i. németi Weakly higher order cylindric

A. Simon algebras and finite axiomatization of the representables

Abstract

We show that the variety of n-dimensional weakly higher order cylindric algebras, introduced in Németi [9], [8], is finitely axiomatizable when $n>2$. Our result implies that in certain non-well-founded set theories the finitization problem of algebraic logic admits a positive solution; and it shows that this variety is a good candidate for being the cylindric algebra theoretic counterpart of Tarski's quasi-projective relation algebras.

Keywords: algebraic logic, cylindric algebra, quasi-projective relation algebra, non-wellfounded set theory, finitization problem

1. Introduction

In this paper we give a finite axiomatization for the variety of n-dimensional weakly higher order cylindric algebras $\left(\operatorname{RCA}_{n}^{\uparrow}, 3 \leq n \in \omega\right)$, introduced in Németi [9], [8]. Weakly higher order cylindric algebras are natural expansions of representable cylindric algebras. They have extra operations that correspond to a kind of bounded (existential) quantification along a binary relation R (called an accessibility relation) and its converse. The relation R is most conveniently thought of as being the "element of" relation in a model of some set theory. In this interpretation, the logical constants corresponding to the new operations are second order quantifiers. See Definition 1.1 below for the details. Our result may be of some interest to (algebraic) logicians, because

1. it implies that in certain non-well-founded set theories the finitization problem of algebraic logic admits a positive solution; and
2. it shows that $\mathrm{RCA}_{n}^{\uparrow}$ is a good candidate for being the cylindric algebra theoretic counterpart of Tarski's quasi-projective relation algebras (QRAs).

As for 1, we note that, as oulined above and explained in detail in [9] and [8], RCA $_{n}^{\uparrow}$ can be thought of as the algebraization of an untyped higher order $\operatorname{logic} \mathcal{L}$. See [9], [8], [3] and [11] for details, and for an explanation of how our result implies that in some non-well-founded set theories \mathcal{L} is a finitizable extension of first-order logic. In (non-algebraic) logical terms, this means that some versions of higher order logic (with standard semantics) admit a
truly finite* axiomatization in some set theories, and, for some extensions \mathcal{L} of first order logic, both the valid formula-schemas of \mathcal{L} (in the sense of e.g. Rybakov [10]) and the propositional modal version of \mathcal{L} (cf. e.g. Venema [14]) are finitely axiomatizable.

Item 2 above seems to be of some interest, e.g. because the results in Németi [7], [6] and Andréka-Németi [1] indicate that finding the CA-theoretic counterpart of QRAs may not be very easy. The problem of finding such a counterpart appeared implicitly in Maddux-Tarski [5] (last sentence) and Maddux [4].

Definition 1.1 (cf. Németi [9], [8]). Let R be a binary relation on a set U. We say that $\langle U, R\rangle$ is pairing if

$$
\langle U, R\rangle \models \forall x y \exists w[x R w \wedge y R w \wedge \forall z(z R w \rightarrow(z=x \vee z=y))]
$$

For α an ordinal,

$$
\begin{aligned}
& \mathrm{Cs}_{\alpha}^{\uparrow}=\mathbf{S}\left\{\left\langle\mathcal{P}\left({ }^{\alpha} U\right), \cup, \backslash, \mathrm{C}_{i}^{R}, \mathrm{C}_{i}^{\downarrow}, \mathrm{D}_{i j}^{U}\right\rangle_{i, j \in \alpha}:\right. \\
& U\text { is a set and }\langle U, R\rangle \text { is pairing }\},
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{C}_{i}^{\uparrow^{R}} X=\left\{f \in{ }^{\alpha} U: \exists g \in X\left(g_{i} R f_{i} \text { and } g_{j}=f_{j} \text { for all } j \in \alpha, j \neq i\right)\right\} \text { for } \\
& \quad X \subseteq{ }^{\alpha} U, \\
& \mathrm{C}_{i}^{\downarrow^{R}} X=\left\{f \in{ }^{\alpha} U: \exists g \in X\left(f_{i} R g_{i} \text { and } g_{j}=f_{j} \text { for all } j \in \alpha, j \neq i\right)\right\} \text { for } \\
& \quad X \subseteq{ }^{\alpha} U, \text { and } \\
& \mathrm{D}_{i j}^{U}=\left\{f \in{ }^{\alpha} U: f_{i}=f_{j}\right\} \text {. }
\end{aligned}
$$

We will usually omit the superscripts R and U from the operations. We let $\mathrm{RCA}_{\alpha}^{\uparrow}=\mathbf{I S} \mathbf{P C s}{ }_{\alpha}^{\uparrow}$.

THEOREM 1.2. $\mathrm{RCA}_{n}^{\uparrow}$ is a finitely axiomatizable variety (if $2<n<\omega$).
Outline of proof. First we show (Lemma 2.5) that every QRA (see Definition 2.1 below) \mathfrak{B} with $R \in B$ has an $\mathrm{RCA}_{n}^{\uparrow}$ reduct (which we denote by $\left.\mathfrak{R d}_{\mathrm{CA}_{n}^{\uparrow}, R} \mathfrak{B}\right)$. The proof of this result is based on Tarski's representation theorem for QRAs (recalled in Lemma 2.2 below). By imposing finitely many axioms on $\mathrm{RCA}_{n}^{\uparrow}$-type algebras we get a variety $\mathrm{CA}_{n}^{\uparrow}$ (Definition 3.2) such that for any $\mathfrak{A} \in \mathcal{C A}_{n}^{\uparrow}$
*as opposed to e.g. finite schema

- the RA-reduct (taken in the last two coordinates, cf. Definition 3.1) \mathfrak{B} of \mathfrak{A} is a QRA
- there is a term-definable operation in \mathfrak{A} that embeds \mathfrak{A} in $\mathfrak{R} \mathfrak{d}_{C_{n}^{\uparrow}, R^{\mathfrak{A}}} \mathfrak{B} \in$ $\operatorname{RCA}_{n}^{\uparrow}$. Here $R=R_{n-2, n-1}$ is a constant term of \mathfrak{A} such that $R^{\mathfrak{A}}$ is in \mathfrak{B}.

In other words, by finding RCA $^{\uparrow}$-like algebras inside $Q R A s$, we can use an RA-theoretic result (Tarski's representation theorem for QRAs) to prove a CA-theoretic result. We note that in Simon [12] the definability of CA-like algebras in QRAs was used to derive the representation theorem for QRAs from a CA-theoretic result (Henkin's neat embedding theorem).

2. Finding $R C A^{\dagger} s$ in $Q R A s$

We start by recalling the definition of quasi-projective relation algebras from Tarski-Givant [13].

Definition 2.1 (Tarski-Givant [13]). Let $\mathfrak{B} \in \operatorname{RA} . \mathfrak{B}$ is a QRA if there are elements $\mathrm{p}, \mathrm{q} \in B$ such that the following equations hold in \mathfrak{B} :

(e2) $p^{\sim} \circ q=1$
p and q are called quasi-projections in \mathfrak{B}.
RRA denotes the class of representable RAs.
Lemma 2.2 (Tarski-Givant [13, Theorem 8.4(iii)]). QRA \subseteq RRA.
The following definition and lemma are from Tarski-Givant [13].
Definition 2.3. For $\mathfrak{B} \in R A$ and $R \in B$, define

$$
\mathrm{p}_{R}=A \wedge-(A \circ-\mathrm{Id}) \quad \mathrm{q}_{R}=B \wedge-\left[\left(B \wedge-\mathrm{p}_{R}\right) \circ-\mathrm{Id}\right]
$$

where

$$
A=R^{\hookrightarrow} \circ\left(R^{\hookrightarrow} \wedge-\left(R^{\hookrightarrow} \circ-\mathrm{Id}\right)\right) \quad B=R^{\hookrightarrow} \circ R^{\hookrightarrow}
$$

This definition of quasi-projections from R is an RA-rewrite of Kuratowski's construction of (unordered) pairs.

Lemma 2.4. Let $\mathfrak{B} \in \operatorname{RRA}$ be simple and represented on the (base) set U, and let $R \in B$. Then \mathfrak{B} is a QRA with quasi-projections p_{R} and q_{R} iff $\langle U, R\rangle$ is pairing.

Proof. This is a straightforward calculation, cf. [13, 4.6(ii)].
Let $\mathfrak{B} \in$ QRA with quasi-projections p and q , let $R \in B$ and let $n \in \omega$. We define the $\mathrm{CA}_{n}^{\uparrow}$-reduct ${ }^{\dagger}$ of \mathfrak{B} as follows. The idea is that the unit of the $C A_{n}^{\uparrow}$ will consist of pairs whose second coordinate is an n-tuple, and we use the RA operations (together with the quasi-projections and R) to express the $C A^{\uparrow}$-operations.

Define

$$
\begin{aligned}
& \epsilon^{(n)}=\operatorname{Id} \wedge\left(\mathrm{q}^{n-1} \circ \mathrm{q}^{\smile n-1}\right) \\
& \pi_{i}^{(n)}=\epsilon^{(n)} \circ \mathrm{q}^{i} \circ \mathrm{p} \text { if } i<n-1 \text { and } \pi_{n-1}^{(n)}=\mathrm{q}^{n-1} \\
& \delta_{i j}^{(n)}=1 \circ\left(\pi_{i}^{(n) \smile} \wedge \pi_{j}^{(n) \smile}\right) \\
& \chi_{j}^{(n)}=\pi_{j}^{(n)} \circ \pi_{j}^{(n) \smile} \\
& \mathrm{t}^{(n)}=\prod_{j<n} \chi_{j}^{(n)} \\
& \rho_{i}^{\uparrow(n)}=\pi_{i}^{(n)} \circ R \circ \pi_{i}^{(n) \smile} \text { and } \rho_{i}^{\downarrow(n)}=\pi_{i}^{(n)} \circ R^{\hookrightarrow} \circ \pi_{i}^{(n) \smile} \\
& \mathrm{t}_{i}^{\uparrow(n)}=\rho_{i}^{\uparrow(n)} \wedge \prod_{i \neq j<n} \chi_{j}^{(n)} \text { and } \mathrm{t}_{i}^{\downarrow(n)}=\rho_{i}^{\downarrow(n)} \wedge \prod_{i \neq j<n} \chi_{j}^{(n)} \\
& \tau_{i}^{\uparrow}(n) \\
& x=x \circ \mathrm{t}_{i}^{(n)} \text { and } \tau_{i}^{\downarrow(n)} x=x \circ \mathrm{t}_{i}^{(n)} \\
& \tau^{(n)} x=x \circ \mathrm{t}^{(n)} \\
& 1^{(n)}=1 \circ \epsilon^{(n)}
\end{aligned}
$$

and let

$$
\mathfrak{R}{\underset{\mathrm{CA}}{n}, R} \mathfrak{B}=\left\langle B_{n}, \vee,-_{1^{(n)}}, \tau_{i}^{\uparrow(n)}, \tau_{i}^{\downarrow(n)}, \delta_{i j}^{(n)}\right\rangle_{i, j<n}
$$

where $B_{n}=\left\{x \in B: x=1 \circ \tau^{(n)} x\right\}$, and $-_{1^{(n)}}$ is complementation with respect to $1^{(n)}$. We leave it to the reader to verify that $\mathfrak{R d}{ }_{C A}{ }_{n}^{\uparrow}, R$ is closed under the indicated operations.

Intuitively, $\epsilon^{(n)}$ corresponds to the set of n-tuples, $\pi_{i}^{(n)}$ is the i th projection (restricted to $\epsilon^{(n)}$), $\chi_{i}^{(n)}$ connects n-tuples whose i th coordinates are the same, and two n-tuples are $\rho_{i}^{\uparrow(n)}$-related if their i th coordinates are R-related. $\mathrm{t}^{(n)}$ connects n-tuples that agree in all their coordinates; the requirement $\tau^{(n)} x \leq x$ in the definition of B_{n} is needed to ensure that such
${ }^{\dagger}$ Actually, it is a relativization of a (generalized) reduct.
n-tuples can not be distinguished (that is, if an element of the CA_{n} reduct contains (the code of) a sequence, it contains all possible codes of that sequence).

We will omit the superscript ${ }^{(n)}$ when n is clear from the context.
Lemma 2.5. Let $n \in \omega, n \geq 3$ and let $\mathfrak{B} \in \mathrm{RA}$ be simple. Suppose that $R \in B$ is such that \mathfrak{B} is a QRA with quasi-projections $\mathrm{p}=\mathrm{p}_{R}$ and $\mathrm{q}=\mathrm{q}_{R}$. Then $\mathfrak{R d}_{\mathrm{CA}_{n}^{\uparrow}, R} \mathfrak{B} \in \mathrm{Cs}_{n}^{\uparrow}$ with accessibility relation R.
Proof. By Lemma $2.2 \mathfrak{B}$ is representable, and since \mathfrak{B} is simple, we may assume that $1^{\mathfrak{B}}=U \times U$ for some set U. We claim that the function

$$
\operatorname{rep}(x)=\left\{\left\langle u_{0}, \ldots, u_{n-1}\right\rangle \in{ }^{n} U:(\exists\langle s, t\rangle \in x)(\forall k<n)\left\langle t, u_{k}\right\rangle \in \pi_{k}\right\}
$$

embeds $\mathfrak{C}=\mathfrak{R d}_{\mathrm{CA}_{n}^{\uparrow}, R} \mathfrak{B}$ in the full $\mathrm{Cs}_{n}^{\uparrow}$ with base U and accessibility relation R. (We note that $\langle U, R\rangle$ is pairing because of Lemma 2.4.)

First we claim that

$$
\begin{equation*}
\operatorname{rep}\left(1^{(n)}\right)={ }^{n} U \tag{1}
\end{equation*}
$$

To see that (1) holds, it suffices to show that

$$
\begin{align*}
\forall 0<i<n \forall u_{n-1-i}, \ldots, u_{n-1} & \in U \exists v \in U\left[\left\langle v, u_{n-1}\right\rangle \in \mathrm{q}^{i}\right. \\
& \text { and } \left.\forall 0<j \leq i\left(\left\langle v, u_{n-1-j}\right\rangle \in \mathrm{p} \circ \mathrm{q}^{i-j}\right)\right] \tag{2}
\end{align*}
$$

Indeed, taking $i=n-1$ in (2) we get that for all $u_{0}, \ldots, u_{n-1} \in U$ there is a $v \in U$ such that $\left\langle v, u_{n-1}\right\rangle \in \mathrm{q}^{n-1}$ (whence $\langle v, v\rangle \in \epsilon^{(n)}$) and if $k \leq n-2$, then setting $j=n-1-k$ we have $\left\langle v, u_{k}\right\rangle=\left\langle v, u_{n-1-j}\right\rangle \in \mathrm{p} \circ \mathrm{q}^{n-1-j}=\mathrm{p} \circ \mathrm{q}^{k}$. Hence $\left\langle v, u_{k}\right\rangle \in \pi_{k}$ for all $k<n$, so $\left\langle u_{0}, \ldots, u_{n-1}\right\rangle \in \operatorname{rep}\left(\epsilon^{(n)}\right) \subseteq \operatorname{rep}\left(1^{(n)}\right)$.

We prove (2) by induction on i. For $i=1$ we have $\left\langle u_{n-2}, u_{n-1}\right\rangle \in 1^{\mathfrak{B}}=$ $\left.\mathrm{p}{ }^{\breve{\circ}} \mathrm{q}^{(\mathrm{by}}(\mathrm{e} 2)\right)$ so there is a $v \in U$ such that $\left\langle v, u_{n-1},\right\rangle \in \mathrm{q}$ and $\left\langle v, u_{n-2}\right\rangle \in \mathrm{p}$.

Suppose now that (2) holds for some $i<n-1$ and let $v_{i} \in U$ witness this for $u_{n-1-i}, \ldots, u_{n-1} \in U$. Given $u_{n-1-(i+1)},\left\langle u_{n-1-(i+1)}, v_{i}\right\rangle \in 1^{\mathfrak{B}}=\mathrm{p}^{\breve{ }} \circ \mathrm{q}$, so there is a $v \in U$ such that $\left\langle v, u_{n-1-(i+1)}\right\rangle \in \mathrm{p}$ and $\left\langle v, v_{i}\right\rangle \in \mathrm{q}$. This v works for $\mathrm{i}+1$ because $\left\langle v, u_{n-1}\right\rangle \in\left\{\left\langle v, v_{i}\right\rangle\right\} \circ\left\{\left\langle v_{i}, u_{n-1}\right\rangle\right\} \subseteq \mathrm{q}^{i} \circ \mathrm{q}=\mathrm{q}^{i+1}$, for $j \leq i$ we have $\left\langle v, u_{n-1-j}\right\rangle \in\left\{\left\langle v, v_{i}\right\rangle\right\} \circ\left\{\left\langle v_{i}, u_{n-1-j}\right\rangle\right\} \subseteq \mathrm{q} \circ\left(\mathrm{q}^{i-j} \circ \mathrm{p}\right)=\mathrm{q}^{i+1-j} \circ \mathrm{p}$ and for $j=i+1$ we have $\left\langle v, u_{n-1-j}\right\rangle \in \mathrm{p}=\mathrm{p} \circ \mathrm{q}^{i+1-j}$. This completes the proof of (2).

Next we claim that

$$
\operatorname{rep}\left(-_{1^{(n)}} x\right)={ }^{n} U \backslash \operatorname{rep}(x)
$$

if $x \in B_{n}$. To show that the inclusion (\subseteq) holds, suppose for contradiction that $\left\langle u_{0}, \ldots, u_{n-1}\right\rangle \in \operatorname{rep}(x) \cap \operatorname{rep}\left(-_{1^{(n)}} x\right)$, i.e. there are $\langle s, t\rangle \in 1^{(n)} \wedge-x$ and
$\langle v, w\rangle \in x$ such that $\left\langle t, u_{k}\right\rangle,\left\langle w, u_{k}\right\rangle \in \pi_{k}$ for all $k<n$. Then $\langle w, t\rangle \in \mathrm{t}^{(n)}$ and hence $\langle s, t\rangle \in\{\langle s, v\rangle\} \circ\{\langle v, w\rangle\} \circ\{\langle w, t\rangle\} \subseteq 1 \circ x \circ \mathrm{t}^{(n)}=x$, a contradiction.

The other direction is an obvious consequence of (1).
It is clear that rep respects \vee, so rep is a Boolean homomorphism, and is one-to-one because $\operatorname{rep}(x) \neq 0$ if $0 \neq x \in B_{n}$.

Now let $i, j<n$. To prove that $\operatorname{rep}\left(\delta_{i j}\right)=\mathrm{D}_{i j}$, it is enough to show that for all $u_{0}, \ldots, u_{n-1} \in U$

$$
\left(\exists\langle s, t\rangle \in 1 \circ\left(\pi_{i}^{\smile} \wedge \pi_{j}{ }^{\smile}\right)\right)(\forall k<n)\left\langle t, u_{k}\right\rangle \in \pi_{k} \Longleftrightarrow u_{i}=u_{j} .
$$

(\Rightarrow) Let $\langle s, t\rangle$ be as in the left-hand side. Then there is an $s^{\prime} \in U$ such that $\left\langle s^{\prime}, t\right\rangle \in \pi_{i}{ }^{\breve{ }} \wedge \pi_{j}{ }^{\breve{ }}$, whence $\left\langle s^{\prime}, u_{i},\right\rangle \in\left\{\left\langle s^{\prime}, t\right\rangle\right\} \circ\left\{\left\langle t, u_{i}\right\rangle\right\} \subseteq \pi_{i}{ }^{\smile} \circ \pi_{i} \subseteq$ Id by (e1) and $\left\langle s^{\prime}, u_{j},\right\rangle \in\left\{\left\langle s^{\prime}, t\right\rangle\right\} \circ\left\{\left\langle t, u_{j}\right\rangle\right\} \subseteq \pi_{j}{ }^{`} \circ \pi_{j} \subseteq$ Id. Thus $u_{i}=s^{\prime}=u_{j}$ as desired.
(\Leftarrow) By (1) there is $\langle s, t\rangle \in 1^{(n)}$ such that $\left\langle t, u_{k}\right\rangle \in \pi_{k}$ for all $k<n$. It is enough to show that $\langle s, t\rangle \in 1 \circ\left(\pi_{i}^{\smile} \wedge \pi_{j}^{`}\right)$. But this is clear, since $\langle s, t\rangle \in$ $\left\{\left\langle s, u_{i}\right\rangle\right\} \circ\left\{\left\langle u_{i}, t\right\rangle\right\} \subseteq 1 \circ\left(\pi_{i}{ }^{\smile} \wedge \pi_{j}{ }^{\breve{ }}\right)$; the last inequality holds because $u_{i}=u_{j}$.

It remains to show that rep respects the τ_{i}^{\uparrow} 's and the τ_{i}^{\downarrow} 's. We will only prove $\operatorname{rep}\left(\tau_{i}^{\uparrow} x\right)=\mathrm{C}_{i}^{\uparrow} \operatorname{rep}(x)$ for $x \in B_{n}$ and $i<n$, since the proof of the other statement is analogous.

So let $x \in B_{n}$ and $i<n$. We have to show that for all $u_{0}, \ldots, u_{n-1} \in U$, the following statements are equivalent:

1. $\exists\langle s, t\rangle \in \tau_{i}^{\uparrow} x$ such that $\left\langle t, u_{k}\right\rangle \in \pi_{k}$ for all $k<n$
2. $\exists\langle v, w\rangle \in x$ and $\exists u^{\prime} \in U$ such that $u^{\prime} R u_{i},\left\langle w, u^{\prime}\right\rangle \in \pi_{i}$ and $\left\langle w, u_{k}\right\rangle \in \pi_{k}$ for all $i \neq k<n$.
$(1 \Rightarrow 2)$ Let $\langle s, t\rangle$ be as in 1 . Then there is an $s^{\prime} \in U$ such that $\left\langle s, s^{\prime}\right\rangle \in x$ and $\left\langle s^{\prime}, t\right\rangle \in \mathrm{t}_{i}^{\uparrow}$. We claim that $\left\langle s, s^{\prime}\right\rangle$ is a good choice for $\langle v, w\rangle$ in 2. Indeed, $\left\langle s, s^{\prime}\right\rangle \in x$ and if $i \neq k<n$, then $\left\langle s^{\prime}, u_{k}\right\rangle \in\left\{\left\langle s^{\prime}, t\right\rangle\right\} \circ\left\{\left\langle t, u_{k}\right\rangle\right\} \subseteq \chi_{k} \circ \pi_{k} \subseteq \pi_{k}$ by (e1). Finally, since $\left\langle s^{\prime}, t\right\rangle \in \rho_{i}^{\uparrow}$, there are $u^{\prime}, u^{\prime \prime} \in U$ such that $\left\langle s^{\prime}, u^{\prime}\right\rangle \in \pi_{i}$, $\left\langle u^{\prime}, u^{\prime \prime}\right\rangle \in R$ and $\left\langle u^{\prime \prime}, t\right\rangle \in \pi_{i}{ }^{\breve{ }}$, whence $u^{\prime \prime}=u_{i}$ by (e1), and we have $u^{\prime} R u_{i}$ and $\left\langle s^{\prime}, u^{\prime}\right\rangle \in \pi_{i}$, as desired.
$(2 \Rightarrow 1)$ Let $\langle v, w\rangle$ be as in 2. By (1), there is a pair $\langle s, t\rangle \in 1^{(n)}$ such that $\left\langle t, u_{k}\right\rangle \in \pi_{k}$ for all $k<n$. It suffices to show that $\langle s, t\rangle \in \tau_{i}^{\uparrow} x$. Now $\langle s, t\rangle \in\{\langle s, w\rangle\} \circ\{\langle w, t\rangle\}$ and $\langle s, w\rangle \in\{\langle s, v\rangle\} \circ\{\langle v, w\rangle\} \subseteq 1 \circ x \subseteq x$, so we are done if we can show that $\langle w, t\rangle \in \mathrm{t}_{i}^{\uparrow}$. But this is clear, since $\langle w, t\rangle \in\left\{\left\langle w, u^{\prime}\right\rangle\right\} \circ\left\{\left\langle u^{\prime}, u_{i}\right\rangle\right\} \circ\left\{\left\langle u_{i}, t\right\rangle\right\} \subseteq \pi_{i} \circ R \circ \pi_{i}{ }^{\smile}=\rho_{i}$, and if $i \neq k<n$, then $\langle w, t\rangle \in\left\{\left\langle w, u_{k}\right\rangle\right\} \circ\left\{\left\langle u_{k}, t\right\rangle\right\} \subseteq \pi_{k} \circ \pi_{k}{ }^{\breve{ }}=\chi_{k}$.

3. The representation theorem

The purpose of this section is to define (by finitely many equations) the class $C A_{n}^{\uparrow}$ and prove that $C A_{n}^{\uparrow}=\mathrm{RCA}_{n}^{\uparrow}$. First we define some operations on $\mathrm{RCA}_{n}^{\uparrow}$-type algebras; the important ones below are R, p and q which make it possible to define the QRA-reduct and use Lemma 2.5, and suc, because it will be suc ${ }^{n-1}$ which embeds the algebra to be represented in the $\mathrm{RCA}_{n}^{\uparrow}$ reduct of its QRA-reduct.

First, we need the following variant of the standard method of associating an RA-type algebra to a cylindric algebra, cf. eg. Henkin-Monk-Tarski [2, Definition 5.3.7.].

Definition 3.1. Let \mathfrak{A} be an algebra with a CA_{n}-type reduct, $n \geq 3$. The RA-reduct of \mathfrak{A} is the algebra

$$
\mathfrak{R a} \mathfrak{A}=\left\langle B, \vee,-, \circ,{ }^{\smile}, \mathrm{Id}\right\rangle
$$

where $B=\left\{a \in A: \mathrm{c}_{0} \ldots \mathrm{c}_{n-3} a \leq a\right\}, \vee$ and - are the restrictions of the corresponding operations of \mathfrak{A}, $\mathrm{Id}=\mathrm{d}_{n-2, n-1}, x \circ y=\mathrm{c}_{0}\left(\mathrm{~s}_{0}^{n-1} x \wedge \mathrm{~s}_{0}^{n-2} y\right)$ and $x^{\leftrightharpoons}=\mathbf{s}_{n-2}^{0} \mathrm{~s}_{n-1}^{n-2} \mathrm{~s}_{0}^{n-1} x$ for $x, y \in B$.

Now let \mathfrak{A} be an $\mathrm{RCA}_{n}^{\uparrow}$-type algebra, $n \geq 3$. Define

$$
\begin{aligned}
& \mathrm{c}_{i} x=\mathrm{c}_{i}^{\downarrow} \mathrm{c}_{i}^{\uparrow} x \\
& R_{i j}=\mathrm{c}_{j}^{\uparrow}\left(\mathrm{d}_{i j}\right) \text { and } R=R_{n-2, n-1} \\
& \mathrm{p}=\mathrm{p}_{R} \text { and } \mathrm{q}=\mathrm{q}_{R}(\text { computed in } \mathfrak{R a} \mathfrak{A}) \\
& \operatorname{singl}=-\mathrm{c}_{0} \mathrm{c}_{1}\left(R_{0, n-1} \wedge R_{1, n-1} \wedge-\mathrm{d}_{01}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{suc} x=\mathrm{s}_{1}^{0} \mathrm{~s}_{2}^{1} \ldots \mathrm{~s}_{n-2}^{n-3} \mathrm{c}_{n-2}\left(\mathrm{p}^{\llcorner } \wedge\right. & {\left[\left(\operatorname{singl} \wedge \mathrm{s}_{n-2}^{n-1} x\right)\right.} \\
& \left.\left.\vee\left(-\operatorname{singl} \wedge \mathrm{c}_{n-1}^{\uparrow} \mathrm{c}_{n-1}^{\uparrow}\left(x \wedge-\mathrm{d}_{n-2, n-1}\right)\right)\right]\right)
\end{aligned}
$$

To see the intuition behind these definitions, note the following: Suppose that $\mathfrak{A} \in \mathrm{RCA}_{n}^{\uparrow}$ is represented with base set U and accessibility relation R^{\prime}. Then c_{i} is ordinary cylindrification (this is where we use the assumption that $\left\langle U, R^{\prime}\right\rangle$ is pairing), $R_{i j}^{\mathfrak{A}}=\left\{s \in{ }^{n} U:\left\langle s_{i}, s_{j}\right\rangle \in R^{\prime}\right\}$, singl ${ }^{\mathfrak{A}}=\left\{s \in{ }^{n} U\right.$: $\neg \exists u, v \in U\left(u \neq v\right.$ and $\left.\left.\left\langle u, s_{n-1}\right\rangle,\left\langle v, s_{n-1}\right\rangle \in R^{\prime}\right)\right\}$, and $\operatorname{suc} x=\left\{s \in{ }^{n} U\right.$: $\left.\left\langle s_{1}, \ldots, s_{n-2}, \mathrm{p}\left(s_{n-1}\right), \mathrm{q}\left(s_{n-1}\right)\right\rangle \in x\right\}$.

Now we are ready to define the class $\mathrm{CA}_{n}^{\uparrow}$.

Definition 3.2. $\mathfrak{A}=\left\langle A, \vee,-, \mathrm{c}_{i}^{\uparrow}, \mathrm{c}_{i}^{\downarrow}, \mathrm{d}_{i j}\right\rangle_{i, j \in n} \in \mathrm{CA}_{n}^{\uparrow}$ iff \mathfrak{A} satisfies the following axioms. (In axioms C10-C17 below, composition (○) is meant to be computed in $\mathfrak{R a} \mathfrak{A}$, and $\tau, \tau_{i}^{\uparrow}$ etc. are the operations of $\mathfrak{R d} \mathrm{CA}_{n}^{\uparrow}, R^{\mathfrak{A}} \mathfrak{R a} \mathfrak{A}$, cf. axiom C8 below.)
(C0) $\left\langle A, \vee,-, \mathrm{c}_{i}, \mathrm{~d}_{i j}\right\rangle_{i, j \in n} \in \mathrm{CA}_{n}$
(C8) $\mathfrak{R a \mathfrak { A }}$ is a QRA with quasi-projections p and q
(C9) $\mathrm{c}_{0} \ldots \mathrm{c}_{n-3} \operatorname{suc}^{n-1} x \leq \operatorname{suc}^{n-1} x$
(C10) $1 \circ \tau\left(\operatorname{suc}^{n-1} x\right)=\operatorname{suc}^{n-1} x$
(C11) $\operatorname{suc}^{n-1}(1)=1^{(n)}$
(C15) $\operatorname{suc}^{n-1}(x \vee y)=\operatorname{suc}^{n-1}(x) \vee \operatorname{suc}^{n-1}(y)$ and

$$
\operatorname{suc}^{n-1}(-x)=-1^{(n)} \operatorname{suc}^{n-1}(x)
$$

(C16) $\operatorname{suc}^{n-1}\left(\mathrm{c}_{i}^{\uparrow}(x)\right)=\tau_{i}^{\uparrow}\left(\operatorname{suc}^{n-1}(x)\right)$ and $\operatorname{suc}^{n-1}\left(c_{i}^{\downarrow}(x)\right)=\tau_{i}^{\downarrow}\left(\operatorname{suc}^{n-1}(x)\right)$ for all $i<n$
(C17) $\operatorname{suc}^{n-1}\left(\mathrm{~d}_{i j}\right)=\delta_{i j}$ for all $i, j<n$.
(C18) $x \leq \mathrm{c}_{0} \ldots \mathrm{c}_{n-1} \operatorname{suc} x$
(C21) $\mathrm{c}_{i}^{\uparrow} x \vee \mathrm{c}_{i}^{\downarrow} x \leq \mathrm{c}_{i} x$
(C22) $\mathrm{c}_{i}^{\uparrow}$ and $\mathrm{c}_{i}^{\downarrow}$ are normal operators
Remark. If $n \geq 4$, then (C8) can probably be replaced by
$\left(\mathbf{C 8}^{\prime}\right) \boldsymbol{c}_{n-1}\left(R_{0, n-1} \wedge R_{1, n-1} \wedge-\mathrm{c}_{n-2}\left(-\mathrm{d}_{0, n-2} \wedge-\mathrm{d}_{1, n-2} \wedge R_{n-2, n-1}\right)\right)=1$.

Open problem 3.3. Find axioms for $\mathrm{CA}_{n}^{\uparrow}$ that do not mention the derived operations (except perhaps the $\mathrm{c}_{i} s$ and R) but which have clear intuitive content.
ThEOREM 3.4. For all $3 \leq n<\omega, \mathrm{CA}_{n}^{\uparrow}=\mathrm{RCA}_{n}^{\uparrow}$.
Proof. We leave the soundness proof (i.e. the proof of the inclusion \supseteq) to the reader.

First we note that $\mathrm{CA}_{n}^{\uparrow}$ is a discriminator variety (this follows easily from $(\mathrm{C} 0)$, (C 21) and (C 22), using the fact that CA_{n} is a discriminator variety). So it is enough to represent the simple members of $C A_{n}^{\uparrow}$. Now let $\mathfrak{A} \in C A_{n}^{\uparrow}$ be simple. It follows from elementary CA-theory that $\mathfrak{B}=\mathfrak{R a} \mathfrak{A}$ is also simple, so by (C8) and Lemma $2.5 \mathfrak{C}=\mathfrak{R d}_{\mathrm{CA}_{n}^{\uparrow}, R^{\mathfrak{A}}} \mathfrak{B} \in \mathrm{Cs}_{n}^{\uparrow}$. By (C9) and (C10), suc^{n-1} maps \mathfrak{A} into \mathfrak{C}, and it is one-to-one because of (C18). The rest of the axioms (C11)-(C17) ensures that suc ${ }^{n-1}$ is an embedding.

Open problem 3.5. Is $\mathrm{RCA}_{2}^{\uparrow}$ a finitely axiomatizable variety?

References

[1] Andréka, H., and I. Németi, 'Relation algebraic conditions for representability of cylindric and polyadic algebras', Preprint, Math. Inst. of the Hung. Acad. of Sci., 1988.
[2] Henkin, L., J.D. Monk, and A. Tarski, Cylindric Algebras, Part II, North-Holland, Amsterdam, 1985.
[3] Kurucz, A., and N. Németi, 'Representability of pairing relation algebras depends on your ontology', Fundamenta Informaticae, 44 (2000), 397-420.
[4] Maddux, R.D., 'Some sufficient conditions for the representability of relation algebras', Algebra Universalis, 8 (1978), 162-172.
[5] Maddux, R.D., and A. Tarski, 'A sufficient condition for the representability of relation algebras', Notices Amer. Math. Soc., 23 (1976), A-477.
[6] Németi, I., Free algebras and decidability in algebraic logic, Hung. Acad. Sci., Budapest, 1986. Dissertation for D.Sc.
[7] Németi, I., 'A non-representable cylindric algebra with pairing functions', Algebra Universalis, 22 (1986), 117-119.
[8] Németi, I., 'Ontology can turn negative results to positive', Bull. of Section of Logic, 25 (1996), 1, 29-40.
[9] Németi, I., 'Strong representability of fork algebras, a set theoretic foundation', Journal of the IGPL, 5 (1997), 1, 3-23.
[10] Rybakov, V., 'Metatheories of the first-order theories', in Abstracts of International Congress of Metamathematics, Kyoto, Japan, 1990, p. 2.
[11] SÁGI, G., 'A completeness theorem for higher order logics', J. Symbolic Logic, 65 (2000), 2, 857-884.
[12] Simon, A., 'Connections between quasi-projective relation algebras and cylindric algebras', Algebra Universalis, 56 (2007), 3/4, 263-301.
[13] Tarski, A., and S. Givant, A formalization of set theory without variables, American Mathematical Society, Providence, R.I., 1987.
[14] Venema, Y., 'A modal logic of quantification and substitution', Bull. of the IGPL, 2 (1994), 1, 31-46.

Supported by the Hungarian National Foundation for Scientific Research grant T73601.
I. NÉmeti

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
13-15 Reáltanoda u.
1053 Budapest, Hungary
nemeti@renyi.hu

A. Simon

Mathematical Institute
Technical University, Budapest H-1111 Egry József utca 1
Budapest, Hungary
asimon@math.bme.hu

