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Abstract. This paper consists mostly of pictures visualizing ideas leading to
Gödel’s rotating cosmological model. The pictures are constructed according

to concrete metric tensor fields. The main aim is to visualize ideas.

Some kinds of physical theories describe what our universe looks like. Other
kinds of physical theories describe instead what the universe could be like inde-
pendently of the properties of the actual universe. This second kind aims for the
“basic laws of physics” in some sense which we will not make precise here (but
cf. e.g. Malament [Mal84, pp.98–99]). The present paper belongs to the second
kind. Moreover, it is even more abstract than this, namely it aims for visualizing or
grasping some mathematical or logical aspects of what the universe could be like.

The first few pages of this material are of a “science-popularizing” character
in the sense that first we recall a space-time diagram from Hawking–Ellis [HE73]
as “God-given truth”, i.e. we do not explain why the reader should believe that
diagram. Then we derive in an easily understandable visual manner an exciting,
exotic consequence of that diagram: time-travel. This applies to the first few pages.
The rest of this work is of a more ambitious character. The reader does not have

to believe anything 1. We do our best to make the paper self-contained and explain
and visualize most of what we say.

In more detail, this work consists of Sections 1-8. Section 1 (p.2) is the just
mentioned “popular” part. Section 2 (p.4) lays the foundation for discussing ro-
tating universes. E.g. it shows how to visualize such space-times. The space-time
built up in this section is called the “Naive Spiral world”. The last part of section
2 (p.12) is about non-existence of a natural “now” in Gödel’s universe GU. Sec-
tion 3 (p.14) introduces co-rotating coordinates “transforming the rotation away”.
Section 4 (p.21) refines the Gödel-type universe (obtained in Section 2). Section
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5 (p.30) illustrates a fuller view of the refined version of GU. Section 6 (p.33) re-
coordinatizes the refined GU in order that the so-called gyroscopes do not rotate
in this coordinatization. Section 7 (p.40) gives connections with the literature.
E.g. it presents detailed computational comparison with the space-time metric in
Gödel’s papers. Section 8 (p.43) contains some technical data about how we con-
structed the figures illustrating Gödel’s universe. More technical data can be found
in [NMAA].

1. Prelude: Some facts from the literature and how they imply
time-travel.

The following two figures represent Gödel’s famous rotating universe. One of
the many interesting features of Gödel’s universe is that it contains closed time-
like curves (CTC’s for short), i.e. it permits “time-travel”. In the following figures
we use geodesics and light-cones in the spirit of e.g. [AMN07, sections 3.1–3.3]
for visualizing Gödel’s universe together with some of its main features. For these
notions cf. p.5 herein.
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Figure 1: Gödel’s universe in co-rotating cylindric-polar coordinates 〈t, r, ϕ〉. Ir-
relevant coordinate z suppressed. Light-cones (null-cones) and light-like geodesics
(null geodesics) indicated. Light-cone opens up and tips over as r increases (see line
L) resulting in closed time-like curves (CTC’s). Drag effect (of rotation) illustrated.
Photons emitted at p spiral out, reach CTC and reconverge at p′. This is a slightly
corrected version of Hawking–Ellis [HE73, Figure 31,p.169] (cf. p.42 herein).
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Figure 2: Gödel’s universe with a time-traveler’s (time-like) worldline indicated.
The time-traveler’s acceleration is bounded (but cannot be zero). The time-like
curve C stays always inside the light-cones and spirals back to the past as m
observes it. This is possible because the light-cones far away from the t-axis are so
much tilted that they reach below the horizontal plane. See the explanation on p.3.
Time-traveler starting at time s and arriving at time h, where h is earlier than s.

Explanation for Figure 2: Figure 2 illustrates the time-travel aspect in Gödel’s uni-
verse. Assume observer m lives on the time axis t̄. Assume p is a point far enough
from t̄. I.e. the radius r of p is large enough. Then at p the light-cones are so much
tilted that a time-like curve C can spiral back into the past as observed by m. C
involves only bounded acceleration. An observer, say k, can live on C. Then in m’s
view, k moves towards the past. Moreover, k can go back to the past as far as he
wishes. It is an entertaining exercise to prolong curve C such that it starts at s ∈ t̄
and ends at h ∈ t̄ such that h ≺ s, i.e. h is in the past of s, see Figure 2. Then
our observer k can start its journey at s, spiral outwards to radius r, then spiral
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back along C and then spiral inwards to h. Then k can wait on the time axis t̄ to
meet itself at point s. The illustration of a time-traveler’s worldline in Figure 2 is
similar to the one in Horwich [Hor87, Figure 28, p.113].

2. Preparation for constructing Gödel style rotating universes. The
Naive Spiral World.

In this part we populate Newtonian space with massive observers mi for i ∈ I
which carry equal mass and are evenly distributed (where we understand “even” in
the common sense). We will call these mi’s distinguished observers or mass-carriers

or galaxies 2 . Then we rotate this inhabited space around the z axis. The galaxy
in the origin is called m0. We will make sure that nothing happens in the direction
z, therefore we can suppress direction z in our pictures and discussion. So space-
time becomes three-dimensional with axes t, x, y. We concentrate on the xy-plane
inhabited by the galaxies (or distinguished observers) mi. We rotate this plane of
galaxies around the origin, i.e. around m0. The rotation is rigid, i.e. the distances
between the galaxies do not change. The angular velocity of this rotation is denoted
by ω. We call the plane inhabited by the mi’s the universe. Hence ω is called the
angular velocity of the universe. The rotation takes place in a Newtonian inertial
frame of reference. 3 The angular velocity ω is chosen such that the resulting
centrifugal force exactly balances the gravitational attraction between the mi’s.
This is possible, cf. Gödel’s paper [Göd95b, second half of p.270] for a proof. (Cf.
[Göd95b, pp.261–289] for more detail.)

So our first pictures will show space-time diagrams in which the worldlines
of the galaxies mi appear as spirals around the t-axis (which happens to be the
worldline of m0). An extra feature is that, similarly to Gödel’s papers, we assume
the existence of certain kinds of cosmic compasses. Our cosmic compasses need
not agree with what are called gyroscopes in physics. For the time being cosmic
compasses constitute only certain conventions. Equivalently, they can be regarded
as distinguished local coordinate frames or “local coordinate systems” for our dis-
tinguished observers or mass-carriers (the mi’s). These local frames need not be
inertial. For the time being we do not associate any tangible or observational phys-
ical meaning to our compasses and local frames. 4 In Section 6 we will turn our
attention to gyroscopes and local inertial frames, too.

We assume that all the mi’s agree with each other in that they have two
cosmic compasses for carrying the original spatial directions x and y of our original
Newtonian inertial reference frame with which we began our construction. This
makes them equivalent (with each other) in the sense that any of them, say m, may
think that he is at the center, he is not rotating and it is the rest of the observers
who are rotating around m.

2We use the world “galaxy” only in a metaphorical sense and it means nothing more than
our distinguished observers carrying mass. Cf. Rindler [Rin77, p.203] for more on our usage for

galaxies.
3Here we use the expression “inertial frame of reference” in the most classical (Newtonian)

way, namely as it was given by L. Lange in 1885: “A reference frame in which a mass point
thrown from the same point in three different (non co-planar) directions follows rectilinear paths

each time it is thrown, is called an inertial frame.”
4What they represent is mainly a logical “stage” in our construction of rotating universes.

Though, in principle we could associate (a fairly complicated) observational meaning to them. We

do not go into this here.



VISUALIZING IDEAS ABOUT GÖDEL-TYPE ROTATING UNIVERSES 5

This paper is based on general relativity but we do not assume that the reader
is familiar with the details of general relativity. What we do assume is familiarity
with (i) the basics of special relativity and (ii) awareness of some of the basic
principles of general relativity explained in items (1)-(2) below. All this can be
found in [AMN07]. All what we need to know about special relativity in this
paper can be found in [AMN07, sections 2.1–2.4]. What we need to know about
general relativity theory in this paper can be found in [AMN07, sections 3.1–3.3]
and is summarized in items (1)-(2) below.

(1) General relativity assumes that special relativity holds locally. This means,
roughly, that in a general relativistic space-time, every point (event) is “surrounded”
by a small, local coordinate frame (LF for short) and in each LF special relativity
holds in some sense (cf. e.g. Rindler [Rin77] for a simple explanation of this). The
LF’s are local in the topological sense that space-time M comes together with a
topology and then LF’s are local in the sense that the “closer” we go to the point
p ∈ M the more accurately the local special relativity frame LF describes the be-
havior of light-signals and moving bodies. (For a precise formulation see [AMN07,
sec.3.3, e.g., Def.3.3].)

In the case of Gödel’s universe, M together with this topology is just the original
(Newtonian) space-time R

4. Thus, in the case of Gödel’s universe 〈M, . . . 〉 a single
“global” coordinate system can cover the whole of M . This means that there exist
coordinatizations Co : R

4 −→ M with Co a bijection which satisfy some natural
requirements which we do not list here. E.g. Co involves one “time coordinate”
and three “space coordinates”, hence at first glance it looks similar to the familiar
coordinatization of Newtonian space-time or special relativity. Further, one of the
space coordinates turns out to be irrelevant, hence Co : R

4 −→ M will admit
a 3-dimensional representation (via suppressing the irrelevant coordinate). So in
our pictures there will be one big coordinate system Co covering the whole picture
and there will be many small coordinate systems representing the LF’s or other
local coordinate systems. The big coordinate system represents the whole of our
manifold M to be described.

When we describe a space-time M , the key ingredient is specifying how the little
LF’s are glued together to form the whole of M . We will do this by specifying a
(fairly arbitrary) coordinatization C of M and then to each point p ∈ M we describe
how the LF at p is fitted into M at point p. 5 When specifying which LF is glued to
what point, we use the coordinate system C as a tool for communication. Most of
the time we will use geometric constructions for presenting the above data. In such
a picture, the LF at p is represented by drawing the light-cone at p together with the
unit vectors 〈tp, xp, yp〉 of the LF at p. Sometimes we indicate only the future light-
cones, sometimes we indicate both the future and the past light-cones. Most of the
time we indicate the local simultaneity of the LF, too. 6 These pictures, beginning
with Figure 7, represent precise geometrical constructions, hence they intend to
specify the space-time in question completely (as opposed to being a mere “sketch”
conveying only intuitive ideas). In Sections 7,8 we present constructions behind the

5The effect is somewhat similar to an Escher painting, e.g. he glues little birds together and

there emerges an over-all pattern which has nothing to do with birds.
6To specify the LF, it is enough to specify the unit vectors 〈tp, xp, yp〉. These determine

the light-cones and the local simultaneity. However, the latter are very helpful in visualizing the

space-time, that’s why we indicate them in the pictures.
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pictures together with the metric tensor field of the space-time in question. (To
explain the latter, we note that a model of general relativity is usually given in the
form 〈M, g〉 where M is a manifold and g is a tensor field defined on M . We will not
need these tensor-fields until Section 7.) We note that g can be reconstructed from
the way the LF’s are glued together in our pictures, hence if the reader understands
the geometry of these pictures, he will automatically understand the space-time (or
general relativity model) they represent.

(2) Occasionally we will mention so-called geodesics. Geodesics are the gen-
eral relativistic counterparts of straight lines of special relativity, in particular, the
worldlines of inertial bodies or freely falling bodies are called geodesics. The same
applies to worldlines of photons. Curves are understood in the usual sense, e.g.
geodesics are special curves. Properties of curves are generalized from special rela-
tivity to general relativity by saying that curve ℓ has property P if it has P locally
(in the sense of special relativity). E.g. ℓ is time-like if for each p ∈ ℓ the LF sur-
rounding p “thinks” that ℓ is time-like in the sense of special relativity. Similarly
for space-like, light-like (and for other properties of geodesics).

We note that time-like curves are the possible worldlines of arbitrary bodies, i.e.
of not necessarily inertial bodies. These may undergo acceleration. Both geodesics
and time-like curves are curves in the usual sense. A curve is time-like if it always
stays inside the light-cones. A curve ℓ is light-like if for any point p ∈ ℓ, ℓ is tangent
to the light-cone at p.
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Figure 3: Observers m′,m′′,m′′′ perform a rigid rotation around observer m. Such
observers are the only mass-carriers in this universe. Because of this rotation, m′′′

moves so fast that his light-cone tilts over so much that it is almost horizontal.
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Figure 7: Each mi can measure the time needed for a single turn of the universe.
I.e. each mi can measure the angular velocity ω of the universe. To ensure this
we have to calibrate the ti vectors of the mi’s such that in m0’s view the vertical
components of all the ti’s are equal with that of t0. See p.12 for more detail.
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Figure 8: Arrangement of the light-cones in the Naive Spiral World (see p.12).
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Gödel wanted the distinguished massive observers m0, . . . ,mi, . . . of his uni-
verse to be equivalent with each other. So far they are equivalent from the point of
view that each of them thinks that the rest of the universe rotates around himself.
This is so because the local coordinate systems (hence the cosmic compasses) of the
distinguished observers mi do not rotate, do not follow the rotation of the universe.
At this point we can ensure one more symmetry property of the mi’s.

Each mi can measure the time needed for a single turn of the universe, for
example as follows: mi picks a distinguished observer, say m0, such that mi’s y-
compass points in the direction of m0 at an instant, and then measures the time
passed until his y-compass again points in m0’s direction. 7 This is how mi can
measure the angular velocity ω of the universe. To ensure that all the distinguished
observers get the same value for the angular velocity, we have to calibrate the ti
vectors of the mi’s such that in m0’s view the vertical components of all the ti’s are
equal with that of t0. This is ensured in Figure 7, and from now on we will always
ensure this. 8 This choice of the local time-unit vectors ensures also that the local
LF’s measure a kind of “universal time”, namely that of the big global reference
frame. However, this “universal time” does not satisfy natural requirements about
“time”, see below (p.12).

Above we specified the time-unit-vectors of the local frames. Let us now specify
three other vectors at each point p, these will specify the light-cone and the local
frame at p. All what we say below in specifying the three unit vectors of the local
frame is meant in the big global reference frame. The r-unit-vector at p points in
the radial direction parallel to the xy-plane and has length 1. The (suppressed)
z-unit-vector points in the direction of the (suppressed) z-axis and has length 1.
Finally, the last local unit-vector is orthogonal to the three unit-vectors given so
far and has the same length as the t-unit-vector. In the local frame at p, these 4
vectors constitute an orthonormal system. By this, we specified fully our general
relativistic space-time. 9

The preliminary version of Gödel’s universe GU constructed above and depicted
in Figures 3–8 will be referred to as “Naive GU” (NGU) or more specifically, “Naive

Spiral World”. The reason for this is that so far we have chosen the simplest pos-
sible arrangement of light-cones without checking whether they will satisfy certain
properties we have in mind. Indeed, Section 4 will lead to some refinement/fine-
tuning of the light-cone structure. However, the Naive GU has many of the desired
properties already. Namely, the worldlines of the galaxies are geodesics, i.e., the
distinguished observers mi are really inertial observers. The radial straight lines
parallel to the xy-plane are all geodesics, too.

In Gödel’s Universe GU any two spacetime points (events) can be connected
with a time-like curve. This is not hard to see by looking at Figure 2. Thus, the
“future” of any event is the whole universe, and also the “past” of any event is the

7What does it mean that mi’s y-compass points in m0’s direction at some time t? We may
use the following definition: there is a curve ℓ connecting mi’s worldline (starting with the event

at t) with m0’s worldline such that at each point p of the curve ℓ the following holds: ℓ lies in the
local simultaneity of the distinguished observer m passing through p and m’s y-compass points in
ℓ’s direction in p.

8This will also ensure that each mi will measure the same angular velocity for the universe,

no matter which “partner” he chooses (in place of m0) for the measurement.
9The corresponding metric tensor is given in section 7.
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whole universe.10 Figures 9–10 below illustrate that a natural “present” of an event
consists of the whole universe, too.
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Figure 9: Idea of nonexistence of a global, natural simultaneity in Gödel’s universe.

10This implies that GU enjoys the so-called Malament-Hogarth property, which requires the
existence of an event which contains in its past a time-like curve of infinite length. Thus the
general relativistic computer constructed in Etesi–Németi [EN02] (cf. also Hogarth [Hog00],

Earman [Ear95], Németi–Dávid [ND06]) can be realized in the Gödel-type universes, too (in
the literature general relativistic computers are usually constructed in Malament–Hogarth space-

times).
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Figure 10: Previous figure but with the two strips of constructed simultaneity closer
to each other, p, 0̄ and q, 0̄ are still simultaneous. The “informal logic” of these two
figures generates a simultaneity connecting all points of space-time with each other.

3. Gödel’s universe in co-rotating coordinates, “whirling dervishes”.
Transforming the rotation away.

Gott [Got01, p.91] writes “You could equally well view Gödel’s universe as
static11 and non-rotating, as long as self-confessed ‘nondizzy observers’ would be
spinning like whirling dervishes with respect to the universe as a whole.” Gödel
[Göd95a, p.271] writes: “Of course, it is also possible and even more suggestive
to think of this world as a rigid body at rest and of the compass of inertia as
rotating everywhere relative to this body.” Below we introduce new coordinates
〈T r,Xr, Y r, Zr〉 co-rotating with the matter content m0, . . . ,mi, . . . of the uni-
verse. In 〈T r, . . . 〉 the massive bodies mi appear as being motionless with their
worldlines vertical lines. We will call 〈T r, . . . 〉 “Dervish World” motivated by the
above quotation from Gott. The transformation between the old spiral coordinates
and the new rotating coordinates is elaborated later, on pp.43–46.

In the Spiral World, the “galaxies” m1,m2, . . . ,mi appear as rotating around
m0 in direction ϕ with angular velocity ω while their cosmic compasses xi, yi ap-
pear fixed (non rotating). As a contrast, the Dervish World shows m1, . . . ,mi as
motionless, while it shows their cosmic compasses as rotating in direction −ϕ with
angular velocity ω.

We will indicate on page 34 how this dervish world can be used to show that
GU demonstrates that General Relativity (in its present form) does not imply the
full version of Mach’s principle.

11We note that Gott uses the world “static” here with its intuitive meaning, not with its

technical meaning that has been adopted in the literature of general relativity.
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Figure 11: Gödel’s universe GU in rotating coordinates T r = t, Xr, Y r. These
coordinates co-rotate with GU, hence GU appears as being at rest. As a price, the
local coordinate systems like 〈t′, x′, y′〉 appear as rotating backwards (in direction
−ϕ) in the new coordinate system. The transformation between the old spiral
coordinates and new rotating ones is elaborated on p.43.
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same as in Figures 3–7) whose cosmic compasses i.e. whose local coordinate systems
are spinning around creating a whirling effect. Gott [Got01, p.91] called these
“whirling dervishes”. This arrangement can be used to show that Mach’s principle
is violated, see p.34 for explanation.
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Figure 13: A typical dervish consisting of massive observer (or galaxy) m0 and its
cosmic compasses 〈x0, y0, z0〉. In other words, m0’s dervish is m0’s local coordinate
system.
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Figure 15: Light-cones and local unit vectors of spiral world above, and their coun-
terparts in dervish world 〈T r, . . . , Zr〉 below. Detailed representation of upper part
is in Figures 7, 8 and that of lower part is in next Figure 16. See also Figures 11–14.
The transformation between the two worlds is described on pp.43–46.
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Figure 16: Light-cones with local unit vectors in dervish world 〈T r, . . . 〉. Compare
with Figure 8 on p.11.
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4. Fine-tuning the space-time structure of the Naive GU obtained so
far. Tilting the light-cones.

First we show two pictures hinting at the fact that the lengths of unit-vectors of
the local frames in our Naive Dervish World might be of inconvenient proportions.
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Figure 17: The x-unit-vectors of the local frames grow very fast in the Dervish
World as we move outwards in the radial direction. (Critical radius means the
radius where the light-cone touches the xy-plane.)
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Figure 18: Whirling dervishes on larger radiuses.
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The fact that the xi vector of mi has a much longer component parallel with
coordinate Xr than x0 (illustrated in the previous two figures) is the visual manifes-
tation of the following fact, seen better in the spiral world. In the spiral world, mi

can send a photon ph upward almost parallel with the t axis such that ph reaches
mi again in a “rigidly bounded” time (an upper bound is 4π/ω) where the bound
is independent of the choice of i. We choose the path of ph such that its distance
from m0 remains constant(ly the m0–mi distance). This path need not be geodesic
but as Gödel wrote, we can use mirrors to force ph to follow this path. See Figure
19.

In Gödel’s Universe the return-time of the photons sent around m0 in a circle
of radius r tends to infinity as r tends to infinity.
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Figure 19: The time needed for a photon sent out by m7 and kept with mirrors
on a circle around m0 to come back is a little more than the time needed for the
universe to make a turn. This time is measured by m7, cf. p.12.
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Let us see how we can remove this difference with Gödel’s universe without de-
stroying the logic of our construction. How can we fine-tune our construction? We
are aiming at the “smallest” and simplest change so that the logic of our construc-
tion would remain intact. Changing the length’s of the xi vectors and keeping the
other unit-vectors as they were results in making the light-cones narrower. Since
this will not lead to CTC’s, we will “tilt” the light-cones, instead. So, in fine-tuning
the Naive GU we will speak about tilting the light-cones, and we will call the new
space-time Tilted GU.

Let us work in the dervish world.

Choice 1 We can tilt the light-cones forwards (in the positive ϕ direction) such that
with increasing r (radius) we also increase the tilting. This can be done in such a
manner that the difference we talked about disappears. The result of such tilting
is represented in Sections 4–5 (Figures 21–28). The so obtained tilted universe
resembles very closely the universes presented in Gödel’s papers. (E.g. they agree
in many structural properties [in Gödel’s sense].)

Choice 2 We can also tilt the light-cones (in dervish world) backwards, opposite to
the ϕ direction, carefully enough such that the difference goes away and we do not
induce other undesirable effects. See Figure 20. This Choice 2 tilting is just Choice
1 tilting seen from another coordinate system (namely by using the coordinate
transformation ϕ → −ϕ). Below we will explore Choice 1, and in Section 6 (p.33)
we explore Choice 2. We will see that both Choice 1 and Choice 2 have their
advantages.

Figure 20: Choice 1 is that we tilt the light-cones forwards. Choice 2 is that we tilt
the light-cones backwards.

From now on we concentrate on Choice 1 (till Section 6).

We will call the tilting in Choice 1 “forward-tilting”, the so obtained dervishes
tilted dervishes, and the so obtained (tilted) dervish world Tilted Dervish World or
Choice 1 Dervish World. Recall that we describe a simple transformation between
the spiral world 〈ts, . . . 〉 and the dervish world 〈td, . . . 〉 in Section 8 (p.43). We use
this transformation for transforming the new, tilted universe from the dervish world
to the spiral world. We call the result Tilted Spiral World or use simply the adjective
“new spiral” or “refined-spiral” for referring to the so obtained light-cones as new
spiral cones or back rotated ones. The expressions “rotating back” and “back-
rotating” intend to refer to application of the inverse transformation 〈td, . . . 〉 −→
〈ts, . . . 〉 described in Section 8. In such contexts the inverse transformation is
applied to the result of forward-tilting.
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The result of the above outlined forward-tilting is the Gödel-type universe which
we will describe in more detail in the coming parts. We will call this space-time
Tilted GU (or sometimes new GU). In this paper, we do not specify the exact tilting
of the cones according to which the figures were constructed. More detail is given
in [NMAA].

In this section we describe “Tilted Dervish World”, and in the next section,
Section 5, we describe “Tilted Spiral World”.

Tilted dervishes (fuller description of new GU in dervish world).

Photons moving in direction y
(intersection of Cone with Plane(t,y))
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Figure 21: Tilted Dervish World (Choice 1 Dervish World).
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5. Tilted Spiral World, i.e. Choice 1 Spiral World.
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Figure 26: Tilted spiral world, i.e. Choice 1 Spiral World. Light-cones, unit-vectors
along the y-axis. Compare with Figures 8,16 on pp.11,20.
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6. Giving physical meaning to cosmic compasses. What rotates in
which direction (relative to whom).

Figure 29: What rotates in which direction? The above is a picture from Pickover
[Pic98, p.185] from the chapter on Gödelian Universe implicitly offering a natural
answer to this question. This is also Figure 7.5 in Gribbin [Gri98, p.215].

In our “Tilted Spiral World” (Figures 27,28) the light cones are very strongly
tilted forwards with increasing radius r. Therefore, if m0 throws a ball, say in the
y direction, the ball will start moving in the y direction but with increasing radius
it will have to turn in the ϕ direction because the worldline of the ball has to stay
inside the light-cones (i.e. it has to be a time-like curve). The same applies even
to a photon in place of the ball. This effect is called the gravitational drag effect 12

and is illustrated e.g. in our Figure 1 or equivalently in Figure 31 of Hawking–Ellis
[HE73] as the curving of the light-like geodesics. The drag effect affects those and
only those inertial bodies which are not at rest relative to one of the mi’s. This
drag effect is present in the Naiv GU, too, but in a less dramatic way. To study
the drag effect in our Tilted GU (in Figures 28, 23), we notice that our Tilted
Dervish World (Figure 23) is structurally very close to Gödel’s original universe
described and studied in Gödel [Göd95b], Hawking–Ellis [HE73, pp.168–170] and
later papers. Hence the results about the drag effect in Gödel’s universe obtained
in these works are applicable to our version of GU in Figure 23. The drag effect can
be analyzed and described by studying the behavior of geodesics. Indeed, Figure 1
represents “dragging” of some characteristic geodesics. Let us be in dervish world.
Then Figure 1 indicates the following. A ball thrown by m0 will start out radially,
then will make a big circle and will come back to m0 from a new direction. From
now on, we will call the circular motion or rotation traced out by this circle the
drag rotation. In Figure 1 the direction of the drag rotation coincides with the ϕ-
direction which in turn coincides with the direction of CTC’s. All this remains true
in our Tilted Dervish World (Figure 23). In the Tilted Spiral World, matter (the
mi’s) is seen to rotate in the same direction ϕ. Therefore in the Tilted Spiral World
what we said above about the drag rotation, CTC’s etc. remains true. Hence, in
the Tilted Spiral World the drag rotation is even stronger than in the dervish world
and points in the same direction ϕ in which the matter content of the universe
rotates. Hence in the Tilted Spiral World, we have an increased drag effect. As a
curiosity we note that in the Tilted Spiral World everything rotates in the same
direction ϕ.

12What we call drag effect is often called dragging of inertial frames. For references on
gravitational drag effect see p.42.
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Next we turn to replacing our cosmic compasses which were “abstract direc-
tions” so far with physically tangible compasses of an “observational” kind (i.e.
subject to testing by thought experiment). In general relativity, the devices used
for this purpose are called gyroscopes or compasses of inertia. The nonspecialist
reader does not need to recall the definition, what we write below is amply enough
for the present paper. The most important property (for us) of gyroscopes is that
their working is based on inertial motion, hence the behavior of geodesics will also
influence the behavior of gyroscopes. For the non-physicist reader we note the
following.

In Newtonian physics it is provable that certain devices called gyroscopes pre-
serve their directions despite of our moving them around, in other words, they
behave like “cosmic compasses”.13 We do not recall the definition of gyroscopes
in detail. However we note that they can be made smaller and smaller in some
sense such that their Newtonian property of preserving direction (whatever this
means) remains true in general relativity (here the basic idea is that general rel-
ativity agrees with Newtonian mechanics for small enough speeds [with sufficient
precision]). The essential idea behind gyroscopes is that a rigid body rotating
fast enough tends to preserve its axis of rotation (in Newtonian physics). If we
make the body small enough, then the tangential velocities of its parts will tend
to zero. Hence the tangential velocities involved can be made small enough for the
Newtonian approximation to be satisfactory.

It is natural to assume that the increased drag effect in Tilted GU described
above will “drag” the gyroscopes, too, in the ϕ direction. Indeed, an analysis of the
geodesics of Gödel’s universe in Lathrop–Teglas [LT78] suggests that this is so.

Our next goal is to find a new coordinatization C+ for our Tilted GU in which
the gyroscope directions do not rotate. 14 One needs not regard this new coor-
dinatization C+ superior in some sense to e.g. our Tilted Spiral World or more
“real” than Tilted, instead, C+ is a coordinatization with some interesting and
useful properties. C+ will be a (new) spiral world. We will call this new spiral
world Refined (or Choice 2) Spiral World. After constructing C+, it will be worth-
while to reconstruct the dervish world in such a form that the new local frames

(i.e. “veils” or “hands” of the whirling dervishes) will be frames co-rotating with
the gyroscopes. Then the local frames will be what are called local inertial frames

in general relativity. A representation of the dervish world with these new local
inertial frames represented as the “veils” of the dervishes will be called Refined
(or Choice 2) Dervish World. The two tilted spiral worlds (Choices 1,2) and the
two tilted dervish worlds (Choices 1,2) represent the same space-time in different
coordinates.

In the Refined Dervish World all the mass-carrier observers mi are at rest,
they are evenly distributed and they are completely alike, yet their compasses of
inertia are rotating. This violates Mach’s principle which says that the state of
zero rotation of an inertial frame should coincide with the state of zero rotation
with respect to the distribution of matter in the universe. For Mach’s principle see
e.g. Barbour [Bar89] and [BP95]. For more references on the drag effect and its
connection with Mach’s principle see page 42.

13See e.g. Epstein [Eps81, p.128] for nice illustration.
14Below by gyroscopes we always mean gyroscopes of m0.
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Above (p.33) we recalled a picture from Pickover [Pic98] because it “addresses”
the question of what rotates in which direction. (E.g. does the universe rotate in the
same direction as the time-travelers (CTC’s) do?) To make the question meaningful,
one has to tell relative to what coordinate system is the question understood. 15 Of
course, one would like to name an “observable” coordinate system for asking such a
question. A possibility is to choose that coordinate system in which the gyroscopes
do not rotate. 16 This is C+ of our Choice 2 Spiral World. We will see that in
C+ the directions of the various rotations are essentially different from the ones in
Pickover’s picture. If one looks at C+ without any preparation, then the directions
of rotations appear as ad hoc, almost counter-intuitive. However, at least in our
opinion, the train of thought outlined in this paper may provide an explanation for
the arrangement of these directions. For more on this question of counter-rotation
in the case of rotating (Kerr–Newman) black holes see [ANW08].

Let us return to our goal of finding a coordinatization C+ of our Spiral World
in which gyroscope directions do not rotate. 17 We have already observed that gy-
roscopes do rotate in our Tilted Spiral World (Figure 28). There are two equivalent
ways for finding C+:

(i) We analyze the rotation of gyroscopes as seen from the Tilted Dervish World,
we observe that they rotate in the ϕ-direction. This means that in the spiral world
gyroscopes rotate faster than the dervish world itself does (i.e. faster than ω). We
choose the refined spiral coordinates to co-rotate with these gyroscopes. Hence the
“gyroscope”-directions will be fixed when viewed from the Refined Spiral World as
we wanted.

(ii) The following turns out to be equivalent with what we outlined in (i) above.
Let us go back to Section 4 p.24, where we refined our Naive GU to get Tilted GU.
There, on p.24, we found two possible choices (Choices 1,2) for the desired fine-
tuning. Of the two, so far we took the simpler one, Choice 1. Choice 2 consists
of tilting the light-cones in the dervish world backwards i.e. in a direction opposite

to that of ϕ (in Choice 1 we tilted them forwards). What we claim here is that
the result of choosing Choice 2 in Section 4 is equivalent with the result of the
refinements outlined in item (i) above. This is the reason why we call our newest
refined spiral and dervish worlds outlined in item (i) above Choice 2 worlds as well
as Refined worlds.

The new Choice 2 spiral and dervish worlds are illustrated and elaborated
(constructed) in the figures below. A natural question comes up: If we had to refine
our Choice 1 worlds because the drag effect made the gyroscope directions rotate,
how do we know that the same problem will not come up in the new Choice 2 worlds?
The answer is two-fold. (1) The extremely strong drag effect in Choice 1 Spiral
World was caused by tilting the light-cones forwards extremely with increasing
radius r. Cf. Figure 27 for this effect. Now, in our Choice 2 Spiral World the light-
cones are not tilted forwards so much, actually recall that Choice 2 was obtained
from Choice 1 by tilting light-cones backwards (relative to our naive GU). So, this
very strong drag effect affecting even the gyroscopes need not arise (more precisely,

15E.g. relative to the coordinates of our Tilted Spiral World everything rotates in the same

direction ϕ.
16Technically, we have Fermi coordinates in mind.
17This means that in C+, gyroscopes of m0 preserve their directions (relative to the coordi-

nate system).
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need not be strong enough for affecting the gyroscopes). Indeed, as we said earlier,
our dervish world is very close structurally to Gödel’s original space-time (GU).
Therefore results about the original GU are applicable to our versions (calibrated
slightly differently). Now, the results in Lathrop–Teglas [LT78] can be used to
conclude that in our Choice 2 Spiral World gyroscope directions are fixed, i.e. they
do not rotate. This can be seen by their characterization of geodesics in basically
Choice 2 Spiral World, as well as from their claim that Choice 2 Spiral coordinates
are so called Fermi coordinates.
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of e.g. Lathrop–Teglas [LT78].)



V
IS

U
A

L
IZ

IN
G

ID
E
A

S
A

B
O

U
T

G
Ö
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7. Metric tensors and some literature.

7.1. The metric tensor of the Naive GU. The line element in the Naive
Spiral World is

ds2 = − 1 − r2ω2

(1 + r2ω2)2
dt2 + dr2 + dz2 +

r2(1 − r2ω2)

(1 + r2ω2)2
dϕ2 − 4r2ω

(1 + r2ω2)2
dϕdt .

Thus the components of the metric tensor g of the Naive GU in the Naive Spiral
World are

gtt = − 1 − r2ω2

(1 + r2ω2)2
, grr = gzz = 1,

gϕϕ =
r2(1 − r2ω2)

(1 + r2ω2)2
, gϕt = gtϕ = − 2r2ω

(1 + r2ω2)2
,

and the rest of the gij ’s are 0.
The nonzero Christoffel symbols Γi

jk are

Γr
tt =

rω2(r2ω2 − 3)

(1 + r2ω2)3
, Γt

tr =
(1 − r2ω2)rω2

(1 + r2ω2)2
, Γϕ

tr =
−2ω

(1 + r2ω2)2r
,

Γr
tϕ =

2rω(1 − r2ω2)

(1 + r2ω2)3
, Γt

rϕ =
2r3ω3

(1 + r2ω2)2
, Γϕ

rϕ =
1 − r2ω2

(1 + r2ω2)2r
,

Γr
ϕϕ =

r(3r2ω2 − 1)

(1 + r2ω2)3
, and the Γi

kj = Γi
jk for the nonzero Γi

jk listed above.

The scalar curvature is

R = 2ω2 (2r2ω2 − 7)

(r2ω2 + 1)2
.

Now, Γrr = 0̄ = 〈0, 0, 0, 0〉 shows that the radial straight lines in the xy-planes
(i.e., the lines with direction “dr”) are geodesics. The worldlines of the galaxies are
of direction ωdϕ + dt, hence

ω2Γϕϕ + 2ωΓϕt + Γtt = 0̄

shows that the worldlines of the distinguished observers mi are geodesics in the
Naive GU.

Gödel wanted the distinguished observers m0, . . . ,mi to be fully “equivalent”
with each other. This means that mi and m0 should be indistinguishable for any
choice of mi. This means that there should exist an automorphism hi,0 : 〈R, g〉 −→
〈R, g〉 such that hi,0 takes the worldline of mi to that of m0. Since the scalar
curvature is preserved by automorphisms, this implies that the scalar curvature
should not depend on r (as it really does not depend on r in Gödel’s universe as
we will see soon). This implies that in the Naive GU, the distinguished observers
mi are not fully equivalent with each other, because the scalar curvature depends
on r.

We note that the line element in the Naive Dervish World is

ds2 = − dt2 + dr2 + dz2 +
r2(1 − r2ω2)

(1 + r2ω2)2
dϕ2 +

2r2ω

(1 + r2ω2)
dϕdt .
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7.2. The metric tensor of Gödel’s universe GU. Gödel in [Göd95b,
p.275], [Göd90, p.195] and elsewhere defines his universe by presenting the “line
element” (i.e. the “metric tensor field”) as

(⋆) ds2 =
2

ω2

[

−dt2 + dr2 + dz2 + (sinh2 r − sinh4 r)dϕ2 + 2
√

2 sinh2 rdϕdt
]

.

This is understood in the cylindric-polar coordinates 〈td, rd, ϕd, zd〉 of the dervish
world we discussed in Sections 3,8. Cf. Figure 35. Instead of 2

ω2 , Gödel writes

4a2 but in our notational system these two constants are basically the same. (One
can interpret Gödel’s a as a = 1√

2
ω. 18 Anyway, a and ω are only “parameters”.)

Other differences are that Gödel used the + − −− sign-convention and we also
made a ϕ → −ϕ coordinate transformation so as to use the same form of Gödel’s
metric that Lathrop–Teglas [LT78] uses. In tensorial form, (⋆) can be written by
specifying that Gödel’s metric tensor field 2

ω2 g is defined by

gtt = 1 , grr = gzz = −1 , gϕϕ = sinh4 r − sinh2 r , gϕt =
√

2 sinh2 r ,

gtϕ = gϕt, and the rest of the gij ’s are 0.

Clearly, g(p) is a function of p = 〈t, r, ϕ〉, but only gϕϕ and gϕt depend on
p . Further, of the parts of p, they depend only on rp and on ϕp . This is caused
by the symmetries of our space-time, i.e. rotation along ϕ and translation along t
are automorphisms of GU (both for all versions of GU herein as well as in Gödel’s
quoted 19 papers). Notice that in the Naive Dervish World, both gϕϕ and gtϕ tend
to constants as r tends to infinity while in Gödel’s Dervish World they both tend
to infinity as r tends to infinity. This is why we refined our Naive GU to obtain
the Tilted GU.

Lathrop–Teglas [LT78] presents Gödel’s universe in so-called Fermi coordi-
nates. This means that the t axis as well as the radial lines are geodesics and
the gyroscopes (i.e., compasses of inertia) of m0 are not rotating. This is a spiral
world where the cosmic compasses are replaced with compasses of inertia. It is very
similar to Refined (Choice 2) Spiral World depicted in Figure 30. Indeed, [LT78]
obtains this metric from (⋆) above by the following coordinate transformation. Be-
low t′, r′, z′, ϕ′ are the new coordinates, t, r, z, ϕ are the coordinates used in (⋆) and

c =
√

2
ω

.

t′ = ct, r′ = cr, z′ = cz, ϕ′ = ωt′ − ϕ .

This is the transformation from forward tilted (Choice 1) Dervish World to
backward tilted (Choice 2) Spiral World (apart from multiplying with a constant
c). From now on, for simplicity, we write t, r, ϕ, z for t′, r′, ϕ′, z′.

Let us use the notation

sh = sinh(
ω√
2

r) and ch = cosh(
ω√
2

r) .

Now, the “line element” (i.e. the “metric tensor field”) of Gödel’s universe in Fermi
coordinates is

ds2 = −(1 + 2 sh2 ch2)dt2 + dr2 + dz2 +
2

ω2
sh2(1 − sh2)dϕ2 +

4

ω
sh4 dϕdt .

18Cf. item (9) on p.191 in Gödel [Göd90].
19There are papers of Gödel in which these symmetries fail (for rotating universes), cf. e.g.

[Göd90, p.208].
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The nonzero Christoffel symbols Γi
jk are

Γr
tt = ω

√
2 sh ch(2 ch2 −1) , Γt

tr = ω
√

2 sh ch , Γϕ
tr = ω2

√
2 sh ch ,

Γr
tϕ = −2

√
2 sh3 ch , Γt

rϕ =

√
2sh3

ch
, Γϕ

rϕ =
−ω(2 ch4 −4 ch2 +1)√

2 sh ch
,

Γr
ϕϕ =

√
2 sh ch(2 ch2 −3)

ω
, and the Γi

kj = Γi
jk for the nonzero Γi

jk listed above.

The scalar curvature is

R = 2ω2 .

A sample of papers investigating Gödel’s universe is Chakrabarti–Geroch–
Liang [CGL83], Chandrasekhar–Wright [CW61], Dorato [Dor], Gödel [Göd95a],
[Göd95b], Heckmann–Schücking [HS55], Kundt [Kun56], Lathrop–Teglas [LT78],
Malament [Mal84], Obukhov [Obu00], Plaue–Scherfner–de Sousa [PSd], Sklar
[Skl84], Stein [Ste70]. A sample of books about general relativity and time (es-
pecially relevant to the present paper) is Earman [Ear95], Gibilisco [Gib83], Gott
[Got01], Horwich [Hor87], Novikov [Nov98], O’Neill [O’N95], Pickover [Pic98],
Yourgrau [You99].

For more on the drag effect and its connections with Mach’s principle cf.
e.g. Wald [Wal84, p.89 item 3.(c), p.187 Problem 3(b), p.319 immediately below
item (12.3.17)]. For more detail on “drag” and Mach cf. Misner–Thorne–Wheeler
[MTW73, §21.12 (entitled “Mach’s...”) and especially pp.546–548, also item B
on p.879, pp.1117, 699, 893, 1120]. Cf. also d’Inverno [d’I83, §9.2 (pp.121–124)],
Gibilisco [Gib83, pp.19–123 (subtitle: Alone in the universe)].

For the gravitational drag effect we refer to Rindler [Rin77, pp.10–13, §§1.15,
1.16], Wald [Wal84, pp.9,71,89,183,319], Wald [Wal77, pp.32–33], together with
Misner–Thorne–Wheeler [MTW73, §40.7 (pp.1117–1120), §33.4 (p.892), §21.12
(in particular p.547), p.1120 (footnote)]. The gravitational drag effect is related
to Mach’s principle as is explained e.g. in [MTW73, §21.12] and in [Rin77, §1.15
(e.g. p.12)].

Figure 1 is a slightly corrected version of Figure 31 in Hawking–Ellis [HE73].
This picture can also be found in Yourgrau [You99]. Malament [Mal84, p.99]
pointed out that the light-cones on that figure are tilted so much that they do not
contain the vertical lines which are the worldlines of the distinguished observers in
the dervish-world (which the figure represents). Below we include the Figure from
Malament’s paper (in which the light-cones are corrected already).

Figure 34: Figure from Malament’s paper [Mal84].
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The present work is part of a broader effort for what we could bluntly call
demystifying general relativity theory and its relatives like wormhole-theory and
cosmology. More concretely, we try to provide a purely logic based conceptual
analysis for general relativity and its relatives. One of the aims is to provide
a technically correct but easily understandable introduction to general relativity
including its most exotic reaches for the questioning mind of the nonspecialist.
A sample of works in this general direction is [AMN07], [ANW08], [Mad02],
[Szé09], [Szé09a].

8. Appendix: technical details for the constructions.

Connections between our spiral coordinate system 〈t, x, y, z〉 = 〈ts, . . . , zs〉
and co-rotating (dervish) coordinate system 〈t′, x′, y′, z′〉 = 〈T r,Xr, Y r, Zr〉:

By definition, t′ = t and z′ = z. Throughout we suppress the irrelevant spatial
coordinate z. Below, instead of the Cartesian systems 〈t, . . . , y〉, 〈t′, . . . , y′〉 we use
their cylindric-polar-coordinates variants 〈t, ϕ, r〉 and 〈t′, ϕ′, r′〉. 20 The connections

are the usual standard ones, e.g. r =
√

x2 + y2, y = r · cos(ϕ), x = r · sin(ϕ),

ϕ = arctan(x/y). In more detail, r(p) =
√

x(p)2 + y(p)2 etc. 〈ts, ϕs, rs〉 := 〈t, ϕ, r〉
and 〈T r, ϕr, rr〉 = 〈td, ϕd, rd〉 = 〈t′, ϕ′, r′〉. Here s abbreviates “spiral” and “d”
abbreviates “dervish”.

The “galaxies” m1,m2, . . . ,mi appear as rotating around m0 in direction ϕ
with angular velocity ω in 〈ts, . . . 〉 while their cosmic compasses xi, yi appear fixed
(non rotating). As a contrast, 〈T r, . . . 〉 shows m1, . . . ,mi as motionless, while it
shows their cosmic compasses as rotating in direction −ϕ with angular velocity ω.
We use p to denote an arbitrary point which has coordinates t(p), ϕ(p), r(p) etc.
We represent these simple connections in Figures 35–37. As we said, we suppress
coordinate z. In Figure 35 below (p.44) we regarded only such points p which are
on the cylinder r(p) = 1. Generalizing to arbitrary points is trivial since r does not
change. As it is obvious from the picture, the transformation “spiral” 7→ “dervish”
is

ϕd(p) = ϕs(p) − ω · ts(p)

rd(p) = rs(p)

td(p) = ts(p)

zd(p) = zs(p). Clearly,

ϕs(p) = ϕd(p) + ω · td(p).

The angular velocity of the rotation of the universe as seen by 〈ts, . . . 〉 is ω.

20Cf. e.g. d’Inverno [d’I83, Fig.19.2 (p.253)].
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td(p) = ts(p)

p

1d
r = 1s

r

0̄

ϕs(p)

ϕd(p)
ϕd(p)

ϕs(p)

worldline of mi

(a galaxy)

1s
t = 1d

t

ts = td

direction of expected rotation of
cosmic compasses

in the 〈td, ϕd, rd〉 coordinate system

direction of rotation of universe
(i.e. of distant galaxies) w.r.t.

cosmic compasses i.e. in 〈ts, ϕs, rs〉

View from the spiral coordinate

system 〈ts, ϕs, rs〉:

ϕd = 0

ϕs = 0

ts(p)

ϕd(p) = ϕs(p) − ω · ts(p)

1s
ϕ

ω

r

the ϕs = 0 plane

!

Figure 35: As throughout this work, here too, the irrelevant spatial coordinates
zd = zs = zi = z are suppressed.
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p

View from the dervish coordinate

system 〈td, ϕd, rd〉: t0 = td = ts

direction of rotation
of dervishes i.e. of
cosmic compasses

a dervish co-rotating
with “ϕs = 0 surface”
i.e. with spiral
coordinate system

ϕs = 0

ϕd = 0

td(p) = ts(p)

1d
r = 1s

r
1d

ϕ
ϕs(p)

ϕd(p)
r ϕd(p)

ϕs(p)

direction of
rotation of
cosmic compasses in the

〈td, ϕd, rd〉 coordinate system

direction of rotation of universe
(i.e. of distant galaxies) w.r.t. cosmic compasses

i.e. in 〈ts, ϕs, rs〉

x0
y0

y0
x0

t0

x0y0

1t

m0

m0

worldline of mi

ϕs(p) = ϕd(p) + ω · td(p)

−ω

!

Figure 36: Dervish view of spiral world, i.e. backward transformation 〈td, . . .〉 −→
〈ts, . . .〉. Notice that the t = 0 plane in this figure coincides with that of previous
figure (e.g. marked points are the same on the two).
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Figure 37: In the Spiral World, the “galaxies” m1,m2, . . . ,mi appear as rotating
around m0 in direction ϕ with angular velocity ω while their cosmic compasses xi, yi

appear fixed (non rotating). As a contrast, the Dervish World shows m1, . . . ,mi as
motionless, while it shows their cosmic compasses as rotating in direction −ϕ with
angular velocity ω.
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[EN02] G. Etesi and I. Németi, Non-Turing computations via Malament-Hogarth space-times,
International Journal of Theoretical Physics 41,2 (2002), 341–370.

[Eps81] L.C. Epstein, Relativity visualized, Insight Press, 1981.

[Gib83] S. Gibilisco, Understanding Einstein’s theories of relativity, Dover Publications Inc.,
New York, 1983.
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Rényi Institute of Hungarian Academy of Sciences, Reáltanoda street 13-15, H-
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