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Abstract. We give a new proof of a theorem due to Maddux and Tarski that every
functionally dense relation algebra is representable. Our proof is very close in spirit to
the original proof of the theorem of Jónsson and Tarski that atomic relation algebras
with functional atoms are representable. We prove that a simple, functionally dense
relation algebra is either atomic or atomless, and that every functionally dense relation
algebra is essentially isomorphic to a direct product B × C, where B is a direct
product of simple, functionally dense relation algebras each of which is either atomic
or atomless, and C is a functionally dense relation algebra that is atomless and has
no simple factors at all. We give several new structural descriptions of all atomic
relation algebras with functional atoms. For example, each such algebra is essentially
isomorphic to an algebra of matrices with entries from the complex algebra of some
group. Finally, we construct examples of functionally dense relation algebras that are
atomless and simple, and examples of functionally dense relation algebras that are
atomless and have no simple factors at all.

Jónsson and Tarski [8] proved that every (abstract) atomic relation algebra
with functional atoms is representable as an algebra of binary relations. They
drew the corollary that every relation algebra in which the unit is a sum
of finitely many functional elements is representable as an algebra of binary
relations. Tarski posed the question whether every functionally dense relation
algebra—that is to say, every relation algebra in which the unit is a sum of
some set (finite or infinite) of functional elements —is representable. A positive
answer to this question was given by Maddux and Tarski—see the abstract [10]
and the paper [9]. Jónsson and Tarski also gave a description of all complete
and atomic relation algebras with functional atoms, using complex algebras of
axiomatically defined generalized Brandt groupoids. In particular, they proved
that a simple relation algebra is complete and atomic with functional atoms if
and only if it is isomorphic to the complex algebra of a Brandt groupoid.

In this paper we give a new proof of Maddux and Tarski’s representation
theorem, one that in our opinion is very close in spirit to the original proof of
Jónsson and Tarski’s representation theorem and also to the standard Cayley
representation theorem for groups. We then show that a functionally dense
relation algebra that is simple is either atomic or atomless. Consequently, the
completion of every functionally dense relation algebra can be decomposed into
a direct product B × C with the following properties: B is a direct product of
simple, functionally dense relation algebras each of which is either atomic or
atomless; and C is either trivial (that is to say, it has just one element) or else
it is a non-trivial functionally dense relation algebra that is atomless and has
no simple factors because its Boolean algebra of ideal elements is atomless.
We give several different structural descriptions of the simple relation algebras
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that are atomic with functional atoms. We believe that these descriptions
are more visual and more familiar than the Jónsson-Tarski description using
axiomatically defined Brandt groupoids. We also construct a class of exam-
ples of simple, atomless, functionally dense relation algebras. The problem
whether every simple, atomless, functionally dense relation algebras is essen-
tially isomorphic to one of these examples is left open. Finally, we close with a
class of examples of functionally dense relation algebras for which the Boolean
algebras of ideal elements are also atomless.

1. Preliminaries

A relation algebra is an algebra

A = (A , + , − , ; , � , 1’ )

in which + and ; are binary operations on the universe A, while − and �

are unary operations on A, and 1’ is a distinguished constant of A, such that
(A , + , −) is a Boolean algebra, and the following additional postulates (due
to Tarski) are satisfied for all elements r, s, and t in A.

(i) (Associative law for Relative Multiplication) r ; (s ; t) = (r ; s) ; t.
(ii) (Identity Law for Relative Multiplication) r ; 1’ = r.
(iii) (First Involution Law) r�� = r.
(iv) (Second Involution Law) (r ; s)� = s� ; r�.
(v) (Distributive Law for Relative Multiplication) (r + s) ; t = r ; t + s ; t.
(vi) (Distributive Law for Converse) (r + s)� = r� + s�.
(vii) (Tarski’s Law) r� ; −(r ; s) + −s = −s.

The set A is called the universe of A. The (Boolean) operations + and −
are called addition and complement (or complementation) respectively. The
(Peircean) operations ; and � are called relative multiplication and converse
(or conversion) respectively. The distinguished constant 1’ is called the iden-
tity element. The conventions regarding the order in which operations are to
be performed when parentheses are omitted are as follows: unary operations
take precedence over binary operations, and among binary operations, multi-
plications take precedence over additions. For example, in fully parenthesized
form, axioms (iv) and (vii) would be written as

(r ; s)� = (s�) ; (r�) and ((r�) ; (−(r ; s))) + (−s) = −s

respectively. The associative law for relative multiplication permits us to write
expressions such as r ; s ; t without any parentheses. We shall often employ
this law without any explicit reference to it.

The classic example of a relation algebra is the full set relation algebra
Re(E) of all subrelations of an equivalence relation E on a set U . The oper-
ations of Re(E) are the set-theoretic ones of union, complement with respect
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to E, relational composition, and converse that are respectively defined by

R ∪ S = {(α, β) : (α, β) ∈ R or (α, β) ∈ S},

∼R = {(α, β) : (α, β) ∈ E and (α, β) �∈ R},

R|S = {(α, β) : (α, γ) ∈ R and (γ, β) ∈ S for some γ ∈ U},

R−1 = {(α, β) : (β, α) ∈ R}.

The distinguished constant is the identity relation idU on the set U . If E is
the universal relation U × U , then Re(E) is called the full set relation algebra
on U and is denoted by Re(U), so that in this case Re(E) = Re(U).

Another important example of a relation algebra is the complex algebra of a
group (G , ◦ , −1 , ι), where ι is the identity element of the group. The elements
in this complex algebra are the subsets (or complexes) of the set G, and the
operations of the algebra are the set-theoretic ones of union, complement with
respect to G, group complex multiplication, and group complex inverse, the
latter two being respectively defined by

H ◦K = {h ◦k : h ∈ H and k ∈ K} and H−1 = {h−1 : h ∈ H}.

The identity element of the algebra is the singleton {ι}. We write Cm(G) for
this complex algebra. In practice, we identify the elements in G with the atoms
in Cm(G), that is to say, we identify group elements h with their singletons
{h}, and speak about h as if it were the element {h} in Cm(G).

Since a relation algebra A is a Boolean algebra with additional operations,
the usual Boolean notions make sense in the context of relation algebras. For
example, the Boolean product of two elements r and s in A is defined by

r · s = −(−r + −s),

and a partial ordering can be defined on A by

r ≤ s if and only if r + s = s.

The Boolean zero and unit elements are denoted by 0 and 1 respectively.
Two elements in A are said to be disjoint if their Boolean product is 0. An
atom in A is defined to be a minimal non-zero element (in the sense of the
partial ordering just defined), and a relation algebra is atomic if every non-
zero element is above an atom. The supremum (or Boolean sum) and infimum
(or Boolean product) of a set X of elements in A are, respectively, the least
upper bound and the greatest lower bound of X, and if they exist, then they
are respectively denoted by

∑
X and

∏
X. Of course, suprema and infima of

arbitrary sets of elements need not exist, but if they always do exist, then the
relation algebra A is said to be complete. A complete subalgebra of a complete
relation algebra A is a subalgebra B such that the supremum (in A) of every
subset of B belongs to B. A regular subalgebra of a (not necessarily complete)
relation algebra A is a subalgebra B such that, for every subset X of B, if
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X has a supremum r in B, then X has a supremum in A as well, and that
supremum is r.

The operations of converse and relative multiplication in a relation algebra
are completely distributive over addition in the sense that if the suprema of
sets of elements X and Y exist in the algebra, then the supremum of the set
{r� : r ∈ X} exists and ∑{r� : r ∈ X} = (

∑
X)�,

and the supremum of the set {r ; s : r ∈ X and s ∈ Y } exists and∑{r ; s : r ∈ X and s ∈ Y } = (
∑

X) ; (
∑

Y ).

There are a number of important laws in the theory of relation algebras
that we shall need. Proofs of most of them can be found in [1], [2], or [8].
Among these laws, the following equivalences play a fundamental role in the
development of the entire arithmetic of relation algebras.

Lemma 1.1. The following three equations are equivalent:

(r ; s) · t = 0, (r� ; t) · s = 0, (t ; s�) · r = 0.

The next lemma summarizes some of the general relation algebraic laws that
we shall need. The second and sixth laws are called the monotony laws for
converse and relative multiplication respectively. The seventh and eighth laws
are the left-hand identity law and the left-hand distributive law for relative
multiplication over addition.

Lemma 1.2. (i) 1’� = 1’, 0� = 0, and 1� = 1.
(ii) r ≤ s if and only if r� ≤ s�.
(iii) r ; 0 = 0 and 0 ; r = 0.
(iv) r ≤ r ; 1 and r ≤ 1 ; r.
(v) 1 ; 1 = 1.
(vi) If r ≤ t and s ≤ u, then r ; s ≤ t ; u.
(vii) 1’ ; r = r.
(viii) t ; (r + s) = t ; r + t ; s.
(ix) (r ; s) · t ≤ r ; [s · (r� ; t)].

Several special kinds of elements will play an important role in our discus-
sion. An equivalence element in a relation algebra A is an element e satisfying
the inequalities e� ≤ e and e ; e ≤ e. In set relation algebras, a relation sat-
isfies the first, respectively the second, of these inequalities just in case it is
symmetric, respectively transitive. If r and s are arbitrary elements in A that
are below an equivalence element e, then

r + s ≤ e, e · −r ≤ e, r ; s ≤ e, r� ≤ e, e · 1’ ≤ e.

The set of all elements below e is therefore a Boolean algebra under the op-
eration of Boolean addition and complement relative to e. The preceding
inequalities also show that this set is closed under relative multiplication and
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converse, and contains the relativized identity element e · 1’ (where 1’ is the
identity element in A). The corresponding algebra is called the relativization
of A to e. It is a relation algebra and, in fact, it is almost a subalgebra of A

(see [8]). The only differences between a relativization and a subalgebra of A

are that the unit is e and not the unit 1 of A, the identity element is e · 1’ and
not the identity element 1’ of A, and complements are formed with respect to
e and not with respect to 1. Here is a concrete example: if E is an equivalence
relation on a set U , then Re(E) is just the relativization of Re(U) to E.

The relativization of a relation algebra A to an equivalence element e may
inherit a number of properties from A. For instance, if A is complete, then so
is the relativization. An element r in A is an atom in the relativization if and
only if r is an atom in A and r ≤ e. In particular, if A is atomic, then the
relativization is also atomic.

A subidentity in a relation algebra is an element x ≤ 1’. A right-ideal
element is an element r with the property that r = r ;1. Right-ideal elements r

are characterized by the fact that r = s;1 for some element s (and in this case s

is said to generate the right-ideal element r); in fact, s may always be assumed
to be a subidentity element. Analogously, r is a left-ideal element if r = 1 ; r,
or equivalently, if there is an element s such that r = 1;s (and as before, s may
always be assumed to be a subidentity element). The names come from the
fact that these elements play a special role in determining what are sometimes
called (relation algebraic) right and left ideals. In a full set relation algebra on
a set U , right-ideal elements, respectively left-ideal elements, are relations R

that can be written in the form R = X ×U , respectively R = U ×X, for some
subset X of U . These relations may be thought of as vertical, respectively
horizontal, strips in the Cartesian plane determined by U × U .

We shall need the following laws concerning right-ideal elements.

Lemma 1.3. Let r and s be right-ideal elements , say r = x ; 1 and s = y ; 1
for some subidentity elements x and y.

(i) −r is a right-ideal element , and in fact , −r = −(x ; 1) = (1’ − x) ; 1.
(ii) If the supremum of an arbitrary set of right-ideal elements exists, then

that supremum is a right-ideal element. In particular , r + s is a right-
ideal element , and in fact, r + s = x ; 1 + y ; 1 = (x + y) ; 1.

(iii) r · (s ; t) = (r · s) ; t for all elements s and t.

The set of all right-ideal elements forms a regular Boolean subalgebra B of
the Boolean part of a relation algebra A, by parts (i) and (ii) of the preceding
lemma. It is called the Boolean algebra of right-ideal elements in A. The law
in (iii) is called the strong modular law for right-ideal elements, and it actually
characterizes those elements r that are right-ideal elements: r is a right-ideal
element in A if and only if r satisfies the equation in (iii) for all s and t in A.

A rectangle in a relation algebra is an element of the form x ; 1 ; y, where
x and y are subidentity elements. The elements x and y are called the sides
of the rectangle. Since x ; 1 ; y = (x ; 1) · (1 ; y), a rectangle is just an element
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that is the Boolean product of a right-ideal element with a left-ideal element.
Consequently, in a full set relation algebra on a set U , the rectangles are sets
of the form X × Y , where X and Y are subsets of U . Here are the laws about
rectangles that we shall need.

Lemma 1.4. Let x, y, u, v be subidentity elements in a relation algebra A.

(i) (x ; 1 ; y) · (u ; 1 ; v) = (x · u) ; 1 ; (y · v).
(ii) (x ; 1 ; y)� = y ; 1 ; x.
(iii) x ; 1 ; y �= 0 whenever A is simple and the sides x, y are non-zero.
(iv) (x ; 1 ; y) ; (u ; 1 ; v) ≤ x ; 1 ; v, and equality holds whenever A is simple and

y · u is non-zero.
(v) x ; 1 ; y = u ; 1 ; v if and only if x = u and y = v, whenever A is simple

and the sides of the rectangles are non-zero.

A square in a relation algebra is a rectangle for which the two sides are
equal. It is easy to check, using Lemma 1.4(ii),(iv), that a square is always an
equivalence element. Consequently, it makes sense to speak of the relativiza-
tion of a relation algebra to a square.

The domain and range of an element r in a relation algebra are defined to
be the subidentity elements

domain r = (r ; 1) · 1’ and range r = (1 ; r) · 1’

respectively. In a set relation algebra, the domain (range) of a relation R

is the set of pairs (α, α) such that α is in the domain (range) of R in the
standard sense of this word. The domain and range of a rectangle x ; 1 ; y are,
respectively, the sides x and y. The domain of a right-ideal element r = x ; 1 is
x, and the range of a left-ideal element r = 1;y is y. If x and y are respectively
the domain and range of an element r, then

x ; r = r ; y = r.

Thus, the domain and range of an element r act respectively as left-hand and
right-hand identity elements for r.

A function, or a functional element, in a relation algebra is an element f

with the property that f� ; f ≤ 1’. A bijection, or a bijective element, is
a function f with the property that the converse f� is also a function. In
a set relation algebra, functional and bijective elements are respectively just
functions and one-to-one functions in the set-theoretic sense of the word. Here
are the laws about functions that we need. The law in (iii) says that a function
is left-distributive over Boolean multiplication. It follows that a bijection is
both left- and right-distributive over Boolean multiplication.

Lemma 1.5. (i) If f is a function with domain x and range y, and if g is a
function with domain y and range z, then f ; g is a function with domain
x and range z.

(ii) If f is a function , and g ≤ f , then g is a function and (g ; 1) · f = g.
(iii) If f is a function , then f ; (r · s) = (f ; r) · (f ; s) for all elements r and s.
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(iv) The supremum of a set of functions generating mutually disjoint right-
ideal elements, if it exists, is a function . In particular , if f and g are
functions such that (f ; 1) · (g ; 1) = 0, then f + g is a function .

The next lemma concerns atoms.

Lemma 1.6. (i) If r is an atom , then so are the domain and range of r.
(ii) If r is an atom , then r ; 1 is an atom in the Boolean algebra of right-ideal

elements . In particular, if r is an atom and 0 < s ≤ r ; 1, then s ; 1 = r ; 1.
(iii) If r is an atom in the Boolean algebra of right-ideal elements, and if f

is a function such that r · f �= 0, then r · f is an atom. In particular,
if r is an atom (in the relation algebra) and if f is a function satisfying
0 < f ≤ r ; 1, then f is an atom .

(iv) A function is an atom if and only if its domain is an atom.
(v) If r is an atom and f a function whose domain includes the range of r,

then r ; f is an atom .
(vi) If r is an atom , then so is r�.

An element that is both a right-ideal element and a left-ideal element is
called an ideal element. Ideal elements r are characterized by the fact that
r = 1 ; s ; 1 for some element s (and in this case s is said to generate the
ideal element r); as with right-ideal elements, s may always be taken to be a
subidentity element. In the full relation algebra on an equivalence relation E,
the ideal elements are just the relations R that can be written in the form

R =
⋃{V × V : V ∈ X}

for some set X of equivalence classes of E. In particular, if V is an equivalence
class of E, then V × V is an ideal element.

It follows from Lemma 1.3(i),(ii) and the analogue of this lemma for left-
ideal elements, together with Lemma 1.2(iii),(v), that the set of ideal elements
in a relation algebra A contains 0 and 1 and is closed under the Boolean
operations of A. Consequently, this set is a Boolean algebra under the Boolean
operations of A, and in fact it is a regular subalgebra of the Boolean part of A

in the strong sense that the supremum of a set of ideal elements exists in the
Boolean algebra of ideal elements if and only if it exists in A, and when these
suprema do exist, they are equal (see [1] and [8]).

There is a very close connection between ideal elements and ideals in relation
algebras. Let A be a relation algebra and B the Boolean algebra of ideal
elements in A. If M is a relation algebraic ideal in A, then the set KM = B∩M

is a Boolean ideal in B, and if K is a Boolean ideal in B, then the set

MK = {r ∈ A : 1 ; r ; 1 ∈ K}
is a relation algebraic ideal in A. The function that maps each relation alge-
braic ideal M in A to the Boolean ideal KM in B is a lattice isomorphism from
the lattice of relation algebraic ideals in A to the lattice of Boolean ideals in
B, and the inverse of this isomorphism maps each Boolean ideal K in B to
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the relation algebraic ideal MK in A (see [1] and [8]). In particular, M is a
principal ideal in A just in case KM is a principal ideal in B, or what amounts
to the same thing, just in case M is the set of all elements in A that are below
some given ideal element.

Ideal elements are always equivalence elements, so it makes sense to speak
of the relativization of a relation algebra to an ideal element (see [8]). In
contrast to arbitrary equivalence elements, however, ideal elements determine
ideals (and therefore congruence relations) on relation algebras. Consequently,
systems of ideal elements can be used to obtain direct decompositions of rela-
tion algebras. If a system (ri : i ∈ I) of ideal elements in a relation algebra A

forms a partition of unity in the sense that the elements are mutually disjoint
and sum to 1, then A is isomorphic to the direct product of the system of
relation algebras (Ai : i ∈ I), where Ai is the relativization of A to the ideal
element ri. We shall refer to this result as the Jónsson-Tarski decomposition
theorem (see [8]). In particular, if r is an ideal element in A, then A is iso-
morphic to the direct product of the relation algebras B and C that are the
relativizations of A to r and −r respectively.

A relation algebra A is said to be simple if it is non-trivial (that is to say,
it has at least two elements), and if it has only two ideals: the trivial ideal {0}
and the improper ideal A. The class of simple relation algebras admits a very
simple arithmetic characterization: a relation algebra A is simple if and only if
it has precisely two ideal elements, namely 0 and 1. Equivalently, A is simple if
and only if 0 �= 1 and for all elements r in A, if r �= 0, then 1 ;r ; 1 = 1 (see [8]).
It follows from this characterization that every subalgebra of a simple relation
algebra is simple (see [8]). It also follows that if r is an atom in the Boolean
algebra of ideal elements in A—an ideal element atom, so to say —then the
relativization of A to r is a simple relation algebra.

We shall need the following consequence (due to Givant) of the Jónsson-
Tarski decomposition theorem.

Theorem 1.7. Every complete relation algebra A is isomorphic to the direct
product of two complete relation algebras B and C with the following properties :
B is the direct product of relativizations of A to ideal element atoms — in
particular, each of these relativizations is simple — and C is a relativization
of A that has an atomless Boolean algebra of ideal elements.

Proof. Let (ri : i ∈ I) be an enumeration of the distinct ideal element atoms
in A. The sum r =

∑
i ri of these elements exists in A, because A is assumed

to be complete; and this sum is an ideal element, by Lemma 1.3(ii) and its
analogue for left-ideal elements. Let B and C be the relativizations of A

to r and −r respectively. Then A is isomorphic to the direct product of B

and C, by the Jónsson-Tarski decomposition theorem. Each of the elements
ri remains an ideal element in B, and the set of these ideal elements is a
partition of unity in B. Consequently, B is isomorphic to the direct product
of the system (Bi : i ∈ I), where Bi is the relativization of B to the element
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ri, again by the Jónsson-Tarski decomposition theorem. The relativization
Bi coincides with the relativization of A to ri, so B is isomorphic to a direct
product of relativizations of A to ideal element atoms—in particular, each of
these relativizations is simple. There can be no ideal element atoms below −r,
because every ideal element atom is, by definition, below r. Consequently, the
Boolean algebra of ideal elements in C is atomless. �

The fact that the Boolean algebra of ideal elements in the relation algebra C

from the preceding theorem is atomless is equivalent to saying C has no simple
factors. Consequently, C cannot be further decomposed into a direct product
containing at least one simple factor.

A relation algebra A is said to be integral if it is non-trivial and if the
relative product of two non-zero elements is always non-zero. It turns out
that a relation algebra is integral if and only if 1’ is an atom (see [8]). This
characterization immediately implies, for example, that the complex algebra of
a group is always integral, and a full set relation algebra on a set of cardinality
at least two is never integral. It also follows from this characterization (and
Lemma 1.6(ii) and its analogue for left-ideal elements) that in an integral
relation algebra, the unit is an atom in the Boolean algebra of ideal elements,
and therefore an integral relation algebra must be simple.

Every relation algebra A has two important extensions, both of which will
be needed in this paper. The first is the canonical extension. It is a complete
and atomic relation algebra B that includes A as a subalgebra and has the
following two additional properties: first, for any two atoms a and b in B,
there is an element r in A that is above a and disjoint from b (this is called
the atom separation property); and second, if 1 is the supremum in B of some
subset X of elements from A, then 1 is already the supremum of some finite
subset of X (this is called the compactness property). The canonical extension
of A exists and is unique up to isomorphisms that are the identity function on
A (see [7]). If A is simple, then the canonical extension of A is simple.

The second extension of A is the completion of A. It is a complete relation
algebra B that includes A as a regular, dense subalgebra. To say that A

is dense in B means that every non-zero element in B is above a non-zero
element from A, or what amounts to the same thing, every element r in B is
the supremum of the set of elements in A that are below r. The completion of
A also exists and is unique up to isomorphisms that are the identity function
on A (see [11]). If A is simple, then the completion of A is also simple. The
completion B is in general not atomic; in fact, B is atomic if and only if A is
atomic, since an element r in B is an atom in B if and only if r is already an
atom in A.

A representation of a relation algebra A is a function ϕ that maps A into a
full set relation algebra Re(E) for some equivalence relation E. The subalgebra
of Re(E) that is the image of A under ϕ is also referred to as a representation
of A. A representation (function) ϕ of A is said to be complete if it preserves all
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existing suprema as unions. This means that if an element r is the supremum
in A of a set of elements X, then the relation ϕ(r) in Re(E) is the union of the
set of relations {ϕ(s) : s ∈ X}. A relation algebra is said to be representable
or completely representable according to whether it has some representation
or some complete representation.

To give a concrete example of a relation algebraic representation, consider
the complex algebra Cm(G) of a group (G , ◦ , −1 , ι). The Cayley representa-
tion of an element f in G is the permutation

Rf = {(g, g ◦f) : g ∈ G}
of G, and the Cayley representation of a subset H of G is the union of the
Cayley representations of the elements in H:

RH =
⋃{Rf : f ∈ H} = {(g, g ◦f) : g ∈ G and f ∈ H}

= {(g, h) : g, h ∈ G and h ≤ g ◦H},

where g ◦H = {g ◦f : f ∈ H}. The validity of the following equations for all
subsets H, K, and L of G is easy to check:

RH ∪ RK = RL, where L = H ∪ K,

∼RH = RL, where L = ∼H,

RH |RK = RL, where L = H ◦K,

R−1
H = RL, where L = H−1,

and idG = Rι. (The operations on the left are performed in Re(G), while
those on the right are performed in Cm(G).) The equations make clear that
the set of all relations of the form RH for subsets H of G is a subuniverse of
Re(G), and in fact it is a complete subuniverse. The corresponding complete
subalgebra is denoted by Ca(G). The equations also imply that the function
ϕ from Cm(G) to Ca(G) defined by

ϕ(H) = RH = {(g, h) : g, h ∈ G and h ≤ g ◦H}
is an isomorphism and in fact a complete representation of Cm(G). It is called
the Cayley representation of Cm(G), and Ca(G) is also referred to as the Cayley
representation of Cm(G).

An atomic relation algebra A need not be complete, since there may be many
infinite subsets of the universe for which the supremum does not exist. This
may pose a problem when trying to represent A as an isomorphic copy of an
algebra in some given concrete class of set relation algebras, and not just as a
subalgebra of some member of the class; for the intended representing algebras
in the class may all be complete, as in the case of the Cayley representations
of group complex algebras. Incompleteness is a relatively minor defect, one
that is correctable by first “filling in” all of the missing infinite sums, without
otherwise modifying the essential structure of A. The technical way of doing
this is to pass to the completion of A. The atoms in the completion are the
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same as the atoms of A, and the operations of the completion when restricted
to elements of A, agree with the operations of A; this is even true in a limited
sense for the infinitary partial operations of forming suprema and infima: if
the supremum or infimum of an infinite subset of A exists in A, then the
subset has the same supremum or infimum in the completion. We shall say
that two relation algebras are essentially isomorphic if their completions are
isomorphic. It should be pointed out that it is not always possible to establish
such an essential isomorphism when dealing with representations; for there
exist atomic relation algebras A with the property that A is representable but
the completion of A is not, as was shown by Hodkinson [5].

We close this section with a theorem that is really a special case of a more
general result about atomic Boolean algebras with operators. It gives sufficient
conditions for a set W of mutually disjoint non-zero elements in a relation
algebra A to generate an atomic subalgebra of A in which the elements in W

are the atoms.

Theorem 1.8. Suppose A is a relation algebra , and W a set of non-zero
elements in A with the following properties .

(i) The elements in W are mutually disjoint and sum (in A) to 1.
(ii) The identity element 1’ is the sum (in A) of the elements in W that are

below 1’.
(iii) If p is in W , then so is p�.
(iv) If p and q are in W , then p ; q is the sum (in A) of the elements in W

that are below p ; q.

The set of sums
∑

X such that X is a subset W and
∑

X exists in A is then
the universe of an atomic subalgebra B of A, and the atoms of B are just the
elements in W . If A is complete, then B is a complete subalgebra of A.

2. The representation theorem for atomic relation algebras with
functional atoms

We begin by presenting a slightly stronger version of Jónsson and Tarski’s
representation theorem for atomic relation algebras with functional atoms, and
a slightly different version of their proof. The representation that we use is
close in spirit to the Cayley representation of the complex algebra of a group.
We focus on the parts of the proof that differ from the proof we shall give of
Maddux and Tarski’s representation theorem for functionally dense relation
algebras. The following preliminary observation may be helpful in orienting
the reader: if every atom in a relation algebra is a function, then the converse
of every atom is also a function (since the converse of an atom is an atom—see
Lemma 1.6(vi)), and therefore every atom is actually a bijection.

Theorem 2.1. Every atomic relation algebra with functional atoms is com-
pletely representable.
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Proof. Let A be an atomic relation algebra with functional atoms, and U the
set of atoms in A. Define a function ϕ from the universe of A into Re(U) by

ϕ(r) = {(a, b) : a, b ∈ U and b ≤ a ; r}.

The proofs that ϕ maps 0, 1’, and 1 to the empty relation, the identity rela-
tion, and an equivalence relation E on U respectively, and that ϕ preserves
Boolean sums as unions, Boolean products as intersections, complements as
set-theoretic complements relative to E, and converses as relational converses
are all identical to the arguments that we shall give in the proof of Theorem 3.3
below. For that reason, we omit those arguments here—the interested reader
is referred to the relevant sections of that proof — and focus on showing that
ϕ preserves all existing suprema as unions, preserves relative multiplication as
relational composition, and is one-to-one.

To see that ϕ preserves all existing suprema as unions, suppose r is the
supremum of a set X of elements in A. The complete distributivity of relative
multiplication over addition implies that

a ; r =
∑

(a ; X) =
∑{a ; s : s ∈ X}.

For atoms a and b, we therefore have b ≤ a ; r if and only if b ≤ a ; s for some
s in X, so

(a, b) ∈ ϕ(r) if and only if b ≤ a ; r,

if and only if b ≤ a ; s for some s in X,

if and only if (a, b) ∈ ϕ(s) for some s in X,

if and only if (a, b) ∈ ⋃
s∈X ϕ(s),

by the definition of ϕ, the preceding remarks, and the definition of the union
of a system of elements. Thus, ϕ(r) =

⋃
s∈X ϕ(s).

For the proof that ϕ preserves relative multiplication, let a and b be atoms,
and r and s arbitrary elements, in A. Take X to be the set of atoms below
a ; r, and observe that a ; r =

∑
X, since A is assumed to be atomic. The

complete distributivity of relative multiplication over addition implies that

a ; r ; s = (
∑

X) ; s =
∑{c ; s : c ∈ X} =

∑{c ; s : c ∈ U and c ≤ a ; r}.

Therefore,

b ≤ a ; r ; s if and only if c ≤ a ; r and b ≤ c ; s

for some c in U . Consequently,

(a, b) ∈ ϕ(r ; s) if and only if b ≤ a ; r ; s,

if and only if c ≤ a ; r and b ≤ c ; s for some c in U,

if and only if (a, c) ∈ ϕ(r) and (c, b) ∈ ϕ(s)

for some c in U,

if and only if (a, b) ∈ ϕ(r)|ϕ(s),
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by the definition of ϕ, the preceding remarks, and the definition of relational
composition. Thus, ϕ(r ; s) = ϕ(r)|ϕ(s) for all elements r and s in A.

To check that ϕ is one-to-one, consider elements r and s in A. Take X to
be the set of atoms below 1’, and observe that 1’ is the supremum of X, by
the assumption that A is atomic. Consequently,

r = 1’ ; r = (
∑

X) ; r =
∑{a ; r : a ∈ X} =

∑{a ; r : a ∈ U and a ≤ 1’}.

For each atom b, we therefore have b ≤ r if and only if b ≤ a ; r for some atom
a ≤ 1’. A similar argument leads to the conclusion that b ≤ s if and only if
b ≤ a;s for some atom a ≤ 1’. Suppose now that ϕ(r) = ϕ(s). This assumption
and the definition of ϕ imply that for any two atoms a and b, we have b ≤ a ; r
if and only if b ≤ a ; s. Combine these observations to arrive at the conclusion
that an atom is below r if and only if it is below s. The elements r and s are
the sums of the atoms they dominate, by the assumed atomicity of A, so the
last conclusion implies that r = s. �

The definition of the representation in the preceding proof may be viewed
as a natural extension to atomic relation algebras with functional atoms of the
definition of the Cayley representation of the complex algebra of a group.

Jónsson-Tarski [8] drew the following conclusion from their version of The-
orem 2.1.

Corollary 2.2. If the unit of a relation algebra A is the sum of a finite set of
functional elements, then A is representable .

Proof. Let B be the canonical extension of A. Finite sums are preserved under
the passage to canonical extensions, so the unit of B must also be the sum of
a finite set of functions. The algebra B is atomic, and each atom in B, being
below the unit and therefore below a sum of functions, must be below some
function. Elements below functions are functions, by Lemma 1.5(ii), so B is an
atomic relation algebra with functional atoms. Consequently, B is completely
representable, by Theorem 2.1. It follows that A is also representable. �

3. Functionally dense relation algebras

A relation algebra is said to be functionally dense if below every non-zero
element there is a non-zero function. The following five conditions on a relation
algebra A are easily seen to be equivalent: (1) A is functionally dense; (2) the
unit in A is the supremum of the set of all functions; (3) the unit in A is the
supremum of some set of functions; (4) every element in A is the supremum of
the set of all functions that are below it; (5) every element in A is the supremum
of some set of functions. The goal of this section is to give a new proof of
Maddux and Tarski’s theorem that every functionally dense relation algebra is
representable (see [9]). Their theorem improves Theorem 2.1 by removing the
requirement that the relation algebra be atomic; and it improves Corollary 2.2
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by removing the requirement that the set of functions of which the unit is
the supremum be finite. In contrast to the representation in Theorem 2.1,
however, the representation that is obtained in the Maddux-Tarski theorem is
not necessarily complete.

The underlying idea of our proof is to assume first that A is a functionally
dense relation algebra that is complete, and to pass to the canonical extension
of A. This extension is in general not functionally dense, but it has enough
functional atoms to build a representation of A in the style of Theorem 2.1. The
general case when A is not complete is handled by passing to the completion
of A, which continues to be functionally dense.

Lemma 3.1. If a functionally dense relation algebra is complete, then below
every non-zero element r there is a (non-zero) function f such that f ;1 = r;11.

Proof. Let A be a functionally dense relation algebra that is complete, and
consider a non-zero element r in A. By means of a potentially transfinite
induction on ordinal numbers i, we construct a system of non-zero functions
fi that are all below r and that generate mutually disjoint right-ideal elements.
For the base case i = 0, use the functional density of A to choose a non-zero
function f0 that is below r.

Assume now that fi has been chosen for all ordinals i less than a given
ordinal j. The sum

gj =
∑

i<j fi (1)

certainly exists, because A is assumed to be complete. Furthermore, gj is a
function, by Lemma 1.5(iv) and the induction hypothesis that the functions fi

generate mutually disjoint right-ideal elements; and gj is below r because each
of the functions fi is below r, by the induction hypothesis. If the generated
right-ideal elements gj ; 1 and r ; 1 are equal, then the function f = gj has the
requisite properties.

If the generated right-ideal elements are not equal, then

0 < gj ; 1 < r ; 1

(since 0 < gj ≤ r), and therefore

−(gj ; 1) · (r ; 1) �= 0.

The complement −(gj ; 1) is a right-ideal element, by Lemma 1.3(i). Apply
the strong modular law for right-ideal elements (Lemma 1.3(iii), with r, s, and
t replaced by −(gj : 1), r, and 1 respectively) to the preceding inequality to
obtain

[−(gj ; 1) · r] ; 1 �= 0.

1Maddux has recently communicated the following information to us. Tarski formulated
and proved the result given in this lemma in 1976. The result is stated without proof in the
abstract [10] and it is also mentioned (but not proved) in [9].
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It follows that −(gj ;1)·r �= 0, by Lemma 1.2(iii). Invoke the functional density
of A to get a non-zero function fj that is below −(gj ; 1) · r. In particular, fj

is below r. Because fj is also below −(gj ; 1), the monotony law for relative
multiplication and the fact that −(gj ; 1) is a right-ideal element imply that

fj ; 1 ≤ [−(gj ; 1)] ; 1 = −(gj ; 1).

Thus, the right-ideal elements gj ; 1 and fj ; 1 are disjoint. Since

gj ; 1 = (
∑

i<j fi) ; 1 =
∑

i<j(fi ; 1),

it follows that fj ; 1 is disjoint from fi ; 1 for each i < j. This completes the
induction step of the construction.

This process must stop at some ordinal number, because it is impossible
to construct more non-zero, mutually disjoint functions in A than there are
elements in A. If the process stops at the ordinal j, then the sum gj in (1) is a
function below r that generates the same right-ideal element as r. (If it did not
generate the same right-ideal element, then the inductive construction would
continue for at least one more step.) The function f = gj has the requisite
properties. �

We continue with the assumption that A is a complete, functionally dense
relation algebra. Let B be the canonical extension of A, and let U be the set
of atoms in B that are below functions in A. In other words, an element a

belongs to U if and only if a is an atom in B and a ≤ f for some function f in
A. The set U will be the base set of the representation of A. The next lemma
gives a key property that will be needed to construct the representation.

Lemma 3.2. Suppose (ai : i ∈ I) is a finite , non-empty system of elements
in U , and (ri : i ∈ I) a corresponding system of elements in A. If the Boolean
product

∏
i(ai ; ri) is not zero, then this product must be above an atom in U .

Proof. Write

t =
∏

i(ai ; ri), (1)

and assume t �= 0. It is to be shown that t is above some atom in U . Apply
Lemma 1.2(iv), the definition of t, and the monotony and associative laws for
relative multiplication to obtain

0 < t ≤ t ; 1 ≤ (ai ; ri) ; 1 = ai ; (ri ; 1) ≤ ai ; 1 (2)

for each index i. The element ai is an atom in B, so the generated right-ideal
element ai ; 1 is an atom in the Boolean algebra of right-ideal elements in B,
and

t ; 1 = ai ; 1, (3)

by (2) and Lemma 1.6(ii). It follows that t;1 is an atom in the Boolean algebra
of right-ideal elements in B.
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The assumption that ai belongs to U , and the definition of U , imply that
ai is below some function fi in A. Apply Lemma 1.5(ii) to obtain

(ai ; 1) · fi = ai. (4)

Use the strong modular law for right-ideal elements (Lemma 1.3(iii), with r,
s, and t replaced by t ; 1, fi, and ri respectively), (3), and (4) to see that

(t ; 1) · (fi ; ri) = [(t ; 1) · fi] ; ri = [(ai ; 1) · fi] ; ri = ai ; ri. (5)

Conclude that

(t ; 1) · ∏
i(fi ; ri) =

∏
i[(t ; 1) · (fi ; ri)] =

∏
i(ai ; ri) = t > 0, (6)

by Boolean algebra, (5), and (1).
As a Boolean product of relative products of finitely many elements in A,

the element
∏

i(fi ; ri) must also belong to A. Use (6), Lemma 3.1, and the
assumed completeness of A to get a non-zero function g in A such that

g ≤ ∏
i(fi ; ri) and g ; 1 = (

∏
i(fi ; ri)) ; 1. (7)

The short calculation given below shows that

(t ; 1) · (g ; 1) �= 0. (8)

Indeed,

(t ; 1) · (g ; 1) = (t ; 1) · [(∏i(fi ; ri)) ; 1] = [(t ; 1) · ∏i(fi ; ri)] ; 1 = t ; 1 �= 0,

by the second part of (7), the strong modular law for right-ideal elements (with
r, s, and t replaced by t ; 1,

∏
i(fi ; ri), and 1 respectively), (6), and (2). Use

(8) and Lemmas 1.1 and 1.2(i) to arrive at

(t ; 1 ; 1) · g �= 0. (9)

The element

c = (t ; 1 ; 1) · g = (t ; 1) · g

is non-zero, by (9). Since g is a function and t ; 1 is an atom in the Boolean
algebra of right-ideal elements in B, it follows from Lemma 1.6(iii) that c is
in fact an atom in B. Also, c is below the function g, which is in A, so c must
belong to the set U , by the definition of U . Finally,

c = (t ; 1) · g ≤ (t ; 1) · ∏
i(fi ; ri) = t,

by the definition of c, the first part of (7), the monotony law for relative
multiplication, and (6). Thus, c is an atom in U that is below t, as desired. �

Here is Maddux and Tarski’s representation theorem for functionally dense
relation algebras.

Theorem 3.3. Every functionally dense relation algebra is representable.
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Proof. Let A be a functionally dense relation algebra, and assume first that A

is complete. Take B to be the canonical extension of A, and U the set of atoms
in B that are below functions in A. Define a function ϕ from the universe of
A into Re(U) by

ϕ(r) = {(a, b) : a, b ∈ U and b ≤ a ; r}
for r in A.2 Clearly,

ϕ(0) = ∅ and ϕ(1’) = idU .

Indeed, a ; 0 = 0, by Lemma 1.2(iii), so for no atoms a and b can we have
b ≤ a ; 0. Also, a ; 1’ = a, by the identity law for relative multiplication, so for
atoms a and b we have b ≤ a ; 1’ if and only if a = b.

To prove that ϕ preserves the operations of A, fix atoms a and b in U , and
elements r and s in A. Consider first the operation of Boolean addition. The
left-hand distributive law for relative multiplication over addition implies that

a ; (r + s) = a ; r + a ; s.

Since b is an atom, we have

b ≤ a ; (r + s) if and only if b ≤ a ; r or b ≤ a ; s.

It follows that

(a, b) ∈ ϕ(r + s) if and only if b ≤ a ; (r + s),

if and only if b ≤ a ; r or b ≤ a ; s,

if and only if (a, b) ∈ ϕ(r) or (a, b) ∈ ϕ(s),

if and only if (a, b) ∈ ϕ(r) ∪ ϕ(s),

by the definition of ϕ, the preceding remarks, and the definition of union.
Thus, ϕ(r + s) = ϕ(r) ∪ ϕ(s).

Turn now to the operation of Boolean multiplication. Every element in U

is below a function in A, by the definition of U , and is therefore a function, by
Lemma 1.5(ii). The distributive law for functions (Lemma 1.5(iii)) implies

a ; (r · s) = (a ; r) · (a ; s),

and therefore

b ≤ a ; (r · s) if and only if b ≤ (a ; r) · (a ; s),

if and only if b ≤ a ; r and b ≤ a ; s.

Consequently,

(a, b) ∈ ϕ(r · s) if and only if b ≤ a ; (r · s),

if and only if b ≤ a ; r and b ≤ a ; s,

if and only if (a, b) ∈ ϕ(r) and (a, b) ∈ ϕ(s),

2Maddux has called our attention to the fact that the function ϕ appears in the ab-
stract [10], but it does not appear in the paper [9].
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if and only if (a, b) ∈ ϕ(r) ∩ ϕ(s),

by the definition of ϕ, the preceding remarks, and the definition of intersection.
Thus, ϕ(r · s) = ϕ(r) ∩ ϕ(s).

As regards the preservation of converse, observe that

a ≤ b ; r if and only if b ≤ a ; r�,

by (the contrapositive of) Lemma 1.1 (with b, r, and a in place of r, s, and t

respectively) and the assumption that a and b are atoms. Consequently,

(a, b) ∈ ϕ(r�) if and only if b ≤ a ; r�,

if and only if a ≤ b ; r,

if and only if (b, a) ∈ ϕ(r),

if and only if (a, b) ∈ ϕ(r)−1,

by the definition of ϕ, the preceding remarks, and the definition of the converse
of a relation. Thus, ϕ(r�) = ϕ(r)−1.

As is to be expected, the proof that ϕ preserves relative multiplication is
different than in the proof of Theorem 2.1. Suppose first that a pair (a, b)
belongs to the relational composition ϕ(r)|ϕ(s). There must then be an atom
c in U such that

(a, c) ∈ ϕ(r) and (c, b) ∈ ϕ(s),

by the definition of relational composition. It follows from the definition of ϕ

that c ≤ a ; r and b ≤ c ; s. Consequently,

b ≤ c ; s ≤ a ; r ; s,

by the monotony law for relative multiplication, so the pair (a, b) belongs to
ϕ(r ; s). This argument shows that ϕ(r)|ϕ(s) is included in ϕ(r ; s).

To establish the reverse inclusion, suppose that (a, b) belongs to ϕ(r ; s).
The definition of ϕ implies that b is below a ; r ; s, and therefore

(a ; r ; s) · b �= 0.

Apply Lemma 1.1 (with r and t replaced by a ; r and b) to obtain

(a ; r) · (b ; s�) �= 0.

Invoke Lemma 3.2 (with I a two-element index set) to get an atom c in U

satisfying

c ≤ (a ; r) · (b ; s�).

Since c is below a ; r, the pair (a, c) is in ϕ(r), by the definition of ϕ. Since
c is also below b ; s�, the pair (b, c) is in ϕ(s�). Consequently, the pair (c, b)
is in ϕ(s), because—as we have already seen—ϕ preserves converse. The pair
(a, b) is therefore in the relational composition ϕ(r)|ϕ(s), by the definition of
this composition. Conclusion: ϕ(r ; s) = ϕ(r)|ϕ(s).
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The fact that ϕ preserves the identity element and the operations of addi-
tion, converse, and relative multiplication implies that the relation E = ϕ(1)
is an equivalence relation on the base set U . In more detail,

idU = ϕ(1’) ≤ ϕ(1) = E,

E−1 = ϕ(1)−1 = ϕ(1�) = ϕ(1) = E,

E |E = ϕ(1)|ϕ(1) = ϕ(1 ; 1) = ϕ(1) = E.

A mapping on a relation algebra that preserves addition, Boolean multipli-
cation, zero, and the unit must also preserve complement in the sense that
ϕ(−r) = ∼ϕ(r), where the complement on the right is formed in Re(E). The
argument so far therefore proves that ϕ is a homomorphism from A into Re(E).

It remains to check that ϕ is one-to-one. Suppose r �= 0. The element 1 ; r�

is then certainly not zero, by Lemma 1.2(i),(iv), and the second involution law,
so there must be a non-zero function f in A that is below 1;r�, by the assumed
functional density of A. In particular, f · (1 ; r�) �= 0. Apply Lemma 1.1 to
obtain that (f ; r) · 1 �= 0. Thus, f ; r is not zero.

Let X be the set of atoms in the canonical extension B that are below f .
Every atom in X is below a function in A, namely f , so every atom in X

belongs to the set U , by the definition of U . Since B is atomic, f must be the
supremum of the set X of atoms that it dominates, so

0 < f ; r = (
∑

X) ; r =
∑{a ; r : a ∈ X},

by the complete distributivity of relative multiplication over addition. It fol-
lows that a ; r �= 0 for some atom a below f . Apply Lemma 3.2 (with I a
one-element index set) to obtain an atom b in U that is below a ; r. The pair
(a, b) belongs to ϕ(r), by the definition of ϕ. Conclusion: the image under ϕ of
every non-zero element in A is a non-empty relation on the set U , so the kernel
of ϕ consists of just zero. Thus, ϕ is one-to-one and therefore an embedding
of A into Re(E). In other words, ϕ is a representation of A.

Consider now the case when A is an arbitrary functionally dense relation
algebra. The completion of A is also functionally dense. Indeed, each non-zero
element in the completion is above a non-zero element in A, by the definition of
the completion, and each non-zero element in A is above a non-zero function,
by the assumption that A is functional dense. Consequently, each non-zero
element in the completion is above a non-zero function. It follows that the
completion is representable via some function ϕ, by the first part of the proof.
The restriction of ϕ to A is a representation of A. �

The reader may wonder why the argument in the proof of Theorem 2.1,
showing that the representation defined in that proof is complete, cannot also
be applied in the proof of Theorem 3.3 to show that a complete, functionally
dense relation algebra is completely representable. The proof of Theorem 3.3
uses the canonical extension of A, even when A is complete; and suprema of
infinite subsets of A are in general different in A than they are in the canonical



20 Hajnal Andréka and Steven Givant

extension. In fact, if A did possess a complete representation, then A would
have to be atomic, by a theorem of Hirsch and Hodkinson [3], and would there-
fore fall under the purview of Theorem 2.1. In this connection, the following
observation may be of some interest. The canonical extension of a repre-
sentable relation algebra is always completely representable. (This result—
due to Hirsch and Hodkinson [4], and independently to the authors—improves
an earlier result of Monk, according to which the canonical extension of a
representable relation algebra is representable.) Consequently, the canonical
extension of a functionally dense relation algebra is completely representable.

4. A decomposition theorem for functionally dense relation algebras

The representation in Theorem 3.3 raises the problem of giving a complete
structural description of all functionally dense relation algebras. Although
this problem is not yet settled, some interesting observations can be made.
As we shall see in a moment, simple, functionally dense relation algebras are
not always atomic. However, the presence of a single atom in such a relation
algebra does imply atomicity.

Theorem 4.1. A functionally dense relation algebra that is simple must be
either atomic or atomless.

Proof. Let A be a functionally dense relation algebra that is simple. Observe,
first of all, that if the left side of a rectangle in A is an atom, then the rec-
tangle must be the sum of a set of functional atoms in A. Indeed, consider a
subidentity atom x in A, and let y be an arbitrary subidentity element. The
rectangle x ; 1 ; y is the sum of a (possibly empty) set X of non-zero functions,
by the assumed functional density of A. Each function f in X is below x ; 1,
by the monotony law for relative multiplication, and x ; 1 is an atom in the
Boolean algebra of right-ideal elements, by Lemma 1.6(ii), so f is an atom in
A, by Lemma 1.6(iii). It follows in particular that every rectangle with atomic
sides in A is the sum of a set of functional atoms.

Assume now that the algebra A is not atomless, say r is an atom in A.
The domain of r—call it x—is a subidentity atom, by Lemma 1.6(i). The
rectangle x ; 1 ; 1’ is therefore the sum of a set X of functional atoms, by
the observation of the previous paragraph. The range of every atom is again
an atom, by Lemma 1.6(i), so (1 ; f) · 1’ is an atom for every f in X. The
assumed simplicity of A implies that 1 ; x ; 1 = 1. Use also the identity law for
relative multiplication and the complete distributivity of Boolean and relative
multiplication over addition to arrive at

1’ = (1 ; 1’) · 1’ = [(1 ; x ; 1) ; 1’] · 1’ = [1 ; (x ; 1 ; 1’)] · 1’

= (1 ;
∑

X) · 1’ =
∑{(1 ; f) · 1’ : f ∈ X}.

This calculation shows that 1’ is the sum of the set W of all subidentity atoms.
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It now follows easily that the unit in A is the sum of the set of all rectangles
with atomic sides, since

1 = 1’ ; 1 ; 1’ = (
∑

W ) ; 1 ; (
∑

W ) =
∑{y ; 1 ; z : y, z ∈ W}.

We saw in the first paragraph that every rectangle with atomic sides is the
sum of a set of functional atoms. Combine these two observations to conclude
that the unit is the sum of the set of all functional atoms. Consequently, A is
atomic. �

Here is the direct decomposition theorem for functionally dense relation
algebras.

Theorem 4.2. Every functionally dense relation algebra is essentially isomor-
phic to a direct product of simple, functionally dense relation algebras—each
of which is either atomic or atomless—and a single functionally dense relation
algebra that is atomless and has an atomless Boolean algebra of ideal elements.

Proof. Given a functionally dense relation algebra, pass to its completion A. It
is easily seen that A is also functionally dense. According to Theorem 1.7, the
algebra A is isomorphic to the direct product of two (possibly trivial) complete
relation algebras B and C with the property that B is the direct product of
(complete) simple relation algebras, and C is atomless and has an atomless
Boolean algebra of ideal elements. Moreover, the algebras B and C, and also
the simple algebras in the direct decomposition of B, are all relativizations
of A. It is easy to check that a relativization of a functionally dense relation
algebra remains functionally dense. Consequently, the factor B is the direct
product of complete, simple, functionally dense relation algebras, each of which
is either atomic or atomless, by Theorem 4.1; and the factor C is a complete,
atomless, functionally dense relation algebra with an atomless Boolean algebra
of ideal elements. �

It may happen that one or more of the factors in the decomposition of the
preceding theorem is trivial. For example, if A is atomic, then it has no non-
trivial atomless factors, so the atomless factor C in the proof of the preceding
theorem is trivial, and the system of simple factors in the direct decomposition
of the factor B contains no atomless algebras at all. On the other hand, if A

itself has an atomless Boolean algebra of ideal elements, then the factor B in
the proof of the preceding theorem is trivial.

An atomic relation algebra is functionally dense if and only if every atom is a
function. Indeed, an atomic relation algebra with functional atoms is obviously
functionally dense, since every element is above an atom and therefore above
a non-zero function. On the other hand, in an atomic, functionally dense
relation algebra, every atom must be above a non-zero function and therefore
every atom must be a function.
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Corollary 4.3. Every atomic relation algebra with functional atoms is essen-
tially isomorphic to a direct product of simple, atomic relation algebras with
functional atoms.

5. A description of atomic relation algebras with functional atoms

Jónsson and Tarski [8] gave a description of all atomic relation algebras
with functional atoms in terms of (axiomatically defined) complex algebras of
generalized Brandt groupoids. In its application to simple relation algebras,
their theorem says that a simple relation algebra is complete and atomic with
functional atoms if and only it is isomorphic to the complex algebra of an
Brandt groupoid, and every (not necessarily complete) simple relation algebra
that is atomic with functional atoms is embeddable into the complex alge-
bra of a Brandt groupoid. (Observe that, by Corollary 4.3, the problem of
describing all atomic relation algebras with functional atoms reduces to the
problem of describing all such algebras that are simple.) As a consequence
of their description, Jónsson and Tarski concluded that a relation algebra is
representable if and only if it is embeddable into the complex algebra of a
generalized Brandt groupoid, and a simple relation algebra is representable if
and only if it is embeddable into the complex algebra of a Brandt groupoid.

In this section we shall give a somewhat different description than the one in
[8]—a description that (in our opinion) is more visual and also more familiar.
We begin with a lemma. A relation algebra is said to be bijectively dense if
below every non-zero element there is a non-zero bijection.

Lemma 5.1. A functionally dense relation algebra is bijectively dense. In
particular, every atom is a bijection .

Proof. Let A be a functionally dense relation algebra, and r a non-zero element
in A. The converse r� is also non-zero, by Lemma 1.2(i) and the first involution
law, so there is a non-zero function f below r�, by the functional density of
A. The converse f� is non-zero, so there is a non-zero function g below f�,
again by the functional density of A. It is easy to check that g is a bijection
below r. Indeed, g� must be below f��, by the monotony law for converse,
and f�� = f , by the first involution law, so g� is below f and is therefore a
function, by Lemma 1.5(ii). Since g is a function, by assumption, it follows
that g is a bijection. Also, f� is below r��, and r�� = r, so g ≤ f� ≤ r.

�

We shall also need the following theorem, due to Jónsson-Tarski [8].

Theorem 5.2. An integral relation algebra is complete and atomic with func-
tional atoms if and only if it is isomorphic to the complex algebra of a group.

Proof. Obviously, the complex algebra of a group is an integral relation algebra
that is complete and atomic with functional atoms (see the remarks following
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Theorem 1.7). Consider now an arbitrary integral relation algebra A that is
complete and atomic with functional atoms. The set G of atoms in A consists of
bijections, by Lemma 5.1, and the domain and range of each of these bijections
is the identity element 1’, by Lemma 1.6(i). The elements in G therefore form
a group under the restricted operations of relative multiplication and converse
from A, by Lemma 1.5(i) and the definition of a bijection; and the identity
element of the group coincides with the identity element of A. The function
ϑ that maps f to {f} for each f in G is clearly a bijection from the set of of
atoms in A to the set of atoms in Cm(G). Moreover, this function maps the
identity element 1’ in A to the identity element {1’} in Cm(G), and it preserves
the operations of converse and relative multiplication on atoms. For example,

ϑ(f ; g) = {f ; g} = {f} ; {g} = ϑ(f) ; ϑ(g),

by the definitions of ϑ and of relative multiplication in Cm(G). The natural
extension of ϑ to A, the function ϕ that is defined for every element r in A by

ϕ(r) = {f ∈ G : f ≤ r},

is easily seen to be a well-defined isomorphism from A to Cm(G). �

Corollary 5.3. An integral relation algebra is atomic with functional atoms
if and only if it is essentially isomorphic to the complex algebra of a group.

In order to describe all simple (not necessarily integral) atomic relation
algebras with functional atoms, it is necessary to construct a broader class of
examples than group complex algebras. Fix a complete relation algebra C and
a cardinal number κ > 0 (which, for notational convenience, we assume to be
the set of all smaller ordinals, as is standard in set theory). A κ-by-κ matrix
with entries from C is a function r from the Cartesian product κ × κ into the
universe of C. We write r = [rij ] for this matrix. Let B be the set of all such
matrices, and define Boolean operations + and − , and Peircean operations
; and � , on B by

r + s = t, where tij = rij + sij , (1)

−r = t, where tij = −rij , (2)

r ; s = t, where tij =
∑

k<κ rik ; skj , (3)

r� = t, where tij = r�
ji. (4)

Here, the operation symbols on the left denote the operations being defined
on B, whereas the operation symbols on the right denote the operations of
the relation algebra C. (The assumed completeness of C is needed in order
to ensure that the sum on the right side of (3) exists.) For the most part,
the operations being defined are just standard operations on matrices from
linear algebra, except that the operations on the entries of the matrices are
performed in the relation algebra C instead of in a field. Thus, the operation
of addition is the standard operation of forming the (componentwise) sum of
two matrices, except that the sums of entries are formed as Boolean sums in C;
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the operation of forming the complement is the standard operation of forming
the (componentwise) negative of a matrix, except that the negatives of entries
are formed as complements in C; and the operation of relative multiplication is
the standard operation of multiplying two matrices, except that the sums and
products of the entries are formed as Boolean sums and relative products in
C. The converse of a matrix is obtained by first forming the (componentwise)
converse of each entry of the matrix and then forming the transpose of the
result. The identity matrix 1’ in B is just the matrix with the identity element
of C down the diagonal and the zero element of C elsewhere. The algebra

B = (B , + , − , ; , � , 1’)

is easily seen to be a relation algebra (see [6] and [12]). Indeed, the validity of
most of the relation algebraic axioms in B is an immediate consequence of the
validity of these laws in the algebra C, and the standard laws governing matrix
multiplication and transposition. We shall call B the κth matrix relation
algebra over C, and we shall refer to C as the base of B.

When C is the complex algebra of a group G, every matrix algebra over C

is an example of a simple relation algebra that is complete and atomic with
functional atoms (see below). The atoms are the matrices that have exactly
one non-zero entry, and that entry is some atom in C (that is to say, it is some
element of the group G).

To obtain a different perspective on matrix relation algebras, suppose B is
the kth matrix relation algebra over a base C that is a complete set relation
algebra on some base set G; in other words, C is assumed to be a complete
subalgebra of Re(G). The intention is that C is the Cayley representation of
the complex algebra of some group G, but this intention does not play a role in
the discussion. The immediate goal is to construct a complete representation
of B by associating with each matrix [Rij ] in B a binary relation that is the
disjoint union of copies of the relations Rij which form the entries of the given
matrix. Here are the details.

Let (Gi : i < κ) be a system of pairwise disjoint copies of the set G,
selected so that G0 = G. Take F00 to be the identity function on G, and for
each index i with 0 < i < κ, take F0i be an arbitrary bijection from G to Gi.
For each element g in G, write gi for the image of g (in Gi) under F0i. Put
Fij = F−1

0i |F0j , and observe that Fij is a bijection from Gi to Gj (and hence
a subrelation of Gi × Gj); in fact,

Fij = {(gi, gj) : g ∈ G}.

The following properties of these bijections are readily verified:

Fii = idGi , F−1
ij = Fji, Fik |Fkj = Fij , and Fik |F�j = ∅ (5)

when k �= 	.
Write U =

⋃
i<κ Gi and observe that the rectangles Gi × Gj for i, j < κ

form a partition of U × U in the sense that they are non-empty, mutually
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disjoint, and have U × U as their union (see Figure 1). The isomorphic copy

G0 G1 G2

G0

G1

G2

G0 × G0 G1 × G0 G2 × G0

G0 × G1 G1 × G1 G2 × G1

G0 × G2 G1 × G2 G2 × G2

Figure 1. Rectangles partitioning the unit set U × U .

of B that we are going to define is a subalgebra of Re(U). If Rij is an element
in C (and thus a subrelation of G × G), then write

R∗
ij = Fi0 |Rij |F0j = {(fi, gj) : (f, g) ∈ Rij} (6)

and observe that R∗
ij is the copy of Rij that is a subrelation of Gi ×Gj . Using

(5), it is not difficult to verify that the following equations are valid:

R∗
ij ∪ S∗

ij = T ∗
ij , where Tij = Rij ∪ Sij , (7)

Gi × Gj ∼ R∗
ij = T ∗

ij , where Tij = ∼Rij , (8)

R∗
ik |S∗

kj = T ∗
ij , where Tij = Rik |Skj , (9)

(R∗
ji)

−1 = T ∗
ij , where Tij = R−1

ji , (10)

R∗
ik |S∗

�j = ∅ when k �= 	. (11)

The operations on the left are performed in Re(U), whereas the operations on
the right are performed in C, since the elements on the right come from C. As
an example, here is the verification of (9):

R∗
ik |S∗

kj = (Fi0 |Rik |F0k)|(Fk0 |Skj |F0j) = Fi0 |Rik |(F0k |Fk0)|Skj |F0j

= Fi0 |Rik |F00 |Skj |F0j = Fi0 |Rik |idG |Skj |F0j

= Fi0 |Rik |Skj |F0j = Fi0 |Tij |F0k = T ∗
ij .

Notice that this derivation depends only on the definition in (6) and the prop-
erties of the bijections that are stated in (5).

With each matrix R = [Rij ] in B, we correlate a relation R∗ on the set U

that is defined by

R∗ =
⋃{R∗

ij : i, j < κ}. (12)

Keep in mind that Rij is a relation in C, and R∗
ij is the copy of this relation

that is a subrelation of the rectangle Gi × Gj . Thus, for each i and j we make
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a copy beneath Gi × Gj of the ijth entry of the matrix R, and we take R∗

to be the (disjoint) union of these copies of the entries in R (see Figure 2).
Since the rectangles Gi × Gj are mutually disjoint, the function that maps

R∗
00

R∗
10

R∗
20

R∗
01 R∗

11

R∗
21

R∗
02 R∗

12

R∗
22

Figure 2. A typical relation R∗.

each matrix R to the relation R∗ is an injection from B into Re(U). With the
help of equations (7)–(11), we see that the following equations are valid for all
matrices R = [Rij ], S = [Sij ], and T = [Tij ] in B:

R∗ ∪ S∗ = T ∗, where Tij = Rij ∪ Sij , (13)

∼R∗ = T ∗, where Tij = ∼Rij , (14)

R∗ |S∗ = T ∗, where Tij =
⋃

k(Rik |Skj), (15)

(R∗)−1 = T ∗, where Tij = R−1
ji , (16)

idU = T ∗, where Tij = idGi
or Tij = ∅, (17)

according as i = j or i �= j.

For example, here is the verification of (15), where the matrix T is as specified:

R∗ |S∗ = (
⋃

ij R∗
ij)|(

⋃
ij S∗

ij) =
⋃

ijk�(R
∗
ik |S∗

�j)

=
⋃

ijk(R∗
ik |S∗

kj) =
⋃

ij

⋃
k(R∗

ik |S∗
kj) =

⋃
ij T ∗

ij = T ∗.

The first and last equalities hold by (12), the second by the complete distribu-
tivity of relational composition over unions, the third by (11), and the fourth
by the general associative law for unions. For the fifth equality, observe that

T ∗
ij = (

⋃
k(Rik |Skj))

∗ =
⋃

k (Rik |Skj)
∗ =

⋃
k(R∗

ik |S∗
kj),

by the definition of Tij in (15) and the equations in (7) (generalized to arbitrary
unions) and (9).

A comparison of (1)–(4) with (13)–(16), and of the definition of the identity
matrix in B with (17), shows that the function mapping R to R∗ for each
matrix R in B preserves the operations of B and also preserves arbitrary sums
in B as unions, so this mapping is a complete embedding of B into Re(U).
We shall call the image of this embedding — that is to say, the complete
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subalgebra of Re(U) consisting of all relations of the form R∗ for R in B —
the κth semipower of C, because in some sense it is just κ2 disjoint copies of
the algebra C, all amalgamated together. The argument just presented shows
that the kth matrix relation algebra over C is isomorphic to the κth semipower
of C. Observe that this semipower is obviously simple, since it is a complete
subalgebra of the simple set relation algebra Re(U); and it is obviously atomic
whenever C is atomic, its atoms being the copies beneath Gi × Gj , for each
pair i, j < κ, of the atoms in C.

In particular, if C is the Cayley representation of a group G, so that
C = Ca(G), then the kth semipower of C is a simple, complete and atomic
relation algebra with functional atoms. The complex algebra Cm(G) is canon-
ically isomorphic to Ca(G) via the Cayley representation, and therefore the
kth matrix relation algebra over Cm(G) is canonically isomorphic to the kth
matrix relation algebra over Ca(G). The latter is isomorphic to the kth semi-
power of Ca(G), by the remarks of the preceding paragraph. We summarize
what has been accomplished so far.

Theorem 5.4. For each group G and each cardinal number κ > 0, the κth
matrix relation algebra over Cm(G) is a simple , complete and atomic relation
algebra with functional atoms. It is isomorphic to the kth semipower of Ca(G),
and is therefore completely representable .

The next theorem and its corollary say that, up to essential isomorphism,
the algebras of Theorem 5.4 are the only simple relation algebras that are
atomic with functional atoms.

Theorem 5.5. A simple relation algebra is complete and atomic with func-
tional atoms if and only if it is isomorphic to the κth matrix relation algebra
over Cm(G)—or equivalently , to the κth semipower of Ca(G)—for some car-
dinal κ > 0 and some group G.

Proof. The implication from right to left in the statement of the theorem
has already been proved in the discussion leading up to Theorem 5.4. To
establish the implication in the reverse direction, fix a simple relation algebra
A that is complete and atomic with functional atoms. The idea of the proof
is to imitate in an abstract setting the proof given above that the κth matrix
relation algebra over Cm(G) is isomorphic to the κth semipower of Ca(G).

The assumption that A is atomic implies that the identity element 1’ in A

is the sum of a non-empty set of subidentity atoms. Let κ be the cardinality
of this set of atoms, and let (1’i : i < κ) be an enumeration of the distinct
subidentity atoms in A. For each pair i, j < κ, define the local unit 1ij to be
the rectangle

1ij = 1’i ; 1 ; 1’j .

These local units are non-zero, by Lemma 1.4(iii) and the assumed simplicity
of A; they are mutually disjoint, by Lemmas 1.4(i) and 1.2(iii); and they sum
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to 1, since

1 = 1’ ; 1 ; 1’ = (
∑

i 1’i) ; 1 ; (
∑

i 1’i) =
∑

ij(1’i ; 1 ; 1’j) =
∑

ij 1ij , (1)

by the identity laws for relative multiplication, the complete distributivity
of relative multiplication over addition, and the definition of the local units.
In other words, the local units form a partition of unity in A. They are
the analogues in A of the rectangles Gi × Gj in the construction of the κth
semipower of Ca(G). The following identities concerning the local units are
not difficult to derive using the laws in Lemma 1.4 that govern rectangles:

1’ · 1ii = 1’i, 1�
ij = 1ji, 1ik ; 1kj = 1ij , 1ik ; 1�j = 0 (2)

for k �= 	, and if r is a non-zero element below 1ij , then

domain r = 1’i, range r = 1’j , and 1’i ; r = r ; 1’j = r. (3)

Put f00 = 1’0, and for 0 < i < κ choose an atom f0i below the local unit 10i.
Each atom f0i must be a bijection, by Lemma 5.1; and the domain and range
of this bijection must be 1’i and 1’j respectively, by (3). Write fij = f�

0i ; f0j

and observe that fij is a (bijective) atom below 1ij , by Lemma 1.6(v),(vi),
the monotony law for relative multiplication, and (2). The atoms fij are
the analogues in A of the functions Fij defined in the construction of the
κth semipower of Ca(G). The following properties of these atoms are readily
verified using (2), (3), and Lemma 1.5:

fii = 1’i, f�
ij = fji, fik ; fkj = fij , and fik ; f�j = 0 (4)

when k �= 	.
The local unit 100 is a non-zero square, so the relativization of A to 100 is

a relation algebra in which the identity element 1’0 is an atom. Consequently,
this relativization—call it C — is an integral relation algebra, by the remarks
following Theorem 1.7. The algebra C inherits from A the properties of being
complete and atomic with functional atoms. Apply Theorem 5.2 (and its
proof) to conclude that the set of atoms in C is a group G under the (restricted)
operations of relative multiplication and converse in A, with 1’0 as the group
identity element, and that C is isomorphic to the complex algebra Cm(G). For
each element rij in C, put

r∗
ij = fi0 ; rij ; f0j (5)

and observe that r∗
ij is below 1ij , by the monotony laws and (2):

r∗
ij = fi0 ; rij ; f0j ≤ 1i0 ; 100 ; 10j = 1ij .

The intuition behind this definition is that r∗
ij is a copy of rij below 1ij . Using

(5), it is not difficult to verify that the following equations are valid in A:

r∗
ij + s∗

ij = t∗ij , where tij = rij + sij , (6)

1ij · −r∗
ij = t∗ij , where tij = −rij , (7)

r∗
ik ; s∗

kj = t∗ij , where tij = rik ; skj , (8)
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(r∗
ji)

� = t∗ij , where tij = r�
ji, (9)

r∗
ik ; s∗

�j = 0 when k �= 	. (10)

The operations on the left are performed in A, whereas the operations on the
right are performed in the relativization C, since the elements on the right
come from C. As an example, here is the verification of (8):

r∗
ik ; s∗

kj = (fi0 ; rik ; f0k) ; (fk0 ; skj ; f0j) = fi0 ; rik ; (f0k ; fk0) ; skj ; f0j

= fi0 ; rik ; f00 ; skj ; f0j = fi0 ; rik ; 1’0 ; skj ; f0j

= fi0 ; rik ; skj ; f0j = fi0 ; tij ; f0k = t∗ij ,

by the definitions of r∗
ik, s∗

kj , and t∗ij (see (5)), the associative law for relative
multiplication, (4), (3), and the definition of tij in (8). We shall also need the
equivalence

r∗
ij = s∗

ij if and only if rij = sij . (11)

The implication from right to left is obvious. For the reverse implication,
observe that

rij = 1’0 ; rij ; 1’0 = f00 ; rij ; f00 = (f0i ; fi0) ; rij ; (f0j ; fj0)

= f0i ; (fi0 ; rij ; f0j) ; fj0 = f0i ; r∗
ij ; fj0,

by (3)–(5). Consequently, if r∗
ij = s∗

ij , then

rij = f0i ; r∗
ij ; fj0 = f0i ; s∗

ij ; fj0 = sij .

Let B be the κth matrix relation algebra over C. With each matrix

r = [rij ] = (rij : i, j < κ)

in B, correlate an element r∗ in A that is defined by

r∗ =
∑{r∗

ij : i, j < κ}. (12)

Keep in mind that rij is an element in the relativization C, and r∗
ij is an

element in A. The assumption that A is complete is needed in order to ensure
that the sum r∗ exists in the case when κ is infinite. The intuition behind the
definition in (12) is that for each entry rij in the matrix r, we make a copy
of rij that is below 1ij — this is the element r∗

ij—and we take r∗ to be the
disjoint sum of these copies. Thus, r∗ is a reasonable representative in A of
the matrix r.

Indeed, the function ϕ that maps each matrix r = [rij ] in B to its repre-
sentative r∗ in A is an injection from B into A, by (11). To see that ϕ is also
a surjection, consider an arbitrary element t in A. For each pair of indices
i, j < κ, the element t · 1ij is the portion of t that is below 1ij . Put

rij = f0i ; (t · 1ij) ; fj0, (13)
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and observe that rij is below 100, by (2) and the monotony law for relative
multiplication:

rij = f0i ; (t · 1ij) ; fj0 ≤ 10i ; 1ij ; 1j0 = 100.

Consequently, rij belongs to the relativization C. Furthermore,

r∗
ij = fi0 ; rij ; f0j = fi0 ; (f0i ; (t · 1ij) ; fj0) ; f0j

= (fi0 ; f0i) ; (t · 1ij) ; (fj0 ; f0j) = fii ; (t · 1ij) ; fjj

= 1’i ; (t · 1ij) ; 1’j = t · 1ij , (14)

by (3)–(5) and (13). The matrix r = [rij ] belongs to B, by the definition of
B, and

r∗ =
∑

ij r∗
ij =

∑
ij(t · 1ij) = t · (

∑
ij 1ij) = t · 1 = t,

by (12), (14), the complete distributivity of Boolean multiplication over ad-
dition, and (1). Therefore, ϕ maps the matrix r to the element t, so every
element in A is the image under ϕ of some element in B.

Using equations (6)–(10), it is not too difficult to check that the following
equations are valid in A for all matrices r = [rij ], s = [sij ], and t = [tij ] in B:

r∗ + s∗ = t∗, where tij = rij + sij , (15)

−r∗ = t∗, where tij = −rij , (16)

r∗ ; s∗ = t∗, where tij =
∑

k(rik ; skj), (17)

(r∗)� = t∗, where tij = r�
ji, (18)

1’ = t∗, where tij = 1’0 or tij = 0, (19)

according as i = j or i �= j.

For example, here is the verification of (17), where the matrix t is as specified:

r∗ ; s∗ = (
∑

ij r∗
ij) ; (

∑
ij s∗

ij) =
∑

ijk�(r
∗
ik ; s∗

�j)

=
∑

ijk(r∗
ik ; s∗

kj) =
∑

ij

∑
k(r∗

ik ; s∗
kj) =

∑
ij t∗ij = t∗.

The first and last equalities hold by (12), the second by the complete distribu-
tivity of relative multiplication over Boolean addition, the third by (10), and
the fourth by the general associative law for Boolean addition. For the fifth
equality, observe that

t∗ij = (
∑

k(rik ; skj))
∗ =

∑
k (rik ; skj)

∗ =
∑

k(r∗
ik ; s∗

kj),

by the definition of tij in (17) and the equations in (6) (generalized to arbitrary
Boolean sums) and (8).

A comparison of equations (1)–(4) in the definition of the matrix relation
algebra B with equations (15)–(18) above, and of the definition of the iden-
tity matrix in B with equation (19) above, makes clear that the function ϕ

preserves the operations and the distinguished element of B and is therefore
an isomorphism from B onto A. It has already been proved in Theorem 5.4
that B is isomorphic to the κth semipower of Ca(G). Since B is isomorphic
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to A, by the proof given above, it may be concluded that A is isomorphic to
the κth semipower of Ca(G). �

Corollary 5.6. A simple relation algebra is atomic with functional atoms if
and only if it is essentially isomorphic to a matrix relation algebra over the
complex algebra of some group G—or equivalently, to a semipower of Ca(G).

It follows from Corollary 5.6 (without the help of Theorem 2.1) that every
atomic relation algebra with functional atoms is completely representable. The
proof of Theorem 5.5 therefore provides an alternative proof of Theorem 2.1,
one that is longer but that also gives much more information, namely a clear
description of what the representing algebras are.

6. An alternative description of atomic relation algebras with func-
tional atoms

The goal of this section is to give an alternative description of the simple
relation algebras that are atomic with functional atoms. This alternative de-
scription will lead (in the next section) to the construction of a natural class
of simple relation algebras that are functionally dense and atomless.

Consider a group (G , ◦ , −1 , ι) and a subgroup H. The right cosets of H

are the sets of the form

H ◦h = {g ◦h : g ∈ H},

and they form a partition of G. The index of H is the number of right cosets
of H in G. Associated with each element f in G is its Cayley representation

Rf = {(g, g ◦f) : g ∈ G},

which is a permutation of the set G. The Cayley representations of elements
in G form a partition of G × G. Each Cayley representation maps each right
coset of H bijectively to another right coset of H. More precisely, Rf maps
the coset H ◦h bijectively to the coset H ◦h ◦f , since

Rf (g ◦h) = g ◦h ◦f

for every element g in H. The various restrictions of Rf to right cosets of H

are therefore bijections between these cosets. If K is such a coset, write Rf �K
for the restriction of Rf to K.

Lemma 6.1. Suppose G is a group and H a subgroup of G. The set of all
restrictions of the Cayley representations Rf (for f in G) to right cosets of
H is the set of atoms of a (simple) subalgebra of Re(G) that is complete and
atomic with functional atoms.

Proof. Let W be the set of restrictions of the Cayley representations of ele-
ments in G to right cosets of H. We proceed to verify that W satisfies con-
ditions (i)–(iv) of Theorem 1.8. Cayley representations of distinct elements
in G are disjoint, as are distinct right cosets of H. Consequently, if f and g
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are distinct elements in G, or if K and L distinct right cosets of H, then the
restrictions Rf �K and Rg�L are disjoint. The union of the right cosets of H

is G, so the union of the various restrictions to right cosets of a specific Cayley
representation Rf is just Rf :

Rf = Rf �G = Rf �⋃{K : K is a right coset of H}
=

⋃{Rf �K : K is a right coset of H}. (1)

The unit G×G of the full set relation algebra Re(G) is the union of the Cayley
representations Rf for f in G, so the unit is also the union of the relations in
W , by (1). Conclusion: the relations in W form a partition of G × G. This
verifies condition (i) of Theorem 1.8.

To verify condition (ii), take the element f in (1) to be the identity element
ι of the group G. Since Rι coincides with the identity relation idG in Re(G), it
follows from (1) that idG is the union of the relations in W that are below idG,
and in fact

Rι =
⋃{Rι�K : K is a right coset of H}. (2)

As regards condition (iii), if a permutation Rf maps a right coset K to a
right coset L, then the converse of Rf , which is the permutation Rf−1 , maps
the right coset L to the right coset K. The converse of the restriction Rf �K
is therefore the restriction Rf−1�L, so the converse of every relation in W is
another relation in W . In fact, since Rf maps a right coset K to the right
coset K ◦f , the preceding observation may be summarized by writing

(Rf �K)−1 = Rf−1�L, where L = K ◦f . (3)

To verify condition (iv), consider restrictions Rf �K and Rg�L in W . If the
image of K under Rf is L—that is to say, if L = K ◦f—then the relational
composition of Rf and Rg, which is the permutation Rf ◦ g, must map K to
the right coset of H that is the image of L under Rg. On the other hand, if
the image of K under Rf is not L, then this image coset must be disjoint from
L, and therefore the composition of the two restrictions is the empty relation.
Summarizing,

(Rf �K)|(Rg�L) =

{
Rf ◦ g�K if L = K ◦f,

∅ otherwise.
(4)

In either case, the composition of the two restrictions is a union of relations
in W , so condition (iv) holds.

Apply Theorem 1.8 to conclude that the set of all unions of subsets of W is
a complete subuniverse of Re(G), and the atoms of this subuniverse are just
the relations in W . Each of these relations is a bijection, so the corresponding
complete subalgebra of Re(G) is atomic with functional atoms. The subalgebra
is simple because Re(G) is simple, and subalgebras of simple relation algebras
are simple (see the remarks preceding Theorem 1.7). �
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Denote the subalgebra of the previous lemma by F(G, H). When H is the
improper subgroup H = G, this subalgebra is just the Cayley representation
Ca(G) of the group complex algebra Cm(G). At the other extreme, when H

is the trivial subgroup H = {ι}, the subalgebra coincides with the full set
relation algebra Re(G). It follows from Theorem 5.5 and Lemma 6.1 that
F(G, H) is isomorphic to a matrix relation algebra over the complex algebra
of some group. The next theorem says that the matrix relation algebra is in
fact the κth matrix relation algebra over the complex algebra Cm(H), where
κ is the index of H in G.

Theorem 6.2. If G is a group and H a subgroup of G with index κ, then
F(G, H) is isomorphic to the κth matrix relation algebra over Cm(H)—or
equivalently , to the κth semipower of Ca(H).

Proof. We continue with the notation introduced before Lemma 6.1. Write A

for the relation algebra F(G, H). By Lemma 6.1, A is a simple subalgebra of
Re(G) that is complete and atomic with functional atoms. Thus, A satisfies
the conditions of Theorem 5.5. Apply the theorem to conclude that for some
cardinal κ∗ > 0 and some group G∗, the algebra A is isomorphic to the κ∗th
matrix relation algebra over the group complex algebra G∗. The proof of
Theorem 5.5 makes clear that κ∗ is the number of subidentity atoms in A, and
G∗ is the group of atoms in A that are below the local unit 100 = 1’0 ; 1 ; 1’0.

The subgroup H is assumed to have κ right cosets in G, say

(Hi : i < κ) (1)

is an enumeration (without repetitions) of these cosets, with H0 = H. The
atoms in A are the restrictions to these cosets of the Cayley representations Rf

of the elements f in G, since these restrictions are the elements in the set W

from the proof of Lemma 6.1. Thus, the atoms in A are the relations Rf �Hi

for f in G and i < κ.
The subidentity atoms are the restrictions to right cosets of the identity

relation Rι (where ι is the identity element of the group G), by item (2) in the
proof of Lemma 6.1, so the distinct subidentity atoms in A are the restrictions
Rι�Hi for i < κ. There are κ such restrictions, one for each i < κ, so the
number of subidentity atoms in A equals the index of H in G, that is to say,
κ∗ = κ.

Turn now to the determination in A of the local unit 100 and the group G∗.
The subidentity atom 1’0 from the proof of Theorem 5.5 is the relation Rι�H
in A, by the observations of the preceding paragraph, the choice of the atom
1’0 as the first element in the enumeration of the subidentity atoms (see the
proof of Theorem 5.5), and the assumption that the coset H0 is just H. The
unit of A is the universal relation G × G, since A is a subalgebra of Re(G).
Consequently, the local unit 100 in A is the relation

(Rι�H)|(G × G)|(Rι�H), (2)
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by the definition of 100. The relation G×G is the union of the atomic relations
Rf �Hi for f in G and i < κ, by the observations made after (1), so the local
unit in (2) is the union of the compositions

(Rι�H)|(Rf �Hi)|(Rι�H) (3)

for f in G and i < κ, by the distributivity of relational composition over
arbitrary unions. If i �= 0—that is to say, if the coset Hi is different from H—
then the composition (Rι�H)|(Rf �Hi) is empty, by item (4) from the proof
of Lemma 6.1, since the domain Hi of the second relation is disjoint from the
range H of the first relation. Assuming i = 0 and hence Hi = H, a similar
argument shows that if f is not in H, then the composition (Rf �Hi)|(Rι�H) is
empty, because the range H ◦f of the first relation is disjoint from the domain
H of the second relation. It follows that the only non-empty compositions in
(3) are those for which i = 0 and f is in H; and for these compositions we
have

(Rι�H)|(Rf �Hi)|(Rι�H) = (Rι�H)|(Rf �H)|(Rι�H)

= (Rι ◦ f ◦ ι)�H = Rf �H ,

by item (4) from the proof of Lemma 6.1 and the fact that ι ◦f ◦ ι = f in G.
Combine these observations to conclude that the local unit in (2) is the union
of the atomic relations Rf �H for f in H. Thus, the group G∗ is the set of
these atomic relations under the operations (from A) of relational composition
and converse, and with the identity element Rι�H .

It is easy to check, using items (3) and (4) from the proof of Lemma 6.1 that
the function mapping each element f in H to the relation Rf �H in G∗ is a
group isomorphism from H to G∗. In fact, this isomorphism is just the Cayley
representation of the group H. The group isomorphism lifts to a relation
algebraic isomorphism from the κth matrix relation algebra over Cm(H) to
the κth matrix relation algebra over Cm(G∗). As we have already noted, A is
isomorphic to the latter, so A must be isomorphic to the former as well. �

It is now easy to see that the relation algebras F(G, H) suffice to represent all
simple relation algebras that are complete and atomic with functional atoms.

Theorem 6.3. A simple relation algebra is complete and atomic with func-
tional atoms if and only if it is isomorphic to a relation algebra of the form
F(G, H) for some group G and some subgroup H of G.

Proof. It was already shown in Lemma 6.1 that the relation algebras F(G, H)
are simple, complete, and atomic with functional atoms. To prove the reverse
direction of the theorem, consider any simple relation algebra A that is com-
plete and atomic with functional atoms. By Theorem 5.5, A is isomorphic to
an algebra B that is the κth matrix relation algebra over a group complex
algebra Cm(H), for some cardinal κ > 0 and some group H . Let G be any
group that contains H as a subgroup with index κ. The algebra F(G, H) is
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isomorphic to B, by Theorem 6.2. Consequently, A is isomorphic to F(G, H),
as was to be shown.

It remains to check that there actually is a group G containing H as a
subgroup with index κ. Let K be any group of cardinality κ. For example K

could be the cyclic group of order κ when κ is a finite or countably infinite
cardinal, and K could be the weak κth direct power of the group of integers
when κ is uncountable. Let e be the (group) identity element in K. Form the
direct product H × K, and observe that H × {e} is a subgroup of H × K with
index κ. Indeed, the distinct cosets of H × {e} in H × K are just the sets
H × {k} for k in K. Since the given group H is isomorphic to the subgroup
H ×{e} via the function that maps each element h in H to the pair (h, e), the
Exchange Principle from general algebra may be applied to obtain a group G

that is isomorphic to H × K and contains H as a subgroup of index κ. �

Corollary 6.4. A simple relation algebra is atomic with functional atoms if
and only if it is essentially isomorphic to F(G, H) for some group G and some
subgroup H of G.

The preceding construction of the algebras F(G, H) gives some insight into
how simple, non-integral relation algebras that are atomic with functional
atoms arise. One starts with the complex algebra of a group G, which is an
integral relation algebra. As was mentioned before, Cm(G) is isomorphic to its
Cayley representation Ca(G), which turns out to coincide with F(G, G). One
then splits each atom—and in particular each subidentity atom—in Ca(G)
into several pieces by introducing a proper subgroup H to form F(G, H). The
exact number of pieces into which each atom is split depends on the index of
H in G. In the extreme case when H is the trivial subgroup of G, one ends
up with the full set relation algebra Re(G), but in general one gets a simple,
non-integral, atomic relation algebra with functional atoms that lies between
Ca(G) and Re(G).

7. Atomless functionally dense relation algebras

The problem of giving a set-theoretical description of all simple, function-
ally dense relation algebras that are atomless is still open. We content our-
selves with constructing an interesting class of examples, and then looking at
a concrete instance of the construction. We return to the relation algebras
F(G, H) constructed in the previous section. The algebra F(G, H) is atomic,
by Lemma 6.1. In order to construct an atomless algebra, it is necessary to es-
tablish some connection between F(G, H) and F(G, K) for distinct subgroups
H and K of G.

Lemma 7.1. If H is a subgroup of G, and K a proper subgroup of H , then
F(G, H) is a proper subalgebra of F(G, K), and each atom in F(G, H) is split
in F(G, K) into the union of as many atoms as there are cosets of K in H .
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Proof. Suppose K has index κ in H, that is to say, suppose there are κ right
cosets of K in H (where κ is a cardinal number). For every right coset H ′ of
H in G, there are then κ distinct right cosets of K in G that are included in
H ′, and H ′ is the union of these right cosets. Consequently,

Rf �H ′ =
⋃{Rf �K ′ : K ′ is a right coset of K and K ′ ⊆ H ′}.

It follows that each atom in F(G, H) is the union of κ atoms in F(G, K). Since
F(G, K) is closed under arbitrary unions, each of the atoms—and therefore
each of the elements — in F(G, H) belongs to F(G, K). Both algebras are
complete subalgebras of Re(G), so the operations in F(G, H) and in F(G, K)
are restrictions of the corresponding operations of Re(G). Conclusion: F(G, H)
is a complete subalgebra of F(G, K). It is a proper subalgebra because none
of the atoms in F(G, K) belongs to F(G, H). �

Call an (infinite) system (Hi : i ∈ I) of subgroups of G strictly downward
directed if for any pair of indices i and j, there is an index k such that Hk is a
proper subgroup of Hi and Hj . Taking i = j shows, in particular, that every
subgroup in such a system has a proper subgroup in the system.

Theorem 7.2. If (Hi : i ∈ I) is a strictly downward directed system of sub-
groups of G, then (F(G, Hi) : i ∈ I) is a (strictly upward) directed system
of complete subalgebras of Re(G), and the union of this system is a (simple)
subalgebra of Re(G) that is functionally dense and atomless .

Proof. Lemmas 6.1 and 7.1, together with the hypothesis that (Hi : i ∈ I) is
a strictly downward directed system of subgroups of G, imply that

(F(G, Hi) : i ∈ I) (1)

is a system of complete subalgebras of Re(G) that is strictly (upward) directed
in the sense that for every pair of indices i and j, there is an index k such that
F(G, Hi) and F(G, Hj) are proper subalgebras of F(G, Hk). The union of the
system in (1)—call it A—is therefore a subalgebra of Re(G) (since the union
of a directed system of subalgebras is always a subalgebra). In particular, A

must be simple, since Re(G) is simple.
To see that A is atomless, consider an arbitrary non-empty relation R in

A. Since A is the union of the system in (1), the relation R must belong to
F(G, Hi) for some index i, and therefore R must be above an atom S in the
atomic algebra F(G, Hi). Let k be an index in I such that Hk is a proper
subgroup of Hi, say with κ cosets in Hi (κ ≥ 2). The relations R and S

belong to F(G, Hk), and S is split into the union of κ atoms in F(G, Hk), by
Lemma 7.1. Consequently, R cannot be an atom in F(G, Hk), and therefore
R cannot be an atom in A.

Finally, A is functionally dense because the union of any directed system
of functionally dense relation algebras is functionally dense. In more detail, a
non-zero relation R in A belongs to F(G, Hi) for some index i, and is therefore
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above a non-zero function S in F(G, Hi), by the functional density of F(G, Hi).
The relation S belongs to A, so R is above the non-zero function S in A. �

As a concrete example of the construction in Theorem 7.2, take G to be
the group Z of integers under addition, and let H0 = Z. In this case F(Z, H0)
is just the Cayley representation of the group complex algebra Cm(Z). The
atoms of F(Z, H0) are the Cayley representations of the integers k, that is to
say, they are the functions Rk defined by

Rk(m) = m + k

for every integer m (see Figure 3). The operations of relational converse and
composition on atoms in F(Z, H0) are determined by the formulas

R−1
k = R−k and Rk |R� = Rk+�

for integers k and 	.
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Figure 3. F(Z, H0)

Let H1 be the subgroup of Z consisting of the even integers. The cosets of
H1 are the sets

Ki = {m ∈ Z : m ≡ i mod 2}
for i = 0, 1, that is to say, they are the sets of even and odd integers. The atoms
of the algebra F(Z, H1) are the restrictions Rk�K0 and Rk�K1 for integers k.
For i = 0, 1, the function Rk maps the coset Ki bijectively to the coset Ki when
k is even, and it maps Ki bijectively to K1−i when k is odd (see Figure 4).
Each atom Rk in F(Z, H0) is split into the union of the two atoms Rk�K0 and
Rk�K1 in F(Z, H1). The converses of atoms in F(Z, H1) are determined by
the formulas

(Rk�Ki)−1 = R−k�Ki and (Rk�Ki)−1 = R−k�K1−i,

according to whether k is even or odd. For example,

(R4�K1)−1 = R−4�K1 and (R3�K1)−1 = R−3�K0.
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Figure 4. F(Z, H1)

The compositions of atoms in F(Z, H1) are determined by the formulas

(Rk�Ki)|(R��Ki) = Rk+��Ki and (Rk�Ki)|(R��K1−i) = ∅

when k is even, and

(Rk�Ki)|(R��Ki) = ∅ and (Rk�Ki)|(R��K1−i) = Rk+��Ki

when k is odd. For example,

(R5�K0)|(R4�K0) = ∅ and (R5�K1)|(R4�K0) = R9�K1.

Next, take H2 to be the subgroup of Z consisting of the integers that are
divisible by 4. The cosets of H2 are the sets

Kij = {m ∈ Z : m ≡ ij mod 4},

where each of i and j is either 0 or 1, and ij is the binary notation for an
integer between 0 and 3. For instance, if i = j = 1, then ij is the binary
notation for the integer 3, and

K11 = {m ∈ Z : m ≡ 3 mod 4}.

The atoms of the relation algebra F(Z, H2) are the restrictions Rk�Kij . If
ij, i′j′, and i′′j′′ are respectively the binary notations for the remainders of
integers k, 	, and m upon division by 4, and if ij + i′j′ = i′′j′′ in binary
arithmetic modulo 4 (so that k + 	 ≡ m mod 4), then the function Rk maps
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the coset Ki′j′ bijectively to the coset Ki′′j′′ . For example, when k is congruent
to 3 mod 4, the function Rk bijectively maps

K00 to K11, K01 to K00, K10 to K01, K11 to K10,

because 3 in binary notation is 11, and

00 + 11 = 11, 01 + 11 = 00, 10 + 11 = 01, 11 + 11 = 10

in binary arithmetic modulo 4. The atom Rk�Ki in F(Z, H1) is split into
the union of the two atoms Rk�K0i and Rk�K1i in F(Z, H2). For example,
the set K1 of odd integers is the disjoint union of the set K01 of integers
congruent to 1 mod 4 and the set K11 of integers congruent to 3 mod 4, so
the atom R7�K1 in F(Z, H1) is split into the union of the two atoms R7�K01

and R7�K11 in F(Z, H2) (see Figure 5). The formulas for computing converses
and compositions of atoms in F(Z, H2) are quite similar to the formulas for
F(Z, H1) but are notationally more complicated to express in a general way.
A few examples should suffice to illustrate the main ideas. The function R7

maps K10 to K01, and the function R6 maps K10 to K00, so

(R7�K10)−1 = R−7�K01 and (R6�K10)−1 = R−6�K00.

Also,

(R7�K10)|(R6�K01) = R13�K10 and (R7�K10)|(R6�Kij) = ∅

if i �= 0 or j �= 1.
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Figure 5. F(Z, H2)
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In general, take Hn to be the subgroup of Z consisting of the integers that
are divisible by 2n. The cosets of Hn are the sets

Ka = {m ∈ Z : m ≡ a mod 2n},

where a is a string of n zeros and ones that is the binary notation for an integer
between 0 and 2n − 1. For instance, 101 is the binary notation for 5, so K101

is the coset of the subgroup of H3 consisting of the integers that are congruent
to 5 mod 8. (In this example, n = 3 and therefore 2n = 8.) If an integer k is
congruent to 6 mod 8, then the function Rk maps the coset K101 bijectively to
the coset K011. The atom Rk�Ka in F(Z, Hn) is split into the union of the two
atoms Rk�K0a and Rk�K1a in F(Z, Hn+1). For instance, the atom Rk�K101

in F(Z, H3) is split into the union of the two atoms Rk�K0101 and Rk�K1101

in F(Z, H4).
The sequence H0, H1, H2, . . . forms a strictly descending chain of subgroups

of Z, so the sequence

F(Z, H0), F(Z, H1), F(Z, H2), . . .

forms a strictly ascending chain of complete subalgebras of Re(Z). The union
of this ascending chain is an example of a simple, atomless, functionally dense
subalgebra of Re(Z).

8. Functionally dense relation algebras with atomless Boolean alge-
bras of ideal elements

In the previous section, we looked at some examples of functionally dense
relation algebras that are atomless. The examples given are all simple alge-
bras, and consequently their Boolean algebras of ideal elements are all just
the two-element Boolean algebra. We know from Theorem 4.2, however, that
an arbitrary functionally dense relation algebra may have a single atomless
factor that is functionally dense and has an atomless Boolean algebra of ideal
elements. The problem of describing all such functionally dense relation alge-
bras with atomless Boolean algebras of ideal elements is also open. Again, we
content ourselves with presenting a class of examples and then looking at a
concrete example of the construction.

Start with an arbitrary relation algebra A and an arbitrary infinite set I. For
concreteness, we shall take I to be the set of natural numbers, but only because
this choice simplifies the notation somewhat. Form the Ith direct power AI .
We define a strictly increasing sequence B0, B1, B2, . . . of subalgebras of AI

with the property that every element in Bn is split in Bn+1 into a sum of at
least two disjoint non-zero elements.

Fix a natural number n. For each element r in the finite power A2n

, define
an element r̂ in the infinite power AI by

r̂(i) = rj , where 0 ≤ j < 2n and i ≡ j mod 2n.
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For example, if n = 0, then r is a function with domain {0}, and r0 = p is
an element in A, so that r̂ = (p, p, p, p, . . . ). If n = 1, then r is a function
with domain {0, 1}, and r0 = p and r1 = q are elements in A, so in this case
r̂ = (p, q, p, q, . . . ). In general, r̂ is the element in AI obtained by concatenating
r with itself infinitely many times.

The set Bn of elements of the form r̂ for r in A2n

is a subuniverse of AI .
Indeed, Bn contains the identity element

1̂’ = (1’, 1’, 1’, 1’ . . . )

of AI , and Bn is closed under the operations of AI because these operations
are defined coordinatewise:

r̂ + ŝ = t̂, where t = r + s,

−r̂ = t̂, where t = −r,

r̂ ; ŝ = t̂, where t = r ; s,

r̂� = t̂, where t = r�.

(The operations on the left are performed in AI , and the ones on the right are
performed in A2n

.) The subalgebra of AI with universe Bn—call it Bn— is
isomorphic to A2n

via the function that maps r̂ to r for each element r in A2n

.
Consequently, Bn inherits all of the properties of A2n

. For example, if r is an
ideal element in A2n

, then r̂ is an ideal element in Bn; and if A possesses some
density property such as functional density, then so does A2n

and therefore so
does Bn.

Figure 6. Schematic of the algebras B0, B1, and B2.

Each element in Bn clearly belongs to Bn+1. Indeed, if r is an element in
A2n

, and if s is the element in A2n+1
defined by

si = rj , where 0 ≤ j < 2n and i ≡ j mod 2n

(so that s is essentially the element obtained by concatenating r with itself),
then the element r̂ in Bn coincides with the element ŝ in Bn+1. The operations
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of Bn and Bn+1 are, by definition, restrictions of the corresponding operations
of AI . Consequently, Bn must be a subalgebra of Bn+1 (see Figure 6). Each
non-zero element r̂ in Bn is split in Bn+1 into the sum of the two disjoint
non-zero elements. Indeed, if s is the element in A2n+1

that was just defined
(so that r̂ = ŝ), and if t and u are the elements in A2n+1

defined by

ti =

{
si if 0 ≤ i < 2n,

0 if 2n ≤ i < 2n+1,
and ui =

{
0 if 0 ≤ i < 2n,

si if 2n ≤ i < 2n+1,

then t and u are non-zero elements in A2n+1
that are disjoint and have s as

their sum. It follows that t̂ and û are non-zero elements in Bn+1 that are
disjoint and have ŝ as their sum. Since ŝ coincides with r̂, we can write r̂ as
the disjoint sum of the non-zero elements t̂ and û. Notice, in particular, that if
r is a non-zero ideal element in A2n

, then t and u are ideal elements in A2n+1

and therefore the non-zero ideal element r̂ in Bn is split in Bn+1 into the sum
of the two disjoint non-zero ideal elements t̂ and û.

The sequence B0, B1, B2, . . . forms a strictly ascending chain of subalge-
bras of AI with the property that each non-zero element in Bn is split into a
sum of two disjoint non-zero elements in Bn+1, and each non-zero ideal ele-
ment in Bn is split into a sum of two disjoint non-zero ideal elements in Bn+1.
Furthermore, if A possesses some density property such as functional density,
then so does each algebra Bn in the chain, and the union of the chain inherits
this density property.

Theorem 8.1. If A is a non-trivial relation algebra , and I the set of natural
numbers, then the union of the chain B0, B1, B2, . . . of subalgebras of AI

constructed above is an atomless subalgebra of AI with no ideal element atoms.
If A is functionally dense , then so is the union of the chain.

To obtain a concrete example of a functionally dense relation algebra that
has no ideal element atoms, take A to be any simple, functionally dense relation
algebra (atomic or atomless), or any non-empty product of such algebras. For
instance, A could be the complex algebra of some fixed group.
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