
Defining new universes in many-sorted logic.∗

by
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Abstract

In this paper we develop definability theory in such a way that we allow to
define new elements also, not only new relations on already existing elements.
This is in harmony with our everyday mathematical practice, for example
we define new entities when we define a geometry over a field. We will see
that, in many respects, defining new elements is more harmonious in many-
sorted logic than in one-sorted logic. In the first part of the paper we develop
definability theory allowing to define new entities in many-sorted logic (this
will amount to defining new universes i.e. new sorts), and in the second part
of the paper we develop such a definability theory in one-sorted logic (where
this will amount to enlarge the universe with newly defined elements). We
will prove an analogon of Beth’s definability theorem in this extended context,
i.e. we will prove the coincidence of implicit and explicit definability, both in
the many-sorted and in the one-sorted case.

1 Introduction.

We will fill this later. The first part is taken from [1], with some modifications. We
filled-in proofs, but we did not eliminate parts that refer to the rest of [1]. We will
do that later.

∗Research supported by Hungarian National Foundation for Scientific Research grants No’s
T30314 and T23234, T35192.
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2 Definability in many-sorted logic, defining new

sorts.

Historical remark:

The theory of definability as understood in the present work is a branch of
mathematical logic (and its model theory) which goes back to Tarski’s pioneering
work [19]. Beginning with the just quoted paper of 1934 (and its precursor from
1931), Tarski did much to help the theory of definability to become a fully developed
branch of mathematical logic which is worth of studying in its own right. Of the
many works illustrating Tarski’s concern for the theory of definability we mention
only [10, PartI], Tarski-Givant [22], Tarski-Mostowski-Robinson [23] and Tarski [19,
20], cf. also Tarski [18] and [21, Volume 1, pp. 517-548] (which first appeared in 1931
and which already addresses the theory of definability).

In passing we note that the creation of the theory of cylindric algebras can be
viewed as a by-product of Tarski’s interest in developing and publicizing the theory
of definitions (a cylindric algebra over a model can be viewed as the collection of all
relations definable in that model).

Below, we try to summarize the theory of definability (allowing definitions of new
sorts) in a style tailored for the needs of the present work and in a spirit consistent
with Tarski’s original ideas and views on the subject. Here the emphasis will be on
defining new sorts (which is usually not addressed in classical logic books such as
e.g. Chang-Keisler [7]).

The subject matter of the present sub-section is relevant to the definability issues
discussed in the literature of relativity cf. e.g. Friedman [9, pp. 62–63, 65, 378
(index)]. In Reichenbach’s book “Axiomatization of the Theory of Relativity” [16]
already on the first page of the Introduction (p.3) he explains the difference between
explicit and implicit definitions and emphasizes their importance. (He also traces
this distinction (underlying definability theory) to Hilbert’s works.) In passing we
note that on p.5, Reichenbach [16] also explains in considerable detail why it is
desirable to start out with observational concepts first when building up our theory
(like we do in Chapters 1,2) and define theoretical concepts later over observational
ones using definability theory (as we do in the present chapter). For the time being
we do not discuss connections between definability theory and definability issues in
relativity theory explicitly, but we plan to do so in a later work.

For the physical importance of definability cf. the relevant parts of the introduc-
tion of this Chapter. Further, we note the following. If in our language we allow
using certain concepts and some other concept is definable from these, then this
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other concept is available in our language even if we do not include it (explicitly).
So if we allow only such concepts which are definable from observational ones, then
the effect will be the same as if we allowed only observational concepts. I.e. the
physical principle of Occam’s razor has been respected.

∗ ∗ ∗

Let M = 〈U0, . . . , Uj; R1, . . . , Rl〉 be a many-sorted model with universes or
sorts U0, . . . , Uj, and relations R1, . . . , Rl (j, l ∈ ω).1 Since functions are special
relations we do not indicate them explicitly in the present discussion. We use the
semicolon “;” to separate the sorts (or universes) from the relations of M.

When discussing many-sorted models, we always assume that they have
finitely many sorts only.2 The “big universe” Uv(M) of the model M is the union
of its universes (or sorts). Formally

Uv :
def
= Uv(M) :

def
=

⋃

{Ui : Ui is a universe of M } .3

In passing we note that although the sorts U0, . . . , Uj of M need not be disjoint,
the following holds. To every many-sorted model M there is an isomorphic copy M′

of M such that the sorts U ′
0, . . . , U

′
j of M′ are mutually disjoint (i.e. U ′

0 ∩ U ′
1 = ∅

etc.). Therefore we are permitted to pretend that the sorts (i.e. universes) of M are
disjoint from each other whenever we would need this.

By a reduct of a many-sorted model M we understand a model M− obtained
from M by omitting some of the sorts and/or some of the relations of M. I.e. if

M = 〈U0, . . . , Uj; R1, . . . , Rl〉

1The assumption that l is finite is irrelevant here in the sense that we will never make use of
it (except when we state this explicitly). What we write in this section makes perfect sense if the
reader replaces l with an arbitrary ordinal. As a contrast, we do use the assumption that j ∈ ω.

2In some minor items there may be exceptions from this rule but then this will be clearly
indicated.

3Although, in general, Uv is not a universe of M, we can pretend that it is a universe because
there are only finitely many sorts. E.g. if we want to simulate the formula (∃x ∈ Uv)ψ(x) then we
write [ (∃x ∈ U0)ψ(x) ∨ (∃x ∈ U1)ψ(x) ∨ . . .∨ (∃x ∈ Uj)ψ(x) ]. Then although the first formula
(∃x ∈ Uv)ψ(x) does not belong to the language of M, the second formula “[ (∃x ∈ U0) . . .]” does
belong to this language (assuming (∃x ∈ Ui)ψ(x) already belongs to the language) and the meaning
of the second formula is the same as the intuitive meaning of the first one. If (∃x ∈ Ui)ψ(x) did still
not belong to our many-sorted language then there is some extra routine work to do in translating
this formula into our many-sorted language. This translation is explained in detail in the logic
books which reduce many-sorted logic to one-sorted logic (cf. [6, 8, 13]). We also note that the
quoted translation is straightforward. For more on why and how we can pretend that Uv(M) is a
universe of M we refer to the just quoted logic books.
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then the reduct M− may be of the form

〈U0, . . . , Uj−1; R1, . . . , Rl−1〉

(assuming R1, . . . , Rl−1 do not involve the sort Uj).
A model M+ is called an expansion of M iff M is a reduct of M+. I.e. an

expansion M+ is obtained by adding new sorts and/or new relations to M. We will
use the following abbreviation for denoting expansions:

M+ = 〈M, Unew ; R̄new〉

where Unew is the new sort and R̄new = 〈Rnew

1 , . . . , Rnew

r 〉 is the sequence of
new relations. Of course there may be more new sorts too, then we write

M+ = 〈M, Unew

1 , . . . , Unew

̺ ; R̄new〉.

However, we will concentrate on the case ̺ = 1 (for didactical reasons). Informally
the general pattern is:

“New model” = 〈“Old model”, “New sorts”; “New relations/functions”〉.

We will ask ourselves when M+ will be (first-order logic) definable over4 M. By
definable we will always (throughout this work) mean first-order logic definable.
If 〈M, Unew ; R̄new〉 is definable over M then we will say that the new sort Unew

together with R̄new are definable in M. When defining a new sort Unew (in an “old”
model M) we need the new relations R̄new too because it is R̄new which will specify
the connections between the new sort Unew and the old sorts of M.

Although we will start out with discussing definability over a single model M, the
really important part will be when we generalize this to definability (of an expanded
class K+) over a class K of models (which is first-order axiomatizable).

We will discuss two kinds of definability in many-sorted logic: implicit definabil-
ity in §2.1 and explicit definability in §2.2.5

Throughout model theory there is a distinction between symbols like Obs and
objects like ObsM denoted by these symbols in a model M. This distinction between
symbols and objects they denote is even more important in the theory of definitions
than in other parts of logic. Therefore, in the next two items we clarify notions and
notation connected to this distinction.

4“Definable over” is the same as “definable in”.
5In passing, we note that in the special case of the most traditional one-sorted logic when only

relations are defined (i.e. defining new sorts is not considered) the distinction between implicit and
explicit definability is well investigated and is well understood cf. e.g. Chang-Keisler [7, p.90] or
Hodges [11, pp.301-302].
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CONVENTION 2.0.1 By the vocabulary of a model M we understand the system
of sort-symbols, relation symbols and function symbols interpreted by M. Since
function symbols are special relation symbols, we will restrict our attention to sort
symbols and relation symbols. Assume e.g. that M is of the form

M = 〈UM

0 , . . . , UM

j ; RM

1 , . . . , RM

l 〉 ,

and assume that Ui is the sort symbol “denoting” UM
i and Ri is the relation symbol

“denoting” RM
i . Then the vocabulary of M is

Voc(M)
def
= 〈{U0, . . . , Uj}, {R1, . . . , Rl}〉.

Throughout we assume that a relation symbol R′ contains the extra information
which we call the rank of R′. This can be implemented by postulating that R′ is an
ordered pair R′ = 〈R′

0, R
′
1〉 where R′

0 is the symbol we write on paper while R′
1 is

the rank of R′. E.g. in the case of the usual model N = 〈ω,≤, +〉 the rank of “≤” is
2 while that of “+” is 3. If there is more than one sort, then the rank of a relation
is a sequence of sort symbols. So, a vocabulary is an ordered pair

Voc = 〈“Sort symbols”, “Relation symbols”〉

where “Sort symbols” and “Relation symbols” are two sets as discussed above sub-
ject to the condition that the sorts occurring in the ranks of the relation symbols
all occur in the set of sort symbols. Now, a model M of vocabulary Voc can be
regarded as a pair M = 〈M0,M1〉 of functions such that

M0 : “Sort symbols” −→ “Universes of M”

and
M1 : “Relation symbols” −→ “Relations of M”,

with the restriction that M1 is “rank-preserving” in a natural sense.

E.g. if M = 〈UM
0 , . . . , UM

j ; RM
1 , . . . , RM

l 〉, then

M0 : {Ui : i ≤ j} −→ {UM

i : i ≤ j}

M1 : {Ri : 0 < i ≤ l} −→ {RM

i : 0 < i ≤ l}.

I.e. to each sort symbol in Voc(M), M associates a universe (i.e. a set) and to each
relation symbol R′ in Voc(M), M associates a relation (of rank R′

1 as indicated way
above).
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We call two models M and N similar if they have the same vocabulary, i.e. if
Voc(M) = Voc(N).

Let Voc ′, Voc be two vocabularies. We say that Voc ′ is a sub-vocabulary of Voc

if the natural conditions Voc ′0 ⊆ Voc0 and Voc ′1 ⊆ Voc1 hold. Assume Voc ′ is a
sub-vocabulary of Voc(M) for a model M. Then the reduct M ↾ Voc ′ of M to
the sub-vocabulary Voc ′ is defined as

M ↾ Voc ′
def
= 〈M0 ↾ Voc ′0, M1 ↾ Voc ′1〉.

¢

Remark 2.0.2 (On the intuitive content of Convention 2.0.1 above) On a
very intuitive informal level, one can think of a model M as a function associating
objects to symbols. E.g. M associates UM

i to the symbol Ui and RM
i to Ri. It

is then a matter of notational convention that we write UM
i for the value M(Ui)

and RM
i for M(Ri). Then the domain of the function M is the collection of those

symbols which M can interpret. Hence, the domain of M is the same thing as its
vocabulary.

If the best way (from the intuitive point of view) of thinking about a model is
regarding it as a function, then why did we formalize the notion of a model as a pair
of functions (instead of a single function)? The answer is that formally it is easier to
handle models as pairs of functions, but intuitively we think of models as functions,
we think of vocabularies as domains of these functions and we consider two models
similar if they have the same domain when they are regarded as functions.6

¢

CONVENTION 2.0.3 Throughout, by a class K of models we understand a class
of similar models, i.e. we always assume (∀M,N ∈ K) Voc(M) = Voc(N). For any
class K of similar models, Voc(K) = VocK denotes the vocabulary of K, that is, the
vocabulary of an arbitrary element of K.

A reduct K− of K is obtained from K by omitting a part of the vocabulary of K,
i.e. K− is a reduct of K iff Voc(K−) ⊆ Voc(K) and

K− =
{

M ↾ Voc(K−) : M ∈ K
}

.

Expansion is the opposite of reduct. K+ is an expansion of the class K iff K is a
reduct of K+, i.e. K+ is an expansion of K iff Voc(K+) ⊇ Voc(K) and

K =
{

M ↾ Voc(K) : M ∈ K+
}

.

6We do not claim that it is always the case that the best way of thinking about models is
regarding them as functions. What we claim is that in many situations, e.g. in definability theory,
this is a rather good way. In other situations it might be better to visualize a model as a set of
objects equipped with some relations and functions.
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Note that forming expansions or reducts of a class K is somehow uniform over the
members of K. E.g. we forget the same symbols (relation symbols or sort symbols)
from all models M ∈ K, when taking a reduct of K.

If Voc is a vocabulary with Voc ⊆ Voc(K), then we use the following abbrevia-
tion:

K ↾ Voc
def
= {M ↾ Voc : M ∈ K}.

Examples: FM− = {FM : M ∈ FM } is a reduct of our class FM of frame models.
Let L = {F : F is a field }. Then { 〈F; +〉 : 〈F; +, ·, 0, 1〉 ∈ L } is a reduct of L.

Intuitively, we think of Voc(K) as a set of symbols where each symbol contains
information about its nature, i.e. about whether it is a sort symbol or a relation
symbol of a certain rank. Therefore, we will write Voc∩Voc ′ for 〈Voc0∩Voc ′0, Voc1∩
Voc ′1〉, similarly for Voc ∪ Voc ′ , for Voc ⊆ Voc ′ etc.

¢

CONVENTION 2.0.4 f : A−→≻B denotes that f is a surjective function from
A onto B. Further f : A≻−→B denotes that f is an injective function from A
into B. I.e. −→≻ denotes surjectiveness, while ≻−→ denotes injectiveness. If
we combine the two then we obtain ≻−→≻ denoting bijectiveness. When used
between german letters, i.e. structures, they denote injectiveness or surjectiveness
of homomorphisms the natural way.

¢

Before getting started, we emphasize that in order to define something over a
model M or over a class K of models, first of all we need new symbols Rnew

i , Unew

i

(with i in some index set) not occurring in the language of M or of K. (The new
symbols may be relation symbols like Rnew

i or sort symbols Unew

i or both.) What we
will define then (using definability theory) will be the meanings of the new symbols in
M+ or K+. Most of the time we will not talk about the new symbols like Rnew

i because
we will identify them with the new relations like (Rnew

i )M+

which they denote in
the expansion M+ of the model M. Our reason for identifying the “symbol” with
the “object” it denotes is to simplify the discussion. However, occasionally it will
be useful to remember that an expansion M+ = 〈M, R〉 of a model M involves two
new things not available in M, namely: a relation symbol and a relation denoted by
this symbol (in M+).
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2.1 Implicit definability in many-sorted (first-order) logic

Let M be a many-sorted model. Assume, M+ = 〈M, Unew ; R̄new〉 is an expansion
of M. We say that M+ is definable implicitly up to isomorphism over M iff

for any model
〈M, U ′; R̄′〉 |= Th(M+)

(expanding M) there is an isomorphism

h : M+ ≻−→≻ 〈M, U ′; R̄′〉

such that h is the identity function on the sorts of M (i.e. for each
sort Ui of M we have h ↾ Ui = Id ↾ Ui).

(⋆)

M+ is said to be definable implicitly without taking reducts over M iff in addition
to the above the isomorphism h mentioned above is unique.

We say that Unew , R̄new are definable implicitly over M iff 〈M, Unew ; R̄new〉 is
definable implicitly without taking reducts over M. Informally we might say in
such situations that the new sort Unew is definable implicitly in M (but then R̄new

should be understood from the context, otherwise the definability claim is sort of
under-specified).

In the above notion of definability, the set of formulas defining Unew , R̄new im-
plicitly over M is Th(M+). Hence, Th(M+) is called an implicit definition of Unew ,
R̄new over M if (⋆) above holds and the isomorphism h is unique. Further, for
any set ∆ of formulas in the language of M+, ∆ is called an implicit definition of
Unew , R̄new over M iff (⋆) above holds with ∆ in place of Th(M+) in such a way
that h is unique.7

Remark 2.1.1 The reader might feel that the above notion of (implicit) definability
without taking reducts (of M+) is not strong enough and he might want to replace h
with the identity function (requiring Unew = U ′, R̄new = R̄′). However, we claim that
the above notion is “best possible” because (i) it is reasonable to assume that the
first-order definition of M+ (over M) is included in Th(M+) and (ii) any isomorphic
copy M′ = 〈M, U ′; R̄′〉 of M+ will automatically validate Th(M+) hence, in first-
order logic we cannot define the new sort Unew , R̄new more closely than up to (a

7The set ∆ of formulas which we call an implicit definition is called a “rigidly relatively cate-
gorical” theory in Hodges [11, p.645]. If ∆ is an implicit definition up to isomorphism only, then
it is called a “relatively categorical” theory on p.638 of [11] (§12.5 therein).
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unique) isomorphism.8

¢

M+ = 〈M, Unew ; R̄new〉 is said to be definable implicitly with parameters over M

iff there are s ∈ ω and p̄ ∈ sUv(M) such that the expansion 〈M+, p̄〉 is definable
implicitly without taking reducts over the expansion 〈M, p̄〉.9

∗ ∗ ∗

Let us turn to definability over classes of models. Let K be a class of models with
Unew , R̄new in the language of K. For M ∈ K let M− be the reduct of M obtained
by omitting (forgetting) Unew , R̄new . Let

K− :=
{

M− : M ∈ K
}

.

We ask ourselves when K is definable over K− or equivalently (but informally)
when Unew , R̄new are definable over K−. We say that the class K of models is
definable implicitly without taking reducts over K− iff there is a set ∆ ⊆ Th(K) of
formulas such that condition (⋆⋆) below holds.

For every M,N ∈ Mod(∆) (similar to members of K) with M− =
N− ∈ K−, there is a unique isomorphism h : M ≻−→≻ N which is
the identity on the universes of M−.

(⋆⋆)

If the isomorphism h is not necessarily unique then we say that K is
definable implicitly up to isomorphism over K−. Informally, we say that the
new sort Unew and R̄new are definable implicitly over K− iff K as understood above is
definable implicitly without taking reducts over K−. When speaking about definabil-
ity of Unew , R̄new over K−, it should be clear from context how K is obtained from the
data K− and Unew , R̄new . If (⋆⋆) holds, then ∆ in (⋆⋆) is called an implicit definition
of K over K−.

We note that in the definition of “K is implicitly definable without taking reducts
over K−” the class K of models occurs only in requiring ∆ ⊆ Th(K). Therefore, if K

is implicitly definable over K− without taking reducts, then so is IK over IK−, and
Mod(∆) over Mod(∆)−, where ∆ is any implicit definition of K over K−.

8A possible way out of this would be if we required R̄new to contain membership relations “∈”
and projection functions pji (and then add some restrictions postulating e.g. that ∈ and pji are the
“real” set theoretic ones etc., cf. p.22 for the definition of the pji’s). We will not do this because
we feel that it would lead to too many complications without yielding enough benefits.

9We use “definable implicitly” and “implicitly definable” as synonyms. I.e. we are flexible about
word order.
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We leave it to the reader to generalize the above definitions to the case when we
have arbitrary sequences Ūnew and R̄new of new sorts and new relations. However,
herein we restrict our attention to the case when there are finitely many new symbols
(i.e. both Ūnew and R̄new are finite sequences of sorts and relations respectively). The
classical notion of definability of new relations (without new sorts) is obtained as
a special case of our general notion by choosing Ūnew = ∅, i.e. Ūnew is the empty
sequence.

Let K and L be two classes of models, i.e. L is not necessarily a reduct of K.
We say that K is definable implicitly over L iff some expansion K+ of K is definable
implicitly without taking reducts over L. (In this case, L will be a reduct of K+, of
course.)10 This means that statements (i) and (ii) below hold for some expansion
K+ of K:

(i) L is a reduct of K+,

(ii) K+ is definable implicitly over L without taking reducts. (Since here L is
a reduct of K+, our earlier definition of implicit definability without taking
reducts on p.9 can be applied.)

We note that here we have to take seriously that our languages are finite, i.e. K+

has only finitely many new symbols that do not occur in L.11 In this case, we say
that ∆ is an implicit definition of K over L if ∆ is an implicit definition of K+ over
L. Thus an implicit definition of K over L may contain symbols not occurring in K.

We will apply the same convention for single models too, i.e. N is
definable implicitly over M iff this holds for {N} and {M}. We will sometime ab-
breviate “implicitly definable without taking reducts” by “nr-implicitly definable”,
where “nr” stands for “taking no reducts”. Note that (⋆⋆) on p.9 above is a straight-
forward generalization of (⋆) on p.8. Therefore M+ is definable nr-implicitly over
M iff the class {M+} is definable nr-implicitly over the class {M}.

In situations like the one involving statement (⋆⋆) above, we also say that
Unew , R̄new are uniformly definable (implicitly) over K−.12 The set ∆ of formulas is
considered as a uniform (implicit) definition of Unew , R̄new over K−. We have not
yet discussed non-uniform definability which is also called “local” or “one-by-one”
definability: We will discuss this notion below Examples 2.1.6, on p.18.

10It would be more careful of us if we would call this new implicit definability (which permits tak-
ing reducts) weak implicit definability. This is so because when taking reducts then the uniqueness
condition, cf. p.8, on isomorphisms may get lost.

11Cf. Examples 2.1.6 (2) on p.15.
12We will explain soon, beginning with item 11 of Examples 2.1.6 (p.15), what aspect of the

above situation we are referring to with the adjective “uniform” here.
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Although we began this sub-section with discussing definability over a single
model M, the main emphasis in this work will be on definability over a class K of
models such that K = Mod(Th(K)) i.e. such that K is axiomatizable in first-order
logic.

We note that implicit definability without taking reducts of K over K− is strictly
stronger than implicit definability up to isomorphism. This remains so even if we
assume that K and K− are first-order axiomatizable classes of models. We leave the
construction of a simple counterexample to the reader, but cf. Example 2.1.6(8) way
below. For the connections between the various notions of definability we refer the
reader to Figure 5 on p.71.

Remark 2.1.2 (Re-formulations of the definition of nr-implicit definabil-
ity) The following are intended to provide a kind of “intuitive” re-formulations
implicit definability without taking reducts of a class K of models over its reduct K−

(as was defined above). Assume K− is a reduct of the class K (i.e. K− is of the form
{M− : M ∈ K}).

(1) K is definable implicitly over K− without taking reducts iff (i)–(ii) below hold.

(i) (∀M ∈ K)M is definable nr-implicitly over its reduct M−.

(ii) There is a single set ∆ of formulas such that for every M ∈ K, ∆ is an
implicit definition of M over M−. In other words, not only each M is
nr-implicitly definable over M−, but this defining can be done uniformly
for the whole of K.

(2) Let rd
def
= {〈M,M−〉 : M ∈ K}. Then

rd : K−→≻K−

is a surjective function. Now, K is nr-inplicitly definable over K− iff the function
rd is injective up to isomorphisms – i.e. rd(M) ∼= rd(N) ⇒ M ∼= N – and
each M ∈ K is definable nr-implicitly over rd(M) and these definitions coincide
for all choices of M.

¢
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To state the analogon of Remark 2.1.2 for “implicit definability” in place of
“nr-implicit definability”, we want to spell out our usage of the word “up to isomor-
phism”.

Notation. When we say that a property holds up to isomorphism, we mean that
the property holds modulo identifying some of the isomorphic models. In particular,
let f ⊆ K × L be a relation between the classes K and L of models. We say that f
is a function-up-to-isomorphism if

〈M,N〉, 〈M,N1〉 ∈ f ⇒ N ∼= N1 .

We say that f is surjective-up-to-isomorphism if IRng(f) = IK. The definitions
for injective-up-to-isomorphism and bijection-up-to-isomorphism are analogous. Let
f ′ ⊆ K × L. We say that f ′ agrees-up-to-isomorphism with f iff f and f ′ induce
the same functions between the isomorphism equivalence classes of K and L, i.e.
between K/∼= and L/∼=. Thus, e.g. f is a bijection-up-to-isomorphism if f induces a
(real) bijection between K/∼= and L/∼=. It is natural to work with the elements of
K/∼= and L/∼=. The elements of K/∼= are called isomorphism types in [10, Part I,
p.71, lines 8–10]. Our using properties “up to isomorphism” is based on the practice
in model theory and universal algebra of identifying isomorphic structures in some
(but not in all (!)) situations. If f is a function-up-to-isomorphism, then we use the
notation f : K −→ L also. Similarly for the other notations like f : K≻−→≻L and
f : K−→≻L. ¢

Remark 2.1.3 (properties of “general” definability of classes) Assume K is
definable implicitly over L. Then (1)-(3) below hold, and (3) is a re-formulation of
K being implicitly definable over L.

(1) K and L agree on their common vocabulary, i.e.

K ↾ (VocK ∩ VocL) = L ↾ (VocK ∩ VocL).

(2) IK is closed under taking ultraproducts iff IL is closed under taking ultraprod-
ucts.

(3) There is a surjective-up-to-isomorphism function f : L −→≻ K such that for
all M ∈ L, f(M) is implicitly definable over M13; moreover the definition of
f(M) over M is the same (set of formulas) for all choices of M.

13i.e. there is an implicit definitional expansion M+ of M with f(M) a reduct of M+.
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PROPOSITION 2.1.4

(i) Assume that K is axiomatizable. Then if K+ is nr-implicitly definable over K,
then Mod(Th(K+)), too, is nr-implicitly definable over K.

(ii) If K is implicitly definable over L and IL is closed under taking ultraproducts,
then IK, too, is closed under taking ultraproducts.

Proof. The proof is straightforward by using the definitions. Proof of (i): We only
have to show that the VocK-reducts of the elements of Mod(Th(K+)) are in K, i.e.
Mod(Th(K+)) ↾ VocK ⊆ K. Since K is the reduct of K+, we have K+ ↾ VocK ⊆ K,
and hence K+ |= Th(K). Then Mod(Th(K+)) |= Th(K), and hence Mod(Th(K+)) ↾

VocK |= Th(K). Since K is axiomatizable, this means Mod(Th(K+)) ↾ VocK ⊆ K.
Proof of (ii): K is a reduct of a definitional expansion K+ of L. Let ∆ be a

definition of K+ over L. Let 〈Mi : i ∈ I〉 be a system of members of IK and let F
be an ultrafilter over I. Since ∆ is a definition of K over L, each Mi is the reduct
of an M+

i ∈ IK+ such that M+
i ↾ VocL ∈ IL. Also M+

i |= ∆ for each i ∈ I. Then

the same is true for the F -ultraproducts: M1
def
= Π〈Mi : i ∈ I〉/F is the reduct of

M+
1

def
= Π〈M+

i : i ∈ I〉/F , M+
1 |= ∆ and M+

1 ↾ VocL = Π〈M+
i ↾ VocL : i ∈ I〉/F .

The latter is in IL since it is closed under taking ultraproducts. Hence M+
1 ∈ IK+

because ∆ is a definition of K+ over L, M+
1 ↾ VocL ∈ IL and M+

1 |= ∆. Hence
M1 ∈ IK, showing that IK is closed under taking ultraproducts.

Now we turn to giving examples.

Examples 2.1.5 (Traditional, one-sorted examples)

1. Let PA be the class of models of Peano’s Arithmetic, cf. any logic book,
e.g. Monk [13] or Chang-Keisler [7] for PA. The operation symbols of PA are
+, ·, 0, 1. Consider the extra unary operation symbol “ ! ” intended to denote
the factorial. Let ∆! be the set of the following two formulas

!(0) = 1

∀x[!(x + 1) = (x + 1)·!(x)].

I.e. ∆! = { !(0) = 1, ∀x[!(x + 1) = (x + 1)·!(x)] }. We claim that ∆! is
a (correct) implicit definition of “ ! ” over PA. (The proof is not easy but is
available in almost any logic book.) The point in the above example is that
PA is an axiomatizable class and that ∆! works over each member of PA. If
we want an implicit definition over a single model instead of an axiomatizable
class, that is easy:

13



2. Consider the model 〈ω, 0, suc, +〉.14 Let ∆+ be the set of the following formulas:

x + y = y + x

0 + x = x

x + suc(y) = suc(x + y).

Now, ∆+ defines + implicitly over the model 〈ω, 0, suc〉. However, it is im-
portant to note that over the axiomatizable hull Mod(Th(〈ω, 0, suc〉)) of this
model, ∆+ is not an implicit definition15, and moreover addition is not nr-
implicitly definable in Mod(Th(〈ω, 0, suc〉)).

This shows that nr-implicit definability over a single model is much weaker
than nr-implicit definability over an axiomatizable class of models. (Since pri-
marily we are interested in theories, and theories correspond to axiomatizable
classes, we are more interested in definability over axiomatizable classes than
over single models.)

3. Let E = {2 · n : n ∈ ω} be the set of even numbers. Then E as a unary
relation is definable nr-implicitly over the model 〈ω, suc〉.

4. Let BA0 be the class of Boolean algebras with “∩”, “∪”, 0, 1 as basic opera-
tions. Now, {x∩−x = 0, x∪−x = 1} is an implicit definition of complemen-
tation over BA0. This implicit definition, however, can easily be rearranged
into the form of an explicit definition as follows16:

−(x) = y ⇔ [x ∩ y = 0 ∧ x ∪ y = 1].

5. We recommend that the reader experiment with (i) defining the Boolean par-
tial ordering “≤” over BA0, (ii) defining “∪” over the basic operations “∩,−”
(and the same with the roles of “∪” and “∩” interchanged).

6. The model 〈ω ≤〉 is implicitly definable over 〈ω, 0, suc〉, but it is not nr-
implicitly definable because 〈ω,≤〉 is not an expansion of 〈ω, 0, suc〉. If
M+ = 〈M; R̄new〉, i.e. if M+ does not contain new sorts, then M+ is nr-
implicitly definable over M iff M+ is implicitly definable over M. This is not
necessarily true when M+ contains new sorts, too.

¢

14Where suc : ω −→ ω is the usual successor function on ω, i.e. suc(n) = n + 1 for all n ∈ ω.
15i.e. it does not satisfy (⋆⋆) way above
16We have not discussed explicit definitions yet, but they will be discussed soon (beginning with

§2.2 on p.19).

14



Examples 2.1.6 (More advanced, many-sorted examples)

1. Let F be an ordered field. Then the two-sorted model 〈F,P(F); ∈〉 is not
definable implicitly up to isomorphism over F. Hence it is not nr-implicitly
definable, either.

Proof-idea: Assume |F| = ω. Then |P(F)| > ω. But by the downward
Löwenheim-Skolem theorem 〈F,P(F); ∈〉 has an elementary submodel with
each sort countable.

2. Let R̄ be any countable sequence of relations defined on the sorts F,P(F) in
example 1 above. Then

〈F,P(F); ∈, R̄〉

is not definable implicitly up to isomorphism over F.

Hint: The reason remains the same as in example 1.

This means that F+ def
= 〈F,P(F); ∈〉 is not implicitly definable over F, either.

However, there is an expansion F++ of F+ with uncountably many new rela-
tions such that F++ is nr-implicitly definable over F. Indeed, let us take a new

constant cx for each element x of F ∪ P(F). Then F++ def
= 〈F,P(F), ∈, 〈cx :

x ∈ F ∪ P(F)〉〉 is an nr-implicitly definable expansion of F. This shows the
importance of allowing only finitely many relation symbols in our languages
when defining implicit definability, cf. p.10.

3. Let F be a finite field. Then 〈F,P(F); ∈〉 is definable nr-implicitly over F.
The same applies for any finite structure in place of F.

Notation: For any set H and cardinal κ we let Pκ(H) be the collection of those
subsets of H whose cardinality is smaller than κ. In particular, Pω(H) denotes
the set of finite subsets of H.

4. Let A be a(n infinite) structure with universe A. Then 〈A,Pi(A); ∈〉 is nr-
implicitly definable over A for any i ∈ ω.

5. Let A = 〈ω,≤〉 be the set of natural numbers with the usual ordering. Then
the expansion 〈A,Pω(ω); ∈〉 is nr-implicitly definable over A.

Hint: An implicit definition is the following set of formulas:

{∀x1 . . . xn ∈ ω∃y ∈ Pω(ω)y = {x1, . . . , xn} : n ∈ ω}∪

{∀y ∈ Pω(ω)∃x ∈ ω∀z ∈ ω(z ∈ y → z ≤ x)}∪
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{∀y, z ∈ Pω(ω)(y = z ↔ ∀x ∈ ω(x ∈ y ↔ x ∈ z))}.

(In the above, y = {x1, . . . , xn} abbreviates any formula with the intended
meaning.)

As a contrast, we include the following example.

6. Consider the expansion 〈ω,Pω(ω); ∈〉 of the “plain” structure 〈ω〉. Then this
structure (i.e. 〈ω,Pω(ω); ∈〉) is not implicitly definable up to isomorphism over
〈ω〉.

Hint: Take any countable elementary submodel B of an ultrapower of
〈ω,Pω(ω); ∈〉 which contains a “nonstandard” element in Pω(ω). Then the
“ω-part” of B is isomorphic to 〈ω〉, but B is not isomorphic to 〈ω,Pω(ω); ∈〉.

7. 〈ω,Pω(ω); suc, ∈〉 is implicitly definable over 〈ω, suc〉. We do not know whether
it is nr-implicitly definable over 〈ω, suc〉 or not. (We conjecture that the answer
is in the negative.)

8. 〈A, Unew〉 is not implicitly definable up to isomorphism over A, for any struc-
ture A and infinite set Unew . Here Unew is a new sort, and there are no new
relations. If 1 < |Unew | < ω, then Unew is implicitly definable and implic-
itly definable up to isomorphism, but not implicitly definable without taking
reducts. If |Unew | ≤ 1, then Unew is implicitly definable without taking reducts.

9. Let A be any structure and let B be any finite structure. Then 〈A,B〉 as a
two-sorted structure is impicitly definable over A.

10. Let A be a fixed structure. Consider

K = { 〈A; Unew〉 : |Unew | < ω } .

Then K is not nr-implicitly definable over {A} (not even up to isomorphism).

Understanding the examples below is not a prerequisite for understanding the
rest of the present work. (They concern the distinction between uniform and
non-uniform definability.)

11. For k ∈ ω, let Uk be the usual k+1 element linear ordering Uk = 〈{0, . . . , k}, <〉
where “<” is the usual ordering of the natural numbers. Recall from set theory
that ℵk is the k’th infinite cardinal regarded as a special ordinal. E.g. ℵ0 = ω.
Let

K := { 〈ℵk,Uk〉 : k ∈ ω }
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where 〈Unew , R̄new〉 = Uk. I.e. K− is obtained by forgetting the Uk-part. Then
K is not uniformly nr-implicitly definable over K− although for each M ∈ K,
we have that M is nr-implicitly definable over M−, i.e. Uk is nr-implicitly
definable over 〈ℵk〉.

12. The following is a generalization of item 11 above. Let A0, . . . ,Ak, . . . (k ∈ ω)
be any ω-sequence of elementarily equivalent one-sorted models.17 Let Uk be
as in item 11 above.

K := { 〈Ak,Uk〉 : k ∈ ω } .

Then K is not uniformly nr-implicitly definable over K− = {Ak : k ∈ ω } while
every M ∈ K is nr-implicitly definable over M−.

Hint: The key idea can be formulated with using A1, A2 only. The rest of the
Ak’s serve only as decoration. So, one starts with A1 ≡ee A2 and18 |U1| 6= |U2|
are finite. (Where Ui is the universe of Ui, similarly for Ai.) It is important
to note that there are no inter-sort relations permitted here i.e. sort Ai is
isolated from sort Ui. Next, one uses the following property of many-sorted
logic. Assume A,B are two structures of disjoint languages. Consider the new
many-sorted structure 〈A,B〉. We claim that Th(〈A,B〉) = Th(A) ∪ Th(B).
The reason for this is the fact that an atomic formula xRy belongs to a many-
sorted language only if x and y are of the same sort. Hence e.g. (∃x ∈ U0)(∃y ∈
U1) x 6= y is not a (many-sorted) formula.

The present example does not work for “implicitly definable” in place of “im-
plicitly definable without taking reducts”.

Someone might think that the reason why the above counterexample works is
that all elements of K− are elementarily equivalent. Below we show that this
is not the case.

13. Let the language of K− consist of countably many constant symbols
c0, . . . , ci, . . . and just one sort. Let Uk (k ∈ ω) be as in item 11 above.

K− := { 〈U, ci〉i∈ω : the set { i ∈ ω : ci = c0 } is finite and

U is a set with (∀i ∈ ω) ci ∈ U } .

K :=
{
〈U, ci; Uk〉i∈ω : k = | { i ∈ ω : ci = c0 } | and 〈U, ci〉i∈ω ∈ K−

}
.

That is

17I.e. (∀k ∈ ω)Th(A0) = Th(Ak).
18Recall that ≡ee denotes the binary relation of elementary equivalence defined between models.
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K =
{
〈M; Uk〉 : M ∈ K− and k = | { i ∈ ω : in M we have ci = c0 } |

}
.

Now, K is not uniformly nr-implicitly definable over K− while each concrete
M ∈ K is nr-implicitly definable over M−, further

(∀M,N ∈ K)[ M− ≡ee N− ⇒ M ≡ee N ].

Idea for a proof:

Assume ∆ = Th(K) defines K implicitly over K− (up to isomorphisms). Then
by using ultraproducts one can show that there is N = 〈U, ci; U2〉i∈ω ∈ Mod(∆)
such that (∀i > 0)(ci 6= c0 holds in N). But clearly for M := 〈N−; U1〉 we have
N− = M− ∈ K− and M ∈ K hence by M 6∼= N we conclude that ∆ cannot be
a definition of K.

¢

The above three examples were designed to illustrate the difference between
uniform (nr-implicit) definability and one-by-one (nr-implicit) definability where by
the latter we understand the case when each M ∈ K is definable over its reduct M−

in K− (but these definitions might be different for different choices of M);in more
detail: Let K be a class of models with Unew , R̄new in the language of K. For M ∈ K

let M− be the reduct of M obtained by omitting (forgetting) Unew , R̄new . Let K− :=
{M− : M ∈ K }. Then we say that K is one-by-one nr-implicitly definable over K−

iff each M ∈ K is nr-implicitly definable over its reduct M− ∈ K−. Sometimes,
informally we will use instead of one-by-one definability “non-uniform” or “local”
definability as synonyms. We hope that the above three examples illustrate (the
generally accepted opinion) that uniform definability is a more useful concept than
one-by-one definability (when considering classes K of models) and is closer to what
one would intuitively understand under definability.

For completeness, we refer the interested reader to the distinction between the
“local” and the “usual” versions of explicit definability described in Andréka-Németi-
Sain [4] Definitions 55–56 (Beth definability properties) therein. We also note that
most standard textbooks concentrate on uniform definability only and they do not
mention what we call here one-by-one definability. We too will concentrate on
uniform definability and unless otherwise specified, by definability we will always
understand uniform definability .

Remark 2.1.7 A useful refinement of the notion of nr-implicit definability is fi-
nite nr-implicit definability. Assume K and K− are as above statement (⋆⋆) on p.9
(definition of nr-implicit definability). Assume, K is nr-implicitly definable over K−.
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Then K is said to be finitely nr-implicitly definable over K− iff there is a finite set
∆0 ⊆ Th(K) of formulas such that ∆0 defines K implicitly over K−, i.e. (⋆⋆) holds
for ∆ = ∆0. In most of our concrete examples and applications we will have finite
nr-implicit definability, but for simplicity we will write just “definability”.

To illustrate the importance of finite nr-implicit definability, consider the simple
model 〈ω, suc〉. There are continuum many different implicit definitions (involving
one new relation symbol R) over this model while there are only countably many
finite implicit definitions (and we will see that there are only countably many explicit
definitions over this model). (This example cannot be generalized from a single
model like M = 〈ω, suc〉 to first-order-axiomatizable classes K of models, assuming
there are only finitely many sorts).19

¢

2.2 Explicit definability in many-sorted (first-order) logic

So far we have discussed implicit definability which is a quite general notion of
definability. Below we will turn to a special kind of implicit definability which we
call explicit definability . Each explicit definition can be considered as an implicit
definition. The other direction is not true however, there are implicit definitions
which are not explicit definitions. (I.e. there is an implicit definition ∆ which in
its given form is not an explicit definition.) In definability theory, the connection
between explicit and implicit definitions is an important subject. We will return to
this subject at the end of the “definability” section (§2). In particular, we will state a
generalization of Beth’s theorem, saying that implicit definability is equivalent with
explicit definability (even in our general framework where we allow definitions of new
sorts, too [besides definitions of new relations], cf. Theorem 3.3.1 and Corollary 2.5.2
on p.70.

Explicit definability will turn out to be (i) a special case of implicit defin-
ability and (ii) a strong and useful concept e.g. in the following way. Assume

19The reason for this is the following. In the above reasoning we heavily used the fact that
every element of 〈ω, suc〉 is definable “as a constant”. (Therefore infinite implicit definitions can
be given by listing the elements of R and the non-elements of R.) This does not remain true in
Mod(Th(〈ω, suc〉)).
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K = Mod(Th(K)) and that K+ is an expansion of K which is explicitly definable
over the class K of models. Then the theories Th(K) and Th(K+) as well as the
languages of K and K+ will be seen to be equivalent in a rather strong sense to be
explained later, see Theorems 2.3.2 and 2.3.4 on p.35.

The key ingredients of explicit definability will be introduced in items (1)–(2.2)
below. Then, on p.25, they will be combined into a description of what we mean by
explicit definability. The generalization from definability over single models M to
definability over classes K of models will be given on p.25.

Notation: Assume M is a many-sorted model and that ψ is a formula in the language
of M such that all the free variables of ψ belong to x0, . . . , xi, . . .. Assume ā ∈
ωUv(M) and that the sort of ai coincides with the sort of the variable xi, for every
i ∈ ω. Then

M |= ψ[ā]

is the standard model theoretic notation for the statement that ψ is true in M

under the evaluation ā of its free variables cf. e.g. Monk [13], Enderton [8], Chang-
Keisler [7]. Sometimes we write M |= ψ[a1, . . . , an] in which case it is understood
that the free variables of ψ are among x1, . . . , xn. The latter is often indicated by
writing ψ(x1, . . . , xn) instead of ψ. I.e. if we write ψ(x1, . . . , xn) in place of ψ then
this means that while talking about the formula ψ we want to indicate casually that
the free variables of ψ are among x1, . . . , xn.

The following is also a standard notation from logic. Assume τ is a term. Then
ψ(x/τ) denotes the formula obtained from ψ by replacing all free occurrences of x
by τ . Similarly for ψ(x1/τ1, . . . , xn/τn). We could say that “(x/τ)” is the “operator”
of substituting τ for x.

If ψ(x) is a formula and y is a variable (of the same sort as x), then ψ(y) denotes
ψ(x/y); and similarly for a sequence x̄ of variables.

We will write “definable” for “explicitly definable” to save space. Similarly,
we write “definitional expansion” for “explicit definitional expansion”. In general,
we will tend to omit the adjective “explicit”, because our primary interest will be
explicit definability.

(1) Explicit definability of relations and functions in M.
Let M = 〈U0, . . . , Uj; R1, . . . , Rl〉 be a many-sorted model with universes or sorts

U0, . . . , Uj, and relations R1, . . . , Rl. Let Rnew ⊆ Ui1 × . . .×Uim be a (new) relation,
with i1, . . . , im ∈ (j + 1). Now, Rnew is called (explicitly) definable (as a relation)
over M iff there is a formula ψ(xi1 , . . . , xim) in the language of M such that

Rnew = { 〈ai1 , . . . , aim〉 ∈ Ui1 × . . . × Uim : M |= ψ[ai1 , . . . , aim ] } .
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Such definable relations can be added to M as new basic relations obtaining a(n
explicit) definitional expansion of M in the form

M+ := 〈U0, . . . , Uj; R1, . . . , Rl, R
new〉.

To make M+ “well defined” we have to add a new relation symbol to the language of
M denoting Rnew . The formula Rnew(x̄) ↔ ψ(x̄) is called an (explicit) definition of

Rnew (over M). Notice that ∆
def
= {Rnew(x̄) ↔ ψ(x̄)} is also a(n implicit) definition

of M+ over M. We call ∆ an explicit definition of type (1). If ∆ is a definition of
M′ over M, then we say that M′ is obtained from M by step (1). Note that if M′

is defined over M by ∆, then M′ is M+ above.

(2) Explicit definability of new sorts (i.e. universes) in M.
Defining a new sort explicitly (in M) takes a bit more care than defining a new

relation. This is understandable, since now we want to define (or create) a new
universe of entities (in terms of the old universes and old relations already available
in M) while when defining a relation we defined only a new property of already
existing entities (or of tuples of such entities) in M. If we define a new relation,
then this amounts to defining a new property of already existing entities. I.e. we
remain on the same ontological level . In contrast, if we define new entities which
“did not exist” before, then we go up to a higher ontological level.20

If we want to define a new sort in M, first of all we need a new sort-symbol,
say Unew , which does not yet occur in the language of M. If there is no danger
of confusion then we will identify a sort-symbol like Unew with the universe, say
(Unew)M+

, which it denotes in a model M+.
An explicit definition of a new sort, say Unew , describes the elements of Unew

as being constructed from “old” elements in a systematic, “tangible” and uniform
way. More concretely, first we will introduce a few (basic constructions or) basic
kinds of explicit definition and then “general” explicit definitions will be obtained
by iterating these basic kinds. We will refer to the just mentioned basic kinds (of
explicit definition) as basic steps of explicit definitions. Our basic steps for building
up explicit definitions of new sorts are described in items (2.1), (2.2) below. Our
choice of basic steps might look ad-hoc at first reading, but Theorem 3.3.1 at the
end of this section will say that our selected few steps (i.e. examples of explicit
definitions) cover (via iteration) all cases of implicit definitions (assuming there is a

20In connection with defining new sorts, for completeness, we also refer e.g. to the definition of
the “new” many-sorted structure Aeq from the “old” structure A in Hodges [11, p.151] (cf. also pp.
148, 212, 213 therein). Cf. also the definition of relative categoricity in Hodges [11] p.638 together
with p.638 line 3 bottom up to p.639 line 9.

21



sort with more than one elements). We will return to a more careful discussion of
the present issue of choosing our basic steps in Remark 2.2.4.

(2.1) The first way of defining a new sort Unew in M explicitly.
The simplest way of defining a new sort Unew in a model M =

〈U0, . . . , Uj; R1, . . . , Rl〉 is the following. Let R ∈ {R1, . . . , Rl} be fixed. Assume
R is an r-ary relation, i.e. R ⊆ rUv(M). We want to postulate that Unew coincides
with R. So the first part of our definition of Unew is the postulate:

Unew :
def
= R.

But, if we want to expand M with Unew as a new sort obtaining something like

M′ := 〈U0, . . . , Uj, U
new ; R1, . . . , Rl〉

then we need some new relations or functions connecting the new sort Unew to the old
ones U0, . . . , Uj. In our present case (of Unew = R) we use the projection functions
pji : R −→ Uv(M) with i < r. Formally,

pji(〈a0, . . . , ar−1〉) :
def
= ai.

To identify the domain of pji we should write something like pjRi , but for brevity we
omit the superscript R. Now, the (explicit) definitional expansion of M obtained
by the choice Unew := R is

M+ := 〈U0, . . . , Uj, U
new ; R1, . . . , Rl, pj0, . . . , pjr−1〉 = 〈M, Unew ; pji〉i<r.

We note that
M+ = 〈U0, . . . , Uj, R; R1, . . . , Rl, pjRi 〉i<r.

If x is a variable, then (∃ !x)ψ(x) denotes the formula expressing that there is exactly
one value for which ψ holds, i.e. it denotes the formula (∃x)(ψ(x)∧ (∀z)[ψ(z) → z =
x]). Let

∆
def
= {(∃ !u ∈ Unew)(pj1(u, x1) ∧ . . . ∧ pjr(u, xr)) ↔ R(x1, . . . , xr) ,

(∃u ∈ Unew)(pj1(u, x1) ∧ . . . ∧ pjr(u, xr)) → R(x1, . . . , xr) ,

(∀u ∈ Unew)(∃ !xi)pji(u, xi) : 1 ≤ i ≤ r} .

Then ∆ is an implicit definition of M+ over M. We call ∆ an
explicit definition of type (2.1). If ∆ is a definition of M′ over M, then we say
that M′ is obtained from M by Step (2.1). Notice that if ∆ is a definition of M′

over M, then M′ is isomorphic to M+ above via an isomorphism which is identity
on M.
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Remark 2.2.1 This second form of M+ might induce the (misleading) impression
that M+ contains nothing new: it consists of a rearranged version of the old parts
of M. However, let us notice that as a first step we might define a new relation Rnew

in M (in the style of item (1) above) obtaining

M+ := 〈U0, . . . , Uj; R1, . . . Rl, R
new〉

and then we may define Unew := Rnew obtaining the definitional expansion

M++ := 〈U0, . . . , Uj, U
new ; R1, . . . , R

new , pji〉i<r

of M+. Now, we will postulate that a definitional expansion of a definitional expan-
sion of M is called a definitional expansion of M again. Hence the above obtained
M++ is a definitional expansion of the original M. Using our abbreviation from p.4
we can write:

〈M, Unew ; Rnew , pji〉i<r := M++.

Now, if we do not want to have Rnew as a relation, we can take the reduct

M++− := 〈M, Unew ; pji〉i<r

by forgetting Rnew as a relation but not as a sort. We will call M++− a generalized
definitional expansion of M (cf. p.25).

¢

Example 2.2.2 Let F = 〈F, . . . , · 〉 be a field. We want to define the plane F × F

over F as a new sort expanding F. First we define the relation R = F × F by the
formula (x0 = x0 ∧ x1 = x1). Clearly, in F this formula defines the relation F ×F.
Then we expand F with this as a new relation obtaining

F+ = 〈F; +, · , F × F〉

where F × F is used as a relation interpreting the relation symbol RelF×F . Now, in
F+ we define the new sort Unew := F ×F together with the projection functions as
indicated above, obtaining the model

F++ = 〈F, F × F; +, · , F × F, pj0, pj1〉

where pji : F × F −→ F. Now, we take a reduct of F++ by forgetting the relation
symbol RelF×F , but not the sort F × F. We obtain

F++− = 〈F, F × F; +, · , pj0, pj1〉 = 〈F, F × F; pj0, pj1〉.
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Clearly this model F++− is the expansion of the field F with the plane F × F as a
new sort as we wanted.

The above example shows that the usual expansion of F with the plane as a new
sort, is indeed a definitional expansion i.e. the plane as a new sort is (first-order)
definable explicitly in F.

¢

Similarly to the above example, nF is first-order definable (explicitly) as a new
sort in any frame model M. Later we will introduce uniform explicit definability
over a class K of models. Then we will see that nF as a new sort is uniformly
(explicitly) definable over the class of all frame models. (In defining nF we use
pji : nF −→ F, i ∈ n, the same way as we did in the case of F++−.)

(2.2) The second way of defining a new sort Unew in M explicitly.
To define a new sort Unew in a model M = 〈U0, . . . , Uj; R1, . . . , Rl〉 explicitly

the second way, we begin by selecting an old sort U := Ui and old relation R := Rk

(i ≤ j, 0 < k ≤ l) in M. We proceed only if R happens to be an equivalence
relation over U (i.e. if R ⊆ U × U etc.). We define the new sort to be the quotient
set of R-equivalence classes21

Unew := U/R.

Again, similarly to the case of pji’s in item (2.1) above, we need a new relation
connecting the new sort Unew to the old ones. Now we choose the set theoretic
membership relation

∈ := ∈Unew := ∈U,Unew := { 〈a, a/R〉 : a ∈ U }

acting between U and U/R. Since ∈Unew ⊆ Ui × Unew , this relation connects the
new sort Unew with the old one Ui. Let us notice that from the notation ∈U,Unew

we may omit the first index obtaining the simpler notation ∈Unew or we may omit
both indices obtaining ∈. The (explicit) definitional expansion of M obtained by
the choice Unew = Ui/Rk is defined to be the model

M+ = 〈U0, . . . , Uj, U
new ; R1, . . . Rl,∈Unew 〉

= 〈U0, . . . , Ui/Rk; R1, . . . , Rl,∈〉

= 〈M, Unew ; ∈Unew 〉

= 〈M, Ui/Rk; ∈Unew 〉.

Let

21U/R
def
= {a/R : a ∈ U} where a/R

def
= {b ∈ U : 〈a, b〉 ∈ R}. I.e. U/R is the set of all “blocks”

of R, and a/R is the “block” of R a is in.
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∆
def
= {(∃u ∈ Unew)(∈(x, u) ∧ ∈(y, u)) ↔ R(x, y),

[∈(x, u) ∧ ∈(x, v)] → u = v }.

Then ∆ is an implicit definition of M+ over M. We call ∆ an explicit definition
of type (2.2). If ∆ is a definition of M′ over M, then we say that M′ is obtained
from M by Step (2.2). Notice that if ∆ is a definition of M′ over M, then M′ is
isomorphic to M+ above via an isomorphism which is identity on M.

∗ ∗ ∗

We are ready for defining our notion of explicit definability. We call a new
sort or relation (explicitly) definable in M iff it is definable by repeated applications
of the steps described in items (1), (2.1), (2.2) above.

A model N is called a definitional expansion of M iff N is obtained from M by
repeated applications of steps (1), (2.1), (2.2) above (involving finitely many steps
only). An explicit definition of N over M is the union of the explicit definitions of
type (1), (2.1), (2.2) involved in a sequence leading from M to N. We call ∆ an
explicit definition if ∆ is an explicit definition of some definitional expansion.

A model N is called a generalized definitional expansion of M if (i), (ii) below
hold.

(i) N is a reduct of a definitional expansion, say M+, of M.

(ii) N is an expansion of M, i.e. M is a reduct of N.

We call N (explicitly) definable in M iff item (i) above holds. If we want to
indicate that we do not take a reduct while defining say M+ from M explicitly
(i.e. that M+ is obtainable by repeatedly applying steps (1), (2.1), (2.2) to M)
then we say that M+ is explicitly definable in M without taking reducts. Sometimes
we write “definitional expansion without taking reducts” to emphasize that we mean
definitional expansion and not generalized definitional expansion.

We emphasize that a precise statement claiming that Unew is definable as a new
sort should also mention the relations and/or functions (of N) connecting Unew to
the original sorts of M. Examples for such “connecting relations” are pji and ∈Unew

discussed above.
We note that explicit definability with parameters is completely analogous with

implicit definability with parameters cf. p.9.

Let us turn to (explicit) definability over a class K of models (instead of
over a single model M). We say that K is a(n explicit) definitional expansion
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of its reduct K− iff K can be obtained from K− by (a finite sequence of) re-
peated (uniform) appications of the steps described in items (1), (2.1), (2.2) on
pp.20–25. This is equivalent to saying that there is an explicit definition which
defines K over K− (as an implicit definition). In this case we also say that
K is (explicitly) definable over (or in) K− without taking reducts. We say that K

is a generalized definitional expansion of K− if K is an expansion of K− and K is a
reduct of a definitinal expansion of K−. We say that K is (explicitly) definable in L

if K is a reduct of a definitional expansion of L.

This is completely analogous with the case of implicit definability. Uniform
(explicit) definability and one-by-one (explicit) definability are obtained from the
notion of (explicit) definability for single models the same way as their counterparts
were obtained in the case of implicit definability, cf. pp. 10, 18.

Finally, we introduce one more notion of definability which we will call rigid
definability. We will use this in our examples to come. About the importance of
this notion see Theorem 2.3.7 on p.49.

Assume M+ = 〈M, Ūnew ; R̄new〉 is an expansion of M (with new sorts and re-
lations). We say that M+ is (explicitly) rigidly definable over M if M+ is definable
in M and the identity is the only automorphism of M+ which is the identity on
M. Informally, we will say that the new sorts and relations Ūnew , R̄new are rigidly
definable over M if 〈M; Ūnew , R̄new〉 is rigidly definable over M.

Further, K+ is rigidly definable over K iff K+ is a generalized definitional expan-
sion of K and each M+ ∈ K+ is rigid(ly definable) over its K-reduct.22

In our opinion, rigid definability is “just as good” as definability without taking
reducts. In other words, we feel that if Ūnew etc. are rigidly definable over K then
Ūnew etc. are almost as well determined by K (or describable in K) as if they were
definable without taking reducts. Cf. Theorem 2.3.7, Theorem 2.3.4, and Theorem
3.3.1. We note that rigid definability seems to be perhaps, our most important (or
most central) version of definability.

Remark 2.2.3 (Forming disjoint union of two sorts) For didactical reasons we
will refer to items (1)–(2.2) as steps (1)–(2.2) to emphasize their roles in constructing
an explicit definition (for some new class K+) in a step-by-step manner.

We could have included in this list of steps as step (2.3) the definition of a new
sort as a disjoint union of two old sorts. This goes as follows:

22Our definition of K
+ being explicitly definable over K is strongly related to the notion of K

+

being “coordinatisable over” K as defined in Hodges [11, p.644], while K
+ is rigidly definable over

K is strongly related to “coordinatised over” as defined in [11] (same page). We will return to
discussing this connection in the sub-section beginning on p.69.
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Assume Uk, Um are old sorts, i.e. sorts of M, while Unew is not a sort of M. Then,
we can define the new sort as

Unew := Uk

·
∪ Um

with two injections

i1 : Uk ≻−→ Unew and i2 : Um ≻−→ Unew

such that Unew is the union of Rng(i1), Rng(i2) and Rng(i1) ∩ Rng(i2) = ∅. Here
k = m is permitted. But even if k = m, i1 and i2 are different. Now the expanded
model is

M+ := 〈M, Unew ; i1, i2〉.

We note that such an M+ is always implicitly definable over M, further all the nice
properties of explicit definitions23 in items (1)–(2.2) hold for this new kind of explicit
definition which from now on we will consider as step (2.3) of explicit definability.

All the same, we do not include step (2.3) into the list of permitted steps of
building up an explicit definition. We have two reasons for this.

(i) Step (2.3) can be reduced to (or simulated by) steps (1)–(2.2). Namely, assume
M+ is defined from M by using step (2.3). Assume further that M has a sort
Ui with more than one elements (i.e. |Ui| > 1). Then by using steps (1)–(2.2)
one can define an expansion M++ from M such that M+ is a reduct of M++.24

Further:

(ii) We will not need step (2.3) in the present work. I.e. in the logical analysis of
relativity, explicit definitions of form (2.3) did not come up so far.

Item (i) above shows that adding step (2.3) to the permitted steps of explicit defi-
nitions would increase the collection of sorts and relations definable over M only in
the pathological case when all universes of M have cardinalities ≤ 1.

Therefore while noting that step (2.3) could be included without changing the
theory of explicit definability significantly, we do not include it. However, sometime
(in some intuitive text) when we want to get “dreamy” we might refer to explicit
definability as involving four steps (1)–(2.3). ¢

23As an example we mention that explicitly defined symbols can be eliminated from the language,
cf. sub-section 2.3 on p.34.

24More precisely there is a unique isomorphism h between M+ and this reduct of M++ such
that h ↾ M is the identity function.
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Remark 2.2.4 One might want to develop a more systematic understanding of
what explicit definitions are. For such a more systematic understanding of explicit
definitions let us rearrange the basic steps into steps (1∗)–(5∗) below.

(1∗) Definition of new relations R̄new explicitly the classical way (as in item (1) on
p.20).

(2∗) Definition of new sorts as direct products of old sorts together with projection
functions (Unew := Ui × Uj etc) (as in item (2.1) on p.22).

(3∗) Definition of new sorts as disjoint unions of old sorts together with inclusion

functions (Unew := Ui

·
∪ Uj etc) (as in item (2.3) on p.26).

(4∗) Definition of a new sort as a definable subset of an old sort together with an
inclusion function. I.e.

Unew := { x ∈ Ui : M |= ψ(x) }

and inew : Unew −→ Ui is the usual inclusion function. The expanded model
is M+ = 〈M, Unew ; inew〉.

(5∗) Definition of a new sort as a definable quotient of an old sort exactly as in
item (2.2) on p.24 (i.e. Unew = Ui/R etc).

Now, an explicit definition in the new sense is given by an arbitrary sequence
(i.e. iteration) of steps (1∗)–(5∗) above.

If we disregard the trivial case when all sorts are singletons or empty, then explicit
definitions in the new sense are equivalent with explicit definitions as introduced in
§2.2. We leave checking this claim to the reader.

We would like to point out that explicit definitions as built up from steps (1∗)–
(5∗) are not ad-hoc at all. In the category theoretic sense the formation of disjoint
unions is the dual of the formation of direct products and the formation of sub-
universes (or sub-structures) is the dual of the formation of quotients. So, we are
left with two basic steps and their duals.

It is interesting to note that our steps (2∗)–(5∗) correspond to basic operations
producing new models from old ones. (Indeed if Ui is a universe of M then we can
restrict M to Ui and then we obtain a one-sorted reduct of M with universe Ui.
Hence creating new sorts from old ones is not unrelated to creating new models
from old ones. All the same, we do not want to stretch this analogy too far.)

What we would like to point out here, is that steps (2∗)–(5∗) seem to form a
natural, well balanced set of basic operations, while step (1∗) has been inherited
from the classical theory of definability.
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Further, we note that while selecting our basic steps (e.g. steps (1∗)–(5∗) above)
we had to be careful to keep them implicitly definable i.e. they should not lead to
“explicitly definable things” which are not implicitly definable. Therefore operations
like formation of powersets cf. Example 2.1.6(1) (or all finite subsets of a set cf.
Example 2.1.6(6))25 are ruled out from the beginning.

¢

CONVENTION 2.2.5 Assume K+ is a definitional expansion of K. For M+ ∈ K+

the reduct M+ ↾ VocK may have more than one definitional expansions in K+.
(However these expansions are isomorphic.) Therefore K may have several different
definitional expansions K⊕ with the same set of defining formulas say ∆ which
defines K+ from K. In such cases, of course we have IK⊕ = IK+. The largest
such class is called a maximal definitional expansion of K. Since most of the time
we will be interested in classes of models closed under isomorphisms, sometimes,
but not always, we will concentrate on maximal definitional expansions. There are
important exceptions to this26, e.g. the class of two-sorted geometries27 is not closed
under isomorphisms and despite of this we will say that it is a definitional expansion
of the class of one-sorted geometries (in Tarski’s sense), under some conditions of
course.

¢

Remark 2.2.6 (On isomorphism-closure) In Convention 2.2.5 above, and in
the definition of definitional equivalence “≡∆” (p.55) way below, we are “navigating
around” two different trends both present in the present work (i.e. we are trying to
make the consequences of these two trends “consistent” with each other). These are
the following.

Trend 1. When discussing definability over M or over K, what we are really
interested in is definability over I{M} or IK. More generally in the present work,
most of the time, we tend to concentrate our attention to isomorphism-closed classes
K = IK of models, moreover we are inclined to identify isomorphic models.

Trend 2. For purely aesthetical reasons, some of our distinguished classes of
models are not quite closed under isomorphisms. E.g. in the definition of our class
FM of frame models we insisted that the relation ∈ connecting nF and G should be
the real set theoretical membership relation.28 This aesthetics motivated decision

25Seeing that Pω(Ui) leads to problems (i.e. checking Example 2.1.6(6)) is not obvious, it is not
necessary to check this for understanding this work.

26i.e. to concentrating on maximal definitional expansions
27in the sense of 〈Points,Lines; ∈〉, cf. p.??
28This is so if we understand the definition of FM in accordance with Convention ?? on p.??.

(Otherwise FM can be understood in such a way that it becomes closed under isomorphisms.)
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is the only reason why FM 6= IFM. Similarly in our two-sorted geometries of the
kind 〈Points, Lines; ∈〉 we insisted that Lines ⊆ P(Points) and “∈” is the real set
theoretic one. This is the only reason why our two-sorted geometries are not closed
under isomorphisms.

If only Trend 1 were present then we could simplify much of the presentation in
this sub-section by discussing only isomorphism closed classes K = IK, K+ = IK+

etc. However, we cannot carry through this simplification because Trend 2 presents
a “purely administrative” obstacle to it. We call this obstacle purely administrative
because the decision behind Trend 2 is purely aesthetical (everything would go
through smoothly if we worked with IFM in place of FM). As a consequence we do
the following: On the intuitive level we tend to follow the simplifications suggested
by Trend 1. At the same time, on the formal level we take Trend 2 into account in
order to make our results (and definitions) applicable to classes like FM or to two-
sorted geometries even when we take the formal details fully into account. Therefore
on the formal level, we try to make sure that our definitions make sense (and mean
what they should) even when K 6= IK. We suggest that the reader keep in mind
the “intuitive level” (when we use only Trend 1 and replace FM with IFM etc.) and
to treat the “formal level” as secondary, because this simplifies the picture without
loosing any of the essential ideas.

¢

We close sub-section 2.2 with some examples. More examples can be found in
[1], in Chapter 6.

Example 2.2.7 (Explicit definability of the rational numbers in the ring
Z of integers.)
Let Z = 〈Z; 0, 1, +, · 〉 be the (usual) ring of integers. We will discuss how the
set Q of rationals is definable explicitly as a new sort in Z.(Moreover with a little
stretching of our terminology, we can say that the field Q of rationals is definable
in Z.) Here, the new functions connecting the new sort Q to the old one Z are
(i) the ring-operations +Q and ·Q on the sort Q, and (ii) an injection repr : Z ≻
−→ Q representing the integers as rationals. The role of repr is to tell us which
member of sort Z is considered to be equal with which member of the new sort
Q. (Although the present “connecting-functions” do not coincide with our standard
“explicit definability theoretical” ones pji and ∈, we will see that they are first-order
definable from the latter.)

Let us get started! We start out with Z. First we define

R = { 〈a, b〉 : a, b ∈ Z, b 6= 0 }
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as a new relation, obtaining the expansion 〈Z; R〉. Then we define the new sort U
to be R with projections pj0, pj1 and for simplicity we forget R as a relation (but
we keep it as a sort named U). This yields the definitional expansion

Z+ = 〈Z, U ; 0, 1, +, · , pj0, pj1〉 = 〈Z, U ; pj0, pj1〉

where pji : U −→ Z are the usual. Next, we define the equivalence relation ≡ on U
as follows

〈a, b〉 ≡ 〈c, d〉
def
⇐⇒ a · d = b · c.

Note, that it is this point where we need the operations pji, namely “〈a, b〉” is not an
expression of our first-order language, but we can simulate it by using the projections
as follows. We define ≡ by

x ≡ y
def
⇐⇒ pj0(x) · pj1(y) = pj1(x) · pj0(y),

where x, y are of sort Q. By using item (2.2) of our outline for definability, we
define the new sort Q by Q := U/≡ together with the usual membership relation ∈
connecting sort U with sort Q.

Now, using the symbols ∈, pj0, pj1 one can define the operations +Q, ·Q, repr as
follows.

Assume x ∈ Z and y ∈ Q. Then

repr(x) = y
def
⇐⇒ (∃z ∈ y) [ pj0(z) = x ∧ pj1(z) = 1].

Assume x, y, z ∈ Q. Then

x ·Q y = z
def
⇐⇒ (∃x′ ∈ x)(∃y′ ∈ y)(∃z′ ∈ z)

[ pj0(x
′) · pj0(y

′) = pj0(z
′) ∧ pj1(x

′) · pj1(y
′) = pj1(z

′)].

The rest is easy, hence we omit it.
The above shows that the structure

Z++ = 〈Z, Q; +Q, ·Q, repr〉

is definable over Z+ hence it is also definable over Z.
In passing, we note that the above definitional expansion makes sense and re-

mains first-order if instead of Z we start out with an arbitrary ring, say A.
¢
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Examples 2.2.8

1. Let F be a field. Consider the geometric expansion

GF := 〈F, Points, Lines; pj0, pj1,e〉

of F where Points = F × F and pji : F × F −→ F and e ⊆ Points × Lines

is the incidence relation (the usual way) and Lines ⊆ P(Points) is the set of
lines in the Euclidean sense.

Then GF is rigidly definable over F. See the Hint in Example 2 below.

2. To each field F let GF be associated as in item 1 above. Then

K+ := {GF : F is a field }

is rigidly definable (explicitly) over the class K of fields.29

Hint: First we define Points = F ×F (with pji) as a new sort. Then we define

R = { 〈p, q〉 ∈ Points × Points : p 6= q } ,

as a new relation. Then we define the new auxiliary sort U to be R with the
new projections pji : R −→ Points and we forget R as a relation (but we keep
it as a sort named U). Then we define the equivalence relation ≡ on U by
saying

〈p, q〉 ≡ 〈r, s〉
def
⇐⇒

(p, q, r, s are collinear in the Euclidean sense).

Then we define the new sort Lines := U/≡ together with ∈ ⊆ U × Lines.
From these data we define our final incidence relation e := ePoints,Lines the
usual way.30

¢

29From now on we will tend to omit “explicitly” since we agreed that definability automatically
means explicit definability.

30I.e. p e ℓ
def
⇐⇒ (∃x ∈ ℓ)[pj0(x),pj1(x), p are collinear as computed in F ].
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In the case of implicit definability we saw that uniform and one-by-one defin-
ability are wildly different. The example below is intended to demonstrate, for the
case of explicit definability, the same kind of difference between uniform and one-
by-one (explicit) definability. In this example we restricted ourselves to the most
classical case: one sort only and the defined thing is a relation over the old sort.
Besides providing explanation, this example was also designed to provide motiva-
tion for consistently sticking with the uniform versions of the kinds of definability
we consider.

Example 2.2.9 Let ω = 〈ω; 0, 1, +, · 〉 be the usual standard model of Arithmetic.
Let us choose R ⊆ ω such that R is not explicitly definable even in higher-order
logic over ω (and even with parameters). Such an R exists.31 Let

K := { 〈ω; c, P 〉 : c ∈ ω, P ⊆ ω and (c ∈ R ⇒ P = {c}) and (c 6∈ R ⇒ P = ∅) } .

Let K− be the P -free reduct of K i.e.

K− := { 〈ω, c〉 : c ∈ ω } .

Claim: Each member M = 〈ω; c, P 〉 of K is explicitly definable over its P -free reduct
M− = 〈ω, c〉. I.e. K is one-by-one explicitly definable over its reduct K−.

We will see that K is very far from being uniformly explicitly definable over K−.
(Moreover K is far from being uniformly finitely implicitly definable.)

For n ∈ ω, we denote the constant-term 1 + . . . + 1
︸ ︷︷ ︸

n-times

by n̄. Assume P is uniformly

explicitly definable over K−. Then

K |= [ P (x) ↔ ψ(c, x) ],

for some formula ψ(x, y) in the language of ω.32 Now, for any n ∈ ω we have the

31One can choose R to be so far from being computable that R is not even in the so called
Analytical Hierarchy cf. [5].

32This is so because ψ(c, x) is in the language of K
−, which is the same as the language of ω

expanded with a constant symbol c.
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following:

n ∈ R ⇒ [ K |= n̄ = c → P (n̄) hence
K |= n̄ = c → ψ(c, n̄) hence
K− |= n̄ = c → ψ(c, n̄) hence
K− |= n̄ = c → ψ(n̄, n̄) hence33

K− |= ψ(n̄, n̄) hence
ω |= ψ(n̄, n̄) ].

n 6∈ R ⇒ [ K |= n̄ = c → ¬P (n̄) moreover
K |= n̄ = c → P = ∅ hence
K− |= n̄ = c → ¬ψ(c, n̄) hence
K− |= n̄ = c → ¬ψ(n̄, n̄) hence33

ω |= ¬ψ(n̄, n̄) ].

But then ψ(x, x) explicitly defines R(x) in ω, which is a contradiction.
We have seen that while in K− the new relation P is one-by-one explicitly defin-

able (in other words locally explicitly definable), P is very far from being uniformly
explicitly definable over the same K−.

¢

We hope that the above construction and proof explain why and how one-by-
one definability is so much weaker than34 uniform definability. We also hope that
the above example illustrates why most authors simply identify uniform definability
with definability.

2.3 Eliminability of defined concepts.

Notation 2.3.1 For a class K of (many-sorted, similar) models, Fm(K) denotes the
set of formulas of the language of K. Hence Th(K) ⊆ Fm(K). Sometimes we refer to

33by K 6|= n 6= c (i.e. by (∃M ∈ K)M |= n = c) and since under any evaluation of the variables
(in a member of K) the value of the constant term n̄ coincides with the element n of ω.

34One-by-one definability is not only weaker than uniform definability, but also it is much less

satisfactory from the point of view of re-capturing the intuitive idea of definability. In our opinion
one-by-one definability does not capture the intuitive notion of definability while uniform defin-
ability does. (All the same, one-by-one definability is useful as a mathematical auxiliary concept.)

34



Fm(K) as the language of K.35

¢

THEOREM 2.3.2 (First translation theorem) Let K and K+ be two classes of
(many-sorted) models. Assume that K+ is a generalized definitional expansion of K.
Then there is a “natural” translation mapping

Tr : Fm(K+) −→ Fm(K)

having the following property (called preservation of meaning):36

Assume ψ(x̄) ∈ Fm(K+) is such that all its free variables (indicated
as x̄) belong to “old”37 sorts, i.e. to sorts of K. Then

K+ |= [ ψ(x̄) ↔ Tr(ψ)(x̄) ].
(⋆)

Further, for all ψ ∈ Fm(K+)

K+ |= ψ ⇔ K |= Tr(ψ).

Moreover, Tr is very simple (transparent) from the computational point of view,
e.g. it is Turing-computable in linear time.

Theorem 2.3.2 follows from the stronger Theorem 2.3.4 (and its proof) to be
stated soon, so we do not prove it here.

COROLLARY 2.3.3 Let K and K+ be classes of one-sorted models such that the
name of their sorts agree. Then K is definable in K+ in the classical sense, i.e. such
that we allow only step (1) in the definitions iff K is definable in K+ in the new
many-sorted sense, i.e. such that we allow the use of steps (1) - (2.2). In other
words, the possiblility of defining new universes (and then forgetting them) does
not create new definitional expansions among one-sorted models. ¢

35According to our philosophy, Fm(K) is the language, while the system of basic symbols (like
relation symbols, sort symbols etc.) is the vocabulary of this language, cf. Convention 2.0.1 on p.5.
We note this because some logic books use the word “language” for what we call the vocabulary
(of a language or a model).

36The existence of such a translation mapping Tr is often called in the literature “uniform

reduction property”, cf. Hodges [11, p.640]. A result of Pillay and Shelah is that for first order
axiomatizable classes implicit definability without taking reducts implies the reduction property,
cf. [15]. Cf. also Lemma 12.5.1 in Hodges [11, p.641].

37A symbol (e.g. a sort) is called old if it is available already in K (and not only in K
+).
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Before stating the stronger version of Theorem 2.3.2, let us ask ourselves in what
sense Tr in Thm.2.3.2 preserves the meanings of formulas. To answer this question,
let us notice that the conclusion of Theorem 2.3.2 implies (i) and (ii) below.

(i) ψ and Tr(ψ) have the same free variables x̄, and in some intuitive sense they
say the same thing about these variables x̄.

(ii) Let M ∈ K+, M− be the reduct of M in K and let ā be a sequence of members
of Uv(M−) matching the sorts of x̄. In other words ā is an evaluation of the
variables x̄. Then

M |= ψ[ā] ⇐⇒ M− |= (Tr(ψ))[ā] ;

cf. the notation on p.20. Intuitively, whatever can be said about some “old”
elements ā in a model M in K+, it can be said (about the same elements ā)
already in the “old” model M− (in K). This will be generalized to “new”
elements also (i.e. to arbitrary elements), in our next theorem.

Recall that K is a reduct of K+. In some sense (i) and (ii) above mean that the poorer
class K and the richer class K+ of models are equivalent from the point of view of
expressive power of language. So, the “language + theory” of K+ is equivalent with
the “language + theory” of K in means of expression. Therefore, on some level of
abstraction, we may consider the languages of K and K+ to be the same except
that they38 choose different “basic vocabularies” for representing this language. (In
passing we note that a stronger form of this kind of sameness will appear in the form
of definitional equivalence ≡∆, cf. beginning with p.55 (and the figure on p.61).)

Generalization of Theorem 2.3.2 to permitting free variables of new sorts
to occur in ψ and Tr(ψ)

Let us turn to discussing the restriction in Theorem 2.3.2 which says (in state-
ment (⋆)) that the free variables of ψ belong to the sorts of K. The theorem does
admit a generalization which is without this restriction on the free variables. This
will be stated in Theorem 2.3.4 below. But then two things happen discussed in
items (I), (II) below.

(I) Consider the process of defining K+ over K as a sequence of steps (as described
on p.26). Assume that a relation like pji or ∈U connecting a new sort to an
old one is introduced in one step and then is forgotten at the last reduct step.

38i.e. K and K
+
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Then we call the relation (e.g. pji) in question an auxiliary relation of the
definition of K+ over K. Now, for the generalization of Theorem 2.3.2 we have
in mind, we have to assume that all auxiliary relations (of the definition of
K+) remain definable in K+. We will formulate this condition as “K+ and K

have a common (explicit) definitional expansion (without taking reducts)”.

That K+ and K have a common definitional expansion expresses that K+ is
definable over K with recoverable auxiliaries because of the following. Assume
that K++ is a common definitional expansion of K+ and of K. Then K+ is a
reduct of K++ which is a definitional expansion of K, hence K+ is definable in
K. Also, all the relations and sorts that get forgotten in the reduct-forming
from K++ to K+ are definable in K+ since K++ is a definitional expansion of
K+.

(II) The formulation of the theorem gets somewhat complicated. Intuitively, the
generalized theorem says that all new objects39 can be represented as equiv-
alence classes of tuples of old objects, and then (using this representation)
whatever can be said about elements of Uv(M) in an expanded model M ∈ K+

can be already said in the reduct M− ∈ K of M. This intuitive statement is
intended to serve as a generalization the text below item (ii) in the discus-
sion of the intuitive meaning of Theorem 2.3.2 (presented immediately below
Theorem 2.3.2). Cf. Figure 2.

Notation: Var(Ui) denotes the (infinite) set of variables of sort Ui (where Ui is treated
as a sort symbol or equivalently Ui is the name of one of the universes of the models
in K+).

THEOREM 2.3.4 (Second translation theorem) Assume K is a reduct of K+

and K and K+ have a common definitional expansion (without taking reducts). This
holds e.g. whenever K+ is a definitional expansion of K. Assume further that in
K, every sort is nonempty and there is at least one sort which has more than one
elements. Assume Unew

1 , . . . , Unew

k are the new sorts.40 Then there is a translation
mapping

Tr : Fm(K+) −→ Fm(K)

for which the following hold. For each Unew

i there is a formula codei(x, ~x) ∈ Fm(K+)
such that the following 1-2 hold.

1. x ∈ Var(Unew

i ) and ~x is a sequence of variables of old sorts.

39By objects we mean elements of some sort.
40i.e. they are available in K

+ but not in K.
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2. (a)–(c) below hold.

(a) K+ |= ∀x ∃~x codei(x, ~x), 41

(b) K+ |= [ codei(x, ~x) ∧ codei(y, ~x) ] → x = y, where y ∈ Var(Unew

i ). 42

(c) Our translation mapping43

Tr : Fm(K+) −→ Fm(K)

satisfies the following stronger 44 property of meaning preservation. As-
sume ψ(y, z̄) ∈ Fm(K+) is such that y ∈ Var(Unew

i ) and z̄ is (a sequence
of variables) of old sorts such that the variables in z̄ are distinct from
those occurring in ~y. Then

K+ |= codei(y, ~y) → [ ψ(y, z̄) ↔ (Tr(ψ))(~y, z̄) ].

Intuitively, whatever is said by ψ about y and z̄, the same is said by the
translated formula Tr(ψ) about the code ~y of y and z̄. Cf. Figure 2. The
case when ψ contains an arbitrary sequence, say ȳ, of variables of various
new sorts is a straightforward generalization and is left to the reader.

We note that the intuitive meaning of “codei(x, ȳ)” is “ȳ codes x”. Property
(b) then says that “ȳ codes only one element”, property (a) says that “every new
element has a code”, and property (c) then tells us that “whatever can be said of
a new element x in the new language, can be said of any of its codes ȳ in the old
language”, cf. (II) before the statement of Theorem 2.3.4 and Figure 2.

Proof:
(I) The case of step (2.1): Assume that K+ is obtained from K by applying step

(2.1) so that we defined Unew def
= R where R is an old r-ary relation. For simplicity

we assume r = 2 and R ⊆ U0×U1 where U0, U1 are old sorts. Then the new symbols
(in K+) are Unew and pj0, pj1. We want to represent objects (variables) of sort Unew

with pairs of objects of (“old”) sorts. To this end, we fix an injective function

rep : Var(Unew) ≻−→ Var(U0) × Var(U1)

41Note that here “∀x” means “∀x ∈ Unew
i ” automatically since we know that x is of sort Unew

i

(as a variable symbol of the language of K
+).

42Note that items (a), (b) mean that codei represents an unambiguous coding of elements of
Unew

i with equivalence classes of tuples of elements of old sorts, cf. (II) preceding the statement
of the theorem and the text immediately below the theorem.

43fixed at the beginning of the formulation of the present theorem
44stronger than in Theorem 2.3.2
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Fm(K+) ∋ codeM+

i

Ui
ψ ∈ Fm(K+)

Tr(ψ) ∈ Fm(K)

M ∈ K
K

+ ∋ M+

Figure 1: Illustration for the second translation theorem (Thm.2.3.4). Whatever
can be said of a new element in M+ can be said of its “code” in the old model M.
(In the Figure, the codes of the new elements have lenght 1.)

such that the values rep(x)i of rep are all distinct.45 For simplicity, we will denote
rep(x)i by xi.

Now, we define Tr by recursion as follows.

• Tr((∃x ∈ Unew)ψ) := (∃x0 ∈ U0, x1 ∈ U1)Tr(ψ); if x ∈ Var(Unew);

• Tr((∃y)ψ) := (∃y)Tr(ψ); if y is a variable of old sort;

• Tr(¬ψ) := ¬Tr(ψ), Tr(ψ ∧ ϕ) := Tr(ψ) ∧ Tr(ϕ);

• Tr(x = y) := (x0 = y0 ∧ x1 = y1), for any x, y ∈ Var(Unew);

• for any other atomic formula ψ, Tr(ψ) is obtained from ψ by replacing each
occurrence of pji(x) with xi (i.e. with rep(x)i) in ψ for every variable x ∈
Var(Unew) and i ∈ 2; i.e. Tr(ψ) := ψ(pji(x)/xi)x∈Var(Unew ),i<2.

We introduce the formula code(x, x0, x1) (saying explicitly that the values of
x0, x1 form really the code of the value of x) as follows:

code(x, x0, x1)
def
⇐⇒ [ x0 = pj0(x) ∧ x1 = pj1(x) ].

45rep(x) = 〈rep(x)0, rep(x)1〉; and rep(x)i = rep(y)j iff 〈x, i〉 = 〈y, j〉.
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Now, it is not difficult to check that Tr : Fm(K+) −→ Fm(K) is well defined,
and (a)-(c) in the statement of Theorem 2.3.4 hold.

(II) The case of step (2.2): Assume that K+ is obtained from K by applying step
(2.2) so that the only new symbols (in K+) are Unew = U/R and ∈, where U is an
(old) sort of K, and R(x, y) ∈ Fm(K) where x, y are variables of sort U .

We fix an injective function

rep : Var(Unew) ≻−→ Var(U)

and we denote rep(x) by x. So x ∈ Var(U) if x ∈ Var(Unew).
Now, we define Tr by recursion as follows.

• Tr((∃x ∈ Unew)ψ) := (∃x ∈ U0)Tr(ψ); if x ∈ Var(Unew);

• Tr((∃y)ψ) := (∃y)Tr(ψ); if y is a variable of old sort;

• Tr(¬ψ) := ¬Tr(ψ), Tr(ψ ∧ ϕ) := Tr(ψ) ∧ Tr(ϕ);

• Tr(x = y) := (∀z ∈ U)[∈ (z, x) ↔∈ (z, y)], where x, y ∈ Var(Unew), and
z ∈ Var(U) is arbitrary;

• Tr(ψ)
def
= ψ; for any other atomic formula ψ.

We introduce the formula code(x, x) as follows:

code(x, x)
def
⇐⇒ ∈(x, x) .

Now, it is not difficult to check that Tr : Fm(K+) −→ Fm(K) is well defined,
and (a)-(c) in the statement of Theorem 2.3.4 hold.

(III) The case of explicit definability without taking reducts: If K+ is
obtained from K by step (1) then we have an obvious translation with all the good
properties known from classical definability theory.46

By this we have covered all the steps (i.e. (1)–(2.2)) which might occur in an
explicit definition. I.e. we defined rep, code, Tr to all three kinds of “one-step”
explicit definitions represented by items (1)–(2.2).

Assume now that K+ is explicitly defined over K without taking reducts. Now,
the definition of K+ is a finite sequence of steps with each step using one of items

46In the case of step (1), “code” is not needed because there are no new sorts involved. Hence
(if we want to preserve uniformity of the steps) we can choose code(x, y) to be x = y.
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(1), (2.1), (2.2). Hence by the above, we have a meaning preserving translation
mapping Trk for the k’th step for each number

k < n := “number of steps in the definition of K+”.

Besides Trk we also have a formula codek for each number k. Also for each Trk we
have that (a)-(c) in the statement of Theorem 2.3.4 hold. But then we can take the
composition Tr := Tr1 ◦ Tr2 ◦ . . . ◦ Trn of these meaning preserving functions, and
then the composition too will be meaning preserving if we also combine the formulas
code1, . . . , coden into a single “big” formula code.

One can check that for the just defined Tr and code, (a)-(c) in the statement of
Theorem 2.3.4 hold.

(IV) The general case: Assume now that K is a reduct of K+ and that K++

is a common definitional expansion of K and K+. By the previous case we have
translation mappings Tr1 : Fm(K++) −→ Fm(K) and Tr2 : Fm(K++) −→ Fm(K+)
together with appropriate code1, code2 which satisfy (a)-(c) in the statement of
Theorem 2.3.4. Note that Fm(K+) ⊆ Fm(K++). Now we define

Tr
def
= Tr1 ↾ Fm(K+), code(x, ~x)

def
= Tr2(code1(x, ~x))

whenever x is a variable of new sort in the language of K+. One can check that
Tr and code as defined above satisfy (a)-(c). In more detail: Assume that Ui is a
new sort of K+, i.e. Ui is not a sort of K. Then Ui is a new sort of K++, therefore
there is code1

i (x, x̄) ∈ Fm(K++) which “matches” Tr1. We cannot use code1
i in the

interpretation from K+ to K because code1
i may not be in the language of K+. We

will use Tr2 to translate code1
i to the language of K+ as follows. Since K+ is an

expansion of K, all the variables in x, x̄ have sorts which occur in K+. Thus by the
properties of Tr2 we have

K++ |= code1
i (x, x̄) ↔ Tr2(code1

i (x, x̄)).

Let codei(x, x̄)
def
= Tr2(code1

i (x, x̄)). Then codei(x, x̄) ∈ Fm(K+) and

K+ |= codei(x, x̄) → [ψ(x, x̄) ↔ Tr(ψ)(x̄, z̄)]

because
K++ |= code1

i (x, x̄) → [ψ(x, z̄) ↔ Tr1(ψ)(x̄, z̄)].

This finishes the proof.

In our next theorem we do not have to assume that the sorts are nonempty and
that there is a sort with more than one elements. The price is that the formulation
becomes a little more complicated in that instead of one coding formula for each
sort we will have possibly more coding formulas for each sort.
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THEOREM 2.3.5 (Third translation theorem) Assume K is a reduct of K+

and K and K+ have a common definitional expansion (without taking reducts). Then
there is a translation mapping

Tr : Fm(K+) −→ Fm(K)

for which the following hold. For each new sort Unew

i there is a number ni and there
are formulas codei

1(x, ~x1), . . . , codei
ni

(x, ~xni
) ∈ Fm(K+) such that the following hold

for all 1 ≤ j ≤ ni.

1. x ∈ Var(Unew

i ) and ~xj is a sequence of variables of old sorts.

2. (a)–(c) below hold.

(a) K+ |= ∀x
∨
{ ∃~xj codei

j(x, ~xj) : 1 ≤ j ≤ ni},
47

(b) K+ |= [ codei
j(x, ~xj) ∧ codei

j(y, ~xj) ] → x = y, where y ∈ Var(Unew

i ).

(c) Our translation mapping

Tr : Fm(K+) −→ Fm(K)

satisfies the following property of meaning preservation. Assume
ψ(y, z̄) ∈ Fm(K+) is such that y ∈ Var(Unew

i ) and z̄ is a sequence of
variables of old sorts such that the variables in z̄ are distinct from those
occurring in the sequence ~y of variables. Then

K+ |= codei
j(y, ~y) → [ ψ(y, z̄) ↔ (Tr(∃~ycodei

j(y, ~y) ∧ ψ))(~y, z̄) ].

Intuitively, whatever is said by ψ about y and z̄, the same is said by the
translated formula Tr(ψ ∧ ∃~ycodei

j(y, ~y)) about the j-code ~y of y and z̄.
Cf. Figure 2. The case when ψ contains an arbitrary sequence, say ȳ, of
variables of various new sorts is a straightforward generalization and is
left to the reader.

When each ni equals 1, then we get back the Second Translation Theorem.

Proof:
(I) The case of step (2.1) (direct product): Assume that K+ is obtained from

K by applying step (2.1) so that we defined Unew def
= U × V where U, V are old

sorts. Then the new symbols (in K+) are Unew (i.e. variables of sort Unew), and

47Note that here “∀x” means “∀x ∈ Unew
i ” automatically since we know that x is of sort Unew

i

(as a variable symbol of the language of K
+).
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Fm(K+) ∋ codeM+

i

Ui
ψ ∈ Fm(K+)

Tr(ψ) ∈ Fm(K)

M ∈ K
K

+ ∋ M+

Figure 2: Illustration for the second translation theorem (Thm.2.3.4). Whatever
can be said of a new element in M+ can be said of its “code” in the old model M.
(In the Figure, the codes of the new elements have lenght 1.)

pj0, pj1. The translation mapping Tr : Fm(K+) −→ Fm(K) will be as follows.
Let ψ ∈ Fm(K+). For each x ∈ Var(Unew) occurring in ψ we assign variables
x0 ∈ Var(U), x1 ∈ Var(V ) such that x0, x1 do not occur in ψ and the xi’s are all
distinct from each other (i.e. xi is the same variable as yj iff x is y and i is j). Now
we obtain Tr(ψ) from ψ as follows. For all variable x of new sort occurring in ψ

• we replace (∃x) in ψ with (∃x0)(∃x1)

• we replace x = y in ψ with x0 = y0 ∧ x1 = y1

• we replace pji(x) = u in ψ with xi = u, for i = 0, 1.

Formally, we define Tr by recursion as follows.

• Tr((∃x ∈ Unew)ψ) := (∃x0 ∈ U)(∃x1 ∈ V )Tr(ψ); if x ∈ Var(Unew);

• Tr((∃y)ψ) := (∃y)Tr(ψ); if y is a variable of old sort;

• Tr(¬ψ) := ¬Tr(ψ), Tr(ψ ∧ ϕ) := Tr(ψ) ∧ Tr(ϕ);

• Tr(x = y) := (x0 = y0 ∧ x1 = y1), where x, y ∈ Var(Unew);
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• Tr(pji(x) = u) := (xi = u), where x ∈ Var(Unew);

• Tr(ψ)
def
= ψ; for any other atomic formula ψ.

Then Tr(ψ) ∈ Fm(K) because the symbols in ψ which do not occur in Fm(K)
are only those that we replaced in the above algorithm.

We introduce the formula code(x, x0, x1) (saying explicitly that the values of
x0, x1 form really the code of the value of x) as follows:

code(x, x0, x1)
def
⇐⇒ [ x0 = pj0(x) ∧ x1 = pj1(x) ].

Now, it is not difficult to check that Tr : Fm(K+) −→ Fm(K) is well defined,
and (a)-(c) in the statement of Theorem 2.3.5 hold. The next two cases are very

similar:

(II) The case of step (2.2) (subset): Assume that K+ is obtained from K by
applying step (2.2) so that the only new symbols (in K+) are Unew = S and in,
where U is an (old) sort of K and S is an old unary relation symbol of sort U .

The translation mapping Tr : Fm(K+) −→ Fm(K) is as follows. Let ψ ∈
Fm(K+). For each x ∈ Var(Unew) occurring in ψ we assign a variable x̌ ∈ Var(U)
such that x̌ does not occur in ψ and the x̌’s are all distinct from each other. We
obtain Tr(ψ) from ψ as follows. For all variable x of sort Unew occurring in ψ

• we replace (∃x) in ψ with (∃x̌ ∈ S), i.e. we replace each subformula (∃x)ϕ in
ψ with (∃x̌)(S(x̌) ∧ ϕ)

• we replace x = y in ψ with x̌ = y̌

• we replace in(x) = u in ψ with x̌ = u.

We define the formula code(x, x̌) as

code(x, x̌)
def
⇐⇒ in(x̌) = x .

(III) The case of step (2.3) (quotient): Assume that K+ is obtained from K by
applying step (2.3) so that the only new symbols (in K+) are Unew = U/E and ∈,
where U is an (old) sort of K, E is an old binary relation symbol of sort U,U such
that E is an equivalence relation in each model of K.

The translation mapping Tr : Fm(K+) −→ Fm(K) is as follows. Let ψ ∈
Fm(K+). For each x ∈ Var(Unew) occurring in ψ we assign a variable x̌ ∈ Var(U)
such that x̌ does not occur in ψ and the x̌’s are all distinct from each other. We
obtain Tr(ψ) from ψ as follows. For all variable x of sort Unew occurring in ψ
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• we replace (∃x) in ψ with (∃x̌)

• we replace x = y in ψ with E(x̌, y̌)

• we replace ∈(u, x) in ψ with E(x̌, u).

We define the formula code(x, x̌) as

code(x, x̌)
def
⇐⇒ ∈(x̌, x) .

(IV) The case of step (2.4) (union): Assume that K+ is obtained from K by
applying step (2.4) so that the only new symbols (in K+) are Unew = U

.
∪ V and

in1, in2, where U, V are (old) sorts of K.

The intuitive idea of the translation mapping is as follows. Assume ψ ∈ Fm(K+)
is given. First we assign variables x1, x2 of old sorts U and V respectively to variables
x of new sort occurring in ψ as before. Then we rewrite ψ into a form such that
each subformula contains at the beginning the information about all its free variables
of new sort whether they “came from U or from V ”. Here, e.g. (∃x1)in1(x1) = x
expresses that “x came from U”. Notice that we only use the translation of such
formulas in the statement of Thm.2.3.5, so we have such an “assignment” for the
free variables of ψ. We will call this information the “prefix” of the formula. E.g.
we rewrite a subformula (∃y)ϕ of ψ where y is a variable of new sort into

(∃y)[(∃y1)in1(y1, y)) ∧ ϕ] ∨ (∃y)[(∃y2)in2(y2, y)) ∧ ϕ] .

After this we proceed basically as in the previous cases, except that we replace (∃y)
with (∃y1) or with ∃y2 according to the “prefix” of the formula telling us from where
y came from; and similarly in the other cases: we replace x = y with xi = yj where
we choose i, j according to the prefix, and we replace ini(z) = y with z = yi or with
FALSE according to whether the prefix tells that y came from the right place.

Below, we write out this case formally. Let X be a finite set of variables. First we
define TrX which translates only those formulas whose all variables, free or bound,
are in X. For each y ∈ Var(Unew) ∩ X choose y1 ∈ Var(Y ) \ X, y2 ∈ Var(V ) \ X
such that the yi’s are all distinct.

Next, for all finite Y ⊆ Var(Unew)∩X and χ : Y −→ {1, 2} we define translation
functions Trχ by parallel recursion. But first we need to fix some notation.
If χ is as above, then we call it a “prefix”.
If y ∈ Var(Unew), i ∈ {1, 2} and χ is a prefix, then

χ(y/i)
def
= (χ \ {y} × {1, 2}) ∪ {〈y, i〉} .
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I.e. χ(y/i) is an extension of χ which assignes i to y if χ did not assign a value to
y, and otherwise χ(y/i) is the prefix we obtain from χ by changing y’s value to i.
For a prefix χ the formula γ(χ) is defined as

γ(χ)
def
=

∧

{(∃yi)ini(yi) = y : 〈y, i〉 ∈ χ} .

We will write Tr(χ, ψ) for Trχ(ψ). We are ready to define the Trχ’s by recursion:

• Tr(χ,∃yψ)
def
= ∃y1Tr(χ(y/1), ψ) ∨ ∃y2Tr(χ(y/2), ψ), if y ∈ Var(Unew) ∩ X.

• Tr(χ,∃zψ)
def
= ∃zTr(χ, ψ), if z ∈ X \ Var(Unew),

• Tr(χ, ψ ∧ ϕ)
def
= Tr(χ, ψ) ∧ Tr(χ, ϕ), Tr(χ,¬ψ)

def
= ¬Tr(χ, ψ),

• Tr(χ, y = x)
def
= (yi = xj) if χ(y) = i, χ(x) = j and FALSE otherwise,

• Tr(χ, ini(z) = y)
def
= z = yi if χ(y) = i and FALSE otherwise.

By these, we have defined Trχ for all prefixes χ. Now we define TrX(ϕ)
def
=

Tr(χ, ψ) if ϕ is γ(χ) ∧ x = x ∧ ψ for some χ, x, ψ and FALSE otherwise. (We
included the subformula x = x because ... ) Finally,

Tr(γ(χ) ∧ ψ)
def
= TrX(γ(χ) ∧ x = x ∧ ψ),

where X consists of all the variables occurring in ψ and x ∈ X. By these, we have
defined our translation function Tr : Fm(K+) −→ Fm(K). We will have two coding
formulas

code1(x, u)
def
= in1(u) = x ,

code2(x, v)
def
= in2(v) = x .

(V) The case of explicit definability without taking reducts: If K+ is ob-
tained from K by step (1) then we have an obvious translation with all the good
properties known from classical definability theory and in this case we do not have
to define coding formulas because we have no variables of new sort.

By this we have covered all the steps (i.e. (1)–(2.4)) which might occur in an
explicit definition. I.e. we defined Tr, code1, . . . , coden to all five kinds of “one-step”
explicit definitions represented by items (1)–(2.4).
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Assume now that K+ is explicitly defined over K without taking reducts. Now,
the definition of K+ is a finite sequence of steps with each step using one of items
(1)-(2.4). Hence by the above, we have a meaning preserving translation mapping
Trk for the k’th step for each number

k < n := “number of steps in the definition of K+”.

Besides Trk we also have formulas code1
k . . . , code

j
k (where j is 0, 1 or 2) for each

number k. Also for each Trk we have that (a)-(c) in the statement of Theorem 2.3.5
hold. But then we can take the composition Tr := Tr1◦Tr2◦. . .◦Trn of these meaning
preserving functions, and then the composition too will be meaning preserving if we
also combine the formulas codei

1, . . . , codej
n into a single “big” formula code.

E.g., if Unew

0 = U × V and Unew

1 = Unew

0

.
∪ Unew

0 , then code0 will be as in step
(2.1), and we will have two coding formulas for k = 1, one of them being

code1
1(x, z0, z1) := (∃z ∈ Unew

0 )(in1(z) = x ∧ pj0(z) = z0 ∧ pj1(z) = z1) .

One can check that for the just defined Tr and code, (a)-(c) in the statement of
Theorem 2.3.5 hold.

(VI) The general case: Assume now that K is a reduct of K+ and that K++

is a common definitional expansion of K and K+. By the previous case we have
translation mappings Tr1 : Fm(K++) −→ Fm(K) and Tr2 : Fm(K++) −→ Fm(K+)
together with appropriate coding formulas code1

1, . . . , coden
2 which satisfy (a)-(c) in

the statement of Theorem 2.3.4. Note that Fm(K+) ⊆ Fm(K++). Now we define

Tr
def
= Tr1 ↾ Fm(K+), codej(x, ~x)

def
= Tr2(code

j
1(x, ~x))

whenever x is a variable of new sort in the language of K+ and code
j
1 is a coding

formula for that new sort. One can check that Tr and codei as defined above satisfy
(a)-(c). In more detail: Assume that Ui is a new sort of K+, i.e. Ui is not a sort of
K. Then Ui is a new sort of K++, therefore there are codej

i (x, x̄) ∈ Fm(K++) which
“match” Tr1. We cannot use codej

i in the interpretation from K+ to K because codej
i

may not be in the language of K+. We use Tr2 to translate codej
i to the language

of K+ as follows. Since K+ is an expansion of K, all the variables in x, x̄ have sorts
which occur in K+. Thus by the properties of Tr2 we have

K++ |= codej
i (x, x̄) ↔ Tr2(codej

i (x, x̄)).

Let codej
i (x, x̄)

def
= Tr2(codej

i (x, x̄)). Then codej
i (x, x̄) ∈ Fm(K+) and

K+ |= codej
i (x, x̄) → [ψ(x, x̄) ↔ Tr(ψ)(x̄, z̄)]
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because
K++ |= codej

i (x, x̄) → [ψ(x, z̄) ↔ Tr1(ψ)(x̄, z̄)].

This finishes the proof.

More is true than stated in Theorem 2.3.4, namely the existence of a translation
mapping as in the theorem is actually sufficient for definability, as Theorem 2.3.7
below states.

Remark 2.3.6 (In connection with Theorems 2.3.2, 2.3.4.) These theorems state
that the expressive powers of two languages Fm(K+) and Fm(K) coincide. How-
ever, the proofs of these theorems prove more. Namely there exists a computable
translation mapping Tr acting between the two languages. Even more than this,
Tr preserves the logical structure of the formulas i.e. in the sense of algebraic logic,
Tr is a “linguistic homomorphism”. (Whether one is interested in this extra prop-
erty of being a “linguistic homomorphism” is related to a difference between the
algebraic logic approach and the abstract model theoretic approach to defining the
equivalence of logics [hence, in particular, to how one approaches characterizations
of logics like the celebrated Lindström theorems].)

¢

The following theorem says that eliminability of new symbols is an essential
feature of explicit definability: If the new relations and sorts are arbitrary but are
eliminable in the sense that there exist a mapping Tr : Fm(K+) −→ Fm(K) together
with “coding” formulas codei(x, ~x) for all new sorts Ui of K+ which satisfy 1,2 in
Theorem 2.3.4, then we can explicitly construct these new relations and sorts by
using our concrete steps (1) - (2.2) (in such a way that some additional auxiliary
new sorts and relations get defined in the way, but then we can forget these).

We note that both (ii) and (iii) in Theorem 2.3.7 say that K+ is a special reduct
of some definitional expansion of K. In (ii) we allow to forget relations and sorts
which then can be “defined back” (i.e. K+ is a reduct of its definitional expansion,
so we forget the relations and sorts of a definitional expansion). In (iii) we allow to
forget only as many relations and sorts that the remaining ones still “fix” the new
sorts and relations.

If Tr and codei satisfy the conclusion of Theorem 2.3.4, then we say that they
interpret K+ in K.48

48Cf. the definition of interpretations in Hodges [11, p.212, 221]. The existence of a
tuple Tr, codei interpreting K

+ in K (as in Theorem 2.3.4) is strictly stronger than the
uniform reduction property in [11, p.640]. Actually, the existence of Tr, codei is equivalent with
K

+ being coordinatised over K in the sense of [11, p.644]. This equivalence is proved in [2].
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THEOREM 2.3.7 Assume K is a reduct of K+. Then (i) and (ii) below are equiv-
alent and they imply (iii). If, in addition, K+ is closed under taking ultraproducts,
then (i)-(iii) below are equivalent.

(i) K+ is interpreted in K by some Tr and codei, i.e. the conclusion of Theo-
rem 2.3.4 is true: there are Tr and codei satisfying 1-2 of Theorem 2.3.4.

(ii) K+ and K have a common definitional expansion.

(iii) K+ is rigidly definable over K.

Proof. Proof of (i) ⇒ (ii): Assume that Tr : Fm(K+) −→ Fm(K) and codei ∈
Fm(K+) are such that 1,2 in Theorem 2.3.4 hold. We want to show that K+ is
explicitly definable over K with recoverable auxiliaries, i.e. that K+ and K have a
common definitional expansion K++. Now we set to definining K++.

Let Ui be a new sort of K+. First from the formula codei we will extract an
explicit definition for Ui, cf. Figure 3.

Consider codei(x, x̄). Define49

δ(x̄)
def
= Tr(∃xcodei(x, x̄)) and

ρ(x̄, ȳ)
def
= Tr(∃x(codei(x, x̄) ∧ codei(x, ȳ))).

Now δ(x̄), ρ(x̄, ȳ) ∈ Fm(K). Let x̄ = 〈x1, . . . , xk〉 and let the sorts of x1, . . . , xk

be Uj1 , . . . , Ujk
. These latter are sorts of K. Fix a model M ∈ K.

First we define the relation Snew

i by Snew

i ↔ δ, i.e.

Snew

i
def
= {ū ∈ Uj1 × . . . × Ujk

: M |= δ(ū)}.

Then Snew

i is a k-ary relation defined in M by step (1). Second, from Snew

i we
define the new sort Dnew

i and pji1, . . . , pjik by step (2.1):

Dnew

i
def
= Snew

i and

pjir
def
= {〈ū, ur〉 : ū ∈ Dnew

i }, for 1 ≤ r ≤ k.

Now we define the new binary relation Rnew

i by step (1) as follows:

Rnew

i
def
= {〈v, w〉 ∈ 2Dnew

i : M |= ρ(pji1(v), . . . , pjik(v), pji1(w), . . . , pjik(w)).

49δ stands for “domain of codei
−1” while ρ stands for “equivalence relation defined by codei

−1”.
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Intuitively, Rnew

i is the relation defined by ρ “projected up” to Dnew

i . Then
Rnew

i is an equivalence relation on Dnew

i , by the properties of codei, Tr and by the
definitions of ρ, δ. We then can define, as in step (2.2), the factor-sort:

Ui
def
= Dnew

i /Rnew

i ,

∈i
def
= {〈v, v/Rnew

i 〉 : v ∈ Dnew

i }.

Let

N
def
= 〈M, Dnew

i , Ui; pji1, . . . , pjik, ∈i, S
new

i , Rnew

i 〉.

Let M+ ∈ K+ be any expansion of M. The name of the sort Ui in N is the same
as in M+, but its “value” may be different, i.e. UN

i may be different from UM+

i .
However, there is a natural bijection between these sets, as follows. Let

Codei(u, x̄)
def
= (∃v ∈ Dnew

i )(∈i(v, u) ∧
∧

r pjir(v, xr) ∧ Snew

i (x̄)).

Then Codei(u, x̄) is in the language of N. By the above construction and by the
properties of our translation, there is a bijection f : UN

i −→ UM+

i such that for all
u ∈ UN

i and ā ∈ kUvM

N |= Codei[u, ā] iff M+ |= codei[f(u), ā].

See Figure 3.
Let Mi be the isomorphic copy of N where we replace each element u of UN

i with
f(u). Then Mi is a definitional expansion of M, obtained by steps (1),(2.1),(1),(2.2).
Let U1, . . . , Ut be all the new sorts of K+ and let us do the above for all new sorts.
Let M

′

be the definitional expansion of M we get by expanding M with all the new
sorts and relations of Mi, for 1 ≤ i ≤ t. Then M

′

contains all the new sorts of K+,
UvM+ ⊆ UvM

′

, and moreover, for all 1 ≤ i ≤ t

M
′

|= Codei[u, ā] iff M+ |= codei[u, ā].

Now we set to defining the new relations of K+ in M′.
Let Tj be a new relation in K+ with arity 〈U1, . . . , Um〉. Assume that, of these,

Ui1 , . . . , Uiℓ are sorts of K, while the rest, Uj1 , . . . , Ujs
are new sorts of K+. Let

τ
def
= Tr(Tj(ȳ)). Then by the properties of the translation function Tr we have that

K+ |= codej1(yj1 , x̄1) ∧ . . . ∧ codejs
(yjs

, x̄s) → [Tj(ȳ) ↔ τ(x̄1, . . . , x̄s, yi1 , . . . , yiℓ)].
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Ui
def
= Dnew

i /Rnew

i

codei

Snew

i

∈iRnew

i

Dnew

i

pji1
pji2

pji3

M

Figure 3: Illustration for the proof of Theorem 2.3.7 (i) ⇒ (ii). From the formula
codei we construct an explicit definition for Ui.
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Now we define the new relation Tj in M
′

by the formula

Tj(ȳ) ↔ ∃x̄1 . . . x̄s(
∧

r Codejr
(yj1 , x̄r) ∧ τ(x̄1, . . . , x̄s, yi1 , . . . , yiℓ)).

By the construction, Tj denotes the same relation in M
′

and in M+. Let now

M++ be the definitional expansion of M
′

with all the new relations Tj, let L
def
=

{M++ : M ∈ K} and let K++ def
= {N ∈ L : N ↾ VocK+ ∈ K+}. Then K++ is a

definitional expansion of K and K+ is a reduct50 of K++. We want to show that K++

is a definitional expansion of K+ also. The new (relative to K+) sorts and relations
of K++ are

Snew

i , Dnew

i , pjir, R
new

i and ∈i

when Ui is a sort of K+ which is not present in K. We define Snew

i , Dnew

i , pjir, and
Rnew

i by using steps (1),(2.1),(1) as we did in K. Since K+ is an expansion of K,
and these were all definable in K, we immediately have that the same definition will
work for them in K+, too. We then define ∈i by step (1) (and not by step (2.2) since
Ui is an “old” sort in K+) as follows:

∈i(v, u) ↔ ∃x̄(codei(u, x̄) ∧ pji1(v, x1) ∧ . . . ∧ pjik(v, xk))).

By the above, (i) ⇒ (ii) has been proved. (ii) ⇒ (i) was proved as Theorem 2.3.4.

Proof of (i) ⇒ (iii): Assume that K+ is interpreted in K by some translation
mapping Tr and formulas codei. Then K+ is definable in K, as we have seen above.
By the properties of a translation mapping then K+ is rigidly definable over K.

Proof of (iii) ⇒ (i): Here we will use Beth’s definability theorem for one-sorted
models (i.e. for defining relations only). Assume that K+ is rigidly explicitly definable
over K. Let K++ be a definitional expansion of K and assume that K+ is a reduct of
K++. Let codei, Tr be a translation of K++ to K. Since K+ is a reduct of K++, then
Tr : Fm(K+) −→ Fm(K). Let Ui be a new sort of K+. Then Ui is a new (relative to
K) sort of K++, therefore there is codei ∈ Fm(K++) which has good properties w.r.t.
Tr. The problem is that codei may not be in Fm(K+). We will show that codei is
expressible in Fm(K+), i.e. it is equivalent in K+ with a formula in the language of
K+.

For any new sort Ui of K+ let Ri be a new relation symbol and let ∆(Ri) be the
set of the following three formulas, where ρi(x̄, ȳ) is Tr(∃x(codei(x, x̄)∧codei(x, ȳ)),
as in the proof of (i) ⇒ (ii):

50We introduced L into the picture only because we did not assume that K
+ is closed under

isomorphism and we want K
+ be a reduct of K

++.
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∀x∃x̄Ri(x, x̄)

∃x(Ri(x, x̄) ∧ Ri(x, ȳ)) ↔ ρi(x̄, ȳ)

(Ri(x, x̄) ∧ Ri(y, x̄)) −→ x = y

Then ∆(Ri) is a set of formulas in the language of K expanded with one new
relation symbol Ri. For any new relation Tj of K+ let Ui1 , . . . , Uiℓ be the sorts of
K, and Uj1 , . . . Ujt

be the new sorts of K+ occurring in the arity of Tj and let ∆(Tj)
denote the formula

Tj(ȳ) ↔ ∃x̄1 . . . x̄t(
∧

r Rj1(ujr
, x̄r) ∧ Tr(Tj(ȳ))(x̄1, . . . , x̄t, yi1 , . . . , yiℓ)).

Let ∆ be the set of all the above formulas, i.e.

∆
def
=

⋃
{∆(Ri) : Ui is a new sort of K+} ∪ {∆(Tj) : Tj is a new relation of K+}.

Now, ∆ is a set of formulas in the language of K+ expanded with new relation
symbols Ri for all new sorts Ui. We will show that ∆ is an implicit definition of
〈Ri : Ui is a new sort in K+〉 in K+, in the usual sense. Indeed, let M+ ∈ K+,

R̄′ def
= 〈R′

i〉 and R̄′′ def
= 〈R′′

i 〉 be systems of concrete relations in M+ such that

〈M+, R̄′〉 |= ∆ and 〈M+, R̄′′〉 |= ∆.

Then, by using the construction of ∆, one can show that there is an isomorphism
f between 〈M+, R̄′〉 and 〈M+, R̄′′〉 such that f is identity on the sorts of K, i.e.. f
is identity on M ∈ K, where M is the reduct of M+ in K. Rigidity of K+ over K

implies that then f is identity on M+ also, because both Id and f are isomorphisms
on M+ that are identity on M. Since f is the identity, we get that R̄′ = R̄′′. Thus in
each model M+ ∈ K+ there is at most one system R̄ of concrete relations satisfying
∆. To be able to use the Beth theorem, we need that this property holds for all
M+ in the axiomatizable hull Mod(Th(K+)) of K+ as well. By the Keisler-Shelah
theorem, and by our assumption that K+ is closed under taking ultraproducts we
have that N ∈ Mod(Th(K+)) iff an ultrapower IN/F of N is in K+. Assume that
there are two different systems of relations satisying ∆ in N. Then the same is
true in IN/F . This contradicts our earlier argument showing that on each model
M+ ∈ K+ there is at most one system of relations satisfying ∆. Thus ∆ is an implicit
definition in the axiomatizable hull Mod(Th(K+)) of K+. By Beth’s theorem then
each of Ri is definable in the language of K+. Let γi(x, x̄) ∈ Fm(K+) be such that
Th(K+) ∪ ∆ |= Ri(x, x̄) ↔ γi(x, x̄). By the construction of ∆ we also have that
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K++ |= codei(x, x̄) ↔ Ri(x, x̄).

Thus, Tr ↾ Fm(K+) toghether with the γi’s is a good translation from K+ to K.
This finishes the proof of Theorem 2.3.7.

Remark 2.3.8 (Discussion of Theorem 2.3.7.) (i) Theorem 2.3.7 is true for
arbitrary languages, we do not need that there are only finitely many sorts or that
we have only countably many symbols in the language. (ii) The condition that K+

is closed under ultraproducts is needed for the direction (ii) ⇒ (i). An example
showing this is the following. Let K be the class of finite linear orderings on sort U0.
Let K+ be the class of two-sorted models where the sorts are U0, U1, there is a finite
linear ordering both on U0 and on U1 and |U0| = |U1|. Now K+ is rigidly explicitly
definable over K. But the class UpK+ of all ultraproducts of members of K+ is not
rigid over the class UpK of all ultraproducts of members of K. (To see this, take any
infinite ultraproduct of elements of K+. Then there is a nontrivial automorphism
of the linear ordering on U1.) However, it is not difficult to see that if K and K+

have a common definitional expansion, then UpK and UpK+ also have a common
definitional expansion, which would imply that UpK+ is rigid over UpK. Thus K

and K+ do not have a common definitional expansion. (iii) Thm2.5.1 together with
Thm.2.3.7 will imply that if K+ is rigidly definable over K and K is axiomatizable,
then K+ is nr-implicitly definable over K. ¢

COROLLARY 2.3.9 Assume that K+ is an expansion of K and that K is axiom-
atizable. Then

K ≡∆ K+ ⇒ K ≡∆ Mod(Th(K+)).

Proof. By Thm.2.3.7, K ≡∆ K+ implies the existence of Tr, codei interpreting K+

in K. Let ∆ be the set of formulas expressing that Tr, codei interpret K+ in K.

Then K+ |= ∆∪Th(K). Moreover, let K1
def
= Mod(Th(K+)). Then K = K1 ↾ VocK by

K1 |= Th(K) and K = Mod(Th(K)), and also Tr, codei interpret K1 in K1 ↾ VocK by
K1 |= ∆. Thus Tr, codei interpret K1 in K. By Thm.2.3.7 then K ≡∆ Mod(Th(K+)).
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2.4 Definitional equivalence of theories.

In section 2.3 we dealt with classes K and L where L was an expansion of K. In this
sub-section we turn to the case when L is not necessarily an expansion of K.

Definition 2.4.1 Let K and L be two classes of models. We say that they are
definitionally equivalent , in symbols K ≡∆ L, iff they admit a common (explicit)
definitional expansion M (without taking reducts).51

Further, M ≡∆ N abbreviates {M} ≡∆ {N}. If M ≡∆ N, then we say that
M and N are definitionally equivalent models . Two theories Th1, Th2 are called
definitionally equivalent iff Mod(Th1) ≡∆ Mod(Th2). ¢

Cf. also in Hodges [11] under the name “definitional equivalence” pp. 60–61; cf. also
Henkin-Monk-Tarski [10, Part I, e.g. p.56].

We will see that one can say that two definitionally equivalent theories can be
regarded as being essentially the same theory and the difference between them is
only that their “syntactic decorations” are different (i.e. they “choose” to represent
their [essentially] common language with different basic vocabularies).

The same applies to classes of models K, L when K ≡∆ L. As an example, choose
K to be Boolean algebras with {∩,−} as their basic operations while choose L to
be Boolean algebras with {∪,−, 0, 1} as basic operations. (Then K ≡∆ L.) At a
certain level of abstraction, K and L can be regarded as a collection of the same
mathematical structures (namely, Boolean algebras) and the difference (between K

and L) is only in the choice of their basic vocabularies (which is “∩,−” in the one
case while “∪,−, 0, 1” in the other). Summing up: In some sense, definitionally
equivalent theories Th1 ≡∆ Th2 can be considered as just one theory with two
different linguistic representations. The same applies to definitionally equivalent
classes of models.

The relation ≡∆ defined above is symmetric and reflexive. For certain “adminis-
trative” reasons it is not transitive, but the counterexamples (to transitivity) are so
artificial that we will not meet them (in this work). We could define ≡∗

∆ to be the
transitive closure of ≡∆ and then use ≡∗

∆ as definitional equivalence. If this were a
logic book we would do that. However, in the present work we will not need ≡∗

∆,

51I.e. M is a definitional expansion (without taking reducts) of K and the same holds for L in
place of K. Note that Th(M) can be regarded as an implicit definition of M over K, and the same
for L in place of K.
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hence we do not discuss it, and we call ≡∆ definitional equivalence (though it is ≡∗
∆

which is the really satisfactory notion of definitional equivalence.)

Discussion of the definition of ≡∆

(1) Assume K ≡∆ L. Then K and L agree on the common part of their vocabularies.52

I.e.
K ≡∆ L ⇒ K ↾ (VocK ∩ VocL) = L ↾ (VocK ∩ VocL).

(2) For any definitional expansion K+ of K we have K ≡∆ K+. In general, if K+ is
an expansion of K and K is closed under taking ultraproducts, then K+ ≡∆ K iff K+

is rigidly definable over K, see Thm.2.3.7.

(3) Assume K ≡∆ L. Then L and K are definable over each other. Moreover one can
choose their definitions over each other to be the same. Indeed, if M is the common
definitional expansion of K and L mentioned in the definition of ≡∆, then Th(M) is
a definition of K over L as well as a definition of L over K.

(4) Definitional equivalence is stronger than mutual (explicit) definability: there
exist classes K and L such that they are definable over each other, yet K 6≡∆ L (see
Examples 2.4.13, p.67). Moreover, this is so even in the one-sorted case: We can
choose K and L such that both K and L have only one, common, sort. Such an
example can be found in Andréka-Madarász-Németi [3].

(5) Assume K ≡∆ L. Then there is a bijection-up-to-isomorphism

f : K≻−→≻L

between K and L, and there are definitions ∆K, ∆L such that for all 〈M,N〉 ∈ f the
following hold:

(i) M ↾ (VocK ∩ VocL) = N ↾ (VocK ∩ VocL)

(ii) M and N have a common definitional expansion M+

(iii) ∆K defines M+ over M and ∆L defines M+ over N.

52As a contrast, K ≡∗

∆ L does not imply this, however as we said we will not need the generality
of ≡∗

∆ in this work.
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Indeed, if M is a common definitional expansion of K and L with definitions
∆K, ∆L over K and L respectively, then we can choose f to be

f = {〈M ↾ VocK,M ↾ VocL〉 : M ∈ L}.

(6) Assume K ≡∆ L. Then the bijection-up-to-isomorphism f : K≻−→≻L in (5)
above has the following property. For all M ∈ K, the automorphism group of M is
isomorphic to the automorphism group of f(M), in symbols53

〈Aut(M), ◦〉 ∼= 〈Aut(f(M)), ◦〉.

This is so because of the following. Let M+ ∈ M be such that M+ is implicitly
definable without taking reducts both over M and over f(M). Since M+ is implicitly
definable without taking reducts over M, each automorphism of M extends in a
unique way to an automorphism of M+, and this implies that the automorphism
groups of M and M+ are isomorphic. We get the same for f(M) and M+ completely
analogously, and this proves that the automorphism groups of M and f(M) are
isomorphic.

(7) For more on definitional equivalence, its importance, and for motivation for the
way we defined and use ≡∆ we refer to [10, pp. 56-57, Remark 0.1.6], [11, pp. 58-61].

¢

Each of the properties in items (3) and (5) of the above discussion are equivalent
with K ≡∆ L. We will state this in the following theorem.

THEOREM 2.4.2 Let K and L be two classes. Then (i)-(iii) below are equivalent.

(i) K ≡∆ L

(ii) There is a ∆ such that ∆ defines K over L and ∆ defines L over K.

(iii) For every M ∈ K there is N ∈ L and for every N ∈ L there is M ∈ K such that
M and N have a common definitional expansion, and moreover the definitions
of the expansion over M and over N can be chosen uniformly.

Proof. Proof of (ii) ⇒ (i): Assume ∆ defines K over L and ∆ defines L over K.
Then there are K+ and L+ such that K+ is a definitional expansion of K, defined
by ∆, and L is a reduct of K+ and the analogous statement for L+. It is easy to

53f(M) exists only up to isomorphism, but we talk only about the automorphism group of f(M)
which is defined by the isomorphism type of M up to isomorphism. So this makes sense.
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see that then VocK+ = VocL+ = VocK ∪ VocL ∪ Voc∆, where Voc∆ denotes the

set of sort and relation symbols occurring in ∆. Let M
def
= K+ ∪ L+. Then M is an

expansion of both K and L. Also, M |= ∆ because K+ |= ∆ and L+ |= ∆. Thus, ∆
is an nr-implicit definition of M both over K and over L.

Proof of (iii) ⇒ (i): Let ∆K, ∆L be the uniform definitions in (iii). Let

M
def
= {M : M ↾ VocK ∈ K, M ↾ VocL ∈ L and ∆K defines M over M ↾ VocK,

∆L defines M over M ↾ VocL}. Then M is a class of similar models, namely
VocM = VocK ∪ VocL ∪ Voc∆K ∪ Voc∆L. Then both K and L are reducts of
M, i.e. K = M ↾ VocK etc., by (iii). Also, M |= ∆K ∪ ∆L, thus M is a definitional
expansion of both K and L.

(i) ⇒ (ii), and (i) ⇒ (iii) were shown already in the discussion of ≡∆.

THEOREM 2.4.3 Let K, L be two classes of models and assume that IK is closed
under taking ultraproducts. Then (i) and (ii) below are equivalent.

(i) K ≡∆ L

(ii) K and L have a common extension which is rigidly definable both over K and
over L.

Proof. Let M be a common rigidly definable expansion of K and L. Since IK is
closed under taking ultraproducts, then IM is closed under taking ultraproducts,
too. Hence we can apply Thm.2.3.7 to obtain common definitional expansions K+

and L+ of K and M and of L and M respectively. We also may assume that the new
sorts and relations in K+ and L+ have different names, i.e. VocK+∩VocL+ = VocM.
Then it is not difficult to see that there is a common definitional expansion M+ of
K+ and L+. Now, M+ is a common definitional expansion of K and L. See Figure ??.

In connection with Theorem 2.4.3 we note that it is not difficult to see that if
K+ is nr-implicitly definable over K, then IK is closed under ultraproducts iff IK+ is
closed under ultraproducts.

LEMMA 2.4.4 Let K, L and K+ be classes of models. Assume that K+ is rigidly
definable over K, IL is closed under taking ultraproducts, VocK+ ∩ VocL = VocK ∩
VocL, and K ≡∆ L. Then K+ ≡∆ L.

Proof. Assume that K, L, K+ satisfy the conditions of the lemma. Let M be a
common definitional expansion of L and K and let ∆, Σ be the respective definitions
of M over L and K. Since IL is closed under taking ultraproducts and K ≡∆ L, we
have that IK also is closed under taking ultraproducts, and since K+ is definable over
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K, then IK+ is closed under taking ultraproducts. Thus by Thm.2.3.7, K and K+

have a common definitional expansion M+. Let ∆1, Σ1 be the respective definitions
of M+ over K and K+.

We may assume that VocM is disjoint from VocK+ \ VocK (by our assumption
VocK+ ∩ VocL = VocK ∩ VocL), and that VocM+ \ VocK+ is disjoint from VocM.
Hence VocM+ ∩ VocM = VocK.

Let N ∈ L be arbitrary. There are M ∈ K and M+ ∈ M such that M+ is
a common definitional expansion of N and M. There are M1 ∈ K+ and M+

1 in
M+ such that M+

1 is a common definitional expansion of both M and M1. By
VocM ∩ VocM+ = VocK, the union of M+ and M+

1 is a model, M++. Then M++

is a common expansion of N and M1 ∈ K+. Since ∆ defines M+ over N and ∆1

defines M+
1 over M, we have that ∆ ∪ ∆1 defines M++ over N. Similarly, Σ ∪ Σ1

defines M++ over M1. The proof of the other direction, (∀M ∈ K+∃N ∈ L) . . . is
completely analogous. K+ ≡∆ L then follows by Thm.2.4.2(iii)⇒(i).

Remark 2.4.5 (How and why can definitionally equivalent theories [and
classes of models] be regarded as identical [as a corollary of the translation
theorems]?)

In addition to the text below, we also refer the reader to [10, p.56] and [11,
pp.58–61] for explanations of why definitionally equivalent classes of models can be
regarded as (in some sense) identical.

Let K and L be two definitionally equivalent classes of models (formally, K ≡∆ L).
Then, by the definition of ≡∆, there is a class M which is a definitional expansion
(without taking reducts) of both K and L. We will argue below that this M estab-
lishes a very strong connection between K and L. (Cf. also item (5) in the discussion
of the definition of ≡∆.) Our argument begins with the following: We can apply
Theorem 2.3.2 to the pair M and K with M in place of K+ in that theorem. The
same applies to the pair M and L. By Theorem 2.3.2, then we have two translation
mappings

Fm(M)

Tr1

Fm(K) Fm(L)

Tr2
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both of which preserve meaning (in the sense of Theorem 2.3.2). Both of Tr1 and
Tr2 are surjective. Intuitively, Tr1 identifies K with M while Tr2 identifies M with L.
Hence K gets identified with L. (Perhaps the best way of thinking about this is that
we identify both K and L with their common expansion M. As a by-product of this
we identify K and L with each other, too.)

By surjectiveness of Tr1 and Tr2, whatever can be said in the language Fm(K),
the same can be said in Fm(M) and hence (using Tr2) the same can be said in the
language Fm(L) of L. Similarly, whatever can be said in Fm(L) the same can be
said in Fm(K), too.

Now, if we want some more detail, let ϕ(z̄) ∈ Fm(K) with a sequence z̄ of
variables belonging to common sorts K and L. Then there are ϕ′(z̄) ∈ Fm(M),
ϕ′′(z̄) ∈ Fm(L) such that Tr1(ϕ

′) = ϕ and Tr2(ϕ
′) = ϕ′′. I.e.

ϕ(z̄)
Tr2

ϕ′(z̄)
Tr1

ϕ′′(z̄).

Actually, we can choose ϕ′ = ϕ if we want to. Using Theorem 2.3.2 we can
conclude

M |= ϕ(z̄) ↔ ϕ′′(z̄).(4)

I.e. the same things can be said about the common variables z̄ in Fm(K) and in
Fm(L). Hence the languages of K and L have the same expressive power.

On the basis of (4) above and what was said before (4), we can introduce two,
more direct, translation mappings

Fm(K)

T2

T1

Fm(L)

defined as follows. In defining T1 and T2 we can rely on the fact that

Fm(K) ⊆ Fm(M) = Dom(Tr1)

and that Tr1 ↾ Fm(K) = Id ↾ Fm(K) which is the identity function. Hence we can
choose

T1 := Tr1 ↾ Fm(L) and

T2 := Tr2 ↾ Fm(K).54

54In passing, we also note that Tr1 can be regarded as injective in the sense that if ψ(z̄), γ(z̄) ∈
Fm(M) involve free variables of K only then [Tr1(ψ) = Tr1(γ) ⇒ M |= ψ(z̄) ↔ γ(z̄)]. Similarly
for Tr2 and L.
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Fm(M)

Tr1

Fm(K) Fm(L)

Tr2

T2

T1

Assume ϕ ∈ Fm(M) involves only common free variables of K and L. Then

M |= (T2Tr1ϕ) ↔ Tr2ϕ.

M |= (T1Tr2ϕ) ↔ Tr1ϕ.

So in this “logical sense” the above diagram commutes.

For completeness, about the above diagram we also note the following commu-
tativity property:

T2 ⊆ (Tr1)
−1 ◦ Tr2 ,

T1 ⊆ (Tr2)
−1 ◦ Tr1 .

Here we note that (Tr1)
−1 ◦ Tr2 is a binary relation but not necessarily a function.

Using Theorem 2.3.2, and (4) way above, one can check that for all ϕ ∈ Fm(K)
and for all ψ ∈ Fm(L), if ϕ and ψ use only variables of common sorts (of K and L)
then:

M |= ϕ(z̄) ↔ (T2ϕ)(z̄),(5)

M |= (T1ψ)(z̄) ↔ ψ(z̄), further

K |= ϕ(z̄) ↔ (T1T2ϕ)(z̄),(6)

L |= ψ(z̄) ↔ (T2T1ψ)(z̄).

These statements can be interpreted as saying that T1 and T2 are kind of inverses
of each other and that they establish a kind of logical isomorphism between equiv-
alence classes of formulas in Fm(K) and Fm(L) involving free variables of common
sorts only. For completeness, we note that (5–6) can be generalized to formulas
involving free variables of arbitrary sorts by using Theorem 2.3.4. For formulating
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this generalized version of (5–6) one needs to use the formulas “code” as they were
used in Theorem 2.3.4. E.g. the first line of (6) becomes

K |= code(x, ~x) → [ϕ(x, z̄) ↔ (T1T2ϕ)(~x, z̄)],

where x belongs to a sort of K not in L, and z̄ is a sequence of variables of common
sorts of K and L. Here code(x, ~x) is the formula we get from combining the corre-
sponding formulas belonging to Tr1 and Tr2. We leave the details of generalizing
(4–6) to treating free variables not in the common language to the interested reader.

(We note that the generalization of (6) above reminds us of the notion of equiv-
alence between two categories, in the sense of category theory.)

We hope, the above shows how and to what extent we consider two definitionally
equivalent classes (and theories) as being essentially identical.

¢

Weak definitional equivalence

Definition 2.4.6 Let K and L be two classes of models and let f : K −→ L be a
function. We say that f is a first-order definable meta-function iff for each M ∈ K

f(M) is first-order definable over M (in the sense of §2.2) and the definition of
f(M) over M is uniform, i.e. is the same for all choices of M ∈ K.55

¢

A typical example for first-order definable meta-functions will be e.g.
G : Mod(Th) −→ Ge(Th), where G : M 7→ GM, if Th is strong enough, cf. Thm.??
(p.??). A similar example will be a kind of inverse to this function
M : Ge(Th) −→ Mod(Th), cf. Prop.?? (p.??) and Def.?? (p.??).

We note that if f : K−→≻L is a surjective first-order definable meta-function then
L is definable over K; and, more generally, if f : K −→ L is a first-order definable
meta-function then Rng(f) is definable over K. In the other direction, if L = IL is
definable over K then there is a first-order definable meta-function f : K −→ L such
that Rng(f) is L up to isomorphism. To be able to claim this for the case when
L 6= IL we make the following convention.

55A first-order definable meta-function (acting between classes of models) is a rather different
kind of thing from an ordinary function like factorial : N −→ N definable in a model, say in
N ∈ Mod(Peano’s arithmetic), cf. Example 2.1.5(1) on p.13. (This is the reason why we call f a
meta-function and not simply a function.)

62



CONVENTION 2.4.7 (Class form of the axiom of choice)
In connection with the above definition, for simplicity, throughout the present chap-
ter we assume the class form of the axiom of choice. More concretely we assume
that our set theoretic universe V is well orderable by the class Ordinals of ordinal
numbers. I.e. there is a bijection

f : Ordinals≻−→≻V.

This implies that any proper class is well orderable and therefore there exists a
bijection between any two proper classes.

¢

f

interpretation

Trf

K

BA

lattices

models of
set theory

(1)

(2)

(3)

L

groups

posets

models of
Peano’s
arithmetic

(1)

(2)

(3)

Rng(f)

(1) Boolean
groups

Fm(L)

group theory

theory of posets

Peano’s arithmetic

(1)

(2)

(3)

Fm(K)

BA-theory

lattice theory

set theory

translation
(1)

(2)

(3)

K L

Figure 4: Examples for first-order definable meta-functions f and the induced trans-
lations between theories. For more explanation in connection with this picture cf.
item (III) of Remark ??, pp. ??–??. The corresponding theories are labelled by the
same numbers. E.g. BA is interpreted in “groups”, “lattices” in “posets” etc.

The following proposition makes connections between the following three things:
(i) “interpretations” of one theory in another, (ii) first-order definable meta-functions
f : K −→ L between classes of models, and (iii) definability of a class Rng(f) over
another class K, see Fig.4. In this context the function Trf (in the proposition) below
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is what we call an interpretation (or translation).56 In particular the proposition says
that any first-order definable meta-function f : K −→ L induces a natural syntactical
translation mapping from the language Fm(L) of L to that of K. Moreover, this
translation is meaning preserving w.r.t. the semantical function f .57

PROPOSITION 2.4.8 Assume f : K −→ L is a first-order definable meta-
function. Then there is a “natural” translation mapping

Trf : Fm(L) −→ Fm(K)

such that for every ϕ(x̄) ∈ Fm(L) with all free variables belonging to common sorts
of K and L 58, A ∈ K and evaluation ā of x̄ in the common sorts (i.e. universes) of
A and f(A) the following holds.59

f(A) |= ϕ[ā] ⇔ A |= Trf (ϕ)[ā].

Cf. Fig.4.

Proof: The proposition follows easily by Thm.2.3.2 (first translation theorem) on
p.35. In more detail: Assume f : K −→ L is a first-order definable meta-function.
Then there is an expansion K+ of Rng(f) such that K+ is definable over
K without taking reducts. Then, by Thm.2.3.2, there is a translation mapping
Tr : Fm(K+) −→ Fm(K) such that (⋆) in Thm.2.3.2 holds. Let Trf := Tr ↾ Fm(L).
One can check that Trf has the desired properties.

The following is a weaker form of definitional equivalence. We will use it e.g. in
Thm.?? (p.??).Esetleg azt hogy K

és L definicióssan
ekvivalens úgy
definiálni, hogy IK

és IL definicióssan
ekvivalens.

56In the one-sorted case an interpretation Tr : Fm(L) −→ Fm(K) is the same thing as a cylindric
algebraic homomorphism between the cylindric algebras of formulas Fm(L) and Fm(K). I.e. if we
endow Fm(L) with the cylindric algebraic structure (of first-order formulas) and do the same with
Fm(K) then the homomorphisms between the two algebras of formulas are typical examples of
interpretations.

57Translation functions of the type Tr : Fm(L) −→ Fm(K) play an important role in the present
work. They have two important features: (i) they are meaning preserving, and (ii) they respect the

logical structure of the languages involved, e.g. Tr(¬ϕ) = ¬Tr(ϕ) and analogously for the remaining
parts of our logic. (We do not discuss property (ii) explicitly, but since it is important we mention
that it is discussed in the algebraic logic works e.g. in Andréka et al. [4].) In other words (ii)
could be interpreted as saying that our translation mappings are grammatical, i.e. they respect the
grammar of the languages involved. Cf. Remark 2.3.6 on p.48.

58i.e. to Voc0K ∩ Voc0L
59We note that the formulas ϕ and Trf (ϕ) have the same free variables (therefore the statement

below makes sense).
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Definition 2.4.9 (Weak definitional equivalence)
Let K, L be two classes of models. K and L are called weakly definitionally equivalent ,
in symbols

K ≡w
∆ L,

iff there are first-order definable meta-functions

f : K −→ L and g : L −→ K

such that for any M ∈ K and G ∈ L, (i) and (ii) below hold.

(i) (f ◦ g)(M) ∼= M and (g ◦ f)(G) ∼= G, and

(ii) moreover there is an isomorphism between the two structures M and (f◦g)(M)
which is the identity map on the reduct M ↾ (VocK∩VocL) 60 of M. Similarly
for structures G and (g ◦ f)(G).

¢

Intuitively, K and L are weakly definitionally equivalent iff they are definable over
each other and the first-order definable meta-functions induced by these definitions
are inverses of each other up to isomorphism.

PROPOSITION 2.4.10 Assume K, L are two classes of models. Then

K ≡∆ L ⇒ K ≡w
∆ L,

i.e. if K and L are definitionally equivalent then they are also weakly definitionally
equivalent.

We omit the proof.

In connection with the above proposition we note that the other direction does
not hold in general, i.e.

K ≡w
∆ L 6⇒ K ≡∆ L.

This (i.e. 6⇒) is so even if we assume that K and L are both axiomatizable, cf.
Examples 2.4.13 (p.67) and Thm.?? (p.??).

Examples come at the end of this section.

60VocK ∩ VocL is the common part of the vocabularies of K and L.
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Remark 2.4.11 Assume that f : K −→ L and g : L −→ K are first-order definable
meta-functions as in Def.2.4.9. Then Rng(f) is L up to isomorphism and Rng(g) is
K up to isomorphism. Moreover, for every A ∈ L there is A′ ∈ Rng(f) such that
there is an isomorphism between the structures A and A′ which is the identity map
on the reduct A ↾ (VocK∩VocL) of A; and the analogous statement holds for every
B ∈ K.

¢

The following proposition says that if K ≡w
∆ L then the language Fm(K) of K can

be translated into the language Fm(L) of L in a meaning preserving way and vice-
versa; more precisely these translations work well for the sentences61 only or more
generally for those formulas which contain only such free variables that range over
the common sorts of K and L. Moreover these translation mappings are inverses of
each other (up to logical equivalence “↔”). We note that if in addition we have ≡∆

in place of ≡w
∆

62 then this nice, meaning preserving translation mapping extends to
all formulas, cf. the end of Remark 7 on p.62.

PROPOSITION 2.4.12 Assume K ≡w
∆ L. Then there are “natural” translation

mappings
Tf : Fm(L) −→ Fm(K) and Tg : Fm(K) −→ Fm(L)

such that for every ϕ(x̄) ∈ Fm(L), ψ(ȳ) ∈ Fm(K) with all their free variables
belonging to common sorts of K and L, A ∈ L and B ∈ K, and evaluations ā, b̄ of the
variables x̄, ȳ, respectively, (i)–(iv) below hold, where f and g are as in Def.2.4.9.

(i) f(B) |= ϕ[ā] ⇔ B |= Tf (ϕ)[ā] and g(A) |= ψ[b̄] ⇔ A |= Tg(ψ)[b̄].

(ii) A |= ϕ[ā] ⇔ g(A) |= Tf (ϕ)[ā] and B |= ψ[b̄] ⇔ f(B) |= Tg(ψ)[b̄].

(iii) A |= ϕ(x̄) ↔ (Tf ◦ Tg)(ϕ)(x̄) and B |= ψ(ȳ) ↔ (Tg ◦ Tf )(ψ)(ȳ).

(iv) L |= ϕ ⇔ K |= Tf (ϕ) and K |= ψ ⇔ L |= Tg(ψ).

Proof: Item (i) of the proposition follows by Prop.2.4.8 above. Items (ii)–(iv) follow
by item (i) and Remark 2.4.11.

61Sentence means closed formula, i.e. formula without free variables.
62i.e. K ≡∆ L
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Examples 2.4.13 In all three examples below we state K 6≡∆ L for some classes
K, L. In all three examples we can use item (6) on p.57 to prove K 6≡∆ L.

1. Let K be the class of two-element algebras without operations. I.e.

K = {A : |A| = 2 }.

Let L be the class of two-element ordered sets. Important: The sort symbol
of K and the sort symbol of L are different. Then

K ≡w
∆ L, but K 6≡∆ L.

2. Let K2 be the same as K was in item 1. above. Let K3 be the class of three
element algebras without operations. Let the sort symbols of K2 and K3 be
different. Then

K2 ≡
w
∆ K3, but K2 6≡∆ K3.

3. More sophisticated example, affine structures: Let AB be the class of Abelian
(i.e. commutative) groups.

Assume G = 〈G; +,−, 0〉 ∈ AB.

We define the affine relation R+ on G as follows.

R+(a, b, c, d, e, f)
def
⇐⇒ (a − b) + (c − d) = (e − f).

The affine structure associated to the group G is

AG := 〈G; R+〉.

The class of affine structures is

Af := {AG : G ∈ AB }.

Let the sort symbols of AB and Af be different. Claim:

AB ≡w
∆ Af, but AB 6≡∆ Af.

Hint: Definability of Af over AB is trivial. Definability of AB over Af: Let
〈G; R+〉 ∈ Af. We define a new relation eq as follows.

〈a, b〉 eq 〈c, d〉
def
⇐⇒ R+(a, b, a, a, c, d).
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Let us notice that eq is an equivalence relation on G × G. Now, let

A := G × G/eq

be a new sort. Further

〈a, b〉/eq + 〈c, d〉/eq = 〈e, f〉/eq
def
⇐⇒ R+(a, b, c, d, e, f).

Now, defining the rest of the Abelian group 〈A, +, . . .〉 over the affine structure
〈G; R+〉 is left to the reader.

The proof of 6≡∆ is based on looking at the large number of automorphisms of
the affine structure 〈G; R+〉. We omit the details. (The idea is similar to that
of example 1.)

¢

Remark 2.4.14 (Making ≡w
∆ strong by using parameters)

Consider the applications of ≡w
∆ in items (i), (ii) below.

(i) In Thm.?? (p.??) it is stated that

(Fields) ≡w
∆ (pag-geometries).

Theorems ??, ?? are analogous.

(ii) Mod(Th) ≡w
∆ Mog(TH ) for certain choices of Th, TH , where the class

Mog(TH ) of geometries is defined on p.??. We note that this is not proved or
even stated in the present work, but elaborating this can be considered as a
useful research exercise for the reader.

Now, if in the context (or background) of items (i), (ii) above we replace the notion of
definability with parametric definability using finitely many parameters only (in the
usual sense cf. p.?? and p.9, immediately below Remark 2.1.1, or e.g. Hodges [11, pp.
27–28])63 then we will obtain that the classes in question e.g. Mod(Th) and Mog(TH )
become definitionally equivalent in this weaker parametric sense. (I.e. they have a
single common parametrically definable definitional expansion etc.) More concretely
we could add (n + 1)-many new constants to pag geometries such that

(Fields) ≡∆ (pag-geometries + these constants).

63Parametric definability is a slightly weaker notion than definability.

68



Completely analogous improved versions of Theorems ??, ?? (pp. ??, ??) are also
true.

Also we could add n + 1 new constants to Mog(TH ) and a constant (a distin-
guished observer) to Mod(Th) yielding

(Mod(Th) + new constant) ≡∆ (Mog(TH ) + new constants),

for certain choices of Th and TH . This works even if we assume Ax(eqtime) ∈ Th
(cf. Conjecture ?? on p.??).
It is these new auxiliary constants which are called parameters in the theory of
parametric definability.

We leave elaborating the details of this parametric direction to the interested
reader.

¢

2.5 An extension of Beth’s theorem. Connections between
the various definability notions.

Many-sorted definability theory with new sorts (i.e. the notion of implicit and ex-
plicit definition) is a generalization of one-sorted definability theory (without new
elements) discussed in traditional logic books. This observation leads to several nat-
ural questions which we discuss here only tangentially. One of these is the question
whether Beth’s theorem (about the equivalence of the two notions of definability)
generalizes to our present case.

THEOREM 2.5.1 Assume K = Mod(Th(K)) is a reduct of K+ such that K+ has
only finitely many new sorts. Assume that the language of K+ is countable, and that
K has a sort with more than one element.64 Then (i) and (ii) below are equivalent.

(i) K+ is implicitly definable over K without taking reducts.

(ii) K+ is a definitionally equivalent expansion of K.

64I.e. if U1, . . . , Un are the sorts of K, then K |= |U1| > 1 ∨ . . . ∨ |Un| > 1.
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The proof uses Gaifman’s theorem (cf. Hodges [11, Thm.12.5.8, p.645]), which is
about one-sorted structures, together with ideas from Pillay & Shelah [15], and can
be found in Andréka-Madarász-Németi [2].

COROLLARY 2.5.2 (Beth’s theorem generalized to defining new sorts)
Assume K = Mod(Th(K)) is a reduct of K+ such that K+ has only finitely many
new sorts. Assume that the language of K+ is countable, and that K has a sort with
more than one element. Then (i) and (ii) below are equivalent.

(i) K+ is implicitly definable over K.

(ii) K+ is explicitly definable over K.

QUESTION 2.5.3 Can Theorem 2.5.1 and Corollary 2.5.2 above be generalized
for the case when infinitely many new sorts Unew

i (i ∈ I) are allowed? (First one
has to generalize the definition of explicit definability. This can be done easily, e.g.
we may allow iteration of steps (1), (2.1), (2.2) along an infinite ordinal, taking
“unions” of ascending chains of expansions in the limit steps.) ¢

On the above question: If there are only finitely many old sorts (i.e. in K), then
the answer is affirmative. The question is interesting when there are infinitely many
old sorts as well as infinitely many new ones.

Connections between the various notions of definability

Figure 5 below shows the connections between the various notions introduced in
this sub-section. It also indicates the above outlined connections with some notions
used in the literature (relative categoricity, coordinatisability). The connections
indicated are fairly easy to show, except for the following proposition (and, of course
where Theorem 2.5.1 and Corollary 2.5.2 are indicated).

PROPOSITION 2.5.4 (Hodges [11]) Assume the hypotheses of Theorem 2.5.1
(which are the same as the hypotheses used in Figure 5). Then “K+ is implicitly
definable over K up to isomorphism” does not imply “K+ is implicitly definable over
K”.

Proof. A 6-element counterexample proving this is given in Hodges [11, Example
2 on p.625]. There two structures are defined, A and B, with A a reduct of B. B
is implicitly definable up to isomorphism over A (this follows from the fact that B
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implicitly definable
without taking reducts

(rigidly relatively categorical)

implicitly definable

implicitly definable
up to isomorphism

(relatively categorical)

Prop.2.5.4

Cor.2.5.2

Thm.2.5.1

rigidly explicitly
definable

(coordinatised)

explicitly definable
(coordinatisable)

explicitly definable
without taking reducts

Figure 5: Connections between the various notions of definability. We assume that
K = Mod(Th(K)) is a reduct of K+ such that K+ has only finitely many new sorts.
We also assume that the language of K+ is countable, and that K has a sort with
more than one element. On the figure we write “implicitly definable without taking
reducts” for “K+ is implicitly definable over K without taking reducts”, and simi-
larly for the other notions. For the implication “implicitly definable” to “implicitly
definable up to isomorphisms” we need the extra assumption K+ = Mod(Th(K+)).
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is finite). At the same time, B is not definable implicitly over A, because A has
an automorphism α of order 2 (i.e. α ◦ α = IdA) which cannot be extended to an
automorphism β of B of order 2. Indeed, if B was implicitly definable over A, then
an expansion B+ of B would be implicitly definable over A without taking reducts.
Hence the automorphism α would extend to an automorphism β of B+. Since the
identity of A extends to a unique automorphism of B+, then β ◦ β = IdB+ should
hold. But then β ↾ B would be an automorphism of B of order 2 and extending α.
(Cf. Thm.12.5.7 in [11, p.644].) Since A and B are finite structures, we can take
K = I{A} and K+ = I{B}, and then the hypotheses of Proposition 2.5.4 hold for K

and K+. This finishes the proof.

3 Definability in one-sorted first-order logic al-

lowing to enlarge the universes of models

We use the notation and definitions in Hodges [11]. Throughout we assume that
L and L+ are first-order languages without function symbols (but possibly with
constants) such that L ⊆ L+. One of the symbols in L+ is a unary relation symbol
P . T usually denotes a theory in the language L+, we do not assume that T is
complete. We usually denote models of T with B. If B is a model of T , then BP

denotes the reduct of B to the language L restricted to the interpretation of P in B,
i.e. the universe of BP is PB and the interpretations of the symbols of L in BP are
those in B restricted to PB. For ψ ∈ L+, ψP denotes the formula ψ relativised to
P , further, the notation ψφ, is meaningful for any formula φ. ϕA = {ā : A |= ϕ(ā)}
denotes the relation defined by ϕ in A. Thus ϕA is an n-ary relation on A if ϕ has n
free variables. We also use some notation borrowed from [1, §6.2], e.g. B ↾ L, L(A),
V oc(L), V oc(A).

3.1 Explicitly defining a set disjoint from the universe

Let A be a model. We say that a formula ϕ(x̄, ȳ) defines an equivalence relation
in A if A |= [(ϕ(x̄, ȳ) ∧ ϕ(z̄, ȳ)) → (ϕ(x̄, x̄) ∧ ϕ(ȳ, x̄) ∧ ϕ(x̄, z̄))]. (We assume, of
course, that the length of the seqeunces x̄ and ȳ of variables is the same.) This is
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the same as saying that ϕA is an equivalence relation on {ā : 〈ā, ā〉 ∈ ϕA}. In the
following we will write ϕ(ā, ā) in place of 〈ā, ā〉 ∈ ϕA.

If R is an equivalence relation on U , then U/R
def
= {u/R : u ∈ U} where u/R

def
=

{v ∈ U : 〈u, v〉 ∈ R}.

Definition 3.1.1 (definable extension of a model) Let A be a model and as-
sume that ϕ(x̄, ȳ) ∈ L(A) defines an equivalence relation in A. For simplicity,
assume first A ∩ P(nA) = ∅ where n is the length of the sequence x̄ of variables.

We define a new model A(ϕ) as follows. Let

U
def
= {ā : ϕ(ā, ā)}/ϕA, and

ε
def
= {〈a1, . . . , an, ā/ϕA〉 : ϕ(ā, ā)}.

The universe of A(ϕ) will be A ∪ U , the language of A(ϕ) will be that of A

expanded with a new n + 1-ary relation symbol, say E, which will denote ε in A(ϕ),
and the old relation symbols will denote in A(ϕ) the same what they denoted in A.
Thus

A(ϕ)
def
= 〈A ∪ U, ε,RA〉R∈V oc(A).

Intuitively, A(ϕ) is the model A such that we enlarged the universe with U and
we added the relation ε to fix the connection between U and A. Note that U is
disjoint from A by our assumption.

We call A(ϕ) the extension of A with new elements defined by ϕ.

We want to use this notion up to isomorphism. Therefore, instead of requiring
A ∩ P(nA) = ∅, we define the universe of A(ϕ) to be the disjoint union A

.
∪ U ,

which we define to be A∪ (U rA)∪ (U ∩A)×{A}. We then modify ε accordingly.

We say that B is a definable extension of A (with the new elements defined by
ϕ) if B is isomorphic to A(ϕ) via an isomorphism that is the identity on A.

¢

The relation ε is basically the “element-of” relation “{〈ā, ā/ϕA〉 : ϕ(ā, ā)}”. ε is
the relation that tells us the connection between U and A. Looking at ε in another
way, ε(x̄, z) means that z = x̄/ϕA. Thus ε “gives names” to the elements of U . So
in some sense ε is the “definition” of U .

Recall that we say that B is an extension of A if A is a submodel of B, and we
say that B is an expansion of A if A is a reduct of B. Thus we get an extension by
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adding new elements to A, while we get an expansion by adding new relations to A.
Thus, strictly speaking, A(ϕ) is an expansion of an extension of A.

Examples If we choose ϕ to be x = x ∧ y = y, then U = {{〈a, b〉} : a, b ∈ A} and
ε = {〈a, b, {〈a, b〉}〉 : a, b ∈ A}. Thus this case is adding A × A together with the
projection functions to A, basically. If we choose n = 1, then U = {{a} : a ∈ ϕA},
and ε = {〈a, {a}〉 : a ∈ ϕA}. So in this case defining U is essentially adding a
disjoint copy of a definable subset of A to A. To see the use of factoring, choose
e.g. ϕ(x1, x2, y1, y2) to be x1 = y1 ∧ (x1 = x2 ↔ y1 = y2). Then the blocks of ϕA

are {〈a, a〉} and {〈a, b〉 : b ∈ A, b 6= a} = {a} × (A r {a}) for a ∈ A. Thus the new
model we get by using ϕ is adding two copies of A to A, see Figure ??.

Figure example-fig.

In fact, by using the above features together, we can define an arbitrarily large
finite set U in any model A which has at least two elements. The idea is the following.
Assume we want to add four new elements to A. Let ϕ(x1, x2, x3, y1, y2, y3) be the
following formula:

∧

{xi = xj ↔ yi = yj : 1 ≤ i, j ≤ 3} ∧
∨

{xi = xj : 1 ≤ i, j ≤ 3}.

Then ϕA is an equivalence relation on 3A whenever |A| ≥ 2 with the following four

equivalence classes: u1
def
= {〈a, a, a〉 : a ∈ A}, u2

def
= {〈a, a, b〉 : a, b ∈ A, a 6= b},

u3
def
= {〈a, b, a〉 : a, b ∈ A, a 6= b}, u4

def
= {〈b, a, a〉 : a, b ∈ A, a 6= b}. Then ε(a, a, a, u)

implies u = u1, ε(a, a, b, u) ∧ a 6= b implies u = u2 etc. See Figure ??. The formula
ε tells us the way the elements of U are coded up in A.

Figure coding-fig

We say that a relation R ⊆ nA is definable in A if there is a formula ϕ ∈ L(A)
such that R = ϕA.

74



Definition 3.1.2 (explicit definability)

(i) We say that B is explicitly definable over P if there is a formula ε ∈ L+ such
that (B ↾ L, εB) is a definable extension of BP , and every new relation of B

is definable in (B ↾ L, εB).

(ii) Assume that B is explicitly definable over P . Let ϕ ∈ L, ε ∈ L+ be such

that Be def
= (B ↾ L, εB) is isomorphic to BP (ϕ) via an isomorphism which is

identity on PB. Further, for every new relation symbol S of B let ϕS ∈ LE be
such that ϕS defines SB in Be. We say that an explicit definition of B over
P is the set of the following formulas:

∃x̄ε(x̄, y) ↔ ¬P (y)

(ε(x̄, y) ∧ ε(x̄, z)) → y = z

∃y(ε(x̄, y) ∧ ε(z̄, y)) ↔ ϕP (x̄, z̄)

∀x̄∀z(E(x̄, z) ↔ ε(x̄, z)) → [S(y1, . . . , ym) ↔ ϕS(y1, . . . , ym)], for all new
relation symbol S.

(iii) We say that T is explicitly definable over P if every model B of T is explicitly
definable over P , and with a uniform explicit definition. I.e. T is explicitly
definable over P if there is an explicit definition which defines B over BP for
every model B of T .

¢

Definition 3.1.3 (Explicit definability in P )

(i) We say that B is explicitly definable in BP if (1)-(2) below hold.

(1) There are formulas ϕ ∈ L and ε ∈ L+ such that the following formulas
are valid in B:

∃x̄ε(x̄, y) ↔ ¬P (y)

(ε(x̄, y) ∧ ε(x̄, z)) → y = z

∃y(ε(x̄, y) ∧ ε(z̄, y)) ↔ ϕP (x̄, z̄)

Intuitively, ε is an interpretation of the new elements as “sets of n-tuples”
of old elements. See Figure ??.
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(2) Every relation S in L+ is defined by old relation symbols with the help
of ε, i.e., let S be an n-ary relation symbol in L+, and let i1, . . . , ik < n,
let H = {i1, . . . , ik}, n \ H = {j1, . . . , jℓ}. Then we require that there is
a formula ϕS ∈ L such that B models the following formula:

S(x̄) ∧
∧

i∈H P (xi) ∧
∧

j /∈H ¬P (xj) ↔

∃ȳ1, . . . , ȳℓ(ε(ȳ1, xj1) ∧ . . . ∧ ε(ȳℓ, xjℓ
) ∧ ϕP

S (xi1 , . . . , xik , ȳ1, . . . , ȳℓ).

We say that the collection ∆ of displayed formulas in (1) and (2) above
is an explicit definition of B in BP .

(ii) We say that T is explicitly definable in P if every model B of T is explicitly
definable in BP such that there is a uniform explicit definition for all models
of T .

¢

We note that the above notion of explicit definability is a very concrete one. If
we choose ϕ such that ϕA = ∅ (this corresponds to the case that we did not define
new elements, or that P = B), then we get back usual explicit definability. If B is

explicitly definable in BP with ϕ and ε as in Definition 3.1.3 above, then B r BP is
explicitly definable in BP by ϕ in the sense of the definition given in the Motivation
part, up to isomorphism, and ε is the same as the one in the Motivation part. Thus
ε “gives names” to the new elements of the universe.

We will show, in Theorem 3.2.3 below, that this explicit definability is the same
as “coordinatised” in Hodges [11]. But first we define some equivalent forms of this
notion.

3.2 Equivalent forms of explicit definability.

Recall from Hodges [11, p.640] that T is said to have the (uniform) reduction property
over P if to any formula ψ(x̄) ∈ L+ there is a formula ϕ(x̄) ∈ L such that T |=
∀x̄(P (x1) ∧ . . . ∧ P (xn) → [ψ(x̄) ↔ ϕP (x̄)]).

Definition 3.2.1 (T has the total reduction property over P )
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We say that T has the total (uniform) reduction property over P if there is a for-
mula ε ∈ L+ such that T |= ∀y(¬P (y) → ∃x̄ε(x̄, y)) and for every ψ(x̄) ∈ L+ and for
any H ⊆ {x1, . . . , xn}, if H = {xi1 , . . . , xik} and {x1, . . . , xn} \ H = {xj1 , . . . , xjℓ

},
then there is a ϕ(x̄) ∈ L such that

T |= (P (xi1) ∧ . . . ∧ P (xik) ∧ ¬P (xj1) ∧ . . . ∧ ¬P (xjℓ
)∧

ε(ȳ1, xj1) ∧ . . . ∧ ε(ȳℓ, xjℓ
)) −→ [ψ(x̄) ↔ ϕP (xi1 , . . . , xik , ȳ1, . . . , ȳℓ)].

In this case we say that ϕ is a reduction of ψ w.r.t. H. ¢

We note that “total reduction property” implies “reduction property” as defined
in Hodges [11]. Also it is easy to see that if T has the total reduction property, then
types over P are definable for T , and are isolated. (For the notions of types are
definable over T and types are isolated see Hodges [11].)

Recall from Hodges [11, p.212] that an interpretation of B in A is a tuple
〈δ, f, ϕS : S ∈ At+〉 where At+ denotes the set of atomic formulas of the language
of B, δ and ϕS are formulas in the language of A, f maps δA onto B such that for
all atomic formula S(x1, . . . , xm) of B

B |= S(f(ā1), . . . , f(ām)) ⇔ A |= ϕS(ā1, . . . , ām).

Here f is called the coordinate map.

Definition 3.2.2 (T is interpretable in P )

(i) We say that B is interpretable in P if there is an interpretation of B in BP such
that the coordinate map of the interpretation is definable in B and moreover,
the restriction of the coordinate map to BP is definable in BP . In more detail,
this means that there is an interpretation 〈δ(x1, . . . , xn), f, ϕS : S ∈ At+〉 of B

in A
def
= BP such that f : δA −→ B is definable by a formula π(x1, . . . , xn, z) ∈

L+ and f ∩ n+1A is definable by a formula ρ(x1, . . . , xn, z) ∈ L. This means
that π ∈ L+ and δ, ρ, ϕS ∈ L are such that the following formulas are valid in
B:

δP (x̄) ↔ ∃zπ(x̄, z) (the domain of πB is δA)

π(x̄, z) ∧ π(x̄, w) → z = w (πB is a function)

∀z∃x̄π(x̄, z) (πB is onto B)

ρP (x̄, z) ↔ (π(x̄, z) ∧ P (z)) (ρ defines the restriction of πB to A)
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∃y1 . . . ym(S(y1, . . . , ym) ∧
∧

i π(x̄i, yi)) ↔ ϕP
S (x̄1, . . . , x̄m).

(ii) We say that T is interpretable in P if every model B of T is interpretable in
P and these interpretations are the same. I.e. T is interpretable in P if there
are δ, π, ρ, ϕS as above such that the set of displayed formulas is valid in T . In
this case we say that 〈δ, π, ρ, ϕS : S ∈ At+〉 is an interpretation of T in P .

¢

Recall from Hodges [11, p.627,644], or from Hodges, Hodkinson, Macpherson [12],
that B is said to be coordinatised over P if Th(B) has the reduction property and
every element of B\BP is in the definable closure of BP , i.e. for all b ∈ B\BP there is
a formula ψ(x̄, z) ∈ L+ such that B |= ∃x̄(P (x1)∧. . .∧P (xn)∧ψ(x̄, b)∧∀z(ψ(x̄, z) →
z = b)). A theory T is said to be coordinatised over P if T has the uniform reduction
property and every model B of T is coordinatised over P .

The next theorem says that our notion of explicit definability coincides with the
notion of “coordinatised” which further coincides with our natural strengthenings
of the notions “interpretable” and “reduced”.

THEOREM 3.2.3 The following statements (i)-(iii) are equivalent and they are
implied by (iv). If we assume that T |= |P | ≥ 2, i.e. T |= ∃y, z(P (y)∧P (z)∧y 6= z),
then all four statements (i)-(iv) are equivalent.

(i) T is explicitly definable in P .

(ii) T is coordinatised over P .

(iii) T has the total reduction property.

(iv) T is interpretable in P .

Proof.

Proof of (ii) ⇒ (i): Assume that T is coordinatised over P . Then in each model of T
each element not in P is “generated” by some formula. (We say that x is generated
by γ if there is ȳ ∈ nP such that γ(ȳ, x) and ∀z(γ(ȳ, z) → z = x).) First we show
that there is a finite set Γ of formulas such that in each model of T each element
not in P is “generated” by one of the formulas in Γ, i.e.:65

65In this proof we often write parts of formulas informally, e.g. we write x /∈ P in place ¬P (x)
and we write ȳ ∈ nP in place of P (y1) ∧ . . . ∧ P (yn) where ȳ = 〈y1, . . . , yn〉.
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(1) T |= ∀x /∈ P∃ȳ ∈ nP (
∨
{γ(ȳ, x) ∧ ∀z(γ(ȳ, z) → z = x) : γ ∈ Γ}).

Indeed, assume that there is no such Γ. Then for all finite Γ ⊆ L+ there are
BΓ |= T and bΓ ∈ BΓ such that

BΓ |= ∀ȳ ∈ nP (
∧
{¬γ(ȳ, bΓ) ∨ (∃x 6= bΓ)γ(ȳ, x) : γ ∈ Γ}).

Let I be the set of all finite subsets of L+, let F be an ultrafilter on I such that

{Γ ∈ I : ϕ ∈ Γ} ∈ F for all ϕ ∈ L+ and let B
def
= PBΓ/F , b

def
= PbΓ/F .Then B |= T

and b ∈ B. Let ϕ ∈ L+ and X = {Γ ∈ I : ϕ ∈ Γ} ∈ F . Then for all Γ ∈ X

BΓ |= ∀ȳ ∈ nP (¬ϕ(ȳ, bΓ) ∨ (∃x 6= bΓ)γ(ȳ, x),

thus this same formula is true in B for b in place of bΓ. This contradicts B |= T ,
b /∈ PB and that b is in the definable closure of PB. By this, (1) has been proved.

Let Γ be a finite set of formulas that satisfies (1). Next we show that this
Γ can be coded into one formula ε that generates each element not in P . Let

Γ
def
= {γ1, . . . , γk}. We may assume that the free variables of each element of Γ

are x1, . . . , xn. Let x̄1, . . . , x̄k be sequences of variables of length n such that the
sequence x̄1 . . . x̄k is repetition-free. Define for all 1 ≤ i ≤ k

δi(x̄, y)
def
= γi(x̄, y) ∧ ∀z(γi(x̄, z) → z = y),

εi(x̄1, . . . , x̄k, y)
def
= ¬δ1(x̄1, y) ∧ . . . ∧ ¬δi−1(x̄i−1, y) ∧ δi(x̄i, y) ∧ x̄i = . . . = x̄k,

ε(x̄1, . . . , x̄k, y)
def
=

∨
{εi(x̄1, . . . , x̄k, y) : 1 ≤ i ≤ k} ∧ x̄1, . . . , x̄k ∈ nP ∧ ¬P (y).

Now we show that ε as defined above satisfies the first two formulas in Definition
3.1.3(i)(1). Let x̄ denote the sequence x̄1, . . . , x̄k of variables.

Proof of ε(x̄, y)∧ ε(x̄, z) → y = z: If the antecedent of the formula holds, then there
are i, j such that εi(x̄, y) ∧ εj(x̄, y). If i = j then δi(x̄i, y) ∧ δi(x̄i, z) holds, which
implies y = z. Assume now i 6= j, say i < j. Then εi(x̄, y) implies δi(x̄i, y)∧ x̄i = x̄j

and εj(x̄, y) implies ¬δi(x̄j, y), a contradiction.

Proof of ∃x̄ε(x̄, y) ↔ ¬P (y): The proof of ∃x̄(ε(x̄, y) → ¬P (y) follows immediately
from the definition of ε. To show ¬P (y) → ∃x̄ε(x̄, y), let y /∈ P . By (1) then there
are i and x̄i ∈

nP such that γi(x̄i, y) ∧ ∀(γi(x̄i, z) → z − y), i.e. δi(x̄i, y). Let i be
the smallest such. Then ε(x̄i, . . . , x̄i, y) holds, and so ε(x̄i, . . . , x̄i, y) also holds.
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We have shown that ε satisfies the first two formulas required in the defini-
tion of explicit definability. Since T is coordinatised over P , T satisfies the reduc-
tion property. By the reduction property there is ϕ ∈ L such that T |= ∀x̄, z̄ ∈
mP [∃y(ε(x̄, y) ∧ ε(z̄, y)) ↔ ϕ(x̄, z̄)]. Thus the third formula in Def. 3.1.3(i)(1) also
holds.

To show that (i)(2) of Def.3.1.3 is satisfied, let S, H = {i1, . . . , ik} and n r H =
{j1, . . . , jℓ} be as in (i)(2) of Def.3.1.3. For simplifying the notation, let us assume
that x̄ = 〈xi, xj〉 and H = {i}. By the reduction property there is ϕS ∈ L such that
T |= (∃xj)[S(xi, xj)∧ P (xi)∧¬P (xj)∧ ε(ȳj, xj)] ↔ ϕP

S (xi, ȳj). By the properties of
ε we then have that

S(xi, xj) ∧ P (xi) ∧ ¬P (xj) is equivalent to

(∃ȳj)[S(xi, xj) ∧ P (xi) ∧ ¬P (xj) ∧ ε(ȳj, xj)], which further is equivalent to

(∃ȳj)[ε(ȳj, xj)∧ (∃xj)(S(xi, xj)∧P (xi)∧¬P (xj)∧ ε(ȳj, xj)], which is equivalent to

(∃ȳj)[ε(ȳj, xj) ∧ ϕP
S (xi, ȳj)].

By this, (ii) ⇒ (i) has been proved.

Proof of (i) ⇒ (iii): The proof goes by induction. Assume that T is explicitly de-
finable over P , with formulas ε, δ, ϕS as in Def.3.1.3. Then the following are not
difficult to check:

For a reduction of S(x̄) we can take ∃w̄1 . . . w̄ℓ(ϕ(w̄1, ȳ1) ∧ . . . ∧ ϕ(w̄ℓ, ȳℓ) ∧
ϕS(xi1 . . . xik , w̄1 . . . w̄ℓ), see Def.3.2.1. This is so because ∃z(ε(ȳ, z) ∧ ε(w̄, z)) ↔
ϕ(w̄, ȳ).

For a reduction of x = z ∧ ¬P (x) we can take ϕ(ȳ, w̄), and for a reduction of
x = z ∧ P (x) we can take x = z.

By the definition of a reduction, it is immediate that if ϕ, ψ are reductions of η and
δ respectively, then ϕ ∧ ψ and ¬ϕ are reductions of η ∧ δ and ¬η respectively.

Assume that ψ(x, x̄) has a reduction. To give a reduction for ∃xψ(x, x̄) we will use
that the latter formula is equivalent to ∃x(P (x) ∧ ψ(x, x̄) ∨ ∃x(¬P (x) ∧ ψ(x, x̄)).
For notational convenience, let α(x̄ȳ) denote P (xi1)∧ . . .∧P (xin)∧¬P (xj1)∧ . . .∧
¬P (xjℓ

)∧ε(ȳ1, xi1)∧. . .∧ε(ȳℓ, xjℓ
). By our induction hypothesis, there are ψ1, ψ2 ∈ L

such that

α(x̄, ȳ) ∧ P (x) → [ψ(x, x̄) ↔ ψ1(x, x̄, ȳ)] and
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α(x, ȳ) ∧ ¬P (x) ∧ ε(w̄, x) → [ψ(x, x̄) ↔ ψ2(w̄x̄ȳ)].

Using the above and properties of ε we get

α(x̄ȳ) → [(∃x)ψ(x, x̄) ↔ ∃x(P (x) ∧ ψ1(x, x̄, ȳ)) ∨ ∃w̄(ψ2(w̄, x̄, w̄))].

Thus, for a reduction of ∃xψ(x, x̄) we can take ∃xψ1(x, x̄, ȳ) ∨ ∃w̄ψ2(w̄, x̄, ȳ).

By the above, (i) ⇒ (iii) has been proved.

Proof of (iii) ⇒ (ii): Assume that T has the total reduction property over P with
ε ∈ L+. Then T has the reduction property. We are going to show that every

element is in the definable closure of P . Let η
def
= ε(x̄, y) ∧ ¬P (y).

Let ϕ= be the reduction of the formula y = y. Then ¬P (y)∧ε(x̄, y) → [y = y ↔
ϕ=P (x̄)], i.e. η(x̄, y) → (P (x1) ∧ . . . ∧ P (xn)).

Let ϕ 6= be the reduction of the formula y 6= z. Then ¬P (y) ∧ ¬P (z) ∧ ε(x̄, y) ∧
ε(w̄, z) → [y 6= z ↔ ϕ 6=P (x̄, w̄)]. Then ¬P (y) ∧ ε(x̄, y) → [y 6= y ↔ ϕ 6=P (x̄, x̄)], i.e.
η(x̄, y) → ¬ϕ 6=P (x̄, x̄).

Now, η(x̄, y)∧ η(x̄, z) → [y 6= z ↔ ϕ 6=P (x̄, x̄)], so η(x̄, y)∧ η(x̄, z) → y = z. Thus
η(x̄, y) defines a function whose domain is in P . By T |= ∀y(¬P (y) → ∃x̄ε(x̄, y))
then we obtain that every y /∈ P is defined over P , namely uniformly by the formula
η(x̄, y). (iii) ⇒ (ii) has been proved.

Proof of (iii) ⇒ (iv): Here we need T |= |P | ≥ 2. Assume that T has the total

reduction property with ε(x1, . . . , xn) ∈ L+. Let x̄
def
= 〈x1, . . . , xn〉. Define

π(x̄, y, z)
def
= P (x1, ) ∧ . . . ∧ P (xn) ∧ P (y) ∧ (x1 = y → ε(x̄, z)) ∧ (x1 6= y → z = y).

It is not difficult to check that π defines a surjective function (n+1)PB −→ B
in any model B of T . To check that π defines a function, we use the part of the
previous proof of (iii) ⇒ (i) which shows that ε(x̄, z)∧¬P (z) defines a function. We
use the condition |P | ≥ 2 when showing that this function is surjective.

Let δ(x̄, y) and ρ(x̄, y, z) be reductions of the formulas ∃zπ(x̄, y, z) and π(x̄, y, z)∧
P (z) respectively. For S(y1, . . . , ym) ∈ At+ let ϕS be a reduction of the formula
∃y1 . . . ym(S(y1, . . . , y)∧π(x̄1, y1)∧ . . .∧π(x̄m, ym) where x̄i are sequences of distinct
variables of length n + 1.

It is not difficult to check that 〈δ, π, ρ, ϕS : S ∈ At+〉 as defined above is an
interpretation of T in P .
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Proof of (iv) ⇒ (i): Assume that T is interpretable in P , let 〈δ, π, ρ, ϕS : S ∈ At+〉
be an interpretation of T in P . Let ϕP ∈ L and ϕ= ∈ L be such that ϕP

P (x̄) ↔
(∃y(π(x̄, y) ∧ P (y)) and ϕP

=(x̄, z̄) ↔ (∃y(π(x̄, y) ∧ π(z̄, y)) are valid in T . Such ϕP

and ϕ= exist because of our assumption on T . Let us define

ε(x̄, y)
def
= π(x̄, y) ∧ ¬ϕP

P (x̄),

ϕ(x̄, z̄)
def
= ϕP

=(x̄, z̄).

Let now S and H be as in (i)(2) of Definition 3.1.3. Define

ψS
def
= ∃w̄1 . . . w̄k(

∧

i ρ(w̄i, xi) ∧ ϕS(w̄1, . . . , w̄k, ȳ1, . . . , ȳk)).

It is not difficult to check that ε, ϕ, ψS as defined above gives an explicit definition
of T in P .

Theorem 3.2.3 has been proved.

3.3 Equivalence of implicit and explicit definability.

Recall from Hodges [11, p.645] that a theory T is called rigidly relatively categorical
over P if whenever B and B′ are models of T such that BP = B′

P , then there is a
unique isomorphism f : B −→ B′ which is the identity on BP . In the literature,
usually “relatively categorical” is considered as the notion corresponding to implicit
definability (cf. e.g. [11]). In [1] we call a theory T implicitly definable over P if T
is rigidly relatively categorical over P .

We show that the above notions all coincide with “rigidly relatively categorical”
if the language is countable. This is proved for complete theories T under assuming
that the P -part of the models of T are infinite as Gaifman’s theorem in Hodges [11,
Thm.12.5.8]. We give a proof here for the general case that we will need (i.e. we do
not assume that T is complete and that it has infinite models).

THEOREM 3.3.1 (Gaifman’s theorem, cf. [11, Thm.12.5.8, p.645]) As-
sume that L is countable. Then the following are equivalent.
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(i) T is rigidly relatively categorical over P .

(ii) T is coordinatised over P .

To prove Theorem 3.3.1, we will use the following theorems.

PROPOSITION 3.3.2 If T is explicitly definable in P , then T is rigidly relatively
categorical over P .

The proof of Prop.3.3.2 is straightforward by using the definition of T being explicitly
definable in P . We omit it.

The theorem below is from Pillay and Shelah [15] and the proof is basically
from Hodges [11, Lemma 12.5.1, p.641]. In both cases the theorem was stated
for complete theories T only. (The difference in the proof is that we eliminated
the use of completeness of T and used ultraproducts instead of compactness and
ω-homogeneous elementary extensions).

THEOREM 3.3.3 (Pillay and Shelah [15]) Condition (i) implies (ii) below.

(i) For any model B of T , every automorphism of BP extends to an automorphism
of B.

(ii) T has the uniform reduction property.

Proof. If x̄ is a sequence of variables, then L(x̄) denotes the set of those formulas
of L in which the free variables are among the members of x̄.

Suppose that (ii) does not hold, let ϕ(x̄) ∈ L+ be such that for all ψ ∈ L(x̄)

(1) T 6|= ∀x̄ ∈ P (ϕ(x̄) ↔ ψP (x̄)).

For any finite Γ ⊆ L(x̄) define

Φ(Γ)
def
= ∀x̄ȳ ∈ P

( ∧

{γP (x̄) ↔ γP (ȳ) : γ ∈ Γ} ↔ (ϕ(x̄) ↔ ϕ(ȳ))
)

.

By (1) we have that T 6|= Φ(Γ) for all finite Γ ⊆ L(x̄). (Otherwise, it would be easy
to put together a formula ψ from Γ that would be a “uniform reduction” of ϕ.)
T 6|= Φ(Γ) means that there are B(Γ) |= T and x̄Γ, ȳΓ ∈ nB(Γ) such that

(2) B(Γ) |= γP (x̄Γ) ↔ γP (ȳΓ) for all γ ∈ Γ and B(Γ) |= ϕ(x̄Γ) ∧ ¬ϕ(ȳΓ).

We will put together from these B(Γ), x̄Γ, ȳΓ’s a model B |= T together with
x̄, ȳ ∈ nB such that
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(3) B |= γP (x̄) ↔ γP (ȳ) for all γ ∈ L(x̄) and B |= ϕ(x̄) ∧ ¬ϕ(ȳ).

Indeed, let I be the set of all finite subsets of L(x̄). Let F be an ultrafilter on

I such that {Γ ∈ I : ψ ∈ Γ} ∈ F for all ψ ∈ L(x̄). Then B
def
= PΓ∈IB(Γ)/F ,

x̄
def
= PΓ∈I x̄

Γ/F , and ȳ
def
= PΓ∈I ȳ

Γ/F will satisfy (3) by the Los-lemma.

Let L′ be the language we get from L by adding n new constants c1, . . . , cn. Then
by (3) we have that the model (BP , x̄) is elementarily equivalent with the model
(BP , ȳ). By the Keisler-Shelah theorem, then there is an ultrafilter G over some set
J such that

(4) J(BP , x̄)/G ∼= J(BP , ȳ)/G.

Let B′ def
= JB/G, x̄′ def

= J x̄/G, and ȳ′ def
= J ȳ/G. Then

(5) B′
P = JBP /G and B′ |= ϕ(x̄′) ∧ ¬ϕ(ȳ′),

by the Los-lemma. By (4) we have an automorphism of B′
P that takes x̄′ to ȳ′. This

automorphism cannot be extended to an automorphism of B′ by (5).

We note that if T is relatively categorical over P , then T satisfies (i) of Theorem
3.3.3. Thus any relatively categorical theory has the uniform reduction property.

Next we state (an analogon of) Gaifman’s theorem for finite models.

THEOREM 3.3.4 Let B be finite. Then (a)-(e) below are equivalent.

(a) Th(B) is rigidly relatively categorical over P .

(b) Every automorphism of BP extends to an automorphism of B in a unique way.

(c) B is coordinatised over P .

(d) B is interpretable in BP .

(e) B is explicitly definable in BP .

Proof: We will only sketch the proofs, by referring to relevant parts of Hodges [11].
To prove Thm.3.3.1 we will only need (a) ⇒ (c). For the proof of (a) ⇒ (b) see e.g.

p.638 in [11]. Let A
def
= BP . Proof of (b) ⇒ (c): Let BA denote the model we get

from B by making the elements of A constants. Then, by our assumption (b), BA

is rigid, i.e. it has no nontrivial automorphism. Therefore every element of BA is
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definable in the first-order language of BA. This means that every element of B is
first-order definable over A, using the notation of [11]: B is in the closure of A. The
reduction property holds by Theorem 3.3.3. (Here is a short elementary proof for
the finite case: Let ϕ ∈ L(BA) be an arbitrary formula with n free variables. Let
≡n denote the equivalence relation on nA defined by ā ≡n b̄ iff ā and b̄ cannot be
distinguished by formulas in A. Each equivalence block of this equivalence relation
≡n is definable in A. (Why?) If ϕ ∈ L(B) “cuts” no block of ≡n, then ϕ is reducible
to ÃL(A). Assume that ϕ cuts a block of ≡n, i.e. ā ≡n b̄ but ϕ(ā) while ¬ϕ(b̄) for some
ā, b̄. Then there is an automorphism of A which takes ā to b̄. This automorphism
cannot extend to B.) Proof of (c) ⇒ (d): Since B is finite, B is finitely coordinatised
over A, and then see p.647 in [11] (cf. also Exercises 13, 14 in [11]). (c) ⇔ (e) is
stated in Thm.3.2.3. The proofs of (e) ⇒ (a) and (d) ⇒ (a) are straightforward by
using the definitions. This finishes the proof of Theorem 3.3.4.

We are ready to prove Theorem 3.3.1.
Proof of Theorem 3.3.1: Assume that T is coordinatised over P . Then T is
explicitly definable in P by Theorem 3.2.3, and then T is rigidly relatively categorical
over P by Proposition 3.3.2. This proves (ii) ⇒ (i).

To prove (i) ⇒ (ii), assume that T is rigidly relatively categorical over P , we
want to prove that T is coordinatised over P . Now T has the uniform reduction
property by Theorem 3.3.3 and the remark following it. Thus it is enough to prove
that for every model B of T , B is coordinatised over BP . If T is categorical and BP

is infinite, then this holds by Theorem 12.5.8 (p.645) in Hodges [11]. (Here is where
we have to use that the language of T is countable.) Assume that T is categorical
and BP is finite. Then B is finite because T is relatively categorical: if B would be
infinite, then BP would have two extensions in T of different cardinalities, which
contradicts our assumption (i). Thus (ii) holds if T is categorical. Assume now that
T is arbitrary and let B be a model of T . Then the theory Th(B) is complete, and
it satisfies (i) because Th(B) ⊇ T . Thus B is coordinatised over BP since we have
already seen that Thm.3.3.1 holds for complete theories. This finishes the proof of
Theorem 3.3.1.
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3.4 Connections between the one-sorted and the many-
sorted notions

For investigations related to definability of new sorts as discussed in the present
section (§2 herein) we refer to Hodges [11] Chapter 12, and within that chapter to
§12.3 (pp.624-632), §12.5 (pp.638-652). E.g. p.638 last 3 lines – p.639 line 9 discusses
generalizability of Beth’s theorem, and similarly for p.645 line 6, p.649 lines 5-6.
(We would also like to point out Exercises 13, 14 on p.649 of [11].) We also refer to
Myers [14], Hodges-Hodkinson-Macpherson [12], Pillay-Shelah [15], Shelah [17]. In
passing we note that our subject matter (i.e. definability of new sorts) is related to
the directions in recent (one-sorted) model theory called “relative categoricity” or
“categoricity over a predicate”, and “theory of stability over a predicate”.

Below we outline some connections between our notions and the ones used in a
substantial part of the above quoted (one-sorted) literature. We will systematically
refer to Hodges [11].

Assume K+ = Mod(Th(K+)) and that K has finitely many sorts U0, . . . , Uk. Let
P = U0 ∪ . . .∪Uk be the union of these sorts regarded as a unary predicate. Then:

(1) “K+ is implicitly definable up to isomorphism over K” is equivalent with
“Th(K+) is relatively categorical over P”.

(2) “K+ is implicitly definable without taking reducts over K” is equivalent with
“Th(K+) is rigidly relatively categorical over P”.

(3) “K+ is explicitly definable over K” is equivalent with “Th(K+) is coordinatis-
able over P”.

(4) “K+ is a definitionally equivalent expansion of K” is equivalent with “Th(K+)
is coordinatised over P”.

In items (1)-(4) above, on the left hand side we have many-sorted notions, while
on the right-hand side we have one-sorted notions (like relative categoricity). So it
needs some explanation what we mean by claiming their equivalence. The answer
is the following: First we translate our many-sorted notions to one-sorted ones (by
treating the sorts as unary predicates of one-sorted logic) the usual, natural way, and
then we claim that the so translated version of our many-sorted notion is equivalent
with the other one-sorted notion quoted from Hodges [11]. E.g., the so elaborated
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version of item (1) looks like the following. “The one-sorted translation of (K+

is implicitly definable up to isomorphism over K)” is equivalent with “(the one-
sorted version of Th(K+)) is relatively categorical over P”. The point here is that
relative categoricity is defined only for one-sorted logic in Hodges [11]. Therefore,
to use it as a possible equivalent of (our many-sorted) “implicit definability up to
isomorphism”, first we have to translate everything to one-sorted logic, and then
make the comparison. Indeed, items (1)-(4) are understood this way.

To do the above in a precise way, first we define the one-sorted version of a many-
sorted expansion. This is a slight modification of the one used in the literature, and
the difference is that we use an extra unary relation P to denote the universe of the
reduct.

Definition 3.4.1 (One-sorted version of a many-sorted expansion) Let K+

be an expansion of K. We define the one-sorted version K+ of K+ as follows. The

vocabulary Voc of K+ consists of the relation symbols of K+ together with unary
relation symbols Ui for each sort Ui of K+, and another unary relation symbol P .
(We assume that P is a new symbol not occurring in VocK+.) For any many-sorted
model M of vocabulary VocK+ we define the one-sorted model M of vocabulary
Voc as follows.

• The universe of M is the union of all the sorts of M.

• The interpretations of the relation symbols of M is the same in M as in M.

• The interpretation of the unary relation symbol Ui in M is the sort Ui of M.

• The interpretation of P in M is the union of the old sorts, i.e. of the sorts of
K in M.

Finally, we define K+ def
= {M : M ∈ K+}. ¢

Remark 3.4.2 (Converting formulas) It is not difficult to see that there are

meaning-preserving translations between Fm(K+) and Fm(K+) in both ways.

(1) For all ϕ(x̄) ∈ Fm(K+) there is a ϕ(x̄) ∈ Fm(K+) such that for all M ∈ K+ and
sequence ā of elements of M of suitable sorts we have

M |= ϕ[ā] iff M |= ϕ[ā].

(2) For all ψ(x̄) ∈ Fm(K+) and sequence Ū of sorts (of the same length as x̄) there
is ϕ(ȳ) ∈ Fm(K+) such that for all M ∈ K+ and sequence ā of elements of M

of sorts Ū we have that

M |= ϕ[ā] iff M |= ψ[ā].
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The idea of the translation in (1) is to replace ∀xϕ with (∀x)[Ui(x) → ϕ] when
x is a variable of sort Ui. This translation can be found in almost all logic books,
see e.g. Monk [13], Enderton [8], or Barwise-Feferman [6]. For the translation in (2)
we use that we have only finitely many sorts, and the main idea is the following: we
replace the free variables with variables of the given sorts, we replace the universal
quantifiers so that we replace first the outmost ones and then we go inward and we
replace ∀xϕ(x) with ∀x1ϕ(x1)∧ . . .∧∀xnϕ(xn) where x1, . . . , xn are variables of sorts
U1, . . . , Un and U1, . . . , Un are all the sorts, and finally we replace all occurrences of
P (x) with U1(x) ∨ . . . ∨ Uk(x) where U1, . . . , Uk are all the old sorts, i.e. sorts of K.
We omit the details. ¢

Definition 3.4.3 For ϕ(x̄) ∈ Fm(K+) we denote by

ϕ(x̄) ∈ Fm(K+)

the formula described in (1) of Remark 3.4.2. We call the formula ϕ(ȳ) ∈ Fm(K+)

assigned to ψ(x̄) ∈ Fm(K+) and the sequence of sorts Ū the many-sorted version of
ψ(x̄) with sequence Ū of sorts . ¢

THEOREM 3.4.4 Assume that K+ is an axiomatizable expansion of K, and let K+

denote the one-sorted version of K+ as defined in Def.3.4.1. Then (i) below implies
(ii). If in addition K+ |= “one of the old sorts has more than one elements” than
(i) and (ii) are equivalent.

(i) K+ is interpreted in K by some Tr and codei (as in Thm.2.3.7(i)).

(ii) Th(K+) has the total reduction property over P .

Proof. Assume first (i), and let Tr, codei be the function and formulas interpreting
K+ in K. We may assume that the lengths of sequences x̄i in codei(x̄i, x) are the same

for all new sorts Ui of K+. Let ε(x̄, y)
def
=

∨
{codei(x̄, y) : Ui is a new sort of K+},

where codei(x̄, y) ∈ Fm(K+) is the one-sorted version of the formula codei(x̄i, y)
such that we use the same variables x̄, y for all i. Let ψ(x̄), H, {xi1 , . . . , xik} and
{xj1 , . . . , xjℓ

} be as in the definition of the total reduction property. For a sequence

Ū = 〈U1, . . . , Uℓ〉 of new sorts of K+ let ψ̂(Ū , ȳ) ∈ Fm(K+) be the many-sorted
version of ψ(x̄) and Ū as in (2) of Remark 3.4.2, and let ϕ be

∧

{U1(xj1) ∧ . . . ∧ Uℓ(xjℓ
) → Tr(ψ̂(Ū , ȳ)) : Ū is a sequence of new sorts of K+}.

Then the one-sorted version ϕ of ϕ (as in (1) of Remark 3.4.2) will be a reduction
of ψ w.r.t. H.
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To prove the other direction, assume now (ii), and let ε(x̄, y) ∈ Fm(K+) be the

“coding formula”, where x̄ is a sequence of variables of lengh k, say. Let T
def
=

Th(K+). The problem in translating ε(x̄, y) to many-sorted formulas codei is that
there may be no old sorts Ui1 , . . . , Uik such that T |= ε(x̄, y)∧Ui(y) → Ui1(x1)∧ . . .∧
Uik(xk). We will overcome this problem with increasing the length of x̄ and using
some coding. In doing this we will rely on the fact that there are only finite many
old sorts, each of them nonempty, and one of them has more than one elements.

Let U1, . . . , Un be the old sorts, i.e. sorts of K, and assume that T |=
∨
{|Ui| >

1 : 1 ≤ i ≤ n}. Assume x̄ = 〈x1, . . . , xk〉 and let Ū = 〈Ui1 , . . . , Uik〉 be a sequence of
old sorts. Then Ū(x̄) denotes the formula Ui1(x1) ∧ . . . ∧ Uik(xk). Let U denote the
set of all k-sequences of old sorts.

As a first step, we show that we may assume that ε(x̄, y) has the following
coherence property:

(*) If ε(x̄, y) and Ū(x̄), then for all z̄ such that ε(z̄, y) we have Ū(z̄).

To show this, let us make an (arbitrary) linear ordering ≤ on the k-tuples of old
sorts, i.e. on U . The idea coded in the formula below is that for each y we select the
smallest Ū such that ε(x̄, y) ∧ Ū(x̄), and then we keep in relation only those z̄’s for
which ε(z̄, y) ∧ Ū(z̄). Indeed, let ε′(x̄, y) denote the formula

ε(x̄, y) ∧
∧

{∀z̄[(ε(z̄, y) ∧ Ū(x̄)) →
∨

{Ū ′(z̄) : Ū ′ > Ū}] : Ū ∈ U}.

Then ε′(x̄, y) is also a good coding formula, and ε′(z̄, y) has property (*). So from
now we assume that ε itself has property (*).

To show the idea, assume first k = 1, i.e. x̄ = 〈x1〉. Let w̄ =
〈w1

1, w
1
2, w

2
1, w

2
2, . . . , w

n
1 , wn

2 〉 be a sequence of distinct variables. The coding will
be that codei(w̄, y) will be the many-sorted version of the formula “there is exactly
one ℓ such that wℓ

1 6= wℓ
2 and for this ℓ we have ε(wℓ

1, y)” and we assigne the sorts
to the free variables as Ui(y) and Uj(w

j
1) ∧ Uj(w

j
2) for all 1 ≤ j ≤ n. Formally let γ

denote the formula

Ui(y) ∧ U1(w
1
1) ∧ U1(w

1
2) ∧ . . . ∧ Un(wn

1 ) ∧ Un(wn
2 )∧

∨
{w1

1 = w1
2 ∧ . . .∧wℓ−1

1 = wℓ−1
2 ∧wℓ

1 6= wℓ
2∧wℓ+1

1 = wℓ+1
2 ∧ . . .∧wn

1 = wn
2 ∧ε(wℓ

1, y) :
1 ≤ ℓ ≤ n}.

We then define codei(w̄, y) to be the many-sorted version of γ. (Note that this is
defined since we assigned sorts to each free variables of γ.)

89



It is straightforward to adapt the above idea to the case when x̄ = 〈x1, . . . , xk〉
(with k arbitrary). We will do that now.

Let us define a linear ordering on the set U of k-tuples of old sorts, and let
Ū1 < Ū1 < . . . < ŪN be this ordering (where U = {Ū1, . . . , ŪN}). Let

w̄ = w̄1
1w̄

1
2 . . . w̄N

1 w̄N
2

be a sequence of k · N · 2 distinct variables where w̄j
i are sequences of variables, of

lenght k. For 1 ≤ j ≤ N let w̄j
1 = w̄j

2 denote the formula
∧
{w1ℓ = w2ℓ : 1 ≤ ℓ ≤ k}

where w̄j
i = 〈w1i, . . . , wki〉 (i = 1, 2). Let γ denote the formula

Ui(y) ∧ Ū1(w̄
1
1) ∧ Ū1(w̄

1
2) ∧ . . . ∧ ŪN(w̄N

1 ) ∧ ŪN(w̄N
2 )∧

∨
{w̄1

1 = w̄1
2∧. . .∧w̄ℓ−1

1 = w̄ℓ−1
2 ∧¬w̄ℓ

1 = w̄ℓ
2∧w̄ℓ+1

1 = w̄ℓ+1
2 ∧. . .∧w̄N

1 = w̄N
2 ∧ε(w̄ℓ

1, y) :
1 ≤ ℓ ≤ N}.

Then codei(w̄, y) is the many-sorted version of γ.

The next claim states that codei(w̄, y) really code ε(x̄, y).

Claim 3.4.5 Let M ∈ K+. Let Ui be a new sort of K+, let b ∈ UM
i and let Ūℓ be

such that there is ē with Ūℓ(ē) and ε(ē, b) in M. Then

{ā : M |= ε(ā, b)} = {ā : M |= codei(w̄, b) and ā = w̄ℓ
1}.

¢

We omit the proof of the claim. Thus, codei satisfy the requirements in the
second translation theorem ((a), (b) in Theorem 2.3.4).

The rest of the proof presents no difficulty. We have to give the translation func-
tion Tr : Fm(K+) −→ Fm(K) which has the desired properties w.r.t. the formulas
codei (Ui is a new sort of K+). We show this on a simple case. Let ψ(y, z̄) ∈ Fm(K+),

y ∈ Var(Ui) and z̄ variables of old sorts, and let ψ(y, z̄) ∈ Fm(K+) be its one-sorted
version. Let ϕ be the reduction of ψ such that

K+ |= P (z̄) ∧ ¬P (y) ∧ ε(z̄, y) −→ [ψ(y, z̄) ↔ ϕP (z̄, z̄)].

Let τ(w̄, z̄) be the formula

∃y(γ(w̄, y) ∧ ∃x̄ε(x̄, y) ∧ Ū ℓ(x̄) −→ ϕ(s̄ℓ
1, z̄),

and let Tr(ψ(y, x̄)) be the many-sorted version of τ(w̄, z̄) (where z̄ have the sorts as
in the many-sorted formula ψ(y, z̄) and w̄ have the sorts as indicated in codei(w̄, y)).
This finishes the proof of Theorem 3.4.4.
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Remark 3.4.6 The condition that at least one old sort has more than one element
is necessary in Theorem 3.4.4 above. To see this, let K+ = I{M} where M has three
sorts, U1, U2, U3 where U1, U2 are old sorts, they are singletons in M, and U3 has
two elements a, b and a binary relation R = {〈a, b〉} on U3, see the Figure. Then

ε(x, y)
def
= (U1(x) ∧ ∃zR(x, z)) ∨ (U2(x) ∧ ∃zR(z, x)) is a good coding formula in M

showing that M has the total reduction property over P . On the other hand, let
M− be the reduct of M to the sorts U1 and U2, and K = I{M−}. Then M is not
rigid over M−, hence K+ is not rigidly definable over K but K+ is axiomatizable.
Hence K+ is not interpreted by some Tr, codei in K, by Theorem 2.3.7. ¢

THEOREM 3.4.7 Assume that K+ is an axiomatizable expansion of K, and let

K+ be the one-sorted version of K+ as defined in Def.3.4.1. Then (i) and (ii) below
are equivalent.

(i) K+ is nr-implicitly definable over K.

(ii) Th(K+) is rigidly relatively categorical over P .

Proof. (ii) ⇒ (i) is straightforward by using Def.3.4.1. Proof of (i) ⇒ (ii): Let

M,N |= Th(K+) be such that MP = NP . Let M,N be such that M and N are the
one-sorted versions of M and N respectively. We want to show that M,N ∈ K+. In
order to show M ∈ K+, it is enough to show M |= Th(K+) since K+ is axiomatizable.

Let ψ be such that K+ |= ψ. Then the one-sorted version ψ of ψ is valid in K+ by
Remark 3.4.2, so M |= ψ. But then M |= ψ by Remark 3.4.2.

We are ready to prove the equivalence of implicit and explicit definability in
many-sorted logic.

Proof of Theorem 2.5.1. By Cor.2.3.9, Prop.2.1.4 and K = Mod(Th(K)) we may
assume that K+ is axiomatizable, too, i.e. that K+ = Mod(Th(K+)). So, assume that
K+ is axiomatizable and K is a reduct of K+. Then K+ is a definitionally equivalent
expansion of K iff K+ is interpreted in K by some Tr and codei, by Thm.2.3.7. Since

K+ is axiomatizable, the latter holds iff Th(K+) has the total reduction property,

by Thm.3.4.4. By Thm.3.2.3, the latter holds iff Th(K+) is coordinatised over P

and by Thm.3.3.1 the latter holds iff Th(K+) is rigidly relatively categorical over P .
Finally, by Thm.3.4.7 the latter holds iff K+ is nr-implicitly definable over K.
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matics, Budapest.
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