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Hajnal Andréka, Judit Madarász, István Németi, Gergely Székely
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Plan of the talk

1 The concept algebra of a concrete physical theory: Special
relativistic spacetime.

2 The category of concept algebras of a(n arbitrary) language:
Universal algebraic logic.
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PART I

Concept algebra of a concrete physical theory:
special relativistic spacetime
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What is special relativistic spacetime SR?

Definition (Relativistic Spacetime SR)

SR is the system of timelike straight lines:

SR =
〈
R4, colt

〉
colt(p, q, r) ⇐⇒ p, q, r are on a timelike straight line.

We will show that from timelike collinearity one can define the
full-fledged scale-invariant Minkowski spacetime: lightlike

connectedness, Minkowski-equidistance, Minkowski-orthogonality,
etc.

What is the concept algebra of SR?
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The concept algebra of SR

Definition (Concept)

A concept in SR is the extension of any open formula.
If ϕ(x1, . . . , xn) is a formula in the language of SR with free
variables x1,. . . , xn, its extension in SR is

ϕ(x1, . . . , xn)SR = {〈a1, . . . , an〉 : SR |= ϕ(a1, . . . , an)}.

Definition (Concept Algebra)

The concept algebra of SR is the natural algebra of these
concepts, where the operations are defined by the connectives of
our language:

CA(SR) =
〈{
ϕSR : ϕ is in the language of SR

}
,∧,¬,∃xn

〉
n∈N

,

where

ϕSR ∧ ψSR = (ϕ ∧ ψ)SR,¬ϕSR = (¬ϕ)SR,∃xnϕSR = (∃xnϕ)SR.
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You get two in one

Definition (Classical non-Relativistic Spacetime NT)

NT is the system of non-horisontal straight lines:

NT =
〈
R4, col∞

〉
col∞(p, q, r) ⇐⇒ p, q, r are on a slanted straight line.

Definition (Relativistic Spacetime SR)

SR is the system of timelike straight lines:

SR =
〈
R4, colt

〉
colt(p, q, r) ⇐⇒ p, q, r are on a timelike straight line.

Speed limit
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Summing up:

Newton spacetime

NT =
〈
R4, col∞

〉 Einstein spacetime

SR =
〈
R4, colt

〉
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Newton spacetime

NT =
〈
R4, col∞

〉

The grey parts form an
equivalence relation

Einstein spacetime

SR =
〈
R4, colt

〉

Transitive closure of the gray
parts is everything

Theorem

No nontrivial equivalence relation can be defined in SR.
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Theorem

No nontrivial equivalence relation can be defined in SR.

Proof. First show that any two timelike connected pairs of events
can be taken to each other by an automorphism of SR.

Lorenz transformations are
automorphisms of SR.

Key players in relativity theory.
Einstein spacetime

SR =
〈
R4, colt

〉
Do the same for spacelike and lightlike connected pairs of events.
Then show that the transitive closure of each of these relations
have one block. Q.E.D.
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Newton spacetime

NT =
〈
R4, col∞

〉 Einstein spacetime

SR =
〈
R4, colt

〉

Theorem (Corollary)

NT cannot be interpreted in SR.

Interpretations are homomorphisms between the concept algebras.
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Newton spacetime

NT =
〈
R4, col∞

〉 Einstein spacetime

SR =
〈
R4, colt

〉

Theorem

SR cannot be interpreted in NT, either.

Reason: SR is conceptually richer, more relations can be defined
in SR than in NT (even when NT is enriched with more
structure).

Let’s see.
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Structure of binary relations

Newton spacetime

NT =
〈
R4, col∞

〉 Einstein spacetime

SR =
〈
R4, colt

〉

We get the same picture if we use a stronger language, e.g., SOL.
Except that we have concepts concerning subsets of R4, too!
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Theorem

Lightlike connectedness can be defined from timelike
connectedness in SR by using 4 variables.

Proof.

Einstein spacetime

SR =
〈
R4, colt

〉
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Theorem

Lightlike connectedness cannot be defined from timelike
connectedness in SR by using only 3 variables.

Proof.
In the relation algebra of the binary definable relations, timelike
connectedness does not generate lightlike connectedness. By a
theorem from algebraic logic, this implies that lightlike
connectedness cannot be defined with a FOL-formula using only 3
variables.
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Newton spacetime

NT =
〈
R4, col∞

〉 Einstein spacetime

SR =
〈
R4, colt

〉

these are all definitionally equivalent

Theorem

NT is not definitionally equivalent to any structure that has only
binary relations.
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Structure of ternary relations

Newton spacetime

NT =
〈
R4, col∞

〉

Eucl circles cannot be defined.

Einstein spacetime

SR =
〈
R4, colt

〉

Mink circles can be defined

Both:
Col can be defined in the grey part.

Have infinitely many atoms.
For reals:

Atomic, we know the atoms.
There are non-trivial subalgebras.
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Converse can be defined with 3 variables
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Converse cannot be defined with 2 variables
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Some properties of converse cannot be proved with 3 variables
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Concept algebras have geometric aspects.

Concept algebras have algebraic aspects.

Concept algebras have logical aspects.

They have categorical aspects, too!
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PART II

Duality between algebra and category theory
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Universal Algebraic Logic

We depart from first-order logic: we deal with any logic,
second-order logic, many-sorted logic, modal logics,. . .
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Category of concept algebras

Concept algebras for an arbitrary language in the framework of
general language theory

Definition (Algebraizable language)

Algebraizable language: L = 〈F ,M,mng〉
(1.) F = W (P,Cn) is a context-free language.

(2.) Compositionality: the meaning of a compound term depends
only on the meanings of the compounds.

Examples: FOL, SOL, modal logic, propositional logic, . . .

Non-examples: equational logic, injectivity logic, . . .

These two conditions are exactly what are needed for forming
concept algebras!
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Algebraic version of L

F = 〈W (P,Cn), c〉c∈Cn is the word-algebra c(w1,w2) = cw1w2.

Definition (concept algebra)

CA(M) = 〈CAM, c〉c∈Cn

is the concept algebra of M, where

CAM = {mng(ϕ,M) : ϕ ∈ F}

the set of concepts (meanings) of M and

c(mng(ϕ,M),mng(ψ,M)) = mng(cϕψ,M).

Forgetting P! Category theoretic logic

24 / 40



Definition (class of concept algebras)

Algm(L) = {CA(M) : M ∈ M}, the class of concept algebras.

Definition (class of Lindenbaum-Tarski algebras)

Alg(L) = I{F/∼K : K ⊆ M},where

ϕ ∼K ψ ⇐⇒ mng(ϕ,M) = mng(,M) for all M ∈ K ,

the class of Lindenbaum-Tarski algebras, up to isomorphism.
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Introducing truth: L = 〈F ,M,mng, |=〉, language becomes logic

Definition

(3.) We can “code” mng(ϕ) = mng(ψ) with formulas, by using
derived connectives ↔, > as

M |= ϕ ⇐⇒ M |= ϕ↔ >, and

M |= ϕ↔ ψ ⇐⇒ mng(ϕ,M) = mng(ψ,M).

26 / 40



Algebraic logic is bridge between Logic and Algebra:

Logic L Algebra Alg(L)

formulas equations

Taut(L) Eq(Alg(L))

L is complete Alg(L) is axiomatizable by . . .

L is compact Alg(L) is closed under ultraproducts

Definability properties of L category theoretic properties of Alg(L)
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Definability theory of general languages and Category of
concept algebras

We need varying the vocabulary/signature P:

Definition (general logic)

A general logic is L = {LP : P ∈ P} where
LP = 〈F ,M,mng, |=〉 satisfies (1.)-(3.) for all P ∈ P, and

(4.) Cn, ↔, > are the same for all LP , P ∈ P.

(5.) Some conditions between LP and LQ for P,Q ∈ P such as:
• there are arbitrary large signatures in P;
• if P ⊆ Q, then LP is the natural restriction of LQ to LP ;
• all meanings can be chosen to be the meanings of atomic

formulas in P for some P ∈ P.

FOL, SOL, modal logic, propositional logic are general logics.
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Algebraic version of a general logic

Let L = {LP : P ∈ P} be a general logic.

Algm(L) =
⋃
P∈P

Algm

(
LP
)

Alg(L) =
⋃
P∈P

Alg
(
LP
)
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Category of Alg(L)

Objects: elements of Alg(L),

Morphisms: homomorphisms f between A,B ∈ Alg(L), (A, f ,B).

A f B

Objects correspond to theories of L, and Morphisms correspond to
interpretations between these theories.
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Categories of Algebras
Objects: all algebras of some similarity type,

Morphisms: homomorphisms between these algebras.

Internal properties External properties

Onto maps Epimorphisms: left cancellative morphisms

fg = fh =⇒ g = hf
f g

h

One-to-one maps Monomorphisms: right cancellative ones

gf = hf =⇒ g = hf
fg

h

Direct product Universal (smallest) cone

A A
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Categories of Algebras

Objects: some algebras of some similarity type,
Morphisms: homomorphisms between these algebras.

External properties are sensitive to context!

??? Epimorphisms: left cancellative morphisms

fg = fh =⇒ g = hf
f g

h

In many well-behaved classes of algebras, there are epimorphisms
that are not surjective.

Well investigated question in algebra: In which classes of algebras
are epimorphisms surjective.

32 / 40



Beth definability property of general logics
Let L = {LP : P ∈ P} be a general logic.

Let P,Q ∈ P, and R = Q \ P. Let Σ ⊆ LQ .

Definition (implicit definition)

Σ defines R implicitly in Q iff
for all Q-models M, N of Σ if all P-formulas have the same
meanings in M, N then all Q-formulas have the same meanings in
them.

Definition (explicit definition)

Σ defines R explicitly in Q iff
for all r ∈ R, there is ϕr ∈ FP such that Σ |= r ↔ ϕr .

Definition

L has the Beth definability property iff
for all P Q, R and Σ as above, if Σ defines R implicitly, then Σ
defines R also explicitly.
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Theorem

L has Beth definability property ⇐⇒ Epis are surjective in Alg(L)
if L has the patchwork property for models.

(FOL, SOL,. . . all have the patchwork property for models).

Logic Category

Beth Definability Property Epimorphisms are surjective

Idea of proof. Morphisms correspond to definitions.
Epimorphisms correspond to implicit definitions.
Surjections correspond to explicit definitions.

34 / 40



weak Beth definability property of general logics

Let L = {LP : P ∈ P} be a general logic.
Let P,Q ∈ P, and R = Q \ P. Let Σ ⊆ LQ .

Definition (strongly implicit definition)

Σ defines R strongly implicitly in Q iff
Σ defines R implicitly in Q, and in addition for all P-models M of
the P-consequences of Σ there are Q-models N of Σ such that all
P-formulas have the same meanings in M and N.

Definition

L has the weak Beth definability property iff
for all P Q, R and Σ as above, if Σ defines R strongly implicitly,
then Σ defines R also explicitly.
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K -injective morphism, Full model

Definition (K -injectivity)

Let C be a category, K be a subcategory and f a morphism in C .
f is K -injective iff all morphisms from the domain of f into an
object of K factor through f . (Validity in injectivity logic.)

Definition

Let L be a general logic. CA(M) ∈ Algm(L) is maximal iff it is not
a proper subalgebra of any member of Algm(L).

Full(L) denotes the class of all maximal members of Algm(L) in
this sense.
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Theorem

Let L be a general logic in which each model can be expanded to a
maximal one (FOL, SOL,. . . are like this). Then (i) - (iii) below are
equivalent, and perhaps with (?) also.

(i) L has weak Beth definability property

(ii) Full(L)-injective epis are surjective in Alg(L).

(iii) Alg(L) has no proper reflective subcategory containing Full(L).

(?) Alg(L) has no proper limit-closed subcategory containing
Full(L).

Equivalence of (i) and (?) may be independent of set theory, but it
cannot be false!
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Conclusion

• What have we learnt?

• What have we learnt about the world?

• What have we learnt about the physical world?
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Logic, categories and philosophy of mathematics
Budapest 20 June - 21 June 2019

Michael Makkai is turning 80 in 2019. We are pleased to announce
that the Alfréd Rényi Institute of Mathematics, the Department of
Logic,Institute of Philosophy, Eötvös University, and the Faculty of
Science, Eötvös University are organizing a conference celebrating
this occasion. The main topics of the conference are logic,
category theory, model theory, philosophy of mathematics.
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Thank you for your attention!
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