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Algebraic logic can be divided into two major parts: (i) abstract (or
universal) algebraic logic and (ii) “concrete” algebraic logic (or algebras of
relations of various ranks).

(1) Abstract algebraic logic is built around a duality theory which asso-
ciates, roughly speaking, quasi-varieties of algebras to logical systems (logics
for short) and vice versa. After the duality theory is elaborated, characteri-
zation theorems follow which characterize distinguished logical properties of
a logic L in terms of natural algebraic properties of the algebraic counterpart
Alg(L) of L.

A logic is, usually, a tuple

L = 〈FmL,ModL, |=L,mngL,`L〉
where Fm is the set of formulas of L, Mod is the class of models of L,
|=L⊆ Mod × Fm is the validity relation, mng : Mod × Fm → Sets is the
semantical meaning (or denotation) function of L and ` is the syntactical
provability relation of L.

More generally, a general logic consists of a class VocL of vocabularies and
then to each vocabulary τ ∈ VocL , L associates a logic, i.e. a 5-tuple L(τ) =
〈Fmτ ,Modτ , |=τ ,mngτ ,`τ 〉 as indicated above. As an example, first-order
logic is a general logic in the sense that to any collection of predicate symbols
it associates a concrete first-order language built up from those predicate
symbols (i.e. vocabulary).

Of course, there are some conditions which logics and general logics have
to satisfy, otherwise any “crazy” odd 5-tuple would count as a logic, which
one wants to avoid. We do not recall the conditions on logics and general
logics, instead we refer to [2], or [16], or [11], or for the case of logics without
semantics (i.e. without ModL) to [4]. These conditions go back to pioneering
papers of Tarski.
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To each logic and general logic there is a set CnnL of logical connectives
specified in such a way that FmL or Fmτ becomes an absolutely free algebra
generated by the atomic formulas of τ and L and using CnnL as algebraic
operations. Hence we can view CnnL as the similarity type of the algebras
Fmτ . Using the algebras Fmτ and the provability relation `τ one can asso-
ciate a class Alg`(L) of algebras to L. Each of these algebras corresponds
to a syntactical theory of L. Using Fmτ together with mngτ , |=τ one can
associate a second class Alg|=(L) of algebras to L. Alg|=(L) represents seman-
tical aspects of L, e.g. each model M ∈ Modτ corresponds to an algebra in
Alg|=(L). Often, the members of Alg|=(L) are called representable algebras
or meaning algebras of L. Under mild conditions on L, one can prove that
Alg`(L) is a quasi-variety and that Alg|=(L) ⊆ Alg`(L), cf. e.g. [2].

Examples: If L is propositional logic, then Alg`(L) = Alg|=(L) is the
class BA of Boolean algebras. Let n ∈ ω. For the n-variable fragment
Ln of first order logic, Alg`(Ln) is the class CAn of cylindric algebras of
dimension n, while Alg|=(Ln) is the class RCAn of representable cylindric
algebras. For a certain variant Lω of first-order logic, Alg`(Lω) is the class
RCAω of representable CAω’s. Lω is called full restricted first order language
in [6], cf. also [2, §6] and Appendix C in [4]. For the algebraic counterparts
of other logics (as well as other versions of first order logic) we refer to [2].

Let us take the logic Ln as an example. The algebraic counterparts of the-
ories of Ln are exactly the algebras in CAn and the interpretations between
theories correspond exactly to the homomorphisms between CAn’s. Further,
axiomatizable classes of models of Ln correspond to RCAn’s and (semantic)
interpretations between such classes of models correspond to special homo-
morphisms called base-homomorphisms between RCAn’s, cf. [6]p.170. Indi-
vidual models of Ln correspond to simple RCAn’s and elementary equivalence
of models corresponds to isomorphism of RCAn’s. The elements of an RCAn

corresponding to a model M are best thought of as the relations definable in
M.

Of the duality theory between logics and their algebraic counterparts we
discussed only the translation

Alg : “logics” −→ “pairs of classes of algebras”.

The other direction can also be elaborated (and then we can have a two-sided
duality like Stone duality between BA’s and certain topological spaces); we
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refer to [4, p.21] for more on such a two-sided duality between logics and
quasi-varieties of algebras.

Some of the equivalence theorems. We use the above outlined duality the-
ory for characterizing logical properties of L with algebraic properties of
Alg|=(L), Alg`(L) (under some mild assumptions on L). E.g. the deduc-
tion property of L is equivalent with Alg`(L) having equationally definable
principal congruences. The Beth definability property for L is equivalent
with surjectiveness of all epimorphisms in Alg|=(L). The various definabil-
ity properties (weak Beth, local Beth etc.) and interpolation properties are
equivalent with distinguished versions of the amalgamation property and
surjectiveness of epimorphisms, respectively, in Alg`(L) or Alg|=(L). A kind
of completeness theorem for L is equivalent with finite axiomatizability of
Alg|=(L). Compactness of L is equivalent with Alg|=(L) being closed under
ultraproducts. The above (and further) equivalence theorems are elaborated
e.g. in [2]. Further such results are in e.g. [5], the works of Blok and Pigozzi,
e.g. in [4], [10], [18], [8], works of Czelakowski, Maksimova, and the references
in Studia Logica Vol. 65 No 1.

(2) Concrete algebraic logic investigates those classes of algebras which
arise in the algebraization of the most frequently used logics. Below we
restrict attention to algebras of classical quantifier logics, of the finite vari-
able fragments Ln of these logics, relativized versions of these logics, e.g.
the guarded fragment, and logics of the dynamic trend whose algebras are
relation algebras or relativized relation algebras. Here we want to “alge-
braize” logics which extend classical propositional logic. The algebras of this
propositional logic are Boolean algebras (BA’s for short). BA’s are natural
algebras of unary relations. We expect the algebras of the extended logics to
be extensions of BA’s to algebras of relations of higher ranks. The elements
of a BA are sets of points; we expect the elements of the new algebras to be
sets of sequences (since relations are sets of sequences).

n-ary representable cylindric algebras (RCAn’s) are algebras of n-ary re-
lations. They correspond to the n-variable fragment Ln of first-order logic.
The new operations are cylindrifications ci (i < n). If R ⊆ nU is a rela-
tion defined by a formula ϕ(v0, . . . , vn−1), then ci(R) ⊆ nU is the relation
defined by the formula ∃viϕ(v0, . . . , vn−1). (To be precise, we should write
cU
i for ci.) Assume n = 2, R ⊆ U × U . Then c0(R) = U × Rng(R) and

c1(R) = Dom(R)× U . This shows that ci is a natural and simple operation
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on n-ary relations: it simply abstracts from the i-th argument of the relation.
Let i < n, R ⊆ nU . Then

ci(R) = {〈b0, . . . , bi−1, a, bi+1, . . .〉 : b ∈ R and a ∈ U}.
P(U) = 〈P(U),∩,∪,−〉 denotes the Boolean algebra of all subsets of U . The
algebra of n-ary relations over U is

Reln(U) = 〈P(nU), c0, . . . , cn−1, Id〉
where the constant operation Id is the n-ary identity relation Id = {〈a, . . . , a〉 :
a ∈ U} over U . E.g. the smallest subalgebra of Rel2(U) has ≤ 2 atoms while
that of Reln(U) has ≤ 2(n2) atoms. The class RCAn of n-ary representable
cylindric algebras is defined as

RCAn = SP{Reln(U) : U is a set}
where S and P are the operators on classes of algebras corresponding to
taking isomorphs of subalgebras and direct products, respectively.

Let n > 2. Then RCAn is a discriminator variety, with an undecidable but
recursively enumerable equational theory. RCAn is not finitely axiomatizable
and fails to have almost any form of the amalgamation property and has
non-surjective epimorphisms. Almost all of these theorems remain true if we
throw away the constant Id (from RCAn) and close up under S to make it a
universally axiomatizable class. These properties imply theorems about Ln

via the duality theory between logics and classes of algebras elaborated in
abstract algebraic logic (cf. way above). Further, usual set theory can be
built up in L3 (and even in the equational theory of CA3). Hence L3 (and
CA3) have the “Gödel incompleteness property”, cf. [13].

For first-order logic Lω with infinitely many variables (cf. e.g. Appendix
C of [4]) the algebraic counterpart is RCAω (algebras of ω-ary relations). To
generalize RCAn to RCAω we need only one nontrivial step; we have to brake
up our single constant Id to a set of constants Idij = {q ∈ ωU : qi = qj},
with i, j ∈ ω. Now

RCAω = SP{〈P(ωU), ci, Idij〉i,j∈ω : U is a set }.
The definition of RCAα with α an arbitrary ordinal is practically the same.
RCAα is an arithmetical variety, not axiomatizable by any set Σ of formulas
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involving only finitely many individual variables. Most of the theorems we
mentioned about RCAn carry over to RCAα.

The greatest element of a “generic” RCAα was required to be a Cartesian
space αU . If we remove this condition and replace αU with an arbitrary α-ary
relation V ⊆ αU in the definition, we obtain the important generalization
Crsα of RCAα. Many of the negative properties of RCAα disappear in Crsα.
E.g. the equational theory is decidable, is a variety generated by its finite
members, enjoys the super-amalgamation property (hence strong amalgama-
tion property (SAP), too), etc. Recent logic applications of Crsα abound, cf.
e.g. [3], [20], [9], [15].

Since RCAα is not finite schema axiomatizable, a finitely schematizable
approximation CAα ) RCAα was introduced by Tarski. There are theorems
to the effect that CA’s approximate RCA’s well, cf. [6, §3.2].

The above illustrates the flavor of the theory of algebras of relations; im-
portant kinds of algebras which we did not mention include relation algebras
and quasi-polyadic algebras, cf. e.g. [6], [19], [2], [14], [17], [12]. The theory
of the latter two is analogous with that of RCAα’s. We did not have space
to mention the category theoretic approaches, but cf. [2] and the references
therein.

There are many open problems in this area (cf. e.g. [14], [7], [1, pp. 727-
745]). To mention one, is there a variety V ⊆ CAα having SAP but not
super-amalgamation property?
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L. Pólos, and M. Masuch, editors, Arrow Logic and Multi-Modal Logic,
pages 221–247. CSLI Publications, Stanford, California, 1996.

6
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