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Abstract

We characterize the finite-dimensional elements of a free cylindric alge-
bra. This solves Problem 2.10 in [Henkin, Monk, Tarski: Cylindric Algebras,
North-Holland, 1971 and 1985]. We generalize the characterization to quasi-
varieties of Boolean algebras with operators in place of cylindric algebras.

Free algebras play an important role in universal algebra, see e.g. Andréka-
Jónsson-Németi [2]. Free algebras are even more important in algebraic logic, be-
cause they give information on proof-theoretic properties of a logic. Cf. e.g. [7, §5.6],
[4], [12], [8].

Cylindric algebras are special Boolean algebras with closure operators. Tarski
proved that any element of a free cylindric algebra behaves the same way for all but
finitely many of these operators: x is either closed for all but finitely many or only
finitely many operators. See Theorem 2.6.23 in [6]. It remained open which elements
of a free algebra are closed to all but finitely many, and which are closed only to
finitely many. [6, 2.6.24] contains a conjecture for a characterization, but Henkin,
Monk, and Tarski write there that they were unable to verify this conjecture. They
also formulate the conjecture as Problem 2.10 in [6].

In this paper we solve Problem 2.10 of [6] by showing that their conjecture was
right. We prove more: we give information about which element is closed under
which operators, and also we generalize the result to quasi-varieties of Boolean
algebras with operators.
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Boolean algebras with operators (Boα’s) were introduced in Jónsson-Tarski [9]
and they have been well investigated ever since. See e.g. the papers in [3] and in [13],
or [1], [11], [10]. Boα is often called also BAO in the literature. An α-dimensional
Boolean algebra with operators is an algebra A = 〈A, +,−, ci, dij〉i,j∈α in which each
ci : A → A is a closure operator in the usual sense, and the dij’s are constants. I.e.
ci is additive and x ≤ cix = cicix holds in A. We say that A has complemented
closure operators if the complement of a ci-closed element is ci-closed again, that
is if A |= {ci − cix = −cix : i ∈ α}. An operator ci is normal if ci0 = 0, and a
Boα is normal if all of its operators are normal. α-dimensional cylindric algebras,
CAα’s, are Boα’s with commuting complemented closure operators in which three
additional equations are postulated for the constants dij.

Some terminology: Let A = 〈A, +,−, ci, dij〉i,j∈α be a Boα and let a ∈ A. We say
that a is sensitive to an operator ci if a 6= cia in A. We say that a is finite (cofinite)
dimensional if a is sensitive to finitely many (co-finitely many) of the operators
ci (i ∈ α). We say that a is zero-dimensional if a is not sensitive to any of the
operators, i.e. if a = cia for all i ∈ α. We say that a is a constant element in A

if a is generated by the constants 0, 1, dij (i, j ∈ α), or in other words, if a is an
element of the smallest subalgebra of A. If a generator set G of A is fixed, then by
a generating term of a we understand a term τ(x1, . . . , xn) in the language of Boα

such that a = τ(g1, . . . , gn) in A for some g1, . . . , gn ∈ G.

Theorem 1 (Solution of Problem 2.10 in [6]) Let α be an infinite ordinal and
β be a nonzero cardinal.

(i) The set of all finite-dimensional elements of the β-generated free algebra FrβCAα

is the subuniverse generated by {g · −c0(−d01) : g ∈ G}, where G is the set of
free generators of FrβCAα.

(ii) If an element is not finite-dimensional in FrβCAα, then it is sensitive to all
operators which do not occur in all of its generating terms.

We will prove Theorem 1 as a corollary of the following theorem about all quasi-
varieties of normal Boα’s.

Theorem 2 Assume α ≥ ω. Let K be any quasi-variety of normal Boα’s in which
the equations (1) – (4) below are valid for all i, j, k ∈ α.

(1) ci(cix · y) = cicix · ciy (weak distributivity)

(2) ckdij = dij if k /∈ {i, j}
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(3) cidij = 1

(4) ci − dij = 1 .

Let β 6= 0. Then (i) and (ii) below hold.

(i) All non-constant elements of the β-generated K-free algebra FrβK are cofinite-
dimensional.

(ii) Moreover, a non-constant element a of the free algebra can be insensitive to an
operator ci only if ci occurs in all generating terms of a from the free generators
G of FrβK. In more detail: Assume that a = τ(ḡ) for some sequence ḡ of free
generators and ci does not occur in the term τ . Then a 6= cia in FrβK.

In proving Theorem 2, we will use the following two lemmas. Lemma 3 below is
a version of the known theorem in cyindric algebra theory that relativization with
zero-dimensional elements is a homomorphism. We have to prove this because we
want to use the statement of this known theorem under much weaker conditions.

Lemma 3 Assume that Γ is a set and A is a BoΓ enriched perhaps with additional
constants, and assume that the equations (1) (weak distributivity) hold in A. Let
b be a zero-dimensional element of A, a1, . . . , an arbitrary elements of A, and let
τ(x1, . . . , xn) be a term in the language of A. Then

b · τA(a1, . . . , an) = b · τA(a1 · b, . . . , an · b) .

Proof. We proceed by induction on τ . The only non-trivial cases are when τ is
ciσ or −σ. In the first case we use weak distributivity, and the proof of the second
case is much the same as in the cylindric algebra case. We denote σA(a1, . . . , an)
and σA(a1 · b, . . . , an · b) by σ(ā) and σ(ā · b) respectively. Proof of homomorphism
with respect to ci: b · ciσ(ā) = ci(b · σ(ā)) = ci(b · σ(ā · b)) = b · ciσ(ā · b), using (1),
b = cib and the inductive hypothesis on σ. Proof of homomorphism with respect to
complementation −: b · −σ(ā) = b · −(b · σ(ā)) = b · −(b · σ(ā · b)) = b · −σ(ā · b).

Lemma 4 Assume that K satisfies the hypotheses of Theorem 2. Then the following
is valid in K:

ck − dij = −dij if k /∈ {i, j}.

3



Proof. It is enough to prove that ck(−dij) + dij = 1 and ck(−dij) · dij = 0. We will
use (1) – (4), additivity and normality of the operators ci, and of course Boolean
algebra. Proof of the first equation: ck(−dij) + dij = ck(−dij) + ck(dij) = ck(−dij +
dij) = ck1 = ck(dki + −dki) = ckdki + ck − dki = 1. Proof of the second equation:
ck(−dij) · dij = ck(−dij) · ckckdij = ck(−dij · ckdij) = ck(−dij · dij) = ck0 = 0.

We are ready to prove Theorem 2.

Proof of Theorem 2: It is enough to prove the second statement of Theorem 2,
because it is a stronger version of the first one. Let α, β, K be as in the hypotheses of

the theorem. Set F
def
= FrβK, let a be a non-constant element of F, let τ(x1, . . . , xn)

be a term in the language of Boα and g1, . . . , gn be free generators in F such that
a = τ(g1, . . . , gn). Let Γ be the set of all indices of operators (i.e. ci’s) occurring in
τ . We will show that a 6= cia in F for all i ∈ αr Γ.

Let i ∈ α r Γ. If K 6|= ciτ(x̄) = τ(x̄), then ciτ(ḡ) 6= τ(ḡ) because the gk’s are
free generators in F = FrβK, i.e. a 6= cia and we are done.

Assume therefore that K |= ciτ(x̄) = τ(x̄). We will derive a contradiction. Let
j ∈ αr Γ, j 6= i. Such a j exists because α is infinite and Γ is finite. Now

(?) K |= τ(x̄) = ci(τ(x̄) · dij) = ci(τ(x̄) · −dij)

by (1), (3) and (4). For every 1 ≤ k ≤ n define

ek
def
= gk · dij + d01 · −dij .

Let N denote the Γ-reduct of F together with all the constants, i.e. the universe of
N is the same as that of F and the operations of N are those of F except that we
omit those operations ck where k /∈ Γ. Then N is a BoΓ with additional constants
in which (1) holds. Also, dij is zero-dimensional in N by (2) and i, j /∈ Γ. Similarly,
−dij is zero-dimensional in N by Lemma 4, and the term τ is in the language of N.
Thus we can apply Lemma 3.

By applying (?) and Lemma 3 twice, and using the definition of ē we get τ(ē) =
ci(τ(ē) ·dij) = ci(τ(ē ·dij) ·dij) = ci(τ(ḡ ·dij) ·dij) = ci(τ(ḡ) ·dij) = τ(ḡ). Completely
analogously we obtain τ(ē) = τ(d̄01). Thus τ(ḡ) = τ(d̄01). But this is a contradiction
because a = τ(ḡ) is a non-constant element by our assumption and since τ(d̄01) is a
constant element.

Corollary 5 Let K be a variety of Boolean algebras with complemented closure
operators. Then (2)-(4) of Theorem 2 imply the conclusion of Theorem 2.
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Proof. A Boα with complemented closure operators is always normal and weak
distributivity (1) holds in it. This is easy to check.

We are ready to prove Theorem 1 now. We note that neither (i) nor (ii) of
Theorem 2 is true for K = CAα. Indeed, if g is a free generator, then a = g ·
−c0(−d01) is a zero-dimensional element in FrβCAα, yet a is not a constant in
FrβCAα. Also, a = c2a because it is zero-dimensional, yet 2 does not occur in the
generating term τ = x · −c0(−d01) of a.

Proof of Theorem 1. First we prove (ii). Let M denote the subuniverse of
FrβCAα generated by {g · −c0(−d01) : g ∈ G}. Assume that a ∈ FrβCAα rM ,
a = τ(g1, . . . , gn), g1, . . . , gn ∈ G and cj does not occur in τ . We want to show that
a 6= cja in FrβCAα.

Let K denote the variety of those CAα’s in which the equation c0−d01 = 1 holds.
Then K satisfies the hypotheses of Theorem 2. (We note that CAα does not satisfy
those hypotheses, because (4) fails for CAα.) Assume that the set of free generators
of FrβK is also G, and let h : FrβCAα → FrβK be a homomorphism which is the
identity on G (i.e. h(g) = g for all g ∈ G). Such a homomorphism exists because
FrβK ∈ CAα. We are going to show that h(a) is non-constant in FrβK.

Let δ
def
= c0(−d01). Then it is a cylindric algebraic theorem that δ is a zero-

dimensional element. Cf. [6, 1.6.9(i)]. Let e(x)
def
= x · δ for any x ∈ FrβCAα. Then

by Lemma 3, e is a homomorphism on FrβCAα in the sense of [6, Def.0.2.1, p.67], i.e.
there is a unique algebra A such that e is a surjective homomorphism from FrβCAα

onto A. Cf. [6, Thm.0.2.4]. Then A ∈ CAα because CAα is a variety. Then A ∈ K
by A |= δ = 1. We have A ⊆ FrβCAα because A = {a · δ : a ∈ FrβCAα}. Let h′

denote the restriction of h to A. We are going to show that h′ is an isomorphism
between A and FrβK. It is easy to check that h′ : A → FrβK is a homomorphism
because h(δ) = 1. It remains to show that h′ is one-to-one on A. Let f : FrβK → A

be a homomorphism such that f(g) = g · δ for all g ∈ G. Such a homomorphism
exists, because A ∈ K and g · δ ∈ A for all g ∈ G. Thus the two homomorphisms
f ◦ h′ and h′ ◦ f are homomorphisms on A and FrβK respectively, such that they
are identity on the generating sets {g · δ : g ∈ G} and G respectively. Thus both
f ◦ h′ and h′ ◦ f are identity on the corresponding algebras, showing that h′ and f
both are isomorphisms.

Now we are ready to show that h(a) is non-constant in FrβK. Assume the
contrary, i.e. that h(a) = σ in FrβK for some constant term σ. Then h(σ · δ) =
h(σA) = h′(σA) = σ because h′ is a homomorphism, and then a · δ = σ · δ because
h is one-to-one on A (since h′ is an isomorphism) and a · δ ∈ A. Since δ is zero-
dimensional, so is −δ, and thus a · −δ = τ(ḡ · −δ) by Lemma 3. So (a · −δ) ∈ M by
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the definition of M . This is a contradiction, because a /∈ M but we have seen that
a · δ = σ · δ is a constant, hence in M , and M is closed under addition. We have
shown that h(a) is not a constant in FrβK.

Now we can apply Theorem 2(ii), which yields that h(a) 6= cjh(a) in FrβK
because τ is also a generating term for h(a) in FrβK. But then a 6= cja in FrβCAα

because h is a homomorphism. This completes the proof of (ii).

To prove (i), it is enough now to show that each element of M is finite-dimen-

sional. This follows from the cylindric algebraic theorem that η
def
= −c0(−d01) is a

hereditarily zero-dimensional element, which means that not only η, but all elements
smaller than η are zero-dimensional. See [6, 1.6.20]. Thus g · η is zero-dimensional
for each g ∈ G, and then one can apply the easy cylindric algebraic theorem that
finite-dimensional elements generate finite-dimensional ones (cf. [6, 2.1.5(i)]).
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