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Abstract. We show that the variety of n-dimensional weakly higher order cylindric

algebras, introduced in Németi [9], [8], is finitely axiomatizable when n > 2. Our result

implies that in certain non-well-founded set theories the finitization problem of algebraic

logic admits a positive solution; and it shows that this variety is a good candidate for being

the cylindric algebra theoretic counterpart of Tarski’s quasi-projective relation algebras.
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1. Introduction

In this paper we give a finite axiomatization for the variety of n-dimensional
weakly higher order cylindric algebras (RCA↑

n, 3 ≤ n ∈ ω), introduced in
Németi [9], [8]. Weakly higher order cylindric algebras are natural expan-
sions of representable cylindric algebras. They have extra operations that
correspond to a kind of bounded (existential) quantification along a binary
relation R (called an accessibility relation) and its converse. The relation R
is most conveniently thought of as being the “element of” relation in a model
of some set theory. In this interpretation, the logical constants corresponding
to the new operations are second order quantifiers. See Definition 1.1 below
for the details. Our result may be of some interest to (algebraic) logicians,
because

1. it implies that in certain non-well-founded set theories the finitization
problem of algebraic logic admits a positive solution; and

2. it shows that RCA↑
n is a good candidate for being the cylindric alge-

bra theoretic counterpart of Tarski’s quasi-projective relation algebras
(QRAs).

As for 1, we note that, as oulined above and explained in detail in [9] and
[8], RCA↑

n can be thought of as the algebraization of an untyped higher order
logic L. See [9], [8], [3] and [11] for details, and for an explanation of how our
result implies that in some non-well-founded set theories L is a finitizable
extension of first-order logic. In (non-algebraic) logical terms, this means
that some versions of higher order logic (with standard semantics) admit a
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truly finite∗ axiomatization in some set theories, and, for some extensions L
of first order logic, both the valid formula-schemas of L (in the sense of e.g.
Rybakov [10]) and the propositional modal version of L (cf. e.g. Venema [14])
are finitely axiomatizable.

Item 2 above seems to be of some interest, e.g. because the results in
Németi [7], [6] and Andréka–Németi [1] indicate that finding the CA-theoretic
counterpart of QRAs may not be very easy. The problem of finding such a
counterpart appeared implicitly in Maddux–Tarski [5] (last sentence) and
Maddux [4].

Definition 1.1 (cf. Németi [9], [8]). Let R be a binary relation on a set U .
We say that 〈U,R〉 is pairing if

〈U,R〉 |= ∀xy∃w[xRw ∧ yRw ∧ ∀z(zRw → (z = x ∨ z = y))].

For α an ordinal,

Cs↑α = S{〈P(αU),∪, \,C↑
i

R
,C↓

i

R
,DU

ij〉i,j∈α :

U is a set and 〈U,R〉 is pairing},

where

C↑
i

R
X = {f ∈ αU : ∃g ∈ X(giRfi and gj = fj for all j ∈ α, j 6= i)} for

X ⊆ αU ,

C↓
i

R
X = {f ∈ αU : ∃g ∈ X(fiRgi and gj = fj for all j ∈ α, j 6= i)} for

X ⊆ αU , and

DU
ij = {f ∈ αU : fi = fj}.

We will usually omit the superscripts R and U from the operations. We let
RCA↑

α = I SPCs↑α.

Theorem 1.2. RCA↑
n is a finitely axiomatizable variety (if 2 < n < ω).

Outline of proof. First we show (Lemma 2.5) that every QRA (see Defi-
nition 2.1 below) B with R ∈ B has an RCA↑

n reduct (which we denote by
Rd

CA↑n,R
B). The proof of this result is based on Tarski’s representation the-

orem for QRAs (recalled in Lemma 2.2 below). By imposing finitely many
axioms on RCA↑

n-type algebras we get a variety CA↑
n (Definition 3.2) such

that for any A ∈ CA↑
n

∗as opposed to e.g. finite schema
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• the RA-reduct (taken in the last two coordinates, cf. Definition 3.1) B

of A is a QRA

• there is a term-definable operation in A that embeds A in Rd
CA↑n,RA B ∈

RCA↑
n. Here R = Rn−2,n−1 is a constant term of A such that RA is in B.

�

In other words, by finding RCA↑-like algebras inside QRAs, we can use an
RA-theoretic result (Tarski’s representation theorem for QRAs) to prove a
CA-theoretic result. We note that in Simon [12] the definability of CA-like
algebras in QRAs was used to derive the representation theorem for QRAs
from a CA-theoretic result (Henkin’s neat embedding theorem).

2. Finding RCA↑s in QRAs

We start by recalling the definition of quasi-projective relation algebras from
Tarski–Givant [13].

Definition 2.1 (Tarski–Givant [13]). Let B ∈ RA. B is a QRA if there are
elements p, q ∈ B such that the following equations hold in B:

(e1) p˘ ◦ p ≤ Id and q˘ ◦ q ≤ Id

(e2) p˘ ◦ q = 1

p and q are called quasi-projections in B.

RRA denotes the class of representable RAs.

Lemma 2.2 (Tarski–Givant [13, Theorem 8.4(iii)]). QRA ⊆ RRA.

The following definition and lemma are from Tarski–Givant [13].

Definition 2.3. For B ∈ RA and R ∈ B, define

pR = A ∧ −(A ◦ − Id) qR = B ∧ −[(B ∧ −pR) ◦ − Id],

where

A = R˘ ◦ (R˘∧ −(R˘ ◦ − Id)) B = R˘ ◦R˘

This definition of quasi-projections from R is an RA-rewrite of Kura-
towski’s construction of (unordered) pairs.
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Lemma 2.4. Let B ∈ RRA be simple and represented on the (base) set U ,
and let R ∈ B. Then B is a QRA with quasi-projections pR and qR iff 〈U,R〉
is pairing.

Proof. This is a straightforward calculation, cf. [13, 4.6(ii)].

Let B ∈ QRA with quasi-projections p and q, let R ∈ B and let n ∈ ω.
We define the CA↑

n-reduct† of B as follows. The idea is that the unit of the
CA↑

n will consist of pairs whose second coordinate is an n-tuple, and we use
the RA operations (together with the quasi-projections and R) to express
the CA↑-operations.

Define

ε(n) = Id∧(qn−1 ◦ q̆ n−1)

π
(n)
i = ε(n) ◦ qi ◦ p if i < n− 1 and π

(n)
n−1 = qn−1

δ
(n)
ij = 1 ◦ (π(n)

i ˘∧ π
(n)
j )̆

χ
(n)
j = π

(n)
j ◦ π

(n)
j ˘

t(n) =
∏

j<n χ
(n)
j

ρ↑i
(n)

= π
(n)
i ◦R ◦ π

(n)
i ˘ and ρ↓i

(n)
= π

(n)
i ◦R˘◦ π

(n)
i ˘

t↑i
(n)

= ρ↑i
(n)

∧
∏

i6=j<n χ
(n)
j and t↓i

(n)
= ρ↓i

(n)
∧

∏
i6=j<n χ

(n)
j

τ↑i
(n)

x = x ◦ t↑i
(n)

and τ↓i
(n)

x = x ◦ t↓i
(n)

τ (n)x = x ◦ t(n)

1(n) = 1 ◦ ε(n)

and let
Rd

CA↑n,R
B = 〈Bn,∨,−1(n) , τ

↑
i

(n)
, τ↓i

(n)
, δ

(n)
ij 〉i,j<n,

where Bn = {x ∈ B : x = 1 ◦ τ (n)x}, and −1(n) is complementation with
respect to 1(n). We leave it to the reader to verify that Rd

CA↑n,R
B is closed

under the indicated operations.
Intuitively, ε(n) corresponds to the set of n-tuples, π

(n)
i is the ith pro-

jection (restricted to ε(n)), χ
(n)
i connects n-tuples whose ith coordinates are

the same, and two n-tuples are ρ↑i
(n)

-related if their ith coordinates are
R-related. t(n) connects n-tuples that agree in all their coordinates; the re-
quirement τ (n)x ≤ x in the definition of Bn is needed to ensure that such

†Actually, it is a relativization of a (generalized) reduct.
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n-tuples can not be distinguished (that is, if an element of the CAn reduct
contains (the code of) a sequence, it contains all possible codes of that se-
quence).

We will omit the superscript (n) when n is clear from the context.

Lemma 2.5. Let n ∈ ω, n ≥ 3 and let B ∈ RA be simple. Suppose that
R ∈ B is such that B is a QRA with quasi-projections p = pR and q = qR.
Then Rd

CA↑n,R
B ∈ Cs↑n with accessibility relation R.

Proof. By Lemma 2.2 B is representable, and since B is simple, we may
assume that 1B = U × U for some set U . We claim that the function

rep(x) = {〈u0, . . . , un−1〉 ∈ nU : (∃〈s, t〉 ∈ x)(∀k < n)〈t, uk〉 ∈ πk}

embeds C = Rd
CA↑n,R

B in the full Cs↑n with base U and accessibility relation
R. (We note that 〈U,R〉 is pairing because of Lemma 2.4.)

First we claim that
rep(1(n)) = nU. (1)

To see that (1) holds, it suffices to show that

∀0 < i < n∀un−1−i, . . . , un−1 ∈ U∃v ∈ U [〈v, un−1〉 ∈ qi

and ∀0 < j ≤ i(〈v, un−1−j〉 ∈ p ◦ qi−j)] (2)

Indeed, taking i = n− 1 in (2) we get that for all u0, . . . , un−1 ∈ U there is
a v ∈ U such that 〈v, un−1〉 ∈ qn−1 (whence 〈v, v〉 ∈ ε(n)) and if k ≤ n − 2,
then setting j = n−1−k we have 〈v, uk〉 = 〈v, un−1−j〉 ∈ p◦qn−1−j = p◦qk.
Hence 〈v, uk〉 ∈ πk for all k < n, so 〈u0, . . . , un−1〉 ∈ rep(ε(n)) ⊆ rep(1(n)).

We prove (2) by induction on i. For i = 1 we have 〈un−2, un−1〉 ∈ 1B =
p̆ ◦q (by (e2)) so there is a v ∈ U such that 〈v, un−1, 〉 ∈ q and 〈v, un−2〉 ∈ p.

Suppose now that (2) holds for some i < n−1 and let vi ∈ U witness this
for un−1−i, . . . , un−1 ∈ U . Given un−1−(i+1), 〈un−1−(i+1), vi〉 ∈ 1B = p̆ ◦ q,
so there is a v ∈ U such that 〈v, un−1−(i+1)〉 ∈ p and 〈v, vi〉 ∈ q. This v works
for i+1 because 〈v, un−1〉 ∈ {〈v, vi〉} ◦ {〈vi, un−1〉} ⊆ qi ◦ q = qi+1, for j ≤ i
we have 〈v, un−1−j〉 ∈ {〈v, vi〉} ◦ {〈vi, un−1−j〉} ⊆ q ◦ (qi−j ◦ p) = qi+1−j ◦ p
and for j = i + 1 we have 〈v, un−1−j〉 ∈ p = p ◦ qi+1−j . This completes the
proof of (2).

Next we claim that

rep(−1(n)x) = nU \ rep(x)

if x ∈ Bn. To show that the inclusion (⊆) holds, suppose for contradiction
that 〈u0, . . . , un−1〉 ∈ rep(x)∩rep(−1(n)x), i.e. there are 〈s, t〉 ∈ 1(n)∧−x and
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〈v, w〉 ∈ x such that 〈t, uk〉, 〈w, uk〉 ∈ πk for all k < n. Then 〈w, t〉 ∈ t(n) and
hence 〈s, t〉 ∈ {〈s, v〉} ◦ {〈v, w〉} ◦ {〈w, t〉} ⊆ 1 ◦ x ◦ t(n) = x, a contradiction.

The other direction is an obvious consequence of (1).
It is clear that rep respects ∨, so rep is a Boolean homomorphism, and

is one-to-one because rep(x) 6= 0 if 0 6= x ∈ Bn.
Now let i, j < n. To prove that rep(δij) = Dij , it is enough to show that

for all u0, . . . , un−1 ∈ U

(∃〈s, t〉 ∈ 1 ◦ (πi˘∧ πj )̆)(∀k < n)〈t, uk〉 ∈ πk ⇐⇒ ui = uj .

(⇒) Let 〈s, t〉 be as in the left-hand side. Then there is an s′ ∈ U such that
〈s′, t〉 ∈ πi˘∧ πj ,̆ whence 〈s′, ui, 〉 ∈ {〈s′, t〉} ◦ {〈t, ui〉} ⊆ πi˘ ◦ πi ⊆ Id by
(e1) and 〈s′, uj , 〉 ∈ {〈s′, t〉} ◦ {〈t, uj〉} ⊆ πj˘◦ πj ⊆ Id. Thus ui = s′ = uj as
desired.
(⇐) By (1) there is 〈s, t〉 ∈ 1(n) such that 〈t, uk〉 ∈ πk for all k < n. It is
enough to show that 〈s, t〉 ∈ 1 ◦ (πi˘∧ πj )̆. But this is clear, since 〈s, t〉 ∈
{〈s, ui〉}◦{〈ui, t〉} ⊆ 1◦ (πi˘∧πj )̆; the last inequality holds because ui = uj .

It remains to show that rep respects the τ↑i ’s and the τ↓i ’s. We will only
prove rep(τ↑i x) = C↑

i rep(x) for x ∈ Bn and i < n, since the proof of the
other statement is analogous.

So let x ∈ Bn and i < n. We have to show that for all u0, . . . , un−1 ∈ U ,
the following statements are equivalent:

1. ∃〈s, t〉 ∈ τ↑i x such that 〈t, uk〉 ∈ πk for all k < n

2. ∃〈v, w〉 ∈ x and ∃u′ ∈ U such that u′Rui, 〈w, u′〉 ∈ πi and 〈w, uk〉 ∈ πk

for all i 6= k < n.

(1 ⇒ 2) Let 〈s, t〉 be as in 1. Then there is an s′ ∈ U such that 〈s, s′〉 ∈ x

and 〈s′, t〉 ∈ t↑i . We claim that 〈s, s′〉 is a good choice for 〈v, w〉 in 2. Indeed,
〈s, s′〉 ∈ x and if i 6= k < n, then 〈s′, uk〉 ∈ {〈s′, t〉} ◦ {〈t, uk〉} ⊆ χk ◦πk ⊆ πk

by (e1). Finally, since 〈s′, t〉 ∈ ρ↑i , there are u′, u′′ ∈ U such that 〈s′, u′〉 ∈ πi,
〈u′, u′′〉 ∈ R and 〈u′′, t〉 ∈ πi ,̆ whence u′′ = ui by (e1), and we have u′Rui

and 〈s′, u′〉 ∈ πi, as desired.
(2 ⇒ 1) Let 〈v, w〉 be as in 2. By (1), there is a pair 〈s, t〉 ∈ 1(n) such
that 〈t, uk〉 ∈ πk for all k < n. It suffices to show that 〈s, t〉 ∈ τ↑i x. Now
〈s, t〉 ∈ {〈s, w〉} ◦ {〈w, t〉} and 〈s, w〉 ∈ {〈s, v〉} ◦ {〈v, w〉} ⊆ 1 ◦ x ⊆ x,
so we are done if we can show that 〈w, t〉 ∈ t↑i . But this is clear, since
〈w, t〉 ∈ {〈w, u′〉} ◦ {〈u′, ui〉} ◦ {〈ui, t〉} ⊆ πi ◦R ◦ πi˘ = ρ↑i , and if i 6= k < n,
then 〈w, t〉 ∈ {〈w, uk〉} ◦ {〈uk, t〉} ⊆ πk ◦ πk˘ = χk.
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3. The representation theorem

The purpose of this section is to define (by finitely many equations) the
class CA↑

n and prove that CA↑
n = RCA↑

n. First we define some operations on
RCA↑

n-type algebras; the important ones below are R, p and q which make
it possible to define the QRA-reduct and use Lemma 2.5, and suc, because
it will be sucn−1 which embeds the algebra to be represented in the RCA↑

n

reduct of its QRA-reduct.
First, we need the following variant of the standard method of associating

an RA-type algebra to a cylindric algebra, cf. eg. Henkin–Monk–Tarski [2,
Definition 5.3.7.].

Definition 3.1. Let A be an algebra with a CAn-type reduct, n ≥ 3. The
RA-reduct of A is the algebra

Ra A = 〈B,∨,−, ◦, ,̆ Id〉,

where B = {a ∈ A : c0 . . . cn−3 a ≤ a}, ∨ and − are the restrictions of the
corresponding operations of A, Id = dn−2,n−1, x◦y = c0(sn−1

0 x∧ sn−2
0 y) and

x˘ = s0n−2 sn−2
n−1 sn−1

0 x for x, y ∈ B.

Now let A be an RCA↑
n-type algebra, n ≥ 3. Define

ci x = c↓i c↑i x

Rij = c↑j (dij) and R = Rn−2,n−1

p = pR and q = qR (computed in Ra A)

singl = − c0 c1(R0,n−1 ∧R1,n−1 ∧ − d01),

and

suc x = s01 s12 . . . sn−3
n−2 cn−2(p̆ ∧ [(singl∧ sn−1

n−2 x)

∨ (− singl∧ c↑n−1 c↑n−1(x ∧ − dn−2,n−1))]),

where p̆ is computed in Ra A.
To see the intuition behind these definitions, note the following: Suppose

that A ∈ RCA↑
n is represented with base set U and accessibility relation R′.

Then ci is ordinary cylindrification (this is where we use the assumption
that 〈U,R′〉 is pairing), RA

ij = {s ∈ nU : 〈si, sj〉 ∈ R′}, singlA = {s ∈ nU :
¬∃u, v ∈ U(u 6= v and 〈u, sn−1〉, 〈v, sn−1〉 ∈ R′)}, and suc x = {s ∈ nU :
〈s1, . . . , sn−2, p(sn−1), q(sn−1)〉 ∈ x}.

Now we are ready to define the class CA↑
n.
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Definition 3.2. A = 〈A,∨,−, c↑i , c
↓
i , dij〉i,j∈n ∈ CA↑

n iff A satisfies the fol-
lowing axioms. (In axioms C10—C17 below, composition (◦) is meant to be
computed in Ra A, and τ, τ↑i etc. are the operations of Rd

CA↑n,RA Ra A, cf.
axiom C8 below.)

(C0) 〈A,∨,−, ci, dij〉i,j∈n ∈ CAn

(C8) Ra A is a QRA with quasi-projections p and q

(C9) c0 . . . cn−3 sucn−1 x ≤ sucn−1 x

(C10) 1 ◦ τ(sucn−1 x) = sucn−1 x

(C11) sucn−1(1) = 1(n)

(C15) sucn−1(x ∨ y) = sucn−1(x) ∨ sucn−1(y) and
sucn−1(−x) = −1(n) sucn−1(x)

(C16) sucn−1(c↑i (x)) = τ↑i (sucn−1(x)) and sucn−1(c↓i (x)) = τ↓i (sucn−1(x))
for all i < n

(C17) sucn−1(dij) = δij for all i, j < n.
(C18) x ≤ c0 . . . cn−1 suc x

(C21) c↑i x ∨ c↓i x ≤ ci x

(C22) c↑i and c↓i are normal operators

Remark. If n ≥ 4, then (C8) can probably be replaced by

(C8’) cn−1(R0,n−1 ∧R1,n−1 ∧ − cn−2(− d0,n−2 ∧ − d1,n−2 ∧Rn−2,n−1)) = 1.

�

Open problem 3.3. Find axioms for CA↑
n that do not mention the derived

operations (except perhaps the cis and R) but which have clear intuitive
content.

Theorem 3.4. For all 3 ≤ n < ω, CA↑
n = RCA↑

n.

Proof. We leave the soundness proof (i.e. the proof of the inclusion ⊇) to
the reader.

First we note that CA↑
n is a discriminator variety (this follows easily from

(C0), (C21) and (C22), using the fact that CAn is a discriminator variety).
So it is enough to represent the simple members of CA↑

n. Now let A ∈ CA↑
n be

simple. It follows from elementary CA-theory that B = Ra A is also simple,
so by (C8) and Lemma 2.5 C = Rd

CA↑n,RA B ∈ Cs↑n. By (C9) and (C10),
sucn−1 maps A into C, and it is one-to-one because of (C18). The rest of the
axioms (C11)—(C17) ensures that sucn−1 is an embedding.

Open problem 3.5. Is RCA↑
2 a finitely axiomatizable variety?
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