Free Boolean algebras with closure operators and a conjecture of Henkin, Monk, and Tarski^{*}

by

J. X. Madarász and I. Németi

Abstract

We characterize the finite-dimensional elements of a free cylindric algebra. This solves Problem 2.10 in [Henkin, Monk, Tarski: Cylindric Algebras, North-Holland, 1971 and 1985]. We generalize the characterization to quasi-varieties of Boolean algebras with operators in place of cylindric algebras.

Free algebras play an important role in universal algebra, see e.g. Andréka-Jónsson-Németi [2]. Free algebras are even more important in algebraic logic, because they give information on proof-theoretic properties of a logic. Cf. e.g. [7, §5.6], [4], [12], [8].

Cylindric algebras are special Boolean algebras with closure operators. Tarski proved that any element of a free cylindric algebra behaves the same way for all but finitely many of these operators: x is either closed for all but finitely many or only finitely many operators. See Theorem 2.6.23 in [6]. It remained open which elements of a free algebra are closed to all but finitely many, and which are closed only to finitely many. [6, 2.6.24] contains a conjecture for a characterization, but Henkin, Monk, and Tarski write there that they were unable to verify this conjecture. They also formulate the conjecture as Problem 2.10 in [6].

In this paper we solve Problem 2.10 of [6] by showing that their conjecture was right. We prove more: we give information about which element is closed under which operators, and also we generalize the result to quasi-varieties of Boolean algebras with operators.

^{*}Research supported by the Hungarian National Foundation for scientific research grants No T30314 and T23234.

Boolean algebras with operators $(Bo_{\alpha}'s)$ were introduced in Jónsson-Tarski [9] and they have been well investigated ever since. See e.g. the papers in [3] and in [13], or [1], [11], [10]. Bo_{α} is often called also BAO in the literature. An α -dimensional *Boolean algebra with operators* is an algebra $\mathfrak{A} = \langle A, +, -, c_i, d_{ij} \rangle_{i,j \in \alpha}$ in which each $c_i : A \to A$ is a closure operator in the usual sense, and the d_{ij} 's are constants. I.e. c_i is additive and $x \leq c_i x = c_i c_i x$ holds in \mathfrak{A} . We say that \mathfrak{A} has complemented closure operators if the complement of a c_i -closed element is c_i -closed again, that is if $\mathfrak{A} \models \{c_i - c_i x = -c_i x : i \in \alpha\}$. An operator c_i is normal if $c_i 0 = 0$, and a Bo_{α} is normal if all of its operators are normal. α -dimensional cylindric algebras, CA_{α} 's, are Bo_{α} 's with commuting complemented closure operators in which three additional equations are postulated for the constants d_{ij} .

Some terminology: Let $\mathfrak{A} = \langle A, +, -, c_i, d_{ij} \rangle_{i,j \in \alpha}$ be a Bo_{α} and let $a \in A$. We say that a is sensitive to an operator c_i if $a \neq c_i a$ in \mathfrak{A} . We say that a is finite (cofinite) dimensional if a is sensitive to finitely many (co-finitely many) of the operators c_i $(i \in \alpha)$. We say that a is zero-dimensional if a is not sensitive to any of the operators, i.e. if $a = c_i a$ for all $i \in \alpha$. We say that a is a constant element in \mathfrak{A} if a is generated by the constants $0, 1, d_{ij}$ $(i, j \in \alpha)$, or in other words, if a is an element of the smallest subalgebra of \mathfrak{A} . If a generator set G of \mathfrak{A} is fixed, then by a generating term of a we understand a term $\tau(x_1, \ldots, x_n)$ in the language of Bo_{α} such that $a = \tau(g_1, \ldots, g_n)$ in \mathfrak{A} for some $g_1, \ldots, g_n \in G$.

Theorem 1 (Solution of Problem 2.10 in [6]) Let α be an infinite ordinal and β be a nonzero cardinal.

- (i) The set of all finite-dimensional elements of the β -generated free algebra $\mathfrak{Fr}_{\beta}CA_{\alpha}$ is the subuniverse generated by $\{g \cdot -c_0(-d_{01}) : g \in G\}$, where G is the set of free generators of $\mathfrak{Fr}_{\beta}CA_{\alpha}$.
- (ii) If an element is not finite-dimensional in $\mathfrak{Fr}_{\beta}CA_{\alpha}$, then it is sensitive to all operators which do not occur in all of its generating terms.

We will prove Theorem 1 as a corollary of the following theorem about all quasivarieties of normal Bo_{α} 's.

Theorem 2 Assume $\alpha \geq \omega$. Let K be any quasi-variety of normal Bo_{α} 's in which the equations (1) - (4) below are valid for all $i, j, k \in \alpha$.

- (1) $c_i(c_i x \cdot y) = c_i c_i x \cdot c_i y$ (weak distributivity)
- (2) $c_k d_{ij} = d_{ij}$ if $k \notin \{i, j\}$

- $(3) \quad c_i d_{ij} = 1$
- (4) $c_i d_{ij} = 1$.

Let $\beta \neq 0$. Then (i) and (ii) below hold.

- (i) All non-constant elements of the β -generated K-free algebra $\mathfrak{Fr}_{\beta}K$ are cofinitedimensional.
- (ii) Moreover, a non-constant element a of the free algebra can be insensitive to an operator c_i only if c_i occurs in all generating terms of a from the free generators G of $\mathfrak{Fr}_{\beta}K$. In more detail: Assume that $a = \tau(\bar{g})$ for some sequence \bar{g} of free generators and c_i does not occur in the term τ . Then $a \neq c_i a$ in $\mathfrak{Fr}_{\beta}K$.

In proving Theorem 2, we will use the following two lemmas. Lemma 3 below is a version of the known theorem in cyindric algebra theory that relativization with zero-dimensional elements is a homomorphism. We have to prove this because we want to use the statement of this known theorem under much weaker conditions.

Lemma 3 Assume that Γ is a set and \mathfrak{A} is a Bo_{Γ} enriched perhaps with additional constants, and assume that the equations (1) (weak distributivity) hold in \mathfrak{A} . Let b be a zero-dimensional element of \mathfrak{A} , a_1, \ldots, a_n arbitrary elements of \mathfrak{A} , and let $\tau(x_1, \ldots, x_n)$ be a term in the language of \mathfrak{A} . Then

$$b \cdot \tau^{\mathfrak{A}}(a_1, \ldots, a_n) = b \cdot \tau^{\mathfrak{A}}(a_1 \cdot b, \ldots, a_n \cdot b).$$

Proof. We proceed by induction on τ . The only non-trivial cases are when τ is $c_i \sigma$ or $-\sigma$. In the first case we use weak distributivity, and the proof of the second case is much the same as in the cylindric algebra case. We denote $\sigma^{\mathfrak{A}}(a_1, \ldots, a_n)$ and $\sigma^{\mathfrak{A}}(a_1 \cdot b, \ldots, a_n \cdot b)$ by $\sigma(\bar{a})$ and $\sigma(\bar{a} \cdot b)$ respectively. Proof of homomorphism with respect to c_i : $b \cdot c_i \sigma(\bar{a}) = c_i (b \cdot \sigma(\bar{a})) = c_i (b \cdot \sigma(\bar{a} \cdot b)) = b \cdot c_i \sigma(\bar{a} \cdot b)$, using (1), $b = c_i b$ and the inductive hypothesis on σ . Proof of homomorphism with respect to complementation $-: b \cdot -\sigma(\bar{a}) = b \cdot -(b \cdot \sigma(\bar{a})) = b \cdot -(b \cdot \sigma(\bar{a} \cdot b)) = b \cdot -\sigma(\bar{a} \cdot b)$.

Lemma 4 Assume that K satisfies the hypotheses of Theorem 2. Then the following is valid in K:

$$c_k - d_{ij} = -d_{ij} \quad \text{if} \quad k \notin \{i, j\}.$$

Proof. It is enough to prove that $c_k(-d_{ij}) + d_{ij} = 1$ and $c_k(-d_{ij}) \cdot d_{ij} = 0$. We will use (1) – (4), additivity and normality of the operators c_i , and of course Boolean algebra. Proof of the first equation: $c_k(-d_{ij}) + d_{ij} = c_k(-d_{ij}) + c_k(d_{ij}) = c_k(-d_{ij} + d_{ij}) = c_k 1 = c_k(d_{ki} + -d_{ki}) = c_k d_{ki} + c_k - d_{ki} = 1$. Proof of the second equation: $c_k(-d_{ij}) \cdot d_{ij} = c_k(-d_{ij}) \cdot c_k c_k d_{ij} = c_k(-d_{ij} \cdot c_k d_{ij}) = c_k(0 = 0)$.

We are ready to prove Theorem 2.

Proof of Theorem 2: It is enough to prove the second statement of Theorem 2, because it is a stronger version of the first one. Let α, β, K be as in the hypotheses of the theorem. Set $\mathfrak{F} \stackrel{\text{def}}{=} \mathfrak{Fr}_{\beta}K$, let a be a non-constant element of \mathfrak{F} , let $\tau(x_1, \ldots, x_n)$ be a term in the language of Bo_{α} and g_1, \ldots, g_n be free generators in \mathfrak{F} such that $a = \tau(g_1, \ldots, g_n)$. Let Γ be the set of all indices of operators (i.e. c_i 's) occurring in τ . We will show that $a \neq c_i a$ in \mathfrak{F} for all $i \in \alpha \smallsetminus \Gamma$.

Let $i \in \alpha \setminus \Gamma$. If $K \not\models c_i \tau(\bar{x}) = \tau(\bar{x})$, then $c_i \tau(\bar{g}) \neq \tau(\bar{g})$ because the g_k 's are free generators in $\mathfrak{F} = \mathfrak{Fr}_{\beta}K$, i.e. $a \neq c_i a$ and we are done.

Assume therefore that $K \models c_i \tau(\bar{x}) = \tau(\bar{x})$. We will derive a contradiction. Let $j \in \alpha \setminus \Gamma, j \neq i$. Such a j exists because α is infinite and Γ is finite. Now

$$(\star) \quad K \models \tau(\bar{x}) = c_i(\tau(\bar{x}) \cdot d_{ij}) = c_i(\tau(\bar{x}) \cdot - d_{ij})$$

by (1), (3) and (4). For every $1 \le k \le n$ define

$$e_k \stackrel{\text{def}}{=} g_k \cdot d_{ij} + d_{01} \cdot -d_{ij} \,.$$

Let \mathfrak{N} denote the Γ -reduct of \mathfrak{F} together with all the constants, i.e. the universe of \mathfrak{N} is the same as that of \mathfrak{F} and the operations of \mathfrak{N} are those of \mathfrak{F} except that we omit those operations c_k where $k \notin \Gamma$. Then \mathfrak{N} is a Bo_{Γ} with additional constants in which (1) holds. Also, d_{ij} is zero-dimensional in \mathfrak{N} by (2) and $i, j \notin \Gamma$. Similarly, $-d_{ij}$ is zero-dimensional in \mathfrak{N} by Lemma 4, and the term τ is in the language of \mathfrak{N} . Thus we can apply Lemma 3.

By applying (*) and Lemma 3 twice, and using the definition of \bar{e} we get $\tau(\bar{e}) = c_i(\tau(\bar{e}) \cdot d_{ij}) = c_i(\tau(\bar{e} \cdot d_{ij}) \cdot d_{ij}) = c_i(\tau(\bar{g} \cdot d_{ij}) \cdot d_{ij}) = c_i(\tau(\bar{g}) \cdot d_{ij}) = \tau(\bar{g})$. Completely analogously we obtain $\tau(\bar{e}) = \tau(\bar{d}_{01})$. Thus $\tau(\bar{g}) = \tau(\bar{d}_{01})$. But this is a contradiction because $a = \tau(\bar{g})$ is a non-constant element by our assumption and since $\tau(\bar{d}_{01})$ is a constant element.

Corollary 5 Let K be a variety of Boolean algebras with complemented closure operators. Then (2)-(4) of Theorem 2 imply the conclusion of Theorem 2.

Proof. A Bo_{α} with complemented closure operators is always normal and weak distributivity (1) holds in it. This is easy to check.

We are ready to prove Theorem 1 now. We note that neither (i) nor (ii) of Theorem 2 is true for $K = CA_{\alpha}$. Indeed, if g is a free generator, then $a = g \cdot -c_0(-d_{01})$ is a zero-dimensional element in $\mathfrak{Fr}_{\beta}CA_{\alpha}$, yet a is not a constant in $\mathfrak{Fr}_{\beta}CA_{\alpha}$. Also, $a = c_2 a$ because it is zero-dimensional, yet 2 does not occur in the generating term $\tau = x \cdot -c_0(-d_{01})$ of a.

Proof of Theorem 1. First we prove (ii). Let M denote the subuniverse of $\mathfrak{Fr}_{\beta}CA_{\alpha}$ generated by $\{g \cdot -c_0(-d_{01}) : g \in G\}$. Assume that $a \in Fr_{\beta}CA_{\alpha} \setminus M$, $a = \tau(g_1, \ldots, g_n), g_1, \ldots, g_n \in G$ and c_j does not occur in τ . We want to show that $a \neq c_j a$ in $\mathfrak{Fr}_{\beta}CA_{\alpha}$.

Let K denote the variety of those CA_{α} 's in which the equation $c_0 - d_{01} = 1$ holds. Then K satisfies the hypotheses of Theorem 2. (We note that CA_{α} does not satisfy those hypotheses, because (4) fails for CA_{α} .) Assume that the set of free generators of $\mathfrak{Fr}_{\beta}K$ is also G, and let $h : \mathfrak{Fr}_{\beta}CA_{\alpha} \to \mathfrak{Fr}_{\beta}K$ be a homomorphism which is the identity on G (i.e. h(g) = g for all $g \in G$). Such a homomorphism exists because $\mathfrak{Fr}_{\beta}K \in CA_{\alpha}$. We are going to show that h(a) is non-constant in $\mathfrak{Fr}_{\beta}K$.

Let $\delta \stackrel{\text{def}}{=} c_0(-d_{01})$. Then it is a cylindric algebraic theorem that δ is a zerodimensional element. Cf. [6, 1.6.9(i)]. Let $e(x) \stackrel{\text{def}}{=} x \cdot \delta$ for any $x \in Fr_{\beta}CA_{\alpha}$. Then by Lemma 3, e is a homomorphism on $\mathfrak{Fr}_{\beta}CA_{\alpha}$ in the sense of [6, Def.0.2.1, p.67], i.e. there is a unique algebra \mathfrak{A} such that e is a surjective homomorphism from $\mathfrak{Fr}_{\beta}CA_{\alpha}$ onto \mathfrak{A} . Cf. [6, Thm.0.2.4]. Then $\mathfrak{A} \in CA_{\alpha}$ because CA_{α} is a variety. Then $\mathfrak{A} \in K$ by $\mathfrak{A} \models \delta = 1$. We have $A \subseteq Fr_{\beta}CA_{\alpha}$ because $A = \{a \cdot \delta : a \in Fr_{\beta}CA_{\alpha}\}$. Let h'denote the restriction of h to A. We are going to show that h' is an isomorphism between \mathfrak{A} and $\mathfrak{Fr}_{\beta}K$. It is easy to check that $h' : \mathfrak{A} \to \mathfrak{Fr}_{\beta}K$ is a homomorphism because $h(\delta) = 1$. It remains to show that h' is one-to-one on A. Let $f : \mathfrak{Fr}_{\beta}K \to \mathfrak{A}$ be a homomorphism such that $f(g) = g \cdot \delta$ for all $g \in G$. Such a homomorphism exists, because $\mathfrak{A} \in K$ and $g \cdot \delta \in A$ for all $g \in G$. Thus the two homomorphisms $f \circ h'$ and $h' \circ f$ are homomorphisms on \mathfrak{A} and $\mathfrak{Fr}_{\beta}K$ respectively, such that they are identity on the generating sets $\{g \cdot \delta : g \in G\}$ and G respectively. Thus both $f \circ h'$ and $h' \circ f$ are identity on the corresponding algebras, showing that h' and fboth are isomorphisms.

Now we are ready to show that h(a) is non-constant in $\mathfrak{Fr}_{\beta}K$. Assume the contrary, i.e. that $h(a) = \sigma$ in $\mathfrak{Fr}_{\beta}K$ for some constant term σ . Then $h(\sigma \cdot \delta) = h(\sigma^{\mathfrak{A}}) = h'(\sigma^{\mathfrak{A}}) = \sigma$ because h' is a homomorphism, and then $a \cdot \delta = \sigma \cdot \delta$ because h is one-to-one on A (since h' is an isomorphism) and $a \cdot \delta \in A$. Since δ is zerodimensional, so is $-\delta$, and thus $a \cdot -\delta = \tau(\bar{g} \cdot -\delta)$ by Lemma 3. So $(a \cdot -\delta) \in M$ by the definition of M. This is a contradiction, because $a \notin M$ but we have seen that $a \cdot \delta = \sigma \cdot \delta$ is a constant, hence in M, and M is closed under addition. We have shown that h(a) is not a constant in $\mathfrak{Fr}_{\beta}K$.

Now we can apply Theorem 2(ii), which yields that $h(a) \neq c_j h(a)$ in $\mathfrak{Fr}_{\beta} K$ because τ is also a generating term for h(a) in $\mathfrak{Fr}_{\beta} K$. But then $a \neq c_j a$ in $\mathfrak{Fr}_{\beta} CA_{\alpha}$ because h is a homomorphism. This completes the proof of (ii).

To prove (i), it is enough now to show that each element of M is finite-dimensional. This follows from the cylindric algebraic theorem that $\eta \stackrel{\text{def}}{=} -c_0(-d_{01})$ is a hereditarily zero-dimensional element, which means that not only η , but all elements smaller than η are zero-dimensional. See [6, 1.6.20]. Thus $g \cdot \eta$ is zero-dimensional for each $g \in G$, and then one can apply the easy cylindric algebraic theorem that finite-dimensional elements generate finite-dimensional ones (cf. [6, 2.1.5(i)]).

References

- H. Andréka, S. Givant, and I. Németi. Perfect extensions and derived algebras. J. of Symbolic Logic, 60(3):775–796, 1995.
- [2] H. Andréka, B. Jónsson, and I. Németi. Free algebras in discriminator varieties. Algebra Universalis, 28:401–447, 1991. Abstracted in [5], 1–14.
- [3] H. Andréka, J. D. Monk, and I. Németi (editors). Algebraic Logic (Proc. Conf. Budapest 1988). Colloq. Math. Soc. J. Bolyai Vol 54, North–Holland, Amsterdam, 1991.
- [4] H. Andréka, I. Németi, and I. Sain. Algebraic logic. In Handbook of Philosophical Logic Vol. II, second edition. D. Gabbay and F. Guenthner (eds), D. Reidel Publ. Co., 2000. To appear.
- [5] C. H. Bergman, R. D. Maddux, and D. L. Pigozzi, editors. Algebraic logic and universal algebra in computer science. Lecture Notes in Computer Science, volume 425. Springer-Verlag, Berlin, 1990. xi+292 pp.
- [6] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras Part I. North-Holland, Amsterdam, 1971 and 1985.
- [7] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras Part II. North-Holland, Amsterdam, 1985.

- [8] L. Henkin, J. D. Monk, A. Tarski, H. Andréka, and I. Németi. *Cylindric Set Algebras.* Springer–Verlag, Berlin, 1981. Lecture Notes in Mathematics Vol. 884, v+323 pp.
- [9] B. Jónsson and A. Tarski. Boolean algebras with operators, Part I. Amer. J. Math., 73:891–939, 1951.
- [10] J. X. Madarász. Interpolation in algebraizable logics. Semantics for non-normal multi-modal logic. Journal of Applied Non-Classical Logics, 8(1-2):67–105, 1998.
- [11] J. X. Madarász. Interpolation and amalgamation; pushing the limits (Parts I,II). Studia Logica, 60,61(3,1):311-345, 1998, 1999.
- [12] I. Németi. Free Algebras and Decidability in Algebraic Logic. Dissertation for D.Sc. with Hung. Academy of Sciences, Budapest, 1986. In Hungarian.
- [13] I. Németi and I. Sain (editors). Special Issue on Algebraic Logic. Logic Journal of IGPL, Vol. 8, No 4, 2000.

Alfréd Rényi Mathematical Institute Budapest, Pf. 127 H–1364, Hungary e-mail: madarasz nemeti@math-inst.hu