kalmár, always hoped
for a refutation of PhCT and to his students he emphasized that PhCT is meant
to be a challenge to future generations, it is aimed at “teasing” researchers to put
efforts into attacking PhCT. [21]
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spacetime in different states of motion might experience time radically differ-
ently. Therefore we might be able to speed up the time of one observer, say
C (Cecil, for “computer”), relatively to the other observer, say P (Peter, for
“programmer”). Thus P may observe C computing very fast. The difference
between general relativity and special relativity is (roughly) that in general rel-
ativity this speed-up effect can reach, in some sense, infinity assuming certain
conditions are satisfied. Of course, it is not easy to ensure that this speed-up
effect happens in such a way that we could utilize it for implementing some
non-Turing-computable functions.

In sections 2 and 3 we briefly recall from [31],[30] an intuitive idea of how
this infinite speed-up can be achieved and how one can implement a computer
based on this idea. More concrete technical details can be found in [15],[31] and
to some extent in the remaining parts of this paper. For brevity, we call such
thought-experiments relativistic computers. We will see that it is consistent with
Einstein’s equations, i.e. with general relativity, that by certain kinds of relativis-
tic experiments, future generations might find the answers to non-computable
questions like the halting problem of Turing machines or the consistency of Zer-
melo Fraenkel set theory (the foundation of mathematics, abbreviated as ZFC
set theory from now on). Moreover, the spacetime structure we assume to exist
in these experiments is based in [15],[31] on huge slowly rotating black holes the
existence of which is made more and more likely (practically certain) by recent
astronomical observations [39],[36].

We are careful to avoid basing the beyond-Turing power of our computer
on “side-effects” of the idealizations in our mathematical model of the physical
world. For example, we avoid relying on infinitely small objects (e.g. pointlike test
particles, or pointlike bodies), infinitely elastic balls, infinitely (or arbitrarily)
precise measurements, or anything like these. In other words, we make efforts to
avoid taking advantage of the idealizations which were made when GR was set
up. Actually, this kind of self-constraint is essential for the present endeavor as
can be illustrated by [42, pp.446-447].

In sections 4–6 we discuss some essential questions of principle as well as
some technical questions in connection with realizability of a relativistic com-
puter, such as e.g. the so-called blue-shift problem, assuming infinity of time and
space. Many of these questions come close to the limits of our present scientific
knowledge, provoking new research directions or adding new motivations to al-
ready existing ones. We show that, at least, the idea of relativistic computers is
not in conflict with presently accepted scientific principles. E.g. we recall that
the presently accepted standard cosmological model predicts availability of infi-
nite time and space. We also show that the principles of quantum mechanics are
not violated, no continuity of time or space is presupposed by a relativistic com-
puter. Discussing physical realizability and realism of our design for a computer
is one of the main issues in [31, §5].

A virtue of the present research direction is that it establishes connections
between central questions of computability theory and logic, foundation of math-
ematics, foundation of physics, relativity theory, cosmology, philosophy, particle
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physics, observational astronomy, computer science and Artificial Intelligence
[45]. E.g. it gives new kinds of motivation to investigating central questions of
these fields like “is the universe finite or infinite (both in space and time) and
in what sense”, “exactly how do huge Kerr black holes evaporate” (quantum
gravity), “how much matter is needed for coding one bit of information (is there
such a lower bound at all)”, questions concerning the statuses of the various
cosmic censor hypotheses, questions concerning the geometry of rotating black
holes [5], to mention only a few. The interdisciplinary character of this direction
was reflected already in the 1987 course given by the present authors [29] during
which the idea of relativistic hypercomputers emerged and which was devoted
to connections between the above mentioned areas.

Section 6 is also about the impact of general relativistic computing on the
foundation of mathematics.

Section 7 is devoted to the impact of the “new computability paradigm” on
spacetime theory. There, we discuss a different kind of motivation for studying
relativistic computers. Namely, such a study may have applications to theoretical
physics as follows. To GR, there is an infinite hierarchy of hypotheses called
causality constraints which can be added to GR as outlined in the monograph
[11, §6.3, pp.164-167]. Among these occur the various versions of the cosmic
censor hypothesis (CCH) of which the basic reference book of relativity theory
[43, p.303] writes “whether the cosmic censor conjecture is correct remains the
key unresolved issue in the theory of gravitational collapse”. On p.305 [43] writes
“... there is virtually no evidence for or against the validity of this second version
of CCH”. These causality hypotheses play a role in GR analogous with the role
formulas like GCH independent of ZF set theory play in set theory (or logic).
These causality hypotheses are independent of GR (they are not implied by
GR), and their status is the subject of intensive study as op. cit. illustrates
this. Now, the study of relativistic computers could, in principle, reveal how the
physical Church Thesis PhCT is situated in this hierarchy, in a sense which we
will discuss in section 7. If we could find out which one of these constraints imply
PhCT (or are implied by PhCT), that could be illuminating in why certain issues
are difficult to settle about these constraints, cf. e.g. Etesi [14] and [43, p.303].

Tangible data underlying the above interconnections and also more history,
references are available in [31]. The textbook Earman [11, p.119, section 4.9]
regards the same interdisciplinary perspective as described above to be one of
the main virtues of the present research direction. It is the unifying power of
logic which makes it viable to do serious work on such a diverse collection of
topics. One of the main aims of the research direction represented by [1]–[3],
[24]–[26] is to make relativity theory accessible for anyone familiar with logic.

2 Intuitive idea for non-Turing GR computing

In this section we briefly recall from [31, 30] the ideas of how relativistic com-
puters work, without going into technical details. The technical details are elab-
orated, among others, in [15], [19], [31]. To make our narrative more tangible,
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we use the example of huge slowly rotating black holes for our construction of
relativistic computers. These are called “slow-Kerr” black holes in the physics
literature. There are many more kinds of spacetimes suitable for carrying out
essentially the same construction for a relativistic computer. We chose rotating
black holes because they provide a tangible example for illustrating the kind
of reasoning underlying general relativistic approaches to breaking the “Tur-
ing barrier”. Mounting astronomical evidence for their existence makes them
an even more attractive choice for our didactic purposes. In passing we note
that some intuitively easy to read fine-structure investigations of slowly rotating
Kerr-Newman black holes are found in the recent [5].

We start out from the so-called Gravitational Time Dilation effect (GTD).
The GTD is a theorem of relativity theory, it says that gravity makes time run
slow. Clocks that are deep within gravitational fields run slower than ones that
are farther out. Roughly, GTD can be interpreted by the following thought-
experiment. Choose a high enough tower on the Earth, put precise enough (say,
atomic) clocks at the bottom of the tower and the top of the tower, then wait
enough time, and compare the readings of the two clocks. The clock on the
top will run faster (show more elapsed time) than the one in the basement. So,
gravity causes the clock on the top ticking faster. Therefore computers there also
compute faster. If the programmer in the basement would like to use this GTD
effect to speed up his computer, he can just send his computer to the top of
the tower and he gets some speed-up effect. We want to increase this speed-up
effect to the infinity. Therefore, instead of the Earth, we use a huge black hole.
A black hole is a region of spacetime with so big “gravitational pull” that even
light cannot escape from this region. There are several types of black holes, an
excellent source is Taylor and Wheeler [40]. For our demonstration of the main
ideas here, we will use a huge, slowly rotating black hole. These black holes have
two event horizons, these are bubble-like surfaces one inside the other, from
which even light cannot escape. See Figures 1–2.

As we approach the outer event horizon from far away outside the black hole,
the gravitational “pull” of the black hole approaches infinity as we get closer
and closer to the event horizon. This is rather different from the Newtonian
case, where the gravitational pull also increases but remains finite everywhere.
For a while from now on “event horizon” means “outer event horizon”. Imagine
observers suspended over the event horizon. Here, suspended means that the
distance between the observer and the event horizon does not change. Equiv-
alently, instead of suspended observers, we could speak about observers whose
spaceship is hovering over the event horizon, using their rockets for maintaining
altitude. Assume one suspended observer C is higher up and another one, P , is
suspended lower down. So, C sees P below her while P sees C above him. Now
the gravitational time dilation (GTD) will cause the clocks of C run faster than
the clocks of P . They both agree on this if they are watching each other e.g. via
photons. Let us keep the height of C fixed. Now, if we gently lower P towards
the event horizon, this ratio between the speeds of their clocks increases and, as
P approaches the event horizon, this ratio approaches infinity. This means that
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for any integer n, if we want C’s clocks to run n times as fast as P ’s clocks, then
this can be achieved by lowering P to the right position. If we could suspend the
lower observer P on the event horizon itself then from the point of view of C,
P ’s clocks would freeze, therefore from the point of view of P , C’s clocks (and
computers!) would run infinitely fast, hence we would have the desired infinite
speed-up upon which we could then start our plan for breaking the Turing bar-
rier. The problem with this plan is that it is impossible to suspend an observer
on the event horizon. As a consolation for this, we can suspend observers ar-
bitrarily close to the event horizon. To achieve an “infinite speed-up” we could
do the following. We could lower and lower again P towards the event horizon
such that P ’s clocks slow down (more and more, beyond limit) in such a way
that there is a certain finite time-bound, say b, such that, roughly, throughout
the whole history of the universe P ’s clocks show a time smaller than b. More
precisely, by this we mean that whenever C decides to send a photon to P , then
P will receive this photon before time b according to P ’s clocks. This is possible.
See Figure 2.

There is a remaining problem to solve. As P gets closer and closer to the event
horizon, the gravitational pull or gravitational acceleration tends to infinity. If
P falls into the black hole without using rockets to slow his fall, then he does
not have to withstand the gravitational pull of the black hole. (He would only
feel the so-called tidal forces which can be made negligibly small by choosing a
large enough black hole.) However, his falling through the event horizon would
be so fast that some photons sent after him by C would not reach him outside
the event horizon. Thus P has to approach the event horizon relatively slowly
in order that he be able to receive all possible photons sent to him by C. In
theory he could use rockets for this purpose, i.e. to slow his fall (assuming he
has unlimited access to fuel somehow). Because P approaches the event horizon
slowly, he has to withstand this enormous gravity (or equivalently acceleration).
The problem is that this increasing gravitational force (or acceleration) will kill
P before his clock shows time b, i.e. before the planned task is completed. At
the outer event horizon of our black hole we cannot compromise between these
two requirements by choosing a well-balanced route for P : no matter how he will
choose his route, either P will be crashed by the gravitational pull (acceleration),
or some photons sent by C would not reach him. (This is the reason why we
can not base our relativistic computer on the simplest kind of black holes, called
Schwarzschild ones, which have only one event horizon and that behaves as we
described above.) To solve this problem, we would like to achieve slowing down
the “fall” of P not by brute force (e.g. rockets), but by an effect coming from
the structure of spacetime itself. In our slowly rotating black hole, besides the
gravitational pull of the black hole (needed to achieve the time dilation effect)
there is a counteractive repelling effect coming from the rotation of the black
hole. This repelling effect (or cushioning effect) is analogous to “centrifugal force”
in Newtonian mechanics and will cause P to slow down in the required rate. So
the idea is that instead of the rockets of P , we would like to use for slowing
the fall of P this second effect coming from the rotation of the black hole. The
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inner event horizon marks the point where the repelling force overcomes the
gravitational force. Inside the inner horizon, it is possible again to “suspend”
an observer, say P , i.e. it becomes possible for P to stay at a constant distance
from the center of the black hole (or equivalently from the event horizons). It is
shown in [15] that the path of the in-falling observer P can be planned in such
a way that the event when P reaches the inner event horizon corresponds to the
time-bound b (on the wristwatch of P ) mentioned above before which P receives
all the possible messages sent out by C. In fact, the path of P can be chosen (to
be a geodesic, i.e.) so that P does not have to use rockets at all, all the “slowing
down” is done by the spacetime itself.

e

P

z

x

y

Ring singularity

b

Inner event
horizon

Outer event horizon

Axis of rotation

Fig. 1. A slowly rotating (Kerr) black hole has two event horizons and a ring-shape
singularity (the latter can be approximated/visualized as a ring of extremely dense and
thin “wire”). The ring singularity is inside the inner event horizon in the “equatorial”
plane of axes x, y. Time coordinate is suppressed. Figure 2 is a spacetime diagram
with x, y suppressed. Rotation of ring is indicated by an arrow. Orbit of in-falling
programmer P is indicated, it enters outer event horizon at point e, and meets inner
event horizon at point b.

By this we achieved the infinite speed-up we were aiming for. This infinite
speed-up is represented in Figure 2 where P measures a finite proper time be-
tween its separation from the computer C (this separation point is not repre-
sented in the figure) and its touching the inner horizon at proper time b (which
point also is not represented in Figure 2). It can be seen in the figure that when-
ever C decides to send a photon towards P , that photon will reach P before P

meets the inner horizon.
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horizon
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outer event
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t z = r− z = r+

z

z = 0

C

P

Fig. 2. The “tz-slice” of spacetime of slowly rotating black hole in coordinates where
z is the axis of rotation of black hole. The pattern of light cones between the two event
horizons r− and r+ illustrates that P can decelerate so much in this region that he will
receive outside of r− all messages sent by C. r+ is the outer event horizon, r− is the
inner event horizon, z = 0 is the “center” of the black hole as in Figure 1. The tilting
of the light cones indicates that not even light can escape through these horizons. The
time measured by P is finite (measured between the beginning of the experiment and
the event when P meets the inner event horizon at b) while the time measured by C

is infinite.

3 Implementation for a relativistic computer

We now use the above to describe a computer that can compute tasks which
are beyond the Turing limit. To break the Turing limit, let us choose the task,
for an example, to decide whether ZFC set theory is consistent. I.e. we want to
learn whether from the axioms of set theory one can derive the formula FALSE.
(This formula FALSE can be taken to be x 6= x.) The programmer P and his
computer C are together (on Earth), not moving relative to each other, and P

uses a finite time-period for transferring input data to the computer C as well
as for programming C. After this, P boards a huge spaceship, taking all his
mathematical friends with him (like a Noah’s Ark), and chooses an appropriate
route towards a huge slowly rotating black hole, entering the inner event horizon
when his wrist-watch shows time b. While he is on his journey towards the black
hole, the computer that remained on the Earth checks one by one the theorems
of set theory, and as soon as the computer finds a contradiction in set theory,
i.e. a proof of the formula FALSE from the axioms of set theory, the computer
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sends a signal to the programmer indicating that set theory is inconsistent. If it
does not find a proof for FALSE, the computer sends no signal.

The programmer falls into the inner event horizon of the black hole and after
he has crossed the inner event horizon, he can evaluate the situation. If a light
signal has arrived from the direction of the computer, of an agreed color and
agreed pattern, this means that the computer found an inconsistency in ZFC
set theory, therefore the programmer will know that set theory is inconsistent. If
the light signal has not arrived, and the programmer is already inside the inner
event horizon, then he will know that the computer did not find an inconsistency
in set theory, did not send the signal, therefore the programmer can conclude
that set theory is consistent. So he can build the rest of his mathematics on the
secure knowledge of the consistency of set theory. We will return to the issue of
whether the programmer has enough space and time and resources for using the
just gained information at the end of section 5.

The above outlined train of thought can be used to show that any recursively
enumerable set can be decided by a relativistic computer [15]. Actually, more
than that can be done by relativistic computers. Welch [44] shows that the
arrangement described in section 3 using Kerr black holes can solve exactly the
∆2-hard problems in the technical sense of the arithmetical hierarchy (degrees
of unsolvability) used in logic and computability theory (under some mild extra
assumptions). Computability limits connected with such relativistic computers
are also addressed in [19], [20], [37], [45].

Relativistic computers are not tied to rotating black holes, there are other
general relativistic phenomena on which they can be based. An example is anti-
de-Sitter spacetime which attracts more and more attention in explaining recent
discoveries in cosmology (the present acceleration of the expansion of the uni-
verse, cf. [31]). Roughly, in anti-de-Sitter spacetime, time ticks faster and faster
at farther away places in such a way that P can achieve infinite speed-up by
sending away the computer C and waiting for a signal from her. This scenario is
described and is utilized for computing non-Turing computable functions in [19].
This example shows that using black holes (or even singularities) is not inherent
in relativistic computers.

Spacetimes suitable for an implementation of relativistic computation like
described in this section are called Malament-Hogarth spacetimes in the physics
literature. A relativistic spacetime is called Malament-Hogarth (MH) if there is
an event (called MH-event) in it which contains in its causal past a worldline
of infinite proper length. The spacetime of ordinary Schwarzschild black hole is
not MH, the spacetime of rotating Kerr black hole is MH and any event within
the inner event horizon is MH, in anti-de-Sitter spacetime every event is an MH-
event, the spacetime of an electrically charged BH (called Reissner-Nordström
spacetime) is MH and there are many other examples for MH.

We note that using MH spacetimes does not entail faith in some exotically
“benevolent” global property of the whole of our universe. Instead, most of the
MH spacetimes, like rotating BH’s, can be built by a future, advanced civiliza-
tion inside our usual “standard” universe of high precision cosmology. Namely,
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such MH spacetimes do not necessarily refer to the whole universe, but instead,
to some “local” structure like a rotating ring of gravitationally collapsed matter
in a “spatially finite part” of a more or less usual universe involving no par-
ticular global “witchcraft”, so-to-speak. We are writing this because the word
“spacetime” in the expression “MH spacetime” might be misleading in that it
might suggest to the reader that it is an exotic unlikely property of the whole
of God’s creation, namely, the whole universe. However, in most MH spacetimes
this is not the case, they are (in some sense) finite structures that can be built,
in theory, by suitably advanced civilizations in a standard kind of universe like
the one which is predicted by the present-day standard version of cosmology.
Indeed, one of them, namely large rotating black holes, have been actually ob-
served by astronomers many times and with great confidence. A typical example
is the rotating 100 million solar mass black hole at the center of galaxy WCG-
6-30-15. In other words, nothing fancy is required from the whole universe, the
“fancy part” is a structure which can, in theory, be manufactured in an ordinary
infinite universe. Therefore in the present context it would be more fortunate to
talk about MH regions of spacetime than about MH spacetimes.

4 Two sides of the coin and the blue-shift problem

A relativistic computer as we described in section 3 is a team consisting of a
Computer (C, for Cecil) and a Programmer (P, for Peter).

How does the computer C experience the task of this computing? C will see
(via photons) that the programmer P approaches the black hole (BH), and as he
approaches it, his wristwatch ticks slower and slower, never reaching wristwatch
time b. C will see the Programmer approaching the BH in all her infinite time.
For C, the Programmer shines on the sky for eternity. The only effect of C’s time
passing is that this image gets dimmer and dimmer, but it will never disappear.
Under this sky, C computes away her task consisting of potentially infinitely
many steps, i.e. checking the theorems of ZFC one by one, in an infinite amount
of time.

How does the Programmer experience the task of this computing? He is
traveling towards the black hole, and he only has to check whether he received a
special signal from the Computer or not. For this task, which consists of finitely
many steps, he has a finite amount of time.

What would he see would he watch his team-member, the Computer? He
would see the Computer computing faster and faster, speeding up so that when
his (P ’s) wristwatch time reaches b, C would just flare up and disappear. Well,
this flare-up would burn P , because it carries the energy of photons emitted
during the whole infinite life of C, thus the total amount of this energy is infinite.
In fact, we have to design a shield (or mirror) so that only intended signals from
C can reach P . This means that we have to ensure that P does not see C! P ’s
task is to watch whether there is one special kind of signal coming through this
shield. All in all, P ’s task is to do finitely many steps in a finite amount of time.
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A task in the literature is called supertask if it involves one to carry out
infinitely many steps in a finite amount of time [12]. Therefore, by the above,
we think that the relativistic computer need not implement a supertask.

The above led us to the so-called blue-shift problem [11]. This is the following.
The frequency of light-signals (photons) sent by C to P gets increased (i.e. blue-
shifted) by the time they reach P because of the infinite speed-up we worked so
hard to achieve! Thus, if we do nothing about this, the one signal that C sends,
can kill P . Further, P may not be able to recognize the blue-shifted signal. There
are many solutions for this problem, two such solutions can be found in sections
5.3.1 and 5.4.1 of [31]. For example, C can arrange sending the signal to P such
that C asks her sister C ′ to embark on a spaceship S which speeds up in the
direction opposite to the direction of the Kerr hole, and send the signal from
this spaceship. If S moves fast enough, then any signal sent from S to P will be
red-shifted because of the speed of S. Then C chooses the speed of S to be such
that the red-shift caused by this speed exactly cancels out the blue-shift caused
by the gravitational effects at the event when P receives the signal.

Some new ideas on the blue-shift problem using mirrors. Programmer P sends
out a second spaceship P ′ inhabited by robot P ′ running ahead of P in the same
direction, i.e. towards the inner horizon of the black hole. So, P ′ travels faster
than P and P ′ is between P and the inner horizon (in the relevant time period, of
course). When computer C sends out the message (that e.g. an inconsistency was
found in ZFC), the message is “beamed” to P ′ and not to P . Careful engineering
is needed to ensure that the photons coming from C (or from anywhere the
outside area) avoid P . See the Penrose diagram in Figure 3.

Bold solution: P ′ uses a huge mirror, by which P ′ reflects the message “back”
to P . Since P ′ is moving extremely fast, we can say that P ′ is “running away”
from the incoming photons. Therefore by the Doppler Effect, the frequency of
the reflected photons (message) will be arbitrarily smaller (depending on the
relative velocity2 of P ′ and P ) and so the energy of the message received by P

from P ′ will be suitably small to ensure (i) recognizability and (ii) not burning
P to death. For this, the pilots of P and P ′ should adjust their relative velocities
appropriately. This seems to be possible as indicated in Figure 3. For the case
something would go wrong with the above “bold plan”, we include below a
cautious plan.

Cautious plan: Instead of carrying a huge mirror, P ′ carries a large banner
that can be spared. Now, the light signal (message) from C is directed to the
banner carried by P ′. So by the blue-shift effect, the message burns (destroys)
the banner of P ′. Even simpler solution is obtained by burning the whole of P ′.
Now, P is watching P ′ for the message. If P ′ disappears, then P concludes that
P ′ was burned by the message, hence there was a message, hence P concludes
that ZFC is inconsistent. If ZFC is consistent then C does not send a message
to P ′, hence P ′ does not get burned, hence P “sees” that P ′ is still there, hence
after both P and P ′ crossed the inner event horizon, P concludes that ZFC is
consistent. Although this will happen only some time after P crosses the inner

2 measurable e.g. by radar
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horizon, but that is consistent with our plan. The above plan of burning P ′

by the message might contain possibilities for error, e.g. P ′ might disappear
because of some completely irrelevant accident (without C’s sending a message).
While this is so, the likelihood of such an accident can be minimized by the
usual techniques of careful engineering, e.g. using redundancy (several copies of
P ′ moving in different directions all of which are targeted by C if C finds the
inconsistency etc).

e

∆t′

∆t

P ′

P

C

Fig. 3. Attacking the blue-shift problem by “mirrors” and by an “escaping” second
spaceship P ′. The “decoded” message is received by P only after he crossed the inner
event horizon but not later than P ′’s crossing the inner event horizon is observed by
P .

5 Some questions naturally arising

The following questions come up in connection with realizability of the plan
described in section 3.

– can the programmer check whether the distant object he chose for a slowly
rotating black hole is indeed one (whether it has the spacetime structure
needed for his purposes)?

– can he check when he passed the event horizon?
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– can he survive passing the event horizon?
– can he receive and recognize the signal sent by the computer?
– how long can he live inside the black hole?
– is there a way for the programmer to know that absence of signal from the

computer is not caused by some catastrophe in the life of the computer?
– is it possible for a civilization to exist for an infinite amount of time?
– can the programmer repeat the computation or is this a once-for-a-lifetime

computation for him?

Here we just assert that the answers to all these questions are in the affirma-
tive, or at least do not contradict present scientific knowledge. These questions
are discussed in detail in [31]. Below we address three of these questions.

On the question of traverseability of the event horizon: We chose the black
hole to be large. If the black hole is huge3, the programmer will feel nothing
when he passes either event horizon of the black hole—one can check that in
case of a huge black hole the so-called tidal forces on the event horizons of the
black hole are negligibly small [33], [15].

On the question of how long the programmer can live after crossing the event
horizon: The question is whether the programmer can use this new information,
namely that set theory is consistent, or whatever he wanted to compute, for his
purposes. A pessimist could say that OK they are inside a black hole, so—now
we are using common sense, we are not using relativity theory—common sense
says that the black hole is a small unfriendly area and the programmer will
sooner or later fall into the middle of the black hole where there is a singularity
and the singularity will kill the programmer and his friends. The reason why we
chose our black hole to be a huge slowly rotating one, say of mass 1010m⊙, is the
following. If the programmer falls into a black hole which is as big as this and
it rotates slowly, then the programmer will have quite a lot of time inside the
black hole because the center of the black hole is relatively far from the event
horizon. But this is not the key point. If it rotates, the “matter content”, the so-
called singularity, which is the source of the gravitational field of the black hole
so-to-speak, is not a point but a ring (see Fig.1). So if the programmer chooses
his route in falling into the black hole in a clever way, say, relatively close to the
north pole instead of the equatorial plane, then the programmer can comfortably
pass through the middle of the ring, never get close to the singularity and happily
live on forever (see Fig.s 1,2). We mean, the rules of relativity will not prevent
him from happily living forever. He may have descendants, he can found society,
he can use and pass on the so obtained mathematical knowledge.

On the question of whether the computation can be repeated: Let us look
at the extension of slow Kerr spacetime in [32, §3.3, pp.116-140]. Especially,
consider the maximal slow Kerr spacetime (MSK) on Fig. 3.16, p.139. By con-
sidering this MSK, we can convince ourselves that our GR-computation is re-
peatable and with appropriate care it can be made deterministic. Some further
meditation on this repeatability of GR-computing can lead to new perspectives

3 this is a technical expression in observational astronomy
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on the Platonism - formalism debates and views in the philosophical schools of
the foundations of mathematics. E.g. one of the ages old arguments fades away,
namely the argument saying that we cannot have access to any instances of
actual infinity.

6 Can we learn something about infinity? Impact on the

foundation of mathematics.

The relativistic computer as we implemented it in section 3 assumes that an in-
finite amount of time is available for C for computing. This seems to be essential
for breaking the Turing barrier (by our construction). We are in a good position
here, because of the following. As a result of very recent revolution in cosmology,
there is a so-called standard model of cosmology. This standard model is based
on matching members of a family of GR spacetimes against a huge number of
observational data obtained by three different astronomical projects. This huge
number of measurements (made and processed by using computers) all point
amazingly to one specific GR spacetime. This spacetime is called the standard
cosmological model, and in accordance with the so far highly successful scientific
practice of the last 2500 years, we regard this standard model of the latest form
of high-precision cosmology as the model best suited to explain observations
and experience collected so far. According to this standard model, our universe
is infinite both in regard of time and space, moreover there is an infinite amount
of matter-energy available in it. We will see soon that the latter infinity is not
needed for our construction. For more on this see Dávid [10], [31] and the ref-
erences therein. Our point here is not about believing that our universe indeed
has infinite time or not. The point is that assuming availability of an infinite
amount of time for computing is not in contradiction with our present-day sci-
entific knowledge.

We would like to say some words on the question of how much matter/energy
is needed for storing, say, 10 bits of information. Although this question is not
essential for the realizability of the relativistic computer (because of availability
of infinite energy in the standard model of cosmology), we still find this question
interesting for purely intellectual/philosophical reasons.

Is information content strongly tied to matter/energy content? Is there a
lower bound to mass which is needed to store 10 bits of information? This is
a question which has nagged one of the authors ever since he wrote his MsC
thesis [28] where a separate section was devoted to this issue. The question is:
“If I want to write more, do I need more paper to write on?” Right now it
seems to us that the answer is in the negative. Matter and information might
be two independent (orthogonal) “dimensions” of reality. The reason for this is
the following. One might decide to code data by photons. Then the amount of
matter/energy used is the energy total of these photons. But the energy of a
photon is inversely proportional with its wavelength. So, one might double the
wavelength of all photons and then one halved the energy needed to carry the
same information one coded originally. If this is still too much energy expense,
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then one can double the wavelength again. Since there is no upper bound to
the wavelengths of photons, there is no lower bound for the energy needed for
storing 10 bits of data.

So, it seems to us that energy and information are not as strongly linked
entities as energy and mass are (via E = mc2). In the above argument when we
said that there was no upper bound to the wavelength of possible photons, we
used that according to the standard cosmological model the Universe is infinite
in space. We note that Einstein when inventing photons did not say that there
is a smallest nonzero value for energy. He said this only for light of a fixed color,
i.e. fixed wavelength.

We would like to emphasize that we did not use that space is continuous. We
seem to have used that time is continuous, but we can avoid that assumption by
refining the implementation of relativistic computer. Constructions for this are
in [31]. Thus, no contradictions with the principles of quantum mechanics seems
to be involved in the idea of relativistic computer.

In the above, we argued that in principle, one can even build a relativistic
computer sometime in the future. However, a fascinating aspect of relativis-
tic computers for us is that they bring up mind-boggling questions about the
nature of infinity. These questions would be worth thinking over even if our
present-day science would predict a finite universe. We seem to understand and
be familiar with the use of potential infinity in science. However, the above
thought-experiment seems to use the notion of actual infinity. Is infinity a men-
tal construction only or does it exist in a more tangible way, too? Can we learn
something about actual infinity by making physical experiments? This leads to
questions inherent in foundational issues in mathematics and physics. For more
about this and about connection with Hilbert’s Programme for mathematics we
refer to [4].

7 Relativistic Computers and Causality Hypotheses in

Physics

Let us consider the hierarchy of causality hypotheses C0, . . . , C6 summarized
in the monograph Earman [11, §6.3, pp.164-166]. None of these follow from GR
(cf. e.g. [43, p.303]), they function as extra possible hypotheses for narrowing the
scope of the theory. The strongest of these is the strong cosmic censor hypothesis
C6 saying that spacetime is globally hyperbolic. A spacetime is called globally

hyperbolic if it contains a spacelike hypersurface that intersects every causal curve
without endpoint exactly once. This implies that the “temporal” structure of
spacetime is basically the same as that of the Newtonian world in that it admits
a “global time” associating a real number t(p) to every point p of spacetime.
In other words, C6 implies that spacetime admits a “global foliation”, i.e. it is
a disjoint union of global time-slices or “global now”-s. This is a quite extreme
assumption and its role is more of a logical status, i.e. one investigates questions
of what follows if C6 is assumed rather than assuming that it holds for the
actual universe. Recall that Wald [43, p.305 lines 7-8] wrote about the cosmic
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censor hypothesis that “there is virtually no evidence for or against the validity
of this”, as we quoted around the end of section 1. Cf. also [11, pp.97,99] for
further doubts on C6.

In section 1 we said that the assumption of absolute time has its marks on
the Turing Machine as a model for computer, and now we see that C6 provides
a kind of global time. Indeed, the construction of a GR-computer in this paper
relies heavily on failure of C6, because Hogarth proved that no MH-spacetime is
globally hyperbolic [11, Lemma 4.1, p.107]. This motivates the following ques-
tion.

Question 1. Does (a carefully formulated variant of) PhCT follow from GR+C6?

On this question: PhCT has not been formalized precisely yet, this is part
of why this question is asking for a formulation of PhCT which would follow
from GR+C6. In this question we are asking if there are some natural and
convincing extra conditions on physically realistic computability which would
yield PhCT from GR+C6. The need for such extra realisticity assumptions is
demonstrated by e.g. Tipler [42, pp.446-447]. Actually, we started collecting
such conditions for physical realisticity in the middle of sec. 1 (in the paragraph
beginning with “We are careful to avoid ...”). One might conjecture that, under
suitable assumptions on physical realisticity and with a suitable formulation of
PhCT, a kind of positive answer to Question 1 might be plausible4.

Question 1 is about the connection between PhCT and the cosmic censor
hypothesis C6. Next we concern ourselves with the connection between PhCT
and the Malament-Hogarth property of a spacetime. We note that C6 implies
that the spacetime is not Malament-Hogarth (NoMH for short), [11, Lemma
4.1, p.107] but NoMH does not imply C6 [11, p.110, first 2 sentences of sec.4.5].
Hence NoMH is a strictly weaker causality hypothesis than C6. We note that
[14] explores the connection between C6 and MH. Again, we have no reason for
believing in NoMH.

Question 2. Under what natural (extra) conditions is NoMH equivalent with
what version of PhCT?

On this question: In theory, the MH property implies failure of PhCT (i.e.
PhCT ⇒ NoMH), because in any MH-spacetime one can, at least in theory,
construct a GR-computer like in this paper, cf. [11, §4], [19]. However, there is
a reason why in the works [15], [31], [30] we chose to implement our relativis-
tic computer via a huge rotating black hole. Namely, huge-ness of the rotating
BH was used to ensure that the tidal forces at the event horizons do not kill
the programmer. It is possible to construct a toy-example of a MH spacetime

4 Very tentatively: Recently, emerging new kinds of computing devices like the Internet
seem to pose a challenge against the conjecture in Question 1, cf. [45]. However, even
the Internet (or even the Human Mind) will probably not prove ZFC consistent
(assuming C6). So, perhaps we should separate PhCT into two theses, one about
“hard” problems like proving the consistency of ZFC, and the other about problems
in general which are not Turing computable.
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in which our kind of relativistic computer is not realistic physically. By physi-
cal realisticity we mean requirements that we do not use infinitely small com-
puters (objects), infinitely precise measurements, or the like in designing our
non-Turing computer, cf. [31] for more detail. We note that if we do not insist
on physical realisticity, then already in Newtonian Mechanics PhCT would fail
as demonstrated e.g. in Tipler [42, pp.446-447]. This motivates the question of
what natural assumptions would ensure PhCT ⇒ NoMH or equivalently MH ⇒

NotPhCT in a physically realistic way. This is one direction of Question 2 above.
The other direction of Question 2 seems to be the harder one: Under what

natural conditions (if any) does NotPhCT imply MH. I.e. under what conditions
is

(⋆) NotPhCT ⇒ MH

true? One way of rephrasing (⋆) is to conjecture that if there is a physically
realistic non-Turing computer then there must be one which is built up in the
style of the present paper utilizing MH property of spacetime. (By non-Turing
computer we mean a physical computer that can compute beyond the Turing
barrier.) This seems to be a daring conjecture. But let us remember that the
question was: under what conditions is statement (⋆) true. In particular, if the
physical non-Turing computer “designed” in the book Pour-El and Richards
[35] turns out to be physically realizable, then our conjecture (that under some
reasonable conditions (⋆) might become true) might get refuted.

We note that the tentative conjecture implicit in Question 2 was arrived at
jointly with Gábor Etesi.

8 Logic based conceptual analysis of GR and “reverse

mathematics” for GR

So far we have been applying general relativity (GR) to logic and to the foun-
dation of mathematics (FOM). In the other direction, logic and FOM are being
applied to a conceptual analysis and logical/mathematical foundation of relativ-
ity (including GR). In more detail: FOM has an important branch called reverse
mathematics. In the latter we ask the question(s) of which axioms of set the-
ory are responsible (needed) for which important theorems of mathematics. In
a series of papers, e-books, and book chapters, a team containing the present
authors has been working on a programme which could be called “exporting the
success story of FOM to a foundation of relativity” (set theorist Harvey Fried-
man coined this slogan), cf. e.g. [1]–[3], [24]–[26]. Roughly speaking, this group
builds up relativity in first-order logic (like FOM is built up as a theory in the
sense of mathematical logic), then analyzes the so obtained logical theory from
various perspectives and (like in reverse mathematics) attempts to answer the
so-called why-type questions asking why a certain prediction of general relativ-
ity is being predicted, i.e. which axioms of the theory are responsible for that
particular prediction.
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Section 7 above can be regarded as a small sample from the above quoted
logical/conceptual analysis of GR and its extensions. A particular example of
this feedback from logic and FOM to GR is the paper [5].

By the above sketched feedback from logic and FOM to GR, the “circle”
GR 7→ Logic 7→ FOM 7→ GR promised in the introduction is completed.

9 History of relativistic computation

The idea of general relativistic computing as described in section 2 was found at
different parts of the globe, independently. It was discovered by Németi in 1987
[29], Pitowsky in 1990 [34], Malament in 1989 [27], and Hogarth in 1992 [18]
independently. Németi’s idea used large slowly rotating black holes (slow Kerr
spacetimes) but the careful study of feasibility and transversability of these was
done later in Etesi-Németi [15]. All this led to a fruitful cooperation between
the parties mentioned above, e.g. between Cambridge (Hogarth et al), Budapest
(Németi et al), Pittsburgh (Earman et al). The first thorough and systematic
study of relativistic computation was probably Hogarth [19]. Related work on
relativistic computing include [44], [37], [11, §4], [12], [13], [17], [30].
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28. Németi, I., Computing the disturbance of phone lines caused by high-voltage elec-
trical power lines. Master Thesis, Dept. Electrodynamics, Technical University Bu-
dapest, 1965.
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