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Figure 1.13. Einstein’s locally special relativity principle: where-ever we drop a small
enough spaceship, for a short enough time it will experience special relativity.

4.2 Space-time in general relativity

Next we implement Einstein’s locally special relativity principle (for-
mulated in subsection 4.1 above) for formalizing general relativity.

In this section, for simplicity, we will use R in place of an arbitrary
linearly ordered quadratic field F, and also we will use n = 4. For a
logical analysis of what we “sweep under the rug” by the F = R assump-
tion we refer to Madarász-Németi-Székely 2005. Also, a careful logical
analysis of the Twin Paradox (acceleration causes time run slow) is elab-
orated there purely in FOL without the F = R assumption. Further, the
method there can be applied to studying the effects of gravity, e.g. on
clocks, in particular to proving the Tower Paradox purely in FOL. The
tower paradox means roughly that gravity causes slow time. E.g. clocks
in the basement of a tower and the top floor of the tower run differently,
the one in the basement being slower. This leads to the prediction that
clocks on the event horizon of a black hole stand still. The techniques
used there also indicate how the F = R assumption can be eliminated
from the material that comes below, and how what we do below can
be nailed down in pure FOL. Having said this, in order for a better
communication of the essential ideas, below we do make simplifying as-
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sumptions like F = R. We claim that they can and will be eliminated
(on the long run) along the ideas in Madarász-Németi-Székely 2005.

For general relativity, we will use global coordinate frames GFR’s. A
global coordinate frame is based on an open subset of R

4. So a global
coordinate system looks like a special relativity frame, we even call one
of the coordinates time, the others space etc. The difference is that in a
global frame the coordinates do not carry any physical or intuitive mean-
ing. They serve only as a matter of convention in gluing the local special
relativity frames (LFR’s) together. For simplicity, at the beginning we
will pretend that the coordinate system of our global frame is the whole
of R

4. Later we will refine this to saying that the global frame is an
open subset of R

4. (And even later we will generalize this further, to be
a manifold.) Since the differences are extremely minor and secondary
(from the relativistic point of view), let us first pretend that the global
frame is R

4.

Imagine a general relativistic coordinate system, a GFR, representing
the whole universe, with a black hole in the middle etc. So we are
looking at the bare coordinate grid of R

4 intending to represent the
whole of space-time.

What is the first thing you (as author) would want to specify for your
readers about the points of this grid R

4? Well, it is how the local tiny
little inertial special relativistic spaceships are associated to the points
p of R

4. (Recall that these tiny inertial spaceships come from Einstein’s
locally special relativity principle formulated in subsection 4.1.) More
precisely, to every point p of R

4 you would want to specify how the local
special relativity space-time at point p is squeezed, distorted, rotated
etc when it is squeezed into the local neighborhood of p . Rindler’s book
formulates this by saying that to each p of R

4 we have to specify an
LFR (Local Frame of Reference = local special relativity frame) sitting
in there at p. The point is in specifying how the clocks of the LFR slow
down or speed up at p, and which axis of the local LFR points in what
direction and is distorted (shortened/lengthened) in what degree.

An important aspect of the present section is the following. We use
that special relativistic space-time and Minkowski geometry have been
defined (cf. subsection 2.7). We will use the local special relativity frames
(the LFR’s) for importing the notions of special relativity to our general
relativistic space-time model.

Specifying the local frames LFR. A local frame m at p will be
a bijective mapping m : R

4 → R
4 such that m(0) = p. We will think

of the first R
4 as the coordinate system of special relativity or of the
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Minkowski space and of the second R
4 as the global frame upon which

we want to build our general relativistic space-time model. Since we
want to use our local frames only to specify how the tiny clocks slow
down in the limit (roughly, in an “infinitesimally small” neighborhood
of p) etc, we will choose these m’s to be affine mappings. In the figure,
m is denoted as L(p), for reasons to be discussed below.

Figure 1.14. The local special relativity frame at p.

To specify the local frame at p, let G(p) = 〈Gt(p), ..., Gz(p)〉 be a 4-
tuple of vectors (i.e. elements of R

4) associated to point p in R
4. Recall

that our global frame coordinate system is (also) R
4. Now, the sole

purpose of the datum G(p) is to specify a affine transformation L(p)
from the special relativistic space-time to our global frame coordinate
system R

4. Formally, this amounts to saying that L(p) : R
4 → R

4 is the
affine transformation mapping the origin 〈0, 0, 0, 0〉 to p, 1t = 〈1, 0, 0, 0〉
to Gt(p) + p, 1x = 〈0, 1, 0, 0〉 to Gx(p) + p, 1y = 〈0, 0, 1, 0〉 to Gy(p) + p,
and 1z = 〈0, 0, 0, 1〉 to Gz(p) + p. See Figures 1.14,1.15.

So, the key device in building our general relativity space-time is
associating to each point p in R

4 of our global coordinate grid an affine
transformation L(p) mapping the Minkowski space to the global frame
R

4. We will use the inverse L(p)−1 of this affine transformation L(p)
to translate our general relativistic problems to special relativity, i.e. to
Minkowski space, and we will use L(p) to bring back the answers special
relativity gives us.

A word of caution. We will use this translation L(p) induced by
G(p) only in small enough neighborhoods of p (i.e. we will use it in the
limit, more and more accurately as we close on p). Restricting attention
to small neighborhoods of p is what is meant by saying that general



The logic of space-time 35

Figure 1.15. The local special relativity frame at p.

relativity can be locally reduced to special relativity, but only locally. If
we want to solve a problem at a point q farther away from p , then we
will have to use the mapping L(q) associated to q in place of using L(p).

Definition of a general relativity space-time model GRM. So
we can specify how special relativity (Specrel in the following) sits in
our global coordinate system at each point by associating four vectors
Gt(p), Gx(p), Gy(p), Gz(p) to each point p of R

4. The vectors Gt(p) etc.
are simply elements of R

4 (i.e. ordinary vectors over R). This amounts
to specifying four vector fields Gt : R

4 → R
4 etc. So, a general relativity

space-time model is a 4-tuple 〈Gt, ..., Gz〉 of vector fields over R
4. What

are the conditions that this 4-tuple should satisfy (in order to qualify as
a general relativistic space-time model)? They are (i)-(ii) below.

(i) Each Gi : R
4 → R

4 is continuous, differentiable, and infinitely many
times such, i.e. it is what is called a smooth function in analysis.
(i ∈ {t, x, y, z})

(ii) The vectors Gt(p), ..., Gz(p) at each point p should be linearly in-
dependent in the usual sense. (This means only that the affine
mapping they specify is a bijection.)
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Figure 1.16. A general relativity space-time model is a 4-tuple of vector-fields.

Now, how do we use a general relativity space-time model, i.e. such a
4-tuple of vector fields, for representing some aspects of reality? Clearly,
for fixed p of R

4 , the vector tetrad Gt(p), ..., Gz(p) wants to represent the
local frame LFR sitting at point p . More precisely, it wants to represent
how the special relativistic frame is situated at point p. I.e. it represents
how the local frame is distorted when it is glued into the holistic picture
of the whole global frame. The important point is how the individual
local frames are distorted, rotated etc w.r.t. each other, the big global
frame grid is only a theoretical, conventional device to serve as a common
denominator in arranging the little local frames relative to each other.

Very-very roughly, the information content of a general relativistic
space-time model M = 〈Gt, ..., Gz〉 can be visualized as follows. The
vector tetrad Gt(p), ..., Gz(p) at point p tells us how the measuring in-
struments (clocks, meter-rods) of the tiny little inertial observer we imag-
ine as being dropped at p go crazy (go wrong) from the point of view
of the big, global general relativistic coordinate grid R

4 we are using in
M. This information is very subjective, since as we said, the big global
coordinate grid carries no physical meaning, it is subjective, i.e. it is
very tentative or conventional. But some objective content can be ex-
tracted from this subjective information, e.g. we can ask ourselves how
the instruments at point p go crazy from the point of view of some local
observer with some fixed life-line crossing some point q in R

4. (We plan
to return to clarifying this more, at some later time.)
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OK, OK, the reader may say “so much for philosophy but let us
be more concrete”. What can be described in terms of the 4-tuple
〈Gt, ..., Gz〉 of vector fields? Well, we can describe the (potential) life-
lines of inertial bodies and the life-lines of photons. Other things like
gravity etc. come later and are built on top of these two basic concepts.
We emphasize that knowing what the potential life-lines of inertial bod-
ies and photons are tells us everything important about a general rela-
tivistic space-time model. (If we want to use the rest of “fancy words”
like gravity, curvature, they can be defined explicitly from knowing the
above mentioned life-lines.)

For simplicity, we will talk about life-lines of inertial observers instead
of those of inertial bodies. (This is justified because in general relativity,
it is assumed that, with the exception of photons, the life-lines of inertial
bodies are also life-lines of observers.)

Defining the life-lines of inertial observers and photons in a
general relativistic space-time model. The life-lines of inertial
observers will be described mathematically as time-like geodesic curves.

By a curve f we understand a smooth mapping f : D → R
4, where

D is an open interval of R. By a point of the curve we mean a point in
its range. (Here we think of R

4 as a global gen. rel. frame grid, which
we could indicate informally by saying that a curve is an “f : D →
(GFR − grid)” or “f : D → GenRel”.)

Intuitively, the curve f is called time-like at point p iff the local frame
at p “sees” an observer co-moving with the curve at p. In more detail,
the curve f is called time-like at p iff the speed of f as seen by the local
frame at p is smaller than 1. This means that the tangent of the curve
L(p)−1 ◦ f has slope smaller than 1, at the origin. (Here, the time axis
has slope 0, while a photon life-line has slope 1.) The curve f is called
time-like iff the curve f is time-like at each of its points p . (Note: this
is independent of how the curve f is parameterized.)

Note that talking about the tangent of L(p)−1 ◦ f : D → R
4 involves

nothing “fancy”, since (at this step) we are in a special relativity space-
time model and we are using its Euclidean geometry over R

4 and we are
looking at a smooth curve in it. We are using the intuitive scheme L(p) :
Specrel → Genrel and f : D → Genrel. Hence L(p)−1 ◦ f : D → Specrel.
Further, the slope of a line ℓ is the (tangent of the) angle between the
time axis and ℓ.

We think of a time-like curve as a curve that in principle can be the
life-line of a (moving) observer.
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OK. When is a time-like curve f : D → R
4 called a time-like geodesic?

First we have to check whether the curve f represents (or measures)
relativistic time correctly. Here, the parametrization will be important.

Definition 4.1. We say that f represents time correctly if the following
statement holds. For every t ∈ D, and for every positive ε there is a
positive δ such that for all s ∈ [t − δ, t + δ] it holds that |s − t| agrees
with what d(f(s), f(t)) is as measured by the local frame determined by
Gt(f(t)), ..., Gz(f(t)) up to an error bound by ε · |t − s|. (We note that
here “d(f(s), f(t)) as measured by the local frame...” coincides with the
Minkowski distance between L(p)−1(f(s)) and L(p)−1(f(t)) understood
in the special relativity model.) See Figure 1.17.

Figure 1.17. A time-faithful curve.

We call a curve time-faithful iff it is time-like and represents relativistic
time correctly.

Intuitively, a time-like curve is time-faithful iff at each point p of the
curve, the local frame at p “sees” an observer co-moving with the curve
such that the parametrization of the curve agrees with how time passes
for this co-moving observer.

We imagine that a time-faithful curve f is the life-line of an observer b
such that the parameter t measures proper time of b; or in other words,
t shows the time on the wrist-watch of b. We imagine the motion of b
such that f(t) in R

4 is the location of observer b at his wrist-watch time
t. The condition in Definition 4.1 serves to ensure that wrist-watch-time
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t of observer b (whose motion is represented by the curve f) agrees with
the relativistic time interval measured by the relativistic metric d at the
local frame which is situated at the location f(t). More precisely, small
time intervals on the wrist-watch of b agree with the relativistic time
interval measured by the d’s of the local special relativity frames.

Yet in other words, we think that a time-like curve can be the life-line
of a spaceship which uses fuel (i.e. uses its ship-drive) for accelerating
and decelerating. The curve is time-faithful if the parametrization of the
curve agrees with “inner time” of the spaceship.

Definition 4.2. (time-like geodesic) By a time-like geodesic we under-
stand a time-faithful curve f : D → R

4 satisfying the following. For
any t in D there is a neighborhood S of f(t) (understood in R

4) such
that inside S, f is a “straightest possible” curve in the following sense:
For any two points p, q of S connected by f , the distance of p and q as
measured by f is maximal among the distances measured by time-faithful
curves inside S.

Formally, this maximality condition is expressed by the following. As-
sume that h is a time-faithful curve. Assume that p = f(s) = h(s′),
q = f(r) = h(r′) and h(t′) is in S for all t′ which are between s′ and r’.
Then |s − r| is greater or equal to |s′ − r′|. See Figure 1.18.

Figure 1.18. A time-like geodesic.

If f is a time-like geodesic, then we imagine that an inertial observer
b can move along it. By an inertial observer b we imagine a spaceship
with ship-drive switched off, i.e. a spaceship which does not use fuel for
accelerating (i.e. for influencing its motion).
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The above definition of time-like geodesics is the natural reformulation
of the Euclidean notion of geodesics (straight curves in a possibly curved
surface of Euclidean 3-space) with “minimal” replaced by “maximal”.
If one thinks about this maximality condition, one will find that it is
strongly connected to the Twin Paradox of special relativity. Indeed,
this maximality condition expresses the property that the local frames
through which f passes (as a curve) will think that f is the life-line of
an inertial observer.

By the above definition of time-like geodesics, we can express what
life-lines of inertial observers are in general relativity space-time models
〈Gt, ..., Gz〉. The definition of photon-geodesics is analogous, and goes
as follows.

The curve f is called photon-like at p iff the speed of f as seen by the
local frame at p equals 1. In more detail, this means that the tangent
of the curve L(p)−1 ◦ f at the origin has slope 1. The curve f is called
photon-like iff the curve f is photon-like at each of its points p . (Note:
this is independent of how the curve f is parameterized.)

We imagine that a photon-like curve can be the life-line of a photon
perhaps directed (diverted) by suitable mirrors.

A photon-like geodesic is a photon-like curve f with the property that
each point in the curve has a neighborhood in which through any two
points of f , f is the unique photon-like curve. (In more detail, let F
denote the range of f . Then any point in F has a neighborhood S such
that whenever f ′ is a photon-like curve connecting two points of F ∩ S
and such that F ′=the range of f ′ is inside S, we have that F ′ ⊆ F .)

Maximal photon-like geodesics are called life-lines of photons. (The
meaning of maximal here will be explained soon. Intuitively, it means
“non-extendible.) Similarly, maximal time-like geodesics are called life-
lines of inertial observers. Let us notice at this point that a general
relativistic space-time model 〈Gt, ..., Gz〉 determines “inertial motion”
and also determines how photons move.

On how we use the adjective maximal: Since the domain D of a curve
f may be a subset of the domain of the curve g, a function f is smaller
than g iff f is a restriction of g.

Definition of isomorphisms between general relativistic space-
time models. We said that the big global frame grid carries no
physical meaning, and only time-like and photon-like geodesics carry
physical meanings, everything else (e.g. gravity) can be defined from
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these geodesics. We give “meaning” to this statement (or claim) in the
form of defining what isomorphisms of general relativistic space-time
models are.

Let G = 〈Gt, Gx, Gy, Gz〉 and G′ = 〈G′

t, G
′

x, G′

y, G
′

z〉 be two general
relativistic space-time models. An isomorphism between these two GRT
models is a bijection Iso : R4 → R4 such that (i)-(iii) below hold.

(i) Both Iso and the inverse of Iso are smooth.

(ii) Iso preserves time-like geodesics. In more detail, for any curve f :
D → R

4, f is a time-like geodesic in G iff f ◦ Iso is a time-like
geodesic in G′.

(iii) Iso preserves photon-like geodesics (in the above sense).

We note that we could omit (iii), because one can prove that it follows
from (i)-(ii) above.

By the above, we have the main building blocks of General Relativity
and we can start working. So, let us make first sure that we have a com-
mon understanding of what models 〈Gt, ..., Gz〉 of General Relativity are
and how time-like geodesics and photon-like geodesics move in them. It
is a worthwhile project to clarify what these are, because there is noth-
ing else that would be basic in General Relativity. Hence, after having
digested these things we can start discussing the Expanding Universe,
black holes or whatever one likes.

Remark: A relatively important generalization: Let D be an open sub-
set of R

4. Assume that the vector-fields Gt, ..., Gz are defined only over
D and they satisfy the required conditions (e.g. continuity) only on D.
Then already we call the 4-tuple 〈Gt, ..., Gz〉 of vector-fields a general
relativity space-time model. The pragmatic use of this comes from situ-
ations where we have a nice and intuitive definition of the fields Gt, ..., Gz
but they satisfy the continuity conditions on R

4 only with finitely many
exceptions. Then we can throw away those finitely many points from
R

4, i.e. from our coordinate domain, and still call our 〈Gt, ..., Gz〉 a gen-
eral relativity space-time model. For explicitness we sometimes write
M = 〈Gt, ..., Gz, D〉 with D = Dom(Gt) = ... = Dom(Gz) for a general
relativity space-time model. So in this more flexible notation, a general
relativity space-time model is a 5-tuple (but consists only of 4 vector
fields all the same).


