Free Boolean algebras with closure operators and a conjecture of Henkin, Monk, and Tarski*

by
J. X. Madarász and I. Németi

Abstract

We characterize the finite-dimensional elements of a free cylindric algebra. This solves Problem 2.10 in [Henkin, Monk, Tarski: Cylindric Algebras, North-Holland, 1971 and 1985]. We generalize the characterization to quasivarieties of Boolean algebras with operators in place of cylindric algebras.

Free algebras play an important role in universal algebra, see e.g. Andréka-Jónsson-Németi [2]. Free algebras are even more important in algebraic logic, because they give information on proof-theoretic properties of a logic. Cf. e.g. [7, §5.6], [4], [12], [8].

Cylindric algebras are special Boolean algebras with closure operators. Tarski proved that any element of a free cylindric algebra behaves the same way for all but finitely many of these operators: x is either closed for all but finitely many or only finitely many operators. See Theorem 2.6.23 in [6]. It remained open which elements of a free algebra are closed to all but finitely many, and which are closed only to finitely many. [6, 2.6.24] contains a conjecture for a characterization, but Henkin, Monk, and Tarski write there that they were unable to verify this conjecture. They also formulate the conjecture as Problem 2.10 in [6].

In this paper we solve Problem 2.10 of [6] by showing that their conjecture was right. We prove more: we give information about which element is closed under which operators, and also we generalize the result to quasi-varieties of Boolean algebras with operators.

[^0]Boolean algebras with operators ($B o_{\alpha}$'s) were introduced in Jónsson-Tarski [9] and they have been well investigated ever since. See e.g. the papers in [3] and in [13], or [1], [11], [10]. $B o_{\alpha}$ is often called also $B A O$ in the literature. An α-dimensional Boolean algebra with operators is an algebra $\mathfrak{A}=\left\langle A,+,-, c_{i}, d_{i j}\right\rangle_{i, j \in \alpha}$ in which each $c_{i}: A \rightarrow A$ is a closure operator in the usual sense, and the $d_{i j}$'s are constants. I.e. c_{i} is additive and $x \leq c_{i} x=c_{i} c_{i} x$ holds in \mathfrak{A}. We say that \mathfrak{A} has complemented closure operators if the complement of a c_{i}-closed element is c_{i}-closed again, that is if $\mathfrak{A} \models\left\{c_{i}-c_{i} x=-c_{i} x: i \in \alpha\right\}$. An operator c_{i} is normal if $c_{i} 0=0$, and a $B o_{\alpha}$ is normal if all of its operators are normal. α-dimensional cylindric algebras, $C A_{\alpha}$'s, are $B o_{\alpha}$'s with commuting complemented closure operators in which three additional equations are postulated for the constants $d_{i j}$.

Some terminology: Let $\mathfrak{A}=\left\langle A,+,-, c_{i}, d_{i j}\right\rangle_{i, j \in \alpha}$ be a $B o_{\alpha}$ and let $a \in A$. We say that a is sensitive to an operator c_{i} if $a \neq c_{i} a$ in \mathfrak{A}. We say that a is finite (cofinite) dimensional if a is sensitive to finitely many (co-finitely many) of the operators $c_{i}(i \in \alpha)$. We say that a is zero-dimensional if a is not sensitive to any of the operators, i.e. if $a=c_{i} a$ for all $i \in \alpha$. We say that a is a constant element in \mathfrak{A} if a is generated by the constants $0,1, d_{i j}(i, j \in \alpha)$, or in other words, if a is an element of the smallest subalgebra of \mathfrak{A}. If a generator set G of \mathfrak{A} is fixed, then by a generating term of a we understand a term $\tau\left(x_{1}, \ldots, x_{n}\right)$ in the language of $B o_{\alpha}$ such that $a=\tau\left(g_{1}, \ldots, g_{n}\right)$ in \mathfrak{A} for some $g_{1}, \ldots, g_{n} \in G$.

Theorem 1 (Solution of Problem 2.10 in [6]) Let α be an infinite ordinal and β be a nonzero cardinal.
(i) The set of all finite-dimensional elements of the β-generated free algebra $\mathfrak{F r}_{\beta} C A_{\alpha}$ is the subuniverse generated by $\left\{g \cdot-c_{0}\left(-d_{01}\right): g \in G\right\}$, where G is the set of free generators of $\mathfrak{F r}_{\beta} C A_{\alpha}$.
(ii) If an element is not finite-dimensional in $\mathfrak{F r}_{\beta} C A_{\alpha}$, then it is sensitive to all operators which do not occur in all of its generating terms.

We will prove Theorem 1 as a corollary of the following theorem about all quasivarieties of normal $B o_{\alpha}$'s.

Theorem 2 Assume $\alpha \geq \omega$. Let K be any quasi-variety of normal Bo ${ }_{\alpha}$'s in which the equations (1) - (4) below are valid for all $i, j, k \in \alpha$.
(1) $c_{i}\left(c_{i} x \cdot y\right)=c_{i} c_{i} x \cdot c_{i} y \quad$ (weak distributivity)
(2) $c_{k} d_{i j}=d_{i j} \quad$ if $k \notin\{i, j\}$
(3) $c_{i} d_{i j}=1$
(4) $c_{i}-d_{i j}=1$.

Let $\beta \neq 0$. Then (i) and (ii) below hold.
(i) All non-constant elements of the β-generated K-free algebra $\mathfrak{F r}_{\beta} K$ are cofinitedimensional.
(ii) Moreover, a non-constant element a of the free algebra can be insensitive to an operator c_{i} only if c_{i} occurs in all generating terms of a from the free generators G of $\mathfrak{F r}_{\beta} K$. In more detail: Assume that $a=\tau(\bar{g})$ for some sequence \bar{g} of free generators and c_{i} does not occur in the term τ. Then $a \neq c_{i} a$ in $\mathfrak{F r}_{\beta} K$.

In proving Theorem 2, we will use the following two lemmas. Lemma 3 below is a version of the known theorem in cyindric algebra theory that relativization with zero-dimensional elements is a homomorphism. We have to prove this because we want to use the statement of this known theorem under much weaker conditions.

Lemma 3 Assume that Γ is a set and \mathfrak{A} is a $B o_{\Gamma}$ enriched perhaps with additional constants, and assume that the equations (1) (weak distributivity) hold in \mathfrak{A}. Let b be a zero-dimensional element of $\mathfrak{A}, a_{1}, \ldots, a_{n}$ arbitrary elements of \mathfrak{A}, and let $\tau\left(x_{1}, \ldots, x_{n}\right)$ be a term in the language of \mathfrak{A}. Then

$$
b \cdot \tau_{\mathfrak{A}}^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)=b \cdot \tau^{\mathfrak{A}}\left(a_{1} \cdot b, \ldots, a_{n} \cdot b\right) .
$$

Proof. We proceed by induction on τ. The only non-trivial cases are when τ is $c_{i} \sigma$ or $-\sigma$. In the first case we use weak distributivity, and the proof of the second case is much the same as in the cylindric algebra case. We denote $\sigma^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)$ and $\sigma^{\mathfrak{A}}\left(a_{1} \cdot b, \ldots, a_{n} \cdot b\right)$ by $\sigma(\bar{a})$ and $\sigma(\bar{a} \cdot b)$ respectively. Proof of homomorphism with respect to $c_{i}: b \cdot c_{i} \sigma(\bar{a})=c_{i}(b \cdot \sigma(\bar{a}))=c_{i}(b \cdot \sigma(\bar{a} \cdot b))=b \cdot c_{i} \sigma(\bar{a} \cdot b)$, using (1), $b=c_{i} b$ and the inductive hypothesis on σ. Proof of homomorphism with respect to complementation $-: \quad b \cdot-\sigma(\bar{a})=b \cdot-(b \cdot \sigma(\bar{a}))=b \cdot-(b \cdot \sigma(\bar{a} \cdot b))=b \cdot-\sigma(\bar{a} \cdot b)$.

Lemma 4 Assume that K satisfies the hypotheses of Theorem 2. Then the following is valid in K :

$$
c_{k}-d_{i j}=-d_{i j} \quad \text { if } \quad k \notin\{i, j\} .
$$

Proof. It is enough to prove that $c_{k}\left(-d_{i j}\right)+d_{i j}=1$ and $c_{k}\left(-d_{i j}\right) \cdot d_{i j}=0$. We will use (1) - (4), additivity and normality of the operators c_{i}, and of course Boolean algebra. Proof of the first equation: $c_{k}\left(-d_{i j}\right)+d_{i j}=c_{k}\left(-d_{i j}\right)+c_{k}\left(d_{i j}\right)=c_{k}\left(-d_{i j}+\right.$ $\left.d_{i j}\right)=c_{k} 1=c_{k}\left(d_{k i}+-d_{k i}\right)=c_{k} d_{k i}+c_{k}-d_{k i}=1$. Proof of the second equation: $c_{k}\left(-d_{i j}\right) \cdot d_{i j}=c_{k}\left(-d_{i j}\right) \cdot c_{k} c_{k} d_{i j}=c_{k}\left(-d_{i j} \cdot c_{k} d_{i j}\right)=c_{k}\left(-d_{i j} \cdot d_{i j}\right)=c_{k} 0=0$.

We are ready to prove Theorem 2.
Proof of Theorem 2: It is enough to prove the second statement of Theorem 2, because it is a stronger version of the first one. Let α, β, K be as in the hypotheses of the theorem. Set $\mathfrak{F} \stackrel{\text { def }}{=} \mathfrak{F r}_{\beta} K$, let a be a non-constant element of \mathfrak{F}, let $\tau\left(x_{1}, \ldots, x_{n}\right)$ be a term in the language of $B o_{\alpha}$ and g_{1}, \ldots, g_{n} be free generators in \mathfrak{F} such that $a=\tau\left(g_{1}, \ldots, g_{n}\right)$. Let Γ be the set of all indices of operators (i.e. c_{i} 's) occurring in τ. We will show that $a \neq c_{i} a$ in \mathfrak{F} for all $i \in \alpha \backslash \Gamma$.

Let $i \in \alpha \backslash \Gamma$. If $K \not \vDash c_{i} \tau(\bar{x})=\tau(\bar{x})$, then $c_{i} \tau(\bar{g}) \neq \tau(\bar{g})$ because the g_{k} 's are free generators in $\mathfrak{F}=\mathfrak{F r}_{\beta} K$, i.e. $a \neq c_{i} a$ and we are done.

Assume therefore that $K \models c_{i} \tau(\bar{x})=\tau(\bar{x})$. We will derive a contradiction. Let $j \in \alpha \backslash \Gamma, j \neq i$. Such a j exists because α is infinite and Γ is finite. Now
$(\star) \quad K \models \tau(\bar{x})=c_{i}\left(\tau(\bar{x}) \cdot d_{i j}\right)=c_{i}\left(\tau(\bar{x}) \cdot-d_{i j}\right)$
by (1), (3) and (4). For every $1 \leq k \leq n$ define

$$
e_{k} \stackrel{\text { def }}{=} g_{k} \cdot d_{i j}+d_{01} \cdot-d_{i j} .
$$

Let \mathfrak{N} denote the Γ-reduct of \mathfrak{F} together with all the constants, i.e. the universe of \mathfrak{N} is the same as that of \mathfrak{F} and the operations of \mathfrak{N} are those of \mathfrak{F} except that we omit those operations c_{k} where $k \notin \Gamma$. Then \mathfrak{N} is a $B o_{\Gamma}$ with additional constants in which (1) holds. Also, $d_{i j}$ is zero-dimensional in \mathfrak{N} by (2) and $i, j \notin \Gamma$. Similarly, $-d_{i j}$ is zero-dimensional in \mathfrak{N} by Lemma 4 , and the term τ is in the language of \mathfrak{N}. Thus we can apply Lemma 3.

By applying (\star) and Lemma 3 twice, and using the definition of \bar{e} we get $\tau(\bar{e})=$ $c_{i}\left(\tau(\bar{e}) \cdot d_{i j}\right)=c_{i}\left(\tau\left(\bar{e} \cdot d_{i j}\right) \cdot d_{i j}\right)=c_{i}\left(\tau\left(\bar{g} \cdot d_{i j}\right) \cdot d_{i j}\right)=c_{i}\left(\tau(\bar{g}) \cdot d_{i j}\right)=\tau(\bar{g})$. Completely analogously we obtain $\tau(\bar{e})=\tau\left(\bar{d}_{01}\right)$. Thus $\tau(\bar{g})=\tau\left(\bar{d}_{01}\right)$. But this is a contradiction because $a=\tau(\bar{g})$ is a non-constant element by our assumption and since $\tau\left(\bar{d}_{01}\right)$ is a constant element.

Corollary 5 Let K be a variety of Boolean algebras with complemented closure operators. Then (2)-(4) of Theorem 2 imply the conclusion of Theorem 2.

Proof. A $B o_{\alpha}$ with complemented closure operators is always normal and weak distributivity (1) holds in it. This is easy to check.

We are ready to prove Theorem 1 now. We note that neither (i) nor (ii) of Theorem 2 is true for $K=C A_{\alpha}$. Indeed, if g is a free generator, then $a=g$. $-c_{0}\left(-d_{01}\right)$ is a zero-dimensional element in $\mathfrak{F r}_{\beta} C A_{\alpha}$, yet a is not a constant in $\mathfrak{F r}_{\beta} C A_{\alpha}$. Also, $a=c_{2} a$ because it is zero-dimensional, yet 2 does not occur in the generating term $\tau=x \cdot-c_{0}\left(-d_{01}\right)$ of a.

Proof of Theorem 1. First we prove (ii). Let M denote the subuniverse of $\mathfrak{F r}_{\beta} C A_{\alpha}$ generated by $\left\{g \cdot-c_{0}\left(-d_{01}\right): g \in G\right\}$. Assume that $a \in F r_{\beta} C A_{\alpha} \backslash M$, $a=\tau\left(g_{1}, \ldots, g_{n}\right), g_{1}, \ldots, g_{n} \in G$ and c_{j} does not occur in τ. We want to show that $a \neq c_{j} a$ in $\mathfrak{F r}_{\beta} C A_{\alpha}$.

Let K denote the variety of those $C A_{\alpha}$'s in which the equation $c_{0}-d_{01}=1$ holds. Then K satisfies the hypotheses of Theorem 2 . (We note that $C A_{\alpha}$ does not satisfy those hypotheses, because (4) fails for $C A_{\alpha}$.) Assume that the set of free generators of $\mathfrak{F r}_{\beta} K$ is also G, and let $h: \mathfrak{F r}_{\beta} C A_{\alpha} \rightarrow \mathfrak{F r}_{\beta} K$ be a homomorphism which is the identity on G (i.e. $h(g)=g$ for all $g \in G$). Such a homomorphism exists because $\mathfrak{F r}_{\beta} K \in C A_{\alpha}$. We are going to show that $h(a)$ is non-constant in $\mathfrak{F r}_{\beta} K$.

Let $\delta \stackrel{\text { def }}{=} c_{0}\left(-d_{01}\right)$. Then it is a cylindric algebraic theorem that δ is a zerodimensional element. Cf. [6, 1.6.9(i)]. Let $e(x) \stackrel{\text { def }}{=} x \cdot \delta$ for any $x \in \operatorname{Fr}_{\beta} C A_{\alpha}$. Then by Lemma 3, e is a homomorphism on $\mathfrak{F r}_{\beta} C A_{\alpha}$ in the sense of [6, Def.0.2.1, p.67], i.e. there is a unique algebra \mathfrak{A} such that e is a surjective homomorphism from $\mathfrak{F r}_{\beta} C A_{\alpha}$ onto \mathfrak{A}. Cf. [6, Thm.0.2.4]. Then $\mathfrak{A} \in C A_{\alpha}$ because $C A_{\alpha}$ is a variety. Then $\mathfrak{A} \in K$ by $\mathfrak{A} \models \delta=1$. We have $A \subseteq F r_{\beta} C A_{\alpha}$ because $A=\left\{a \cdot \delta: a \in F r_{\beta} C A_{\alpha}\right\}$. Let h^{\prime} denote the restriction of h to A. We are going to show that h^{\prime} is an isomorphism between \mathfrak{A} and $\mathfrak{F r}_{\beta} K$. It is easy to check that $h^{\prime}: \mathfrak{A} \rightarrow \mathfrak{F r}_{\beta} K$ is a homomorphism because $h(\delta)=1$. It remains to show that h^{\prime} is one-to-one on A. Let $f: \mathfrak{F r}_{\beta} K \rightarrow \mathfrak{A}$ be a homomorphism such that $f(g)=g \cdot \delta$ for all $g \in G$. Such a homomorphism exists, because $\mathfrak{A} \in K$ and $g \cdot \delta \in A$ for all $g \in G$. Thus the two homomorphisms $f \circ h^{\prime}$ and $h^{\prime} \circ f$ are homomorphisms on \mathfrak{A} and $\mathfrak{F r}_{\beta} K$ respectively, such that they are identity on the generating sets $\{g \cdot \delta: g \in G\}$ and G respectively. Thus both $f \circ h^{\prime}$ and $h^{\prime} \circ f$ are identity on the corresponding algebras, showing that h^{\prime} and f both are isomorphisms.

Now we are ready to show that $h(a)$ is non-constant in $\mathfrak{F r}_{\beta} K$. Assume the contrary, i.e. that $h(a)=\sigma$ in $\mathfrak{F r}_{\beta} K$ for some constant term σ. Then $h(\sigma \cdot \delta)=$ $h\left(\sigma^{\mathfrak{A}}\right)=h^{\prime}\left(\sigma^{\mathfrak{A}}\right)=\sigma$ because h^{\prime} is a homomorphism, and then $a \cdot \delta=\sigma \cdot \delta$ because h is one-to-one on A (since h^{\prime} is an isomorphism) and $a \cdot \delta \in A$. Since δ is zerodimensional, so is $-\delta$, and thus $a \cdot-\delta=\tau(\bar{g} \cdot-\delta)$ by Lemma 3. So $(a \cdot-\delta) \in M$ by
the definition of M. This is a contradiction, because $a \notin M$ but we have seen that $a \cdot \delta=\sigma \cdot \delta$ is a constant, hence in M, and M is closed under addition. We have shown that $h(a)$ is not a constant in $\mathfrak{F r}_{\beta} K$.

Now we can apply Theorem 2(ii), which yields that $h(a) \neq c_{j} h(a)$ in $\mathfrak{F r}_{\beta} K$ because τ is also a generating term for $h(a)$ in $\mathfrak{F r}_{\beta} K$. But then $a \neq c_{j} a$ in $\mathfrak{F r}_{\beta} C A_{\alpha}$ because h is a homomorphism. This completes the proof of (ii).

To prove (i), it is enough now to show that each element of M is finite-dimensional. This follows from the cylindric algebraic theorem that $\eta \stackrel{\text { def }}{=}-c_{0}\left(-d_{01}\right)$ is a hereditarily zero-dimensional element, which means that not only η, but all elements smaller than η are zero-dimensional. See [6, 1.6.20]. Thus $g \cdot \eta$ is zero-dimensional for each $g \in G$, and then one can apply the easy cylindric algebraic theorem that finite-dimensional elements generate finite-dimensional ones (cf. [6, 2.1.5(i)]).

References

[1] H. Andréka, S. Givant, and I. Németi. Perfect extensions and derived algebras. J. of Symbolic Logic, 60(3):775-796, 1995.
[2] H. Andréka, B. Jónsson, and I. Németi. Free algebras in discriminator varieties. Algebra Universalis, 28:401-447, 1991. Abstracted in [5], 1-14.
[3] H. Andréka, J. D. Monk, and I. Németi (editors). Algebraic Logic (Proc. Conf. Budapest 1988). Colloq. Math. Soc. J. Bolyai Vol 54, North-Holland, Amsterdam, 1991.
[4] H. Andréka, I. Németi, and I. Sain. Algebraic logic. In Handbook of Philosophical Logic Vol. II, second edition. D. Gabbay and F. Guenthner (eds), D. Reidel Publ. Co., 2000. To appear.
[5] C. H. Bergman, R. D. Maddux, and D. L. Pigozzi, editors. Algebraic logic and universal algebra in computer science. Lecture Notes in Computer Science, volume 425. Springer-Verlag, Berlin, 1990. xi +292 pp.
[6] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras Part I. NorthHolland, Amsterdam, 1971 and 1985.
[7] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Algebras Part II. NorthHolland, Amsterdam, 1985.
[8] L. Henkin, J. D. Monk, A. Tarski, H. Andréka, and I. Németi. Cylindric Set Algebras. Springer-Verlag, Berlin, 1981. Lecture Notes in Mathematics Vol. 884, v+323 pp.
[9] B. Jónsson and A. Tarski. Boolean algebras with operators, Part I. Amer. J. Math., 73:891-939, 1951.
[10] J. X. Madarász. Interpolation in algebraizable logics. Semantics for non-normal multi-modal logic. Journal of Applied Non-Classical Logics, 8(1-2):67-105, 1998.
[11] J. X. Madarász. Interpolation and amalgamation; pushing the limits (Parts I,II). Studia Logica, 60,61(3,1):311-345, 1998, 1999.
[12] I. Németi. Free Algebras and Decidability in Algebraic Logic. Dissertation for D.Sc. with Hung. Academy of Sciences, Budapest, 1986. In Hungarian.
[13] I. Németi and I. Sain (editors). Special Issue on Algebraic Logic. Logic Journal of IGPL, Vol. 8, No 4, 2000.

Alfréd Rényi Mathematical Institute Budapest, Pf. 127
H-1364, Hungary
e-mail: madarasz nemeti@math-inst.hu

[^0]: *Research supported by the Hungarian National Foundation for scientific research grants No T30314 and T23234.

