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G�odel and Tarski

G�odel and EinsteinFigure 1: An \amalgamation diagram" in the sense of e.g. Madar�asz [164℄, [165℄ (illustrationfor the �rst sentenes of x1.)



1 INTRODUCTION vOn the length of the dissertation: It was our ambition to make thiswork pleasant reading for readers from di�erent researh �elds, hene having perhaps stronglydi�erent bakgrounds. For this reason, we inluded a lot of pitures, intuitive explanation andhistorial bakground. Further, to redue the need for onsulting the literature, we inludedparts whih do not ount as main results of the dissertation but whih help understanding thedissertation and putting it into perspetive. (Muh of these parts also originate with the authorand were originally made available e.g. in the book [18℄ on the Internet.) Let us all theseparts \parts of an appendix harater". Chapter 2 is only of an appendix harater (pp.1{105).Beause of this appendix harater, most of the proofs are omitted from Chapter 2. (Chapter 2realls e.g. the logial mahinery whih we use here from e.g. [18℄.) Exeptions in Chapter 2are xx 2.6, 2.7, 2.8.3; these are not of appendix harater. xx 4.2.3{4.2.5 (pp.182-215) are alsoof appendix harater. The same applies to the various appendies and lists making up thelast 59 pages. So, the main text of the dissertation is about 250 pages long. Muh of thisspae is taken up by pitures, intuitive motivation, historial bakground material designed toimprove readability and provide perspetive. Summing it up, the lengthiness of this work is aonsequene of our ambition to assist the reader.Convention: We will often refer to the bakground material Andr�eka-Madar�asz-N�emeti [18℄of the present work. Therefore, we will abbreviate it as AMN [18℄. The other bakgroundmaterials Andr�eka-Madar�asz-N�emeti [16℄ and [21℄ are also important and they will be abbre-viated as AMN [16℄, AMN [21℄. The main results of AMN [18℄, [21℄ are intended to onstitutepart of this dissertation. However, for lak of spae, they will be realled only very brieyand partially f. e.g. x4.6 herein. The results quoted in this work from the above mentionedbakground materials [18℄, [16℄, [21℄ were obtained by the present author.On footnotes: Unlike in other works, here the footnotes often ontain more important infor-mation than the main text. Certain texts are put into footnotes not for reasons of importanebut for reasons of omposition. We suggest �rst reading eah setion ompletely ignoring thefootnotes. Then we suggest a seond reading with paying attention to the footnotes. The foot-notes will beome partiularly important from the introdution x4.1 of Chapter 4 (Geometry)on. Cf. the note about this on p.128.
1 IntrodutionMany people think that G�odel and Tarski were the greatest logiians who ever lived. G�odel inturn was a lose friend and ollaborator of Einstein and in onnetion with their disussionsof relativity theory, G�odel made disoveries about relativity and osmology whose impat isbeing more and more appreiated nowadays, f. e.g. Yourgrau [270℄, Friedman [91℄, or (the\aompanying" papers by present day leading physiists in) G�odel [99, 100℄. Tarski, too,wanted to use logi as a foundation for siene in general, and for relativity theory (andrelated areas) in partiular.1The present work intends to apply mathematial logi to relativity in the spirit of the justquoted tradition.2 Besides using mathematial logi as a foundation for speial relativity, we1This is how the series \Studies in Logi and the Foundations of Mathematis" ame into being.2Connetions with Tam�as Matolsi's shool are summarized in Andai-Andr�eka-Madar�asz-N�emeti [7℄.



vi 1 INTRODUCTIONhave more ambitious goals in mind.3 Suh are e.g. using logi for a deeper understanding ofrelativity, using logi for bringing \modularity" or a so-alled \lego-toy-world" harater intorelativity by making it deomposable into a hierarhy of weaker, simpler theories (with learintuitive meanings) whih in turn an be re-assembled in many di�erent ways. This way, amongother things, we would like to make relativity more exible and more easily ombinable withother theories. The main goals of this work are summarized in more detail in AMN [18, x1.1℄,[7℄. We do not reall them, but very roughly they are: deeper (and learer) understanding,insights, logial analysis, addressing the so-alled \why-type" questions4, and eliminating theso-alled tait assumptions.Besides the famous predeessors G�odel, Einstein and Tarski we have to mention Reihen-bah who as early as 1924 began his relativity book by emphasizing the importane of thebranh of logi alled de�nability theory for relativity theory, f. Reihenbah [218, pp.3-11℄.(Reihenbah wrote important monographs on relativity as well as on logi.)1.1 Historial perspetive and some of our goalsMore motivation, and a areful, more learly elaborated formulation of our goals (in the presentwork) is available in AMN [18, Chap. 1℄ (the introdution of [18℄), in the introdution toChapter 4 (i.e. x4.1) herein, and in the introdution of T}oke [262℄. We think that Andai-Andr�eka-Madar�asz-N�emeti [7℄ may be partiularly helpful in this onnetion. Below we reallonly a subset of the motivating ideas/goals in the above quoted works and only briey.Tarski formalized geometry as a theory of �rst-order logi. The point here is to use only�rst-order logi; no external \devies" or tait assumptions are allowed to enter the piture.Motivated by Tarski, P. Suppes [242℄ raised the problem of formalizing the theory of speialrelativity as a theory purely in �rst-order logi.5 This problem was studied by Ax, Goldblattand others. In the present work we want to work on a \programme" whih is related tothe just quoted one (e.g. insist on using only �rst-order logi) but is slightly more general(than the quoted one) in various respets, e.g. in the following one. A possible approah toaxiomatizing speial relativity in �rst-order logi (FOL) would be the following: Axiomatize,�rst, Minkowskian geometry in FOL and then try to build a relativity theory on top of that.Here, we want to develop a di�erent, in some sense a more ambitious, approah. Namely,3If we wanted only to build up speial relativity in �rst-order logi, that ould be done in less than 150pages. The reader an onvine himself of this by lea�ng through Chapter 2 of the present work together withAMN [16℄. (In an appendix of [102℄, Goldblatt already formalized in pure �rst-order logi an \only-the-heart"fragment of speial relativity, where see p.vii for \only-the-heart" approahes.) We are mentioning this toillustrate that besides formalizing speial relativity and some of its generalizations in �rst-order logi, we havemore ambitious goals in mind here.4For a mathematial logial exposition/investigation of why-type questions with appliations to foundationof siene f. e.g. Hintikka-Halonen [128℄. We note that the volume [76℄ by distinguished physiist Earman alsodisusses why-questions in onnetion with foundation of physis, and so does David Deutsh [71℄ (in a slightlydi�erent sense).5 There are ertain methodologial reasons why we want to stik with (possibly many-sorted and perhapsmodal) �rst-order logi (FOL) as opposed to using higher-order logi with its standard semantis. Thesereasons are onneted with the fat that higher-order logi is not absolute in the set theoreti sense f. e.g.Barwise-Feferman [45℄, e.g. p.33, below item 2.1.1, and xXVII.2.1., and therefore no e�etive omplete proofsystem an exist for higher-order logi. Putting it more bluntly: There is no ompleteness theorem for higher-order logi, moreover it is impossible to obtain a ompleteness theorem for higher-order logi (this follows e.g.from G�odel's inompleteness theorem). The above mentioned reasons for stiking with FOL were presented atvarious logi onferenes in Amsterdam (during the period 1994-1998) and an be (partially) reovered fromSain [228℄, f. also Johan van Benthem [266℄. We olleted, explained and elaborated several of these reasonsin the Appendix entitled \Why �rst-order logi?" of AMN [18, pp.1245{1252℄.



1.1 HISTORICAL PERSPECTIVE AND GOALS viiprimarily (or �rstly) we want to write up a natural and onvining axiomatization, all itSperel, of speial relativity in FOL, and then we want to study and develop this �rst-order theory Sperel, so that studying Sperel would lead us to \deriving" something likeMinkowskian geometry as a \theoretial onstrut" (i.e. Minkowskian geometry will show upas a \theoretial onsequene" of our \primary" theory Sperel). One of our reasons forthis preferene is that we want to start out with axioms about the subjet matter of speialrelativity (i.e. motion et.) whih are self-evident (in some sense). In other words, we wouldlike to derive (in some sense) relativity theory from easily omprehensible, natural axiomswhih are onvining (and aeptable) even for the outsider (who does not know anythingabout relativity). All disussions will be in terms of simple onepts. When formalizingour (language and) axioms we will on�ne ourselves to a very plain language,6 using suheasily omprehensible onepts as \bodies" or \observers". Whenever we need more omplexonepts like \energy", \entropy" or \urvature of spae-time", we will �rst de�ne these, asa logiian would do, in terms of our plain language. This allows us to make the axioms withwhih we started subjet to debate: both beause of the plain language in whih they areexpressed and beause of the purely logial nature of our reasoning.Sometimes physial theories are formalized in the following style: Only the \heart" (in somesense) of the theory is formalized; and then the so obtained formal theory omes together witha non-formalized, natural language explanation of how to use the formal theory. This naturallanguage text is often alled the \interpretation" of the formal theory. An example of suh an\only-the-heart" approah would be formalizing e.g. Minkowskian geometry in �rst-order logiand then writing an explanation in natural language on how to use Minkowskian geometry forsolving problems in speial relativity. In the present work we intend to formalize the wholetheory and not only the heart. In partiular, we want to obtain a formalized theory whihontains its own \interpretation" (where the word \interpretation" is used in the above sense).E�orts will be made to keep the axioms both \observational" and simple; and to maintaina standard of disussing, analyzing and re�ning their intuitive meanings. At the same time,theoretial onepts et. will also be studied, but they will be left to be disussed when we feelthat we an tell why we introdue them.7After formalizing the theory we also develop it to some extent and then use the formalizedversion to analyze the logial struture of the theory. If someone wants to build up speialrelativity in �rst-order logi8, that an be done in a little fration of the size of the presentwork (f. footnote 3 on p.vi). The purposes of the present work are muh more ambitious thanjust formalizing speial relativity theory. Here we want to do things with relativity theory,using the tools of modern mathematial logi, that ould not be done without mathematiallogi. E.g. we want to analyze the logial struture of relativity theory, to see why relativitytheory is built up the way it is and what would happen if we built it up di�erently. One of ourfurther aims has been to build up a version of relativity whih has a modular and \lego-toy"harater. For an explanation of this goal we refer to x3.1 (p.105).Another motivation for building up relativity theory in logi, whih we quote from Chap. 1 ofAMN [18℄, is the following. First we quote from the book Matolsi [187, p.11℄.6Just as the language of set theory is very simple: it ontains only one binary relation symbol for the settheoreti membership relation.7It is the above desribed only-the-heart approah whih has lead to the so-alled interpretational problemsin some parts of physis, f. e.g. T}oke [262℄.8analogously to as e.g. set theory is built up in �rst-order logi



viii 1 INTRODUCTION\Mathematis reahed a risis at the end of the last entury when a number of paradoxesame to light. Mathematiians surmounted the diÆulties by revealing the origin of thetroubles: the obsure notations, the inexat de�nitions; then the modern mathematialexatness was reated and all the earlier notions and results were reappraised. After thisgreat work nowadays mathematis is �rmly based upon its exatness.Theoretial physis | in quantum �eld theory | reahed its own risis in the lastdeades. The reason of the troubles is the same. Earlier physis has treated ommon,visible and palpable phenomena, everything has been obvious.". . .\It is quite evident, that we have to follow a way similar to that followed by mathemati-ians to reate a �rm theory based on mathematial exatness; having mathematialexatness as a guiding priniple, we must reappraise physis, its most ommon, mostvisible and most palpable notions as well. Doing so we an hope we shall be able tooverome the diÆulties."Mathematis solved the above problem by using logi. Here we will experiment with doing thesame in relativity theory, that is, build up (at least parts of) relativity theory in �rst-orderlogi.9We also note that several physiists and osmologists10 suggested using a branh ofalgebrai logi alled topos theory as a better framework for a learer understanding of er-tain issues in relativity theory, osmology and related areas. Cf. e.g. Isham-Butter�eld [137℄,Markopoulou [182℄, Crane [63℄, Smolin [236℄, Smolin [237, pp.27-31, 46-47, 219℄ where e.g. theexpression \osmologial logi" is extensively used (f. e.g. p.30, line 5 bottom up).1.2 Some onnetions with the literature, related work and prede-essorsTo our knowledge, the �rst attempt at a dedutive treatment of relativity is due to Reihenbah[218℄, but we mention also Robb [223℄ whih is earlier but whih seems to be an \only-the-heart"approah. Although no expliit logial framework is present in [218℄, [218℄ an be onsidered aseond-order logi approah analogous with Hilbert's seond-order logi disussion of Eulideangeometry in [125℄.11 The requirement of using basi, observation-oriented terms as primitivesis made expliit by Reihenbah in his general philosophy of natural sienes.The �rst logi-oriented results related to relativity are due to Robb [223℄, who aimed at de-riving the geometrial struture indued (in some sense) by the binary relation `being after' overevents (in the sense indiated above). Despite the apparent similarity of Minkowskian geometryto Eulidean geometry, the absene of a omprehensive axiomatization allowing foundationaland metamathematial disussions of the former is pointed out by Suppes [242℄, who proposesthe idea of a �rst-order formalization of Minkowskian geometry. (He might also be interpretedas proposing a broader projet of a �rst-order axiomatization of speial relativity. The identi-�ation of speial relativity with its \heart" [or theoretial ore℄, i.e. Minkowskian geometry,is not rare in the literature. As we have already mentioned, we onsider this identi�ation asunfortunate.12) Suh a treatment of Minkowskian geometry was provided in turn by Goldblatt9The foundation of mathematis (i.e. axiomati set theory) is also formalized in �rst-order logi.10e.g. L. Smolin, F. Markopoulou, C. J. Isham, J. Butter�eld, L. Crane and others11Some de�nitions and axioms in Reihenbah's work suggest the impossibility of a �rst-order translation.Reihenbah did not aim at a �rst-order logi formalization of relativity.12Suh identi�ations are typial examples of what we all \only-the-heart" approah.



1.2 CONNECTIONS WITH LITERATURE, RELATED WORK ix[102℄. From the point of view of speial relativity as a omprehensive physial theory, Gold-blatt's study an be regarded as an \only-the-heart" approah. We mention also Shutz [231℄,whose axiomatization is in seond-order language, but is distinguished by the disussion ofthe independene of its axioms; Ax [36℄, whih aims at deriving Minkowskian geometry fromobservational primitives similar to those in Reihenbah's approah; and Mundy [196℄, whopresents a systematially simpli�ed seond-order axiomatization related to Robb's treatment.We should also mention Montague [195, x11℄ whih represents a model theoretial (hene alsologial) approah to physial theories of motion. (Montague was a student of Tarski and be-ame famous for suessfully applying the methodology of model theory [and logi℄ outside ofpure mathematis.) Friedman [91℄ is strongly related to the present work in several ways. E.g.it uses model theory (of logi) just as we do. Also, it puts muh e�ort into logial analysisof relativity theories like we do. The present list of referenes to related work is far frombeing omplete. Further referenes an be found in the bibliographies of the works we quoted.For further motivation and related work we refer to AMN [18℄, Ax [36℄, van Benthem [264℄,Busemann [55℄, Friedman [91℄, Goldblatt [102℄, Matolsi [187℄, Mundy [196℄, Raki� [215℄, Re-ihenbah [218℄, Shutz [231℄ and Suppes [242℄. For further related logi-oriented approahesto axiomatizing relativity we refer to the referenes in the introdution of Shutz [231℄. Re-ihenbah [218℄ is a rather important referene in this diretion. In our list of referenes weinlude further related work.The question naturally arises: What is new in the present work (relative to the abovereferenes)? A short answer is that we ontinue where our predeessors stopped. The idea ofstarting theory building from the observational side (of the observational/theoretial distin-tion), mentioned above briey but outlined in more detail in AMN [x1.1℄[18℄, already appearsin Reihenbah's work but is not implemented there in �rst-order logi. The idea of restrit-ing our tools stritly and onsistently to (many-sorted) �rst-order logi is arried through inGoldblatt [102℄, but he does not go beyond the \only-the-heart" approah.There seems to be a point where most of the above quoted authors seem to stop. This is,more or less, the following.13 Roughly speaking, they write up axiom systems, then prove thatthe axiom systems have ertain desirable properties.14 But sooner or later they seem to stop.With some exaggeration one might say that in the present work the real fun begins after wehave written up some suitable axiom systems and after we have proved that these have thedesirable properties.In onnetion with the above we would like to point out the following. If we want to do thelogial analysis of a theory (whih is not yet in logial form), say of speial relativity, the �rststep is to build an axiom system in the language of the logi we have hosen, whih will beour \logiized" version of the theory in question. Then we prove that this \logiized" theory isindeed about the subjet matter we wanted to analyze (and not about something else). Let usall this Step 2. However, it is only after Step 2 that we an really start applying the methodsof mathematial logi to analyze the so obtained logi-based theory of whatever we wanted tostudy, e.g. that of speial relativity. In passing we note that during this analysis, among otherthings, we will probably experiment with hanging the axioms, so e.g. we end up with having13We quoted so many works that it is hard to make ategorial statements about them. Therefore whatwe write here is intended to be a \general impression" only, allowing exeptions et. and not a areful ritialstudy of the literature.14E.g. if the author's aim was to axiomatize Minkowskian geometry, he proves, say, that every model of theaxiom system is representable by a Minkowskian geometry over some real losed �eld.



x 1 INTRODUCTIONseveral onurrent logi-based versions of speial relativity.15 161.3 On the results of this dissertationWithout aiming for ompleteness, below we list a few of the results of the dissertation (andrelated works by the author) to whih we would like to draw the reader's attention.(i) In setion x4.3 (\de�nability") we further develop a well established branh of mathematiallogi alled de�nability theory . The appliation of de�nability theory in relativity was alreadyemphasized in the lassi relativity book Reihenbah [218℄, this emphasis on de�nability hasbeen growing ever sine as illustrated e.g. by Friedman [91℄ or Raki� [215, x2.5, p.39℄.17 Thelassial theory of de�nability is restrited (mainly) to one-sorted logi and the new thingsthat an be de�ned are new relations (or funtions) between old individuals. In x4.3 of thepresent work we extend the theory to many-sorted logi, and besides new relations (between\old" individuals) we also allow de�ning new universes of individuals, i.e. new sorts. Weextend various ones of the entral theorems of de�nability to the new situation, e.g. we havea new, extended version of Beth's theorem on the eliminability of impliit de�nitions (f.Corollary 4.3.49, p.268). This part of the dissertation is strongly related to works of Shelah,Pillay, Hodges and others, f. e.g. pp.245, 268 herein, x 12.5 in Hodges [130℄ and items (1)-(3)on p.169 in Hodges-Hodkinson-Mapherson [131℄.18De�nability theory usually involves the so-alled Beth properties together with the Craig(interpolation) properties, the two of whih are strongly \interwound". As usual, we refer tothese two properties and their variants as \the de�nability properties" of logis. We indiateat the end of x4.3 and in xA.319 that the de�nability results reported in this work form only15An example of what we are saying is Tarski's and his followers' (Tarski et al.'s for short) �rst-order-logi-based approah to geometry. They, too, begin with writing up axiom systems for geometry and provingso-alled representation theorems (whih prove that the axiom systems desribe the mathematial struturesthat the authors wanted to study). This is what we alled Step 2 above. Indeed, it is only after this Step 2(and on the basis of Step 2) that the main bulk (the main results et.) of the theory developed by Tarski et al.unfolds (or in other words, is developed). Further, this mathematial logi-based theory of geometry (initiatedby Tarski et al.) is not �nished or \losed down" even today; it is still under development; it ontinues toprovide new insights into the original subjet matter (and into related subjets).Another example is provided by Tarski's theory of ylindri algebras. Tarski wrote up the axioms of thistheory a long time ago, and then he proved a representation theorem, saying that loally �nite ylindri algebrasare exatly those strutures whih he originally wanted to axiomatize, f. [120, Part I℄. This part of the theoryould be written up and fully proved in not more than 50 pages. However, the main bulk of the theory ofylindri algebras ame into existene after these Step 2-type results were obtained, and in 1985 they already�lled two volumes, whih together make up almost 1000 pages (f. [120, Parts I, II℄, [121℄). Ever sine thennew results have been added to the theory of ylindri algebras leading to deeper and deeper understanding ofthe subjet matter for whih Tarski initiated the study. (Very roughly, this subjet matter an be summarizedas the development and understanding of the theories of quanti�er logis in a struturalist (or algebrai)perspetive.)16For ompleteness, we note that the following works are also onneted to the present one: [171℄, [15℄, [57℄,[66℄, [77℄, [92℄ [133℄, [270℄.17The logial theory of de�nability (e.g. the notions of impliit and expliit de�nitions) an be traed bak toHilbert [126℄ (Hilbert alls impliit de�nitions \axioms", and expliit de�nitions \explanations"), while it wasTarski's 1936 paper whih gave the �eld its �rst big impetus. (Indeed, de�nability remained one of Tarski'smain interests all his life.)18The fat that we allow de�nitions of new sets of entities (i.e. new universes or sorts) besides new relationsbetween old entities renders generalization of de�nability theory to the new situation not easy, e.g. we need touse reent results of Shelah, Pillay, Hodges and others whih are based more of less on a de�nability result ofMihael Makkai and C. C. Chang, f. [60, Thm.5.3.6℄, or Hodges [130, Thm.12.4.1℄.19and at other parts of the \duality theory" setion x4.5



1.3 RESULTS OF DISSERTATION xia part of a broader perspetive of de�nability investigations onduted by the present author.E.g. Tarski and his o-workers Henkin and Pigozzi introdued and started to study the shemaversion of �rst-order logi in the late 1950's (f. e.g. Henkin-Tarski [123℄) the de�nabilityproperties of whih remained open problems summarized in algebrai form in Pigozzi [212℄.In papers related to the present work the present author answers all of these problems,20 f.e.g. Madar�asz [167℄, [163℄, [178℄. For proving these results she elaborated a duality theory ofthe kind presented (for relativisti purposes) in x4.5 herein, f. Madar�asz [164℄, [166℄, [170℄,[163℄.21(ii) Using Tarski's elimination of quanti�ers for real-losed �elds, in Chapter 4 we prove er-tain properties of the relations that are de�nable in our relativisti models and in relativistigeometries (f. Chapter 4, proof of Thm.4.2.23, pp.168-174).22(iii) Roughly, there are two main approahes to relativity. The �rst one uses observation-oriented models based on observers, loks, oordinate frames, photons et. This approahis preferred e.g. by the logial positivists, f. e.g. Reihenbah [218℄. For brevity, we will allthis approah \observational", and its models M observational models. The other approahstarts out at the other side of the observational/theoretial duality:23 it de�nes abstrat,streamlined mathematial objets alled geometries, and interprets the ideas of relativity interms of these geometries. We use the German letter G to denote suh a geometry. We use ournew de�nability theory mentioned in item (i) above to prove that these two worlds of relativitytheory are de�nitionally equivalent . I.e. we prove that the world of observational models, theM's, and the world of geometries, the G's, are de�nitionally equivalent, f. Thm.4.3.38, p.261.Atually, we do muh more than this: Instead of a single relativity theory, in this work weinvestigate a hierarhy of progressively weaker relativity theories. The word \weaker" anbe interpreted here as \more general" or \more exible", too. In Thm.4.3.38 (p.261) weprove that under some mild assumptions on our relativity theory Th, the lass Mod(Th)of observational models assoiated to Th is de�nitionally equivalent with the lass Ge(Th)of geometries assoiated to Th.24 In our de�nability setion x4.3 we show that de�nitionalequivalene is an extremely strong kind of equivalene whih means that under the onditionsof the above theorem, Mod(Th) is the same thing as Ge(Th), the only di�erene between thetwo being merely notational. This also implies that the two approahes to relativity quotedfrom the literature are not so inompatible as one might think, one an swith from one to theother and bak without any danger of loss of mathematial preision.We also established a strong onnetion between the two worlds Mod(Th) and Ge(Th) ofrelativity, whih does not require the onditions of Thm.4.3.38. This is done in the dualitytheory setion (x4.5) where we elaborate strong duality theories between the observationalworld of relativity and the theoretial world of relativity. This is done e.g. in Thm.4.5.57(p.328), items A.2.9-A.2.12 (p.A-13), Thm.4.5.43, p.315. One way of summarizing (some of)our duality results is the following: They establish the existene of strong ategory theoretiadjoint funtor pairs ating between the observational world Mod(Th) and the geometrial (ortheoretial) world Ge(Th), under pratially no ondition on Th. Here the worlds Mod(Th)20we mean the ones whih were not solved earlier21Some of the problems we have in mind were formulated by Tarski (and his o-authors) in the 1950's, werestudied in the meantime by several authors, e.g. by Comer, Pigozzi, Andr�eka, Sain, N�emeti, and were �nallysolved in Madar�asz [167℄.22Or equivalently, we prove that ertain relations annot be de�ned.23For the observational/theoretial distintion f. the introdution of Chapter 4 here, and x1.1 in AMN [18℄.24For motivation to studying Mod(Th);Ge(Th) and their interonnetions we refer the reader to the intro-dution of Chapter 4.



xii 1 INTRODUCTIONand Ge(Th) are regarded as ategories. If we add onditions on Th, the adjoint situationbeomes nier and nier until it beomes an equivalene of these ategories. Atually, wepresent two di�erent kinds of dualities (between \observational" and \theoretial"), these arethe (G;M) duality of Thm.4.5.11, while the other one is the (Go;Mo) duality of items A.1.10-A.1.11, A.2.9(ii). Eah of these has its advantages. E.g. (Go;Mo) abstrats from the unitsof measurement and in \return" has a nier mathematial theory. Cf. also Appendix A onfarther reahing impliations (and onnetions) of this \duality"-approah.(iv) Usually, relativity theory is derived from various \postulates" formulated in natural lan-guage and from tait assumptions whih are not stated but only used. This gives the theorya kind of pseudo-axiomati avour. Among other things, we replae these postulates andtait assumptions by preisely formulated axioms in the language of �rst-order logi.25 Oneof the usual postulates is that the world-view transformations between (world-views of) ob-servers are ollineations.26 In Thm.3.2.6 we prove that this postulate (or axiom) is superuousbeause it is provable from the rest of the usual assumptions (whih are of a muh morebasi and natural harater). Moreover, we prove a statement stronger than this, namely,we prove that this ollineation property follows from a very little fration Pax of the taitassumptions whih are taken for granted in every presentation of every version of speial rel-ativity. This very weak system of axioms Pax is formalized on p.109,27 and Thm.3.2.6 saysPax ` \the world-view transformations are ollineations". The point in this theorem is notthe strength of its onlusion, but the weakness of its assumption, Pax.A further axiom of relativity, more often debated and ritiized, is the no FTL axiomwhih says that observers annot move faster than light (relative to eah other). The usualjusti�ation of this axiom is highly speulative and has been ritiized by leading sientists,like Kurt G�odel or David Lewis [157℄. Cf. also G�odel [99℄,[100℄. The axiom itself has been muhdebated e.g. by the so-alled tahyon theorists (f. e.g. Davies [69℄, Feinberg [85℄, Moanu [193℄,[220℄, [219℄, Gott [106℄ or Andai [5℄), and also by reent papers based on new solutions ofMaxwell's equations, f. e.g. Matolsi-Rodrigues [188℄, Donelly-Ziolkowski [74℄, [43℄, [224℄.28 Atthe same time, suh extremely areful works as Reihenbah's book [218℄ on axiomatization ofrelativity assume this statement as an axiom. In Chapter 3, we prove that the no FTL observeraxiom is superuous in the sense that it is provable from a very small fragment Bax�� of theremaining axioms whih in turn are always assumed in the literature. Bax�� onsists of Paxtogether with some extremely mild assumptions on photons. In Thm.3.2.13 (p.118) we proveBax�� ` \no FTL observers exist".Again, the point is that our assumption part Bax�� is very weak and intuitively onvining.Moving in the diretion of general relativity, we also introdue the \loal" version Lo(Bax��)of (Bax��). This loal version is even more general, i.e. weaker than Bax�� in that, as ingeneral relativity, we make assumptions about observers et. only \loally" (in some sense).In Thm.3.2.15 we push through our no FTL theorem for this loal theory Lo(Bax��), too.2925Then we analyze the so obtained formal theory of �rst-order logi in various diretions, in various ways,asking various kinds of questions et, f. the introdutions of Chapter 3 and Chapter 4 for some of these researhdiretions.26Cf. e.g. Einstein [80, Appendix for x1.1 (p.125 in the Hungarian translation)℄, Nagy [200, p.233, lines 28-30℄,or Friedman [91, p.139 lines 1-3℄. Usually, the tait justi�ation for this postulate is that it is easy to workwith linear transformations and that this postulate does not lead to ontraditions.27Pax is already assumed in the Newtonian and Galilean theories of motion (besides the modern ones).28Cf. also the notes and footnotes in x2.7 (\FTL in two dimensions"), pp.70-73.29For this theorem we had to loalize the onlusion (no FTL), too, sine the existene of ertain osmologialmodels shows that in general relativity the global form of no FTL fails.



1.3 RESULTS OF DISSERTATION xiiiIn Thm.3.2.15 we establish, under some mild assumptions, that30Lo(Bax��) ` \no FTL observers exist".We also prove that within the non-loal paradigm, Thm.3.2.13 is \best possible" in thesense that if we weaken Bax��, but stay in our hierarhy of non-loal theories, the onlusiondoes not follow, f. Thm.3.2.14; this negative result is improved in AMN [18, x4.8℄, e.g. inThm.4.8.12 therein (f. (E6) on p.641 there).(v) As mentioned earlier, several of our studies are motivated by preparing the road forgeneralizing towards aelerated observers31 and eventually general relativity. Two examplesare the operator Lo(�) in Chapter 3 (fully reported on in x4.9 of AMN [18℄); and x4.7herein devoted to geodesis. The results in x4.7 show that our �rst-order logi based approahis suitable for studying geodesis. Among other things, we exhibit a strange property ofgeodesis whih shows up even in the most lassial (relativisti) situations. Namely, if we use(one of) the usual (mathematially preise) de�nition(s) of geodesis (f. e.g. Busemann [55℄or the book \Geometry of geodesis" [54℄), in the Robb planes all sorts of strange urves willount as geodesis. Atually, all urves in any Robb plane ount as geodesis. Cf. Thm.4.7.12,Corollary 4.7.13 (pp.361-363). Then we suggest an extra ondition (Condition (���) on p.352)whih, when added to the de�nition of geodesis, removes this anomaly (but does not removethe urves that are desirable as geodesis).(vi) The approah elaborated in the present dissertation makes it possible to have a preisemathematial omparison of the three ompeting relativity theories, the Einsteinean one, theReihenbahian one, and the Lorentzian one, f. Szab�o [243℄ for these and the debates theyhave provoked. The idea is outlined in Chapter 3 and is fully presented in AMN [18, x4.5℄.There a ompletely transparent mathematial onnetion is elaborated between the �rst twoof these theories, so that they need not ompete: they an ooperate. E.g. a so-alled transferpriniple32 is elaborated there by whih eah model of the Reihenbahian theory an beobtained from an Einsteinean model by an algebrai operation alled relativization. In theother diretion, all Einsteinean models are also Reihenbahian. The results in AMN [18,Chapter 4℄ give us pratially full mathematial ontrol over the onnetions between the �rsttwo of these three distinguished approahes to relativity.33 We plan to extend this investigationto the Lorentzian version of relativity, too.(vii) Throughout the dissertation we tried to keep our assumptions (expliit and tait alike)at the barest minimum for proving (hopefully) strong and interesting results. We feel that atmost plaes we managed to prove from a small number of transparent and lear assumptionsinteresting and exoti preditions of relativity.34 This e�ort is also relevant to the goal of30An interesting feature of Thm.3.2.15 is that (roughly, it is even stronger than Thm.3.2.13 and) beause ofthe loal nature of our assumptions, there seems to be no hane [not even a remote one℄ of trying to obtainan Alexandrov-Zeeman type of alternative proof for it. (Cf. AMN [18, Remark 3.1.14℄ for Alexandrov-Zeemantype proofs in this ontext; f. also AMN [18, x6.7.2(I) on p.1156℄.31Cf. AMN et al. [25℄, [26℄.32transfer priniples are speial tools of mathematial logi33In algebrai logi, there is an espeially suessful method alled relativization whih goes bak to early workof Henkin and Tarski. We found two natural ounterparts of this method for studying relativity. These oun-terparts are onneted to the operators Reih(�) and Lo(�) introdued in Chapter 3 and further elaboratedin AMN [18, xx4.5, 4.9℄. Cf. Andr�eka-van Benthem-N�emeti [32℄, Andr�eka-Goldblatt-N�emeti [11℄, N�emeti [203℄,Madar�asz [169℄. This fat illustrates a further onnetion between the present work and Madar�asz [160℄, [161℄,[164℄, [166℄, [176℄, [23℄, [20℄.34We did not even use the assumption that the �eld of quantities we use is Arhimedean or even Eulidean.



xiv 1 INTRODUCTIONanswering the \why"-type questions summarized in AMN [18, x1.1 items (I), (III), (V), (VI),(IX) therein℄.(viii) One an test the power of the methodology for logial analysis of relativity by trying toderive the main preditions of relativity from as little as possible. Some motivation for doingthis was already mentioned above. Below we summarize a similar experiment in a di�erent di-retion. Following suggestions from Gyula D�avid35, the present author used the methods elab-orated here to derive by purely logial methods the preditions of speial relativity from fairlynatural assumptions not involving photons or anything remotely related to eletrodynamis.It is important here to emphasize that the logial language we used did not allow mentioningeven impliitly anything related to eletrodynamis (suh as e.g. photons). Another thing toemphasize is that the number of axioms was small and they were natural, transparent andonvining axioms. The set of axioms used an be found herein in the List of Axioms underthe name Relnoph (relativity with no photons) on p.A-30. Further, the derivation used onlypure logi and nothing like, say, \physial intuition" or ommon sense. The �nal result ofthe derivation said, roughly, that the world is either Newtonian, or it satis�es speial relativ-ity. The details are in AMN [18, Chapter 5℄ and speial thanks are due to Gyula D�avid forideas, suggestions and enouragement.36 His version of a similar paper is in preparation, f.D�avid [68℄. A related idea is in the paper Gn�adig et al. [49℄ whih avoids photons just as D�avidand we did but does not avoid eletrons or the fat that two wires arrying eletri urrentsattrat eah other (if the urrents are parallel).(ix) Reently there has been an extensive debate, in the literature of relativity theory andrelated areas, onerning the onnetions between relativity (and its possible variants) andG�odel's inompleteness theorems.37 These debates were triggered by the programme of searh-ing for a \�nal theory" (or sometimes T.O.E.) proposed by Hawking, Weinberg and others. Cf.e.g. H�ajek [112, p.291℄, St�oltzner [240℄, Dyson [75, p.53℄, Regge [216, p.296℄ for ritiism usingG�odel's inompleteness theorem as a \weapon" against the \�nal theory". We investigate theissue and answer some questions in AMN [18, x3.8 (pp.294-346)℄, x4.5.5 herein, in [16℄, in [17℄,in Chapter 7 of [19℄. Cf. also the \laws of nature" part of Chapter 6 in AMN [18℄.On the methods of the dissertation. The theory of de�nability is one of the unifyingthemes of the publiations quoted herein by the author, inluding her �rst refereed publiation[161℄ and the present work (It is only �tting to note here that the theory of de�nability wasinitiated by Hans Reihenbah in 1920-21 when writing one of the �rst books on relativity[218℄.) For more on the methods of the dissertation (and related results of the author inrefereed journals) we refer to e.g. Appendix A.1.4 Outline of the dissertation and on some of our aimsAs already indiated, all our axioms will be formulas of �rst-order logi. We do not want tomake our axioms generate a omplete theory.38 Our purpose is the opposite: we want to make35Department of Physis, ELTE University, Budapest36At the end of AMN [18, x5.2 (p.751)℄ we trae the history of the basi idea bak for a onsiderable time,but none of these historial papers were free of tait assumptions and they did not attempt a purely logialderivation.37There are several of these varying in strength. Therefore there are several G�odel inompleteness propertiesof theories.38A theory T is alled omplete i� for every sentene ' in the language of T , exatly one of ' and its negation(:') follows from T .



1.4 OUTLINE OF DISSERTATION xvour axioms as weak (and intuitively aeptable and onvining) as possible while still strongenough to prove interesting theorems of relativity theory.39When introduing a new axiom, say Ax, we will investigate why Ax is plausible, why we(or a student) should believe in Ax, why we need it, and what would happen if we omitted it.This way we will obtain a relatively small set, alled Basax (for basi axioms), of onvining(almost self-evident) axioms. Basax will be our �rst \possible" axiom system. Later, as aresult of studying Basax, we will introdue and study a hierarhy of axiom systems (or ofpossible speial relativity theories) in whih hierarhy Basax will be neither the strongest northe weakest theory. In AMN [18℄, the present author investigates how many di�erent ompletetheories Th � Basax exist, whih are possible onsistent extensions of Basax.40Chapter 2 begins with introduing the logial framework (e.g. langauge) for the whole ofthis work. Di�erent logial \voabularies" will appear only in Chapter 4 (where re�nementsof the idea of a logial framework for relativity will also be disussed, f. e.g. Remark 4.7.3).Then we introdue and disuss Basax, our basi axiom system for speial relativity theory.We also study it there to some extent, e.g. we prove that Basax is onsistent, that in dimen-sion two it permits faster than light (FTL) observers, whih in turn leads to time-travel-likephenomena, and that the latter does not lead to logial paradoxes i.e. \Basax + there areFTL observers" is onsistent (in dimension 2). In this hapter we also prove from Basax whatwe all the \paradigmati e�ets" of relativity: moving loks slow down, moving loks getout of synhronism, and moving meter-rods shrink. In setion 2.8 we experiment with addinga strong symmetry axiom, Ax(symm), to Basax. Roughly, this symmetry axiom an beonsidered as an \instane" of Einstein's (speial) priniple of relativity, f. x2.8.3 (p.84). Wewill �nd that adding a very natural and transparent axiom to Basax yields a theory whihompletely reprodues the usual, standard version of speial relativity (i.e. the one based onMinkowskian geometry).41 Atually, this extra axiom will be a version of Ax(symm). Weall this extended theory Sperel.In Chapter 3, we elaborate the \lego-toy-world" harater (or modular harater) of ourlogi based approah to relativity. We start out from the theory Sperel, and deomposeit into a hierarhy of more re�ned, exible and general theories. Sine Sperel has only asmall number of axioms, we an get a really big and really �ne-tunable hierarhy of theoriesonly if we break up the axioms of Sperel to a great number of weaker, more re�ned newaxioms. Some of the so obtained theories are so general that they are \loal" in the sense thatobservers use only a subset of our usual Cartesian oordinate system R4 instead of the whole ofR4. This is a generalization whih will be useful when moving towards theories of aeleratedobservers or eventually towards general relativity. Then we use this hierarhy to get a handleon the why-type questions, namely, we take interesting preditions of relativity and try to39The situation is somewhat analogous with the di�erene between lassial number theory studying thestandard model Z = hZ;+; �;�; 0; 1i onsisting of the set Z of integers, and theory of numbers as a part ofabstrat algebra, e.g. ring theory (or the theory of �elds) where we study a broad lass K of all rings ofwhih Z is only a very speial element. Sometimes when we prove theorems about K, we say (or feel) thatwe understand more (or better) why that theorem is true for Z. In this analogy, lassial, standard speialrelativity is analogous with the omplete theory of Z while the version we are desribing here is analogouswith the algebrai theory of K. (We note, however, that this analogy is imperfet, as if often happens withanalogies.)40We also give a strutural desription of the essentially di�erent kinds of models of Basax, in AMN [18,Chap.3℄.41The onnetions between standard Minkowskian geometry and our more exible (or more general) versionsof relativity are disussed in greater detail in Chapter 4, but f. also AMN [18, x3.9 (\Symmetry axioms")℄.



xvi 1 INTRODUCTIONisolate the weakest theory in the lattie from whih the predition in question is provable.An example is the \no faster than light observers" theorem (no FTL observers for short) forwhih the weakest theory is identi�ed in Theorems 3.2.13-3.2.15. This kind of investigation,inluding a pursuit of why-type questions, is pushed muh further in AMN [18, Chap.s 4,5℄,Madar�asz [168℄, [172℄, [173℄, [174℄. More generally, the subjet matter of Chapter 3 is pursuedin greater detail (with more results, more historial motivation et.) in AMN [18, Chap's 4,5℄.At the end of Chapter 3 we arrange the theories in our above mentioned hierarhy into afairly natural lattie. We refer the reader to the introdution of Chapter 3 for more intuitivemotivation.In Chapter 4, we \disover" that there is an \observer independent" geometry sittinginside eah model M of, say, Bax; where Bax is one of the weak theories introdued inChapter 3. (In partiular, Basax j= Bax.) If M is a model of Sperel mentioned above, thisgeometry agrees with the standard Minkowskian geometry. Further, we elaborate a so-alledduality theory ating between the \world of ertain kinds of geometries" on the one part, andthe world of our observation-oriented models M on the other. We ould all this duality aduality between the so-alled \observational worlds" (the M's) and the \theoretial worlds"(the geometries). This duality theory works not only for the \simplest" theory Basax westarted with, but also for pratially all the (more general and more re�ned) theories introduedin Chapters 3,4. Extensive intuitive motivation for Chapter 4 is presented in its introdutionx4.1. This motivation explains and uses ideas of Einstein, G�odel, Mah, Reihenbah andskethes a historial bakground ranging from William Oam (14th entury) through Leibniz,Kant and the logial positivists to followers of G�odel and others. These ideas together withthe above mentioned duality theory lead to a series of questions in de�nability theory (abranh of mathematial logi). Therefore a major setion, x4.3, of Chapter 4 is devoted tonew results in de�nability theory, making the advanement of this branh of logi to be oneof the major themes of Chapter 4. The results are then applied to relativity. E.g. we provethat all our \theoretial" onepts are de�nable from \observational" ones. Further, we provethat the above mentioned observational world (the M's) and theoretial world (the G's) arede�nitionally equivalent, under some assumptions. We lose Chapter 4 with de�ning andinvestigating geodesis in our new, logi based framework. (Geodesis play a role in further,more general theories.) For the outline of Chapter 4 we refer the reader to x4.1 (p.129).At the end of this work there are various appendies, lists (of e.g. axioms, de�nitions)and similar items designed to assist the reader in various ways.The introdution x4.1 of Chapter 4 ontains extensive material42 whih is useful not only asan introdution to Chapter 4 but also as an introdution to the whole dissertation. Thereforewe think it would be useful for the reader to skim through x4.1 before starting to read Chapter 2.Map of this work to save timeThe direted graph in Figure 2 intends to assist the reader in several ways:(i) It helps to save time in two ways, f. the \Explanation for Figure 2".(ii) It provides a \weighted map"43 of this work helping the reader to deide whih parts hewants to read �rst.42ranging from intuitive motivation through historial bakground to related work43by \weighted" we mean the information on importane given by thikness of lines



1.4 OUTLINE OF DISSERTATION xvii(iii) It represents the struture of this work. This might be useful e.g. in forming a \generalperspetive" after a �rst reading.Explanation for Figure 2, interonnetions of setions. The thik arrows on the �gure repre-sent a minimalist �rst reading of the \bakbone" of this work. We prepared this for the asethe reader would prefer �rst to leaf through the \ore" part of this work in order to forma general impression, before reading the whole work. An even more minimalist �rst readingwould involve xx2.1{2.4, 3, 4.1, 4.2.1, �rst 5 pages of x4.2.3, x4.3, the introdution to x4.5,xx4.5.1{4.5.4, the G�odel inompleteness part of x4.5.5, x4.7. Taking into aount that xx2.1{2.9 are regarded as an appendix (f. p.v), the remaining part of this \more minimalist reading"involves approx. 225 pages.Assume \a", \b" are (sub-)setion names. Then an arrow a ! b means that reading \a"is a prerequisite for \b". A broken arrow between \a" and \b" means that lea�ng through themain de�nitions and main ideas in \a" is desirable before reading \b". Further, sub-setionsonneted by thik arrows are usually important; if \a" is boxed, then \a" is important, if\a" is in a broken box, then \a" is fairly important. If \a" is in a thik box, then \a" is veryimportant.
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Figure 2: a!b means that reading (sub-)setion \a" is a prerequisite for \b". Further, thedashed (broken) arrows a!b mean that lea�ng through the de�nitions and main ideas in(sub-)setion \a" is desirable before reading \b".



12 Speial Relativity (bakground)Sine the present hapter (Chapter 2) is of an appendix harater, in this hapter we omitalmost all the proofs. These an be found in our bakground book AMN [18℄. Some proofsare omitted from AMN [18℄; these are available from Judit Madar�asz.2.1 Frame language of relativity theory; world-view funtionSome set theoretial notation and onvention:! denotes the set of all natural numbers f0; 1; : : : ; n; : : :g. We use von Neumann's oneptof natural numbers, that is,0 def= ; (; denotes the empty set) andn+ 1 def= n[fng = f0; : : : ; ng for every n 2 !. Therefore, in this spirit we will often writei 2 n for i < n, where i; n 2 !.R denotes the set of all real numbers, andR = hR;+; �;�i denotes the ordered �eld of real numbers (where +; �;� are the usual ones).Z denotes the set of all integers.For any set H, P(H) denotes the powerset of H, that is,P(H) = fX : X � H g.If R is a binary relation, i.e. set of (ordered) pairs, Dom(R) and Rng(R) denote its domainand range, respetively. That is:Dom(R) def= f a : 9b ha; bi 2 R g andRng(R) def= f b : 9a ha; bi 2 R g.A funtion is a binary relation f with the property that for eah x 2 Dom(f) there is onlyone y suh that hx; yi 2 f . As usual, f(x) denotes this unique y.f : A �! B or A f�! B denote that f is a funtion, Dom(f) = A and Rng(f) � B.For an arbitrary set H and n 2 !, we often identify the setnH def= f f : (f : n �! H) g with the Cartesian powerH � : : :�H| {z }n-times def= f hh0; : : : ; hn�1i : (8i < n)hi 2 H g. Thus, in partiular,2H = H �H.If R and S are binary relations, their omposition R Æ S is de�ned asR Æ S def= f ha; bi : (9)[ha; i 2 R ^ h; bi 2 S℄ g.Therefore, in partiular if f and g are funtions with Rng(f) � Dom(g), we write theiromposition the following way44:(f Æ g)(x) def= g�f(x)� for every x 2 Dom(f).For a binary relation R and a set X, the R-image R[X℄ of X is de�ned asR[X℄ def= f b : (9a 2 X) ha; bi 2 R g.Therefore in partiular for a funtion f ,f [X℄ = f f(x) : x 2 Dom(f) \X g.For a binary relation R, its inverse is44This is usually used in the reverse order in the literature.



2 2 SPECIAL RELATIVITYR�1 def= f hb; ai : ha; bi 2 R g.IdA def= f hx; xi : x 2 A g is the identity funtion on A, for any set A. When A is understoodfrom the ontext we will write Id in plae of IdA.The following is a notation for de�ning funtions. Let expr(x) be an expression involving x,and let D be a set. Thenh expr(x) : x 2 D i def= f hx; expr(x)i : x 2 D g.f � C def= f hx; yi 2 f : x 2 C g is the restrition of the funtion f to the set C, for anyfuntion f and set C.A nB def= fa 2 A : a =2 Bg. �CONVENTION 2.1.1 f : A�!�B denotes that f is a surjetive funtion from A ontoB. Further f : A��!B denotes that f is an injetive funtion from A into B. I.e. �!�denotes surjetiveness, while ��! denotes injetiveness. (If we ombine the two, we obtain��!� denoting bijetiveness.) When used between german letters, i.e. strutures, they denoteinjetiveness or surjetiveness of homomorphisms the natural way. Cf. Def.4.5.3(i) on p.284.�Before giving the de�nition of our frame-language, we reall from [60℄ some of the standardnotation and terminology used in (many-sorted) �rst-order logi.By a �rst-order language we understand a language45 of �rst-order logi. Similarly for3-sorted �rst-order language or many-sorted �rst-order language. We will often use the wordvoabulary instead of a �rst-order language (to avoid ambiguity arising from the fat that\language" ould also refer to the set of all formulas of some theory). A voabulary is aolletion of sort-symbols, relation-symbols and funtion-symbols.In the present work we will use many-sorted �rst-order logi. We hope that the readerhaving some familiarity with one-sorted �rst-order logi will �nd the transition from one-sorted to many-sorted easy to make. Indeed, throughout the literature it is emphasized thatmany-sorted (�rst-order) logi is only a onvenient \notational dialet" of one-sorted �rst-order logi and that anyone familiar with the one-sorted version will easily understand themany-sorted version without studying it separately.By many-sorted logi we understand the many-sorted version of �rst-order logi. I.e. forbrevity, we will omit the adjetive \�rst-order" (so in this work many-sorted automatiallyimplies �rst-order). Many-sorted logi is so lose to one-sorted �rst-order logi, that most logibooks study and disuss the one-sorted ase �rst and then they formulate the generalization tothe many-sorted ase as an exerise left to the reader. Of ourse, for this exerise they explainhow many-sorted logi an be redued to the one-sorted ase. (The fat that here we allow�nitely many sorts only makes this redution easier and \stronger", f. footnote 55 on p.6.)For an introdution to many-sorted logi and for its redution to one-sorted �rst-order logiwe refer to almost any logi book, e.g. to Enderton [82, x4.3, pp.277-281 (but the whole of x4will be useful later)℄ or Manzano [181℄ or Monk [194℄. We note that the whole book Meinke-Tuker [190℄ is devoted to many-sorted logi and its onnetions with higher-order logi. Forompleteness, we note that further useful information on this subjet is available in the book45Let us reall from the literature of logi that a language of (many-sorted) �rst-order logi or a \voabulary"or a \similarity type" are di�erent names for the same thing. The details an be found in any logi book e.g.in Monk [194, p.14℄ or Enderton [82℄. Cf. x4.3 for more information on this.



2.1 FRAME LANGUAGE 3Barwise & Feferman [45℄ on pp.25-27, pp.33-34, and item 7.1.2 (p.68).46 We would like toreassure the reader that for understanding the present work, looking into [45℄ is not a prereq-uisite. (At a seond reading of the present work, the just quoted parts of [45℄ might improveappreiation of ertain \�ne details".) Looking into [45℄ might also help seeing the onne-tions of our approah with seond-order logi. At this point we would like to emphasize thatthroughout the present work we are staying stritly within �rst-order logi. More preisely,all our relativity theories, e.g. Basax; Newbasax; : : : ;Lo(Flxbasax); Reih(Bax) will bestritly �rst-order ones. Further, the logial, model theoreti mahinery, like the semantionsequene relation \j=" et, applied to them will also be that of �rst-order logi.47 At thesame time, when we formulate a theorem (about these axiom systems or their models et),then the statement of the theorem need not be translatable to a formula of FOL. (E.g. the wellknown theorem about FOL stating that elementarily equivalent models have isomorphi ultra-powers is not a �rst-order formula. Similar examples are theorems involving the ardinalitiesof models of �rst-order theories. With these examples we wanted to illustrate the fat thatwhen studying FOL, we need not on�ne ourselves to expressing our ideas in the language ofFOL.)Let Fm and M denote, respetively, the set of all formulas and the lass of all models ofan arbitrary �rst-order language.Then j= (� M � Fm) denotes the validity relation of this language. We extend j= toP(M)� P(Fm) the usual way: Let K � M and � � Fm. ThenK j= � iff (8M 2 K)(8' 2 �)M j= ' :We will write K j= ' in plae of K j= f'g and M j= � when K = fMg.Th(K) def= f' 2 Fm : K j= ' gis the theory of K, and Mod(�) def= fM 2 M : M j= � gis the lass of all models of �. Let ' 2 Fm. Then we say that ' is a semantial onsequeneof �, in symbols � j= ', iff Mod(�) j= '.Th(M) def= Th(fMg)is the (�rst-order) theory of the model M.We will start our formal exposition of relativity theory with �xing a 3-sorted �rst-orderlanguage. We will all this language the frame-language of relativity theory .48 We will use thislanguage for formulating our �rst axiom systems for speial relativity (this way produing our�rst formalized versions of the theory).4946For that book page numbers are important beause it has no index and is 893 pages long.47This is important beause the issue of our staying within �rst-order logi [or in one of its equivalent forms℄is an important one from our methodologial point of view. For reasons see the Appendix of AMN [18℄ entitled\Why FOL?". Cf. Enderton [82, x4℄ or Manzano [181℄ for reduing higher-order logi to �rst-order many-sortedone.48Later we will expand our frame-language with e.g. a kind of pseudo-metri d : nF � nF �! F, also alleddistane, see x8.1 of a future edition [19℄ of AMN [18℄. Our hoie of language is re-onsidered in AMN [18, x6.9(\On what we learned (so far) about hoosing our �rst-order language for relativity")℄, but f. also Remark 4.7.3on p.354.49Beause of the purposes explained in the Introdutions x1.4 (p.xiv) and x3.1 (p.105), in later hapters wedevelop several axiom systems.



4 2 SPECIAL RELATIVITYBefore introduing the formal language, we explain our intuition behind the symbols of ourframe-language. � � �So let's get started. We want to develop a kinematis.50{ What is kinematis?{ A theory of motion .{ What moves?{ Idealization: We assume that there are things alled bodies (like \heavenly bodies") and they move.{ How do bodies move?{ Idealization: They hange their (spatial) loations.{ What does hange of loation mean?{ At di�erent time instanes the same body has di�erent loations .OK, then there are time instanes and loations involved (whatever they are). Let us �xthat. Our paradigm says that time instanes and loations are only relative to somethingwhih we will all observers.51 So we assume that there are observers (speial bodies). Givenan observer m, time instane t and loation s, observer m may \observe" a ertain body bas being present at ht; si while m may observe other bodies b1 as not being present at ht; si.This simply means that from the point of view of m, b is present at loation s at time t. Wetreat this onept of observing as a primitive and denote it as b 2 wm(t; s). That is, wm(t; s)is de�ned to be the set of bodies present at ht; si from the point of view of m. We shouldemphasize that this kind of observing has (almost) nothing to do with the intuitive notion ofobserving in the form of, say, seeing optially.{ What are time instanes t and loations s?{ Our �rst answer is that they are \labels" used by observers. But sooner or later we will have to bemore spei�. So let us see what t is.We agree that, for an observer m, time instanes are \quantities", like 100, 500 or 1/2.To be faithful to the spirit of the axiomati method, we do not deide what quantities are,we only postulate that they satisfy some simple axioms whih in themselves are intuitivelyonvining. Namely, we assume that quantities form an ordered �eld F = hF;+; �;�i, thatis, F satis�es the usual axioms of ordered �elds. The time sale of observer m is simply Fitself, the neutral element 0 of F means \now", t > 0 represents \future" and t < 0 represents\past". For simpliity, we agree that loations s are represented by triplets of quantitiess = hs1; s2; s3i 2 3F.So far, we agreed on representing loations by triplets of quantities, or by triplets of \o-ordinates" from the �eld F. It is pairs p = ht; si of time instanes and loations for whih50For simpliity, we onentrate on kinematis of relativity, but by the same methods one an extend theinvestigations to, say, mehanis. A motivation for stiking with kinematis is that by using only kinematiswe an prove things whih are usually proved by using notions, e.g. mass.51We use the expression \observer" in the sense of the physis book d'Inverno [73, pp.17,21℄. So, in oursense, an observer \oordinatizes" the set of events and as we will later (in Chapter 4) all it, an observeroordinatizes what will be alled there \spae-time". Other books (e.g. Hrask�o [135, p.32℄, Landau-Lifsi[152℄, Misner-Thorne-Wheeler [192, p.327℄) use the expression \referene frame" for what we all observer.Still other books use a more abstrat notion of observer suh that for them \referene frame" = \observer +oordinatization" beomes the ase. For us, this is only a matter of hoosing words, no issue of ideology isinvolved; and sine we had to make a hoie, we deided to follow d'Inverno's terminology where \observer" isbasially the same as \referene frame". In passing we note that it is our impression that Einstein used theword \observer" in the same sense as d'Inverno does and we do, f. [80, x9℄. Cf. also Taylor-Wheeler [257, xI.4(the de�nition of observers)℄. Cf. also Remark 2.2.5 on p.25.



2.1 FRAME LANGUAGE 5we say that a body b ours there (at ht; si) for observer m. We all suh pairs points of ouroordinate-system 4F, whih we also denote by 4F. Therefore points of our oordinate-systemare of the form p = hp0; p1; p2; p3i 2 4F. We all p0 the time oordinate and hp1; p2; p3i thespae oordinates of p.Although our oordinate-system is four-dimensional, many of the ideas (and proofs) an beillustrated already in two or three dimensions. We will try to keep our presentation as simpleas possible. Therefore we will sometimes pretend that our oordinate-system is 2-dimensionalbut we will go up to 3 or 4 dimensions as soon as the higher dimensional ase would behavedi�erently.As we said, to eah point p 2 4F of our oordinate-system, an observer m assoiates aset wm(p) of bodies whih, for m, are present at point p. Therefore, to eah observer m, weassoiate a so-alled world-view funtion wm : 4F �! P(B) mapping our oordinate-system4F into the powerset P(B) of the set B of bodies. We all the elements of P(B) \events".Matolsi [187℄ alls them ourrenes. For us an event is nothing but information telling uswhih bodies are present and whih are absent.52 (This is why [187℄ alls them ourrenes.)Therefore we an identify an event by a subset of B.On terminology: Sometimes we might write sloppily spae-time for our oordinate-system4F. However we need to reserve the expression \spae-time" for a similar but slightly di�erentstruture. Namely, in Chapter 4, we will use the word spae-time for a struture whoseelements are the events (roughly, the universe of this struture is P(B)) and whose struturewill be indued by that of 4F via the world-view funtions wm : 4F �! P(B) belonging tothe observers. Cf. the geometry hapter 4. In the simplest ases of speial relativity, spae-time will be isomorphi with our oordinate-system 4F. However, in order to be prepared forgeneralizations oming in the more advaned hapters of the present work, we need to treatspae-time53 as a struture stritly di�erent from 4F.� � �We are ready now to de�ne formally our frame-language. In this hapter we introdue arelatively rih language beause we want to use this language throughout the present work.At the beginning, and espeially throughout Chapters 2,3, we ould have used a muh simplerlanguage, e.g. the one introdued in [16℄. More spei�ally, in Chapter 2 we will not reallyneed G; e ; Ib introdued in Def.2.1.2 below.52Misner & Thorne & Wheeler [192, p.6℄ (f. Figure 1.2 therein) uses basially the same notion of an event aswe do. They also give there detailed intuitive motivation for this de�nition of an event. For ompleteness, wenote the following. In AMN [18, x6.9 (\On what we learned (so far) about hoosing our �rst-order language forrelativity")℄ we arrive at a more abstrat, more sophistiated notion of an \event" f. item (402) on p.1210 andthe explanation following it. The intuition behind that notion, however, is basially the same as the presentone.53Spae-time will be a struture hMn; : : :i withMn � P(B) the set of \observable" events. (In this onnetion,we note that e.g. Friedman [91, p.32, lines 4{5℄ de�nes spae-time as \the set of . . . all atual and possibleevents".)



6 2 SPECIAL RELATIVITYDe�nition 2.1.2 (frame-language of relativity theory)Let B, Q and G denote three sorts alled bodies, quantities and lines, respetively. Let anatural number n > 1 be �xed.54 Intuitively, n will be the dimension of our \spae-time".We are de�ning a �rst-order language with sorts55 B;Q;G by �rst de�ning its models, asfollows. M is a model (of dimension n) of this language iffM = hBM;FM;GM; ObsM;PhM; IbM;+M; �M;�M; eM ;WMi ;also denoted as M = hB;F;G; Obs;Ph; Ib;+; �;�; e ;W ifor brevity56, where:� B is a nonempty set, it is M's universe of sort B. B is alled the set of bodies (of M).� F is M's universe of sort Q. Intuitively, F serves both to be our \time sale" and\spae sale". Relations+; �;� are of sort Q, hene hF;+; �;�i forms a struture. We will assume thatF := hF;+; �;�i is a linearly ordered �eld.57 That is, the following setAxOF of axioms is satis�ed by hF;+; �;�i.F := hF;+; �i is a �eld58hF;�i is a linear order, and for every a;  2 F,a �  ) (8d 2 F)(a+ d � + d) and(a �  and d > 0) ) (d � a � d � ) hold.0 and 1 denote the usual zero and unit elements of the �eld. Further, for every a 2 F,jaj denotes the absolute value of a, that is,jaj def= maxfa;�ag (where \�" is the usual group theoreti inverse operation determinedby +).We will denote the ordered �eld hF;+; �;�i by F and its �eld redut hF;+; �i by F. Oftenwe write FM for F (FM for F) when we want to indiate expliitly that we look at F (F)as the \quantity part" of M. FM is alled the ordered �eld redut of M, following the54We will be interested only in the ase n 2 f2; 3; 4g, but we give de�nitions and lemmas for arbitrary n ifthis does not ost any extra e�ort.55Many-sorted logi is known to be reduible to one-sorted logi the following way (f. Monk [194℄, Enderton[82℄): One uses the union B [ Q [G of the universes of the sorts of the many-sorted model as the universe ofour new one-sorted model and one alls B;Q;G unary prediates.56As is usual in logi, B;F;G;Obs et. are symbols (sort symbols and relation symbols) of the language ofM while BM; : : : ;ObsM et. are objets denoted by these symbols aording to the model M. If and wherethere is no danger of onfusion, we will identify the symbols with the objets they denote (hene we write Bfor BM et).57This is why the universe of sort Q of M is denoted by FM instead of QM. Oasionally we may refer tosort Q as sort F or as the �eld-sort of M. (Sine in standard mathematial pratie Q often denotes the �eldof rationals, there is a potential danger for ambiguity here for whih we apologize to the reader. Anyway, wewill not use Q to denote the rationals.)58For ompleteness, we reall here the de�nition of a �eld. hF;+; �i is alled a �eld iffhF;+i is a ommutative group, we let 0 denote its neutral element;hF n f0g; �i is a ommutative group, we let 1 denote its neutral element;� distributes over +, that is, a � (+ d) = a � + a � d holds for every a; ; d 2 F.Sometimes we think of a �eld as a struture F = hF;+; �;�; 0; 1i, we hope this will ause no onfusion. (Weomitted 0; 1 and \�" from the original de�nition beause they are �rst-order de�nable from + and \ � ". Onething that an be slightly inuened by this omission is the set of homomorphisms between two �elds.)



2.1 FRAME LANGUAGE 7standard notation and terminology of many-sorted model theory. We note that everylinearly ordered �eld is in�nite. Fields form an abstrat (axiomati59) approximation ofthe �eld of real numbers; one an work with �elds in most of the ases as if they werethe �eld of real numbers.� G is a nonempty set, it isM's universe of sort G. G is alled (the set of) lines (or geometry,but geometry will be used in Chapter 4 in a slightly di�erent and more omprehensivesense).60 Intuitively, lines represent motion (in the form of \life-lines") of inertial bodies.� Obs;Ph; Ib � B are unary relations (of sort B). Their names are: set of observers, setof photons, and set of inertial bodies, respetively. See the left-hand side of Figure 3.BMObs Phm phIbh
q e ` p 6e `1` q pF

F`1b
Bodies of M Quantities and lines of MFigure 3: Bodies, quantities and lines of an arbitrary model M.� e � nF � G is an (n + 1)-ary relation of sort hQ; : : : ;Q;Gi. Intuitively, for p =hp0; : : : ; pn�1i 2 nF and ` 2 G, e (p0; : : : ; pn�1; `) expresses that the point p 2 nF ison the line `. If p and ` are as above, we abbreviate e (p0; : : : ; pn�1; `) by p e `. Wepostulate axiom AxG below, alled the axiom of extensionality of lines.AxG (8`1; `2 2 G)�(8p 2 nF)(p e `1 , p e `2) ) `1 = `2�.Here we note that the axiom of extensionality allows us to identify ` 2 G with a subsetof nF. (See the right-hand side of Figure 3.) Indeed, we will identify ` with the setf p 2 nF : p e ` g (whih is sometimes alled the extension of `). By this identi�ationwe may assume that G � P(nF) and e is the real \element-of" relation, 2. We will dothis from now on, f. Convention 2.1.3 (p.10).6159We mean �nitely axiomatizable in FOL.60So the aronym G refers to geometry, but to avoid misunderstandings in Chapter 4, we pronoune it simplyas \lines".61This is a standard tehnique for handling higher-order objets of a logi.



8 2 SPECIAL RELATIVITY� Let p = hp0; : : : ; pn�1i 2 nF. Then, p0 is alled the time omponent of p, whilehp1; : : : ; pn�1i is the spae omponent of p.62 Often we write pt; px; py; pz for p0; p1; p2; p3respetively.nF is alled the oordinate-system of M. We refer to p as a point or a (spae-time)loation. hp1; : : : ; pn�1i is a (spae) loation. We will use the word loation ambiguously.� W � B � nF � B, that is, W is an n + 2-ary relation of sort hB;Q; : : : ;Q| {z }n-times ;Bi.W is alled the world-view relation (of M). The most important part of our model is thisrelation. Intuitively, for n=4, W(m; t; x; y; z; b) means that the observer m \observes" or\sees"63 the body b at time t at (spae) loation hx; y; zi. From the (n+2)-ary relation Wand arbitrary observer m 2 Obs we de�ne the world-view funtion wm : nF �! P(B)as follows: wm(p) def= f b 2 B : W(m; p; b) g for every p 2 nF ;see Figure 4.
nF p W (m;�;�)

wm wm(p)B
Figure 4: The world-view funtion wm.For p 2 nF, we all the set wm(p) of bodies the event \happening" at loation p as seenby m.64 Intuitively, wm de�nes the \subjetive reality" of m. That is, wm tells us howobserver m \arranges" the events (elements of P(B)) in the oordinate-system nF; inother words, wm tells us how m \oordinatizes" the set of events P(B). See Figure 5.In the literature sometimes nF is alled spae-time, and sometimes the set of eventsP(B) is alled spae-time. The reason for alling P(B) spae-time is that nF is only62It is important to emphasize here that nF is only the oordinate system of M as opposed to being say\spae-time" itself of M. Spae-time will not be one of our primitive (i.e. basi) onepts, instead, it will bea derived \theoretial" onept and it will appear e.g. in x4. For the observational/theoretial duality (in thesense of Friedman [91℄ or Reihenbah [218℄) f. x1, x4.1 herein and AMN [18, x1.1 on p.11℄.63 We want to emphasize that here \observing" or \seeing" has nothing to do with the intuitive notion ofobserving in the form of measurement, or with the everyday notion of seeing via photons. In the present text,\observer" and \observing" are tehnial expressions whih we use for historial reasons. Our \observing" isreally a kind of oordinatizing, i.e. when we say that observer m observes event e at oordinates t; x; y; z, wemean only to say that m assoiates oordinates t; x; y; z to event e. (As opposed to \real observing", this isa very abstrat at only.) By the word \observer" we mean what is sometimes alled frame of referene or\system of referene" (or oordinate-system), f. footnote 51 (p.4) and Remark 2.2.5 (p.25).64Two or more bodies oupying the same spae at the same time might ontradit the physial intuition.However, presently we abstrat from the sizes of the bodies and therefore we permit two or more bodies to beat the same plae at the same time. We also note the following. The reader may ask \why is an event a set ofbodies". Motivation for this de�nition of an event an be found e.g. in Misner-Thorne-Wheeler [192, p.6℄, andFriedman [91, p.31℄ starting with line 9 therein.



2.1 FRAME LANGUAGE 9a oordinate-system (onsisting of labels), using whih observers oordinatize the set ofevents P(B).65 On the long run it will be more fruitful to use the word spae-time forthe thing whih is being oordinatized, that is for P(B).66 We will see more reasons foralling the set of events spae-time in the geometry hapter x4, pp.127{364. The setsBM;FM; GM are also alled the universes of M (of sorts B, Q, G respetively).Summing it up: The similarity type of our �rst-order language onsists of{ the sort symbols B, Q, G;{ the unary relation symbols Obs;Ph; Ib (most often, their interpretations in mod-els are denoted by Obs;Ph; Ib as well);{ the symbols +; �;� of the ordered �eld F (the neutral elements 0 and 1 of + and�, respetively, and \�" will also be treated as basi symbols);{ the (n+1)-ary relation symbol e , whih we will systematially replae by the settheoreti \2" (f. Convention 2.1.3);{ the (n+2)-ary relation symbol W. Further:The redut hB;Obs;Ph; Ibi of M is purely of sort B (body);F = hF;+; �;�i = hF;�i is purely of sort Q (quantities);G is the universe of sort G (lines), and there are no relation or funtion symbolswhih would be purely of sort G.e (whih we will replae by 2) ats between sorts Q and G, while W involves Band Q.Variables ranging over the universes B;F; G of M are most often hosen as follows. Forarbitrary i 2 !,b; bi; h; hi; k; ki; m;mi; ph; phi 2 B;a; ai; ; i; d; di; t; ti; x; xi; y; yi; z; zi; "; �; � 2 F;`; `i 2 G.Let us reall thatAxOF [ fAxGg =fthe axioms postulating that F is a linearly ordered �eld; axiom of extensionalityg:Now the frame-language of relativity theory of dimension n is de�ned to be the 3-sorted�rst-order language built up from the above symbols the usual way. A model M =hB;F;G;Obs;Ph; Ib;+; �;�; e ;W i is alled a frame model (of relativity theory, of dimen-sion n) iff M j= AxOF [ fAxGg [ fW (m; p; b)! Obs(m)g : 6765A loation p 2 nF funtions only as an \address" or \label" used by an observer m in labeling those eventswhih exist for m.66To help the reader's intuition we note that the world-view funtion wm onnets up the oordinate-systemnF with the set of events P(B). Therefore if for someone it were easier to imagine nF as spae-time, he/shean use the world-view funtion wm to translate his/her intuition for viewing set of events as spae-time.67We use the standard onvention from logi that an axiom '(x) automatially means its universal losure8x'(x). Throughout we write p for p0; : : : ; pn�1, hene W(m; p; b) abbreviates W(m; p0 : : : ; pn�1; b).
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(nF) (wm : m 2 Obs) (subsets of B)oordinate-system world-view funtions set of eventsor spae-time
F

F wm
wk P(B)

The heart of our model is W, whih is represented byfuntions wm : nF ! P(B) for eah m 2 Obs.Figure 5: This is a useful way for visualizing a model M.FM denotes the lass of all frame models and FF denotes the set of frame formulas.68 Weall AxOF [ fAxGg [ fW (m; p; b) ! Obs(m)g the frame theory of speial relativity theory(or frame theory for short). By j=OFG we denote semantial onsequene within our presentframe theory AxOF [ fAxGg [ fW (m; p; b) ! Obs(m)g. That is, for two sets � and � offormulas in our frame language,� j=OFG � () (8M 2 FM)(M j= � ) M j= �) :Also we de�ne ModOFG(�) def= FM \Mod(�) :For brevity, throughout this work, we will write Mod(�) for ModOFG(�). We hope that thisauses no onfusion, sine we never want to talk about models (of type of our frame language)in whih AxOF, AxG, or (W(m; p; b)! Obs(m)) would fail.Similarly, throughout we denote j=OFG simply by j=, and we will never use j= in itsoriginal purely logial sense in the ontext of our frame language (to avoid misunderstanding).Of ourse, when talking about strutures or formulas of a di�erent similarity type like F, weuse \j=" in its usual logial sense.END OF DEFINITION 2.1.2 (FRAME LANGUAGE). �
CONVENTION 2.1.3 (1) As we indiated on p.7, below the de�nition of AxG, we willidentify our e with the set theoreti membership relation \2". As it was indiated there, thisauses no loss of generality beause every frame model M is isomorphi to a frame model N68i.e. the formulas in our frame language



2.1 FRAME LANGUAGE 11suh that eN oinides with the set theoreti \2". Therefore throughout the rest of this worka frame model is of the formM = hB;F;G; Obs;Ph; Ib;+; �;�;2;W i :Throughout, we use the semiolon \;" to separate the sorts of a model from its relations andfuntions, as in the above equality. Often, we will use the more onise notationM = h(B; Obs;Ph; Ib);F;G; 2;W i :If we want to indiate that a universe (or sort) like B or a relation like W omes from apartiular model M, we use the supersript BM;WM respetively. This is why on p.6 we wroteM = hBM; : : : ;ObsM; : : : ;WMi. However, if M is understood from ontext, we will usuallyomit the supersript. All this (BM et.) is standard notation from model theory and universalalgebra, f. e.g. Hodges [130℄, Monk [194℄, Gr�atzer [108℄, MKenzie&MNulty&Taylor [189℄,[120℄, Barwise-Feferman [45, p.27℄. (As an exeption, Chang-Keisler [60℄ uses lower indies likeBM instead of BM. But the general style and notational philosophy remains the same in [60℄,too, as adopted here.)(2) As is ustomary in (parts of) universal algebra and model theory, strutures are denotedby German apitals like A;B; : : : ;M. If A is a one-sorted struture, its universe is denoted bythe orresponding latin apital A. Sometimes Uv(A) also denotes the universe of A. HeneA = Uv(A), B = Uv(B), et. assuming A, B are one sorted. This kind of onvention will beextended to many-sorted strutures in x4.3 on p.219. Till then, we will not need the many-sorted version of onvention A = Uv(A) beause (before Chapter 4) we will deal with only onekind of many-sorted strutures, namely, ones like M.(3) Throughout, n denotes a natural number with n > 1. Hene e.g. \for all n" means\for all n > 1". Thus if in a theorem n is not spei�ed, the theorem is laimed to hold for alln > 1. �As we said, intuitively, n is the dimension of our spae-time. If n = 2, we have onetime-dimension, and one spae-dimension, i.e. spae is one-dimensional. If n = 3, spaeis two-dimensional, and n = 4 represents our usual 4-dimensional spae-time, i.e. spae isthree-dimensional. In the ase of n = 2 it is rather easy to illustrate things, so we will oftenuse n = 2 in our drawings. When n = 3, one still an illustrate ideas by drawings quitewell. Many ideas an be better seen in the ase n = 2 and work ompletely analogously forarbitrary n. Some statements, however, are true for n = 2 and not true for n = 3; 4. In theseases we will emphasize that n = 2; n = 3, or n = 4. (Sometimes [but not frequently℄, theases of 3 and 4 behave di�erently. In suh ases, of ourse, one emphasizes this di�erene.But most of the time, for understanding the key ideas, we will onentrate on the ase ofn = 3.)69 There is another reason why it may be useful to allow the dimension of spae-timeto vary. Later we devise models in whih not all observers oordinatize events with the samedimensional oordinate-system nF. E.g. we an allow that most of the observers oordinatizeevents in 4-dimension, while some speial (e.g. faster-than-light) observers oordinatize eventswith 2-dimensional oordinate-system only.7069Sometimes it is worth ontemplating why the proofs are di�erent for di�erent dimensions.70Cf. the setion on faster-than-light observers in dimension 2 (x2.7) and its referenes to AMN [19℄. Suhmodels were also presented at seminars in R�enyi Institute of Mathematis in 1999.



12 2 SPECIAL RELATIVITYFigures 3 - 6 illustrate the struture of an arbitrary model M (of dimension 2) in the senseof De�nition 2.1.2. Consider the oordinate-system in the right-hand side of Figure 3 (or inthe left-hand sides of Figures 4, 5, 6). Intuitively, the �rst (vertial) axis is the time sale whilethe seond (horizontal) axis represents spae. The straight lines ` and `1 represent \lines" inFigure 3. The world-view relation W, whih is the heart of our model, is illustrated in Figures4{6. W is represented by the system of world-view funtions hwm : m 2 Obs i, f. Figure 5.In Figure 6, wm(p) = fb; phg means that m \sees" at time p0 at loation p1 two bodies: b andph. I.e, W(m; p; b), W(m; p; ph) are true, while e.g. W(m; p;m) is not true.For the time being we do not have a struture on the set P(B) of events, whih we alsoall spae-time. In the geometry hapter x4 we will put some struture on our spae-time, too.Sometimes, the struture in Figure 5 is mathematially modeled by a so-alled manifold.71F
p0 p

p1 F
q wmwm bph m

B
wm(p)The world-view relation W and world-view funtions wm.m \sees" at time p0 at loation p1 two bodies: b and ph.Figure 6: Seond drawing of the world-view funtion wm.We will use the following notation. For Obs(b);Ph(b); Ib(b) we often writeb 2 Obs, b 2 Ph, b 2 Ib, respetively. Moreover, we will reserve the variables m;mi; k; ki todenote observers; we reserve ph; phi for photons; �nally we use the symbols p; q; r; s to denoteelements of nF. Thus we have72m;mi; k; ki 2 Obs;ph; phi 2 Ph;p; q; r; s 2 nF.Using the terminology of vetor spaes, elements of nF will often be referred to as vetors. Aswe mentioned, we use the onvention from logi that'(m) when used as an axiom, means (8m 2 Obs)'(m).71The manifold struture is not partiularly relevant at the present point, but it will be relevant in laterdevelopments.72Sometimes we will deviate from this onvention though, for lak of enough letters. E.g. sometimes we willuse m; k to denote natural numbers also.



2.1 FRAME LANGUAGE 13(This is based on our onvention above that m ranges over elements of Obs, and not B.)Consider a frame model M and its ordered �eld redut F. We will sometimes impose theondition on our M that F = R, the ordered �eld of real numbers.We lose this setion with giving a possible formulation of the so-alled \twin paradox",as an example of a formula in our frame language.73 Intuitively, the twin paradox says that ifone of two twin brothers leaves the other (aelerating) and returns to him later, the brotherwho stayed behind will be older at the time of their reunion. That is, more time has passedfor the \non-moving" brother than for the traveling one.m
p
q k p0

q0km
m: \non-moving" (inertial) brother k: traveling (aelerated) brotherFigure 7: The \twin paradox".(TwP) (8m 2 Obs \ Ib)(8k 2 Obs n Ib)(8p; q; p0; q0 2 4F)�m; k 2 wm(p) \ wm(q) ^ wm(p) = wk(p0) ^ wm(q) = wk(q0)� )jpt � qtj > jp0t � q0tj. 74See Figure 7. It is not a oinidene that in Figure 7, the life-line of m as seen by k ismore \exoti" than that of k as seen by m. (The aeleration of m is sometimes negative andsometimes positive.) We will disuss the reason for this in x2.8, p.95 herein, and in Chapter 8of a future edition [19℄ of AMN [18℄.

73We use natural abbreviations here, as well as later. E.g. we write \m; k 2 wm(p) \ wm(q)" in plae of thelonger \W(m; p;m) ^ W(m; q;m) ^ W(m; p; k) ^ W(m; q; k)".74The notation pt; qt was introdued on p.8. Further, jpt � qtj denotes the absolute value of pt � qt, f. p.6for the notation jaj when a 2 F.



14 2 SPECIAL RELATIVITY2.2 Basi axioms BasaxOur next task is to postulate axioms in our frame language, expressing parts of our knowledgeabout physial reality. Our �rst set of axioms to be proposed shortly will be alled Basax,and it serves as one possible starting point for axiomatizing speial relativity theory.Before presenting Basax, we would like to say a few words about its plae in the hierarhyof axiom systems whih will be studied in the present work.In the 1998 Deember version [24℄ of AMN [18℄ as well as in setion 8.1 of a future edition[19℄ of AMN [18℄ we introdue a further (atually a more \advaned") set A of axioms, inwhih we will allow aelerated observers, and aordingly, in A we will modify some of thepostulates of Basax (e.g. we will modify item 7 below).75 In setion 3 we de�ne variants ofthe axioms of Basax, and variants of Basax itself (e.g. Newbasax).76 These new versionswill be more \balaned" in a sense, and will make it easier to move towards having aeleratedobservers, i.e. towards A. (On the other hand, our �rst hoie, Basax has the advantagethat its axioms are easy to formulate and understand, so it might be onsidered as a goodstarting point.) In later parts we will introdue stronger as well as weaker (than Basax)axiom systems. As we indiated in x1.4 and x3.1, (and in more detail in AMN [18, x1.1 (BroadIntrodution)℄), a plurality of ompeting axiom systems (or relativity theories) is an essentialfeature of logial analysis of a theory like relativity. Aordingly, in x3 herein as well as inAMN [18, x3.4.2 and Chapter 4℄ we introdue several axiom systems for the purposes indiatedin AMN [18, x1.1℄. One of these purposes is oneptual analysis (started e.g. in Friedman [91℄and Rindler [222℄) whih asks whih axiom of relativity is responsible for whih onlusionof the theory. Another purpose of this plurality is to study suh variants of relativity as e.g.the Reihenbah-Gr�unbaum version and to ompare them with the standard version. Also, wewant to \�ne-tune" our axiom systems in various regards. A further, but not negligible purposein studying weaker axiom systems is to prove stronger theorems. For more on the motivationfor having a plurality of axiom systems we refer the reader to x1, x3.1, and to AMN [18, xx1.1, 3.4.2, Chapter 4℄. See also Figures 60 and 223 on pp.126 and 653 (and also AMN [18,Figure 138, p.A-31℄). Finally we note that besides weakening (and/or modifying) Basaxwe also study the possibility of making it stronger by adding a few new, natural axioms,f. e.g. xx2.8,3 and AMN [18, xx 3.8, 3.9℄. In AMN [18, x3.8℄, we also study an extension\BaCo+Ax(p )" of Basax, whih ompletely desribes the standard, Minkowskian modelsof speial relativity, f. x3, p.125.Before presenting Basax, we emphasize that it is only our �rst and simplest variant ofan axiom system for speial relativity. Later, we will also have: (i) axiom systems in whihaelerated observers are permitted (i.e. informal postulate 2 below will be withdrawn), (ii)systems in whih for di�erent observers di�erent events may exist (i.e. postulate 7 below willbe withdrawn), (ii) systems in whih the speed of light will be not the same for all observers,75A (and its theory) an be onsidered as a �rst step in the diretion of experimenting with the idea oftreating general relativity (in A we will have gravity, event horizons et) in the framework of �rst-order logiin a spirit analogous with that of the present work. Cf. e.g. pp.95-98 herein.76It belongs to the spirit of the axiomati method that we start out with a simple set of axioms (likeBasax), investigate its properties, prove some theorems from it, and then we use our so obtained experienefor modifying this axiom system. After that, we restart the \yle", i.e. we start investigating the new axiomsystem et.



2.2 BASIC AXIOMS 15(iv) the Reihenbahian version of relativity where there is even less restrition on the speedof light, (v) systems in whih the oordinate-system of an observer may be not the whole of4F but only a subset of 4F, et.Informally, about a model M = h(B; Obs;Ph; Ib);F;G; 2;W i , Basax will postulate thefollowing.F is a linearly ordered �eld; we an thus de�ne straight lines of the usual, Carte-sian geometry over F, i.e. of nF (whih, intuitively, are \life-lines" or \traes" ofthe motions of inertial bodies), and we an de�ne angles of straight lines (whihrepresent \speeds" of inertial bodies). In this sense of the word we will postulatethe following:1. G is the set of straight lines of the Cartesian geometry over F.2. Observers and photons are inertial bodies.3. The \trae" of an inertial body h as seen77 by any observer m is in G.4. Any observer m sees itself as being at rest in the origin.5. Any observer sees some observer on eah \slow" line.786. Eah line whih ould be the life-line of a photon (aording to item 8 below)is indeed the life-line of a photon.7. Any two observers see the same events.8. All observers see all photons moving with the same speed.In items 5 and 6 above by existene we mean only potential existene. I.e. when wesay that on eah slow line there exists an observer, what we mean is that potentiallythere an exist an observer, but in reality all these potential observers and photonsneed not be really there. The same applies to the existene of \potential" photonsin item 6.79For the formal de�nition of Basax, we need some preparation. We start with realling somebasi notions of linear algebra e.g. from Halmos [114℄ or Kostrikin-Manin [148℄ or Hausner [115℄or [226℄ (or any other textbook on linear algebra).If p 2 nF for some set F and n 2 ! then, for any i < n, pi denotes the i-th omponent(projetion) of p. Thus p = hp0; : : : ; pi; : : : ; pn�1i = hpiii<n.Reall from any textbook on vetor spaes (e.g. [114℄) that, to any �eld F = hF;+; �iand natural number n 2 !, an n-dimensional vetor spae nF an be assoiated the followingnatural way. De�ning +V : nF � nF �! nF by(8p; q 2 nF) p+V q def= hpi + qiii<n ;77Below, and later on, we will use the word \see" as a kind of intuitive (or \animated") way of referring tothe at of observing via the world-view funtion, as we already indiated this (f. footnote 63 on p.8).78A line is alled slow if its \speed" (i.e. angle with the time axis) is smaller than that of a photon.79We will return later to larifying the issue of these potentially existing entities (observers, photons) whihexist only potentially but need not exist atually . This an be made preise e.g. by using �rst-order modallogi as a framework as will be disussed soon. Cf. V�alyi [263℄.



16 2 SPECIAL RELATIVITYhnF;+V i turns out to be a ommutative group with neutral element�0 def= h0ii<nand inverse �V p = h�piii<n for any p 2 nF. With de�ning \multipliation by salars"�V : F � nF �! nF bya �V p def= ha � piii<n for eah a 2 F and p 2 nF ;hnF;+V i beomes a vetor spae over the �eld F. We denote this vetor spae by nF. We notethat any n{dimensional vetor spae over F is isomorphi to nF (see e.g. Halmos [114℄). Inuniversal algebra, there are two ways for making the notion of a vetor spae like nF preise.These are the \one-sorted" and the \two-sorted" versions, de�ned below. The one-sortedversion is de�ned as follows: nF1 def= hnF;+V ;�V ; �0; faia2Fwith fa unary and fa(p) def= a �V p for p 2 nF and a 2 F. Cf. Burris-Sankappanavar [53℄.The two-sorted version is the struturenF2 def= hF; nF; +V ;�V ; �0; �V i ;where the operations +V ; �V ; �0 are de�ned on sort nF while �V is of mixed sort, i.e.�V : F � nF �! nF. Throughout this work, nF denotes either nF1 or nF2 depending onontext. Oasionally we will expliitly indiate whih one is meant. So whenever nF showsup, it denotes the n-dimensional vetor spae over F without speifying whether we mean theone-sorted or the two-sorted version (the reader is asked to use the ontext if he wants todeide this).We note that the notation nF is slightly ambiguous (from a di�erent point of view too)beause nF an denote the vetor spae over the �eld F but also (by the standard notation ofuniversal algebra) it an denote the n'th diret (or Cartesian) power of the algebrai strutureF. This diret power happens to be a ring. Therefore we might talk about the vetor spaenF or the ring nF (they are not the same beause they have di�erent operations). If we do notindiate whih one is meant then, by default , we mean the vetor spae. I.e. if the symbol nFappears in the text (without an indiation of whether we mean a vetor spae or a ring) thenit denotes a vetor spae. A ompletely analogous onvention applies to F in plae of F.As usual, we will often write p�V q in plae of p+V (�V q) for simpliity. Further, we willoften omit the index V from �V , +V and �V , and hope that ontext will always save us frommisunderstandings.CONVENTION 2.2.1(i) Throughout, F (= hF;�i) denotes an arbitrary linearly ordered �eld. However, this is aontext sensitive onvention in the following sense: If there is a frame model M around, thenautomatially F denotes the ordered �eld redut of M. A similar onvention applies to the�eld F, its universe F, oordinate system nF, and vetor spae nF, e.g. if there is an F aroundthen automatially F denotes its universe et. In the other diretion if we talk about, say, Fthen impliitly we assume that there is an F in the bakground et.(ii) As we already said in Def.2.1.2, when we work in nF (2 � n � 4), to math the physialintuition, we all the 0-th oordinate p0 of a point p = hp0; : : : ; pn�1i 2 nF the time oordinate



2.2 BASIC AXIOMS 17or time omponent of p. Aordingly, when drawing oordinate systems, we all the 0-thaxis of it the time axis or �t-axis. The rest of the oordinates are the spae oordinates orspae omponents. We denote the �rst four oordinate axes as follows:�t def= F � n�1f0g (= F � f0g � : : :� f0g) ;�x def= f0g � F � n�2f0g ;�y def= f0g � f0g � F � n�3f0g ; and�z def= f0g � f0g � f0g � F � n�4f0g :In general �xi denotes the i'th oordinate axis, that is�xi def= if0g � F � n�i�1f0g :Also, we put pt def= p0;px def= p1;py def= p2;pz def= p3;for eah p 2 nF.(iii) Throughout this work, the dimension n (2 !) of our spae-time is a parameter of almostall of our onepts. Therefore a possibility for a rigorous presentation would be to indiate nin the name of eah onept we introdue, e.g., by putting something like \(n)" after it. Butthen the text would beome too ompliated. Therefore we hose omitting the \(n)"-s exeptwhen this would lead to misunderstanding or when we want to emphasize the presene of n.But sometimes we will de�ne or state things for one partiular n only (e.g., for just n = 2).In these ases we will indiate this fat by putting the partiular number, in parenthesis, afterthe name of the onept involved. For example, we will formulate an axiom Ax1, where nwill be a parameter of Ax1. Then the instane of Ax1 for the ase n = 2 will be denoted byAx1(2).Throughout this work n > 1. Therefore, we will not mention this expliitly.We will treat some other parameters likewise. E.g., we will sometimes state things for aolletion of models from FM suh that all M 2 FM share the same ordered �eld F as their\quantity part". Then we will denote this olletion by FM(F).In ases when we will need more than one parameter we will list them in parentheses,separated by ommas. For example,FM(3;R) = �M 2 FM(3) : FM = R	 :That is, M 2 FM(3;R) iff M is of dimension 3 and the quantity part of M is the ordered �eldR of real numbers. �Besides our frame language introdued in setion 2.1, we will also use the language of thevetor spae nF2 (as an extension of our frame language) for expressing ideas onisely. (E.g.,for r; s 2 nF we may mention the vetors r + s or 3 � r.) We are allowed to do this sine the



18 2 SPECIAL RELATIVITYnF2 formulas are translatable to our frame language. As a �rst example of this and for theother natural abbreviations we will use, we introdue our �rst axiom Ax1 both as a formulain a onise style translatable to our frame language80 and, equivalently, as a (longer) formulawritten purely in the frame language.The set of straight lines of nF in the usual Eulidean sense is denoted byEul := Eul(n;F) := Eul(n;F), that is,` 2 Eul(n;F) def() (9r; s 2 nF)�s 6= �0 ^ ` = f r + a � s : a 2 F g� : 81Ax1 in a onise language:G = Eul(n;F).Ax1 in the frame language of relativity theory:Ax1' (8r0; : : : ; rn�1; s0; : : : ; sn�1 2 F)�fs0; : : : ; sn�1g 6= f0g ) (9` 2 G)(8p0; : : : ; pn�1 2 F) ( e (p0; : : : ; pn�1; `) , (9a 2F) Vi<n pi = ri + a � si)�and(8` 2 G)(9r0; : : : ; rn�1; s0; : : : ; sn�1 2 F)�fs0; : : : ; sn�1g 6= f0g ^ (8p0; : : : ; pn�1 2 F)( e (p0; : : : ; pn�1; `),(9a 2 F) Vi<n pi = ri + a � si)�.Here we emphasize that Ax1 is designed to serve the purposes of speial relativity only. Inlater parts when dealing with more general theories of relativity, Ax1 will be hanged.If ` 2 Eul(n;F), then we an onsider the angle between ` and the time axis. By ang2(`)we denote the square of the tangent of the angle between ` and the time axis.82 Thus, for` = f r + a � s : a 2 F g 2 Eul(n;F),ang2(`) def= s21 + s22 + : : :+ s2n�1s20 if s0 6= 0, andang2(`) def= 1 if s0 = 0.83(It will ause no problem that in�nity 1 is not an element of F.) Thus 0 � ang2(`) � 1.ang2(`) = 0 means that ` is vertial, ang2(`) = 1 intuitively means that the angle between `and the time axis is 45o, and ang2(`) =1 means that ` is horizontal. The de�nition of ang2(`)is illustrated in Figure 8.80I.e. in Ax1 we use onvenient abbreviations reduible to our frame language.81Note that after this de�nition the formula ` 2 Eul(n;F) ounts as a formula of our frame language.Namely, it abbreviates the following formula of our frame language:` 2 G and (9r; s 2 nF)�s 6= �0 ^ (8p 2 nF)[p 2 ` , (9a 2 F) p = r + a � s℄�.82We onsider the square of the tangent (instead of the tangent itself) of this angle beause, in general, wedo not assume that square-roots exist in F.83We use 1 to denote \in�nite" in the usual sense. In more detail, 1 is a new onstant symbol not in thelanguage of M and we use it as a new , greatest element added to the struture F. We will remain informalabout 1 beause we will use it only in suh formulas from whih it an be easily eliminated. Cf. also p.535 ofAMN [18℄ about the notation 1.



2.2 BASIC AXIOMS 19
s1s0

ang2 = s21s20
ss1

s0 ss1s2 z z2 = s21 + s22ang2 = z2s20Figure 8: Angle of a line.De�nition 2.2.2 (life-line (or trae), speed)Let M be a frame model as in De�nition 2.1.2. Let m 2 Obs and b 2 B be arbitrary but �xed.Reall from De�nition 2.1.2 that the world-view funtionwm : nF �! P(B) of m was de�ned as follows:wm(p) = f b 2 B : hm; p; bi 2W g for every p 2 nF :(i) By the life-line (or trae) of b as seen by m (or life-line (or trae) of b by the world-viewof m) we mean the settrm(b) def= f p 2 nF : b 2 wm(p) g = f p 2 nF : W(m; p; b) g.(ii) If trm(b) 2 Eul(n;F), then by the speed of b as seen by m we meanvm(b) def= ang2(trm(b)),f. Figure 9.The formula vm(b) = a will abbreviate thattrm(b) 2 Eul(n;F) and ang2(trm(b)) = a. �In Figure 9, the line trm(b) illustrates the life-line of a body b (in ase n = 2). The aronym\tr " stands for \trae". If trm(b) = f ht; x; y; zi : t 2 F g, then m always, at eah time instanet 2 F, sees b at loation hx; y; zi, i.e. m sees the body b at rest at loation hx; y; zi. Thus,trm(b) is a vertial line (a line parallel with the time axis), i.e. vm(b) = 0, means that \b is atrest, as seen by m". Similarly, the bigger vm(b) is, the more \speed" b is moving with, as seenby m, f. Figure 9.As we said vm(b) is alled the speed of b as seen by m. To be more preise it is thesquare of the usual speed (sine we used ang2 instead of ang). The reason for using thesquare of quantities (in plae of the original quantities) is that we do not want to assumethat square-roots exist in F. So, speed is a salar (i.e. element of F). As opposed to speed,the veloity ~vm(b) of b as seen by m is an (n � 1)-vetor, i.e. ~vm(b) 2 n�1F, de�ned as
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vm(b) < 1

�t trm(b) trm(b1), vm(b1) = 1
vm(b2) > 1trm(b2)�x45o

Figure 9: Traes and speeds.follows (f. Figures 10, 11). Let M be a frame model. Let m 2 Obs and b 2 B suh thattrm(b) = ` = f r + a � s : a 2 F g 2 Eul, for some r and s 6= �0. Assume that s0 > 0. Then~vm(b) def= ~vm(`) def= hs1=s0; : : : ; sn�1=s0i (= hs1; : : : ; sn�1i=s0):If s0 = 0 then ~vm(b) def= fa � s : a 2 Fg :84If s0 = 0, then ~vm(b) is in�nite (i.e. ~vm(b) =1), therefore we annot represent ~vm(b) as a �nitevetor. Therefore, the information ontent of ~vm(b) = ` (where ` is in the spae part of nF)remains that b is moving in diretion ` with in�nite speed both \forwards" and bakwards".We note that the speed vm(b) is the (square of) distane overed by b in unit time; while theveloity ~vm(b) is the vetor representing the hange of loation whih happened in unit time,see Figure 10, assuming vm(b) 6= 1. For more on the distintion between speed and veloityf. e.g. Gardner [95, p.7℄.We are ready to postulate axioms Ax2{Ax6.Ax2 Obs [ Ph � Ib.That is, observers are inertial bodies; and so are photons.Ax3 (8h 2 Ib)(8m 2 Obs) �trm(h) 2 G�.That is, the life-line of any inertial body h as seen by any observer m must be a \line".Ax4 (8m 2 Obs) �trm(m) = �t (= F � n�1f0g)�.Ax4 states that the life-line trm(m) of an observer as seen by itself is the 0-th axis(the time axis). Thus Ax4 says that eah observer sees itself to be a body at rest (notmoving) at (spae) loation h0; : : : ; 0i. In partiular, vm(m) = 0. This is one of the basi84We note that the s0 = 0 ase of this de�nition in not very important. If s0 = 0 (and s 6= h0; : : : ; 0i),then the veloity ~vm(b) is in�nite. The diretion of this in�nite veloity is haraterized by the spae-like linefa � s : a 2 Fg.
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�t trm(b)

�xpvm(b)
1 1

~vm(b), its length is vm(b)
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Figure 10: Speed and veloity.

vm(b) = Speed =(square of) length of vetor ~vm(b)~vm(b) = Veloityis a vetor
Aelerationis a vetor

Figure 11: Veloity, speed, and aeleration represented purely in spae (the time dimensionis suppressed). (Of this �gure, aeleration is relevant only in Chapter 8 of a future edition[19℄ of AMN [18℄.)



22 2 SPECIAL RELATIVITYaxioms of relativity theory. This was a \relativisti axiom" already before Einstein.85 Itexpresses that eah inertial observer an \think" that he is at rest and all other bodiesare moving. The �rst step towards general relativity theory will be that we will extendAx4 to aelerated observers, too86: then even aelerated observers an \think" thatthey are at rest (and then, in a poeti language, gravity will ome into the piture toexplain ertain strange behavior of other bodies).87Ax5 (8m 2 Obs)(8` 2 G) �ang2(`) < 1 ) (9k 2 Obs) ` = trm(k) andang2(`) = 1 ) (9ph 2 Ph) ` = trm(ph)�.Ax5 makes sense only in the presene of Ax1 (beause ang2(`) is not de�ned otherwise).Then it states that we have the tools for (performing) thought-experiments: on anyappropriate straight line we an assume there is an observer; and the same for photons.88Later we will weaken the �rst part of Ax5 to say that there is a positive  suh thatin every diretion for every positive � <  there is an observer going in that diretionand with speed �. (I.e., (8m)(9 > 0)(8`)[ang2(`) <  ) (9k 2 Obs)` = trm(k)℄. Cf.Ax(5nop)�+ in the list of axioms (p.A-19) and in AMN [18, Chapter 5, pp.761, 763℄.)This weaker form of the axiom is suÆient for many purposes.Ax6 (8m; k 2 Obs) �Rng(wm) = Rng(wk)�.Ax6 states that all observers see the same set of events. I.e. whenever an observer msees a set E of bodies at some time point t and spae loation s, any other observer kmust see the same set E of bodies at some time point t0 and spae loation s0. In stillother words, the same events \exist" or \are available" for all observers. Ax6 is quitestrong. In partiular, it will not be true in our theory of aelerated observers (or ingeneral relativity).89 Later we will weaken Ax6 to Ax600 suh that the new version willbe true for our aelerated observers, too. The new version Ax600 will say that if m seesan event E on the trae of the observer k, then k itself sees this event E. Cf. x3.85Sometimes a stronger form of this is referred to asGalileo's relativity priniple . Galileo's relativity priniplesays a bit more than just Ax4. Cf. e.g. Geroh [96℄, pp.32-39, in partiular x3 entitled \The Galilean View".Cf. also Einstein's Speial Priniple of Relativity (SPR) in x2.8.3 and footnote 185 on p.84.86Aording to e.g. Friedman [91, p.5℄, general relativity begins with the study of aelerated observers (oraelerated referene frames), at least when they are treated \equivalently" with inertial referene frames. Inthis sense, Chapter 8 of a future edition [19℄ of AMN [18℄ deals with the (�rst steps of the) generalization ofour (logi-based) method from speial relativity to general relativity.87Cf. e.g. p.98 and Figure 47 in the disussion of the twin paradox in x2.8. On an intuitive level, a general-ization of Ax4 alled Einstein's Speial Priniple of Relativity (SPR) states that the \laws of nature" are thesame for all inertial observers (or inertial referene frames), f. x2.8.3, pp.84{87. Aording to Einstein [80℄,roughly, the General Priniple of Relativity (GPR) (on whih, aording to Einstein [80℄, general relativity is,partially, based) generalizes a re�nement of this (SPR) to arbitrary, e.g. to aelerated, observers. A prie ofthis generalization is that Einstein had to put restritions on whih statements ount as laws of nature, andwhih do not. Hene the onept of a law of nature we use in formulating SPR+ in x2.8.3 is not suitable (notre�ned enough) for the purposes of GPR. (In GPR a key point is that eah observer may imagine that he isnot moving and it is the rest of the universe whih moves, aelerates et.; and that the \laws of nature" arethe same for all observers, f. x2.8.3.)88In a future edition [19℄ of AMN [18℄ we will see a (�rst-order) modal logi re�nement (or variant) of ouraxioms (and formalism) in whih Ax5 sounds \less radial" (that is, sounds more onvining intuitively). Themodal version of Ax5 avoids making spae-time \overrowded" with observers and photons. Cf. [263℄.89One reason for this is, very roughly, that if observer k aelerates (in m's world) so fast that its lok willnever reah 12 o'lok as seen by m, then the \event" seen by k at 12 o'lok (or after 12) will not be \seen"by m. Cf. e.g. Etesi-N�emeti [84℄ or Hogarth [132℄ for more realisti settings with similar e�ets.



2.2 BASIC AXIOMS 23Our last axiom in the present setion is the most distinguished one in relativity theory:90AxE (8m 2 Obs)(8ph 2 Ph) vm(ph) = 1.AxE (\Einstein's axiom") states that the speed of a photon ph, as seen by any observerm, is always 1. In Basax, we hoose the \speed of light" to be 1. This is a rather ad-hodeision, the important part of AxE is that all observers see all photons as having thesame speed. Later, e.g. in Chapter 4 of AMN [18℄, we weaken AxE in several ways.91We will see that already most of these weak forms of AxE will be enough for provingthe majority of the important onsequenes of Basax. In partiular, we will see thatthe weaker postulates saying that in eah diretion there is a photon going forwards andthat \photons do not rae with one another like bullets do" in plae of AxE are alreadysuÆient (together with the other axioms, of ourse) to prove most of the interestingtheorems of speial relativity theory. Cf. Chapter 3.De�nition 2.2.3 (Basax) We de�neBasax def= fAx1;Ax2;Ax3;Ax4;Ax5;Ax6;AxE g ;where the axioms Ax1{Ax6, AxE were de�ned above.Here is a summary of the axioms in Basax:Ax1 G = Eul(n;F).Ax2 Obs [ Ph � Ib.Ax3 (8h 2 Ib)(8m 2 Obs) �trm(h) 2 G�.Ax4 (8m 2 Obs) �trm(m) = �t�.Ax5 (8m 2 Obs)(8` 2 G) �ang2(`) < 1 ) (9k 2 Obs) ` = trm(k) andang2(`) = 1 ) (9ph 2 Ph) ` = trm(ph)�.Ax6 (8k;m 2 Obs) �Rng(wm) = Rng(wk)�.AxE (8m 2 Obs)(8ph 2 Ph) vm(ph) = 1. �It follows from Ax2,Ax3 that the trae of any observer is a line. We give this onlusiona name:(geod) (8m; k 2 Obs) trm(k) 2 G.90One ould refer to e.g. the Mihelson-Morley experiment for motivation, but instead of doing that, we referto the introdution of Friedman [91℄.91One of these says that eah observerm sees all photons with the same speed, another one is the Reihenbah-Gr�unbaum version of AxE et. Cf. Chapter 3 here and Chapter 4 of AMN [18℄. Moreover, following an idea ofGyula D�avid [68℄, in Chapter 5 of AMN [18℄ we see a variant of Basax whih (proves most of usual relativityand) does not need AxE at all.



24 2 SPECIAL RELATIVITYStatement (geod) together with Ax1 imply that trm(k) is a Eulidean straight line. Later,Ax1 will be generalized so that G will be a more general geometry-like struture, e.g. G mightonsist of the geodesis of some struture. Beginning with Chapter 8 of a future edition [19℄ ofAMN [18℄ where we will have aelerated observers too, (geod) will be restrited to inertialobservers.The world-view funtion wm an be reovered from the family of traes of all bodies (fromhtrm(b) : b 2 Bi), and the world-view-relation W an be reovered from all the world-viewfuntions (from hwm : m 2 Obsi). Thus we an \represent" the funtion wm by the world-viewof m, whih is just the indexed family htrm(b) : b 2 Bi, and whih, in turn, we represent bydrawing the traes of bodies that we are interested in. See Figure 12.
trm(b3)trm(b2)trm(b1)�t

�xFigure 12: World-view of m.Assuming Basax, we an (and will often) draw the world-view of an observer m as shownin Figure 13. In this �gure and in similar pitures, most often we simply write the name of abody h instead of writing out the long expression trm(h), when indiating the life-line of h (asseen by m). trm(m) �t k ph 2 Phph1
�xm h

ph2
�yFigure 13: The world-view of an observer m in a model of Basax.



2.2 BASIC AXIOMS 25We will sometimes use the following.FACT 2.2.4(i) Assume Basax. Let h 2 Ib be an inertial body with vm(h) 6=1. Then trm(h) : F �!n�1F is a funtion everywhere de�ned on F, where we think of F as the time axis �t andof n�1F as \spae".92(ii) Statement (i) above remains true if we replae Basax with fAx1;Ax3g.By the spae part S of nF we understand the subspae S def= f h0; q1; : : : ; qn�1i : q 2 nF g (=fq 2 nF : q0 = 0g). Throughout hapter 2 we will identify S with n�1F to simplify notation.In later hapters we do not identify S with n�1F. By a spae-vetor we understand an elementof n�1F.Remark 2.2.5 (Terminology: Observers, referene frames, \slim observers", \fat observers")We all the (sometimes partial93) funtion wm : nF �! P(B) the world-view funtion ofobserver m.(i) Some authors all wm the referene frame of observer m, f. e.g. d'Inverno [73℄. We ouldhave used that word instead of world-view funtion, it is only a historial aident that wehose the other name.(ii) Some authors eliminate \observers" and talk only about referene frames (i.e. world-viewfuntions) w 's (with w : nF �! P(B)), instead. This is absolutely justi�ed, beause given aworld-view funtion w : nF �! P(B) we an reover an observer, all it m, from w suh that,after some modi�ations, basially w will be the world-view funtion of m. In more detail:We \reate" a new body m by postulating that the set of events in whih m is present shouldbe w [�t ℄. Next, we expand all the world-view funtions of our model with this new m. Withthis all properties of m as a body are de�ned. Now, we raise m to the rank of an observerby postulating that the world-view funtion wm of m is de�ned to be w . This onstrutionshows that a referene frame w ompletely determines an observer m suh that m's world-viewfuntion is w . The above illustrates that if we wish we ould forget the observers m and talkabout referene frames w instead. Then instead of a set Obs, another set Rfm of refereneframes would be given as one of our primitives. (We ould let Rfm := fwm : m 2 Obs g.)The above train of thought shows that our approah and the \only referene frames" approahare equivalent (inter-de�nable) and it is not important whether we start out with observers(Obs) or referene frames (Rfm) in our basi voabulary.(iii) Our observers are \slim" in the respet that their life-lines (or traes) are thin urves innF. This again is not important, it is again only a hoie of words: Namely, we ould identifyobserver m with its world-view funtion wm, and then it would ease to be \slim" in the abovesense. In passing, we also note that instead of a single body m, we ould have used as anobserver m together with a set K of bodies [slim observers℄ suh that (8k 2 K) (trm(k) would92More preisely, we an regard the relation trm(h) � nF as a funtion trm(h) : F �! n�1F by identifyingF � n�1F with nF.93wm will beome a partial funtion in x3, in AMN [18, x4.9℄ and in a future edition [19℄ of AMN [18℄ e.g.in the hapter on aelerated observers, Chapter 8 of AMN [19℄.



26 2 SPECIAL RELATIVITYbe parallel with �t ).94 But sine the �nal mathematial e�ets would remain95 more or less thesame96 (via interde�nability), we deided to stik with an observer being a single body m 2 Band whenever we would need a \fat observer" like K above, we will simply reover it from thereferene frame (i.e. world-view) wm of m. �Remark 2.2.6 Throughout, we will use the standard pratie from logi of introduing newrelation and funtion symbols by de�ning them, and then treating them as if they were symbolsof our original language. E.g. we de�ned the funtion wm and then we used it in our axioms (asif it was part of our language). We believe that translating the so enrihed language bak tothe original �rst-order language is straightforward (and therefore it is better not to inlude it).For suh translating algorithms see e.g. Monk [194, pp. 206{210℄ or Bell-Mahover [46, p.97℄.For this translation see also our hapter 4.3 on de�nability theory, in partiular subsetion4.3.3 and Convention 2.3.10 on p.31. �

94In this ase we ould think of an element k of K as a \partner" of m representing a time-like oordinate-line for m. Then m 2 K ould be alled the \entral partner" in hm;Ki. Suh an observer hm;Ki ould bevisualized as a loud of \partiles" oating in spae and eah partile having a lok. Et.95at least from the point of view of questions investigated in this work96 As we said, on the long run we allow wm : nF �! P(B) to be a partial funtion, i.e.Dom(wm) ( nF is allowed.



2.3 WORLD-VIEW TRANSFORMATION 272.3 Some properties of Basax, world-view transformationIn this setion we introdue the notion of world-view transformations. We disuss some simpleonsequenes of our basi axioms { to get a feel for them { and then we investigate thosefuntions that our as world-view transformations in models of Basax. We lose this setionwith listing some basi properties of Basax as a logial theory (like onsisteny, independene,ategoriity).De�nition 2.3.1 (world-view transformation)Given m; k 2 Obs, we de�ne the world-view transformation fmk as follows:fmk def= wm Æ w�1k : �We note that w�1k is a relation, hene the omposition wm Æw�1k is again a relation, f. thede�nition of omposition on p.1. Thus fmk � nF � nF andfmk = f hp; qi 2 nF � nF : wm(p) = wk(q) g ;see Figure 14. Thus fmk is a binary relation on the oordinate system nF; two points arefmk-related when m and k see the same \events" at those points. See also Figure 15.nF P(B)p qfmk wm
wk

Figure 14: The world-view transformation.The name \world-view transformation" suggests that fmk is a funtion, i.e. to any p 2 nFthere is at most one q suh that p is fmk-related to q. This indeed will be the ase in modelsof e.g. Basax, see Prop.2.3.3(v).97 In arbitrary frame models, fmk an be an arbitrary binaryrelation.98 As we said, in models of Basax, fmk annot be an arbitrary binary relation, e.g.it has to be a funtion. Towards the end of this setion we haraterize those funtions thatour in models of Basax(2) as world-view transformations f. Thm.2.3.12, and also there wegive some hints for the n > 2 ase.Figure 15 illustrates the world-view transformation fmk for the 2-dimensional ase. Wedrew the piture under the assumption that fmk : 2F �! 2F, and we indiated two opies of
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world-view of m
world-view of k

m k b
fmk : 2F �! 2Fm k

h
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ph
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�t
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Figure 15: World-view transformation. The event when \m; k and ph are together" happensat �0 both for m and for k, hene fmk(�0) = �0. The event when ph and b are together happensat p for m and at p0 for k; thus fmk(p) = p0.2F, the usual oordinate system way. The world-view of m is illustrated in the top oordinatesystem, and the world-view of k is in the bottom oordinate system (we did not represent inthe piture all traes and all points of the world-views).As a warm-up we begin with simple statements about our axiom system Basax. Let usreall that Eul = Eul(n;F) is the set of straight lines de�ned on p.18.Notation 2.3.2 We de�ne the sets of n-dimensional slow-lines SlowEul and photon-linesPhtEul over an ordered �eld F as follows.SlowEul def= SlowEul(n;F) def= f ` 2 Eul(n;F) : ang2(`) < 1 g ;PhtEul def= PhtEul(n;F) def= f ` 2 Eul(n;F) : ang2(`) = 1 g : �In onnetion with Prop.2.3.3(x) below, let us reall from p.2, that Id is the identity funtionon nF.PROPOSITION 2.3.3 Let M be a frame model of Basax. Then the following are true forall m; k; h 2 Obs, ph 2 Ph and b 2 B.(i) Obs \ Ph = ;, i.e. no photon an be an observer.(ii) trm(k) 6= trm(ph), i.e. no observer an travel together with a photon.97fmk will be a partial funtion in all of the axiom systems, besides Basax, studied in the present work.98By this we mean that for any ordered �eld F and a binary relation R � nF � nF, there are a frame modelM and two observers m; k in M suh that R = fmk.



2.3 WORLD-VIEW TRANSFORMATION 29(iii) vm(k) 6= 1, i.e. the speed of an observer is never 1.(iv) The world-view funtion wm is an injetion (i.e. one-one). That is, no observer \sees"the same event at two di�erent spae-time loations.(v) The world-view transformation fmk is a bijetion (i.e. one-one, de�ned on nF and ontonF).(vi) wm = fmk Æ wk. I.e. we get the world-view of m from that of k by \applying fmk" to it;fmk is the \onversion" between m's and k's world-views.(vii) fmk takes the trae of a body as seen by m to the trae of the body as seen by k, i.e.fmk[trm(b)℄ = trk(b).(viii) fmk takes slow-lines to straight lines, i.e. if ` 2 SlowEul, fmk[`℄ 2 Eul.(ix) fmk takes photon-lines to photon-lines, i.e. if ` 2 PhtEul,fmk[`℄ 2 PhtEul.(x) fmm = Id, fmk = f�1km, and fmk = fmh Æ fhk.All of the statements in Proposition 2.3.3 an be expressed with (�rst-order) formulas in ourframe-language. We note that none of (i)-(ix) in Prop.2.3.3 is true without assuming (at leastpart of) Basax. We invite the reader to onstrut frame models in whih these statementsfail. We will prove the items in Prop.2.3.3 one-by-one, so that we an single out the axiomswe need for proving them.Claim 2.3.4 fAx4;AxEg j= Obs \ Ph = ;.Proof: Assume that m 2 Obs \ Ph. Look at vm(m). By Ax4 we have that vm(m) = 0,and by AxE and m 2 Ph we have that vm(m) = 1. Sine in all �elds 0 and 1 are di�erentelements, we reahed a ontradition.Claim 2.3.5 fAx4;Ax6;AxEg j= trm(k) 6= trm(ph).Proof: Assume that trm(k) = trm(ph). Then trk(k) = �t and vk(ph) = 1 by Ax4 and AxE;in this onnetion note that vk(ph) = 1 implies that trk(ph) 2 Eul by the onvention onp.19. Thus trk(k) 6= trk(ph). Then k sees an event in whih k is present but ph is not present(namely, suh is wk(p) for any p 2 trk(k) n tr k(ph)). However, m does not see suh an eventby trm(k) = trm(ph). This ontradits Ax6, proving the proposition. See Figure 16.Claim 2.3.6 fAx1;Ax4;Ax5;Ax6;AxEg j= vm(k) 6= 1.Proof: Assume that vm(k) = 1 for some m; k 2 Obs. Then ang2(trm(k)) = 1, thus by Ax5,trm(k) = trm(ph) for some ph 2 Ph. This ontradits Claim 2.3.5.Claim 2.3.7 fAx1;Ax5g j= (8m 2 Obs)(wm is an injetion).



30 2 SPECIAL RELATIVITYm kk ph ph
trm(k) = trm(ph) trk(k) 6= trk(ph)m's world-view k's world-view

�t �t
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Figure 16: An observer annot travel together with a photon.Proof: Let m 2 Obs and assume that p; q 2 nF, p 6= q. Then, by Ax1 and by the propertiesof Eul(n;F), (9` 2 G)(p 2 ` ^ q =2 ` ^ ang2(`) < 1). By Ax5, (9k 2 Obs)` = trm(k). Forsuh a k, k 2 wm(p) but k =2 wm(q).Claim 2.3.8(i) fAx1;Ax5;Ax6g j= (fmk is a bijetion fmk : nF �! nF).(ii) fAx1;Ax5g j= (fmk is a (possibly) partial one-to-one funtion ).(iii) fAx1;Ax5;Ax6g j= (fmm = Id; fmk = f�1km; fmk = fmh Æ fhk).Proof: That fmk is one-to-one follows from Claim 2.3.7. That fmk is de�ned everywhere and isonto nF follows from Ax6. fmm = Id; fmk = f�1km and fmk � fmhÆfhk follow from the de�nition ofthe world-view transformation relations. Assume Ax1;Ax5;Ax6, let p 2 nF, and fmk(p) = q,i.e. wm(p) = wk(q). By Ax6 there is p0 2 nF suh that wm(p) = wh(p0). Now fmh(p) = p0 bywm(p) = wh(p0) and fhk(p0) = q by wh(p0) = wm(p) = wk(q). Thus fmk(p) = fhk(fmh(p)).Remark 2.3.9 By Claim 2.3.8 we have that if the set Wtm def= WtmM def=� fmk : m; k 2 ObsM 	 of the world-view transformations is losed under omposition Æ,hWtm; Æ; �1; Idi forms a group (under assuming Ax1,Ax5,Ax6). In AMN [18, Def.3.6.11,p.269℄ we de�ne a lass GM of models of Basax, suh that for some M 2 GM we have thatWtm is not losed under omposition.99 However, in x2.8 we introdue a \symmetry axiom"Ax21 and we see in AMN [18℄ that if M j= Basax [ fAx21g, hWtmM; Æ; �1; Idi is a group.�The proof of Prop.2.3.3(viii) onsists of noting that every slow-line is the trae of some ob-server k1 as seen by m, and that tr k(k1) is a straight line. Similarly, the proof of Prop.2.3.3(ix)onsists of noting that every photon-line is a trae of some photon ph1 as seen by m (by Ax5),and that trk(ph1) is a photon-line again (by AxE). The proofs of Proposition 2.3.3 (vi), (vii)are similar to those of Proposition 2.3.3 (i){(v), (x). We leave them to the reader. By this,Proposition 2.3.3 has been proved.99For more on modelsM of Basax in whih Wtm is not a group f. setion 3.10 of AMN [18℄. Cf. also [261℄.



2.3 WORLD-VIEW TRANSFORMATION 31By Claim 2.3.8(ii), in most of the situations we will investigate, fmk will be a funtion.This will remain so, even when we will study re�nements of our axiom system Basax, oreven when we will omit some or most of our axioms, fmk will be at least a partial funtionnF � Dom(fmk) fmk�! nF. Therefore, we would like to use the standard notation fmk(p) whenp 2 nF as if fmk were a (partial) funtion symbol. But then (sine in our original frame-language fmk is only a relation symbol) we have to de�ne a translation mehanism ensuringthat the formulas involving notation like fmk(p) remain formulas of our frame language. Toensure this we make the following onvention.CONVENTION 2.3.10 We introdued fmk as a binary relation symbol (in the extendedversion of our frame-language). Sine in models of Basax it is a funtion (f. Prop.2.3.3(v)),we will also use fmk as if it were a unary funtion symbol. There is a well known pratieof doing this; a preise translation algorithm an be found e.g. in Monk [194, pp. 206{210℄or Bell-Mahover [46, p.97℄ (\Elimination of funtion symbols"). However, later we wantto treat theories where fmk's will be only partial funtions. Therefore, instead of the algo-rithms for translating total funtions given e.g. in Monk [194℄, we want to use a slightly moregeneral translation algorithm suitable for handling partial funtions as well, see e.g. Andr�eka-N�emeti [29℄. This translation is quite intuitive: whenever we write \fmk(p)" we mean \fmk isde�ned on p, i.e. there is a unique q suh that hp; qi 2 fmk, and fmk(p) denotes this unique q".In more detail: Let � , �(p) be terms and R be a relation symbol like \=" or \�" in ourframe language (expanded, for onveniene, with the language of the vetor spae100 nF2).Let us reall that p; q are variable symbols ranging over nF. Then an atomi formula of the\shape" fmk(p) = � means9!q (hp; qi 2 fmk) ^ 9q (hp; qi 2 fmk ^ q = �);where q is a new variable and \ 9! " means \there is a unique". That is, the new formula says,fmk is de�ned on the argument p and is a funtion on fpg and fmk(p) = � .101Similar onvention applies to more general atomi formulas like R(fmk(p); �) or ��fmk(p)� =� . In both ases the new formula begins with 9!q(hp; qi 2 fmk). E.g. the translated version ofthe seond formula is9!q (hp; qi 2 fmk) ^ 9q (hp; qi 2 fmk ^ �(q) = �) ;where q does not our in � or �(p).Let Tr denote the \translation funtion" whih we are in the proess of de�ning, whih isde�ned on formulas, and whih eliminates funtion-symbol style ourrenes of the fmk's. Sofar we desribed how to translate atomi formulas, all them 'i, possibly ontaining fmk's asfuntion symbols to new formulas Tr('i) in whih fmk's do not our as funtion symbols (andhene Tr('i) is truly in our frame language). Now, if we want to translate a omplex formula,all it  , the same way (i.e. eliminate using fmk's as funtions), �rst we translate all the atomiformulas 'i ourring in  , and then we put together the translations exatly as  was puttogether. E.g. Tr(' ^  ) = Tr(') ^ Tr( ), Tr(:') = :Tr('), Tr(9x') = 9x(Tr(')). �Now, we turn to haraterizing the world-view transformations in models of Basax(2).Figures 17 and 18 illustrate these transformations, and give perhaps a hint for why we will all100As we already said, nF2 formulas are translatable to our frame language.101The �rst subformula 9!q hp; qi 2 fmk means, simply, that fmk(p) is uniquely de�ned.



32 2 SPECIAL RELATIVITYsuh transformations later \rhombus transformations". Their relationship with the literature(Lorentz transformations, Poinar�e transformations) is disussed in x2.9.102 In Figure 18 theworld-view transformation fmk is illustrated in suh a way that the world-views of both k andm are drawn in the same opy of 2F. I.e. k's oordinate system is drawn into m's world-view,f. also Figure 17.Before giving the haraterization (of the world-view transformations), we ite a theoremfrom the next hapter. (Cf. Thm.3.2.6 on p.110.)THEOREM 2.3.11 Assume Basax. Let m; k 2 Obs. Then fmk takes straight lines tostraight lines, that is, (8` 2 Eul) fmk[`℄ 2 Eul.We prove the above theorem in the form of the more general Thm.3.2.6 (p.110).Throughout, by a transformation f (of nF) we mean a funtion f : nF �! nF.103 By aphoton-preserving transformation f (of nF) we mean a bijetive transformation suh that bothf and f�1 take photon-lines to photon-lines. Further, by a ollineation f (of nF) we mean atransformation (of nF) whih takes straight lines to straight lines, i.e. whih preserves Eul. Ahomomorphism between two strutures is de�ned the natural way. Intuitively, it is a struturepreserving map between the universes of the strutures involved. A detailed de�nition is givenin Convention 4.3.1 (p.220). We note that struture means both (universal) algebra, model andany ombination of the two (like our frame-models M). We reall from the standard literatureof algebra that by a linear transformation of a vetor spae nF we understand a homomorphismof the one-sorted vetor spae nF1 onto itself, f. e.g. Halmos [114℄. (The homomorphismsof the two-sorted vetor spae nF2 into itself are something else, f. Remark 2.3.13.) Anautomorphism of a struture is an injetive and surjetive homomorphism of that strutureinto itself suh that the inverse of the map is a homomorphism, too (f. AMN [18, p.160℄ formore detail).THEOREM 2.3.12 (Charaterization of world-view transformations in Basax(2).)Let F = hF;�i be any ordered �eld, and f : 2F �! 2F.1. Assume �rst that F has no (nontrivial) automorphisms104 and f(�0) = �0. Then (i){(iii)below are equivalent.(i) f is a world-view transformation in some model of Basax(2) whose ordered �eldredut is F.105(ii) f is like on Figures 17 and 18, i.e. f is a bijetive linear transformation of the vetor-spae 2F suh that f[�t ℄ and f[�x℄ are mirror images of eah other w.r.t. a photon-linepassing through �0. Moreover, the vetors f(h1; 0i) and f(h0; 1i) are of the samelength.106 Cf. Figure 19.102Using that terminology, world-view transformations in models of Basax are exatly the Poinar�e trans-formations omposed with expansions and with funtions indued by �eld-automorphisms. Cf. Theorem 2.9.4.103Often we write mapping or map instead of transformation, e.g. photon-preserving mapping or linearmapping.104Let us note that the property of M that \FM has no (nontrivial) automorphisms" annot be expressedby a set of (�rst-order) formulas in our frame-language, sine this property is not preserved under takingultrapowers. We also note that the �eld of reals (real numbers) and the �eld of rational numbers enjoy thisproperty.105I.e. (9M 2 Mod(Basax(2))) [(9m; k 2 Obs) f = fkm and FM = F℄.106We use p20 + p21 for the length of p 2 2F. (We do not take square roots beause no axiom ensures theirexistene yet .)
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World-view of m Coordinate system of kas seen by m

World-view of k Coordinate system of mas seen by kfmk
fkm
fkm
fmk

m k
m k

�t �t
�t �t�x

�x �x
�x

m k
km

Figure 17: World-view transformation in two spae-time dimensions assuming Basax.
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�fmk(p)�0
p0

p1 �fmk(p)�1

�t �t 0
�x 0�x

m kp

Figure 18: Two-dimensional word-view transformation in Basax(2).

h1; 0i h0; 1i
�t

�xfkm[�x℄
fkm[�t ℄ `

�0Figure 19: Two-dimensional world-view transformation in Basax(2).



2.3 WORLD-VIEW TRANSFORMATION 35(iii) f is a photon-preserving bijetive ollineation (i.e. f is bijetive, takes straight linesand photon-lines to straight lines and photon-lines respetively).2. In the more general ase when F is permitted to have (nontrivial) automorphisms, westill have that (i), (iii) above are equivalent (with eah other and) with both (ii)' and (ii)?below:(ii)' f =  Æ g where g is like f was in (ii) above and there is an automorphism' : F �! F of F suh that (p) = h'(p0); '(p1)i for all p 2 F2. 107(ii)? f is a bijetive ollineation suh that f(h1; 0i) and f(h0; 1i) are mirror images of eahother w.r.t. a photon-line passing through �0. I.e. f is like on Figures 17{19.3. If in 2 above we drop the assumption f(�0) = �0, (ii)' and (ii)? have to be hanged to (ii)"and (ii)??, respetively, below.(ii)" f is a omposition of a funtion f 0 whih is like in (ii)' and a translation, i.e.f = f 0 Æ � where f 0 is exatly like f was in (ii)' and � : 2F �! 2F is a translation108.(ii)?? f is a bijetive ollineation suh that f(h1; 0i) and f(h0; 1i) are mirror images of eahother w.r.t. a photon-line passing through f(�0).Before proving Thm.2.3.12, we inlude the following two remarks.Remark 2.3.13 The bijetive ollineations of nF ame up in the above theorem (and they willkeep on oming up later, too). Therefore, we note that the �0-preserving bijetive ollineationsare exatly the automorphisms of the two-sorted version nF2 of the vetor spae nF.Another haraterization (of the bijetive ollineations preserving �0) is that they are exatlythe maps obtainable as a omposition of a bijetive linear transformation (i.e. an automorphismof the one-sorted version nF1 of the vetor-spae) and a map indued by an automorphism ofthe �eld F. Cf. Lemma 3.1.6 on p.163 of AMN [18℄. �Remark 2.3.14 The above theorem (haraterizing the fmk's) involves �eld automorphisms.Intuitive (as well as mathematial) disussion of �eld automorphisms with examples, pitures,and their roles in Basax models, in ollineations and in the world-view transformations (thefmk's) will be disussed in a separate item in Chapter 3 of a future edition [19℄ of AMN [18℄.We note that a partial version of the just promised diussion (of �eld automorphisms et.) anbe found in the 1997 Otober 27 version of [25℄, pp. 25{26. The just promised disussion willinlude e.g. the following: (i) In any Basax model M, if FM is Arhimedean109 and Eulidean(for \Eulidean" see p. 55), the fmk's are aÆne transformations110.111 (ii) There are Basax(2)models with Arhimedean ordered �eld reduts ontaining non-betweenness preserving hene107To help the reader's intuition we note that  Æ g on the points with rational oordinates, e.g. p = h1; 1i, isthe same as g. (Let us reall that, for any F the rational numbers an be onsidered as elements of F.)108A translation is a map of the form h p+ q : p 2 nF i, where q 2 nF is �xed.109 F is Arhimedean iff to eah positive x 2 F there is a natural number % 2 ! whih is larger than x, i.e.% > x. (We note that for every ordered �eld the set ! of the natural numbers an be onsidered as a subsetof the ordered �eld, or in more areful wording ! is embeddable into the ordered �eld in a natural way.) Forbrevity, by \Arhimedean �eld" we mean \Arhimedean ordered �eld". We further note that F is Arhimedeaniff it is embeddable into (i.e. isomorphi to a sub�eld of) R.110AÆne transformations are linear transformations omposed with translations, as we will disuss this inx2.9.111For unde�ned terminology the reader is referred to the Index.



36 2 SPECIAL RELATIVITYnon-ontinuous and not aÆne world-view transformations.112 (iii) If, to Basax(2), we add theaxiom that the fmk's are betweenness preserving, we will obtain a stritly stronger and naturalversion (of Basax(2)). (For n > 2, Basax implies that the fmk's are betweenness preserving,f. Prop.4.5.4 on p.289 of AMN [18℄). (iv) We guess that in Basax models the assumptionthat the fmk's are betweenness preserving implies that they are ontinuous, but we did nothek this. (v) There are Basax models with Eulidean ordered �eld reduts in whih someof the fmk's are not aÆne, for every n � 2. (vi) There are Basax models with Eulideanordered �eld reduts where some of the fmk's are ontinuous ollineations whih are still notaÆne transformations. This means that if we add to Basax ontinuity of the fmk's as an extraaxiom, we still annot fore all the fmk's to be aÆne. (vii) If n > 2 and F is a redut of aBasax model, all the automorphisms of F are order preserving, i.e. using a standard notationof universal algebra Aut(F) = Aut(F), f. Corollary 6.7.12 on p.1142 of AMN [18℄. �Proof of Thm.2.3.12: The main idea of the proof is illustrated in Figure 20.Assume that F has no (nontrivial) automorphisms and f(�0) = �0.(i) ) (iii): f is a bijetion and photon-preserving by Prop.2.3.3(v),(ix); and f is a ollineationby Thm.2.3.11.
f

ph2ph1 ph2ph1
�t �t

�x �xh1; 0ih0; 0i h0; 1ih1; 1i fh0; 0i fh0; 1ifh1; 0i fh1; 1i
Figure 20: This is the main idea of the proof of Thm.2.3.12.(iii) ) (ii): Sine F has no (nontrivial) automorphisms and f(�0) = �0, a bijetive ollineationis a linear transformation, f. Remark 2.3.13. If we do not assume that F has no (nontrivial)automorphisms { but we still assume f(�0) = �0 { , f is like in (ii)', i.e. f is a omposition of alinear transformation with a map oming from a �eld automorphism, f. Remark 2.3.13. If wedo not assume f(�0) = �0 either, f is like in (ii)", i.e. we have to ompose with a translation also.The main idea of the rest of the proof is illustrated in Figure 20.For any two distint points p; q 2 2F, pq denotes the Eulidean line ontaining both p andq. Consider the two photon-lines (in Figure 20) illustrated on the left-hand opy of 2F,they are h0; 0ih1; 1i and h1; 0ih0; 1i. These two photon-lines are taken to fh0; 0ifh1; 1i andfh1; 0ifh0; 1i.113These last two are photon-lines beause f is photon-line preserving. They annot be parallel,beause the original two photon-lines are not parallel. Thus they have to be orthogonal (in theusual Eulidean sense) to eah other beause we are in two dimensions. The two pairs of lines112We note that \aÆne ) ontinuous ) betweenness preserving" (for fmk's of Basax models if F = R).113Sometimes we write fp for f(p) like fh0; 0i for f(h0; 0i).



2.3 WORLD-VIEW TRANSFORMATION 37fh0; 0ifh1; 0i, fh0; 1ifh1; 1i and fh0; 0ifh0; 1i, fh1; 0ifh1; 1i are parallel beause the original linesare so. Thus the square with verties h0; 0i; h1; 0i; h0; 1i; h1; 1i is taken to the parallelogramwith verties fh0; 0i; fh1; 0i; fh0; 1i; fh1; 1i. The latter parallelogram is indeed a rhombus,beause its diagonals are orthogonal. This implies (ii).(ii) ) (i): We prove this as AMN [18, Thm.2.4.2℄.�t �t 0
Figure 21: World-view transformation in three spae-time dimensions, f. Figures 17 and 18.A large part of Thm.2.3.12 remains true in higher dimensions (i.e. for Basax(n) in plaeof Basax(2)), e.g., under a mild extra assumption114 on F, (i) and (iii) remain equivalent, f.Thm.2.9.4 on p.103 and Thm.3.6.16 on p.273 of AMN [18℄. We now generalize the kind oftransformations desribed in (ii) (of Thm.2.3.12) to arbitrary dimensions n � 2; we will allsuh transformations \rhombus transformations". Cf. Figures 21, 22.In two dimensions, the trae of an observer, as everything else, is in the plane of the time-axis and the �x-axis. In higher dimensions this is not so. Below we will single out a speialase in higher dimensions that resembles the 2-dimensional ase, and we will all it \standardon�guration".Notation 2.3.151. For every i 2 n, 1i 2 nF denotes the unit vetor pointing in diretion of the i 'thoordinate axis �xi, that is, 1i def= h 0; : : : ; 0| {z }i ; 1; 0; : : : ; 0| {z }(n�i�1) i :Usually, we will write1t; 1x; 1y; 1z for 10; 11; 12; 13, respetively.2. Let j � n. We say that P is a j-dimensional plane iff there is a j-dimensional subspae115W of nF and a vetor p 2 nF suh that P = W+p, where W+p def= fw + p : w 2 W g.116114This extra assumption is that the square roots of positive elements exist in F (i.e. that F is Eulidean).115Let us reall from the literature that by a subspae of the vetor spae nF we understand a subalgebra(in the universal algebrai sense, f. Conv.3.1.2) W � nF1 of the one-sorted vetor spae nF1. Further aone-sorted vetor spae W is j-dimensional iff there is a j-element minimal generator system G � W , i.e. GgeneratesW but no proper subset of G generatesW. (G generates W if no proper subalgebra of W ontainsG.)116We use the universal algebrai onvention that W denotes the algebra (vetor spae) and W denotes itsuniverse. (We also note that by a plane one understands a set of form W + p, where W is 2-dimensional.)
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Preparation for drawing 3-dimensional fmk.

�t

�t �t0
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�y = �y0
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�x�x0
�t �t0 �x�x0�y = �y0 ~vm(k)
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Figure 22: 3-dimensional world-view transformation fmk in \standard" on�guration, f. Fig-ures 16, 18. For the notion of standard on�guration f. Def.2.3.16 and Figures 23, 24.



2.3 WORLD-VIEW TRANSFORMATION 39By a plane we understand a 2-dimensional plane.By a hyper-plane we understand an n� 1-dimensional plane.3. Let `1; `2 2 Eul.(i) We say that `1 and `2 are in the same plane if there is a 2-dimensional plane P suhthat `1; `2 � P .117(ii) If there is a unique 2{dimensional plane P suh that `1; `2 � P , we denote thisunique P by Plane(`1; `2) :E.g. Plane(�t; �x) = F � F � n�2f0g andPlane(�t; �y) = F � f0g � F � n�3f0g.(iii) We say that `1 and `2 are parallel , in symbols `1 k `2, iff `1 and `2 are in the sameplane and `1 \ `2 = ; or `1 = `2.(iv) Whenever we write ` k `0 and we do not indiate what kinds of objets ` and `0 are,then the symbol ` k `0 abbreviates the formula (` k `0 and `; `0 2 Eul).(This will beslightly di�erent in the geometry hapter, x4.) �We are ready to de�ne standard on�guration. We will write about the intuitive meaningof standard on�guration after the de�nition.De�nition 2.3.16 (Standard on�guration)(i) Let M be a frame model. Let m; k 2 Obs. We say that m and k are in standardon�guration iffmk[Plane(�t; �x)℄ = Plane(�t; �x) and (81 < i 2 n)(90 < � 2 F)fmk(1i) = � � 1i:(ii) We say that m and k are in strit standard on�guration if in addition to the above wehave fmk(1x)x > 0.See Figures 23, 24. Cf. also Figure 22. �
�y �y 0�x �x 0~vm(k)Figure 23: Standard on�guration. Here �x and �y are spae axes of m while �x 0 and �y 0 are spaeaxes of k. The spatial oordinate system f�x 0; �t 0g of k is moving relative to that of m.The next proposition says that m and k are in standard on�guration i� they meet at �0,they see eah other moving in diretion 1x (forwards or bakwards), and they see eah other'sunit-vetors other than �t; �x as perhaps shrinking or growing but pointing in the same diretion.117The standard geometry literature uses the expression \`1 and `2 are oplanar" for this.



40 2 SPECIAL RELATIVITYPROPOSITION 2.3.17 Assume Ax1�Ax5. Then m and k are in standard on�gurationi� (i)-(iv) below hold.(i) fmk(�0) = �0(ii) trm(k); trk(m) � Plane(�t; �x)(iii) If vm(k) = 0, fmk[�x℄ � Plane(�t; �x)(iv) Let 1 < i 2 n. Then fmk(0; : : : ; 0| {z }i ; 1; 0; : : : ; 0) = h0; : : : ; 0| {z }i ; �; 0; : : : ; 0i for some 0 < � 2 F.
We note that Ax3 and Ax5 in the above Proposition 2.3.17 an be replaed with theirmuh weaker forms Ax30 and Ax(5nop)�+ i.e. with (8k 2 Obs)[trm(k) = ; or trm(k) 2 G℄and with (9 > 0)(8`)[ang2(`) <  ) (9k 2 Obs)` = trm(k)℄ respetively, where the axiomAx30 is de�ned in x3 and Ax(5nop)�+ is de�ned in AMN [18, Chapter 5, p.761℄, see the listof axioms. Thus in later parts when we deal with weaker axiom systems, (i)-(iv) in Proposition2.3.17 will still give an equivalent de�nition of standard on�gurations (beause the weakeraxioms that we mentioned will be inluded in all our weak axiom systems).We note that being in standard on�guration is a symmetri relation, i.e. if m and k are instandard on�guration, k and m are also in standard on�guration. Very often it simpli�es thedisussion if we assume that m and k are in standard on�guration. (Sometimes, in intuitivedisussions we may assume that m and k are in standard on�guration without expliitlymentioning this.)The reader is invited to ontemplate Figures 17{22. They all represent ases of a naturalkind of transformations f : nF �! nF whih we will all rhombus transformations, theirset will be denoted by Rhomb, f. Def.2.3.18 below. They are generalizations of the kind offuntions ourring in Thm.2.3.12(ii); they will be strongly related to what we will all Lorentztransformations in standard on�guration, f. Thm.2.9.7 on p.104.Now we turn to a ommon generalization of the transformations illustrated in Figures 17{22.De�nition 2.3.18 (Rhombus transformation, Rhomb)Assume F is an ordered �eld and n � 2.By a rhombus transformation (of nF)118 we understand a bijetive linear transformation f :nF �! nF of the vetor spae nF satisfying (i)-(iii) below.(i) f(1t) and f(1x) are both in Plane(�t; �x) and are mirror images of eah other w.r.t. aphoton-line ` with �0 2 ` � Plane(�t; �x).119(ii) (81 < i 2 n) (f(1i) = � � 1i , for some 0 < � 2 F).120118Oasionally we mention this symbol nF. Sine F is an algebrai struture, so is its Cartesian power nF(whih happens to be a partially ordered ring). However, in this work, we think of nF as a partially orderedvetor spae hnF;�i where the partial ordering � of nF is indued by �F of F in the usual, \Cartesian power"style. (In partiular, the oordinate axes like �t are linearly ordered by this partial order � of nF.)119This mirror image part means that if f(1t) = hp0; p1; 0; : : : ; 0i then eitherf(1x) = hp1; p0; 0; : : : ; 0i or f(1x) = h�p1;�p0; 0; : : : ; 0i.120For ompleteness we note that more on the hoie of � an be found in xx 3.2, 3.5 of AMN [18℄. However,we emphasize that the above de�nition makes sense (i.e. is omplete) without any further disussion of thehoie of �.
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�y �x �x 0�y 0
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Standard on�guration

A nonstandard on�guration, whih in \animated" form is drawn below.The piture shows a spaeship ying in the indiated \nonstandard" diretion.~v
Figure 24: A standard, and a nonstandard on�guration.



42 2 SPECIAL RELATIVITY(iii) f preserves the set of photon-lines, i.e. (8` 2 PhtEul) f[`℄ 2 PhtEul.Condition (iii) is needed only if n > 2. The role of (iii) is to regulate the hoie of � in (ii).Rhomb = Rhomb(n;F) denotes the set of rhombus transformations of nF. �We note that rhombus transformations will play a entral role in proving that Basax(n)is onsistent, f. x2.4 and AMN [18, x3.5℄.Remark 2.3.19 Assume that square roots of positive elements of F exist, that is (80 < x 2F)(9y 2 F) x = y2. Assume n > 2. In hapter 3 of AMN [18℄ we see that121 for any slow-line` with �0 2 ` � Plane(�t; �x) there is a rhombus transformation taking �t to `. The idea will bethat �rst we hoose f(1t) and f(1x) so that they are mirror-images of eah other like in (i) ofDef.2.3.18, and f(1t) is on `. Plane(�t; �xi) is the plane determined by �t and �xi in an analogousway as Plane(�t; �x) was de�ned. Then for every i 2 n, i > 1 there is a unique � making (ii) (ofDef.2.3.18) true so that photon-lines in Plane(�t; �xi) are mapped to photon-lines. These now �xour linear transformation f. Finally, we have to hek that (iii) of Def.2.3.18 is satis�ed, i.e.that every photon-line is mapped (by f) to a photon-line, and not only those in Plane(�t; �xi).�We note that if for observers m and k we have fkm 2 Rhomb, m and k are in standardon�guration.In x2.9 we will reall from the literature the so-alled Lorentz transformations. A spe-ial ase of the latter will be alled Lorentz transformations in standard on�guration. Theelements of the above introdued Rhomb will turn out to be generalizations of Lorentz trans-formations in standard on�guration, f. Thm.2.9.7 on p.104. At this point we would like tosuggest that the reader go through Figures 17{22 and ompare them with the de�nition ofRhomb.Connetions between the world-view transformations fmk and Lorentz transformations willbe disussed in x2.9. It will turn out that for establishing these onnetions it is enough toassume Basax. Roughly speaking, these onnetions will say that every fmk is a ompositionof a Lorentz transformation, an \expansion", and a map indued by a �eld automorphism.* * *Now we turn to listing some (logial) properties of Basax as a �rst-order theory.Aording to our Convention 2.2.1(ii), Basax(2) denotes Basax in the 2-dimensional ase.Next, in setion 2.4, we will see that Basax(2) is onsistent , that is, there exist frame modelssatisfyingBasax(2). In AMN [18, setions 3.2, 3.5℄ we see thatBasax(3) is also onsistent, andthat generally, Basax(n) is onsistent for all n � 3 (f. AMN [18, De�nition 3.5.5, Thm.3.5.6℄).The next two properties \ount as logial" in the sense that the above property (onsis-teny) onerns the existene of models while the next two properties onern existene ofspeial kinds of models (namely, models with faster than light observers, and models withspeial ordered �eld reduts).We will see, in setion 2.4, that there are models of Basax(2) in whih there are observersmoving faster than light , while if n > 2 then there are no suh models of Basax(n) (i.e.121Cf. x3.2 of AMN [18℄, f. also Lemma 3.8.46 of AMN [18℄.



2.3 WORLD-VIEW TRANSFORMATION 43for n > 2, Basax(n) j= (8m; k 2 Obs)vm(k) < 1, see Thm.3.2.13 (p.118), while Basax(2) 6j=(8m; k 2 Obs)vm(k) < 1).We will see that every linearly ordered �eld is the ordered �eld redut of some model ofBasax(2), while the ordered �eld reduts of Basax(3) are exatly the Eulidean ordered �elds(i.e. those in whih square roots of positive elements exist). For n > 3, we do not know exatlywhih ordered �elds our as ordered �eld reduts of Basax(n) models, but we know that allEulidean ordered �elds do our.An axiom system Th is alled independent if no axiom of Th follows from the rest of Th,i.e. if Th n fAxg 6j= Ax for all Ax 2 Th. Basax(n) is independent for every n > 1.122 Weomit the proof of this, but f. [16℄. To make this independene statement about Basax preisewe have to make the formulation of Ax5 a little-bit more areful. Namely, we have to replaethe subformula ang2(`) < 1 with the formula (` 2 Eul ^ ang2(`) < 1); similarly for thesubformula ang2(`) = 1.We now list some further logial properties of Basax.123 We already stated that Basaxis onsistent and independent. We lassify the models of Basax, and we see that there areontinuum many non-elementarily equivalent models of Basax (suh that they have the sameordered �eld redut F), f. Thm.3.8.18 of AMN [18℄. Hene, Basax is not omplete (even if weadd the theory Th(F), for any hoie of F); Basax is non-ategorial in any ardinality even ifwe �x the redut F (it has non-isomorphi models [with a ommon ordered �eld redut℄ of thesame ardinality, for eah in�nite ardinality), f. Thm.3.8.18 of AMN [18℄. We prove that thetheory generated by Basax, i.e. the set of �rst-order onsequenes of Basax, is undeidable f.Chapter 7 of AMN [19℄. This also proves that Basax is not omplete (hene not ategorialin any ardinality, sine its models are in�nite), beause Basax is �nite. We de�ne somenatural axioms, all them Axnob 124 and Axisb and we show that Basax [ fAxnobg isomplete125 (f. x3.8 of AMN [18℄), while Basax [ fAxisbg is hereditarily undeidable, thusno �nite extension of it an be omplete, f. AMN [16℄ and Chapter 7 of a future edition [19℄ ofAMN [18℄.126 Moreover, the onlusion of G�odel's seond inompleteness theorem also appliesto Basax [ fAxisbg.De�nability issues related to Basax and its variants will be disussed in x4.6. In moredetail, in x4.5 we will see that Basax admits a nie \duality theory" ating between models ofBasax and ertain geometries.127 This duality theory involves, among others, \representationtheorems" (in the Tarskian sense128). So in a sense Basax admits a kind of \geometrization"129.Studying this duality theory will lead us (in x4.6) to de�nability properties of Basax (and itsgeometri ounterpart) in the sense of the hapter of model theory alled de�nability theory .122Let Basax0 be the axiom system obtained from Basax by replaing Ax2 and Ax3 with a single axiom(8h 2 Obs [ Ph) trm(h) 2 G. Then Basax0(2) is independent, Basax0(3) is not independent, and we donot know whether Basax0(n) is independent for n > 3. These properties of Basax0 are proved in [16℄, takentogether with Thm.3.6.17 of AMN [18℄.123For the notions from logi used below (like ategorial theory, omplete theory, theory generated by a setof axioms et.) we refer the reader to x3.8 of AMN [18℄ and to AMN [16℄.124To be preise, we note that Axnob is only a shema of axioms (as opposed to being a single axiom).125and also ategorial in some natural sense made preise in x3.8 of AMN [18℄126The name Axnob refers to the fat that this axiom says, among others, that there are no aeleratedbodies. On the other hand Axisb refers to the fat that the key part of this axiom says that there do existaelerated bodies.127For this we �rst add a few natural axioms to Basax, and then we �nd that this duality theory worksalready for \fragments" and variants of Basax.128bringing together Tarski's approah to geometry and his approah to algebrai logi129This is analogous with \algebraization" of logis in Tarskian algebrai logi.
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Formulas independentfrom Basax.Axnob Axisb

The Boolean algebra of our frame languageFALSE
TRUEBasaxtheorems

negationsof Basaxtheorems
Summing it up:� Basax is independent.130� Basax is onsistent (f. x2.4 and AMN [18, xx 3.2, 3.5℄).� Basax has many non-elementarily equivalent models (even if we add to it Th(R)), f.Thm.3.8.18 of AMN [18℄.� We give a lassi�ation of the models of Basax in x3.6 of AMN [18℄.� The �rst-order theory T(Basax) generated by Basax is undeidable hene not omplete,f. AMN [16℄ and Chapter 7 of a future edition [19℄ of AMN [18℄.� Adding an extra axiom-shema an make T(Basax) omplete hene deidable, sineBasax is �nite, f. x3.8 of AMN [18℄ and AMN [16℄.� Adding a di�erent extra axiom an make T(Basax) hereditarily undeidable hene hered-itarily not omplete. The onlusions of G�odel's inompleteness theorems apply to theso extended version of Basax. Cf. AMN [16℄ and Chapter 7 of AMN [19℄.� Adding an extra axiom-shema makes Basax equivalent with the standard, \textbookversion" of \Einsteinian" speial relativity, f. xx 2.8, 2.9, 3, 4.2, 4.5 and AMN [18, x3.8℄.� Other distinguished versions like the Reihenbah-Gr�unbaum version of relativity an(and will) be formalized in �rst-order logi (and ompared with the Einsteinian version)by appropriately modifying Basax (f. x3 and x4.5 herein and AMN [18, xx3.4.2, 4.4℄ andthe setion [on \Reihenbahian relativity"℄ of Chapter 4 (x4.5) of AMN [18℄). Cf. alsoSzab�o [244, 243℄ in onnetion with these versions of relativity theory, whih the presentauthor extensively studied in AMN [18, x4.5℄ by the methods of the present work.The above 9 items about Basax are proved in AMN [16℄ and [18℄ (f. e.g. x3.8 therein).On p.100 we introdue an extension Sperel of Basax. It would be interesting to hek ifall the 9 items above remain true for Sperel in plae of Basax. (Items 2,3,5-8 remain truefor Sperel. We did not yet found the time for thinking about the rest.)130However, Basax(n) +Ax(p ) is not independent for n > 2, while Basax(2) +Ax(p ) is independent.Formal statement and proof is in AMN [16℄. Cf. also footnote 122 on p.43.



2.4 MODELS IN TWO DIMENSIONS 452.4 Models for Basax in two dimensionsIn this setion we show that Basax(2) is onsistent, via de�ning a frame model M and showingthat M j= Basax(2). We will also give a model of Basax(2), in whih there are faster thanlight observers.First, let us have some intuitive onsiderations on why Basax(2) is onsistent. (Later wewill give a formal proof.) The main reason why Basax(2) is onsistent is the following:for eah slow-line ` there is a photon-preserving bijetive ollineation taking�t to `.(?)The reader is invited to study Figures 17{22 (pp. 33{38) to onvine himself that (?) is true,and then use (?) the following way to show that Basax(2) is onsistent.(I) Assume we are given a \partial model"M = h(B; fm0g;Ph; Ib);F;G; 2;W i ;whih satis�es all the axioms in Basax exept for the observer-part of Ax5. Let us use thenotation Ax5 = Ax5(Obs) ^ Ax5(Ph). ThenM j= (Ax1{Ax4;Ax5(Ph);Ax6;AxE) :Assume further F = R, and that(8` 2 G)(9b 2 Ib) ` = trm0(b) :Construting suh a partial model is easy, and is left to the reader.(II) Next, we would like to add new observers to M so that eventually Ax5(Obs) wouldbeome true without destroying validity of the other axioms (hene Basax would beometrue).Clearly, in M we do have a world-view funtion wm0 : 2R �! P(B), to begin with. Fromthis world-view funtion we will onstrut world-views for new observers. Let us pik randomlyk 2 Ib suh that vm0(k) 6= 1. Now, we would like to raise k to the level of being an observer.Assume m0 sees this:
�x

�t kph1 ph2
Our task is to hoose the world-view of k suh that, among other things, AxE remains valid,i.e. that k observes all photons moving with speed 1. Following Figures 17{22, let us hoosek's world-view like this (the �gure shows k's oordinate system as seen by observer m0):
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�x1x0 2x01t02t0

�t 0
�x 0m0 kph2 ph1

where �t 0 and �x 0 are the time-axis and �x-axis, respetively, of k. We note that if k moves fasterthan light relative to m0 (i.e. if vm0(k) > 1) then k's oordinate system (as seen by m0) is likein the following piture: �t
�x1t0 2t01x02x0 �x 0 �t 0m0

kph2 ph1�t �xk
Now learly, k will observe photon ph1 moving with speed 1 and the same applies to ph2. Thenone an hek that for these two partiular observers m0; k our axiom AxE holds, i.e. both kand m0 will observe all photons moving with speed 1. One an hek that for the extendedmodel M0 := h(B; fm0; kg;Ph; Ib);F;G; 2;W+ iwe have Ax1{Ax4, Ax5(Ph), Ax6, AxE still valid. Here, W + denotes the extension of Wwith the world-view funtion wk of the new observer k.To omplete the \intuitive" proof, one does the above extension not only with a singlek 2 Ib but with the lass K = f k 2 Ib : vm0(k) 6= 1 g of all potential andidates for being anobserver. This will make Ax5(Obs) true. We note that the ondition �0 2 trm(k) was notneeded in our onstrution of wk.In passing we note that in the above onstruted model faster than light observers exist. Itis easy to modify the onstrution in suh a way that faster than light observers will not existin the modi�ed model. This modi�ation begins with adding to statement (?) above that thephoton-preserving bijetive ollineation in question takes slow-lines to slow-lines. The rest ofthe modi�ations are straightforward, we leave them to the reader.END of Intuitive Idea of Proof.Let us turn to giving a detailed onstrution.Let P be a funtion that with eah ` 2 Eul(2;R) assoiates a pair of two distint pointslying on `. We will denote P (`) by ho`; t`i. To eah suh funtion P , we will de�ne two framemodels, MP0 and MP1 . These two frame models will be very similar in spirit, but in MP0 wehave as few observers as possible, while in MP1 there will be an observer on eah line (withangle 6= 1, f. Prop.2.3.3(iii)).



2.4 MODELS IN TWO DIMENSIONS 47First we de�ne M def= MP0 def= h(B; Obs;Ph; Ib);F;G; 2;W i, whereF def= R, the ordered �eld of real numbers,G def= Eul(2;R), the set of straight lines over R,Obs def= f ` 2 Eul(2;R) : ang2(`) < 1 g,Ph def= f ` 2 Eul(2;R) : ang2(`) = 1 g,B def= Ib def= Obs [ Ph = f ` 2 Eul(2;R) : ang2(`) � 1 g.By the above, Ax1 and Ax2 are true in M. It remains to de�ne W. Letm0 def= �t def= R� f0g:First we will de�ne wm0 : 2R �! P(B) and fkm0 : 2R �! 2R for all k 2 Eul(2;R); ang2(k) 6=1; k 6= m0. To de�ne wm0 , let p 2 2R. Thenwm0(p) def= f ` 2 B : p 2 ` g :By this we have that for all ` 2 B, trm0(`) = `;in partiular, trm0(m0) = m0. Thus Ax3;Ax4;Ax5;AxE are satis�ed when m is replaed inthem by m0. See Figure 25.
m p

Figure 25: wm0(p) in MP0 .Let k 2 Eul(2;R); k 6= m0; ang2(k) 6= 1 be arbitrary. We are going to de�ne fkm0 . In thefollowing, we will write f for fkm0.



48 2 SPECIAL RELATIVITYFor any two distint points p; q 2 nF, pq denotes the Eulidean line ontaining both p andq. Sometimes we write (x; y) for the ordered pair hx; yi. We apologize to the reader for thisinonsisteny.Reall that two distint points, ok and tk are given to us by the parameter P of the modelM def= MP0 . First we de�ne the point sk as the mirror image of tk w.r.t. the line `k suh thatok 2 `k and `k is parallel to the line (0; 0)(1; 1). See Figure 26.t tkok sk
x

t
o1 o0

tkt1 � o1
t1 � o1sk

x
Figure 26: The de�nition of the point sk.In more detail: Let ok = (o0; o1); tk = (t0; t1). We de�nesk def= (o0 + (t1 � o1); o1 + (t0 � o0)):By ang2(k) 6= 1 we have that sk 6= tk, moreover, sk 6= a � tk for all a 2 R.We will de�ne f def= fkm0 : 2R �! 2R to be the aÆne transformation131 that takes(0; 0); (1; 0); (0; 1) to ok; tk; sk respetively. See Figure 27.In more detail, fkm0(a; d) def= a � (tk � ok) + d � (sk � ok) + ok:(Here we used that tk; sk; ok are also vetors.) See Figure 28.Intuitively, take a point p = (a; d) in 2R, and let fkm0(a; d) = (a0; d0). Then a0; d0 arethe oordinates of p in the oordinate system with basis f(1; 0); (0; 1)g, while a; d are theoordinates of p in the oordinate system with basis f(tk � ok); (sk � ok)g, see Figure 28.By this, fkm0 is de�ned for all k 2 Eul(2;R); k 6= m0; ang2(k) 6= 1. We now de�ne131For the de�nition of an aÆne transformation see x2.9. We will not need the de�nition here.
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(0; 1)
(1; 0)

tr k(k) fkm0 ok
tk sk

m0k

Figure 27: The world-view transformation fkm0 .

a0 a
dtk sk(1; 0) (0; 1) d0ok

Figure 28: The world-view transformation fkm0 .



50 2 SPECIAL RELATIVITYwk def= fkm0 Æ wm0 for all k 2 Obs n fm0g, andW def= f hm; p; bi : m 2 Obs; b 2 wm(p) g :By this, the model M def= MP0 def= hB; : : : ;W i has been de�ned. MP0 is a frame model.THEOREM 2.4.1 MP0 j= Basax(2).Now we de�ne the other model MP1 . The de�nition of MP1 is ompletely analogous to thatof MP0 , the only di�erene is that we allow all lines (with angle 6= 1) to be observers. In detail:letObs1 def= f ` 2 Eul(2;R) : ang2(`) 6= 1 g,B1 def= Ib1 def= Obs1 [ Ph = Eul(2;R).Then m0 2 Obs � Obs1. We de�new'm0(p) def= f ` 2 B1 : p 2 ` g,w' k def= fkm0 Æ w'm0 ,W 0 def= f hm; p; bi : b 2 w'm(p) g,MP1 def= h(B1; Obs1;Ph1; Ib1);R;G; 2;W 0i.THEOREM 2.4.2 MP1 j= Basax(2).COROLLARY 2.4.3 Basax(2) 6j= \there are no faster than light observers".132In Figure 29, M1;M2;M3 represent possible models of Basax(2). There �t; �t 0; �t 00 are thetime axes of observers k; k0; k00 2 Obs.Consider e.g. the piture representing M1 (�rst piture of Figure 29). What the piturereally represents is the world-view of a partiular observer k and also how k sees k0; k00 et. Inthe piture �t 0; �t 00 represent the life-lines of observers k0; k00. Further 1t0 = fk0k(1t), 1t00 = fk00k(1t)and 1x0 = fk0k(1x) et. Intuitively, 1t0 is the time-unit vetor of k0 as seen by k, while 1x0 is thex-unit vetor of k0 as seen by k. We do not laim that the world-view of observer k0 wouldbe similar. Atually it is not. The only thing we laim is that there is an observer k of M1whose world-view is as represented in the piture. The same onvention applies to the pituresrepresenting M2 and M3.Figure 29 represents possible hoies for the parameter P of the model MP introdued onp.46. Reall that ho`; t`i = P (`). In Figure 29 ` 2 f�t; �t 0; �t 00; et.g. In the �gure we hoseo` := �0, further t` := 1t et.132In Thm.3.2.13 (p.118) we will see that this orollary does not generalize to n > 2.
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�t
�t
�t

�x
�x

�x

M1 1t 1t0 1t00 1x001x01x
�t 0 �t 00 �x 00�x 0

M2 1t 1t0 1t00 1x001x01x
�t 0 �t 00 �x 00�x 0

M3
1t 1t0 1t00 1x001x01x

�t 0 �t 00 �x 00�x 0
Figure 29: Possible models of Basax. Possible hoies for the parameter P (on p.46): o` = �0and t` are represented in the piture, for slow-lines ` going through �0.



52 2 SPECIAL RELATIVITYLet us turn now to the ideas we wanted to represent in these pitures.In the third piture, the urves onneting 1t; 1t0 ; 1t00 et. are hyperbolas. In x2.8 we willintrodue a symmetry axiom alled Ax(symm). We note that M3 j= Ax(symm), whileMi 6j= Ax(symm) for i < 3. Roughly speaking Ax(symm) says that \I see you the sameway as you see me". Thus in M3 all observers see the other observers' unit vetors as m sees it(while as we mentioned, in M1 and in M2 this is not so). We also note that M3 orresponds tothe usual (or lassially standard) so-alled Minkowskian models of relativity, while M1;M2are \non-Minkowskian" (for the de�nition of a Minkowskian model see De�nition 3.8.42 onp.331 of AMN [18℄).A ommon feature of M1{M3 in Figure 29 is that, for m �xed,vm(k) 7�! jfmk(1t)� fmk(�0)jis (i) a funtion (of vm(k) 2 F) and this funtion is (ii) ontinuous. These properties willre-emerge as potential axioms in a future edition [19℄ of AMN [18℄. Although these propertiesdo not follow from Basax, we will not put too muh emphasis on studying models whih donot satisfy (i) or (ii). Analogous properties show up in x4.4 of AMN [18℄ as potential axioms.We will return to the pitures in Figure 29 in x4.6. A omplete lassi�ation of the isomor-phism lasses of Basax(2) models is given in Madar�asz [162℄. It turns out that there are only�nitely many non-isomorphi models under �xing some natural parameters like F, ardinalityof the model et.Minkowski-irles, Minkowski-spheres.Assume n = 2. The drawings in Figure 29 are alled Minkowski-irles.133 They are oftenuseful in representing models by simple drawings.De�nition 2.4.4 Minkowski-sphere Let n � 2, M be a frame model, and m 2 Obs. Thenthe Minkowski-sphere MS around m is de�ned asMS def= MS(M; m) def= fp : (9k 2 Obs)(9i < n)(fmk(�0) = �0 and p 2 ffmk[f1i;�1ig℄)g: �For very nie models (e.g. the ones studied in x2.8) MS forms a kind of surfae suh thatone an imagine that this surfae is a boundary134 of a onneted region like the inside of a ball(or a ube, or something like these). This is indeed the ase with the three models in Figure29 (p.51). In two dimensions, instead of \spheres" we speak of Minkowski-irles. What wesaid above about the Minkowski-spheres in n dimensions, sounds like the following for n = 2.In nie 2-dimensional models, MS as de�ned above looks like a nie urve (like a irle, or asquare et) suh that one an imagine that MS is the boundary of a onneted subset of theplane like the irle is the boundary of a \dis". This is the ase in all three drawings in Figure29. Classially, in standard relativity theory, only the �gure assoiated with M3 was alled133Instead of Minkowski-irles, we should all these sets of points relativisti irles beause only a smallfration of the models of our relativity theories (studied in this work) are Minkowski models as de�ned inAMN [18℄ p.331 (Def.3.8.42) and p.726 (Def.5.0.65). This distintion in terminology (\Minkowskian" versus\relativisti") is arried through in Chapter 4 herein systematially, f. e.g. Minkowskian geometry versusrelativisti geometry (p.188, 146), Minkowskian orthogonality versus relativisti orthogonality?r, Minkowskiandistane g� versus relativisti distane g (p.145) et. All the same, for reasons of tradition, we make an exeptionhere in our terminology.134if we disregard the points on the life-lines of photons rossing the origin.



2.4 MODELS IN TWO DIMENSIONS 53a Minkowski-irle. (The reason for this is that only M3 satis�es the symmetry axiom to beintrodued in x2.8.) However, here we generalize this onept to arbitrary frame models. Aswe said, in nie models, MS(M; m) looks like a urve surrounding (or forming the boundaryof) some onneted area. However, in many less \well behaved" models MS(M; m) is just aset of points and does not even form a urve. Later we will introdue an axiom alled Ax(k).Typially, if Ax(k) fails, then MS tends to beome more like a random set of points than aurve. With this, we stop the disussion of Minkowski-spheres and Minkowski-irles, but fromtime to time they will serve us as pleasant devies for visualizing ertain nie, well behavedmodels.In passing we note that in the ase of n = 2, it is more often the ase thatMS(M; m) is like a urve surrounding a well de�ned area, while if n > 2 then this ismore rare.135 We base this latter statement on the following. Basially, if n > 2, and(8m 2 Obs)[MS(M; m) is a surfae surrounding a onneted and well de�ned area℄, then theextra axiom Ax(symm) to be de�ned later is true in our model M, and then the Minkowski-sphere beomes pratially the same what is alled suh in the lassial literature (f. e.g.\Minkowski-metri" in Friedman [91℄). On the other hand, for n = 2 this is far from beingtrue as is illustrated e.g. by Figure 29.

135We mean this with \surfae" in plae of \urve", of ourse.



54 2 SPECIAL RELATIVITY2.5 The three \paradigmati" theorems of relativityWhat the average layperson usually knows about relativity is that(I) moving loks slow down,(II) moving spaeships shrink (f. Figure 30), and(III) moving loks get out of synhronism, i.e. the lok in the nose of the spaeship is late(shows less time) when ompared with the lok in the rear, see Figure 31.

Figure 30: Moving loks slow down and moving spaeships shrink.~vm(k)
Figure 31: Moving loks get out of synhronism.In all of (I){(III) above the spaeship is represented by an observer k, \we" who look at thespaeship are represented by observer m, and all of (I){(III) are understood in the world-viewof m. Below we formalize (I){(III) as our \paradigmati" theorems.136 We will prove them fromBasax. In Chapter 4 of AMN [18℄ when investigating weaker (or subtler) versions of Basax(e.g. the Reihenbahian version with non-standard simultaneities) we systematially re-visitour paradigmati theorems to see if they are still true. It turns out that these paradigmatitheorems an be proved from surprisingly weak axioms. Cf. Chapter 4 of AMN [18℄, andespeially setion x4.8 of AMN [18℄ whih is devoted to paradigmati e�ets. In x2.8 we will136In passing we note that the oÆial names for e�ets (I) and (II) are \time dilation" and \length ontration"f. d'Inverno [73, xx3.3, 3.4℄.



2.5 PARADIGMATIC THEOREMS OF RELATIVITY 55see that our paradigmati theorems (I)-(III) hold in a stronger and simpler form in the strongeraxiom system Basax +Ax(symm).Our next axiom, Ax(p ), is of a tehnial nature. Namely, sometimes we will need toassume that square roots of positive (greater than 0) elements exist in the ordered �eld redutF of the frame model M we are speaking about.Ax(p ) (80 < x 2 F)(9y 2 F) y2 = x.If F j= Ax(p ) then we say that F is Eulidean. Clearly, R j= Ax(p ). For any 0 < x 2 F,px denotes that positive y for whih y2 = x. For brevity, by a Eulidean �eld we mean aEulidean ordered �eld.CONVENTION 2.5.1 1. Throughout this setion we assume ObsM 6= ;.2. Let Th be a set of formulas of our frame language. Let Ax1, Ax2 be further formulas.Then Th+Ax1 +Ax2 denotes Th [ fAx1;Ax2g:Similar onvention applies to other ombinations like Th + Ax1. (This notational on-vention is taken from axiomati set theory.) �The intuitive meaning of Thm.2.5.2 below is the following. Item (i) of the theorem statesthat observer m thinks that k's loks are late at time-instane 1. As a generalization of this,(ii) says the same for many time instanes � 2 F namely, for those �'s whih are not \in�nitelybig" or \in�nitely small".THEOREM 2.5.2 (Cloks slow down.)Assume Basax +Ax(p ). Then (i){(iii) below hold.(i) There are observers m and k suh that m \thinks" that k's loks run slow; formally:(9m; k 2 Obs) jfkm(1t) t � fkm(�0) tj > 1 ;see Figure 32. Moreover;(ii) There are observers m and k suh that m \thinks" at eah \�nite" time instane � thatk's loks run slow; formally:(9m; k 2 Obs)(8� 2 F) �(90 < j 2 !) 1=j < j�j < j ) jfkm(� � 1t) t � fkm(�0) tj > j�j�:137(iii) Assume m; k 2 Obs and 0 6= vm(k) < 1. Then either m thinks that k's loks run slowor k thinks that m's loks run slow (f. Figure 33); formally:(9m0; k0 2 fm; kg) jfk0m0(1t) t � fk0m0(�0) tj > 1:
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1 fkm(�0) fkm(1t)

m �t
�x

km k
m's loks look like this:k's loks look like this:

�0
Figure 32: m thinks that k's loks run slow.On the proof: The main idea of the proof of (iii) is illustrated in Figure 33. (i) is a orollaryof (iii). (ii) an be proved from Thm.2.5.3(i) below as follows:By Thm.2.5.3(i) below, there are m; k 2 Obs suh thatjfkm(1t) t � fkm(�0) tj > 2 :(2)We have that every automorphism of F is order preserving, i.e. every automorphism of F is anautomorphism of F sine F is Eulidean. So, by Prop.3.1.4 (p.162) of AMN [18℄, we have that(8� 2 F) �jfkm(� � 1t) t � fkm(�0) tj = '(j�j) � jfkm(1t) t � fkm(�0) tj�;(3) for some automorphism ' of F.For every automorphism ' of F we have(8� 2 F) �(90 < j 2 !) 1j < j�j < j ) '(j�j) > j�j2 � ;(4)beause of the following. Let � 2 F suh that (9j 2 !) 1=j < j�j < j. Between j�j=2 andj�j there is a rational number, say x. Let suh an x be �xed. Every automorphism (of F)is the identity funtion on the rational numbers. Therefore by j�j=2 < x < j�j, we havej�j=2 < x = '(x) < '(j�j). So (4) holds. Let � 2 F suh that there is 0 < j 2 ! with1=j < � < j. Thenjfkm(� � 1t) t � fkm(�0)j = '(j�j) � jfkm(1t) t � fkm(�0) tj by (3)> 2'(j�j) by (2)> j�j by (4).This ompletes the proof of (ii).137We note that for every ordered �eld the set ! of the natural numbers an be onsidered as a subset of theordered �eld, or in more areful wording ! is embeddable into the ordered �eld in a natural way. Further wenote that if F is Arhimedian (f. footnote 109 on p.35) then (ii) above is true in the following simpler form:(ii)' (9m; k 2 Obs)(8p 2 �t ) jfkm(p) t � fkm(�0) tj > jptj.An analogous remark applies to Thm.2.5.3(ii).
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m k

k's loks look like this:m's loks look like this:

diretion of simultaneities for k
diretion of simultaneities for m�x

�t

Figure 33: Assume that for m, k's loks do not run slow. Then k will think that m's loksrun slow.



58 2 SPECIAL RELATIVITYTHEOREM 2.5.3 (Cloks an run very slow.)Assume Basax +Ax(p ). Let % 2 ! be arbitrary.(i) There are observers m; k suh that m thinks that k's loks run more than %-times moreslowly than m's; formally:(9m; k 2 Obs) jfkm(1t) t � fkm(�0) tj > % :Moreover:(ii) (9m; k 2 Obs)(8� 2 F) �(90 < j 2 !) 1=j < j�j < j ) jfkm(� � 1t) t � fkm(�0) tj > % � j�j� :On the proof: We inlude Figure 34 as a hint for the idea of the proof of (i). (ii) followsfrom (i) similarly as item (ii) of Thm.2.5.2 did.
%%21 1

> %

Figure 34: Hint for the idea of proof of Thm.2.5.3(i).Let us turn to loks getting out of synhronism (\e�et" (III) on our \paradigmati" list).First we need some de�nitions.De�nition 2.5.4 Let M be a frame model. Events e; e1 2 P(B) are said to be simultaneousfor observer m 2 Obs iffe; e1 2 Rng(wm) ^ (8p 2 w�1m (e))(8q 2 w�1m (e1)) pt = qt : 138 �138To improve readability we write w�1m (e) instead of w�1m [feg℄, where m 2 Obs and e 2 P(B).



2.5 PARADIGMATIC THEOREMS OF RELATIVITY 59THEOREM 2.5.5 (Cloks get out of synhronism.)Assume Basax. Let m; k 2 Obs be suh that vm(k) 6= 0. Then (i) and (ii) below hold.(i) There are events e; e1 2 P(B) whih are simultaneous for m, but are not simultaneousfor k.(ii) Assume that k moves in diretion �x as seen by m, formally:trm(k) � Plane(�t; �x). Then(8p; q 2 nF) �(pt = qt ^ px 6= qx) ) fmk(p) t 6= fmk(q) t� ;f. Figure 35. I.e. if m thinks that e = wm(p) and e1 = wm(q) are simultaneous but theirx-oordinates are di�erent, then k will think that e and e1 are not simultaneous.Intuitively, let us imagine that k is traveling on a spaeship and is being observed bym. Then m will think that loks in the nose and the rear of k's spaeship are notsynhronous, f. Figures 31, 37. (They do not show the same time.)We note that Thm.2.5.5 an be re�ned in the style of Thm.2.5.7 below.m k m kp pq qpt = qt fmk(p) t 6= fmk(q) t

�t �t
�x �x

�y �yFigure 35: Events wm(p) and wm(q) are simultaneous for observer m, but they are not simul-taneous for observer k.THEOREM 2.5.6 (Cloks do not get out of synhronism in diretion orthogonalto movement.)From the point of view of synhronism, \nothing" happens in the spatial diretion orthogonalto the diretion of movement (f. Figure 36);139 formally: Assume Basax. Let m; k 2 Obs.Assume m sees that k does not move in diretion �y, i.e. (8p; q 2 trm(k)) py = qy . Then,(8p; q 2 nF) �(8i 2 n)(i 6= 2 ) pi = qi) ) fmk(p) t = fmk(q) t� .In partiular p; q 2 �y ) fmk(p) t = fmk(q) t .That is, simultaneous events observed by m as separated only in a diretion �y orthogonal tothe diretion of movement remain simultaneous for the moving observer k.
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in synhron. out of synhron.

~vm(k)

Figure 36: Cloks do not get out of synhronism orthogonal to movement. Imagine the littleloks glued to the hull of the spaeship.Let us return to disussing the \out of synhronism" e�ets in Thm.2.5.5. Throughoutthe rest of this setion (in x2.5) Basax +Ax(p ) is assumed (unless otherwise spei�ed),therefore we do not indiate this.Let M be a frame model, and let m; k 2 Obs suh that trm(k) 2 Eul. Let us reall thatthe veloity of k as seen by m is denoted by ~vm(k), f. p.20, and it is a \spae vetor", i.e. anelement of n�1F.In onnetion with the next two theorems we note the following. Sine we assumed Basax,for every m; k 2 Obs, trm(k) an be onsidered as a funtion trm(k) : F �! n�1F, if vm(k) 6=1; therefore trm(k)(0) is well de�ned.140THEOREM 2.5.7 (The lok in the nose of the spaeship is late.)Let m; k; k1 2 Obs. Assume trk(k1) is parallel with �t,141 0 6= vm(k) < 1, and that time passesforwards for k as seen by m, formally: (fkm(1t) t � fkm(�0) t) > 0. Intuitively, k represents therear of the \spaeship", while k1 represents the nose of the \spaeship". Assume further thatthis \spaeship" is moving forwards as seen by m; 142 formally:�trm(k1)(0)� trm(k)(0)� = � � ~vm(k) for some positive � 2 F.(i) Then m thinks that the lok in the nose of the spaeship is late w.r.t. the lok in therear of the spaeship (see Figure 37); formally:(8p 2 trm(k))(8q 2 trm(k1)) �pt = qt ) fmk(p) t > fmk(q) t� :(ii) Let m; k; k1 2 Obs satisfy all the onditions of the present theorem. Assume further thatthe length of the \spaeship" as seen by k is 1. For simpliity we formalize this onditionas 1x 2 trk(k1). Then(8p 2 trm(k))(8q 2 trm(k1)) �pt = qt ) (fmk(p) t � fmk(q) t) < 1� :139More preisely, if two loks are separated only in a spatial diretion whih is orthogonal to the diretionof movement then they do not get out of synhronism.140Cf. Fat 2.2.4.141This means that k1 is in rest w.r.t. k, i.e. we use the relationship parallelism between lines in the sense ofEulidean geometry.142Intuitively, this means that m sees the spaeship moving in the diretion of its nose.



2.5 PARADIGMATIC THEOREMS OF RELATIVITY 61Intuitively, this says that assuming the length of the spaeship as seen by k is 1 then thedi�erene between the two lok readings (in the rear and in the nose) as seen by m isalways smaller than 1.(iii) For any � 2 F with 0 < � < 1, there are m; k; k1 satisfying all the onditions of thepresent theorem, inluding the ondition in (ii) saying that the length of the \spaeship"as seen by k is 1, suh that(8p 2 trm(k))(8q 2 trm(k1)) �pt = qt ) (fmk(p) t � fmk(q) t) > �� :Intuitively, the asynhronism between the two lok readings an get arbitrarily lose to1.Item (iii) of the above theorem desribes how muh \asynhronism" we an obtain as arelativisti e�et.
m �t

�x

k k1
diretion of simultaneities for k

spaeship of k as seen by m
Figure 37: Clok (of k) in the nose of the spaeship is late w.r.t. the lok in the rear, whenviewed by m. (The length of this spaeship is more than 1 as seen by k.)Next, we turn to disussing how meter-rods shrink, i.e. to paradigmati e�et (II).(Strangely enough, one has to represent meter-rods and their shrinking slightly di�erentlythan it was the ase with loks.)



62 2 SPECIAL RELATIVITYNotation 2.5.8 Assume F is Eulidean, i.e. that F j= Ax(p ). Let p 2 nF. Then jpj denotesthe Eulidean length of vetor p, i.e.jpj def= qp20 + p21 + : : :+ p2n�1 : �THEOREM 2.5.9 (Spaeships shrink.)There are observers m; k; k1 2 Obs with �0 2 trm(k), and with trk(k1) parallel to �t,143 suh thatfor p := trm(k1)(0) and q := trk(k1)(0), we have jpj < jqj.144The last statement jpj < jqj an be interpreted as saying that m thinks that the purely spatialdistane between observers k and k1 is shorter than it is observed by k, see Figure 38.Intuitively, if k represents the rear of the \spaeship" and k1 represents the nose of the\spaeship", then this spaeship is shorter for m than for k.
jqj = distane for k(between k and k1)

jpj = distane for m (between k and k1)

�t
�x�y

m k k1

Figure 38: Illustration for Thm.2.5.9.Remark 2.5.10 An improved version of Thm.2.5.9 ould be formulated analogously toThm.2.5.3 saying that meter-rods an get arbitrarily short (if they are parallel with the dire-tion of movement). �Remark 2.5.11 Analogously with Thm.2.5.6, we ould formulate a theorem saying thatmeter-rods orthogonal to the diretion of movement do not get shorter (at least not as aonsequene of relativisti e�ets). But for this we would need extra onditions formulated inx2.8 \A symmetry axiom". Cf. Item 2.8.12 (p.133). �143This means that k1 is in rest w.r.t. k, i.e. we use the relationship parallelism between lines in the sense ofEulidean geometry.144Here again jpj is the Eulidean length of p 2 n�1F.



2.5 PARADIGMATIC THEOREMS OF RELATIVITY 63Remark 2.5.12 Throughout the present remark we assume that the ordered �eld redut Fof our model M has no nontrivial automorphisms.145(i) Thm.2.5.9 above ould be interpreted and modi�ed intuitively as follows: There areobservers m and k suh that m sees k moving in diretion �x, and those meter-rods ofk whih are pointing in diretion �x as seen by m, are shorter when observed by m thanas observed by k. In short: m thinks that k's meter-rods pointing in diretion �x, asseen by m, shrink. We will use this intuitive language in the rest of the remark withoutformalizing it. The reader is invited to formalize it.(ii) Assume m sees k moving in diretion �x more slowly than light and with nonzero speed.(a) Let us onentrate on meter-rods pointing in diretion �x as seen by m.146 Let usall them x-meter-rods. Then either m will think that k's x-meter-rods shrink or kwill think that m's x-meter-rods shrink or both.147(b) Let us onentrate on meter-rods pointing in diretion �y as seen by m.148Let us all them y-meter-rods. Then if m thinks that k's y-meter-rods shrink, thenk will think that m's y-meter-rods grow.(iii) Let m; k 2 Obs. Assume vm(k) < 1. Then one of them thinks that all meter-rods of theother shrink or remain unhanged. Those meter-rods shrink the most whih point in thediretion of movement. Further, those an remain unhanged whih are orthogonal tothe diretion of movement.(iv) Let us return to loks getting out of synhronism in onnetion with item (iii), f.Theorems 2.5.5{2.5.7. Let m; k 2 Obs. Consider pairs of loks whih are synhronousfor k and the distane between two loks in a pair is 1 for k. Then that pair will get outof synhronism most the onneting line of whih is parallel to the diretion of motionof k (as seen by m). �The following theorem says that on a moving spaeship (i) either loks slow down or meterrods (pointing in the diretion of movement) shrink (or both, of ourse) and (ii) loks in therear and the nose of ship get out of synhronism.THEOREM 2.5.13 (Cloks slow down or meter rods shrink.) AssumeBasax +Ax(p ). Let m; k 2 Obs, 0 < vm(k) < 1. Then (i), (ii) below hold.(i) Either the loks of k run slow or meter rods of k parallel with ~vm(k) shrink (as seen bym).(ii) Cloks in the nose and rear of the ship of k get out of synhronism.Remark 2.5.14 If we omit the ondition Ax(p ) from Theorem 2.5.13 above, then the theo-rem remains basially true but the formulation gets more ompliated, f. e.g. the formulationof Theorem 2.5.7(iii). Further, in Theorem 2.5.13, Ax(p ) an be replaed by the weakerassumption that fmk is betweenness-preserving149. �145This assumption an be eliminated on the expense of restriting disussion to meter-rods of rational lengthas seen by that observer whose meter-rods they are.146I.e. even if the meter-rod is k's one we hek whether m sees it pointing in diretion �x.147Here the emphasis is on that it is onsistent with Basax that both m and k think that the other's x-meter-rods shrink.148I.e. even if the meter-rod is k's one we hek whether m sees it pointing in diretion �y.149The ternary relation Betw of betweenness is de�ned on p.140. Intuitively, for p; q; r 2 nF the relationBetw(p; q; r) holds if p; q; r are ollinear and q is between p and r.



64 2 SPECIAL RELATIVITYThe relativisti e�ets (I){(III) disussed so far will lead e.g. to the famous twin paradox .However, for that we will need a symmetry axiom Ax(symm) disussed in setion \A sym-metry axiom" (x2.8). So, we will return to the twin paradox in x2.8, f. Thm.2.8.27 (p.92).An even more satisfatory disussion of this paradox an be given by looking at aeleratedobservers, hene we will return to the \twin" in Chapter 8 (\Aelerated observers") of a futureedition [19℄ of AMN [18℄ again.We will see in x2.8 how Ax(symm) (introdued in x2.8) inuenes the paradigmati e�ets(I){(III). E.g. we will see that these e�ets (for example, the e�et of loks slowing down)admit a simpler and stronger formulation in Basax + Ax(symm) than in pure Basax. Cf.Items 2.8.7{2.8.12.In AMN [18, x4.8℄ we investigate how paradigmati e�ets (I){(III) (disussed in items2.5.2{ 2.5.11) hange if we use axiom systems more subtle than Basax. Many of these axiomsystems are introdued in Chapter 3 herein.Our next �gure illustrates the meter-rod shrinking e�et, i.e. items 2.5.9{2.5.12. To bemore intuitive, we draw spaeships instead of meter-rods. The �gure represents how observersm and k see k's spaeship.
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Here �t 0 and �x 0 denote the respetive oordinate axes of observer k.
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k's spaeship as seen by k himself
k's spaeship as seen by m
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66 2 SPECIAL RELATIVITY2.6 Are all three paradigmati e�ets neessary?A entral question that motivates our interest in the models of Basax is the following:(?) Are all three paradigmati e�ets disussed in setion 2.5 neessary onsequenes of speialrelativity? If not, are they independent of one another?It is question (?) that triggers our interest in the lass Mod(Basax), i.e. in the question howdi�erent the models of Basax an be from eah other. 150Turning to the question itself, the following idea naturally omes to one's mind. Are allthe paradigmati e�ets, items (I) to (III) on page 54, neessary onsequenes of Basax? Ifnot, in whih ombinations an they our? Cf. also the pitures on p. 51.First, onerning e�et (III) (moving loks get out of synhronism), the answer is simple.It is a neessary onsequene of Basax, by Theorem 2.5.7. That is, whenever vm(k) > 0,m thinks that the loks in the nose and in the rear of k's spaeship are out of synhronism(provided, of ourse, that k thinks they are synhronized). This is so in every model of Basaxand for every m; k 2 Obs.On the other hand, to answer the question as far as the other e�ets are onerned, wemust pose it more preisely. Let us �x an observer m0 in a model M of Basax. We will thinkin m0's world-view. For example, \k moves" means that k moves relative to m0. Now, we willseek for the answers to our question in a systemati manner (f. items 1-3 below).1. As we have already pointed out, paradigmati e�et (III) must be true in m0's world-view.2. Cloks do not neessarily slow down on moving spaeships (i.e. e�et (I) is not neessary).More formally, there are a model M j= Basax and an observer m0 2 ObsM suh that(8k 2 Obs)[m0 thinks that k's loks tik with exatly the same rate as hisloks℄. 151Suh a model M (with a distinguished m0) is represented in Figure 29 (p. 51) under thename M1. That model is 2-dimensional, but it an be extended to 3 or 4 dimensions,too. However, this generalization from n = 2 to n � 3 is not ompletely straightforward.We do not go into the details here, but the key idea is desribed in AMN [18, x3.2℄. Weshould mention one di�erene between the ases n = 2 and n = 3. In the ase n = 2 wehave a so-alled Minkowski-sphere around the origin whih, assuming fm0k(�0) = �0, tellsus for eah k how long its unit-vetors are (i.e. where fm0k(1i) is). This sphere worksuniformly for all hoies of k 2 Obs (assuming fm0k(�0) = �0). By ontrast, in the ase ofn = 3 all we know is that all the points fm0k(1i) are in a horizontal plane as depited inFigure 39. However, after 1kt is determined by this plane for eah hoie of k, we stillhave to �x the rest of k's unit vetors as it is done in AMN [18, x3.2℄. (Where it is shownthat hoosing 1kt arbitrarily, the other unit vetors an be �xed so that the axioms ofBasax are validated.)150In AMN [18℄, this interest will lead us to the investigations in x3.6 (Models of Basax), as well as to thestudy of non-elementarily equivalent models of Basax in e.g. Theorem 3.8.18(ii) on p. 303 of AMN [18℄. Cf.also AMN [18, Remark 3.6.15 on p. 271℄.151We emphasize again that m0 thinks that all observers have loks running with the orret rate.
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1t 1k1t1k2t
Figure 39: Illustration for item 2.In the seond part of this setion, when disussing the independene of the partiularparadigmati e�ets, we will onentrate on the ase n = 2; but all the results an begeneralized to n � 3, analogously to the generalization indiated in item 2 above. Weinvite the interested reader to �gure out what the answers look like for n = 3 �rst, andlater to all n � 3.Let us return to disussing what happens if m0 thinks that all moving loks tik with theorret rate (i.e., no loks slow down or run fast). The present answer to the question(?) (namely, that e�et (I) is not neessary) applies if we are allowed to �x M and m0.However, in the same model M there will be an observer m1 who thinks that movingloks do slow down. Indeed, if vm0(k) > 0, then k will think that m0's loks do slowdown (and they slow down more than would be neessary if we did not fore k's loksnot to slow down for m0; this will be impliitly seen in x2.8).3. Similarly to item 2, moving spaeships need not shrink. That is, there are M j= Basaxand m0 2 ObsM suh that in m0's world-view moving spaeships do not shrink. Formally,(8k 2 Obs)[m0 thinks that k's meter-rods are of the orret length℄:(The reader is invited to formalize this statement in our frame language.) The modelproving this laim is remotely similar to M3 in Figure 29 (p. 51), but the funtions thatare parts of the Minkowski irle must grow faster in the model. The reader is invitedto onstrut (and draw) suh a model (based on the world-view of some m0 in whihno spaeship shrinks). For this exerise it might be useful to onsult Figure 38 on p. 62proving that spaeships \usually" do shrink. On the other hand, see piture 40.By items 2 and 3 above we reeived permissive answers to our question onerning theremovability (or hangeability) of the paradigmati e�ets. The seond part of our questionasked how independent e�ets (I)-(III) are of one another.The paradigmati e�ets (I)-(III) are not independent. We have already seen that e�et(III) (violation of synhronism) is neessary. Further, assume vm0(k) > 0, and onsider m0's
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Figure 40: Illustration for item 3.world-view. The following holds:(k's loks do not slow down)) (k's spaeship shrinks):Similarly, (k's spaeship does not shrink)) (k's loks slow down):These statements are stated in Theorem 2.5.13. Atually in Thm. 2.5.13, Ax(p ) was as-sumed, but we onjeture that it is not needed here, beause we are stating only that(?) (k's loks always show the orret time) ) (one of k's meter rods152 shrinks),that is, (8p 2 �t)pt = fkm(p)t ) (one of k's meter rods shrinks):It seems to us that Basax j= (?), but we have not heked this laim arefully.To sum up: On the one hand, we an get rid of e�et (I), but then we must have (II) and(III).153 On the other hand, we an get rid of e�et (II), but then we must have (I) and (III).So, for a possible observer m0 in a possible model M j= Basax, the following ombinationsan be realized:(A) All three e�ets (I), (II) and (III) are experiened by m0.(B) E�ets (I) and (III) prevail, but (II) does not.(C) E�et (I) is not present, but (II) and (III) are.152Namely, the one pointing in the diretion of k's movement.153Moreover, we pay for not having (I) by having (II) to a higher extent.



2.6 ARE ALL THREE PARADIGMATIC EFFECTS NECESSARY? 69There are no other possibilities. Thus we have at least three essentially di�erent lasses of mod-els for Basax,154 and this fat triggers our interest in asking how many, and what sorts of, non-elementarily equivalent models Basax has. The reason why we talk about non-elementarilyequivalent models is that this expression means that the models in question are not only dif-ferent (i.e., non-isomorphi), but they are atually distinguishable by a formula in our framelanguage like (the formalized versions of) (A), (B) and (C) are. Atually, the above mentionedthree lasses of models are distinguishable by thought experiments too, whih might be astronger notion of distinguishability (than the one using formulas). It would be interesting tosee how many lasses of models of Basax are distinguishable by means of thought experiments,but for this purpose we would need to de�ne whih formulas of our frame language ount asthought experiments. We do not deal with this issue here.155Later, in x2.8, we will introdue a natural axiom Ax(k) saying that observers not movingrelative to eah other see the world essentially the same way. We mention this beause thepresently disussed issue onerning the onnetion between the paradigmati e�ets is evenmore interesting in Basax + Ax(k) than in pure Basax. Therefore we mention that theanswer to our question remains exatly the same, i.e. ases (A) to (C) are all the possibilities,for Basax + Ax(k) too. Atually, most of those axioms to be introdued that we will allauxiliary axioms (f. (3) in the list of axioms here or AMN [18, x3.8℄) leave the answer to thepresent question unhanged (i.e., (A), (B), (C) remain possible). For example, for Basax +Ax(p ) + Ax(k) + Ax(Triv) + Ax(") + Ax(ext) + Ax(r) the situation is the same asoutlined above for Basax.156 We ould even add the ontinuity axiom Ax(ont) from x5 ofAMN [18℄ to the axioms without hanging this result. However, the symmetry axioms, e.g.Ax(symm) to be introdued soon, in x2.8, will hange this piture.A more systemati disussion of the paradigmati e�ets, their interdependene, their de-pendene on the axioms of our relativity theory et. is found in AMN [18, x4.8(pp.635{704)℄.

154Say,M0 is suh that all observers are of type (A), M00 is suh that it has both (A) and (B) type observersbut none of type (C), andM000 has observers of type (A) and (C), but none of type (B). It takes some time tohek that M00 and M000 exist, but they do. We omit the proof of this laim.155Cf. also Remark 3.6.15 of AMN [18℄ for further philosophial reasons for studying non-elementarily equiv-alent models of Basax.156The mentioned extra axioms an be found in the list of axioms here and in AMN [18, x3.8℄.



70 2 SPECIAL RELATIVITY2.7 Faster than light in two dimensionsIn x2.4, Cor.2.4.3 we saw that if n = 2 then faster than light (FTL) observers are possible,more formally, the existene of FTL observers is onsistent with Basax(2). For ompletenesswe note that Basax(n) with n > 2 exludes FTL observers, by Theorem 3.2.13 in Chapter 3herein. However, there are re�nements of Basax whih allow FTL observers for n > 2 too.Cf. e.g. the axiom system Relphax and Thm.3.4.22 (p.223) in AMN [18℄ (or the version ofBasax mentioned in AMN [18℄ where FTL-observers use only 2 dimensions for oordinatizingthe set of events). Further, in Basax(n), n arbitrary, we still an have interesting FTLe�ets with the only di�erene that, in mFTL k, k is not a fully edged observer but only abody having an \inner lok". Suh FTL bodies are onsistent with Basax(n) and pratiallyall of its variants.157 Bodies with inner loks are disussed in the manusript Madar�asz-N�emeti [175℄ and will be more extensively disussed in AMN [19℄. Their theory is extremelysimilar to \Basax(2) +FTL observers exist". The 2-dimensional \parts" of these theories arefairly lose to Basax(2) whih adds extra motivation for our looking into FTL in Basax(2).Let k;m 2 Obs. We all k FTL w.r.t. m i� vm(k) > 1. We also write kFTLm for this.We all k STL w.r.t. m 158 i� vm(k) < 1. We also write k STLm for this. (Warning: Thede�nitions of STL and FTL will be re�ned in x2.8.5 (p.91), but in the present setion we neednot worry about that.159) In AMN [18, x2.7℄, assuming Basax+Ax(p ), we prove that STLis an equivalene relation.In Thm.2.7.1 and in Figure 41 below we will see that it is impossible to have symmetrywhen onsidering the diretions of \ows of time" (i.e. onsidering whether the observed loksrun forwards or bakwards).THEOREM 2.7.1 Assume Basax(n) +Ax(p ).160 Let m; k 2 Obs. Assume k moves FTLrelative to m, i.e. vm(k) � 1. Then the following hold. If m thinks that k's lok runs forwardsthen k will think that m's lok runs bakwards. However, if m thinks that k's lok runsbakwards then k will think that m's lok runs forwards.161 Summing it up, m and k see eahother's loks di�erently. Formally:fkm(1t) t � fkm(�0) t > 0 , fmk(1t) t � fmk(�0) t < 0 :On the proof: By Prop.2.3.3(iii), we may assume vm(k) > 1. Then for n = 2, the idea ofthe proof is illustrated in Figure 41. For n > 2, one either heks that the idea represented inFigure 41 works; or equivalently one may use the no FTL theorems in x3.157In the physis literature, FTL bodies are alled tahyons , f. Gott [106℄, [107℄, Feinberg [85℄, d'Inverno[73,pp.22,23,51,228℄, Riami [221℄, Gibbs [97℄, Rembielinski [219℄, f. also the referenes in x1.3(iv) on p.xii. Weshould also mention ideas (on tahyons) of physiists S. Tanaka, O. M. P. Bilaniuk, V. K. Despande, E. C.G. Sudarshan from the 1960's. In the just disussed literature, the formulation of some interesting questionsassume that tahyons have inner loks. Atually, for formulating these interesting questions (e.g. FTL allowssending messages to the past) we have to assume that these bodies have inner loks.158slower than light as seen by m159In Basax the two de�nitions are equivalent.160We note that a variant of this theorem remains true without Ax(p ), i.e. in pure Basax.161Sometimes we quote this theorem as if it stated \. . . k's loks run bakwards . . . ". In these quotationswe have in mind the lok in the rear of k's spaeship together with the lok in the nose of the spaeship et.and that is why we write in the plural k's loks instead of just k's lok as the theorem above says.
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m �t

diretion of simultaneities for k

k
�x

m's loks look like this:k's loks look like this:Figure 41: Assume that m thinks that k's lok runs forwards. Then k will think that m'slok runs bakwards.



72 2 SPECIAL RELATIVITYThe above theorem already indiates that FTL leads to unusual temporal behavior. Puttingit more boldly, the theorem an be interpreted as pointing in the diretion that FTL seems toause phenomena with a \time-travel-ish" avor. More in this diretion is proved in AMN [18,x2.7℄.It was known162 that the existene of FTL observers has some exoti, even \fantasti"onsequenes, e.g. messages an be sent to the past.163 In AMN [18, x2.7℄ and AMN [19,x2.7℄ we prove even more \exoti" onsequenes of FTL, e.g. if FTL is ombined with thetheory of aelerated observers as outlined in AMN et al. [26℄ (in a suitable way), then itmakes \atual time-travel" to the past possible. Motivated by these hallenging possibilities,in AMN [18, x2.7℄, AMN [19, x2.7℄ the present author provides a areful, logially preise andeasily understandable analysis of FTL in Basax(2).164 The exoti possibilities motivate us toapply a wide range of the possibilities o�ered by the methodology of logial analysis,165 e.g. weask ourselves exatly what kinds of arrangements in FTL-models of Basax(2) 166 are logiallypossible, exatly how the details look like, how an FTL observer observes (oordinatizes) the\STL world", what the visual e�ets are, e.g. how does an FTL observer visually (via photons)see the STL world, et. The point is that after proving that (in Basax(2)) the possibility ofsending messages to the past does not lead to logial ontraditions, our intuition (whih\feels" that there should be a ontradition here) leads to several natural questions like \ifthis is possible, then how do these or those details look like". E.g. how does the \normal"STL observer m see in detail the loks of an FTL observer k who is moving \so fast" thatin some sense he is moving \bakwards in time" as observed by m. After answering this, weask how this FTL observer k sees the very same things, and in partiular, how k sees the STLobserver's loks. Among other things, it turns out that there annot be \perfet symmetry"between these two observers (AMN [18℄ Thm.2.7.5).162Cf. e.g. Gott [107, pp.126-129℄, Friedman [91, pp.161-162℄ and the relevant referenes in these two books.163Atually, this is why e.g. Reihenbah [218℄ exluded FTL by adding an extra axiom to relativity. Namely,many people at that time thought that the above mentioned onsequenes lead to logial paradoxes, f. e.g.Friedman [91, p.162, disussing axiom (P3)℄, or Rindler [222, p.36, line 15℄. Already in 1949 G�odel showed thatthey do not lead to logial paradoxes. Cf. footnote A on p.199 of G�odel [99℄. Leading logiian David Lewisdevoted a whole paper to proving and explaining in detail that FTL partiles (with inner loks) and their\time-travel-like" onsequenes do not lead to logial problems and that from the logial point of view suhthings and in partiular losed temporal loops are possible. Cf. Lewis [157℄. Cf. also Gott [107, e.g. pp.16-20℄,Earman [77, p.170, pp.193-194 or the entire hap.6℄, Novikov [207℄, Yourgrau [270℄, G�odel [100, Fig.1 on p.286,p.228, and the quotation from Weyl's 1918 paper on p.228℄. Atually, relativity theorist Hermann Weyl seemsto be the �rst (1918) to notie that General Relativity is onsistent with \time travel", i.e. with losed temporalloops. About the \anti-time travel" attitudes Earman [77, p.54 line 10℄ writes: \... suh an attitude is no longeras popular as it one was." Physiist Newman [206, p.982℄ writes (in General Relativity and Gravitation Vol21) \It has beome ustomary to laim that losed time-like urves render a spae-time physially unreasonable.Certainly, if the universe does ontain losed time-like urves, a revision of fundamental premises of physis,and philosophy, may be neessary. However, to dismiss this, and other forms of ausality violation, out of handis reminisent of the dogmatism regarding singularities prior to the singularity theorems." Cf. also Tipler [260,p.442 lines 8-6 bottom up℄, Friedman-Morris et al. [90℄, the works of Novikov, Everett, J. Friedman, Grant,Headrik, Holst&Matshull, Li&Gott, Ori, Pikover, Simon in the bibliography of Gott [107℄. Cf. also Gott [107,p.129 lines 8-1 bottom up, p.130 last 8 lines℄. For more on this f. x1.3(iv), p.xii. Summing it up: If we do notadd an extra axiom to general relativity saying that losed time-like urves are prohibited, then it is not learwhy we should add an axiom to speial relativity saying that faster than light ausal signals are prohibited.The motivation for both axioms is the same: to exlude ausal loops in an a priori manner. But if we are notwilling to do this a priori (pre-)judgment in general relativity, why should we do it in the speial theory?164and in AMN [19, x2.7℄ the present author provides an analysis of FTL in the aelerated observer versionof some of our more exible (than Basax) theories. Atually, these theories are the loalized versions Lo(Th)in Chapter 3 herein.165f. the introdutions of AMN [18℄ and of Chapter 3 herein166i.e. models of Basax(2) + there are FTL observers



2.7 FASTER THAN LIGHT 73Sine in our theories like Basax we have hosen a level of abstration in whih mass andenergy are disregarded, i.e. sine we are in relativisti kinematis (as opposed to relativisti dy-namis), the question omes up naturally whether in a suitably exible version167 of Basax(2)enrihed with aelerated observers, it might be onsistent to aelerate an STL observer upto an FTL speed (relative some �xed inertial m0 2 Obs, of ourse). If yes, then what doesthe so \fantastially" aelerated observer observe (oordinatization-wise), what does he see(via photons) et. In partiular, how does he observe/see the STL world in detail. Theselatter questions are disussed in AMN [19℄ but in less detail than the previous questions notinvolving aeleration.168Someone might objet that disussing FTL in two dimensions is not so relevant to under-standing our world beause the \real world" is 4-dimensional. The answers to this objetionare in (i), (ii) below. (i) This part of the answer oinides with what we said in the introdutionto the present sub-setion about FTL in the ase of n > 2. Namely, there are re�nements ofBasax(4) allowing either FTL or some interesting onsequenes of FTL in Basax(2), and thesere�nements are analogous with Basax(2), in various ways. (ii) The really exoti preditions ofFTL (like time-travel to the past) are onsistent169 with Einstein's general theory of relativity,as was proved probably �rst by G�odel170 whose result was essentially strenghtened by Ozsv�ath& Sh�uking [209℄, f. also Thorne [259℄, Gott [107℄, Deutsh [71℄ and the referenes at thevery beginning of the Introdution to this work. Now, after knowing that these preditionsare possible in the general theory, it might be of some intelletual interest to see how thesepreditions are proved in detail (and how they are realized in detail) in a tangible, transparentand purely logial form, in a simpli�ed version of relativity theory e.g. in Basax(2). Of ourse,the proofs in Basax(2) annot be easily171 generalized to e.g. G�odel's rotating universe (or toKerr-type rotating blak holes), but they still an provide us with some degree of intelletualinsight in onnetion with how and why these exoti things are logially possible at all in arelativity theoreti frame of mind. The above onsiderations motivated the present author toelaborate AMN [18, x2.7℄ in detail and to illustrate it with a large number of pitures (andintuitive explanations). For lak of spae, here we do not reall more from AMN [18, x2.7℄ orAMN [19, x2.7℄.172We will return to FTL in two dimensions in onnetion with Einstein's Speial Priniple ofRelativity in x2.8.3 (p.84) after disussing our symmetry priniples orresponding to Einstein'sSPR.
167e.g. Lo(Newbasax(2)) in Chapter 3 herein168This investigation in AMN [19℄ answers questions of L. P�olos at ILLC of University of Amsterdam. It alsoanswers questions of partiipants of the researh ourse at University of Amsterdam (1998) for whih the �rstversion of AMN [18℄ served as ourse material.169Warning: by saying \is onsistent" we do not mean \is implied by" and espeially we do not mean to laim\is true in the real world" (though we are not exluding the latter, either).170Cf. Figure 134 on p.365 for an illustration of G�odel's model for Einstein's theory, with losed time-likeurves.171or even diretly172For ideas related to the ones mentioned in the present sub-setion we refer to Andai [5℄, and to Andai'swritings onneted to tahyon theory. At the same time we would like to express our speial thanks to AttilaAndai for helpful and thorough disussions of the present sub-setion x2.7.



74 2 SPECIAL RELATIVITY2.8 Some symmetry axioms and the twin paradoxIn order to disuss the twin paradox, we will need some kind of symmetry axioms.173 In thissetion we study the possibility of adding ertain symmetry axioms to Basax. An example of asymmetry axiom is Ax(symm) to be introdued soon. We onsider Ax(symm) as a possibleformalization of (an instane or a fragment of) Einstein's Speial Priniple of Relativity (SPR),f. Friedman [91, p.149℄ priniple (R) therein. Roughly speaking, SPR states that from a ertainpoint of view all inertial observers are equivalent, while our symmetry axioms will say that\the way two observers see eah other `is the same"'. In x2.8.3 we will disuss the relationshipbetween SPR and our symmetry axiom Ax(symm).Axiom Ax(symm) below is an \optional" postulate; sometimes we add it to Basax (orother theories of speial relativity introdued later in this study) and sometimes we do not. Itsusage is somewhat analogous with the Axiom of Choie (AC) in set theory, where people areinterested in set theory both without AC and with AC. Moreover, Ax(symm) is of a di�erentnature than the other axioms introdued up to this point. It expresses a sort of methodologial(or aesthetis-motivated) priniple: by making all observers similar (in a ertain sense) weommit ourselves to desribing the world as simply as possible. In this respet Ax(symm)will serve as a kind of \Oam's razor" in our analysis. To distinguish aesthetis-motivatedaxioms like our symmetry priniples (e.g. Ax(symm)) from experiments-motivated ones (e.g.AxE), statements like our Ax(symm) are often alled priniples of parsimony (i.e. priniplesof eonomy of explanation in onformity with Oam's razor), f. e.g. Friedman [91, p.29 line23℄. So, what we all in the present work symmetry axioms174 all belong to the kind of axiomsalled priniples of parsimony. For more on the speial nature of Ax(symm) in onnetionwith Oam's razor et. we refer to x2.8.4 on page 90 herein and to item 4.2.18 (p.464) ofAMN [18℄. Priniples of parsimony (their historial-methodologial bakground, their roleherein) are further disussed in x4.1.We provide deeper disussions of symmetry priniples in AMN [18, xx 3.9, 4.2, 4.7℄.In the present setion we inlude a relatively brief disussion of Ax(symm) and its e�etson theorems (or phenomena) already studied in the preeding parts. E.g. we will disuss howAx(symm) inuenes paradigmati e�ets (I){(III) disussed in x2.5. We will see that thesee�ets (for example the e�et of loks slowing down) admit a simpler and stronger formulationin Basax+Ax(symm) than in pure Basax, and all three paradigmati e�ets are neessaryif we assume Ax(symm). After this, and motivated by these theorems, we introdue someother axioms and show that they are equivalent to Ax(symm). After this we investigatein what sense Ax(symm) an be onsidered as a speial ase of Einstein's SPR. We thenbriey investigate what Ax(symm) says about the physial world. After this we show that,(in the presene of Basax +Ax(p )), Ax(symm) implies the twin paradox, more preisely,an approximated version of the twin paradox. We then investigate the twin paradox a little.We onlude this setion with introduing one of our entral axiom systems, Sperel.First, we postulate a natural symmetry prinipleAx(symm0), and then an auxiliary axiomAx(eqtime). Ax(symm) will be de�ned to beAx(symm0)+Ax(eqtime).173This is so beause we will approximate the aelerated twin by several inertial observers, and thus we needa kind of \similar behavior" of these inertial observers.174Cf. besides the present setion AMN [18, xx 3.9, 4.2, 4.7℄.



2.8 SYMMETRY AXIOMS AND THE TWIN PARADOX 75Ax(symm0) (8m; k 2 Obs)(9m0; k0 2 Obs)�trm(m0) = trk(k0) = �t ^ fmk = fk0m0�.Let us see what Ax(symm0) says intuitively, and why we laim that Ax(symm0) is anatural symmetry postulate about \how the world behaves". Assume m; k are two observers.We would like to state that observers m and k are \equivalent" in some sense. A natural thingto say in this diretion would be saying that \as I see you so do you see me". That isas m sees k so does k see m.(?)But formally this would mean saying that fmk = fkm whih is a too strong statement, e.g.beause k may be \looking in the wrong diretion". If the biylist sees the train movingforwards, the train inhabitants may see the biyle moving bakwards. Cf. the next sequeneof pitures. However, this an be easily mended; instead of (?) we state the following moresubtle version (??).As m sees k so does some sister k0 of k see some brother m0 of m.(??)Here saying that k0 is a sister of k means that tr k(k0) = �t, i.e. they have the same life-line.175Indeed it is exatly the formalized version of (??) what is stated in axiom Ax(symm0).Perhaps a more natural form of Ax(symm0) would state the existene of brothers m0 andk0 suh that m0 and k0 see eah other exatly the same way, i.e. fm0k0 = fk0m0 . If there areno FTL observers (e.g. if n > 2), then this is an equivalent form of Ax(symm0), see x3.9 ofAMN [18℄. However, this more natural form exludes FTL observers (see Theorem 2.7.5 inAMN [18℄ or Thm.2.7.1 herein), this is why se stated Ax(symm0) in its present form. Cf.Theorem 2.8.2.As an illustration for why k0 and m0 are needed in Ax(symm0) we inlude the followingsequene of pitures. (Throughout the disussion of these pitures we assume Basax(2).)
world-view of m = ylist world-view of k = train

m = ylist train = k m = ylist train = k�t �t
�x �xThe above represents one possible on�guration of the ylist and the train: The ylist sees thetrain moving forwards in the positive �x-diretion, while the train people see the ylist movingbakwards in the negative �x-diretion. For this on�guration the world-view transformationsare represented in the following piture.175By quantifying over observers having the same life-line (like our quanti�ers 9k0, 9m0) we sort of abstratedfrom \the diretions in whih our observers are looking" and this is exatly what we needed.
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fmk fkm

�t �t
�x �x

m fkm[�t℄ fmk[�t ℄fkm[�x℄ kk m
fmk[�x℄The above are the world-view transformations orresponding to the on�guration representedin the previous piture (the train and the ylist look in the same diretion). Obviouslyfmk 6= fkm. Let us try to mend this by turning the train around suh that the train peoplewill be looking bakwards, whih in our formalism means that we hoose a sister k0 of k asillustrated in the piture below.

fmk fk0m
�t �t

�x �x
m fkm[�t ℄ k0 fmk0 [�t ℄fkm[�x℄

fmk0 [�x℄
k m

Well, fmk = fk0m is still not satis�ed (but we made a step forwards, look at fkm[�t ℄ and fmk0[�t ℄).Let us turn the ylist around, too. This means that we take a brother m0 of m as illustratedin the piture below. k0
fmk fk0m0

�t �t
�x �x

m fkm[�t ℄ fm0k0 [�t ℄fkm[�x℄ fm0k0 [�x℄k m0
This piture shows that now we have a hane for fmk = fk0m0 being true sine the lines whihare mapped to the axes �t and �x are mapped to the right plaes. (In onnetion with this wenote that vm(k) = vk0(m0) follows from Thm.2.8.5 on p.78 whih says that under some mildassumptions, vm(k) = vk(m). This implies that in our present ase trm(k) = tr k0(m0).) But inaddition to this, we need that fmk and fk0m0 agree on these lines pointwise, and not just that theytake these lines to the same sets. The fat that it is possible to arrange pointwise agreement,too (i.e. that fmk = fk0m0) at least in some model of Basax will be seen in Theorems 2.8.1-2.8.2below (and in more detail in x3.8.2 of AMN [18℄).



2.8 SYMMETRY AXIOMS AND THE TWIN PARADOX 77Next, we introdue an auxiliary axiom Ax(eqtime). We all Ax(eqtime) axiom of\equi-time" beause it says that time passes with the same rate for \observer brothers"m and m0.Ax(eqtime) (8m;m0 2 Obs)�trm(m0) = �t ) (8p; q 2 �t ) jp� qj = jfmm0(p)� fmm0(q)j�.Conerning Ax(eqtime) we note that this is a very natural and onvining axiom, it onlysays that if two observers do not move relative to eah other (moreover they are at the sameplae) then their loks have the same rate. In other words this means that our paradigmatie�et (I) 176 does not show up in the absene of motion. (This is a natural assumption whihhas always been assumed beginning with anient Greeks, then by Galileo and Newton and ofourse by Einstein.)Let us turn to de�ning Ax(symm).Ax(symm) :def= Ax(symm0)+Ax(eqtime) :Let us see �rst if studying Basax+Ax(symm) makes sense at all. We already stated onp.44 that Basax is onsistent, f. also x3.5 (\Simple models for Basax") of AMN [18℄.THEOREM 2.8.1 Basax(n) +Ax(symm) is onsistent, for all n > 1.The next theorem says that, despite of Thm.2.7.1 (p.70) whih says that perfet symmetryis ruled out by FTL observers, Ax(symm) does not exlude the existene of FTL observers.(Thm.2.8.25 will state a stronger result in this diretion.) Then the next Thm.2.8.3 desribesa onsequene of Ax(symm) in situations when FTL observers are present.THEOREM 2.8.2(i) (Basax(2) +Ax(symm)+ \9 FTL observers") is onsistent i.e.(ii) there is M 2 Mod(Basax(2) +Ax(symm)) suh that in M there are FTL observers.THEOREM 2.8.3 Assume Basax + Ax(symm)+ \9FTL observers". Then there is m 2Obs suh that(?) m has a brother m0 suh that m0's loks run bakwards as seen by m.177Moreover, let the above m be �xed. Then for any observer k whih is not FTL w.r.t. m,statement (?) holds, i.e. k has a brother k0 et. Intuitively this means that at least \half of"the observers have a \ounter-lok-wise brother".On the proof: The idea of the proof an be reonstruted from Figure 41 (p.71).The next theorem states that in models of Basax + Ax(symm) + Ax(p ), no �eld-automorphisms are involved in the world-view transformations.176Moving loks slow down.177I.e. trm(m0) = �t and fmm0(1t)t < fmm0(�0)t.



78 2 SPECIAL RELATIVITYTHEOREM 2.8.4 Assume M j= (Basax + Ax(symm)+ Ax(p )). Let m; k 2 Obs. As-sume fmk(�0) = �0. Then fmk is a bijetive linear transformation of the vetor spae nF preservingthe set of photon-lines.It is interesting to ompare the above theorem about fmk's with Thm.2.3.12(ii)' on p.35.Namely, in the above theorem we did not need mentioning �eld automorphisms while wedid need them in Thm.2.3.12. There is a similar ontrast between the above theorem andThm.3.1.4 on p.162 of AMN [18℄. In onnetion with the above theorem we note that, underassuming Basax + Ax(symm) + Ax(p ), the world-view transformations fmk are so-alledPoinar�e transformations; and those world-view transformations whih preserve �0 are Lorentztransformations, f. Thm.2.9.6 on p.104.So far we investigated a symmetry property of the the kind \as I see you so do you see me".The following theorem shows that a simple property of this kind also follows from Ax(symm).Compare Theorem 2.7.3 on p.111 of AMN [18℄ whih says that there are M 2 Mod(Basax(2))and m; k 2 ObsM suh that vm(k) < 1 while vk(m) > 1.THEOREM 2.8.5 Basax +Ax(symm)+Ax(p ) j= vm(k) = vk(m).Remark 2.8.6 (Ax(symm) and Minkowski-irles) Consider the possible modelsM1;M2;M3 of Basax(2) represented in Figure 29 (p.51). As we said, of these only M3 isa model of Ax(symm). In partiular Ax(symm) fails both in M1 and M2. ThereforeBasax +Ax(symm) has radially fewer kinds of models than Basax does.Moreover, Basax + Ax(symm) implies that the Minkowski-sphere an look like onlyas in the ase of M3 in Figure 29. This follows from Thm.2.9.6(ii) (p.104). We note thatBasax +Ax(symm0) is not suÆient for this.178Further, under some natural assumptions179, the following three statements are equivalentfor models M of Basax:(i) Ax(symm) holds in M.(ii) All observers have the same Minkowski-spheres, i.e.(8m; k 2 Obs)MS(M; m) = MS(M; k).(iii) The Minkowski-sphere of any observer is like M3 in Figure 29, i.e.MS(M; m) = fp 2 nF : g2�(p; �0) = 1g;where g2�(p; �0) will be introdued on p.101.A more detailed formulation of this statement is in AMN [19℄. �178This was noted by Gergely Sz�ekely and Ramon Horv�ath.179e.g. Ax(k)+Ax(Triv)+Ax(p ) to be introdued soon, or that F has no nontrivial automorphism



2.8.1 SYMMETRY AXIOMS AND THE PARADIGMATIC EFFECTS 792.8.1 Ax(symm) and the paradigmati e�etsLet us turn to seeing how Ax(symm) simpli�es the \piture" of speial relativity, e.g. whatit \says" about our paradigmati e�ets (I){(III) (p.54).THEOREM 2.8.7 (Cloks slow down.)Assume Basax +Ax(symm)+ Ax(p ). Let m; k 2 Obs, with 0 < vm(k) � 1. Then:(i) m thinks that k's loks run slow, i.e.jfkm(1t) t � fkm(�0) tj > 1 ; moreover(ii) (80 6= � 2 F) jfkm(� � 1t) t � fkm(�0) tj > j�j.
In onnetion with the above theorem f. Theorem 2.5.2. The novelty in Theorem 2.8.7 isthat it says that all observers' loks slow down in the presene of Ax(symm), while withoutAx(symm) we only know that some loks slow down. This also means that both m thinksthat k's loks slow down and k thinks that m's loks slow down. This is ounterintuitiveto the thinking we got used to in our Newtonian world where if k thinks that m's loks runslow, then m will think that k's loks run fast. That both an think that the other's loksrun slow is possible beause they do not pereive the same events as simultaneous, i.e. beauseof paradigmati e�et (III). In onnetion with this see Figure 49 on p.104.Analogous statement an be made about paradigmati e�et (II), i.e. about shrinkingof meter-rods, f. the following theorem. In onnetion with the next theorem we note thefollowing: If we assume Basax, then for every m; k 2 Obs, suh that vm(k) 6= 1, trm(k)an be onsidered as a funtion trm(k) : F �! n�1F, therefore trm(k)(0) is well de�ned (f.Fat 2.2.4).THEOREM 2.8.8 (Meter-rods shrink.)Assume Basax+Ax(symm)+Ax(p ). Let m; k 2 Obs, with 0 < vm(k) � 1. Then (i) and(ii) below hold.(i) Meter-rods of k parallel with the diretion of movement of k shrink when observed by m.I.e. m will think that k's meter-rods are shorter than k thinks, formally:For simpliity assume that �0 2 trm(k) � Plane(�t; �x). Let k1 2 Obs with �t 6= trk(k1) �Plane(�t; �x) suh that tr k(k1) is parallel with �t.180 Let p := trm(k1)(0) and q := trk(k1)(0).Then jpj < jqj. Cf. Figure 38 on p.62.(ii) Those meter rods of k whih are not orthogonal to the diretion of movement shrink whenobserved by m. Formally:For simpliity assume again that �0 2 trm(k) � Plane(�t; �x). Let k1 2 Obs suh thattrk(k1) is parallel with �t and trk(k1)(0)0 6= 0.Then jpj < jqj.180Intuitively k and k1 together represent a meter-rod of k.



80 2.8 SYMMETRY AXIOMS AND THE TWIN PARADOXIn onnetion with the above theorem f. Items 2.5.9{2.5.12 (pp.62{63).THEOREM 2.8.9 (Cloks slow down exatly the same way.)Assume Basax +Ax(symm). Assume m; k 2 Obs. Then m sees k's loks slowing down toexatly the same degree as k sees m's loks doing the same; formally:(i) jfkm(1t) t � fkm(�0) tj = jfmk(1t) t � fmk(�0) tj, moreover:(ii) (8p 2 �t ) jfkm(p) t � fkm(�0) tj = jfmk(p) t � fmk(�0) tj.Remark 2.8.10 An analogous statement an be made about the e�et of shrinking meter-rods as follows.Assume Basax +Ax(symm)+Ax(p ). Then (i) and (ii) below hold.(i) Assume further m; k 2 Obs are in standard on�guration. Let us onentrate on meter-rods parallel with the diretion of movement . Then m will see k's meter-rods shrinkexatly with the same ratio as k sees m's meter-rods shrink.(ii) Assume k moves in diretion �x when observed by m (i.e. trm(k) � Plane(�t; �x)). Letus onentrate on meter-rods whih are parallel with diretion �x when observed by m.I.e. even if the meter-rod is k's one we hek whether m sees it parallel with the planePlane(�t; �x) determined by axes �t and �x.Then m will see k's meter-rods shrinking with the same ratio as k sees m's meter-rods.�Roughly, the following theorem implies that meter-rods orthogonal to the diretion ofmovement do not shrink or grow, assuming Basax +Ax(symm), f. Corollary 2.8.12.THEOREM 2.8.11 Assume Basax +Ax(symm)+Ax(p ). Let m; k 2 Obs. Let e; e1 betwo events whih are simultaneous for both m and k. Then the spatial distane between e ande1 is the same for m as for k; formally:(8p; q 2 nF) [ (pt = qt ^ fmk(p) t = fmk(q) t) ) jp� qj = jfmk(p)� fmk(q)j ℄ :
The following is a orollary of Thm.2.8.11 above and Thm.2.5.6 (p.59) whih says that (un-der assuming Basax) if two loks are separated only in a spatial diretion whih is orthogonalto the diretion of movement, then they do not get out of synhronism.COROLLARY 2.8.12 (Meter-rods orthogonal to movement do not shrink.)Assume Basax + Ax(symm) + Ax(p ). Then meter-rods orthogonal to the diretion ofmovement do not get shorter. A detailed formal statement of this is in AMN [18, Cor.2.8.12(p.133)℄.



2.8.2 SYMMETRY AXIOMS, EQUIVALENT FORMS 812.8.2 Equivalent forms of Ax(symm)In this part we show that ertain forms of the paradigmati e�ets are atually equivalent toAx(symm) (in Basax under mild onditions). Di�erent equivalent forms of Ax(symm) aregiven in x3.9 of AMN [18℄.Thm.2.8.9 motivates the axiom Ax(syt0) below. We note that the \name" Ax(syt0)intends to refer to \symmetry of time". Intuitively, Ax(syt0) says that\as I see your loks slowing down (beause of your speed relative to me) so do you see myloks (beause of my speed relative to you) slowing down".In the formulation of Ax(syt0) below the assumption trm(k) 6= ; is superuous at thepresent point, beause Basax j= trm(k) 6= ;. However in later setions this assumption willbeome useful.181Ax(syt0) (8m; k 2 Obs)�trm(k) 6= ; )(8p 2 �t ) jfmk(p) t � fmk(�0) tj = jfkm(p) t � fkm(�0) tj�.In terms of the just de�ned Ax(syt0), Thm.2.8.9 says thatBasax j= Ax(symm)! Ax(syt0):In Thm.2.8.13 below we will see that, under mild assumptions, the impliation holds in theother diretion too, i.e. Ax(syt0) is an equivalent form of Ax(symm) (in the presene ofBasax). To formulate Thm.2.8.13 we introdue auxiliary axioms Ax(Triv) and Ax(Triv t).First we introdue the notion of an isometry and the set Triv of trivial transformations.Triv denotes the set of all mappings of nF into itself whih preserve Eulidean distane,take �t to a line parallel with it, and so that the order of points does not hange on �t. Formally:Let F be an ordered �eld. Then f : nF �! nF is said to be an isometry iff it preserves thesquare of Eulidean distanes, i.e. (8p; q 2 nF)(p0 � q0)2 + (p1 � q1)2 + : : :+ (pn�1 � qn�1)2 =(f(p)0 � f(q)0)2 + (f(p)1 � f(q)1)2 + : : :+ (f(p)n�1 � f(q)n�1)2;f. also Def.3.9.3 on p.349 of AMN [18℄. Let (nF) nF denote the set of all funtions mappingnF into itself. ThenTriv def= Triv(n;F) def= � f 2 (nF) nF : f is an isometry, f [�t ℄ k �t, f(1t)t � f(�0)t > 0	 :As we explain in x3.5 of AMN [18℄ in more detail, the transformations in Triv involve no\relativisti e�ets", one ould say that they are very non-relativisti or, so to speak, trivial.To illustrate this, assume f(�0) = �0. Then f 2 Triv if and only if f is linear, it is identity on�t and f maps the spae-part S to itself (i.e. f [S℄ = S) so that it preserves Eulidean distaneon S.181We would like to remind the reader that we mentioned that when generalizing our axioms towards generalrelativity, Ax6 and Ax3 will be weakened and therefore trm(k) = ; will be possible for some hoies ofm; k 2 Obs.



82 2.8 SYMMETRY AXIOMS AND THE TWIN PARADOXAx(Triv) (8m 2 Obs)(8f 2 Triv)(9k 2 Obs) fmk = f .Ax(Triv) says that every observer an \re-oordinatize" his world-view by any trivialtransformation. As is explained in x3.9 of AMN [18℄, Ax(Triv) is �rst-order, beauseeah isometry is an aÆne transformation, and so quantifying over elements of Triv anbe replaed by quantifying over elements of F.Ax(Triv t) below is a weaker form of Ax(Triv).Ax(Triv t) (8m 2 Obs)(8f 2 Triv) �f [�t ℄ = �t ) (9k 2 Obs) fmk = f�.
THEOREM 2.8.13 Assume n > 2. ThenBasax +Ax(p ) +Ax(Triv t) j= Ax(symm)$ Ax(syt0):

We onsider Ax(Triv) and Ax(Triv t) as some of our auxiliary axioms.182 A similar aux-iliary axiom is Ax(k) to be introdued below.Ax(k) (8m; k 2 Obs)�trm(k) k �t ) (fmk is an isometry)�.Intuitively, assuming Ax4, axiom Ax(k) says that if you do not move relative to methen we will agree on whih events are simultaneous, whih ourred at the same plaeand we agree on both spatial distanes and temporal distanes between events. HeneAx(k)+Ax4 implies that none of the paradigmati e�ets shows up in the absene ofmotion. Ax(k) is a stronger version of Ax(eqtime). In passing we note that later (inChapter 4 on p.145) we will introdue an axiom alled Ax(eqm) whih (under mildassumptions) will be a stronger version of Ax(k).The proposition below says that, assuming Basax+Ax(Triv), the auxiliary axioms Ax(k)and Ax(eqtime) are equivalent.PROPOSITION 2.8.14 Basax +Ax(Triv) j= Ax(k)$ Ax(eqtime).The following proposition says that, assuming Basax+Ax(p ), both Ax(syt0) andAx(symm) imply Ax(k).182The axioms we all auxiliary are of a status that we assume them without any hesitation whenever weneed them. I.e. we onsider them as true in the \real world" and we omit them from some of our theoriesonly to make these theories look prettier. To be on the safe side, we note that Ax(Triv) and Ax(k) will\not survive" the transition from speial to general relativity. They both will need some re�ning alreadyin our hapter on aelerated observers. The following form Ax(Trivt0) of Ax(Trivt) will remain \true":(8f 2 Triv)[f(�0) = �0 ) (9k 2 Obs)fmk = f ℄. In the ase when we will allow only uniformly aeleratedobservers, also Ax(Trivt) will remain \true". Here \true" means \usable" or onsistent with our intentions.



2.8.2 SYMMETRY AXIOMS, EQUIVALENT FORMS 83PROPOSITION 2.8.15(i) Basax +Ax(p ) +Ax(syt0) j= Ax(k).(ii) Basax +Ax(p ) +Ax(symm) j= Ax(k).
Sine Ax(k) is a stronger form of Ax(eqtime), the above proposition implies thatBasax +Ax(p ) +Ax(syt0) j= Ax(eqtime):Thm.2.8.11 motivates the following potential axiom, whih we all the axiom of\equi-spae".Ax(eqspae) (8m; k 2 Obs)(8p; q 2 nF)� (pt = qt ^ fmk(p) t = fmk(q) t) ) jp� qj = jfmk(p)� fmk(q)j�.Intuitively, Ax(eqspae) says that if two events are simultaneous both for m and k, thenthe spatial distane between those two events is the same for m as for k. Theorem 2.8.16below explains why we onsider Ax(eqspae) as one of our symmetry axioms.In terms of the just de�ned Ax(eqspae), Thm.2.8.11 says that(Basax +Ax(symm)+Ax(p )) j= Ax(eqspae) :In the next theorem we will see that (under assuming n > 2 and Ax(Triv t)) the impliationholds in the other diretion, too.THEOREM 2.8.16 Assume n > 2. Then(Basax +Ax(p ) +Ax(Triv t)) j= Ax(symm)$ Ax(eqspae) :Next we introdue another natural symmetry axiom. Intuitively,Ax(speedtime) below says that the rate with whih moving loks slow down depends onlyon the relative veloity ~vm(k) with whih one observer sees the other moving. Roughly, theidea is the following. The relativisti e�ets are aused by relative motion (of k relative tom). Motion is ompletely determined183 by veloity ~vm(k) (of k relative to m). Therefore oneonludes that relativisti e�ets (involving fmk) should be determined by ~vm(k). (At least ifwe disregard aeleration). For tehnial reasons, the axiom is formulated in terms of speedsinstead of veloities. Interestingly, we will see that this axiom turns out to be one of thesymmetry axioms equivalent to Ax(symm) and Ax(syt0), f. Thm.2.8.17.Ax(speedtime) (8m; k;m0; k0 2 Obs) �vm(k) = vm0(k0) )(8p 2 �t ) jfmk(p) t � fmk(�0) tj = jfm0k0(p) t � fm0k0(�0) tj�.183If we disregard aeleration.



84 2.8 SYMMETRY AXIOMS AND THE TWIN PARADOXAx(speedtime) also turns out to be equivalent to an instane of (or fragment of) Einstein'sSPR, under some assumptions.184The theorem below says that (under mild assumptions) the symmetry axioms introduedin this setion are equivalent to eah other. For similar equivalene theorems we refer thereader to xx 3.9, 4.7 of AMN [18℄.THEOREM 2.8.17 Assume n > 2. Then (i) and (ii) below hold.(i) Basax +Ax(p ) +Ax(Triv t) j=Ax(symm)$ Ax(speedtime)$ Ax(syt0)$ Ax(eqspae);where the \transitive notation"  1 $  2 $  3 intends to abbreviate( 1 $  2) & ( 2 $  3). Similarly for the ase when we have four formulas say 1; : : : ;  4.(ii) Basax +Ax(p ) j= Ax(speedtime)$ Ax(syt0)$ Ax(eqspae).
2.8.3 Model theoreti haraterization of Einstein's SPR; onnetions with oursymmetry priniplesRoughly speaking, Einstein's SPR states that | from a ertain point of view | all inertialobservers are equivalent. Then we only have to speify the relevant aspet from whih inertialobservers are all equivalent. The usual stipulation is that no law of nature distinguishes anyobserver from the others.185 We will allow onrete numbers (i.e. elements of sort quantitiesQ, i.e. F) our in a law of nature, but we will not allow individual names to our in a law ofnature. More formally: Let M be a frame model, and let M be the model obtained from Mby expanding it with the elements of FM as new distinguished onstants denoting themselves.We want to formalize the statement:(y) The same laws of nature are true for all inertial observers.To analyze the meaning of (y), we will speak about potential laws of nature. We use theexpression law-like statement as a synonym for potential law of nature.186 Now, (y) means184In some respets, Ax(speedtime) would have a learer intuitive meaning if we wrote ~vm(k) = ~vm0(k0) inplae of vm(k) = vm0(k0) in its assumption part.185It is interesting that we all this priniple Einstein's SPR while it is due to Galileo Galilei (1632), f.Taylor-Wheeler [257, Chap.III, �rst 5 pages℄ and/or Galileo [93℄. The priniple of relativity is not the novelpart of the theory of relativity. The priniple was formulated in 1632, what the (speial) theory of relativitydoes is making Galileo's priniple onsistent with the fats of physis disovered muh later than Galileo's time,e.g. with the laws of eletrodynamis or with the outome of the Mihelson-Morley experiment, f. Einstein [80,xx7,5℄. (Aording to [80℄, general relativity generalizes (a suitably re�ned form of) this priniple even further,to not neessarily inertial observers. To this end, among other things, Einstein had to re�ne the answer to thequestion of what statements ount as laws of nature. The new priniple is alled General Priniple of Relativity(GPR), f. e.g. Einstein[p.66 and x28℄Einst and Friedman[e.g. pp.6,379℄Fr83.)186A large part of the literature uses the expression \law-like statement", f. e.g. Huoranszki [136,Chap.II.`Laws of nature' (e.g. p.66, line 8)℄, Cambridge Ditionary of Philosophy [35℄, Hempel-Oppenheim [119,x6℄. We use the expressions \law-like statement" and \law-like formulas" as synonyms. (Cf. also \law-like gen-eralization" in Cambridge Ditionary of Philosophy.) For more on law-like formulas i.e. potential laws of naturewe refer to x4.1, p.131 and to AMN [18, x6.6.8, x6.1 and pp.777-778℄.



2.8.3 SYMMETRY AXIOMS AND EINSTEIN'S SPR 85If m; k 2 Obs \ Ib, then the same law-like statements are true for m and k.In the present work we adopt the onvention that law-like statements are formulas in thelanguage of M.187 So, a law-like statement is a formula '. But, if we want to be able toformulate the laim that \' is true for observer m i� it is true for observer k", then ' musthave a free variable, say m, of sort B (whih an be evaluated to various observers). Weindiate this by writing '(m) for '.188 Then the laim \law-like statement '(m) is true forobserver k" is formalizable as \M j= '[k℄".189Now, we say that Einstein's SPR holds in M if(?) Whenever a formula '(m0) in the language of M quali�es as a potential law of nature,and m; k 2 ObsM, then (M j= '[m℄ () M j= '[k℄).The above formulation of (?) is based on our assumption that a potential law of nature forM, in other words a law-like statement about M, is a formula ' in the language of M andmoreover, it has exatly one free variable of sort B. Suh a law of nature ' is true in thereferene frame of m, or equivalently in the world-view of m, if M j= '[m℄. Whih formulaeare then potential laws of nature? This notion has not been formalized yet to a satisfatoryway in the literature but there is an agreement that no individual names of observers an ourin a law of nature.190 Thus, if for all law-like formulas '(m0) in the language of M with nofree variables other than m0 we haveM j= '[m℄ i� M j= '[k℄;then we an onlude that the same potential laws of nature are true in the referene frames ofm and k. But the latter means that the laws of nature are the same in the referene frames ofm and k. If we postulate this for all m; k 2 ObsM\ IbM, we obtain exatly Priniple (R) on p.149 of Friedman [91℄ whih in turn is the usual formulation of Einstein's SPR (as is explainedin Friedman [91, pp.150-153℄).We will write M j= Einstein's SPR when (?) above holds.Let hM; mi denote the expansion of M with distinguished onstant m 2 ObsM.The phrase \M j= Einstein's SPR" does not have a de�nite meaning yet beause we didnot speify whih formulas in the language of M ount as law-like statements. But if(??) Th(hM; mi) = Th(hM; ki) for all m; k 2 Obs \ Ib,187We do not laim that all formulas of M are law-like statements, we only laim the other diretion that\statements" are formulas (in the language of M). E.g. Hempel-Oppenheim [119℄ follows basially the sameonvention. The subjet matter of law-like formulas or law-like statements, in basially the present spirit, has aquite extensive literature, f. e.g. Goodman [104℄, Hempel [118℄, Nagel [199℄, besides the already quoted works,to mention only a few. Very roughly, the general shema is \law-like formulas" � FF, or instead of FF one mayuse an expansion of the \language" FF (e.g. the language of M).188The symbols ' and '(m) denote the same mathematial objet, namely, the formula '; the only role ofthe \(m)" part is to emphasize that m is a free variable of '. Cf. the notation M j=  [a℄ on p.231 (in x4.3)herein or Chang-Keisler [60℄ for more on this notation.189If we are given '(m) and k 2 BM, thenM j= '[k℄ means that ' is true inM if the variable m is evaluatedto the element k. (Roughly, '[k℄ is the \formula" obtained from '(m) by substituting the element k of ourmodel M into the plae of the free variable m in '(m).)190Cf. e.g. Hempel-Oppenheim [119℄ about the problem of haraterizing law-like statements/formulas amongall statements/formulas.



86 2.8 SYMMETRY AXIOMS AND THE TWIN PARADOXthen we an be sure that Einstein's SPR holds in M, in spite of the fat that we did not speifywhih formulas are law-like. In fat, (??) orresponds to the hoie that all formulas with onefree variable of sort B in the language of M ount as law-like.191 Next we de�ne a set SPR+of formulas in the frame language of M suh that SPR+ expresses (??), i.e. M j= SPR+ i�(??) holds for M. Thus SPR+ will be a very strong form of Einstein's SPR.De�nition 2.8.18 The subset SPR+ � FF of our frame-language FF is de�ned as follows.Let m; k be distint variables of sort B.SPR+ def= fObs(m) ^Obs(k)! ['(m)$ '(k)℄ :'(m) 2 FF is a formula ontaining no free variables of sort B or Gother than mg:We all SPR+ the strong version of Einstein's SPR. �Perhaps more intuitively we ould writeSPR+ def= f'(m; r1; : : : ; r`)$ '(k; r1; : : : ; r`) : '(m; : : : ; r`) is a formulaontaining no free variables other than m; r1; : : : ; r`, further r1; : : : ; r`are of sort F(or Quantities), while m; k are of \sort" Obsg:Now, M j= SPR+ implies that M j= Einstein's SPR, by what we wrote above. Intuitively,SPR+ j= Einstein's SPR:We will return to disussing law-like formulas and Einstein's SPR in x4.1.Notation 2.8.19 Aut(M) denotes the automorphism group of the model or struture M.192Cf. also p. 146, Def. 4.2.3(II), Convention 4.2.4.The following is a model theoreti or algebrai haraterization of SPR+. The reader notfamiliar with the model theoreti/algebrai notions involved may safely skip the next result.191This is not as \razy" as it may seem at �rst sight. A formula '(m) in the language of M ontainingexatly one free variable, m, of sort B does satisfy the onditions of Cambridge Ditionary of Philosophy aswell as Hempel's onditions sine it does not depend on individual parameters (unlike a formula '(m; k)), nordoes it ontain an individual name (beause there is no onstant symbol of sort B in it). The reason why weallow onstants of sort F in law-like formulas '(m) is that unlike k 2 B, a \number" r 2 F is not an individualphysial entity but a result of mathematial abstration. This is why in physial laws real numbers as \naturalonstants" (e.g. � or Plank distane in terms of radius of the hydrogen atom, or the speed of light ) are allowedto our despite of the fat that individual names (like our Sun) are not. Cf. \Lawlike-generalization" in [35℄or Hempel-Oppenheim [119℄. All the same, to be on the safe side, we do not identify Einstein's SPR with (??).Similarly, we do not laim that all formulas in the language of M ontaining exatly one free variable of sortB are law-like. We note that the above hoie of law-like formulas is not suitable as a basis of Einstein's GPRbeause it allows too many law-like formulas. (But here, we are disussing SPR only.)192I.e. Aut(M) onsists of all the isomorphisms h :M �!M of M onto M, .f. e.g. Def. 4.2.3(II) p. 146, orAMN [18, p. 298℄ for the well-known notion of an isomorphism.



2.8.3 SYMMETRY AXIOMS AND EINSTEIN'S SPR 87THEOREM 2.8.20 Let M be a frame model. Then onditions (i), (ii) and (iii) below areequivalent.(i) M j= SPR+.(ii) There is an elementary extension M+ of M suh that (8m; k 2 ObsM \ IbM)(9h 2Aut(M+))[h(m) = k and h � FM � Id℄.193(iii) There is an ultrapower M+ def= IM=F (for some I and ultra�lter F ) of M suh that ifÆ : M ��!M+ is the usual diagonal embedding indued by the ultrapower onstrution,then (8m; k 2 ObsM+ \ IbM+)(9h 2 Aut(M+))[h(m) = k and Æ Æ h � F = Æ � F℄.Proof: Let M denote the expansion of M with all the elements of F as distinguished onstantsdenoting themselves. Clearly, M j= SPR+ i� M j= SPR+. So we may work with M insteadof M. Now, diretion (iii) ) (i) follows by  Los' Lemma. Diretion (i) ) (iii) is based onan !-long iterated appliation of the Keisler-Shelah isomorphi ultrapowers theorem and issimilar to analogous (Keisler-Shelah-based) proofs in Chapter 4 and in AMN [18℄, .f. e.g.items 6.7.4-6.7.8 on pp. 1138-1140 of AMN [18℄. The equivalene (iii), (ii) an be proved byusing results in Chang & Keisler [60℄. To save spae, we omit the details whih are availablefrom the author.Justi�ation of using Ax(symm) as an instane of Einstein's SPRThe following symmetry axiom (Ax21) is a more literal instane of Einstein's SPR (SpeialPriniple of Relativity) than our Ax(symm).Ax21 (8m; k;m0 2 Obs)(9k0 2 Obs)fmk = fm0k0.Cf. the part beginning with p.350 of AMN [18℄ for more on Ax21 and its disussion, rela-tionships et. In Proposition 2.8.21 below, we will illustrate that the above onsiderations anshed some light on why we feel that Ax21 an be regarded as kind of an instane (in somesense) of Einstein's SPR. In the proof we show that Ax21 an be interpreted as saying thata ertain law-like statement holds for m i� it holds for k.PROPOSITION 2.8.21 Assume M is suh that all the fmk's are de�nable (with using mem-bers of FM as parameters) in the �rst-order-logi language194 of M.195 Then,M j= SPR+ ) M j= Ax21:Proof: Assume M j= SPR+. Let m; k;m0 2 Obs \ Ib. Sine fmk is de�nable in M, there is aformula  (p; q) in the language of M suh that(8p 2 nF) �fmk(p) = q iff M j=  (p; q)� :Then hM; mi j= (9k 2 Obs)(8p; q 2 nF) [fmk(p) = q $  (p; q)℄ :193I.e. h is the identity funtion on FM.194This kind of de�nability is disussed in detail in x4.3.195For de�nability of all the fmk's it is enough (but not neessary) to assume that all the fmk's are aÆnetransformations.



88 2.8 SYMMETRY AXIOMS AND THE TWIN PARADOXLet '(m) denote the formula (9k : : : q)℄ on the right hand side of j=. It is a law of nature (inthe sense belonging to SPR+) in the referene frame of m. Hene hM; m0i j= '(m0) must alsohold by SPR+. But in '(m0) we may replae all ourrenes of the bound variable k by k0.This means that there is k0 suh that fm0k0 = fmk. This proves M j= Ax21.In the form of Prop. 2.8.21 above we have seen a justi�ation of using Ax21 as an instaneof Einstein's SPR. This in turn, by Thm. 2.8.22 below, justi�es our using Ax(symm0) too asan instane of Einstein's SPR.THEOREM 2.8.22 Basax +Ax(Triv t)+Ax(p ) +Ax21 j= Ax(symm0).The proof for the ase n > 2 is in AMN [18, Thm.3.9.31(i), p.380℄. The proof for n = 2 isavailable from the author, f. Madar�asz [168℄.COROLLARY 2.8.23 Assume M is suh that all the fmk's are de�nable in the �rst-order-logi language of M. ThenM j= SPR+ +Basax +Ax(Triv t)+Ax(p ) ) M j= Ax(symm0):On the role of Ax(eqtime): The reason why we use Ax(symm) instead of Ax(symm0)as an instane of Einstein's SPR is the following. Ax(symm) = Ax(symm0)+Ax(eqtime).Assuming Basax, Ax(eqtime) exludes only the so-alled \ants and elephants" situationsin our relativisti models M. The \ants and elephants" situation refers to the possibility ofhaving m; k 2 Obs with trm(k) = �t suh that m thinks that k's loks do not tik with theright rate.196 So typially m an be a small observer like an ant and k a big observer like anelephant. While we do not want to exlude suh situations \one and for all", one feels thatstudying these situations an be done independently of relativity. Hene, when we assume asimplifying ondition like Einstein's SPR then it seems reasonable to also exlude the (moreor less irrelevant) ompliations aused by the \ants and elephants" arrangements.197 Wefound that we an make the present work shorter if we use Ax(symm0) together with theother symmetry priniple Ax(eqtime) unless something interesting an be gained by usingAx(symm0) by itself.Ax(symm0) is not only an instane of Einstein's SPR, but it is also a symmetry priniple.Ax(eqtime) is another, relatively mild, symmetry priniple. However, Ax(eqtime) does notseem to be an instane of Einstein's SPR, as the following theorem indiates.THEOREM 2.8.24 There is a model M j= Basax + Ax(Triv t) + Ax(p ) + SPR+ suhthat in M the fmk's are de�nable, yet M 6j= Ax(eqtime). Intuitively,SPR+ +Basax +Ax(Triv t)+Ax(p ) 6) Ax(eqtime);even if we assume that all the fmk's are de�nable.Theorem 2.8.24 implies that196This has nothing to do with synhronism, instead this involves the \speed of time" (slow, fast et). Theintuitive ontent of Ax(eqtime) is about hoosing our units of measurement. Namely, basially, it says thatdi�erent observers hoose the same units of measurement, in some sense. Cf. x2.8.4 on p.90.197Motivation for doing this from the literature omes soon.



2.8.3 SYMMETRY AXIOMS AND EINSTEIN'S SPR 89(*) Basax +Ax(Triv t)+Ax(p ) + Einstein's SPR 6j= Ax(eqtime).198In many of Einstein's derivations, when he uses as axiom the onstany of speed of lighttogether with SPR, he is basially using Basax + SPR (parts of Basax remain tait in hisformulation). In suh derivations Einstein uses Ax(eqtime) as a tait assumption.199 This isan extra reason for us to add Ax(eqtime) as an expliit assumption to Ax(symm0).200In this onnetion, we also note the following. Taylor and Wheeler [257℄ at the end ofxI.4 (around Figure 12) mention a symmetry priniple whih we formalized as Ax43 in AMN[18, x3.9.6 (\Further ideas") on p. 406℄. Intuitively, Ax43 says that meter-rods orthogonalto the diretion of movement do not shrink or grow.201 To save spae, we refer the reader toAMN [18, x3.9.6℄ for the formal presentation of Ax43. Taylor and Wheeler mention Ax43in onnetion with Einstein's SPR. (Cf. Remark 2.8.26 below.) We prove in AMN [19℄ that,under reasonable onditions, Ax(eqtime) and Ax43 are equivalent, namely,(**) Basax +Ax(Triv t)+Ax(p ) +Ax(symm0) j= (Ax(eqtime) $ Ax43),if n > 2. Therefore by Cor.2.8.23 and Thm.2.8.24 we have(***) Basax +Ax(Triv t)+Ax(p ) + Einstein's SPR 6j= Ax43.This together with Taylor and Wheeler [257, xI.4℄ also adds motivation to our inludingAx(eqtime) into Ax(symm).Finally, we turn to the onnetion between Einstein's SPR and existene of faster thanlight observers.THEOREM 2.8.25(i) Basax(2)+ Einstein's SPR is onsistent with the existene of FTL observers. Moreover,(ii) Basax(2) + SPR+ +Ax(p ) +Ax(Triv)+Ax21 +Ax(symm) 6j= � FTL observers.Proof: The proof goes by heking that the model M onstruted in the proof of Thm.3.9.8(iii) on p. 352 in AMN [18℄ satis�es SPR+ too. Sine M ontains FTL observers, we aredone.Remark 2.8.26 The above result is in ontrast with an argument of Einstein (from 1916) inEinstein [80℄, where from SPR and the onstany of speed of light he derives, without using theassumption n > 2, that no body an move FTL. In our opinion, the reason for this unjusti�edonlusion was that on pp.126-127 Einstein seems to onlude from SPR that m sees k the sameway as k sees m, i.e. roughly fmk = fkm (in standard on�guration). (He uses letters K and K 0198Of ourse, (*) holds only in the presently hosen framework of \pure relativity theory". If the size of ahydrogen atom or e.g. the Plank length would be expressible in our frame language (f. p. 6 or the Index),then the strength of Einstein's SPR ould inrease and Ax(eqtime) ould beome derivable from SPR+. Thisis possible beause SPR is not a single formula but a shema of formulas (.f. x2.8.4 below), hene if we havea riher language, then SPR involves these riher formulas, too. For more on this see x2.8.4.199Examples are his derivation of Lorenz transformations in Einstein [80, Appendix℄, and e.g. [79℄.200Reall that one of the purposes of applying mathematial logi to relativity is to replae tait (i.e. impliit)assumptions by expliit axioms. In other words, it is to make tait assumptions expliit (so that even the\non-initiated" an seurely follow what is going on and exatly why). Cf. [18, x1.1℄ and Matolsi [187℄.201E.g. if m and k are in standard on�guration (k moving in diretion �x), then meter-rods of k parallel withthe �y axis of k are of the same length when observed by m and k. Cf. Cor.2.8.12.



90 2.8 SYMMETRY AXIOMS AND TWIN PARADOXfor what we denote by m and k.) But this does not follow from SPR beause the statementthat John (=m) sees Mary (=k) in a ertain way (i.e. as desribed by a �xed funtion fmk),from the point of view of John, is not a law-like statement. To see this more learly, let usobserve that this statement is of the form \m sees Mary as desribed by f", where m is a freevariable. Now, e.g. Hempel-Oppenheim [119℄ write that individual names like Mary shouldnot our in law-like statements. (Many authors agree with this, f. e.g. the reent paperHintikka-Halonen [128, x7, in partiular e.g. item (2) on p.649℄.) So, the law-like statementthat remains from the above is \for m there is k0 suh that m sees k0 moving as desribed bythe funtion f". But this formula is of the pattern of our Ax21 and does not imply \[m andk are in standard on�guration and fmk(�0) = �0℄ ) fmk = fkm" whih seems to be the pattern[80℄ uses on pp.126-127. To see that [80℄ does not use n > 2 in this partiular argument,we note that on pp.124-127 n is not mentioned and only oordinates x and t are mentioned,no mention is made of y or z. But the Lorentz-transform (item (8) on p.128) is immediateby what is on p.127. Atually, after having derived (8a) on p.128, Einstein expliitly writesthat next he generalizes the result to the ase where oordinates y and z are also taken intoaount. A similar remark applies to the derivation of Ax43 from SPR + tait assumptionsin [257, p.37 in the Hungarian edition℄.In onnetion with the above we mention that in x3 we prove that there are no faster thanlight observers if n > 2 and if we assume some very mild onditions (see Thm.3.2.13). It isinteresting to note that our onditions involve no instane of Einstein's SPR and no version ofthe onstany of the speed of light. �
2.8.4 Is Ax(symm) objetive or subjetive?Instead of Ax(symm) let us disuss its orollary Ax(syt00) formulated below, beause thissimpli�es the disussion. However, the whole disussion extends to Ax(symm) too.Ax(syt00) (8m; k 2 Obs) [fmk(�0) = �0 ) jfmk(1t)tj = jfkm(1t)tj℄.That is, \as I see your loks slowing down (as a onsequene of your motion relative tome) so will you see my loks slowing down (as a onsequene of my motion relative toyou)".Meditating over the meaning of Ax(syt00) leads to the following question. Ax(syt00)an be made true (or false) by hoosing the units of measurement k uses. (The same appliesto Ax(symm)). But hoosing units of measurement is something subjetive. Assume thatm lives on the Earth while k lives in a spaeship from another galaxy. They an see eahother all right, but how an they ompare their meter-rods (or their loks), i.e. how an theyagree on using the same units of measurement. Suppose, they are in radio ommuniation.If they annot ompare their units of measurement via radio ommuniation, perhaps thereis no thought-experiment for them to hek whether Ax(syt00) is true, whih ould renderthis axiom either meaningless or to be a matter of agreement for onveniene. In other words,Ax(syt00) would beome kind of subjetive (i.e. something that does not say too muh aboutwhat the world is really like, but instead it is about how we hoose to desribe the world).The following intuitive argument says that this danger is not present i.e. that Ax(syt00)and Ax(symm) are objetive, i.e. they are hekable by some thought experiment. This goesas follows. Eletrons and hydrogen atoms are the same in all parts of our Universe, aording



2.8.5 THE TWIN PARADOX 91to the best of our knowledge.202 Observers m and k an agree through their radio ontat thatthey will use the hydrogen atom for de�ning their units of measurement (both for spae andfor time). I.e. they an agree to use the same units of measurement. After this, it is only amatter of patiene to work out a thought experiment for heking whether Ax(syt00) holdsfor m and k. A similar argument applies to Ax(symm) in plae of Ax(syt00). Therefore, wean onlude that Ax(syt00) and Ax(symm) are meaningful (objetive) axioms about whatthe world is like (and not only \linguisti toys" like, say, absolute time).The above onsiderations (using hydrogen atoms for mathing units of measurement) omesup in Chapter 4 of AMN [18℄ where we look into axiom systems weaker than Basax and thequestion omes up whether the di�erene between the weak system203 and Basax is testableby thought experiments (i.e. objetive) or not.2.8.5 The twin paradoxThe twin paradox (TwP) was formulated on p.13. However, that formulation annot be usedin Basax beause it uses non-inertial (i.e. aelerated) observers. Below we will introdue avariant of (TwP) in whih we will simulate an aelerated observer by several inertial ones.To formulate (our present version204 of) the twin paradox, we will need the binary relationSTL of being slower than light between observers to be realled from AMN [18, Thm.2.7.2℄.Let M be a frame model and m; k 2 ObsM.Intuitively, m STL k intends to mean that m thinks that k is moving more slowly than light(relative to m, of ourse). (E.g. in the ase of the Basax(2) model MP1 with FTL observers,on p.50, STL is an equivalene relation on ObsMP1 with exatly two equivalene lasses.)At the present point of this work, we ould use the following simple potential de�nition (*)for STL, beause we are assuming Basax (hene AxE).(*) m STL k () vm(k) < 1.This de�nition would work beause at this point we are assuming AxE, and AxE postulatesthat the speed of light is 1 (for every observer, in every diretion). However, in Chapter 3we will start to study more exible, more general axiom systems (i.e. theories) than Basax.In these, AxE in its present form will not always be assumed, hene we need a more subtlede�nition of STL than (*) above.Intuitively, our de�nition will say that m STL k holds i� m sees no photon ph moving for-wards in the same diretion as k does suh that vm(ph) � vm(k) would be the ase. Formally:m STL k def() (8ph 2 Ph)hif ~vm(k)and ~vm(ph)are vetors pointing in the same diretion, then~vm(k)is shorter than ~vm(ph)i.205202At this point we aknowledge that we brought a new axiom into our piture of the world. But we thinkthat should be all right as far as one aknowledges it. (I.e. what we are saying about Ax(syt00) is not based onpure logi only.) In this onnetion f. also Feynman [86, p.90 (\Symmetry in physial law")℄ and Galilei [93℄.203in whih for di�erent observers the speed of light might be di�erent204In reality this is only an \approximation" of the original paradox, and this is alled \lok paradox" ind'Inverno [73℄p.24.205The omplete formalization of the above de�nition needs some ase distintions (and some ommon sense),



92 2.8 SYMMETRY AXIOMS AND THE TWIN PARADOXIn Theorems 2.7.2 and 3.4.1 (pp.110, 203) of AMN [18℄ we saw that STL is an equivalenerelation on the set of observers Obs (assuming Basax +Ax(p )).Let us turn to formulating our present version of the twin paradox. Although the formulabelow might look long at �rst sight, its intuitive ontent is simple f. Figure 42. The keyidea is the following. Originally in (TwP) we had two twin brothers m and k. Of these, mwas inertial while k was aelerated. As we already said, sine now (in the present setion)we do not have aelerated observers, we will have to simulate (or approximate) brother (i.e.observer) k by two \auxiliary" inertial observers k1 and k2.We will return to disussing the role of STL in Ax(TwP), soon.It is easier to digest the rather simple and natural meaning of Ax(TwP) below if one looks�rst at Figure 42. (We were areful to use the same letters in the �gure and in the formulabelow.)Ax(TwP) (8m; k1; k2 2 Obs)(8p; q; r 2 nF)� [m STL k1 ^ m STL k2 ^ pt < qt < rt ^fpg = trm(m) \ trm(k1) ^ fqg = trm(k1) \ trm(k2) ^ frg = trm(m) \ trm(k2) ℄ )jpt � rtj > jfmk1(p) t � fmk1(q) tj+ jfmk2(q) t � fmk2(r) tj �,see Figure 42.THEOREM 2.8.27 (Basax +Ax(symm)+Ax(p )) j= Ax(TwP).The ondition \STL" an be replaed in Ax(TwP) by the following perhaps more naturalondition: All three observers m; k1; k2 think that event wm(q) was \temporally between"events wm(p) and wm(r). We leave the omplete formalization of this version of Ax(TwP) tothe reader. For more on the role of \STL" in Ax(TwP) we refer to AMN [18, Remark 2.8.19(p.140)℄.Figure 42 shows how the inertial brother, m, observes his aelerated twin brother, k. Letus see how the aelerated brother, k, observes his inertial twin brother, m. Below (and whenlooking at Figures 42-47) it is important to keep in mind that \m observes k" means that mrepresents k's life-line in m's oordinate system. Hene \observing" means \oordinatizing"and not visually seeing via photons. Hene \observing" does not involve any visual e�et likethe doppler e�et. As we said before, this onvention applies throughout the present work.As a ontrast to Thm.2.8.27 we note that the onverse of Thm.2.8.27 is not true. Namely,THEOREM 2.8.28 Basax +Ax(p ) +Ax(TwP) 6j= Ax(symm):206In Chapter 4 of AMN [18℄ we onsider Ax(TwP) as a symmetry priniple. In this ontextthe above results an be interpreted as saying that Ax(symm) is a stritly stronger symmetrypriniple than Ax(TwP), in some sense.beause in the formal de�nition of the vetors ~vm(k) we represented the in�nitely long vetors in a di�erentspirit than the �nite ones (f. pp.19-20 for vm(k) and ~vm(k)). An equivalent de�nition of m STL k says that(8ph 2 Ph)[if m sees both k and ph moving forwards in the same diretion, then vm(k) < vm(ph)℄, where theformalizations of the expressions (like \diretion" et) used in this formulation are found in Chapter 3, Def.3.2.4(p.108) herein. Cf. also the de�nition of STL in AMN [18, p.460℄.Else: we did not hek how many of our axioms are needed for proving that STL is an equivalene relationon Obs, but we note that Basax+Ax(p ) is suÆient for this.206This is a result of Gergely Sz�ekely (ELTE University), solving a problem posed by Judit Madar�asz. Cf.Sz�ekely [246℄.
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This is what we approximate. jpt � rtj > jfmk1(p) t � fmk1(q) tj+ jfmk2(q) t � fmk2(r) tjFigure 42: Twin paradox. (In this �gure we hoose the speed of light to be 2 instead of 1 forbetter representation of the e�ets we want to illustrate.) The slanted lines in the left-handpiture represent simultaneities of observer k.In Ax(TwP) we approximated k by two inertial observers, k1 and k2. We an imaginethat k travels with k1 until k1 meets k2, when k \jumps over" to k2's spaeship. We then puttogether k's world-view from k1's and k2's suh that k's world-view agrees with k1's world-viewuntil they meet k2, and from that time on k's world-view agrees with k2's world-view. We alsoassume that the loks of k1 and k2 are suh that they show the same time at their enounter(i.e. we assume that fmk1(q) = fmk2(q) where fqg = trm(k1) \ trm(k2) ).From now on we assume Basax + Ax(symm) + Ax(p ). We will use properties of theworld-view transformations in models of Basax + Ax(symm) + Ax(p ) that we proved inthis setion, see e.g. Theorems 2.8.7{2.8.8.Figure 43 shows how k observes m when k is approximated by k1 and k2 as in Figure 42.Reall that in Figure 42, ~vm(k1) = �~vm(k2) and k1 and k2 meet at q, i.e. trm(k1) \ trm(k2) =fqg, and p = �0. I.e., aording to Figure 42, m observes k reeding with speed v until time qt,when k turns bak and begins to approah with the same speed v. As illustrated in Figure 43,k will observe m to reede with the same speed v until time fmk1(q)t, when m turns bak (asobserved by k) and begins to approah with speed v. This is very similar to how m observes k,exept that m, as observed by k, turns bak sooner than k does so as observed by m, beauseby paradigmati e�et (I) (moving loks slow down) we have that fmk1(q)t < qt. I.e., m needsless time for the journey as k observes it than k needs for the journey as m observes it (this isthe twin paradox). This also implies that the distane m overed aording to k is less than
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Figure 43: Twin paradox approximated by two inertial observers of the same speed.Let us analyze further (from a di�erent point of view) how k observes m. Assume thatwhen k departs, m is standing there waving goodbye, then goes home, has breakfast, andthen omes bak to the departing spot again to meet his brother k. Now, k will observe mwaving goodbye and starting to go home in slow motion (i.e. all of m's proesses are slowerthan usual), then before m reahed home, aording to k's world-view, suddenly he is alreadyoming bak again (in slow motion) to meet him at the departing spot. In turn, m will observehis twin brother in slow motion all the time, and he will observe all events that happened tok on his journey.In more tehnial terminology, using Figures 42 and 43: e0 = wm(�0) is the event of k'sdeparting, and wm(q) is the event of k's turning bak on his journey. Let event e1 in m's lifebe simultaneous with wm(q) aording to k1 (i.e. m 2 e1 and fmk1(q)t = w�1k1 (e1)t). See Figure43. Similarly, let event e2 in m's life be simultaneous with wm(q) aording to k2. We an seethat e2 happens muh later in m's life than e1 and that k does not observe the events in m'slife that happen between e1 and e2. In our story, e1 is an event in m's life when he is on hisway home after waving goodbye to his twin, and e2 is an event in m's life when he is already onhis way bak to meet his twin brother upon his return. k observes m in slow motion beause kobserves that m's lok slows down, and so for k more time passes between the events e0 ande1 than for m.207On the other hand, as we said, m will observe his twin brother in slow motion all the time,and he will observe all events that happened to k on his journey. What is the reason for thisstrong asymmetry between the twins? The reason is that m is an inertial observer while k207This is one of our paradigmati e�ets, the Ax(symm) version of \moving loks slow down", f. Thm.2.8.7.



2.8.5 THE TWIN PARADOX 95is not; k's world-view is put together from the world-views of two di�erent inertial observers,and at the \pasting point" (i.e. at the event when k turns bak) there are strange e�ets, e.g.a large part of m's life-line gets \ut out" (k observes m suddenly at a muh later point inm's life). As a side-e�et of approximating k by only two inertial observers, \at point q" kexperienes in�nite aeleration (whih in turn naturally auses funny e�ets). Soon we willapproximate k by more and more inertial observers. Then the \irrelevant" parts of the funnye�ets will gradually fade away while the \relevant" parts of the e�ets will stay with us (f.e.g. Figure 46).If we approximate k by two inertial observers di�erently than in Figure 42, e.g. if k omesbak more slowly than he was traveling outwards, k will observe m at the turning pointsuddenly plaed at a bigger distane, as in Figure 44. But if k1 and k2 have the same speed,this \instantaneous displaement" will not our.�t �tm k
k1k2 mm�x �xk1k2Figure 44: Twin paradox approximated by two inertial observers of di�erent speeds.Let us see what the above senario looks like if we re�ne our approximation of the ael-erated twin, i.e. if we approximate the aelerated twin by more and more inertial observers.From now on we assume that the life-line of k is symmetri in the sense that his motion out-wards is exatly of the same kind as his motion inwards, i.e. k's life-line is symmetri w.r.t.the horizontal line ontaining q. Further, we assume that both m's and k's loks show 0 atthe turning point of k's life-line.208 Also, for simpliity, we assume F = R.Figure 45 shows m's and k's world-views when k is approximated by three inertial observers,and when k is approximated by �ve inertial observers. We an see that as we approximatek by more and more inertial observers, the intervals in m's life-line that k will not observebeome shorter and shorter, and eventually k will observe all events in m's life-line. Similarly,m's life-line will eventually beome a ontinuous urve as k observes it (i.e. the displaementsat the \pasting points" will eventually disappear).209 (The word \eventually" here means \atthe limit of this approximating proess". We approximate in a way that the di�erene ofspeeds of the onseutive inertial observers approahes 0 and we hoose the \pasting points"appropriately.)Figure 46 shows the \limit" of this approximating proess. We onentrated on \smoothingout" the turning point in k's life-line, and we disregarded the initial and last segment of k's208in order to get simpler drawings209This is so beause the extent of the paradigmati e�ets inreases with speed, they do not our at speed0, and the extent they our to ontinuously depends on speed of movement. See Theorem 2.9.6 in x2.9.
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Figure 45: The twin paradox approximated by more and more inertial observers.



2.8.5 THE TWIN PARADOX 97aeleration and deeleration (f. the left-hand side of Figure 42).210 Thus k goes outwardswith onstant speed v for a ertain amount of time, then gradually (smoothly) he deeleratesuntil he is momentarily at rest with respet to m, then he ontinues deelerating whih meansthat he turns bak and begins to gain speed211 until he attains speed v again, and then he stopsdeelerating and approahes m with onstant speed v until he reahes m. Cf. the left-hand sideof Figure 46. This is how m observes k. Let us turn to how the aelerated twin k observeshis inertial brother m. In Figure 46 we an see that k observes m �rst reeding with onstantspeed v, then m aelerates (inreases (!) his speed), then m begins to deelerate till m ismomentarily at rest w.r.t. k, and then m reverses this proess. Thus the two life-lines are notalike: k's life-line, as observed by m, is \onvex" in the sense that k's movement is uniform,it keeps deelerating. At the same time, m's life-line as k observes it is both \onvex andonave". This has to be so beause of the following: trm(k) and trk(m) are both ontinuous(beause in physis all movements are ontinuous), their initial and last segments are straightand parallel (beause vm(k) = vk(m) in the inertial parts of the journey), these segments areloser in m's life-line than in k's one (beause for k less time has passed between departingand meeting, i.e. between e0 and e3, than for m), while the \width" of both life-lines are thesame (beause at the turning point k and m are at rest with respet to eah other, so they seeeah other being at the same spatial distane). See Figure 46.
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Figure 46: The inertial brother's life-line is di�erent from that of the aelerated one.210For formulating and disussing the Twin Paradox, we do not need to assume that before event e0 (or aftere3) the two twins k and m are at relative rest. Instead, we may assume that they simply meet at e0 (movingwith relative speed v). This way we an get rid of the initial (and �nal) aeleration without losing anythingessential. The aeleration \around" q, however, is essential, it annot be \argued away" in the just used spirit.211This is so beause k's veloity hanges gradually from ~v to �~v. So in terms of veloity, k's veloity isonstantly dereasing. In terms of speed, this implies losing speed gradually from v to 0, and then gainingspeed gradually from 0 to v again.



98 2.8 SYMMETRY AXIOMS AND THE TWIN PARADOXWe will return to the twin paradox in the hapter on aelerated observers of AMN [19℄and in [26℄, where we will begin to study gravity, too. Jumping ahead for a short while, letus see how k will \explain" m's strange movement (life-line) by using his knowledge aboutgravity. This explanation serves also to explain how the \laws of physis" an be the same form and for k despite of the fat that eah observes his brother as behaving rather di�erently.The reader does not have to understand the explanation whih omes below, sine it uses (i)Einstein's equivalene priniple (of aeleration and gravity) and some of the e�ets of gravitywhih we will prove in the hapter on aelerated observers of AMN[19℄, [26℄, namely, that (ii)gravity auses loks to run slow relative to loks far away from the \soure of" gravity, and(iii) in some sense gravity does not a�et proesses whih take plae suÆiently far away fromthe soure of gravity. Therefore we advise the reader to read the explanation below as a \fairytale" (whih, in turn, will beome easily understandable after studying the basi parts of thetheory of aelerated observers in AMN [19℄, [26℄).The aelerated brother k thinks that he is at rest and m is moving away from him withspeed v. When m is already at a distane, a gravitational �eld appears in k's world-view wherek stands. To remain motionless despite of this strange gravitational �eld (whih appeared \outof nowhere" so to speak), k starts up the engine of his spaeship to balane the e�et of gravity.(In ontrast, m thinks that k started his engines in order to deelerate.) This gravity slowsdown k's lok, and this explains why, for k, m appears to aelerate when gravity appears.See Figure 47. After a while, sine this gravity \pulls" m towards k, m begins to deeleratetill it omes to a momentary rest w.r.t. k, then turns bak and begins to \fall bak" towardsk with inreasing speed. When gravity disappears (then k stops the engine in order to staymotionless), m �rst slows down212, then reahes speed v and ontinues to approah k withonstant speed v. (In passing we note that the reader might have the impression that for ksometimes m moves faster than light. However, this is not the ase, beause as a side-e�et ofgravity in k's oordinate system, at plaes far away from k the speed of light beomes greaterthan usual. This will be seen in the hapter on aelerated observers.)In the above we used the expression \k observes" in plae of the expression \k sees", beausewe wanted to emphasize that we meant everything aording to k's oordinate system, and notaording to how k atually \sees" via photons. Let us briey turn to the visual e�ets, i.e. letus see how m and k visually see the journey via photons. See Figure 48. Again, we will �ndthat the two brothers see the journey di�erently. The inertial brother will see k suh that ktravels outwards (with loks slowed down) for a long time and then he approahes (with fastrunning loks) for a very short time. On the other hand, k will see that his inertial brotherm travels outwards (with slow loks) for about the �rst half of the time needed for the wholeexperiment (i.e. until event wm(q) whih is when m thinks that k turns around), and fromthat time on m approahes (with fast loks). Thus for k, m's outwards and inwards partsof the journey (as k sees via photons) lasted approximately for the same time, while m willsee (via photons) that k's journey outwards lasted muh longer than k's journey bakwards.If k deelerates only for a short time around its turning point, then this di�erene of ratio ofoutward and inward trips as k and m see them via photons will remain.
212beause of the already mentioned e�et of gravity on k's loks
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Figure 47: When k starts up his engine, k's lok slows down, and thus m's movement seemsto speed up (m seems to aelerate).



100 2.8 SYMMETRY AXIOMS AND THE TWIN PARADOXhere k seesvia photons mas approahing
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�x �xFigure 48: The two brothers' visual observations of eah other's journey are also di�erent.2.8.5 Our entral axiom system Sperel.We onlude this part with introduing one of our entral axiom systems for speial rela-tivity. Theorem 2.9.6 in x2.9 (p.104) states that the world-view transformations in models ofBasax+Ax(symm) are all so-alled Poinar�e transformations, i.e. world-view transformationsthat our in the standard models of speial relativity. Thus, in models of Basax+Ax(symm)all the usual formulas for oordinate-transformations, used in the physis books, are valid.Therefore, models of Basax +Ax(symm) are very lose to the standard Minkowskian mod-els. In proofs we will often need the auxiliary axioms Ax(Triv) and Ax(k). Though Ax(k)follows from Basax+Ax(symm), for later weaker versions of Basax this will not be so, e.g.Bax + Ax(symm) 6j= Ax(k), here Bax is an axiom system introdued in x3. Therefore wede�ne one of our stronger kind213 of speial relativity theories as follows.De�nition 2.8.29Ax(symm)y def= Ax(symm)+Ax(Triv)+Ax(k)Sperel def= Basax +Ax(symm)y. �Sperel is a �rst-order-logi theory of speial relativity that is basially equivalent to thestandard version of speial relativity theory. The only omissions (missing from Sperel) aresome auxiliary axioms that we almost never use, see the de�nitions of BaCo and214 Minkowskimodel in AMN [18, x3.8, pp.298,331℄. For more on this see AMN [18, x3.8℄.213As indiated in the introdution, in the present work we will have stronger axiomati versions as well asweaker axiomati versions of (speial) relativity. At eah point, we will hoose between the stronger and weakerversions depending on our purposes at that point, f. e.g. items II, III, V in x1.1 of AMN [18℄.214BaCo is a omplete axiomatization of (what we onsider as) usual speial relativity, see Chapter 3 herein,and AMN [18℄.



2.9 LORENTZ TRANSFORMATIONS 1012.9 Connetions with standard Lorentz and Poinar�e transforma-tionsIn order to ompare our results with the literature, we reall some standard onepts from theliterature.De�nition 2.9.1 Assume F = hF;�i is an ordered �eld and n � 2.1. Linb = Linb(n;F) denotes the set of bijetive linear transformations of nF.2. Let p 2 nF. Then �p : nF �! nF denotes the translation by vetor p, de�ned as follows:�p def= h q + p : q 2 nF i :Tran = Tran(n;F) denotes the set of translations of nF, i.e.Tran def= f �p : p 2 nF g.3. A funtion f : nF �! nF is alled an aÆne transformation of nF iff it is a ompositionof a bijetive linear transformation and a translation, i.e.f = g Æ �p, for some g 2 Linb(n;F) and p 2 nF.Aftr = Aftr(n;F) denotes the set of aÆne transformations of nF.4. Let p; q 2 nF. Then the square of their Minkowski-distane g2�(p; q) is de�ned as follows:g2�(p; q) def= ���(q0 � p0)2 � �X0<i2n(qi � pi)2���� :We note that g2� : nF � nF �! F.5. By a Lorentz transformation of nF we understand f 2 Linb suh that f preserves thesquare of Minkowski-distane, that is,(8p; q 2 nF) g2�(p; q) = g2�(f(p); f(q)) :(?)Lor = Lor(n;F) denotes the set of Lorentz transformations of nF.6. By a standard Lorentz transformation215 we understand a Lorentz transformation f suhthat f[�t ℄; f[�x ℄ � Plane(�t; �x) and (81 < i 2 n) f(1i) = 1i :SLor = SLor(n;F) denotes the set of standard Lorentz transformations of nF.7. By a Poinar�e transformation of nF we understand f 2 Aftr suh that f preserves thesquare of Minkowski-distane, that is, (?) in item 5 holds for f.Poi = Poi(n;F) denotes the set of Poinar�e transformations.216215Or equivalently a Lorentz transformation in standard on�guration.216An equivalent de�nition says that a Poinar�e transformation is a omposition of a Lorentz transformationand a translation, i.e. is of the form lor Æ �p, for some lor 2 Lor and p 2 nF.



102 2 SPECIAL RELATIVITY8. A bijetive linear transformation f of nF is alled an expansion217 iff(90 < � 2 F) f = h� � p : p 2 nF i :Exp = Exp(n;F) denotes the set of expansions. �CONVENTION 2.9.2 For better readability, the elements of Exp and Lor will often bedenoted by exp and lor, respetively. Similarly for Linb; SLor; Poi; Rhomb et. �For ompleteness, we note that our distinguished sets of transformations are ontained in eahother in the following way: SLor � Lor � Linb � Exp\ \Tran � Poi � Aftr ;where A\B , B � A, et. all denote that A is a proper subset of B.Thm. 2.9.4 below is a kind of haraterization of the world-view transformations fmk inBasax + Ax(p ). Intuitively, it says (assuming Basax + Ax(p )) that a world-view trans-formation fmk is always a omposition of a Poinar�e transformation, an expansion, and a mape' indued by an automorphism ' of the ordered �eld F (f. Notation 2.9.3 below for e').Moreover all suh ompositions are world-view transformations (of some Basax model), if weassume that F is Eulidean. To formulate this theorem we need Notation 2.9.3 below.Notation 2.9.3� Aut(F) denotes the set of automorphisms of the ordered �eld F. For any algebraistruture or model A, Aut(A) is de�ned similarly (i.e. is the set of automorphisms of A).� e' denotes the funtion indued by other funtion ' the following way. Assume ' : F �!F. Then the indued funtion e' : nF �! nF is de�ned the natural way, i.e.e'(p) def= h'(p0); '(p1); : : : ; '(pn�1)i ; for every p 2 nF. �217We note that the oÆial name for an expansion is a transformation of similitude . (Coxeter [62℄ uses theword dilation while Burke [51℄ alls it an expansion. Sometimes it is also alled homotheti transformation).For reasons of onveniene we restrited the notion of an expansion for multiplying with positive �'s only.



2.9 LORENTZ TRANSFORMATIONS 103THEOREM 2.9.4 (Charaterization of the world-view transformations in modelsof Basax) Assume Basax +Ax(p ). Let m; k 2 Obs. Then:(i) fmk = poi Æ exp Æ e', for some poi 2 Poi, exp 2 Exp and ' 2 Aut(F).(ii) Assume in addition that fmk(�0) = �0. Thenfmk = lor Æ exp Æ e', for some lor 2 Lor, exp 2 Exp and ' 2 Aut(F).(iii) Let F be a �xed Eulidean ordered �eld. Assume f is a omposition of a Poinar�e trans-formation, an expansion, and a map e', for some ' 2 Aut(F). Then there is a Basaxmodel N with ordered �eld redut F suh that f = fm0k0, for some m0; k0 2 ObsN.
Remark 2.9.5 In onnetion with Thm.2.9.4 above the following are natural questions. LetF = hF;�i be an arbitrary ordered �eld. The questions:(i) Under what onditions on F is F the �eld-redut FM of some Basax model M?(ii) Whih automorphisms ' 2 Aut(F) of F an our in some Basax model in the styleof Thm.2.9.4 (i.e. for whih ' are there an M j= Basax and an fmk suh that fmk =poi Æ exp Æ e' for some poi and exp as in Thm.2.9.4)?In this onnetion we state the following.(1) If n = 2, then all ordered �elds F and all ' 2 Aut(F) an ome from some Basax model,by Thm.2.3.12 on p.32.(2) For arbitrary n, all Eulidean F and all ' 2 Aut(F) an our in some Basax model.(This follows from (iii) of Thm.2.9.4 above.)(3) Further information related to questions (i),(ii) above an be found in Thm.6.7.10,Cor.6.7.12 and the disussion below Cor.6.7.12 in AMN [18℄. Cf. also AMN [18℄ x3.5and items 3.1.4, 3.1.6 therein.In onnetion with the above, we onjeture that for any ordered �eld F, if F = FM for someM j= Basax, then all ' 2 Aut(F) ome from fmk's of some M0 2 Mod(Basax). �Let us reall that the symmetry axiom Ax(symm) was introdued in x2.8 on p.77.The following theorem says that, under assuming Basax+Ax(symm)+Ax(p ), a world-view transformation fmk is a Poinar�e transformation. Moreover all Poinar�e transformationsover a Eulidean F are world-view transformations in some Basax + Ax(symm) model.That is, Ax(symm) implies that expansions and automorphisms are not needed in the aboveharaterization of world-view transformations.



104 2 SPECIAL RELATIVITYTHEOREM 2.9.6 (Charaterization of the world-view transformations in modelsof Basax+Ax(symm)) Assume Basax +Ax(symm)+Ax(p ). Let m; k 2 Obs. Then(i){(iii) below hold.(i) fmk 2 Poi.(ii) Assume in addition that fmk(�0) = �0. Thenfmk 2 Lor.(iii) Let F be a �xed Eulidean ordered �eld. Let f 2 Poi(n;F). Then there is a Basax +Ax(symm) model N whose ordered �eld redut is F suh that f = fm0k0, for somem0; k0 2 ObsN.The proof is given in x3.8 of AMN [18℄. Here we show the idea of proof of (ii) in the ase ofn = 2. Assume that M j= Basax+Ax(symm)+Ax(p ), m; k 2 Obs and fmk(�0) = �0. Theneah of m and k thinks that the other's lok is slow (by Thm.2.8.7), and moreover the rateof slowing down is the same for both of them (see Thm.2.8.9). Figure 49 shows how this ispossible. By using this �gure, it is not diÆult to show that the unique plae where e = fmk(1t)an be is suh that the Minkowski-distane between �0 and e is 1.m k1ta0 a b e = fkm(1t)diretion of simultaneities for kdiretion of simultaneities for m
Figure 49: Both m and k think that the other's lok slows down i� fmk(1t) is in between aand b. The rates of slowing down will be equal at a unique point. This unique point is loserto a than to b, and a geometrial onstrution for it is given in Chapter 3 of AMN [18℄. TheMinkowski-distane between �0 and e is 1.Reall that the set Rhomb(n;F) of rhombus transformations was de�ned in Def.2.3.18(p.40). The following theorem says that, under some mild assumptions, rhombus transforma-tions are ompositions of standard Lorentz transformations and expansions. Moreover all suhompositions are rhombus transformations.THEOREM 2.9.7(i) Assume F is Eulidean, i.e. that F j= Ax(p ). ThenRhomb(n;F) = f slor Æ exp : slor 2 SLor and exp 2 Exp g:(ii) Assume n > 2. ThenRhomb(n;F) = f slor Æ exp : slor 2 SLor and exp 2 Exp g:(iii) Rhomb(n;F) � f slor Æ exp : slor 2 SLor and exp 2 Exp g.



3 MORE GENERAL, MORE FLEXIBLE AXIOM SYSTEMS 1053 More general, more exible axiom systems (thanBasax, or Sperel)
3.1 IntrodutionBelow we introdue re�nements of Basax (and Sperel). Roughly, this means that we willstudy axiom systems for relativity whih are weaker (or more subtle) than Basax. One aspetof this is that we inrease the so-alled \lego" harater218 or logial deomposability of Basax.This means (among other things) that we take one axiom of Basax, deompose it into a setof weaker axioms and then replae the original axiom in Basax by this set of weaker axioms.The resulting axiom system is equivalent to Basax but it is built up from a greater number ofsmaller piees in a more exible way. Then we an experiment with removing one or more ofthese re�ned axioms from (the new version of) Basax and then ask ourselves what happensto the so obtained weaker (hene more general) theory, whih preditions of relativity remainprovable, how these new weaker theories are related to eah other and to the literature ofrelativity, et.In other words, we take a strong and important theory, Sperel, and deompose it (oranalyze it) into a lattie of weaker, subtler and more exible theories suh that the supremumof the lattie remains Sperel. Then by analyzing the lattie (or hierarhy) of these subtheoriesof Sperel we gain more insight into Sperel (and related questions). One ould say thatthis way we analyze the �ne-resolution struture of Sperel and its possible variants.The above outlined �ne-resolution analysis of important theories is not new. It has beendone to axiomati Set Theory, Peano's Arithmeti (f. e.g. H�ajek-Pudl�ak [113℄). What isknown as reverse mathematis219 is also an example of the �ne-resolution analysis whih weintend to arry through for relativity herein. A similar �ne-resolution analysis of relativity wasinitiated in Friedman [91, xIV.6.℄ to whih we refer from [18, x4.4℄ as \oneptual analysis".At this point someone may ask \why should we study weaker and weaker subtheories ofSperel?" The answer is manyfold: Muh of the answer is sattered through [18℄, Fried-man [91℄ and the literature of mathematial logi; but without aiming for ompleteness, initems 1 - 6 below we ollet some of the motivation for this.1. If we prove an interesting predition (i.e. theorem) of Sperel like the Twin Paradox orthe nonexistene of FTL observers from a weaker subtheory of Sperel, then we obtaina stronger , more informative theorem. Formally, assume Sperel j= Thweak 6j= Spereland Thweak ` ' where ' is an interesting predition. Then Thweak ` ' is a strongertheorem than Sperel ` '.218By speaking about \lego" harater we mean to invoke the spirit of the toy world known as lego wherealmost arbitrarily omplex \models" of buildings, windmills, ars, spaeships et. an be onstruted by thehild using a small number of types of building bloks. One of the analogies with our logi-based relativitytheories is that if the hild wants to make a small modi�ation on the struture (say bridge or house) he built,he an do so by removing only a small number of piees and replaing them by others (in a pattern di�erentfrom the original one). In this analogy, the emphasis is on exibility, deomposability, and \�ne-resolution"struture.219Cf. e.g. Andr�eka-Kuruz-N�emeti [14℄, Simpson [235℄, Friedman-Simpson-Smith [89℄.



106 3 MORE FLEXIBLE AXIOM SYSTEMS2. Thweak ` ' has many further advantages over Sperel ` '. E.g. proving Thweak ` 'might guarantee for us that the predition ' of relativity will survive transition fromthe theory Sperel to a di�erent (desirable) theory of relativity in the future. Thistransition might have various motivations, e.g. (i) a desire to generalize220 Sperel, or(ii) a desire to ompare Sperel with alternative theories of relativity, like Reihenbah's,or Lorentz's (f. Szab�o [244℄ and AMN [18, x4.5℄), or (iii) wanting to know \why" ' ispredited by Sperel, i.e. whih axiom (or axioms) of Sperel is responsible for ' 221,wanting to �nd a version of relativity whih is (strong enough in some sense) but whihdoes not predit '.3. Studying the hierarhy (or lattie) of weak sub-theories of Sperel (together with somenaturally related theories) helps us to address the so-alled why-type questions outlinedin [18, x1.1 items (X), (III), (V)℄.4. Studying the lattie of subtheories of (Sperel + some relevant other theories)222 mighthelp us in �nding a ommon generalization of, say, the Newtonian theory and the Ein-stenian theory, whih may help us to advane in the diretion of larifying the so-alledinommesureability issues proposed by ertain followers of Kuhn (f. [149℄) belonging tothe diretion known as sienti� relativism.223 So this an be viewed as a ontribution tothe (logi-based) philosophy of siene. Atually, we did use the hierarhy of subtheoriesin this diretion in [18, x4.1, p.423℄.5. As it was explained in Reihenbah's pioneering book [218℄, de�nability theory is offundamental importane for relativity theory. Now, by studying the weak subtheories ofSperel, we an make the de�nability results and duality results for relativity formulatedin our next hapter stronger, more substantial and more invariant under possible hangesin the theory.6. Studying weak subtheories makes our understanding of the theory in question more ex-ible, and it prepares the ground for generalizations (in various diretions and motivatedby various reasons). In other words, this makes the theory more \�ne-tuneable" withmuh more freedom of movement.224With this we stop listing motivations for weak subtheories of Sperel, and we turn tointroduing and disussing them.3.2 The axiom systemsWe will proeed in a bottom-up fashion: �rst we will introdue a quite weak axiom systemPax for relativity, and then we will introdue new systems by adding axioms to Pax. We notethat Pax is not the weakest important version we will disuss, sine to every theory like Paxor Basax we will introdue its partial (or bounded domain) version Lo(Pax), Lo(Basax)et. For a theory Th its partial domain version Lo(Th) will be important beause the220e.g. in the diretion towards relativity with aelerated observers and eventually general relativity221To make this answer useful, �rst we need to replae the \few strong axioms" version of Sperel by a\many weak, well balaned axioms" version as indiated way above.222See e.g. the latties in Figures 60,138 (pp.126,A-31) herein and in AMN [18, p.653℄.223Cf. the key-word \theory-laden" on p.797 of [35℄.224By ontrast: if our theory is given in the form of a di�erential equation, (roughly) the only freedom ofmovement in �ne-tuning is hanging the values of the onstants in the equation [e.g. in the ase of Einstein'sequations, one an \play" with the value of the osmologial onstant �℄.



3.2 MORE FLEXIBLE AXIOM SYSTEMS 107Th 7! Lo(Th) generalization is a typial step needed for moving towards general relativity.For brevity, we will not reall all the detail of our work on Lo(Th) here, we refer the readerto AMN [18, x4.9℄ for more (see also p.122 herein).CONVENTION 3.2.1 When there is no danger of onfusion, we will use the word \theory",\axiom system" (and sometimes \set of formulas") interhangeably. When we all an axiomsystem a theory then we mean the theory generated by the axiom system. �After this little detour (to partial relativity) let us turn to introduing Pax.We obtain Pax from Basax by \attaking" two axioms: Ax6 and AxE and then adjustingthe rest (to the hange).The AxE part: We will throw away all of the axioms mentioning photons (exept forAx2).225 Beause of this, we will have to reformulate Ax5 beause we still want to pos-tulate that motion is possible. The new version of Ax5 will be denoted as Ax5Obs��, andwill be de�ned soon. The subsript Obs refers to the fat that this is that part of Ax5 in whihwe talk about motion of observers (as opposed to motion of photons).The Ax6 part: Ax6 postulates that all events seen226 by some observer are seen by allobservers. The motivation for essentially weakening this axiom omes from general relativity.E.g. if one observer is inside a big, slowly rotating blak hole and the other is outside, far awayand remains outside, then there will be events observed by one of them but not observed bythe other. Therefore we will replae Ax6 by the weaker axioms Ax600, Ax601. Ax601 saysthat Dom(fmk) is an open subset of nF. Ax600 says, intuitively, that if observer m \sees"observer k partiipate in an event, then k is not allowed to deny that that event happened atall. Soon we will present the formal de�nitions of these axioms.227 Similarly to the ase ofAxE, after weakening Ax6 we have to hek whether the remaining axioms need adjustmentto the hange. Indeed, Ax3 needs to be replaed by Ax30, where the latter says, roughly,that if observer m sees an inertial body b then the life-line of b as seen by m is a straight line.Summing it up, we obtain Pax from Basax by �rst drastially weakening the axioms AxE,Ax6228 and then adjusting axioms Ax1-Ax5 to the hange.229CONVENTION 3.2.2 (On terminology:) As we emphasized in x2, we all nF theoordinate-system of our model M and not spae-time. Spae-time of M will be introduedin x4 and it will be something else; namely, a struture hMn; : : :i whose universe Mn is asubset of P(B). Cf. Item 4.2.6 in x4. Cf. also Matolsi [187, xII.1.2, p.151℄. Despite of this,oasionally we use the word \spae-time" for nF, for reasons of onveniene. Namely, nFontains a time-axis and n� 1 spae axes. Therefore it is handy to speak about the spae-partS = f0g� n�1F, the time-part �t (= F � n�1f0g) of nF, and to all the rest of nF spae-timepart (sine it involves both spae and time oordinates). We hope, this will ause no onfusion,and that the reader will remember that we do not intend to regard nF as spae-time.225We ould throw away the photon-part of Ax2 too without any onsequene, but to save spae we did notgo into that here.226i.e. \observed" or oordinatized227In passing we note that in the partial versions Lo(Th) of our theories Th , Ax601 will be further weakened,f. AMN [18, x4.9℄.228Atually, we throw away AxE.229The purpose of the adjustment is threefold: (i) It might happen that (Ax1�Ax5+Ax600 +Ax601) j=Ax6. We want to aviod this sine we really want to make Ax6 weaker. (ii) We want the adjusted versionsof Ax1-Ax5 make sense (i.e. represent the original intuition) after AxE, Ax6 have been weakened. (iii) Wewant the adjusted versions of Ax1-Ax5 to be onsistent with the spirit of the hange we made (i.e. of theweakening of AxE, Ax6 we did).



108 3 MORE FLEXIBLE AXIOM SYSTEMSSometimes, nF is alled \relative spae-time" beause the observer \splits" spae-time toa spae-part and a time-part as in nF. Cf. Matolsi [187, e.g. bottom of p.154, p.165, andxII.1.7℄. �Below, we will de�ne two funtions time and spae suh that for any point p in ouroordinate-system time(p) and spae(p) are the time oordinate and the spae \oordinate"of p, respetively.De�nition 3.2.3 We de�ne funtions time : nF �! F and spae : nF �! n�1F as follows.(8p 2 nF)(time(p) :def= p0 ^ spae(p) :def= hp1; p2; : : : ; pn�1i): �

spae(p) d spae(q)
ptime(p)time(q) q trm(b)

b moves forwards in d b moves bakwards in d
time(q)time(p) trm(b)p q

spae(p) spae(q)d
Figure 50: Illustration for Def.3.2.4.De�nition 3.2.4 (diretion, moving forwards, bakwards)(i) By a spatial diretion or simply by a diretion we understand a spae-vetor d 2 n�1F,with d 6= �0.(ii) diretions :def= fd 2 n�1F : d 6= �0g.(iii) Let M be a frame model. Then body b is said to move in diretion d (as seen by observerm) iff jtrm(b)j � 2 and(8p; q 2 trm(b))(9� 2 F)(spae(q)� spae(p) = � � d):Body b is said to move forwards in diretion d (as seen by observer m) iff



3.2 MORE FLEXIBLE AXIOM SYSTEMS 109�[b moves in diretion d℄ and[(8p; q 2 trm(b))(90 � � 2 F)(time(p) < time(q) ) spae(q)� spae(p) = � � d)℄�, see Figure 50.Body b is said to move bakwards in diretion d (as seen by observer m) iff�[b moves in diretion d℄ and[(8p; q 2 trm(b))(90 � � 2 F)(time(p) > time(q) ) spae(q)� spae(p) = � � d)℄�, see Figure 50.More generally, let ` be a straight line. We say that ` moves in diretion d iff(8p; q 2 `)(9� 2 F)(spae(q)� spae(p) = � � d):(iv) When d 2 S; d 6= �0, we say that body b moves in diretion d (forwards, bakwards), if bmoves in diretion spae(d) (forwards, bakwards).(v) We extend the notion of being parallel to diretions, and in more general, to spae-vetors as follows. If d; d1 2 n�1F, then d k d1 denotes that d = � � d1 or d1 = � � d forsome � 2 F. �Now we are ready to de�ne Pax.Pax def= fAx1;Ax2;Ax30;Ax4;Ax5Obs��;Ax600;Ax601g;where the new axioms Ax30{Ax601 are de�ned as follows.Ax30 (8h 2 Ib) (trm(h) 2 G [ f;g ^ (9k 2 Obs)trk(h) 6= ;).230That is, the life-line of any inertial body h as seen by any observer m must be a lineor the empty-set, and there is an observer k suh that the life-line of h for k is not theempty-set. Ax30 di�ers from Ax3 in that the life-line of an inertial body seen by anobserver an be the empty-set.Ax5Obs�� (8m 2 Obs)(8d 2 diretions)(8p 2 nF)(9� 2 +F)(8q 2 nF)hspae(p)� spae(q) = Æ � d for some Æ 2 F ) (80 � " < �)(9k 2 Obs)(k moves forwards in diretion d with speed " and q 2 trm(k))i.Intuitively, Ax5Obs�� says that for eah diretion d there is a � suh that through anypoint there are observers moving forwards in diretion d with all speeds smaller than �.Ax5Obs�� allows that these �'s be di�erent for points of di�erent planes parallel with�t.230The part \(9k 2 Obs)trk(h) 6= ;" of Ax30 is needed for reasons of onveniene only: If we had omittedthis part from Ax30 then e.g. the formulation of Thm.3.3.12 on p.196 of AMN [18℄ would have been moreompliated than it is in its present form. We note that our no FTL theorem (Thm.3.2.13 on p.118) remainstrue if we omit this ondition from Ax30.



110 3 MORE FLEXIBLE AXIOM SYSTEMSAx600 (8m; k 2 Obs) wm[trm(k)℄ � Rng(wk).Intuitively, observer k sees all those events whih are seen by another observer m on k'slife-line. Even more intuitively, if someone sees k partiipating in an event then k shouldnot be allowed to deny that that event happened at all.Ax601 Dom(fmk) is an open231 subset of nF, for all m; k 2 Obs.Intuitive disussion of Pax.As we said, Pax is not the weakest system we onsider, beause (i) the partial versions of ourtheories e.g. Lo(Basax) are not stronger-or-equivalent than Pax (i.e. Lo(Basax) 6j= Pax)and (ii) in theories of aelerated observers (f. e.g. AMN et al. [25℄, [26℄) and in generalrelativity we will have to replae Eulidean lines by geodesis in Ax1 (where geodesis aredisussed in x4.7 p.350.). For the rest of this intuitive disussion let us ignore fats (i), (ii)above.Pax is an extremely weak theory. One ould say that Pax is a ommon fragment of the\organizational" or \book-keeping" parts232 of both Basax and Newtonian kinematis.233 Paxsays nothing about photons or about anything related to eletrodynamis. Further, Pax doesnot involve any symmetry priniples. Pax says only a little more than saying that observersuse nF for oordinatizing events, the life-line of inertial bodies as seen by inertial observers arestraight lines and a few more things of this kind. Therefore we annot expet Pax to prove anyof the exoti preditions of relativity, in partiular any of the paradigmati e�ets disussed inx2.5. Despite of this, there are some useful and interesting things whih an be proved fromPax. An example is the statement that all non-empty world-view transformations (i.e. thenon-empty fmk's) are ollineations.Notation 3.2.5 Let m �! b denote that m sees b, i.e.m �! b def() trm(b) 6= ;:THEOREM 3.2.6 Assume Pax. Then all non-empty fmk's are bijetive ollineations of nF.More formally,Pax j= �m �! k) [fmk : nF �! nF is a bijetive ollineation℄� :Proof: In the proof below we will use geometrial properties of Eul(n;F), like e.g. \for any twodistint points there is a unique line ontaining these points". We will use only suh geometrialproperties of Eul(n;F) whih are provable in Tarski's generalization234 of Eulidean geometry.These properties an be easily veri�ed either by deriving them from Tarski's axioms (synthetiapproah to geometry), or by heking that they hold for Eul(n;F) for any ordered �eld F,diretly.Assume M j= Pax; m; k 2 Obs and m �! k. If p 2 Dom(fmk), then we say that k sees p.Claim 3.2.7 Assume vm(m0) = 0. Then if k sees at least one point on trm(m0), then there isat most one point on trm(m0) whih k does not see.231in the usual sense. Cf. Notation 4.2.32(iii) on p.177.232This \only book-keeping" feature is disussed in AMN [18, Remark 4.5.29 on p.596℄.233Cf. AMN [18, x4.1, p.423℄ for Newtonian kinematis.234whih in turn is motivated by Hilbert's seond-order logi axiomatization of Eulidean geometry



3.2 MORE FLEXIBLE AXIOM SYSTEMS 111Proof of Claim 3.2.7: Assume that p 2 trm(m0)\Dom(fmk). Let P be a plane parallel with�t whih ontains trm(m0). We will \work" in P . See Figure 51. Let S be a neighborhood ofp suh that p 2 S � Dom(fmk). Suh a neighborhood exists by Ax601. Let d be a diretionsuh that all straight lines lying in P move in diretion d. Let � belong to p and d aordingto Ax5Obs��. I.e. from all points q 2 P and for all " < � there are observers moving throughq forwards in diretion d with speed ".
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�d �x�y

�tm m0m2m1
m3m4

�t
�x
m3m4

m1 m2m0k

�y
qr
p

Figure 51: Illustration for the proof of Claim 3.2.7.Assume that q; r 2 trm(m0); q 6= r suh that k sees neither q nor r. Let us hoose observersm1; : : : ; m4 aording to Figure 51. This is possible by Ax5Obs��: we hoose these observersso that they all go forwards in diretion d and their speeds are suÆiently small. The importantthing is that all the indiated meeting points are inside S, i.e. k sees all these meeting points(exept for q; r whih k does not see). Then k sees all the observers m0; m1; : : : ; m4 withthose meeting points whih are inside S. Thus in k's world-view, the traes of the observersm0; m1; : : : ; m4 are all in one plane, i.e. they are oplanar. On the other hand, we will showthat q =2 Dom(fmk) implies that in k's world-view, m1 does not meet m0. Indeed, assume thatm1 and m0 meet in k's world-view, say in point s. Then by Ax600, m0 sees the event wk(s),say wk(s) = wm0(s1). Also by Ax600, m0 sees the event wm(q), say wm(q) = wm0(s2). Butboth m0 and m1 are present in both events wm0(s1) and wm0(s2), so s1 must equal s2, sinethe traes of m0 and m1 meet only in one point, sine they are di�erent in m0's world-view(also by Ax600, sine e.g. in m's world-view there is an event on m0's trae in whih m1 isnot present). Sine s1 = s2, we then have wm(q) = wk(s1), whih ontradits our assumptionq =2 Dom(fmk). Similarly, in k's world-view, m2 does not meet m0 beause r =2 Dom(fmk).Thus, in k's world-view both trk(m1) and trk(m2) are parallel with trk(m0), though m1 andm2 meet. This ontradits the fat that in a plane to eah line ` and point u there is only oneline parallel to ` whih goes through u. This �nishes the proof of Claim 3.2.7.We say that an observer m1 2 Obs is slow if, in m's world-view, m1 moves forwards indiretion d in a plane with less speed than a � belonging to this plane aording to Ax5Obs��.Claim 3.2.8 Assume that m1 is a slow observer. If k sees a point on trm(m1), then k sees allpoints on trm(m1).



112 3 MORE FLEXIBLE AXIOM SYSTEMSProof of Claim 3.2.8: Let p 2 trm(m1)\Dom(fmk) and let S be a neighbourhood of p suhthat S � Dom(fmk) \ Dom(fmm1). Suh a neighbourhood exists by Ax601. Let q 2 trm(m1)be arbitrary. See Figure 52.m m1m2
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Figure 52: Illustration for the proof of Claim 3.2.8.Let m2; m3; m4 be as in Figure 52: m2 meets m1 at q, and m3; m4 meet m1 and m2 and eahother inside S. Further, m1; : : : ; m4 have di�erent traes in m's world-view. Suh observersexist by Ax5Obs�� as in the proof of the previous laim. Let r be a point on trm(m2) insideS, but di�erent from the meeting points with m3; m4. (This is the fat point in Figure 52.)Let us move into the world-view of m1. m1 sees all the meeting points that are insideS, beause S � Dom(fmm1). Thus, the traes of m3; m4; m1; m2 are all in one plane in m1'sworld-view. Let m01 be an observer suh that trm1(m01) is a straight line parallel with �t in thisplane, whih goes through r0 def= fmm1(r). Suh an observer exists by Ax5Obs��.Let us move now into the world-view of k. By r 2 S � Dom(fmm1) \Dom(fmk), k sees theevent on m1's trae whih is at r0. In m1's world-view, the meeting points of m3 and m4 withm01 are di�erent from eah other and from r0, beause the traes of m01; m3; m4 are all di�erentin m1's world-view. Therefore, by Claim 3.2.7, k does not see at most one of these points, andthus k sees one of the meeting points of m01 with m3 or m4. Therefore, the trae of m01 in k'sworld-view is also oplanar with the traes of m1; : : : ; m4. Also, m01 and m1 annot meet in k'sworld-view by Ax600, beause they do not meet in m1's world-view. Now, in k's world-view,the traes of m2 and m01 meet, they are oplanar with the trae of m1, and m1 and m01 do notmeet. Thus m2 must meet m1 (as before, beause on a plane through a point there is only onestraight line parallel with a given one). Let us assume that m2 and m1 meet in k's world-viewat q0.It remains to show that the event e in m's world-view at q is the same as the event e0 in k'sworld-view at q0. To show this we will go bak to m1's world-view. By Ax600, m1 sees bothevents e; e0 and he must see them on his own life-line, beause m1 2 e\ e0. On the other hand,also m2 2 e \ e0, and on m1's life-line there is only one point where m2 is present, namely,in the meeting point of m1 with m2, beause the traes of m1 and m2 are di�erent (e.g. by



3.2 MORE FLEXIBLE AXIOM SYSTEMS 113Ax600, beause these traes are di�erent in m's world-view). Thus e = e1 and this �nishesthe proof of Claim 3.2.8.Claim 3.2.9 If Dom(fmk) 6= ;, then Dom(fmk) = nF.Proof of Claim 3.2.9: We are in the world-view of m. We will onnet any two points ofnF with traes of slow observers. Let p; q 2 nF be arbitrary. See Figure 53.�t
�x�y p m1 m2q

Figure 53: Illustration for the proof of Claim 3.2.9.If spae(p) = spae(q), then there is an observer with speed 0 whose trae onnets p andq. Assume therefore spae(p) 6= spae(q), and let d = spae(q)�spae(p). Then d 2 diretions.Let m1 be any slow observer moving forwards in diretion d with nonzero speed, and throughp, and let m2 be another observer whih is at rest at point spae(q). Suh observers exists byAx5Obs��. Then m1 and m2 will meet, say in point r. Then by Claim 3.2.8, p 2 Dom(fmk)implies q 2 Dom(fmk). This �nishes the proof of Claim 3.2.9.From here on the proof is basially the same as the proof of Theorem 3.1.1 in AMN [18℄.One of the hanges we make is that we replae \slow lines" by \traes of slow observers". Forompleteness, we briey inlude the rest of the proof.Assume that m; k 2 Obs, m �! k.First we show that fmk takes midpoints on the trae of an observer to midpoints, see Figure54. Let m1 2 Obs and let p; q; r 2 trm(m1) be suh that q is the midpoint of p and r. In m'sworld-view, let us hoose slow observers m2; : : : ; m6 as in Figure 54: the traes of m1; : : : ; m5are oplanar, m2 and m3 do not meet, and similarly m4 and m5 do not meet, m2 and m5 meetat r, m3 and m4 meet at p, m6 and m1 meet at q and m2; m6; m4 all meet in one point, andm3; m6; m5 all meet in one point. Informally, m1; : : : ; m6 form a paralelogram as in Figure 54.Sine fmk is everywhere de�ned by Claim 3.2.9, k also sees all these meeting points. Thus,in k's world-view m1; : : : ; m6 also form a paralelogram. Sine the diagonals of a paralelogrambiset eah other, fmk(q) is the midpoint of fmk(p) and fmk(r).Next we show that fmk takes ollinear points to ollinear ones. Assume that ` 2 Eul andp; q; r 2 `. In m's world-view we hoose slow observers m1; : : : ; m4 as in Figure 55. From hereon the proof is pratially the same as on pages 169-170 of AMN [18℄. Also the proof of fmkbeing an injetion is the same as that of Claim 2.3.7 on p.29 herein, beause in that proof weused only the onsequene of Ax5 that through eah point there move at least two di�erentobservers, and Ax5Obs�� also implies this fat. By this, Theorem 3.2.6 has been proved.
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Figure 54: fmk takes midpoints to midpoints
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Figure 55: fmk takes ollinear points to ollinear ones



3.2 MORE FLEXIBLE AXIOM SYSTEMS 115It remains a future researh task to see whih axioms of Pax are really needed for theonlusion of the above theorem. Clearly, Ax5Obs�� annot be dropped and none of Ax1-Ax30 an be dropped. We did not hek the rest.In onnetion with the above theorem we note that most presentations of speial relativityassume its onlusion as an axiom and rely on this axiom rather heavily while building upspeial relativity (f. e.g. Einstein [80, (1921)℄, Nagy [200, p.233, lines 28-30℄, or Friedman [91,p.139 lines 1-3℄).235 The above theorem shows that this axiom is superuous sine it followsfrom a very small fration of the rest of the usual axioms (or postulates) of speial relativity,whih are always assumed in the usual presentations.Next we introdue stronger axiom systems.We will obtain Bax� from Pax by adding rather weak assumptions on photons to it.236Intuitively, they will say two things: (i) Photons do not behave like bullets �red from guns inthat their speed does not depend on the veloity of their soures. (ii) If an observer is sittingin his inertial spaeship (urtains on the windows drawn), and he points his ashlight in anydiretion d, then the ashlight an emit photons moving forwards (and not, say, bakwards)in diretion d and moving with nonzero speed. We note that the speed of the photon may bein�nite. First we de�ne Bax�0 and after that some onsiderations will lead to Bax� itself.Bax�0 def= Pax [ fAx5Ph;AxP1;AxE01g;where the new axioms are de�ned as follows.AxP1 Intuitively, starting out from one point p of spae-time, in every diretion (forwards)there is at most one \speed of light" (i.e. photon-trae), formally:(8m 2 Obs)(8ph1; ph2 2 Ph)(8d 2 diretions)237�(ph1 and ph2 are moving forwards in diretion d as seen by m andtrm(ph1) \ trm(ph2) 6= ;) ) trm(ph1) = trm(ph2)�.Ax5Ph Intuitively, from any point p of spae-time in any diretion there is a photon movingforwards in that diretion, formally:(8m 2 Obs)(8p 2 nF)(8d 2 diretions)(9ph 2 Ph)[p 2 trm(ph) ^ (ph is moving forwards in diretion d as seen by m)℄.AxE01 vm(ph) 6= 0.Having de�ned Bax�0 , let us briey return to its intuitive ontent. Bax�0 postulates thatthere is suh a thing as the speed of light but this speed may be di�erent for di�erent observers,di�erent in di�erent diretions and may be di�erent at di�erent points (of the observer'soordinate system). Therefore we an have a three variable funtion whih represents thespeed of light observed by m at point p 2 nF in diretion d 2 diretions.235Often this axiom is formulated by saying that the fmk's are aÆne transformations. Suppes [241℄ writesabout this: \Every physis textbook on relativity makes a linearity assumption at the minimum." He alsowrites: \It is philosophially and empirially interesting that the Lorentz transformations an be derivedwithout any extraneous assumptions of ontinuity or di�erentiability."236In this work we do not explain the origin of the aronyms Pax, Bax� et. whih we inherited fromAMN [18℄.237Let us reall that diretions are (nonzero) spae-vetors, i.e. diretions = n�1F n f�0g, f. p.108.



116 3 MORE FLEXIBLE AXIOM SYSTEMSDe�nition 3.2.10 Let M j= Bax�0 . Then the funtion : Obs � nF � diretions �! F1is de�ned as outlined above.238 The formal de�nition is in AMN [18, p.535℄. �Thus, (m; p; d) is the speed of light in m's world-view, at point p and diretion d. We willwrite m(p; d) in plae of (m; p; d).By the light-one Conem;p starting at p as seen by m we understandConem;p := [ftrm(ph) : ph 2 Ph & p 2 trm(ph)g:By the above, Bax�0 ensures that the light-ones de�ned above have some minimal \one-like" property in some intuitive sense. (E.g. for any line ` ontaining p it beomes meaningfulto ask whether ` is inside the light-one Conem;p.) Light-ones play an important role both inspeial and in general relativity. In models of Bax�0 , eah observer m to eah point p 2 nFan assoiate a light-one with tip at p and whih an be arbitrarily deformed, f. Figure 56.�t
�x�yFigure 56: With every point p of nF, we assoiate a so-alled light-one.By saying that the light-one may be arbitrarily deformed we mean to say that, say whenn = 3, its intersetion with a horizontal plane need not be a irle or even an ellipse. However,it an be regarded as a set of points whih forms the \boundary" of a set of internal points,ontaining the point above p. AMN [18℄ ontains a detailed disussion of the possible shapesof light-ones in models of Bax�0 , f. e.g. pp. 473-517 (espeially p.505) and pp. 507-508therein. The feature of Bax�0 that light-ones an be irregular et. is an important one andits appliations are disussed in detail in AMN [18, xx4.3, 4.4, 4.5℄. In partiular, we notethat this feature is strongly used in disussions of general relativity (f. e.g. D'Inverno [73℄, orPenrose [211℄239).If we meditate over Bax�0 , an axiom of parsimony240 suggests itself in a natural way. In Paxwe had a \natural onstant" (a kind of speed limit) whih we alled � inAx5Obs��.241 Namely,238Reall from AMN [18, p.535℄ that F1 = F _[f1g.239or f. the disussion of the onformal struture in Ehlers-Pirani-Shield [78℄240a simplifying assumption241Atually, instead of \speed limit", we should all � something like a \speed permit", sine it says thatertain speeds are permitted (and not prohibited).



3.2 MORE FLEXIBLE AXIOM SYSTEMS 117for eah m 2 Obs, p 2 nF, and d 2 diretions we postulated the existene of a �m;p;d = � suhthat all speeds below �m;p;d an be \realized". Now we have two suh onstants, �m;p;d andm(p; d). In AMN [18, Figure 257 (p.762)℄, these two \data" are represented as two ones, alight-one and a so-alled \observer-one".242 The simplifying assumption that omes to one'smind at this point is that let us assume that these two onstants oinide beause we have noevidene for their being di�erent, further beause there seems to be no theoretial insight bykeeping them di�erent.243 So the new axiom says �m;p;d = m(p; d) for all m; p and d. FormallyAx5Obs (8m 2 Obs)(8p 2 nF)(8d 2 diretions)m(p; d) = �m;p;d.Equivalently, Ax5Obs saysAx5Obs (8� < m(p; d))h� 2 +F =) (9k 2 Obs)m observes k moving in diretion d forwards; vm(k) = �; and p 2 trm(k)i.Now, we an de�ne Bax�. Bax� def= Bax�0 +Ax5Obs:About the above axiom Ax5Obs we note that it an be motivated both (i) as an axiom ofaesthetis (i.e. of parsimony), and (ii) as an experimental axiom.244 In the present we shallonentrate on the simpler Bax� instead of Bax�0 . It remains an interesting future researhtask to see how muh of our results about Bax� generalize to Bax�0 . In partiular, it wouldbe interesting to see whether (Bax�0 + m(p; d) <1) ` �FTLObsis true, where the right-hand side is de�ned in Notation 3.2.12 below.245Notation 3.2.11 Th� def= Th + the speed of light is �nite, formallyTh� def= Th + (vm(ph) 6=1);for any axiom system Th � FF in our frame language. Note that vm(ph) 6= 1 means thatvm(ph) exists ) vm(ph) <1. �Now we are ready to formulate our no-FTL theorem stating that in models of Bax�� noobserver an move faster than light. First we formalize the statement \no observer an movefaster than light", and will denote it as �FTLObs.242AMN [18℄ uses Bax�nobs in plae of our Bax�0 . However, our Bax�0 is only very slightly weaker thanBax�nobs in AMN [18℄, and here we may safely ignore the di�erene between the two.243Later, if at some point of investigation we would �nd some use for distinguishing these onstants, then wewill withdraw our present simplifying assumption.244Sine (indiret) experimental evidene points in the diretion that there does not seem to be a speed limitbelow the speed of light.245The question remains interesting forBax�nobs introdued in AMN [18℄, too. Atually, it remains interestingeven for (Bax�nobs + the fmk's are ollineations).



118 3 MORE FLEXIBLE AXIOM SYSTEMSNotation 3.2.12 �FTLObs def()[m sees k and ph moving forwards in the same diretion ) vm(k) < vm(ph)℄. �In passing we note the following. If dirm(k) denotes the diretion in whih m sees k moving,then �FTLObs implies [p 2 trm(k) ) vm(k) < m(p; dirm(k))℄. I.e. life-lines of observers stayinside the light-ones.THEOREM 3.2.13 Assume Ax(p ) and n > 2. Then(i) Bax�� j= \there are no faster than light observers", formallyBax�� j= �FTLObs, and therefore(ii) Bax�� j= \there is a speed limit for moving observers, in some sense".(iii) Bax�� j= \veloities of observers do not add up the usual Newtonian way".Before proving the theorem we indiate that in ertain ways it seems to be lose to be-ing \strongest possible". Namely, it beomes false if we replae Bax�� by Bax� in it, f.Thm.3.2.14 below. Further, in Thm.4.8.12 of AMN [18, p.651℄ we proved that if we replaeBax� by its slightly di�erent variant Bax(P1) then246 our no-FTL theorem beomes false, i.e.there are FTL observers in some models of Bax(P1)�. Cf. also Thm.4.4.14 (p.545) therein.THEOREM 3.2.14 Bax� +Ax(p ) 6j= �FTLObs, for any n.Proof: This is proved as Thm.4.3.25 in AMN [18, p.500℄. To save spae we do not reall theproof.Proof of our no-FTL theorem 3.2.13: We give the proof for (i). The rest, (ii) and (iii),follow from (i). We will prove that if m sees an FTL observer, then m sees also a photon within�nite speed. Assume that k is an FTL observer in m's world-view, i.e. k's speed is greaterthan the speed of a photon ph going in the same diretion d as k.Let p 2 trm(k) and let ph0 be a photon going through p and moving forwards in diretiond. Suh a photon exists by Ax5Ph, and then trm(ph0) is a straight line by Ax30. Thm.4.3.17on p.488 in AMN [18℄ states that m(p; d) does not depend on p (but it may depend on m andd). Therefore, vm(ph0) = vm(ph), sine both ph0 and ph move in diretion d.Let P denote the (2-dimensional) plane ontaining trm(k) and parallel with �t.247 Then Pwill ontain trm(ph0) as well, beause ph0 goes in the same diretion as k does. Let ` be theline in P whih goes through p and for whih ang2(`) =1.248 We are going to show that ` isthe trae of an observer (in m's world-view).Let `0 � P be a line parallel with �t and not going through p. Let q and r denote theintersetion points of `0 with trm(k) and `, respetively. There are suh intersetion points,beause vm(ph0) 6= 0 by AxE01 and vm(k) 6= 0 sine k is a faster-than-light observer in m'sworld-view. See Figure 57. By vm(ph0) = vm(ph) < vm(k) we have that the intersetion246Bax(P1) an be found in AMN [18, p.544℄ where it is investigated and motivated intuitively to a reasonabledegree.247Reall that p 2 trm(k) 2 Eul(n;F) and k moves in diretion d 2 n�1F. Then P = fp+a�h�; d0; : : : ; dn�2i :a; � 2 Fg.248` = fp+ � � h0; d0; : : : ; dn�2i : � 2 Fg.
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no photon-trae going through p goes through hereThe plane P as seen by m The plane P as seen by kFigure 57: Illustration for the proof of Thm.3.2.13.point s of trm(ph0) with `0 is not between q and r, where \s is between q and r" means thats = q + � � (r � q) for some � suh that 0 < � < 1. 249 Cf. the de�nition of Betw(q; s; r) onp.140. By AxP1, there is only one photon-trae through p and going in diretion d. Thus,there is no photon-trae in m's world-view going through p and interseting `0 between q andr. By Bax� j= Pax and Thm.3.2.6 we have that fmk is a bijetive ollineation. By Ax(p )then we have that fmk is order-preserving.250 This means that the image fmk(u) of any point ubetween q and r lies between fmk(q) and fmk(r); and the same holds for fkm. Thus, sine thereis no photon-trae in m's world-view between trm(k) and `,(*) there is no photon-trae in k's world-view between fmk[trm(k)℄ and fmk[`℄,either. By Ax5Ph, there is a photon ph1 going through fmk(p) in the same diretion as fmk[`℄.By (*) then ang2(`) < ang2(trk(ph1)) = vk(ph1). By Ax5Obs then there is an observer k0whose trae is fmk[`℄. Then trm(k0) = `. So far we have seen that ` is the trae of an observerk0 in m's world-view.We now use n � 3. Let P1 be a 2-dimensional plane ontaining ` and suh that for eahline `00 in P1 we have ang2(`00) =1. There is suh a plane P1 by n � 3.251 See Figure 58.Let P 01 be the image of P1 under fmk0, i.e. P 01 = fmk0[P1℄. Then P 01 is a plane beause fmk0is a ollineation (by Thm.3.2.6); and �t = trk0(k0) � P 01 by trm(k0) � P1. By Ax5Ph, in k0'sworld-view there is a photon ph00 whih goes through fmk0(p) and lies in P 01, i.e. trk0(ph00) � P 01.But then trm(ph00) � P1 whih means that vm(ph00) =1.249This is so beause of the following. Sine trm(k) goes through p and in diretion d, there is �k 2 F suhthat trm(k) = fp+ a � h�k; d0; : : : ; dn�2i : a 2 Fg, and similarly, trm(ph0) = fp+ a � h�p; d0; : : : ; dn�2i : a 2 Fg,for some �p. By vm(ph0) < vm(k) we have �p > �k. Let us hoose `0 to be `0 = fp + a � �d : a 2 Fg, where�d = h0; d0; : : : ; dn�2i. Then r = p+ �d, q = p+ �d+ h�k; 0; : : : ; 0i, and s = p+ �d+ h�p; 0; : : : ; 0i. Clearly, s is notbetween q and r.250It is known that a bijetive ollineation is an aÆne mapping omposed with a mapping e' indued by anautomorphism ' of F, f. e.g. Lemma 3.1.6 in AMN [18℄. A bijetive aÆne mapping preserves betweenness. Ifsquare-roots exist in F, then ' preserves order, and hene e' also preserves betweenness. Thus every bijetiveollineation preserves the betweenness relation.251E.g. P1 = fp+ a � h0; �; d1; : : : ; dn�2i : a; � 2 Fg is suh a plane.
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m's world-view world-view of k0
ph00p k0P1 ph00k0 fmk0 [P1℄

vm(ph00) =1 inm's world-view There is a photon ph00going in fmk0 [P1℄in k0's world-viewFigure 58: Illustration for the proof of Thm.3.2.13.Disussion of our no-FTL theorem 3.2.13: The �FTLObs theorem is one of the exotipreditions of relativity, and part of the goals of the investigations in AMN [18℄ is to �nd ananswer to the question \why" it is being predited. As we explained earlier, this \why"-typequestion means �nding the expliit or tait assumption whih is responsible for the preditionin question. The �FTLObs theorem is ertainly not true in Newtonian mehanis. Mostrelativity books, even Reihenbah's arefully axiomati [218℄, assume �FTLObs as an axiom.Our theorem above shows that assuming �FTLObs as an axiom is superuous beause it isa logial onsequene of a small subset of the remaining axioms whih are always assumedin all variants of speial relativity. (In partiular, these axioms, i.e. Bax��, are assumedin Reihenbah's book.) Further, the motivation usually given for assuming �FTLObs as anaxiom (f. e.g. Raki� [215, p.11℄) are not really onvining after having studied e.g. G�odel'srotating universe whih is a model of Einstein's equations for general relativity, f. e.g. [270℄.Namely, the standard argument says that FTL observers would lead to losed time-like loopswhih in turn are laimed to lead to logial paradoxes. But learly, G�odel's universe ontainslosed time-like loops252 and by its existene as a mathematial model of Einstein's axiomsshows that no logial paradoxes are present. Our theorem shows that one does not needthese arguments about alleged logial paradoxes253 sine the �FTLObs laim follows from thesimple axioms in Bax��. Further, in AMN [18, x4.9℄ we show that even in the loalizedversion Lo(Bax��) of Bax�� one an prove the onlusion �FTLObs of our no-FTL theorem,f. Thm.3.2.15 below. The importane of this generalization to Lo(Bax��) is that thegeneralization Bax�� 7! Lo(Bax��) is a generalization in the diretion of the theory ofaelerated observers254 and eventually of general relativity.So we an safely onlude that �FTLObs is not needed as an axiom beause it an be provedfrom other axioms whih are assumed anyway and whih are muh easier to aept intuitivelyas axioms (i.e. whih are muh more onvining as axioms). But this is not the end of thestory. Let us return to asking why �FTLObs is predited, i.e. whih axiom is responsible for it.252Cf. Figure 134 on p.365.253Leading logiian David Lewis devoted a separate paper to showing that there is nothing paradoxial abouttime travel, f. footnote 163 on p.72 herein. For a similar statement see footnote \a" in G�odel [99, p.199℄.254Cf. e.g. AMN et al. [25℄, AMN et al. [26℄.



3.2 MORE FLEXIBLE AXIOM SYSTEMS 121A possible �rst reation to the question why we believe in �FTLObs is to say that the auseis the Mihelson-Morley experiment whih, summarized as AxE, implies �FTLObs for whihonlusion only the innoent looking Pax is needed. However, proving Bax�� j= �FTLObsis only the beginning of the analysis of \why �FTLObs" onduted in AMN [18℄. Namely,in AMN [18℄ two possible alternative theories are pointed out in whih AxE and n > 2 areassumed but in whih �FTLObs fails. One of them is Relphax on p.223 in x3.4.2 of AMN [18℄.The other is based on notiing the tait assumption in Pax that all observers use nF with thesame number n for oordinatizing spae-time. A way out of this might be if e.g.m oordinatizesspae-time with using 4F while a fast moving observer k uses only 2F for oordinatizing theevents he experienes. The details of this seond alternative have not yet been elaborated,but it seems to yield a possible modi�ation of Basax (with the full power of AxE assumed)whih might allow FTL observers. Cf. Madar�asz-N�emeti [172, 173, 174℄ in this onnetion.We note that Gyula D�avid255 reahed similar onlusions (in the diretion where n is not thesame for all observers).Let us turn to theories stronger than Bax� (or Bax��). Bax is obtained from Bax� byadding a kind of isotropy and homogenity as follows.Bax def= Bax� + (m(p; d) = m(p0; d0));where p; p0 2 nF and d; d0 2 diretions are universally quanti�ed (in aordane with the usualonvention onerning free variables).A word of aution: In AMN [18℄, Bax is formulated slightly di�erently. We laim thatBax as formulated above is equivalent to Bax as formulated in AMN [18℄. We omit the simpleproof.Bax-models are similar to disjoint unions (in some sense256) of Basax models with theonly di�erene that the speed of light might be di�erent for di�erent observers. Therefore inBax the notation m = r def() (9p; d)m(p; d) = r is useful and natural. Namely, m is thespeed of light for observer m. Let us notie that m =1 is still allowed.A further natural axiom says that the speed of light is the same for everybody:Flxbasax def= Bax + (8m; k 2 Obs)m = k:Flxbasax is an important and natural theory in many ways. E.g. Flxbasax + Ax6 is thenatural ommon generalization of Newtonian kinematis and the relativity theory Basax.Similarly, Flxbasax +Ax6+Ax(symm)is a natural ommon generalization of Newtonian kinematis and Sperel. Cf. AMN [18, x4.1℄for the formalization of Newtonian kinematis we have in mind and Figure 123 on p.429 thereinfor the ommon generalization ideas mentioned above. These ommon generalization ideas areelaborated in greater detail and preision in the rest of x4.1 therein. We do not reall thedetails for lak of spae.The models of Flxbasax + Ax6 an be obtained from Basax models by hanging thespeed of light whih remains onstant for the whole model. I.e. if M j= Flxbasax+Ax6 thenM an be obtained from some M0 j= Basax by replaing  = 1 in M0 with  = r for some255Dept. of Gen. Physis, E�otv�os Univ. Budapest.256This sense is made preise in AMN [18, Thm.3.3.12 and Figure 65 (p.195)℄.



122 3 MORE FLEXIBLE AXIOM SYSTEMSpositive r 2 F1. Here for an Flxbasax model M, the onstant  denotes the speed of lightfor all observers in M.Very roughly speaking, Flxbasax models are nothing but disjoint unions of Flxbasax +Ax6 models. We refer to Thm.3.3.12 (p.196) and Figure 65 (p.195) of AMN [18℄ for a preiseformulation of the above laim.257In many respets (Flxbasax + Ax6)� seems to be a more satisfatory formalization ofspeial relativity without symmetry (than Basax).Newbasax def= Flxbasax +  = 1:To our minds, there seems to be no essential di�erene between Newbasax and Flxbasax�.Newbasax +Ax6 =jj= Basax:Similarly to the ase of Flxbasax, Newbasax-models are, basially, the same thing as disjointunions of Basax models, in some sense. This laim is made preise in AMN [18, Thm.3.3.12(p.196) and Figure 65 (p.195)℄.It is interesting to notie that for Bax � Th � Basax the di�erene of Th with Ax6 orwith Ax600 +Ax601 an be semantially haraterized by taking disjoint unions of models inthe sense desribed in AMN [18, Thm.3.3.12 (p.196)℄. It would be interesting to see whetheranalogous reasoning works in the ase of Bax� or Pax. Certainly it does not work for theloalized theories Lo(Bax��) or Lo(Basax) desribed in AMN [18, x4.9℄.So far we have desribed our most important theories Pax; : : : ;Sperel with two impor-tant omissions. These are the loalized versions Lo(Th) and the Reihenbahian versionsReih(Th) of Th 2 fPax; : : : ;Sperelg. Reall that we already introdued an operatorTh 7! Th� whih to any one Th of our theories produes a new one, Th�. Now, Lo(�) andReih(�) will be similar operators.The idea of Lo(�) is the following. Our theories studied so far assume that the observersuse the whole of nF for oordinatizing events. I.e. wm : nF �! P(B). Motivated by aeleratedobservers and general relativity, we want to replae this by a more modest version whereobservers use only subsets of nF for oordinatizing events. It is reasonable to assume that thesesubsets are open and onneted, but we do not want to assume that they are the whole of nF.So, with any m 2 Obs we want to assoiate a domain Do�(m) � nF, and we want m to use onlythis domain for oordinatizing events, i.e. we want something like wm : Do�(m) �! P(B). Toavoid inonsistent notation, instead of hanging wm we introdue a new world-view funtionw�m def= fhp; ei 2 wm : e 6= ;g. Then the domain of m will be Dom(w�m) � nF.Interestingly, Pax j= Dom(w�m) = nF. So, we ask ourselves, whih are the axioms whih\pump up" the domains to be so big. One of them is Ax4 saying trm(m) = �t. Clearly,trm(m) � Dom(w�m), so Ax4 fores Dom(w�m) to be in�nitely long (time-wise). A similarulprit is Ax3, whih fores Dom(w�m) � trm(b) 2 G to be in�nite again, but now not onlyalong the time-axis. This fores in�nity of Dom(w�m) along the photon-lines too, whih inBasax are in 45Æ relative to �t. Ax30 is not better either.To de�ne Lo(Th) we do the following. We replae Ax4 by its relativization to the domainof w�m, i.e. with trm(m) = �t\Dom(w�m). This latter formula is Ax4par. Similarly, Ax3par saystrm(b) = h \ Dom(w�m) for some h 2 G. The rest of the loalization of a theory is analogous,we look at those axioms whih an \pump up" the size of Dom(w�m) and then reformulate257In the quoted theorem Newbasax is used instead of Flxbasax but this distintion will be lari�ed soon.



3.2 MORE FLEXIBLE AXIOM SYSTEMS 123them by \relativizing" to Dom(w�m) as we did in the ase of Ax4, Ax3 ensuring that theyretain their original meaning but in suh a way that they no longer \pump up" the size ofdomains. We leave the details to the reader, but we note that they an be found in AMN [18,x4.9℄; see also the List of axioms herein.After this proess of relativizing the axioms, we look at the undesirable side-e�ets of thehanges we made. Then we add axioms to eliminate these side-e�ets. An example of suh anaxiom is Ax(syBw)par, whih says that the fmk's are betweenness preserving both bakwardsand forwards. For a detailed de�nition of the axioms and notation used in Thm.3.2.15 belowwe refer to the List of axioms, p.A-27.THEOREM 3.2.15 Assume n > 2.Lo(Bax��) +Ax(syBw)par j= \there are no FTL observers".258Proof: We indiate only some of the ideas involved. First of all, we note that the proofmethod of Thm.3.2.13 presented way above is relevant here, too. Assume the hypotheses.Assume there is an FTL observer. This means that there are m; k 2 Obs and a photon ph1suh that m thinks that ph1 and k are moving in the same diretion and k is faster than ph1.Further, ph1 and k meet. Figure 59 shows the idea of deriving from this the onlusion thatvm(k0) = 1 for some observer k0. From this we derive a ontradition. This last part of theproof uses a lemma of geometri nature whih the present author proved as Lemma 4.9.16in AMN [18℄. For lak of spae we do not reall that lemma or the remaining part of theproof. For a detailed proof of the present theorem we refer to AMN [18, x4.9, Thm.4.9.14(pp.687{693)℄.We stated Theorem 3.2.15 { though we do not have spae for its preise formulation andproof { beause we think it is an important generalization of Thm.3.2.13, so we regard it as aresult of the present work whih has to be mentioned.Besides Lo(�), we promised a third operator Reih(�) alled Reihenbahization ofour theories. Reihenbah started out from the idea that the Mihelson-Morley experimentmeasured only the two-way speed of light and not the one-way speed of light. (The two-wayspeed is haraterized by the time needed to go from a soure to a mirror and ome bak.)As it is summarized e.g. in Szab�o [244℄, ever sine Reihenbah disovered this, nobody ouldome up even with a thought experiment whih would determine the one-way speed of light.Therefore, using Oam's razor, followers of Reihenbah suggested to treat the one-way speedof light as \unknowable" (analogously to the aether) and replae throughout the axioms of ourtheory the one-way speed of light by the two-way speed of light. E.g. instead of saying that thespeed of light is the same in all diretions (e.g. as in Bax) we should say that the two-way speedof light is the same in all diretions. If we start out with Basax, then the resulting theory isalled Reih(Basax). More generally, if we start out with Th 2 fBax�; : : : ;Basaxg, thenthe resulting theory is denoted as Reih(Th). We hope that the idea is lear enough, thedetailed mathematial de�nition of Reih(Th) is in AMN [18, x4.5 (pp. 553-600)℄. Also theproperties of Reih(�) are studied there, e.g. there we prove a transfer theorem by whih themodels of Reih(Th) are obtainable from Mod(Th) by a simple model theoreti onstrutionalled relativization. We will oasionally use Reih(�) and the ideas behind it in our nexthapter on Geometry. So the reader is asked to ontemplate Reih(�) a little bit at this point.258This is understood only loally, in the following sense. We all k loally FTL w.r.t. m i� (9ph 2Ph)[trm(ph) \ trm(k) 6= ; and m sees k and ph move forwards in the same diretion and vm(k) � vm(ph)℄.Now, the onlusion of our theorem says (8m; k 2 Obs) k is not loally FTL w.r.t. m.
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Figure 59: Illustration of the main idea of the proof of Thm. 3.2.15.



3.2 MORE FLEXIBLE AXIOM SYSTEMS 125Finally, we introdue three axioms, Ax~; Ax(ext); Ax("") and an axiom system BaCo.These will ome up in the rest of this work, oasionally.Ax~ says, intuitively, that we want to deal with \only the heart" of relativity theory inthe sense of p.vii herein and of AMN [18, item (IV) (p.8) of the Introdution℄. To ahieve thise�et, this axiom exludes all bodies exept photons and observers. Formally(Ax~) B = Obs [ Ph. 259Ax(ext) is analogous to the axiom of extensionality of set theory. It says, roughly, that ifall \properties" of two things (of sort B) oinide, then they must be the same.260Ax(ext) (8m; k 2 Obs) [wm = wk ) m = k℄ ^(8b; b1 2 B nObs)(8m 2 Obs) [trm(b) = trm(b1) ) b = b1℄.Ax("") an be interpreted as saying (something like) that there is suh a thing as the\general diretion of the ow of time"261. More onretely, it says that every observer sees thelok of every other observer running forward. This will be formalized on p.176.The name BaCo refers to the fat that this is an extension of Basax aiming forompleteness.BaCo def= Sperel+Ax~+Ax(ext)+Ax("").262We note that BaCo j= Sperel+ SPR+ + \all the other symmetry axioms disussed in thiswork".263 Let F be an arbitrary Eulidean �eld. Then (i) BaCo+Th(F) is a omplete theory(deiding all the formulas of our frame language). Further, (ii) BaCo + Th(F) is ategorialover F in the following sense: BaCo admits exatly one model M with FM = F, up toisomorphism. Further, this M is the standard Minkowski model over F. Claims (i),(ii) aboveare proved in AMN [18℄. These are also theorems in AMN [16℄.In Figure 60 we summarize the de�nitions of the theories introdued in this hapter.

259(8b 2 B)Obs(b) _ Ph(b)260This an be related to Leibniz's priniple of indistinguishables.261This priniple is violated, at least in a sense, e.g. by G�odel's model for general relativity represented onFigure 134 (p.365) at the end of our setion of geodesis. Cf. also x2.7 (\FTL") for violation of Ax("").262This de�nition of BaCo is equivalent to the one given in AMN [18℄.263This is proved in AMN [18℄.
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BaCo�������

B = Obs [ Phextensionalitytime ows forwards (Ax~)(Ax(ext))(Ax(""))8<:simplifyingaxioms Sperel Symmetry axiomo-moving observers measure time the same wayobservers an \rotate" their oordinate system(Ax(symm0))(Ax(k))(Ax(Triv))8<:Basax\observers seethe world thesame way"
8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

Eah observer an see the same events(or eah observer an see any other observer, m �! k)(Ax6)8<:Newbasax m(p; d) = 1 (AxE)Flxbasax The speed of light is the samefor any observer m(p; d) = m0(p; d)(Bax The speed of light is the samein eah diretion m(p; d) = m(p; d0)(isotropy Bax� Photons do not rae with eahotherphotons move forwardsspeed of light m(p; d) exists� (AxP1)(Ax5Ph +AxE01)8<:light-ones existPaxorganizationalaxiomsFigure 60: The hierarhy (lattie) of the axiom systems de�ned so far. We start out from thebottom (Pax) and obtain the next axiom system via adding the axioms listed on the righthand side and assigned to the vertial edge by an arrow. E.g. Bax� = Pax + (Ax5Ph +AxE01) +AxP1.
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Figure 61: Esher's litograph Relativity.



128 4 OBSERVER-INDEPENDENT GEOMETRYA note to the reader. In this work, but espeially in the introdutory setions like x4.1,the footnotes ontain more important information than the main text. Therefore, espeiallyduring reading x4.1 we reommend that the reader pay more attention to the footnotes thanto the main text. We know that this is a highly unusual arrangement, but the logi of thesituation fored this arrangement upon us. Namely, this way a reader who has little time anread the main text without looking at the footnotes and he will get a oherent story aboutwhat we want to say. But this is at the expense of not learning about the relevant ideasof Kant, Mah, Einstein, Reihenbah, G�odel et. whih, in our opinion, make the subjetinteresting. If the reader wants to read about these ideas (and about why we do things theway we do) he an �nd them in the footnotes. We are afraid, if we lifted these interestingideas from the footnotes into the main text, the main text would lose its oherene (too muhdetours, rumblings et). A pleasant way of reading x4.1 might be the following: First readthrough the main text only (to get a general impression) and then read the main text togetherwith the footnotes paying more attention to the footnotes than to the main text. The samephilosophy applies to the whole of this work (Chapters 1 - 4) and not only to x4.1, but to aless pronouned extent.



4.1 INTRODUCTION TO RELATIVISTIC GEOMETRIES 1294.1 Introdution (to the present hapter on geometries)
In this hapter we will see how observer-independent strutures an be found in our framemodels of relativity theory, i.e. we will show that there is an observer-independent \geometri"struture GM inside every model M of our frame language. We will onsider the observerindependent geometri strutures GM (assoiated with \observer-oriented" models M) as rep-resenting so-alled \theoretial" onepts, while we will onsider the original M's as repre-senting so-alled more \observational" onepts. Here, the expressions \observational" and\theoretial" are tehnial terms explained and used in the relativity books Reihenbah [218℄,Friedman [91℄264, f. also x1.1(IX) on p.11 of AMN [18℄ for a brief explanation and motivationfor the observational/theoretial distintion.The key idea is that in some situations or at some level of the development of our sienti�theories, ertain onepts an be onsidered more observational while others an be regardedas being more on the theoretial side. For a more areful desription of this distintion (andits justi�ation et.) we refer to Reihenbah [218℄. We are aware of the fat that the observa-tional/theoretial distintion is not absolute265, it may hange during the development of oursienti� theories, et. but, as Friedman [91℄ writes on p.4 and on p.31, if we are aware of itslimitations and its \tentativeness", it an be used rather fruitfully.266Next we disuss the role of theoretial/observational onepts in sienti� theories. Themethodology and ideas we are going to sketh below originate from an intensive and fruitfulinteration between the originators of relativity theory, e.g. Einstein on the one part, and thelogial positivists267, e.g. Reihenbah, on the other. The key ideas go bak to Kant268 (1724-1804), Leibniz (1646{1716) and Oam (1295{1349).269 Cf. e.g. Friedman [91, xI (pp.3-31)℄.(These ideas are also strongly related to ontology, i.e. to the �eld of researh studying the264The words \observational" et. ome from Friedman [91℄. Reihenbah used other expressions with ba-sially the same meaning. E.g. he writes about theory formation: \... it is advantageous to approah theaxiomatization in a di�erent fashion. It is possible to start with the observable fats and to end with theabstrat oneptualization", f. [218, pp. 4{5℄. Later he writes \... start an axiomatization with so-alledempirial fats", also \... this investigation starts with elementary fats as axioms...", f. [218, p.8℄. Cf. alsop.174 in Loose [158℄.265e.g. a onept whih is observational in one situation may appear as theoretial in another situation266Atually, Friedman [91, p.24, �rst 30 lines℄ writes that the birth of the modern form of the observa-tional/theoretial distintion an be redited to Einstein's fundamental 1916 paper [81, p.117℄.267We are neither supporting nor attaking positivism, we simply want to use those of their ideas whihproved useful while avoiding their mistakes e.g. oversimpli�ation.268For the (positive) role of Kant f. e.g. Friedman [91℄ p.7 lines 8{25 and p.18 lines 14{20.269E.g. we mention Leibniz's priniple of identity of indistinguishable onepts, and what beame popularlyknown as Oam's razor, .f. e.g. Friedman [91℄, Hodges [130, pp. 9, 21℄. Roughly, Oam's razor says: do notassume the existene of unneessary theoretial entities. In passing we note that Leibniz's priniple appears asaxiom C7 in algebrai logi (alled there Leibniz rule) f. Henkin-Monk-Tarski [120, Part I, p.172℄ and Andr�ekaet al. [31℄. C7 is the algebrai ounterpart of an axiom of �rst-order logi. (William Oam was a 14-th enturyEnglish logiian. His razor is usually summarized as \Do not assume the existene of more entities than youhave to".)



130 4.1 INTRODUCTION TO RELATIVISTIC GEOMETRIESquestion of whih of our theoretial entities exist and in what sense they exist.)270The methodology (of the above origin) is the following:272 Assume we want to study a part(or aspet) of the physial world. Then �rst we build models, like M in the present work,whih involve observational onepts only. I.e. we try to keep the \ingredients" of M to beon the observational side as muh as possible. Then we study M and develop a theory Th inthe language of M with M 2 Mod(Th). After having studied Th and Mod(Th) long enough,we begin to see what kind of new, theoretial, onepts would be useful for understandingTh, M et. even better. The methodology of introduing suh new theoretial onepts is thefollowing.By the priniples of parsimony273 (i.e. re�nements of Oam's razor), we require the new,theoretial onepts to be de�nable by means of �rst-order logi, over M (or more generallyover Mod(Th)). Cf. x4.3 way below for the theory of de�nability. (The importane of de-�nability is emphasized in the relativity book Reihenbah [218℄ e.g. on p.3, pp.7-13.) Thenwe expand our observational model M with the de�ned onepts obtaining something likeM+ = hM; de�ned oneptsi in the hope that the theory of M+ will be more \streamlined",more elegant and more illuminating (than that of M) in various ways. Indeed, in the presenthapter, we will de�ne a streamlined theoretial struture GM over the model M, and we willall GM the \observer independent geometry" assoiated with M.274 First we will identifywhat desirable theoretial entities we would like to put into GM, and then omes the \hardwork" of heking whether these new entities are indeed �rst-order logi de�nable over M,f. xx 4.2.2, 4.3, and Theorems 4.3.22{4.3.25 (p.244) for the de�nability investigations, whileonsiderations on what should go into GM are in x4.2.3 (but f. also xx 4.2.1{4.2.5).Having de�ned, over M, our struture GM of theoretial entities, we expand our obser-vational struture M with these theoretial entities obtaining the riher struture M+ =hM;GMi. Our theoretially enrihed struture M+ orresponds to the struture A in Fried-man [91, p.236℄ while our observational M orresponds to the sub-redut B of A on the samepage in [91℄. In the language of our enrihed struture M+ we have both theoretial and ob-servational onepts, so we ould go on inde�nitely studying the theory of our M+. However,this is not what we do, beause, so to speak, we beome greedy to improve our language andour onepts. Namely, if we are luky, we will �nd that (not only GM is de�nable over M but)also our observational struture M is de�nable over the theoretial GM. If this is the ase, wemay forget our original observational struture M, and may stik with the more streamlined270It is of interest to note how muh philosophy inuened the development of relativity. E.g. Mah's philoso-phy inuened Einstein in developing general relativity, f. e.g. Barbour [40℄ or Friedman [91℄. Further, G�odelproved very interesting things about the so obtained general relativity. G�odel's main motivation ame fromKant's philosophy, he wanted to justify Kant's views on the nature of time.271 G�odel's results lead up to oneof the most exiting parts of modern relativity, namely, to the theory of rotating blak holes (losed time-likeurves, i.e. \time travel"), at least in some sense. Further, (in a di�erent diretion) G�odel's results show thatEinstein's equations do not imply Mah's priniple, after all (for seeing this in full form one uses Ozsvath's andSh�uking's 1969 paper [209℄), f. also Friedman [91, pp. 209{211℄. This does not prove that Mah's priniplewould not be true, instead it proves only that it is not implied by Einstein's axioms for general relativity. Cf.e.g. G�odel's olleted works [99, pp. 189{217℄, and [100, pp. 202{289℄, and Dawson [70℄. Cf. also footnote 281on p.132. See Figure 134 (p.365) for a visual representation of G�odel's model satisfying Einstein's equationsbut not Mah's priniple. This model usually is alled G�odel's rotating universe.271In this onnetion we reommend that the reader read footnote 477 on p.214.272We present it, here, only in a simpli�ed form.273\priniple of parsimony"= \eonomy of explanation", f. footnote 269274At the beginning of this hapter it will not be very obvious why we think that GM is muh more stream-lined than M, but around the end of this hapter, in x4.6, we will see that GM admits rather streamlinedreformulations. Cf. e.g. Theorems 4.6.2,4.6.3 (pp.346,347) and AMN [18, Theorems 6.7.20 (p.1157), 6.7.30(p.1164), 6.7.37 (p.1166)℄.



4.1 INTRODUCTION TO RELATIVISTIC GEOMETRIES 131and elegant theoretial struture GM.275 (The reason for this is that if M is de�nable over GM,in a rather onrete sense M is \present" [or available℄ in GM, e.g. all questions about M anbe translated into questions about GM.) Very probably, if we are permitted to onentrate onGM and to forget about M, our investigations of the theory of GM will be more eÆient, wewill be able to reah deeper insights in a shorter time et. Motivated by these onsiderations,in the present work we will prove various results to the e�et that the observational \world"M is indeed �rst-order-logi-de�nable over the theoretial world GM. This will be one of themain themes of x4.5.We will extend these de�nability results from individual models to axiomatizable lassesof models. E.g. if Mod(Th) is an axiomatizable lass of observational models, we will writeGe(Th) for the orresponding lass of theoretial models, i.e. the orresponding lass of geome-tries. Then we will prove that Ge(Th) is de�nable over Mod(Th), and in the other diretion,Mod(Th), too, is de�nable over Ge(Th).Atually, we will do more than this in two respets:(i) We will prove that Mod(Th) and Ge(Th) are de�nitionally equivalent276 whih in somesense means that they are di�erent \linguisti representations" of the same theory. (Cf.Thm.4.3.38 on p.261.277)(ii) We will also elaborate a so-alled duality theory between Mod(Th) and Ge(Th) whih isanalogous with the various duality theories (adjoint situations, et.) playing important roles allover mathematis.278 We will make the onnetions with several distinguished duality theoriesexpliit in Appendix A (xx A.1{A.3), f. also pp. 293{296, pp. A-15{A-18. This subjet isdisussed in more detail in AMN [18, xx6.6.5{6.6.7℄, Remark 6.6.4 (p.1014) and on pp.1096{1107 therein, and also in Madar�asz et al. [171℄. One of the uses of these duality theories is thatthey establish strong onnetions between seemingly distant parts of mathematis, and theyhelp us to solve problems in one area by using the methods of another, ompletely di�erent,area (where the solution to this partiular problem might be drastially easier). The abovequoted parts279 make the unity between the author's earlier papers, e.g. Madar�asz [161, 165,164, 166, 170, 163℄, Madar�asz et al. [177, 176, 23, 20℄ and the present work expliit.In x4.6 we will use the methods of de�nability theory for streamlining our \theoretialstruture" GM in the spirit outlined way above. Sine de�nability theory plays suh a entralrole in our investigations (as well as in other parts of relativity, f. e.g. Reihenbah [218℄,Friedman [91℄), we devoted x4.3 to realling and further elaborating this theory.Potential laws of nature, haraterization of symmetry priniples:Our theoretial struture GM an also be used in identifying potential laws of nature andin haraterization of symmetry priniples, as follows. Reall from the introdution of x3.9of AMN [18℄ and from x2.8 herein that some of our axioms like Ax(symm) were alledsymmetry priniples and were regarded as speial instanes of Einstein's SPR. In x2.8 and inAMN [18, x3.9℄ we experimented with giving logial or model-theoreti haraterizations for275In the above sentene we want to refer to a kind of \tension" whih regards M as being too lose \tothe original thing being modeled", detail-oriented or \mosai-like" or oordinate-systems-oriented while GM isregarded to be more \whole-oriented" or more \essene-oriented". Cf. item (7) on p.185.276Cf. x4.3 (p.255) for de�nitional equivalene.277Cf. also Remark 4.3.37 on p.258 and the intuitive text above that remark.278This duality theory works under weaker onditions needed for (i) above. (Note that de�nitional equivalenebetween Mod(Th) and Ge(Th) automatially implies a very strong form of duality. [Atually what we will allweak de�nitional equivalene is suÆient for this.℄ However, duality in general does not imply de�nitionalequivalene.)279e.g. Appendix A herein



132 4.1 INTRODUCTION TO RELATIVISTIC GEOMETRIESEinstein's SPR and for symmetry priniples. Cf. Thm.2.8.20 and the �rst theorem in x3.9 ofAMN [18℄ whih is based on Def.3.8.2 (p.298) of AMN [18℄. The intuitive idea was, roughly,that Einstein's SPR says that inertial observers annot be distinguished from eah other bylaws of nature. (An equivalent formulation says that the same laws of nature hold for mand k if m; k are inertial observers.) So if '(x) is a potential law of nature with x rangingover observers, then M j= \SPR" ) [M j= '(m) $ '(k), for all inertial observersm and k of M ℄. Moreover, M j= \SPR" i� we have [(8m; k 2 Obs \ Ib)M j= '(m) $'(k); for all potential laws '(m)℄. The problem with arrying this programme through wasthat we did not know whih formulas of our frame language Fm(M) ount as potential laws ofnature and whih formulas are of an \aidental" (or ontingent) harater (e.g. making somerandom statement about the state of a�airs on the life-line of m, say, at the event where m seesthe origin). For the distintion between \aidental" statements and potential laws f. e.g. theentry \lawlike generalization" in the Cambridge Ditionary of Philosophy [35℄. So, the problemwas to provide a logial or model theoreti distintion between those formulas in Fm(M) whihare regarded as potential laws from those formulas whih ount only as potential \aidentalfats"280. We an use our theoretial struture GM for distinguishing those elements of Fm(M)whih are loser to being potential laws, and also we an use GM for haraterizing Einstein'sSPR and Ax(symm) in a model theoretial way. We will not go into this issue in the presentwork, but we investigated this on pp. 74{91 herein and in x6.1, x6.6.8 in AMN [18℄. However,f. AMN [18, x6.2.8℄ for related (but di�erent) results.Let us return to explaining in what sense we regard GM as an observer independent geom-etry (sitting in M). Originally, in the Newtonian world-view, there was a ommon \outsidereality" for all observers. In our models M, eah observer has a \kind of private world",namely, his world-view (determined by wm : nF �! P(B)). The fmk transformations tell ushow these worlds are onneted. However, they do not tell us whih of these worlds is the\real one". Moreover, by Einstein's SPR these worlds are of equal status. (Of ourse, onean live with this arrangement forever, there is nothing wrong with it.) The question omesup naturally: Can one �nd a single \monolithi" (or \fundamental") reality behind all these\pluralisti" personal worlds? If the answer is yes, we ould all this \monolithi" reality theoutside reality (behind our experiene). All the personalized worlds (i.e. the world-views) ouldbe regarded as di�erent projetions of this single outside reality. This situation is analogouswith those desribed by desriptive geometry, where we have a spatial body (or �gure) whihhas a \front-view", a \side-view", et., i.e. whih an be viewed from all possible angles ordiretions. That spatial �gure orresponds to our observer independent geometry GM whilethe views (or projetions) of that body from possible diretions orrespond to the \personal-ized" world-views of our observers m 2 ObsM. Cf. Fig.62 for desriptive geometry put intoanalogy with the onnetions between our single observer-independent geometry GM and themany personalized worlds, i.e. the wm's in M.Our observer independent geometry GM is intended to serve as suh a monolithi outsidereality. Indeed, in our duality-theory setion (x4.5) we will see that the di�erent personalizedworld-views (of form wm : nF �! P(B)) an be reovered from the single geometry GM, f.e.g. the de�nition of funtor M on p.310.281280Like, \the number of non-inertial bodies present at the origin is smaller than that at oordinates h1; 0; 0; 0i".281There seems to be an analogy here with Kantian philosophy: Namely, GM orresponds to the outsideworld in itself (\Ding an sih") and eah observer reates his \own" world of phenomena via pereiving (inthe Kantian sense) the outside world, where Kant emphasizes that eah observer ontributes to the reationof the world of phenomena (and not only the outside world ontributes), f. Kant [145, 146℄. In our ase, theontribution of observer m is his oordinatization of GM. Cf. Friedman [91, pp.286-287℄, Reihenbah [217℄.
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Figure 62: Desriptive geometry put into analogy with the onnetion between the unique GMand the many world-views wm in M.For further introdutory thoughts on why we \elebrate" the observer independent har-ater of our geometries GM we refer to items (1){(11) on pp. 185{186. (That is in sub-setion\On the intuitive meaning of the geometry GM".)On the ontents of some of the setions (in this hapter). x4.2 ontains the de�nition of theobserver independent geometry GM. x4.3 ontains the basis of de�nability theory we willneed. x4.5 ontains our duality theories between observation-oriented models M and observerindependent geometries GM. More preisely, the duality theories at between axiomatizablelasses of frame models and of geometries. x4.6 studies interde�nability of the ingredients(sorts, relations, funtions et) of GM, and thereby it aims at simplifying and streamlining GMas a mathematial struture. x4.7 de�nes and disusses geodesis of GM. Geodesis play anessential role in the theory of aelerated observers (to be disussed in AMN [19℄, [26℄)282 andin the theory of general relativity. Some mathematial results/methods treated in AMN [18℄as a part of the Geometry hapter are moved to the Appendix in the present work to makeIn passing we also note that Kant's philosophy of siene was ontinued by the logial positivists, e.g. Carnap[58℄, Reihenbah [217℄. Logial positivism began as a neo-Kantian movement whose entral preoupationwas the ontent/form distintion where the \ontent" is supplied by the outside world while the \form" issupplied by the observer's mind (e.g. by his logi). [Here, phenomenon = (ontent + form).℄ In Carnap'sworks, the \form" part or the part supplied by the mind is logi. (In this respet, our present approah ispositively related to those of Carnap and Reihenbah.) Reihenbah emphasizes that the ontent part, e.g.the basi de�nitions of the onepts of a theory do hange during the evolution (or development) of the theoryin question. In agreement with Reihenbah, we think that this is in agreement with the modern view ofKant-oriented philosophy of siene. Cf. also footnote 270 on p.130.282f. also the \Aelerated observers" hapter of [24℄



134 4.1 INTRODUCTION TO RELATIVISTIC GEOMETRIESthe main body shorter (f. Appendix A).The �gure representing G�odel's rotating universe (proving e.g. that Einstein's equationsdo not imply Mah's priniple), mentioned on p.130, is postponed to the setion on geodesis(Figure 134, p.365) beause the notion of a geodesi is essential for understanding the piture.
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Figure 63: Paving the road towards general relativity by gluing together loally well behavedgeometries yielding something globally strange, f. x4.2.5 for gluing geometries. This Esherpiture shows a \paradigm for general relativity" whih loally behaves like speial relativity:In the piture loally everything is normal, globally it is like time travel via a rotating blakhole, f. Thorne [259℄ or O'Neil [208℄ for the latter. Cf. also Fig.61 on p.127.



136 4.2 BASIC CONCEPTS4.2 Basi oneptsIn this setion we show how observer-independent strutures an be found in our frame mod-els of relativity theory, i.e. we will show that there is an observer-independent \geometri"struture GM inside every model M of our frame language. We will also de�ne the Reihen-bahian version GRM of the geometri struture orresponding to a frame model M of relativitytheory.283Conventions, larifying possible ambiguities: The symbol ? for orthogonality will beused in the present work in an ambiguous way. Sometimes it denotes Eulidean orthogonality(as de�ned in x3.1 of AMN [18℄) and sometimes it denotes relativisti orthogonality as will bethe ase in the middle of De�nition 4.2.3 below. We hope that ontext will help. If somewherewe want to emphasize the di�erene then we will write ?e and ?r (for the Eulidean and therelativisti version, respetively). We note that the so-alled Minkowskian orthogonality is aspeial ase of our relativisti orthogonality ?r. A further soure of ambiguity is the following(issue about where exatly our geometry lives). For a seond let Mn := P(B), where B isthe set of bodies for our model M. (Later we will slightly hange this onvention but that isbeside the point now.) In x2 we had \Lines" � P(nF) while in the present hapter we willhave \Lines" � P(Mn). That is, now lines are understood on the set Mn of events, while atthe beginning (when we de�ned frame models) lines were understood on the vetor-spae nF.We hope, ontext will help.For a lass K of models IK denotes the lass of isomorphi opies of members of K.Warning 4.2.1 The word algebra is used in 3 di�erent senses, both here and in the literature.These are:(i) Algebra is a branh of mathematis.(ii) An algebra284 is a struture A = hA; fiii2I in the sense of universal algebra.285(iii) An algebra over a �eld F is a vetor spae over F with an extra binary operation \�" asindiated in footnote 1105, p.1101 (x6.6.6, sub-title \On . . . omnipresene . . . " item (2))of AMN [18℄.286 �
4.2.1 De�nition of the observer-independent (or relativisti) geometry GMThe reader may �nd that GM de�ned below has too many omponents; however there is noneed to worry, our theory will not be as ompliated as suggested by the number of theseomponents as it will be explained in x4.2.6 (Some reduts . . . ). The reader is asked not to bedisturbed by the omplexity (or size) of the geometry GM. We inlude here the whole of GM283Cf. x4.5 of AMN [18℄ for what we all the Reihenbahian approah to relativity.284or equivalently an algebrai struture285Here A is an arbitrary set and fi : nA �! A is arbitrary too (for some n 2 !).286The literature often writes simply \an algebra" for an algebra over a �eld.



4.2.1 DEFINITION OF RELATIVISTIC GEOMETRY GM 137only for ompleteness: We will almost never study the whole GM. Most of the time, we willstudy simpler geometries, e.g. GM de�ned in the �fth line of Def.4.2.3 or some even simplervariant of this simpler geometry like hMn;L; 2; eqi or hMn;L; 2;?i or the streamlined time-like metri struture hMn;F1; g�i on p.346 (x4.6.1). Cf. also the beginning of x4.2.6 (p.215).We would like to emphasize that we want to treat relativisti geometries as abstratstrutures. An abstrat struture is determined only up to isomorphism.287 Therefore itis important to emphasize that relativisti geometries are de�ned up to isomorphism only, f.Def.4.2.3(III) (p.146). That is, any isomorphi opy of the observer-independent geometry GMounts as \the geometri ounterpart" of the frame model M (where reall, that GM is theobserver-independent geometry assoiated with M). In still other words this means that whenstudying GM we will onentrate on its isomorphism invariant properties only (as is usualin the struturalist branhes of mathematis like algebra). The reason why this is importantis explained in Remark 4.2.5 (p.149). Treating GM as abstrat struture will make some ofour results, e.g. the duality theory, stronger. The fat that we treat isomorphi geometries asidential is important for the philosophy of the present hapter, f. Remark 4.2.5 (p.149).More motivation for the de�nition below will ome in x4.2.3 (\On the intuitive meaning ofthe geometry GM"), we would like to, partiularly, emphasize Remark 4.2.42 on p.186.Notation 4.2.2 +F def= f x 2 F : x > 0 g : I.e. +F is the set of positive elements of F.De�nition 4.2.3(Observer-independent, relativisti geometry and related de�nitions)Let M be a frame model.(I) The observer-independent geometry GM is a three-sorted struture to be de�ned below.289But f. also the improved geometry G�M in x4.5.5 (p.332). (The \simpli�ed" geometries GMand GM will be only two-sorted.)GM :def= hMn;F1;L; LT ;LPh;LS;2;�;Bw ;?r; eq; g; T i; andGM is the (g;LS; T )-free redutGM :def= hMn;L; LT ;LPh;2;�;Bw ;?; eqi287By an abstrat struture we understand a lass K of strutures suh that (8A 2 K)K = IfAg. Similarly anabstrat lass of strutures is one whih is losed under isomorphisms. As a ontrast, a onrete lass is usuallynot losed under I. An example of the abstrat/onrete distintion is provided by Stone duality on pp. 1015,1019 of AMN [18℄. The lass BA of Boolean algebras is an abstrat lass (sine BA = IBA). The lass BSAof Boolean set algebras, i.e. algebras whose operations are the real, set theoreti [;\;� is a onrete lass ofstrutures beause if we know the universe A of an algebra A 2 BSA then from A the rest of A is reoverable.288Aordingly BSA 6= IBSA (= BA). Stone's representation theorem says that every member of the abstratlass BA is representable by (i.e. is isomorphi to) a member of the onrete lass BSA. Cf. also p.147 andRemark 6.6.87 (\On representation theorems . . . ") on p.1106 in AMN [18℄. E.g. on p.147 Geom(Th) willbe a onrete lass while Ge(Th) = IGeom(Th) will be an abstrat lass. The theorems later saying that foran axiomatizable lass Mog(TH ) of geometries Mog(TH ) = IGeom(Th) are typial representation theorems.Cf. e.g. items 4.5.57, A.1.7, A.1.10, A.1.11 (pp. 328, A-4, A-5, A-6). Though these items are not exatly ofthe desired form \Mog(TH ) = IGeom(Th)" they (and the \tools" sattered around them) an be used forobtaining theorems of the desired form. Cf. for more on \onrete", \abstrat", \axiomati-abstrat" lassesand their onnetions with representation theorems in AMN [18, Remark 6.6.87℄ and also N�emeti [204℄.288For the notion of onrete lasses of algebras and for the importane of the onrete/abstrat distintionf. N�emeti [204℄.289Later, in Remark 4.2.5 we will de�ne the geometri ounterpart of the model M to be IGM.



138 4.2 BASIC CONCEPTSof GM, and GM is the (LT ;LPh;�;Bw ; eq)-free redutGM :def= hMn;L; 2;?iof GM; where:1. The universes (or sorts) of GM are Mn, F (= universe of the struture F1) and L, whilethe rest are the relations of GM.2902. Mn :def= S fRng(wm) : m 2 Obs g (� P(B)). Intuitively Mn is the set of all events inour relativisti model M. Mn is the set of points of our geometry GM. We also allMn spae-time, f. Convention 4.2.6 (p.149). The aronym Mn abbreviates the wordmanifold .2913. F1 :def= hF; 0; 1;+;�i is the ordered group redut hF; 0;+;�i of the ordered �eld FMexpanded with the onstant 1, where 0 and 1 are the usual zero and one of the �eld FM.4. LT :def= f f e 2 Mn : m 2 e g : m 2 Obs \ Ib g :292LPh :def= f f e 2 Mn : ph 2 e g : ph 2 Ph g :I.e. LT , alled the set of time-like lines, is the set of life-lines of inertial observers, andsimilarly LPh, alled the set of photon-like lines, is the set of life-lines of photons. Here,life-lines are understood as subsets of Mn (� P(B)), while in earlier parts of this workthey were understood as subsets of nF.290The statuses of all the relations 2, � et. should be lear with the possible exeption of the topology T .We an delare that T is a so-alled seond-order relation on Mn. Equivalently, we ould delare that T is the4th sort (or universe) of GM, and use the set theoreti membership relation 2Mn;T � Mn� T to onnet Twith the remaining sorts. Cf. x4.3 for more detail on this.291We do not need the manifold struture on Mn yet. So, the reader may safely skip the following. Mnis only the universe of a manifold Mn. Assume Mn omes from M 2 Mod(Pax + Ax(p )). Then Mn :=hMn;F; wmim2Obs . (Here the wm's are alled the maps and fwm : m 2 Obs g is alled the atlas of Mn.)This struture looks like a manifold exept that F may be di�erent from R and the topology indued on Mnby the oordinatizations fwm : m 2 Obs g may be of an unountable base. In a generalized manifold weallow the base set to be unountable but otherwise we do require all the remaining usual properties. So ifFM = R and M satis�es some natural onditions then Mn is a generalized manifold. In later generalizationsto aelerated observers and towards general relativity we will have to generalize Mn further, e.g. there willbe maps muh more general than world-views of inertial observers. (Cf. also footnote 96 on p.26 where weindiated generalizations suh that wm beomes a partial funtion wm : nF o�! Mn, i.e. wm oordinatizes asubset of Mn with only a subset of nF. Cf. also Fig.5 on p.10, together with the sentene on p.12 ontaining[referene to℄ footnote 71. Cf. also footnote 198 on p.188 of AMN [18℄ and Fig.64 on p.191 of AMN [18℄. Thisis of ourse only a �rst step in the diretion of generalization we are disussing.)292In our theories studied so far we always assumed Obs � Ib. The latter is implied by Ax2. Thereforeinstead of inertial observers i.e. members of Obs \ Ib we usually talked about simply observers, Obs only,for simpliity (sine we knew that Obs = Obs \ Ib was the ase). However, later when studying aeleratedobservers and other generalizations towards general relativity we will need to pay speial attention to Obs\ Ib,sine the Obs-part of Ax2 (i.e. Obs = Obs\Ib) will not be assumed any more. This is why at the present pointwe start to pay attention to the distintion between Obs and Obs \ Ib. (In some sense, in general relativityObs \ Ib will be a kind of \bakbone" of our theory.) Cf. in onnetion with these ideas Remark 4.2.42 onp.186.



4.2.1 DEFINITION OF RELATIVISTIC GEOMETRY GM 139LS onsists of the spae-like lines of M de�ned as follows:LS :def= fwm[�xi℄ : m 2 Obs \ Ib; 0 < i 2 n g :I.e. LS onsists of the wm-images of the spatial oordinate axes (like �x; �y; �z) of nF forinertial m's.We note that, assuming Ax4+Ax600,LT = fwm[�t ℄ : m 2 Obs \ Ib g ;i.e. LT onsists of the wm-images of the time axis for inertial m's.293The set L of all lines of GM is de�ned asL :def= LT [ LPh [ LS:Cf. Figure 90 on p.210 for the spirit of working in Mn instead of nF and for the onnetionsof the two.5. 2 is the set theoreti membership relation between Mn and L.294 In other words, 2 isthe usual inidene relation of our geometry hMn; : : : ;L; : : :i.6. We de�ne the binary relation, alled ausality pre-ordering,295 � on Mn as follows. Lete; e1 2 Mn. Intuitively, e � e1 holds if there is an inertial observer who is present bothin e and e1 (i.e. e and e1 are on his life-line) and sees that event e preedes event e1 intime; formally: e � e1def()(9m 2 Obs \ Ib) (m 2 e \ e1 ^ (9p 2 w�1m (e))(9q 2 w�1m (e1)) pt < qt).2967. The relation Bw � Mn � Mn � Mn of betweenness is a ternary relation de�ned asfollows: Let e; e1; e2 2 Mn. Intuitively, Bw(e; e1; e2) holds if there is an inertial observerwho thinks that event e1 is between events e and e2; formally:Bw(e; e1; e2) def() �(9m 2 Obs \ Ib)(9p; q; r 2 nF)[wm(p) = e ^ wm(r) = e1 ^ wm(q) = e2 ^ Betw(p; r; q)℄�,293The di�erene between the style of de�nitions of LT and LS is onneted to the fat (emphasized e.g. byReihenbah) that in relativity theory LS is somewhat less tangible than LT , f. x4.5 of AMN [18℄ (and thede�nition of \Reihenbahian" geometries on p.147 herein).294In our many-sorted approah we enounter several situations where members of one sort U1 at as setsof members of another sort, say U2. In suh situations we use the set theoretial symbol \2" as the relationonneting U2 and U1, i.e. \2" � U2 � U1. We an add the names of the sorts involved as indies of 2 like2Mn;L but for simpliity we often omit these indies.295The word \ausality" in \ausality pre-ordering" here is used only beause we want to be onsistent withthe literature. We emphasize that with this word we do not mean to imply that we would have a theory ofreal ausality around at this point. Cf. AMN [18, Remark 6.7.22 on p.1158℄.296Under very mild assumptions on M, � beomes a so-alled irreexive pre-ordering, i.e. � [ Id is a pre-ordering, i.e. is transitive and reexive. Note that e � e1 ) e; e1 2 ` 2 LT , for some `. We de�ned � in the\existential" style. The universal version �u of � is de�ned as follows. (9m 2 Obs \ Ib)m 2 e \ e1 ^ (8m 2Obs \ Ib)[m 2 e \ e1 ) (9p 2 w�1m (e))(9q 2 w�1m (e1)) pt < qt℄. Under mild assumptions �u is a (strit)partial ordering, moreover �u is the antisymmetri part of � (i.e. x �u y , [x � y ^ y 6� x℄).



140 4.2 BASIC CONCEPTSwhere, we reall from x3, p.119 that Betw(p; r; q) means that p; r; q are ollinear pointsof nF and r is stritly in between p and q, formally: r 6= p; q and r = p + � � (q � p) forsome 0 < � < 1.8. In analogy with our notation \GM", if we want to indiate that Mn or L omes from GMthen we will write MnM, LM et.2979. Next we de�ne the derived relation of parallelism in our observer-independent geometriesG = hMn;L; 2;Bwi �= hMnM;LM; 2;BwMi, where \�=" is the usual relation of isomor-phism between strutures (f. e.g. Conventions 3.1.2, 3.8.4 of AMN [18℄). Let `; `1 2 L.Intuitively, ` and `1 are G-parallel iff eah inertial observer who sees them thinks, theyare parallel; formally: ` kG `1def()(8a; b;  2 Mn)� (Bw(a; b; ) ^ a 2 ` ^ a 62 `1 ^  2 `1 ) )[ (9d 2 `)(9e 2 `1)(Bw(d; b; e) ^ d 6= a ^(�f 2 `1)(Bw(a; d; f) _ Bw(a; f; d) _ Bw(d; a; f) ) ℄�298see Figure 64. ` `1
a d b e

Figure 64: ` kG `1.10. For the de�nition of (relativisti) orthogonality ? = ?r we need �rst an auxiliaryde�nition.299Alternative (shorter) de�nitions of relativisti orthogonality (?r) are available in De�ni-tions 4.2.10, 4.2.17 (pp. 156, 161) below, f. Remark 4.2.9, too.297Formally, MnGM would be the standard model theoreti notation. However, it is too ompliated.298The formal de�nition beame so long beause we have to take into aount lines whih are present in severalwindows, for \windows" f. the intuitive text above Thm.3.3.12 on p.196 of AMN [18℄ (think of photon-likelines). Reall from x3 that Newbasax models are disjoint unions of Basax models, roughly speaking. TheseBasax models are informally referred to as \windows" in [18℄.299We would like to mention that on p.161 we will give an alternative de�nition (?!r ) for relativisti orthogo-nality whih is just as natural as the present one and is shorter. The only disadvantage of ?!r is that it \works"only for n > 2.



4.2.1 DEFINITION OF RELATIVISTIC GEOMETRY GM 141Ordinals denotes the lass of ordinal numbers in the usual set theoreti sense, f. e.g.Handbook of Mathematial Logi [44℄.The de�nition of onvergene given below agrees with what one would intuitively expet,f. Figure 65.De�nition: Let � 2 Ordinals. Let S 2 �L (i.e. S is an �-sequene of lines) and ` 2 L.Then we say that S onverges to ` iff(9p 2 Mn) h (8i 2 �)(p 2 S(i) \ `) ^(9`0 2 L)� p =2 `0 ^ (9q 2 �Mn)(8i 2 �) [ q(i) 2 S(i) \ `0 ^(q onverges to some q+ 2 `0 \ ` w.r.t. Bw) 300℄� i; see Figure 65.
q(0) q(1) q(2) q+

S(0) S(1) S(3)S(2) . . .
p

`
`0

Figure 65: S 2 �L onverges to ` 2 L.First we de�ne basi orthogonality ?0 � L� L. Intuitively, two lines are ?0-orthogonalif there is an inertial observer who thinks that these two lines oinide with two distintoordinate axes; formally: Let `; `0 2 L. Then` ?0 `0 def() �(9m 2 Obs \ Ib)(9i; j 2 n)(i 6= j ^ ` = wm[�xi℄ ^ `0 = wm[�xj℄)�;see Figure 66.The relation of relativisti orthogonality ? = ?r is de�ned to be the smallest subset ofL�L ontaining ?0 and losed under taking limits and parallelism, i.e. ?r is the smallestsubset of L� L having properties (i){(iii) below.(i) ?0 � ?r, i.e. ` ?0 `0 ) ` ?r `0.(ii) ?r is losed under taking limits, i.e.300I.e., (9q+ 2 ` \ `0)(8a; b 2 `0) [Bw(a; q+; b) ) (9� 2 �)(8i 2 (� n �)) Bw(a; q(i); b)℄.
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�xi

�xj wm
wm wm[�xi℄ wm[�xj ℄
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Figure 66: Illustration for the de�nition of ?0.�(9� 2 Ordinals)(9S;S 0 2 �L)(8i 2 �)(S(i) ?r S 0(i) ^S and S 0 onverge to ` and `0 respetively)� ) ` ?r `0,see Figure 67.301 We note that this property (i.e. that ?r is losed under takinglimits) an be formulated in the �rst-order language of the struturehMn;L; 2;Bw ;?ri, f. axiom L10 on p.331.(iii) ?r is losed under parallelism, i.e.(` ?r `1 ^ `0 kG ` ^ `01 kG `1) ) `0 ?r `01.In onnetion with Figure 67, it might be useful to have a look also at Remark 4.2.7(pp.149{152) and Figure 69 in that remark.We refer to Remark 4.2.7 (p.149) at the end of x4.2.1 for intuitive motivation (andonsiderations) for our using limits in the de�nition of ?r. That remark might also helpin improving our intuitive piture of ?r (and perhaps other parts of GM).11. The relation eq � 4Mn of equidistane is a 4-ary relation de�ned as follows. Intu-itively, eq(a; b; ; d) will mean that segments ha; bi and h; di are of equal length (in somesense).302 First we de�ne the relation eq 0 of basi equidistane. Let e; e1; e2; e3 2 Mn.Then
301Figure 67 is understood in the world-view of an observer, under assuming Bax�+Ax(p ). The 8 pituresrepresent all the possibilities as new \orthogonal pairs" (?r-pairs) an be generated by \old orthogonal pairs"(?0-pairs) by taking limits as desribed above. For that possible reader who wants to see the \intuitiveounterparts" of these pitures in, say, Basax+Ax(p ) models we suggest onentrating on �gures (a), (b),(). We note that we do not laim that all these 8 possibilities are realized in, say, Basax models. (Though,in passing we note that, (a), (b), (), (d), (f), (h) do our, and we did not hek with the rest.)302Intuitive and historial motivation for inluding eq in our geometries is that eq orresponds to \ompass" inthe traditional \ruler and ompass" oneption of geometry going bak for a very long time, f. e.g. L�anzos [151,p.48, lines 5-11, p.25 Postulate 3 (of Eulid)℄. (This is so beause by using eq we an de�ne irles.)
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(a) (b)
() (d)
(e) (f)
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Figure 67: \Taking the losure of ?0 under limits".



144 4.2 BASIC CONCEPTSeq 0(e; e1; e2; e3)def()(9m 2 Obs \ Ib)(9i; j 2 n)(9p; q 2 �xi)(9r; s 2 �xj)�jp� qj = jr � sj ^ wm(p) = e ^ wm(q) = e1 ^ wm(r) = e2 ^ wm(s) = e3�.303Intuitively, segments he; e1i and he2; e3i are eq0-related if there is an inertial observer mwho \thinks" that the distane between e and e1 is the same as the distane between e2and e3 (and sees the segments he; e1i and he2; e3i on some [perhaps di�erent℄ oordinateaxes).Now we de�ne eq to be the transitive losure of eq 0 understood as a binary relationbetween pairs of points (f. Figure 68); in more detail: First for every i 2 ! we de�neeq i+1 as follows.eq i+1 :def= � ha; b; ; di 2 4Mn : (9e; f 2 Mn) ha; b; e; fi; he; f; ; di 2 eq i 	 :304Now, eq :def= [ f eq i : i 2 ! g ; see Figure 68.

wm[�y℄
wm[�t ℄ wk[�t ℄

wk[�y ℄wh[�x ℄wh[�t ℄ wm0 [�t ℄

wm0 [�x℄eq 0 eq 0 eq 0 eq 0
eqFigure 68: eq is de�ned to be the transitive losure of eq 0.Instead of eq(a; b; ; d) sometimes we write ha; bi eq h; di. Similarly for eq 0; eq 1, et.We note that eq is an equivalene relation (when understood on pairs of points) on theset f ha; bi 2 Mn�Mn : (9m 2 Obs \ Ib)(9i 2 n) a; b 2 wm[�xi℄ g.303We ould \improve" the de�nition of eq 0 by adding eq 0(e; e1; e; e1). This would perhaps simplify some ofour upoming statements, but we did not explore this. Further, analogously to the de�nition of ?r, if we losedeq 0 under taking limits then perhaps the new eq 0 would behave better (i.e. if e; e1; e2; e3 are on a photon-likeline then eq 0(e; e1; e2; e3) would be the ase).304We note that (8i 2 !) eq i � eq i+1 sine eq 0 is \reexive", i.e. [ ha; b; ; di 2 eq 0 ) ha; b; a; bi 2 eq 0℄.



4.2.1 DEFINITION OF RELATIVISTIC GEOMETRY GM 14512. g : Mn�Mn o�! F is a partial funtion de�ned as follows. Let e; e1 2 Mn.Intuitively, the distane between events e and e1 as measured by an inertial observer, allit m, is � (where 0 � � 2 F) iff m sees both e and e1 happening on the same oordinateaxis �xi with oordinate distane �. Further, the distane between events e and e1 asmeasured by a photon, all it ph, is � iff � = 0 and ph is present both in e end e1.305Now,g(e; e1) :def= minf� 2 F : (9h 2 (Obs \ Ib) [ Ph )(the distane between e and e1 as measured by h is � ) g;306Formally:g(e; e1) :def= minf� 2 F : (9ph 2 Ph) [ ph 2 e \ e1 ^ � = 0 ℄ or(9m 2 Obs \ Ib)(9i 2 n)(9p; q 2 �xi) [wm(p) = e ^ wm(q) = e1 ^ � = jp� qj ℄ g,if this min308 exists, otherwise g(e; e1) is unde�ned.Under mild assumptions, the \min" part of the de�nition of g(e; e1) an be omitted.(More preisely, the essential ourrene of \min" ould be omitted.309) An example ofsuh suÆient assumptions is the axiom of equi-measure Ax(eqm) below. Intuitively,Ax(eqm) says that all inertial observers agree on distanes (whih they an measure).Ax(eqm) (8m; k 2 Obs \ Ib)(8i; j 2 n)(8p; q 2 �xi)(8p0; q0 2 �xj)�[wm(p) = wk(p0) ^ wm(q) = wk(q0)℄ ) jp� qj = jp0 � q0j�.310Connetions between Ax(eqm) and the rest of our axioms are proved by the presentauthor in x6.2.7 of AMN [18℄. Among other things, she proves that Ax(eqm) is equiva-lent to the other symmetry axioms (most of whih were introdued and disussed in x2.8herein, f. also the list of axioms herein311), under some onditions.Let us note that g(e; e1) an easily beome unde�ned, sine either (i) there may exist noinertial observer m who sees e and e1 on the same oordinate axis and no photon ph whois present both in e and e1 or (ii) there may exist an in�nity of inertial observers whomeasure smaller and smaller distanes between e and e1.We will all g the pseudo-metri312 of GM beause it remotely does resemble a metri305We ould have ahieved the \photons measure zero distane" e�et by �rst using inertial observers onlyand then losing the onept of a distane under taking limits like we did in the de�nition of ?r (from ?0).306It is important in the de�nition of g that we required \h 2 Ib" i.e. we used only inertial observers inmeasuring distanes, beause of the twin paradox f. x2.8.5 (p.139). Namely, by the twin paradox to time-likeseparated events e; e1 we an have aelerated observers who see e and e1 loser and loser307 (and thereforeg(e; e1) would not be de�ned et).307This loseness would be not a property of e and e1 instead it would only represent the extent of aelerationof the \measuring observer".308As usual, minH denotes the minimal element (or smallest element) of the set H taken in the ordered sethF;�i. Note that minH need not exist (even if F is omplete).309I.e. before trying to remove min we would reformulate the de�nition of g aording to the following pattern.g(e; e1) = 0 if e; e1 are on a photon-like line, otherwise g(e; e1) = minf� 2 F : (9m 2 Obs \ Ib) : : :g.310Cf. footnote 306 on p.145.311Einstein's SPR+ is also a symmetry priniple, f. p.84.312In the relativity book Rindler [222, p.62 footnote 1℄ the expression \pseudometri" is used the same way aswe use it here. For ompleteness we note that several other relativity works use a slightly di�erent terminology.Namely, our g : Mn�Mn o�! F is a variant of what, in ertain relativity works, is alled a Lorentzian metrif. e.g. Naber [198, p.83, line 8℄ or Wald [269, p.23, line 20℄ or Hawking-Ellis [116℄ (where a \metri" is reallya bilinear funtion on a vetor-spae, like our nF; however this di�erene does not e�et what is important forthe present work).



146 4.2 BASIC CONCEPTS(of a geometry) and beause the elements of L will turn out to be so-alled \geodesis"(f. Def.4.7.2 on p.351) w.r.t. g, under very mild assumptions (e.g. Bax��+Ax(eqm)).It is important to note that a pseudo-metri g is usually not a metri beause e.g. the\triangle inequality axiom of metris" fails for g.31313. T is the topology314 on Mn determined by pseudo-metri g. In more detail:Let e 2 Mn, " 2 +F. The "-neighborhood of e is de�ned asS(e; ") :def= f e1 2 Mn : g(e; e1) < " g :315See Figures 123{126 (pp. 343{345) for how suh neighborhoods an look like (there weuse the word g-irle instead of neighborhood). Cf. also Fig.29 on p.51.Now, the topology T � P(Mn) is the one generated by316T0 :def= � S(e; ") : e 2 Mn; " 2 +F 	 ;i.e. T0 is a subbase317 for the topology T .318Alternative de�nitions for the topology part of GM are available in De�nition 4.2.30(p.175).(II) Strutures with the same similarity type319 as that of GM are alled strutures similarto GM. By an isomorphism between GM and GN we understand an isomorphism in theusual sense whih is a homeomorphism320 w.r.t. the topologies TM and TN.321 Sine GM isa three-sorted struture (with sorts Mn, F and L) an isomorphism is a usual three sortedisomorphism, i.e. it onsists of three funtions, one de�ned on Mn, one on F, and one on L,f. end of Convention 4.3.1 on p.220. The de�nition of an isomorphism for strutures similarto GM, is the same, but as we will see in Convention 4.2.4 (p.148) the membership relations2 of our strutures similar to GM always have to oinide with the standard, set theoretimembership relation.322(III) By a relativisti geometry we understand an isomorphi opy of GM, for some framemodel M.323313Under very mild assumptions on M, our g does satisfy the axioms g(a; a) = 0 and g(a; b) = g(b; a) but itdoes not satisfy the remaining axioms usually required from metris f. e.g. James & James [138, p.232℄. One ofthe axioms whih fail for g is the triangle inequality g(a; b)+g(b; ) � g(a; ), another one is g(a; b) = 0 ) a = b.314i.e. hMn; T i forms a topologial spae in the usual sense, f. p.198 for a de�nition315Note that, by our onvention on equations involving partial funtions, g(e; e1) < " ) ( g(e; e1) is de�ned ).Cf. Convention 2.3.10 on p.31.316Where, \topology generated by T0" means taking �nite intersetions �rst, and then in�nite unions as usual.So T := fSY : Y � fTX : X is a �nite subset of T0g g.317By a subbase for a topologial spae X = hX;Oi we understand a set H � O suh that H generates O by�nite intersetions and in�nite unions i.e. O := fSY : Y � fTH : H is a �nite subset of Hgg.318In the \standard" literature the members of T are alled the open sets of the topology T . Cf. p.198.319Reall that similarity type = voabulary.320We note that a homeomorphism between topologies is what the ategory theorist would all anisomorphism.321Beause of the presene of g, the homeomorphism ondition is automatially satis�ed, but in reduts fromwhih g has been omitted this ondition will beome nontrivial.322When looking at strutures similar to GM we always assume that they satisfy the axiom of extensionalityfor 2.323Therefore a relativisti geometry is nothing but the observer-independent geometry of some model M.



4.2.1 DEFINITION OF RELATIVISTIC GEOMETRY GM 147Let Th be a set of formulas in our frame language for relativity theory. Then the lassesof relativisti geometries Geom(Th) and Ge(Th) assoiated with Th are de�ned as follows.Reall that for a lass K of models IK denotes the lass of isomorphi opies of membersof K.Now, Geom(Th) :def= fGM : M 2 Mod(Th) g ; andGe(Th) :def= IGeom(Th); i.e.Ge(Th) = fG : (9M 2 Mod(Th))G �= GM g :We will use the just introdued notation Ge(Th) in the spirit of Convention 4.2.4 (p.148) below.In the terminology of algebrai logi Geom(Th) is a onrete lass while Ge(Th) is anabstrat lass of strutures. The distintion between the two beomes important in duality the-ories (f. x4.5 way below) and \representation theorems". Cf. footnote 287 on p.137, AMN [18,Remark 6.6.87 (p.1106)℄ and e.g. Andr�eka-N�emeti-Sain [31, the Remark below Def.42℄.By a Th geometry we understand a member of Ge(Th). E.g. we will talk about Basaxgeometries. In the same spirit when in a theorem we disuss relativisti geometries then bywriting \assume Th" we mean that the geometries in question are in Ge(Th).(IV) We de�ne the relations �T ;�Ph;�S � Mn�Mn as follows.e �T e1 def() (9` 2 LT ) e; e1 2 `:e �Ph e1 def() (9` 2 LPh) e; e1 2 `:e �S e1 def() (9` 2 LS) e; e1 2 `:Intuitively: e �T e1, that is e and e1 are time-like separated , iff there is an inertial observerm whih is present both in e and e1. e �Ph e1, that is e and e1 are photon-like separated324iff there is a photon ph whih is present both in e and e1. Further, e and e1 are alledspae-like separated iff (9m 2 Obs \ Ib) m thinks that e and e1 are simultaneous.325(V) Let G �= GM. Then the relation kG of parallelism in G is de�ned in item (I).9 above(p.140).(VI) We de�ne the Reihenbahian version of the geometri struture orresponding to Mas follows:326 GRM :def= hMn;F1;LR; LT ;LPh;2;�;Bw ; gR; T Ri;where Mn;F1;LT ;LPh;�;Bw are as de�ned in item (I), 2 is the set theoreti membershiprelation between Mn and LR := LT [ LPh and gR; T R are de�ned in items 1 and 2 below.1. gR(e; e1) :def= minf� 2 F : (9ph 2 Ph) [ ph 2 e \ e1 ^ � = 0℄ or(9m 2 Obs \ Ib)(9p; q 2 �t ) [wm(p) = e ^ wm(q) = e1 ^ � = jp� qj ℄ g,if this min exists, otherwise gR(e; e1) is unde�ned.324In the literature this is often alled null-separated . The word null omes from the fat that (if e 6= e1 then)e �Ph e1 , g(e; e1) = 0.325The onnetion between �S and spae-like separateness is disussed in Prop.6.2.56(ii), p.858 of AMN [18℄.326Cf. x4.5 of AMN [18℄ for motivation.



148 4.2 BASIC CONCEPTS2. T R is the topology on Mn determined by the pseudo-metri gR. In more detail: Lete 2 Mn and " 2 +F. ThenSR(e; ") :def= � e1 2 Mn : gR(e; e1) < "; e 6= e1 	 :Now, the topology T R � P(Mn) is the one generated byTR0 :def= � SR(e; ") : e 2 Mn; " 2 +F 	 ;i.e. TR0 is a subbase for the topology T R.327We note that a somewhat riher, improved version of the geometry GM will be de�ned inx4.5.5 on p.332, it will be denoted as G�M.END OF DEFINITION OF GM AND RELATED DEFINITIONS. �A disussion of the intuitive meaning of (parts of) GM will be given on pp. 182{185.Connetions with the literature will be disussed beginning with p.215 (x4.2.6).328The following onvention is only a matter of onveniene and does not have far reahingonsequenes. It is motivated by the fat that the axiom of extensionality holds in GM (for2 onneting Mn and L), therefore it holds in any isomorphi opy G0M of GM. Therefore wedo not lose generality if we assume that \2" is the real set theoreti membership in G0M, too.To make 2 the real one in G0M the only hange we have to make is renaming the lines. Cf.Convention 2.1.3 (p.10), footnote 294 on p.139 and the text below AxG on p.7.CONVENTION 4.2.4 Let G := hMn; : : : ;L; : : : ;2; : : :i 2 Geom(;). By an isomorphiopy G0 of G we understand an isomorphi opy in the usual sense as it was explained in item(II) of Def.4.2.3, but with the restrition that 20 of G0 is the real, set theoreti membershiprelation,329 f. Convention 2.1.3 on p.10.The de�nition of Ge(Th) is understood aordingly. Hene Ge(Th) = fG0 : (9G 2Geom(Th))G �= G0 and 20 of G0 is the real set theoreti membership relation g. Throughoutwe understand isomorphism losedness of lasses of strutures in this sense. In this hapterwe onentrate on isomorphism losed lasses of strutures (with the above restrition on 2).It is important to emphasize that isomorphism losed lasses of models are more importantfor us than the rest. We also emphasize that the restrition on 2 does not ontradit ourphilosophy of onentrating on isomorphism losed lasses. In partiular we onsider Mod(Th)327We note that under some assumptions the topology T R agrees with the usual Eulidean topology. E.g.Reih(Basax) + R(sym) + Ax(Triv) is enough for this. Further we note that the alternative topologiesT 0; T 00 (basially equivalent to T ) de�ned in Def.4.2.30 (p.175) (see Fig.81, p.176) an be used here in theReihenbahian approah too as alternative possibilities for de�ning GRM.328In passing, we note that Busemann [55℄ obtains very attrative results by using a geometri struturesimilar to the following version GBM of our GRM. GBM := hMn;F1;LT ;LPh; 2;�; gR; T Ri. More preisely, butstill very roughly speaking, Busemann uses only (a version of) the GBM := hMn;F1; �; gR; T Ri redut of GBMand reovers LT as geodesis in the sense of x4.7 way below. (LPh is de�nable in Busemann's strutures GBM.)Then he introdues the loal version of GBM with whih he obtains very attrative insights into the problem ofobtaining transparent axiomatizations of (aspets of) general relativity. Cf. x4.6.1 (p.346).329We note that this does not ause loss of generality.



4.2.1 DEFINITION OF RELATIVISTIC GEOMETRY GM 149and Ge(Th) as being losed under isomorphisms. I.e. we onsider Mod(Th) = IMod(Th) andGe(Th) = IGe(Th).Our onventions onerning the symbol 2G (or 2 of G) an be summarized and lari�edby postulating that we are working in an extremely weak version of higher-order logi where2 is onsidered as a logial symbol. This applies to our frame language as well as to ourvarious geometri languages. For more detail on this (i.e. \2" and higher-order logi reduedto many-sorted one et.) we refer to the Appendix (\Why �rst-order logi?") of AMN [18℄.In order to keep things simple we leave it to the reader to elaborate the logial mahinery oftreating our various 2 symbols as logial symbols. Cf. e.g. M+ on p.153 for a ase when thereare more than one inarnations of the 2 symbol in the same language. In suh ases one uses2 with appropriate subsripts. �Remark 4.2.5 Our onvention that we regard isomorphi relativisti geometries as identialis important for the philosophy of the present hapter. Without this onvention it would beeasy to heat. Namely, it would be too easy to \geometrize" relativity (or any other theory, forthat matter) so that from the geometry say G+M assoiated with an observational model M allproperties of the original model M would be reoverable. E.g. let G+M be obtained from GM (inDef.4.2.3) by replaing the universe Mn = PointsGM of GM by Mn�fMg in suh a way thatG+M �= GM holds. But now, it is a trivial matter to reover M from the \onrete" geometryG+M sine M is sitting inside the elements of G+M (we an �nd it if we are willing to \dig"deep enough along the set theoreti membership relation). Atually M an be obtained byapplying the projetion funtion pj1 to any element e 2 PointsG+M(= Mn � fMg). Further330M = S pj1[PointsG+M℄, sine Sfxg = x, where pj1 is the projetion funtion ha; bi 7! bassoiating the 1st member of a sequene with the sequene (f. p.232 for pj1).But, if we de�ne331 IGM (or equivalently IG+M) to be the geometri ounterpart of M 332then the above trik does not work (for reonstruting M from its geometri ounterpart in aheap way). De�ning the geometri ounterpart this way is the same as de�ning the geometryof M only up to isomorphism.The presently disussed onvention makes some of our theorems in the duality theorysetion stronger. Moreover, it provides formal justi�ation for Einstein's remark to the e�etthat it is interesting that relativisti physis an be fully geometrized, f. e.g. Misner-Thorne-Wheeler [192℄.333 �CONVENTION 4.2.6 Throughout, by the spae-time of a model M we mean either thegeometry GM or a redut of GM like e.g. GM in Def.4.2.3.(I) (p.138). �Remark 4.2.7 (Intuitive motivation for our de�nition of ?r)334For simpliity, in the present disussion we are assuming Bax�(4) + Ax(Triv t) + Ax("") +Ax(p ) but most of these assumptions are not essential (i.e. they ould be eliminated on330It is not neessary to understand this formula, for understanding the rest of this work.331For any struture G, IG := IfGg is the lass of isomorphi opies of G.332i.e. we insist on \geometri ounterpart of M" = I\geometri ounterpart of M"333Geometrizability of relativity (or any other theory) would be vauously true without the ondition \geo-metri ounterpart of M" = I\geometri ounterpart of M".334We note that for the ase n = 2 Goldblatt [102℄ de�nes ?r pratially the same way as we do, and heprovides intuitive motivation whih is also similar to ours (e.g. uses limits) f. Goldblatt [102, p.6 lines 9{6bottom up and p.8 �rst 6 lines℄.



150 4.2 BASIC CONCEPTSthe expense of making the text longer). In partiular m is the speed of light for m. Also,throughout the present remark we assume n = 4 (i.e. we are in four dimensions) but, when itdoes not matter, we often talk as if we were in three dimensions e.g. this is what we do in thepitures.We would like to base our de�nition of ?r on the intuitive observer-oriented notions in M.So, what orresponds to orthogonality in M? Well, two oordinate axes of any observer areonsidered \orthogonal". So, we would like to say that two lines are ?r-orthogonal if someobserver thinks that they are parallel with two of his oordinate axes. The problem with thisis that then no photon-like line will be orthogonal to any line beause photon-like lines arenot parallel with any oordinate axis of any observer. The reason for this is, roughly, thatno observer an move with the speed of light, i.e. vm(k) 6= m for any m; k. But this an beirumnavigated beause we an have observers whose speed is arbitrarily lose to m, i.e. wean have a sequene k0; k1; : : : 2 Obs with limi7!1 vm(ki) = m.335 Cf. the piture on p.150.tk0 tk1 tk2 tki xkixk2xk1xk0: : : = yki = yk1 = yk0
tk1 = xk1

Let suh m; k0; k1; : : : be �xed. Assume8i (m and ki are in strit standard on�guration and m " ki ):Now, we are working in the world-view of m. To ensure existene of limits let us workwith F1 instead of F. We an try to onstrut an imaginary observer k1 as the limit ofthe sequene k0; k1; : : : ; ki; : : : (i 2 !) of \real" observers, in some sense.336 So the intuitiveidea is to \de�ne" k1 := \limi7!1(ki)" and fmk1 := \limi7!1(fmki)". We did not de�newhat we mean by limi7!1(ki), but we an de�ne at least \parts" of this imaginary observerk1 (= limi7!1(ki)). Cf. the piture on p.150. E.g. we an hoose the oordinate axes of k1 tobe �t1 := limi7!1(�ti) (2 LPh)337; �x1 := limi7!1(�xi); �y1 := limi7!1(�yi); �z1 := limi7!1(�zi);where we use the notation �ti = fkim(�t ) and 1it = fkim(1t), and similarly for �xi; �yi; �zi andfor 1ix; 1iy; 1iz. To ensure existene of the time unit vetor 11t of the imaginary observer k1, wede�ne the limit of a growing sequene like h1; 2; 3; : : : ; i; : : :i of members of F to be1. Furtherfor the sake of (nie behavior e.g. onvergene of) the unit vetors we assume Ax(symm)y.However, at the same time we would like to emphasize, that for the present argument about335It is possible that we need sequenes longer than ! for this limit to exist but that does not hange anythingessential.336For a similar train of thought (or onstrution) f. AMN [18, Figure 254 on p.749 and x5.1 (pp. 744{750)℄.337For simpliity we write LPh for f trm(ph) : ph 2 Ph g, in the present remark.



4.2.1 DEFINITION OF RELATIVISTIC GEOMETRY GM 151?r we do not need the unit vetors, hene Ax(symm)y is not really needed here (we assumedit only for making our \piture prettier"). Then we an de�ne11t := limi7!1(1it); 11x := limi7!1(1ix); 11y := limi7!1(1iy); 11z := limi7!1(1iz):This way we will obtain�t1 = �x1 2 LPh, �y1 = �y, �z1 = �z,11y = 1y, 11z = 1z; further11t = 11x = \the in�nitely long vetor pointing in the photon-like diretion �t1".More formally,11t = 11x = h1;1; 0; 0i.See Figure 69. In the present remark, Spaek denotes the hyper-plane whih m \thinks" isk's spae. I.e. Spaek is the fkm-image of the hyper-plane Spae def= S � nF determined byx1; : : : ; xn�1. I.e. Spaek = fkm[Spae℄. As Figure 69 shows, our imaginary observer k1 hassome exoti features. E.g. its spae Spaek1 � n(F1) is a Robb hyper-plane338, i.e. Spaek1is a hyper-plane tangent to the light-one. It ontains �y, �z and a photon-like line �t1 = �x1.Though k1 is only an imaginary observer, studying its mathematial struture an give us1

1

1 11t = 11x

�x�y 11y = 1y
Spae of k1 (2Robb hyper-planes) 1t

1x

�t0 = �t
�t1 = �x1

m k1

Figure 69: The axes of the imaginary observer k1.insight e.g. to the struture of GM. k1 does not satisfy our axiom Ax600, i.e. k1 does not seemost of the events m sees, but k1 does see the events on Plane(�y; �z) sine 11y and 11z are �nite(and agree with 1y and 1z, respetively). In the diretion h1; 1; 0; 0i however k1 is \blind": of338Cf. e.g. Robb [223℄ or Goldblatt [102℄ for the Robb hyper-plane (alled in [102℄ Robb threefold) f. alsop.1163 in AMN [18℄.



152 4.2 BASIC CONCEPTSthe events on his life-line �t1 = trm(k1) he sees only the event at the origin �0 beause k1'sunit vetors (11t , 11x ) in this diretion339 are too long.Let us return to relativisti orthogonality?r. Our k1 thinks that his axes �t1; �x1; �y1; �z1are orthogonal, therefore aording to our philosophy for de�ning ?r it is natural that we wishto have �t1 = �x1 ?r �t1 ?r �y ?r �z et.How ould we ahieve this (e.g. �t1 ?r �y) in a natural way? Well, k1 was obtained fromreal observers ki by taking a limit. Parts of k1 (e.g. the oordinate axes of k1) were alsoobtained by the same limit proedure. Therefore, all this suggests that we should lose ourrelativisti orthogonality ?0 up under taking limits and then probably this will yield for usthose orthogonal pairs (like �t1 ?r �t1, �t1 ?r �y et.) whih are oordinate axes of imaginaryobservers whih in turn were obtained by a limit proedure analogous to the one with whihwe obtained k1.In passing, we also note the following. k1 thinks that his time axis �t1 is orthogonal to hisspae, Spaek1, whih in turn is the hyper-plane generated by f�x1 = �t1; �y; �zg. Hene k1will think that �t1 is orthogonal to any line in this hyper-plane.340 Thus, any photon-like linein a Robb hyper-plane is expeted to be ?r-orthogonal to all lines in that hyper-plane.Summing it up, on a very-very informal level we ould say the following. Of ourse speed-of-light observers annot exist. But if they existed they would behave like k1 does.341 Inlaiming this we are relying on the \rule of thumb" that in physis everything is ontinuous(i.e. is preserved under taking limits). We emphasize that the above train of thought is not apreise mathematial argument, and it should not be taken too seriously342, it only serves tohelp the intuition about some parts of GM (espeially about ?r).Conerning the above intuitive remark we also refer to Goldblatt [102, middle of page 13℄for an analogous argument. �Besides disussing de�nability issues and alternative de�nitions, the next sub-setion analso serve to improve our intuitive understanding of ertain parts of GM.
4.2.2 On �rst-order de�nability of observer-independent geometry over observa-tional onepts; and alternative de�nitions for ?r, eq, TThe parts of our observer-independent geometry GM an be onsidered as \theoretial" on-epts as opposed to the parts of M whih in turn an be onsidered as \observational". Here weuse the observational/theoretial distintion as introdued and disussed e.g. in Friedman [91℄.The observational/theoretial distintion is known to be relative, hene we are aware of the fatthat someone might hallenge the observational status of M, but let us onsider observational-ness of M as a working hypothesis only. There is a long tradition (going bak e.g. to Mah,339i.e. in the diretion of h1; 1; 0; 0i340Cf. Proposition 6.2.51 (p.856) of AMN [18℄.341Pratially the same argument is found in Goldblatt [102, p.8 lines 4{7℄.342e.g. it uses \rules of thumb" whih are not axioms in our theories



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 153Carnap) in theoretial physis where people try to restrit attention to suh theoretial on-epts whih are de�nable in terms of observational ones343, f. the introdution to the presenthapter (x4.1, p.129), f. also e.g. Friedman [91℄. This (among other things) motivates ourasking ourselves344 whether parts of GM are de�nable in �rst-order logi over M, and moregenerally whether Ge(Th) is de�nable over Mod(Th). Indeed, e.g. in Theorem 4.2.40 (p.182)we will see results in the diretion that Ge(Th) is �rst-order de�nable over Mod(Th), undermild assumptions. Of ourse, we begin studying de�nability of GM (over M) by disussingde�nability of parts of GM over M. In passing, we also note that the above skethed ideasserve as part of the motivation for our setion 4.3 on de�nability (and for our onern forde�nability issues throughout the present Chapter 4).We will use the notion of (�rst-order logi) de�nability of a new struture say N+ in345 an\old" struture, say, N. Here N+ is an expansion of N possibly both with new sorts and newrelations. Intuitively, N+ looks likeN+ = hN; Unew1 ; : : : ; Unewj ; Rnew1 ; : : : ; Rnewl iwhere Unewi are new sorts and Rnewi are new relations. Suh a de�nition of N+ in N induesan interpretation of the language Fm(N+) of N+ in the language Fm(N) of N,346 likeintrp : Fm(N+) �! Fm(N);f. Theorems 4.3.27 (p.245) and 4.3.29 (p.247) (in those theorems we will write \Tr" insteadof \intrp"). In more detail, the basi onepts of \de�nability theory" (also alled \the theoryof de�nability") elaborated for the ase of many-sorted �rst-order logi (i.e. de�nability of anew sort) will be disussed in x4.3 beginning with p.218 way below.347CONVENTION 4.2.8 By de�nability we automatially mean expliit de�nability through-out the present work, f. x4.3.2. Similarly, �rst-order logi de�nability also means expliitde�nability. The adjetive \�rst-order logi" is there only to emphasize that our expliit def-initions of new relations will be formulas of �rst-order logi as one would expet. Similarly\de�nition" means expliit de�nition in the sense of x4.3.2. �Remark 4.2.9 (On �rst-order de�nability of GM in M.)Let M be a frame model and let GM be the observer-independent geometry orresponding toM (de�ned in Def.4.2.3(I) above). We will look into the question whether the ingredients ofGM are de�nable in M using �rst-order logi (i.e. using our �rst-order frame language) or,more boldly, whether GM is �rst-order de�nable in M. In the present remark, for simpliity,instead of M we will use its expansionM+ := hM;Mn;L; 2Mn;2Li343In our opinion, \de�nable" should almost always mean de�nable in some system of logi, e.g. in the logibeing used by the \speaker". Therefore, in the present work, de�nable always means de�nable in the languageof (many-sorted) �rst-order logi.344f. p.130345\De�nable in" means the same as \de�nable over".346Fm(N) is the set of formulas in the \language" of N, f. Convention 4.3.26 (p.245).347We will return to de�ning (but only informally) interpretations on p.263 Fig.96 and on p.1023 of AMN [18℄.Cf. also p.251 and footnote 545 (on p.251). [The above intrp : Fm(N+) �! Fm(N) is only a speial kind ofinterpretations (involving only one of the many possible ways of using this onept).℄



154 4.2 BASIC CONCEPTSwhere events Mn and lines L are new sorts as de�ned in items 2, 4 of Def.4.2.3(I) and 2Mn;2Lare the restritions of the usual set theoreti membership relation 2 to B �Mn and Mn� L,respetively. We will see in Proposition 4.3.18 (p.240) thatM+ is �rst-order de�nable348 in M, moreover this de�nition is uniform forthe whole lass FM of frame models.(?)This justi�es our deision of studying de�nability in M+ instead of de�nability in M. When-ever below we say that something is de�nable in M+ then by (?) above this automatiallymeans that that thing is also de�nable in M. So, we ask ourselves whih parts (ingredients)of the geometry GM are �rst-order de�nable in the expanded frame model M+. Let us notiethat the de�nitions of all ingredients of GM, given in Def.4.2.3(I) above, are indeed �rst-orderde�nitions in M+ exept for the relation ?r of relativisti orthogonality, the relation eq ofequidistane, and the topology T . Therefore, it is suÆient to disuss here de�nability of ?r,eq and T in M+. Let us turn to doing this.On ?r: The relation ?0 is �rst-order de�nable. This gives us a promising start (forheking de�nability of ?r), but disappointingly, the de�nition of relativisti orthogonality ?r(item 10 of Def.4.2.3.(I) on p.140) involves losing ?0 up under taking limits, then losing upunder parallelism, and then iterating this two-step proedure arbitrarily many times. Clearlythis de�nition in its present form is not a �rst-order one. As we indiated, we an translatethe step of losing up under limits and the step of losing up under parallelism into our �rst-order frame language, f. pp. 142, 331, but it is not ompletely obvious how to translateiteration into �rst-order logi. (The iteration omes into the piture when we say that ?r isthe smallest set with ertain properties [this happens above item (i) in the de�nition of ?r℄.)349In De�nitions 4.2.10, 4.2.17 below we give three alternative de�nitions for ?r, whih are (i)in the (�rst-order) language of M+, and (ii) they are equivalent to the original de�nition of?r, under some assumptions on M, e.g. n > 2 and Bax� + Ax(p ) + Ax(Triv t) + Ax6(f. Theorems 4.2.11, 4.2.19). Therefore ?r beomes �rst-order de�nable in M+, under someassumptions on M. Another use of exploring alternatives for ?r (and proving equivalene) isthat we obtain some insights into \how ?r works".On eq: The relation eq of equidistane (item 11 of Def.4.2.3.(I) on p.142) was de�ned tobe the transitive losure of the relation eq 0 of basi equidistane, so it uses the set of naturalnumbers !. Being a natural number is usually not �rst-order de�nable in M+. Hene350 thede�nition of eq is not a �rst-order de�nition in M+. Let us reall that for every i 2 ! eq iwas de�ned to be the \i-long-transitive losure" of eq 0. Let us notie that the de�nition ofeah one of our relations eq i is indeed a �rst-order de�nition in M+. In Theorems 4.2.21,4.2.22 we will see that eq 2 oinides with eq under some assumptions on M, e.g. n > 2 andBax�+Ax(Triv t)+Ax(k)+Ax(p ). Hene the relation eq of equidistane beomes �rst-orderde�nable in M+, under some assumptions on M.351On T : Let us reall that the topology T was de�ned from the subbaseT0 = �S(e; ") : e 2 Mn; " 2 +F 	 :348I.e. M+ is rigidly de�nable overM in the sense of x4.3.2.349In theory it is possible that one ould prove that the above mentioned iteration (of taking limits andparallels) terminates in a bounded �nite number of steps, under ertain assumptions. If that is the ase thenthe original de�nition of ?r will get translated into our �rst-order frame language. However, we did not havetime to think about this diretion. Instead of pursuing this diretion (i.e. heking whether iteration stops) weexplore alternative de�nitions for relativisti orthogonality.350Transitive losure is a typial example of (usually) not �rst-order de�nable onepts.351If we make no assumptions, eq beomes unde�nable in some frame models M, f. Thm.4.2.23 (p.168).



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 155We will see in Proposition 4.3.19 (p.242) thatthe subbase T0 for T is �rst-order de�nable352 in M, and that this de�nitionis uniform for the whole lass FM of frame models.(??)By (??), we onsider the topology T as �rst-order de�nable in M, however we do not disusshere whih basi onepts of topology are �rst-order de�nable, e.g. we do not disuss whetherthe set of open subsets of T (i.e. T itself) is �rst-order de�nable.(? ? ?) To be honest, we should all T �rst-order de�nable only if a base353 , say T , for Tis �rst-order de�nable. (This is so beause then standard notions of topology, e.g. ontinuitywould beome expressible by using T whih in turn is de�nable.) To pursue this diretion weshould investigate the question, under what onditions (axioms) does de�nability of a subbaseT0 imply de�nability of a base T . However, in the present work we do not want to investigatethis diretion. Therefore (perhaps slightly misleadingly) we all T de�nable if a subbase T0 forT is de�nable. Investigating the question of under what assumptions is a base T for T de�nable(over FM) remains a task for future researh. For a similar notion of expliit de�nability ofa topology T we refer to the model theory book Barwise-Feferman [45, p.567, lines 5-8, x3.3(De�nability) of Chap.XV℄.We will introdue alternative versions T 0 and T 00 for the de�nition of the topology partof our observer-independent geometry in De�nition 4.2.30 (p.175). From the point of view of�rst-order de�nability over M, T 00 will behave just as niely as T does (f. Prop.4.3.20, p.243)while to ensure nie behavior of T 0 we will assume Bax� +Ax(p ) (f. Prop.4.3.21, p.243).As a orollary of (?), (??) above and Theorems 4.2.11, 4.2.19, 4.2.21, 4.2.22 below we obtainthat under reasonably mild assumptions Th on our models M 2 Mod(Th), the geometry GMis de�nable in �rst-order logi in the struture M. Moreover this de�nition is uniform for thewhole lass Mod(Th), see Theorems 4.3.22 (p.244) and 4.3.24, f. also Theorems 4.3.25 and4.2.40. Hene Ge(Th) is uniformly de�nable over Mod(Th).As we have already said, more on de�nability theory an be found in x4.3 way below. �In x4.3 we will give a preise de�nition of what we mean by �rst-order de�nability of GMin M (or over M). After x4.3 we will prove that GM is indeed �rst-order de�nable over M,under some mild onditions.In De�nition 4.2.10 below we give two alternative de�nitions ?0r and ?00r for the relation ?rof relativisti orthogonality. The advantages of the de�nitions of ?0r and ?00r over the de�nitionof ?r will be that (i) they will be �rst-order de�nitions (in the expanded frame models M+de�ned in Remark 4.2.9, p.153) and (ii) they will be easier to understand. However, we onsiderthe de�nitions of ?0r and ?00r less natural than that of ?r, beause they (i.e. the de�nitions of?0r and ?00r) use ase-distintions, i.e. they distinguish photon-like lines from the rest of thelines, f. items (iii) and (iv)' of Def.4.2.10 below. In De�nition 4.2.17 (p.161) way below wegive two further alternative de�nitions ?000r and ?!r (for relativisti orthogonality) whih weonsider just as natural as the de�nition of ?r is. The de�nition of ?000r will be a �rst-order one(in the expanded frame models M+). In Theorems 4.2.11, 4.2.18 and 4.2.19 below we will see352More preisely, T0 together with \2-relation" ating between Mn and T0 are �rst-order de�nable, wherede�nable here means rigidly de�nable in the sense of x4.3.2.353A set T � T is alled a base for topology T iff eah member (i.e. \open set") of T an be obtained as a(possibly in�nite) union of sets from T .



156 4.2 BASIC CONCEPTSthat, under some assumptions, all versions of relativisti orthogonality, i.e. ?r;?0r;?00r ;?000r ;?!r ,oinide, f. Corollary 4.2.20. These theorems imply that ?r is �rst-order de�nable (in theexpanded frame models M+ mentioned above), under ertain onditions.De�nition 4.2.10 (Alternatives ?0r; ?00r for relativisti orthogonality ?r)Let M be a frame model. L;LPh and the relation of parallelism (kG) on L are de�ned in items4, 9 of Def.4.2.3.(I) (pp. 138{140). We de�ne ?0r � L� L and ?00r � L� L as follows.Intuitively, two lines are ?0r-orthogonal if they are parallel photon-like lines or there is aninertial observer who thinks that one of the lines oinides with a oordinate axis, all it �xi,and the other line lies in the subspae determined by two (possibly oiniding) oordinate axesdi�erent from �xi, see the left-hand side of Figure 70. Formally: Let `; `0 2 L. Then` ?0r `0 def() (one of (i){(iii) below holds); f. Figure 70.
�xi ` `0�xl

�xj
world-view of m world-view of m

�xi
�xj` `0 �t
world-view of m�xi �xj` `0 2 LPh`̀ 0`; `0 2 LPh

` `0
`; `0 2 LPh

?0r ?00r(i), (ii) (iii) (i)' (ii)', (iii)' (iv)'

Figure 70: Illustration for the de�nitions of ?0r and ?00r .In the formula in item (i) below, if j = l then Plane(�xj; �xl) denotes the oordinate axis�xj (i.e. Plane(�xj; �xj) = �xj, as one would expet).(i) (9m 2 Obs \ Ib)(9i; j; l 2 n)� j 6= i 6= l ^ ` = wm[�xi℄ ^ `0 � wm[Plane(�xj; �xl)℄�.(ii) The same as (i) but with `; `0 interhanged.(iii) (`; `0 2 LPh ^ ` kG `0).Now we turn to de�ning ?00r . Intuitively, two lines are ?00r -orthogonal if they are parallelphoton-like lines or there is an inertial observer, all it m, who thinks that the two lines areparallel with two di�erent oordinate axes or m thinks that one of the lines oinides with aspatial oordinate axis, all it �xi, and the other line is the trae of a photon and this photonmoves in the (spatial) diretion determined by a spatial oordinate axis di�erent from �xi, seethe right-hand side of Figure 70. Formally: Let `; `0 2 L.` ?00r `0 def() (one of (i)'{(iv)' below holds); f. Figure 70.(i)' (9m 2 Obs \ Ib)(9i; j 2 n)�i 6= j ^ wm[�xi℄;wm[�xj ℄ 2 L 354 ^ ` kG wm[�xi℄ ^ `0 kG wm[�xj ℄�.354We note that, assuming Ax4+Ax600, (8m 2 Obs)(8i 2 n) wm[�xi℄ 2 L.



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 157(ii)' `0 2 LPh ^ (9m 2 Obs \ Ib)(9i; j 2 n)� 0 6= i 6= j 6= 0 ^ ` = wm[�xi℄ ^ `0 � wm[Plane(�t; �xj)℄�.(iii)' The same as (ii)' but with `, `0 interhanged.(iv)' (`; `0 2 LPh ^ ` kG `0). �For stating the next theorem we introdue two new axioms. The �rst one is alled axiomof disjoint windows (Ax(diswind)) formulated below. We note that there is a model ofNewbasax in whih Ax(diswind) fails (see Figure 98 on p.275 or Figure 91 on p.211).Ax(diswind) (8m; k 2 Obs \ Ib) [(m �! ph ^ k �! ph) ) m �! k℄.The intuitive meaning of Ax(diswind) is the following. In models of Bax� the visibilityrelation �! is an equivalene relation on the set of (inertial) observers,355 f. Theorem 3.2.6(p.110) and the intuitive text above Theorem 3.3.12 (p.196) of AMN [18℄. The \windows"orrespond to the equivalene lasses of �!. Now, Ax(diswind) says that there is nophoton onneting the windows. Cf. also Figure 91 on p.211 for the intuitive idea of awindow. Very roughly, one ould say that the window of an observer m is that part ofspae-time whih \unquestionably exists" for m.356The seond new axiom is the auxiliary axiom Ax(Triv t)� whih is a weakened version ofAx(Triv t) (p.82). The advantage of the axiomAx(Triv t)� over Ax(Triv t) is thatAx(Triv t)�an survive the transition from speial relativity to general relativity, while Ax(Triv t) mightprobably not survive this transition. Reall from p.82, that Ax(Triv t) postulates the existeneof ertain very simple fmk transformations not involving motion (or even hanging the timeaxis �t ). Reall thatTriv = f f : f is an isometry of nF and f(1t)� f(�0) = 1t g :Our new, weaker axiom will say less than Ax(Triv t), namely, it will presribe only whatthe required fmk's do with the spatial oordinate axes, i.e. what they do with spatial dire-tions �x; �y; : : : but it will not presribe what they do with e.g. the lengths of the unit vetors1t; 1x; 1y; : : :.Ax(Triv t)� (8m 2 Obs)(8f 2 Triv) [ f [�t ℄ = �t )(9k 2 Obs)(8i 2 n) ( fkm[�xi℄ = f [�xi℄ ^ m " k ) ℄.That is, assume we are given an observer m and a Triv transformation f that leavesthe time-axis �xed. Then m has a brother, all it k, suh that m thinks that (i) theoordinate axes of k are the f -images of the original oordinate axes �xi, and (ii) thelok of k runs forwards.Intuitive motivation explaining why we will need Ax(Triv t)� often an be found on p.182(beginning of x4.2.3).355We note that in Bax� all the observers are inertial ones.356One ould also say that a window is suh a part of Mn whih an be obtained in the form Rng(wm), forsome m (i.e. whih an be \oordinatized" by m).



158 4.2 BASIC CONCEPTSTHEOREM 4.2.11 ?r oinides with both ?0r and ?00r , 357 therefore ?r is �rst-orderde�nable358, assuming Bax� + Ax(Triv t)� + Ax(diswind) + Ax(p ). (The assumptionis needed for all parts of the statement, e.g. for ?r = ?0r, of ourse.)For the axiom Compl and the axioms in Figure 71 we refer the reader to the List of axioms(on p.A-19). M j= Bax� +Ax(Triv t)� + Ax(p ) + Ax(diswind)
M1 j= Newbasax + Ax(Triv t)� + Ax(p ) + Ax(diswind)
M2 j= fmk 2 Aftr +Newbasax + Ax(Triv t)� + Ax(p ) + Ax(diswind)M3 j= Ax(syt0) +Newbasax + Ax(Triv t)� + Ax(p ) + Ax(diswind)M4 j= Ax(syt0)+ Ax(") + Ax5+ +Newbasax + Ax(Triv t)� + Ax(p ) + Ax(diswind)M5 j= Ax(syt0)+ Ax(") + Ax5+ + Ax~ + Ax(ext) +Newbasax + Ax(Triv t)� + Ax(p )+ Ax(diswind)

hanging the units ofmeasurement for timegetting rid of �eldautomorphismsfrom the fmk'shanging the unitsof measurementhanging the diretionof ow of time forsome observersthrowing awaysuperuous bodies
Figure 71: Illustration for the proof of Thm.4.2.11. By gradually hanging M we arrive atM5. For explanation f. footnote 359.Proof: Assume n > 2. A sketh of the idea of the proof is illustrated in Figure 71.Let M;M1; : : : ;M5 be as in the �gure. We start out with M and by gradually hanging itwe arrive at M5.359 What is invariant during this proess is that thehMn;L; LT ;LPh;LS;2;Bw;?0;?r;?0r;?00ri357Reall that ?r is de�ned in Def.4.2.3 (p.140) and ?0r and ?00r are de�ned in De�nition 4.2.10 above.358we mean, de�nable over Mod(Bax� + : : :), of ourse. First one de�nes M+ = hM;Mn;L; 2i over M 2Mod(: : :) and then ?r overM+. (The point is that for de�ning ?r �rst we need to have lines.)359See Figure 71. Step M 7! M1 goes exatly as step M 7! N in the proof of item 6.2.89 on p.895 ofAMN [18℄. Step M1 7! M2 goes as follows: Assume M1 = h(B; Obs;Ph; Ib);F;G; 2;W i. Let m0 2 Obs



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 159generalized reduts of geometries orresponding to all these models360 are isomorphi (atuallywith the exeption of M5 these reduts are idential). It an be proved361 thatM5 j= Newbasax +Compl+Ax(p ) +Ax(diswind):Therefore M5 is a disjoint union362 of models of BaCo+Ax(p ), i.e. it is a disjoint union ofMinkowski models.363Sine the above indiated \geometry reduts" of M and M5 are isomorphi, to prove thetheorem, it is enough to prove its onlusion for Minkowski models. I.e. it is enough to provethat in Minkowski models ?r, ?0r, ?00r oinide. We leave heking this to the reader; but wenote that a generalized version of this is proved as Claim 6.2.11 in AMN [18℄ on p.815.Assume n = 2. Then we use the �rst part of Figure 71 involving M; : : : ;M3.For this part the proof is the same as in the n > 2 ase (e.g. we use the same ge-ometry redut). It is not hard to prove that M3 is a disjoint union of models of(Basax+Ax(syt)+Ax(Triv t)+Ax(p )), f. footnote 361. Then it is enough to prove theonlusion for (Basax+Ax(syt)+Ax(Triv t)+Ax(p )). Sine n = 2 this is not too hard.We leave this step to the reader; but we note that a generalized version of this is proved asClaim 6.2.11 in AMN [18℄ on p.815. We note that there is a di�erent, more detailed proof inAMN [18, p.815℄.Before de�ning the third and the fourth versions ?000r and ?!r of our relativisti orthogonalityrelation we need the de�nition of the \plane generated by a set of points H � Mn". Toexplain ertain tehnialities in this de�nition, we inlude Proposition 4.2.14 below. To improvereadability, we will use the following abbreviations.Notation 4.2.12 Let G be a relativisti geometry.(i) We de�ne the binary relation � of onnetedness on points Mn as follows.364 Lete; e1 2 Mn. Thene � e1 def() �e = e1 _ (9e2 2 Mn)Bw(e; e1; e2)�.(ii) Let a; b;  2 Mn. Thenoll(a; b; ) def() �a � b �  � a ^(Bw(a; b; ) _ Bw(a; ; b) _ Bw(b; a; ) _ a = b _ b =  _ a =  )�.\oll(a; b; )" abbreviates \a; b;  are ollinear".be arbitrary, but �xed. For every k 2 Obs let 'k 2 Aut(F) be suh that fm0k = f Æ e'k , for somef 2 Aftr . Suh 'k's exist by Thm.3.2.6 (p.110) (and e.g. Lemma 3.1.6 (p.163) of AMN [18℄). LetW 0 := f hk; p; bi 2 Obs � nF �B : W(k; e'k(p); b) g and M2 := h(B; Obs;Ph; Ib);F;G; 2;W 0 i. For the stepM2 7!M3 we refer the reader to Figures 96, 97 (p.324) of AMN [18℄ and to the intuitive model onstrutionon pp. 322{325 of AMN [18℄. In step M3 7!M4 we hange the diretion of ow of time for some observers sothat Ax(")+Ax5+ beomes true, and in stepM4 7!M5 we throw away some bodies so that Ax~+Ax(ext)beomes true.360M; : : : ;M5361by Thm.3.3.12 (p.196) of AMN [18℄, by Prop.2.8.15 (p.83), by notiing that Ax(k) + Ax(Trivt)� j=Ax(Trivt) and by Thm.2.8.17 (p.84)362For disjoint unions of models f. pp. 196-197.363Cf. Def.3.8.42 (p.331) of AMN [18℄ for Minkowski models.364We note that the present notion of onnetedness is a ompletely di�erent thing than the topologial notionof onnetedness.



160 4.2 BASIC CONCEPTSWarning: The \real" ollinearity relation of our relativisti geometries G (to be denotedas Col) will be de�ned later by using the set L of lines and (e.g. in Ge(Bax�)) it willnot neessarily oinide with the reently de�ned oll. However, the two ollinearityrelations (oll and Col) will oinide in the geometries of models of Bax+Ax(Triv t)�+Ax(p ) + Ax(diswind). More generally, oll � Col, assuming Pax + Ax(diswind),f. Item 4.5.36 on p.308. �Remark 4.2.13 Assume M 2 Mod(Bax�). Then two events e; e1 2 MnM are onneted iffthere is an observer who sees both of them. I.e.e � e1 () (9m 2 Obs) e; e1 2 Rng(wm). 365 �PROPOSITION 4.2.14 Assume Bax�. Then (8a; b;  2 Mn)oll(a; b; )m( there is an observer who sees that events a; b;  are ollinear )366m( eah observer who sees events a; b;  \thinks" that they are ollinear and some observersees all of a; b;  )367.Proof: The proposition follows by Thm.3.2.6 (p.110) (and by the de�nition of Bw).We note that the diretions \*" in the above proposition hold for any frame model (i.e.the assumption Bax� is not needed for these diretions).In Def.4.2.15 below, the �rst de�nition we give for Plane(H) is short, but is not in the�rst-order language of our geometry hMnM; BwMi. This is why, still in Def.4.2.15 we ontinuedisussing alternative de�nitions for Plane(H). A similar remark applies to Def.4.2.17 (thede�nition of ?!r ).De�nition 4.2.15 Let M be a frame model. Let hMn; Bwi �= hMnM; BwMi.368Let H � Mn.(i) By Plane(H) we denote the \plane generated by H", i.e. Plane(H) is the smallest subsetof Mn having properties 1 and 2 below.3691. H � Plane(H).2. ( a; b 2 Plane(H) ^ oll(a; b; ) ) )  2 Plane(H).365This holds by the de�nitions of Bw and �.366Formally: (9m) [ a; b;  2 Rng(wm) ^ (w�1m (a); w�1m (b); w�1m () are ollinear) ℄.367Formally: (8m) [ a; b;  2 Rng(wm) ) (w�1m (a); w�1m (b); w�1m () are ollinear ) ℄ ^ (9m) a; b;  2 Rng(wm).368MnM;BwM are de�ned in items 2, 7 of De�nition 4.2.3.(I).369What we denote by Plane(H), is usually denoted as Span(H), in the literature.



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 161As we already said, the above de�nition of Plane(H) is not formulated in �rst-orderlogi. (In passing we note, that atually, it is in seond-order logi.) Next we prepare formaking the de�nition of Plane(H) a �rst-order logi one (under some mild assumptions).An equivalent de�nition for Plane(H) is the following. First, for every i 2 ! we de�nePlanei(H) as follows.Plane0(H) :def= H;Planei+1(H) :def= �  2 Mn : (9a; b 2 Planei(H)) oll(a; b; )	 :We note that Planei(H) � Planei+1(H); for any i 2 !.Now we observe, thatPlane(H) = [�Planei(H) : i 2 ! 	 :(ii) Below we introdue the \�rst-order version" Plane0(H) of Plane(H) whih will be de�nedin the �rst-order language of the struture hMn; H;Bwi. Let us reall that n > 1 is thedimension of our spae-time. We de�nePlane0(H) :def= Planen(H):We note that Plane0(H) = Plane(H), assuming M j= Bax�, f. Prop.4.2.16.(iii) We write Plane(`1; : : : ; `i) for Plane(`1 [ : : : [ `i), where `1; : : : ; `i 2 L. �PROPOSITION 4.2.16 Assume Bax�. Then Plane(H) = Plane0(H).On the proof: A proof an be obtained by items 1g (p.209) and 3b (p.213) of Proposi-tion 4.2.64 way below, f. also Prop.4.2.14 (p.160).Now, we are ready for de�ning our third and fourth versions ?000r and ?!r of relativistiorthogonality.De�nition 4.2.17 (Alternatives ?000r ; ?!r for relativisti orthogonality ?r) Let M bea frame model. Mn; L; 2; Bw ; kG, and the basi relation ?0 � L � L of orthogonality arede�ned in Def.4.2.3.(I). In the present de�nition we de�ne two alternatives ?!r and ?000r for therelativisti orthogonality. The de�nition of ?000r will be a �rst-order one over hMn;L; 2;Bwi370while that of ?!r will not be suh.(i) ?!r is de�ned to be the smallest subset of L� L having properties 1{4 below.1. ?0 � ?!r , i.e. ` ?0 `0 ) ` ?!r `0.2. ?!r is a symmetri relation, i.e. ` ?!r `0 ) `0 ?!r `. 3713. If lines `; `1; `2 onur at point e, with `1 6= `2 and ` is ?!r -orthogonal to both `1and `2, then ` is ?!r -orthogonal to every line through e in the plane determined by`1 and `2, see Figure 72;372 formally: Let e 2 Mn and `; `1; `2; `0 2 L. Then370Reall that the relation of parallelism kG was �rst-order de�ned over hMn;L; 2;Bwi.371We note that in Goldblatt [102, p.115℄ this is an axiom for a metri aÆne spae alled OS1.372We note that in Goldblatt [102, p.115℄ this is an axiom for a metri aÆne spae alled OS4.



162 4.2 BASIC CONCEPTS` `2
`1 `0Plane0(`1; `2)e

Figure 72: In the Figure, the little \diamonds" around point e indiate that lines ` and `i areorthogonal, for i 2 f1; 2g.[ e 2 ` \ `1 \ `2 \ `0 ^ `1 6= `2 ^` ?!r `1 ^ ` ?!r `2 ^ `0 � Plane0(`1; `2) ℄ ) ` ?!r `0:In suh situations we may also say that ` is?!r -orthogonal to the plane Plane 0(`1; `2).4. ?!r is losed under parallelism, i.e.( ` ?!r `1 ^ `1 kG `2 ) ) ` ?!r `2: 373Next we prepare for making the de�nition of ?!r a �rst-order logi one (under someassumptions). An equivalent de�nition for ?!r is the following. First, for every i 2 ! wede�ne ?ir � L�L as follows. For easier readability, we note that the formulas  i2;  i3;  i4below orrespond to \taking the losure of ?ir in one step374" to properties 2, 3, 4 above,respetively. ?0r :def= ?0;?i+1r :def= � h`; `0i 2 L� L :  i2 _  i3 _  i4 	 ; where i2 := `0 ?ir `; i3 := (9`1; `2)(9e) [e 2 ` \ `1 \ `2 \ `0 ^ `1 6= `2 ^` ?ir `1 ^ ` ?ir `2 ^ `0 � Plane0(`1; `2) ℄; i4 := (9`1) (` ?ir `1 ^ `1 kG `0 ):We note that ?ir � ?i+1r , for all i 2 !.Now we observe, that ?!r = [�?ir : i 2 ! 	 :Let us notie that, for every i 2 !, ?ir is a �rst-order de�nition inhMn;L; 2;Bw ;?0i.373This property is alled axiom OS5 (for metri aÆne spae) in Goldblatt [102, p.116℄.374i.e. to \making one step only in the proess of taking the losure".



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 163(ii) ?000r :def= ?4r. So the de�nition of ?000r is a �rst-order de�nition in hMn;L; 2;Bw ;?0i.Therefore the de�nition of ?000r is a �rst-order one in the expanded frame model M+de�ned in Remark 4.2.9 on p.153. �THEOREM 4.2.18 Assume Bax� + Ax(Triv t)� + Ax(p ) + Ax(diswind). Then ?!r =?000r , therefore ?!r is �rst-order de�nable375.Proof: The proof for the ase n = 2 is easy. Namely, if n = 2 then both ?!r and ?000r oinidewith ?0. For the ase n > 2, the theorem follows by the proof of Theorem 4.2.19 below.Namely, in the proof of Thm.4.2.19 we will prove (a) ?0r � ?000r and (b) 1{4 of Def.4.2.17 holdfor ?0r, i.e. 1{4 hold when ?!r is replaed by ?0r in them. Sine ?000r � ?!r and ?!r is the smallestsubset of L� L having properties 1{4, (a) and (b) imply that ?0r = ?000r = ?!r .THEOREM 4.2.19 Assume n > 2 and Bax� + Ax(Triv t)� + Ax(p ) + Ax(diswind).Then ?r and ?000r oinide, therefore ?r is �rst-order de�nable375.The proof will be given below item 4.2.20.The following is an immediate orollary of Theorems 4.2.11 (p.158), 4.2.18 and 4.2.19.COROLLARY 4.2.20 Assume n > 2 and Bax�+Ax(Triv t)� +Ax(p ) +Ax(diswind).Then ?r; ?0r; ?00r ; ?000r ; ?!r oinide (and are de�nable375).Proof of Thm.4.2.19: Assume n > 2.Let M 2 Mod(Bax� + Ax(Triv t)� + Ax(p ) + Ax(diswind)). By Thm.4.2.11 (whihsays that ?r;?0r;?00r oinide) it is enough to prove (a) and (b) below, as it was shown in theproof of Thm.4.2.18.(a) ?0r � ?000r , i.e. ` ?0r `0 ) ` ?000r `0.(b) ?0r has the properties 1{4 in Def.4.2.17, i.e. 1{4 in Def.4.2.17 hold when ?!r is replaedby ?0r in them.Let N be a model of Newbasax obtained from M by hanging the units of measurementfor time, i.e. N is obtained from M exatly the same way as in the proof of item 6.2.89 onp.896 of AMN [18℄. The generalized geometry redutshMn;L; LT ;LPh;LS;2;Bw ;?0r;?000r iof M and N oinide. Further,N j= Newbasax +Ax(Triv t)� +Ax(p ) +Ax(diswind):Therefore N is a photon-disjoint union376 of models of (Basax+Ax(Triv t)�+Ax(p )). Sinethe above indiated \geometry reduts" of M and N oinide, it is enough to prove (a) and (b)for (Basax+Ax(Triv t)� +Ax(p ))-models. Now, we turn to proving these two statements.Proof of (a): Reall that ?ir (i 2 !) is the \i-long losure" of ?0 to properties 2, 3, 4 inDef.4.2.17 and that ?000r =?4r, f. Def.4.2.17 (p.161).Assume Basax + Ax(Triv t)� + Ax(p ). Let `; `0 2 L be suh that ` ?0r `0, see the left-hand side of Figure 70 (p.156). Then one of (i){(iii) in the de�nition of ?0r on p.156 hold for



164 4.2 BASIC CONCEPTS

�xi world-view of m �xl
�xj

`
`0`00

`0 kG `00 ` ?0r wm[�xl℄, ` ?0r wm[�xj ℄ by 1 in Def.4.2.17` ?1r `00 by 3 in Def.4.2.17 378` ?2r `0 by 4 in Def.4.2.17 379
Figure 73: In ase (i) ` ?2r `0.`; `0. By Ax(Triv t)�,377 in ases (i) and (ii) ` ?000r `0 holds, f. Figure 70. Atually, in ase (i)` ?2r `0 and in ase (ii) ` ?3r `0, see Figure 73. So it remains to prove (a) for ase (iii).Assume (iii) holds for `; `0, i.e. `; `0 2 LPh and ` kG `0, f. Figure 70. To prove ` ?000r `0 it isenough to prove ` ?3r ` beause ` ?3r ` and ` kG `0 imply ` ?4r `0, i.e. ` ?000r `0.Now, we turn to proving ` ?3r `. There is m 2 Obs and ph 2 Ph suh thatwm[trm(ph)℄ = `: 380Fix suh m and ph. Without loss of generality we an assume that �0 2 trm(ph) � Plane(�t; �x)beause of Ax(Triv t)� and Ax5. Throughout the remaining part of the proof of (a) the readeris advised to onsult Figure 74. We are in the world-view of m. Let P be the plane determinedby �y and ph, i.e. P := Plane(�y; trm(ph));f. the upper piture in Figure 74. Let k 2 Obs be suh that m sees that k passes through �0with nonzero speed and lies in Plane(�t; �y), i.e. �0 2 trm(k) � Plane(�t; �y) and vm(k) 6= 0. Suha k exists by Ax5. Without loss of generality we an assume that fmk(�0) = �0 beause ofAx(Triv t)�. Let �yk := fkm[S℄ \ P;i.e. in the world-view of m �yk is the intersetion of k's spae part with plane P . Clearly,�yk 2 Eul and �yk; �y; trm(ph) are pairwise distint, sine k lies in Plane(�t; �y), is of nonzero speedas seen by m and sine in the diretion of movement loks get out of synhronism. Withoutloss of generality, by Ax(Triv t)�, we an assume that the �y-axis of k as seen by m is yk,formally fkm[�y℄ = �yk:Let us swith over from the world-view of m to the world-view of k. We laim that k seesph moving in the spatial diretion orthogonal to �y (in the Eulidean sense). To prove this375we mean, de�nable over Mod(Bax� + : : :), of ourse. First one de�nes L overM 2 Mod(: : :) and then ?roverM and L.376For disjoint and photon-disjoint union of models f. item 1 on p.196.377and some basi properties of Basax378and by 5b of Prop.4.2.64379and by 5a of Prop.4.2.64380Cf. items 1 and 2a of Prop.4.2.64 (p.208).



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 165
�tk m
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�yk P
spae part of k

Plane(�t; �x)ph`world-view of m:
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�y �x

ph` P 0

Figure 74: Illustration for the proof of Thm.4.2.19.



166 4.2 BASIC CONCEPTSlaim, let P 0 be the fmk image of P , f. Figure 74. Then �y � P 0. Sine fmk takes LightCone(�0),P , trm(ph) to LightCone(�0), P 0, tr k(ph), respetively and sine LightCone(�0) \ P = trm(ph)we get that LightCone(�0) \ P 0 = trk(ph):This and �y � P 0 imply that �y ?e trk(ph), proving our laim.Then, by Ax(Triv t)�, we an assume that k sees ph in Plane(�t; �x), i.e. trk(ph) � Plane(�t; �x).Then wm[�y℄ ?1r ` and wk[�y℄ ?1r `;see Figure 74. By this, by wm[�yk℄ = wk[�y℄ and by �y; �yk � P , we have` ?2r wm[�y℄ and ` ?2r wm[�yk℄ and wm[�y℄;wm[�yk℄ � wm[P ℄:(�)See the upper piture in Figure 74. By item 5b of Prop.4.2.64 (p.213), we havePlane0(wm[�y℄;wm[�yk℄) = wm[P ℄:This, (�) and ` � wm[P ℄ imply ` ?3r `, whih ompletes the proof of (a).Proof of (b): Assume Basax+Ax(Triv t)�+Ax(p ). It is easy to hek that?0r has properties1, 2, 4 in Def.4.2.17. So it remains to prove that ?0r has property 3 in Def.4.2.17. To prove thiswe will use Minkowskian orthogonality ?� � Eul�Eul whih will be introdued in Def.4.2.44(p.189). Now, by (I){(II) below and item 5b of Prop.4.2.64, it an be heked that ?0r hasproperty 3 in Def.4.2.17; where (I) holds by item (d) in the proof of Claim 6.2.11 (p.816) ofAMN [18℄ and by the def. of ?0r, and (II) an be heked by the de�nition of Minkowskianorthogonality.(I) Let `; `0 2 L. Then ` ?0r `0 () (8m)(w�1m [`℄ ?� w�1m [`0℄).(II) Minkowskian orthogonality has property 3 in Def.4.2.17, i.e. if lines `; `1; `2 (2 Eul)onur at point p (2 nF), with `1 6= `2 and ` is Minkowski-orthogonal to both `1 and `2,then ` is Minkowski-orthogonal to every line through p in Plane(`1; `2), f. Figure 72.At this point Thm.4.2.19 is fully proved.Let us reall that eq is a 4-ary relation on the set of points Mn of an observer-independentgeometry GM and was de�ned in item 11 of Def.4.2.3(I) (p.142). Further, eq was de�ned to bethe transitive losure of the relation eq 0 whih was �rst-order logi de�ned (in the expandedframe-model M+ de�ned in Remark 4.2.9 on p.153); and eq i was de�ned to be the \i-long-transitive losure" of eq 0. As we have already said in Remark 4.2.9, eah one of eq i's is�rst-order de�ned (in M+).381The next two theorems (4.2.21 and 4.2.22) say that eq is �rst-order de�nable in M+ underertain onditions.THEOREM 4.2.21 Assume Basax+Ax(Triv t)� +Ax(p ). Then eq 2 = eq, therefore eqis �rst-order de�nable382.381First-order de�nable is the same as �rst-order logi de�nable (whih in turn is the same as de�nable, atleast in the present work).382we mean, de�nable over Mod(Basax + : : :), of ourse. First one de�nes Mn over M 2 Mod(: : :) and theneq overM and Mn.



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 167A proof is given in AMN [18, x6.2.6, on p.906℄.To formulate our next theorem, we introdue a weakened version Ax(k)� of Ax(k).Ax(k)� (8m; k 2 Obs \ Ib)[ trm(k) = �t ) (fmk = h Æ I; for some expansion h and isometry I) ℄.383Assuming Bax, Ax(k)� is equivalent to the following: If two observers, say m andk, have the same life-line (i.e. trm(k) = �t ) then they agree on the speed of light (i.e.m = k) and the world-view transformation fmk is an aÆne transformation, i.e. there isno �eld automorphism involved in fmk (f. Fat 4.7.7 of AMN [18℄).The essential feature of Ax(k)� is that it does not exlude the \ant and the elephant versionof relativity" mentioned on p.88 herein and in Remark 4.2.1 of AMN [18℄, while Ax(k) does.Let Th+� := Bax� +Ax(k)� +Ax(Triv t)� +Ax(p ) +Ax(diswind):This theory Th+� will play an essential role in the following theorems and propositions:Thm's 4.2.22 (p.168), 4.2.40(iii) (p.182), 4.3.38 (p.261); and 6.6.114 (p.1130) and Prop's 6.2.88(p.895), 6.2.92 (p.901) of AMN [18℄. Beause of this, we point out a few intuitive and helpfulproperties of Th+� (whih eventually will be proved as parts of various later theorems). Weollet these properties in items 1{4 below. In 1{4 below n > 2 is assumed.1. The redut hMn;L; LT ;LPh;LS;2;Bw ;?riof Ge(Th+�) is a disjoint union384 of (the similar reduts of) Minkowskian geometries385.2. eq behaves well in Th+�, in the following sense. Whenever a; b;  in Fig.75 exist thend also exists. Further the arrangement in Fig.76 annot happen. Formal statements of
ab d eq

`0 2 LT [ LS LT [ LS 3 `
` and `0are in thesame window

Figure 75: (8a; b; )(9d as in the �gure).these are in Prop's 6.2.88 (p.895), 6.2.92 (p.901) of AMN [18℄.3. The spae-like hyper-planes of the hMn;L; 2;Bw ;?r; eqi reduts386 of the elements ofGe(Th+�) are Eulidean geometries, assuming Ax(eqtime), f. Thm.6.6.114 (p.1130) ofAMN [18℄.383Though Ax(k)� is not a �rst-order formula in its present form, it an be easily reformulated in the�rst-order frame language, f. p.82.384Cf. pp. 198, 200 for disjoint union of geometries.385Cf. Def.4.2.44 (p.189) for Minkowskian geometries.386We will all these reduts Goldblatt-Tarski reduts or GTM's on p.215.



168 4.2 BASIC CONCEPTSo a a1eq ~̀o;e`Figure 76: This annot happen.4. This theory Th+�, despite of having all the nie properties in items 1{3 above, isnot too strong e.g. we will see that even a strengthened version of Th+� does not implyFlxbasax, i.e. Th+� + \extra axioms" 6j= Flxbasaxf. AMN [18, Prop.6.2.101 (p.912) and the intuitive text below it on p.912℄.THEOREM 4.2.22 Assume n > 2 and Bax� + Ax(k)� + Ax(Triv t)� + Ax(p ). Theneq 2 = eq, therefore eq is �rst-order de�nable387.A proof is given in x6.2.6 on p.906 of AMN [18℄.In onnetion with the theorem below, f. Proposition 6.2.96 on p.907 of AMN [18℄.THEOREM 4.2.23(i) Theorem 4.2.21 does not generalize from Basax to Bax� (and the assumption Ax(k)�annot be omitted from Thm.4.2.22). Moreover:For any n > 1, there is M 2 Mod(Bax� + Ax(Triv) + Ax(p )) suh that eq is not�rst-order de�nable in the expanded frame model M+ := hM; MnM;2i.(ii) Theorem 4.2.22 does not generalize to n = 2. Moreover:There is M 2 Mod(Bax�(2) +Ax(k)+Ax(Triv)+Ax(p )) suh that eq is not �rst-order de�nable in the expanded frame model M+ := hM; MnM;2i.Proof:Outline of the proof: We hoose M 2 Mod(Bax� + Ax(Triv) + Ax(p )) (for the ase of (ii)M 2 Mod(Bax�(2) + Ax(k) + Ax(Triv) + Ax(p )) suh that M has properties (a){()formulated below.(a) FM is a real-losed �eld.(b) hM; Mn;2i is �rst-order de�nable (in the sense of x4.3.2) over FM.() The subset f 2i : i 2 Z g 388 of FM is �rst-order de�nable over hM; Mn;2; eqi.Sine hM; Mn;2i is de�nable over FM, a subset A of FM is de�nable over hM;Mn;2i iff itis de�nable over FM (f. Thm.4.3.27, p.245). If eq was de�nable over hM;Mn;2i then byproperty () the set f 2i : i 2 Z g would be de�nable over FM. We will prove that the set387we mean, de�nable over Mod(Bax� + : : :), of ourse. First one de�nes Mn over M 2 Mod(: : :) and theneq overM and Mn.388Reall that Z denotes the set of all integers.



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 169f 2i : i 2 Z g is not de�nable over FM as a orollary of Lemma 4.2.27 way below. Hene, eq isnot de�nable over hM; Mn;2i.Details of the proof:Case of (i): Let F be a real-losed �eld. Let M be the frame-model over F obtained fromthe Minkowski model389 MMF as follows. Intuitively, for eah observer m of MMF we inlude anew observer k suh that lok of k runs twie more slowly than that of m and in all otherproperties m and k agree (i.e. wm(p) = wk(p0=2; p1; : : : ; pn�1), for all p 2 nF). The speed oflight for new observers is 22, while the speed of light for the old observers is 1. Formally, M isde�ned overMMF = h(B; Obs;Ph; Ib);F;G; 2;W i as follows:M :def= h(B0; Obs0;Ph0; Ib0);F;G; 2;W 0 i; whereObs0 :def= Obs � f1; 2g;Ph0 :def= Ph� f1; 2g; 390B0 :def= Ib0 :def= Obs0 [ Ph0;W 0 :def= nDhm; ii; p; hb; jiE 2 Obs0 � nF � B0 : W (m; ip0; p1; : : : ; pn�1; b)o :We note that the speed of light for observers of the form hm; 1i is 1 while for observers ofthe form hm; 2i is 22.It an be heked that M j= Bax� +Ax(Triv)+Ax(p ).Further, it an be heked that the Minkowski model MMF is �rst-order de�nable over Fin the sense of x4.3.2. Hint: The observers of MMF an be identi�ed with speial Poinar�etransformations of nF, namely, with elements of PTM (f. Prop.3.8.63 on p.346 of AMN [18℄and Def.'s 3.8.38, 3.8.42 of AMN [18℄). Sine all these are aÆne transformations, they anbe represented by matries together with a vetor. But a matrix together with a vetor anbe identi�ed with a sequene (of length n � n + n) of elements of F. The rest of de�ning MMFover F goes in the style of x4.3.2 using the \onrete onstrution" given for MMF in Def.3.8.38(p.325) of AMN [18℄ and Def.3.8.42 (p.331) of AMN [18℄.Sine M was �rst-order de�ned (in the sense of x4.3.2) over MMF , we onlude that Mis �rst-order de�nable over F. Therefore, by Prop.4.3.18 (p.240), hM; Mn;2i is �rst-orderde�nable over F.By these, M has properties (a) and (b) (formulated on p.168). Next we turn to provingthat M has property ().LetH :def= � x 2 +F : (9m 2 Obs0)(m = 1 ^ hwm(�0);wm(1t)i eq hwm(�0);wm(x � 1t)i)	 :Claim 4.2.24 H = f 2i : i 2 Z g.Proof: The proof of f 2i : i 2 Z g � H is depited in Figure 77. In the �gure m; k 2 Obs0are suh that the speed of light for m is 1, while the speed of light for k is 22, m and k are\brothers" in the sense that m = hh; 1i and k = hh; 2i, for some h 2 Obs.The proof of H � f 2i : i 2 Z g goes as follows. We will use the Minkowski distaneg� : nF � nF �! F whih is de�ned in De�nition 4.2.44 (p.189), f. also Def.2.9.1 (p.101). Itan be easily heked, e.g. by the proof of Claim 6.2.84 (p.892) of AMN [18℄, that389f. Def.3.8.42 on p.331 of AMN [18℄ for Minkowski models390We de�ned Ph0 as Ph� f1; 2g only for tehnial reason.
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...hwm(�0);wm(2 � 1t)i=hwm(�0);wk(1t)ieq 0hwm(�0);wk(1x)i=hwm(�0);wm(1x)ieq 0hwm(�0);wm(1t)i=hwm(�0);wk(12 � 1t)ieq 0hwm(�0);wk(12 � 1x)i=hwm(�0);wm(12 � 1x)ieq 0hwm(�0);wm(12 � 1t)i...12 � 1x12 � 1kx 1x1kx 2 � 1x2 � 1kx 22 � 1x22 � 1kx
12 � 1t122 � 1kt1t12 � 1kt
2 � 1t1kt

22 � 1t2 � 1kt �tm

�x

1kt := fkm(1t)1kx := fkm(1x)

�0
Figure 77: Proof of f 2i : i 2 Z g � H. The right-hand side olumn illustrates the omputa-tional part of why m thinks that h�0; 1ti is \eq-related" to h�0; 2i � 1ti (whih means 2i 2 H bythe de�nition of H).



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 171(8m 2 Obs0)(8p; q; r; s 2 nF)�( m = 1 ^ hwm(p);wm(q)i eq 0 hwm(r);wm(s)i ) )( g�(p; q) = 2ig�(r; s), for some i 2 f�1; 0; 1g )�.Sine eq was de�ned to be the transitive losure of eq 0, the above implies that(8m 2 Obs0)(8p; q; r; s 2 nF)�( m = 1 ^ hwm(p);wm(q)i eq hwm(r);wm(s)i ) )( g�(p; q) = 2ig�(r; s); for some i 2 Z )�.By this, it an be easily heked that H � f 2i : i 2 Z g indeed holds. QED (Claim 4.2.24)By Claim 4.2.24 (and by the de�nition of H), we have that property () holds for M. Toomplete the proof for item (i), it remains to prove that the subset f 2i : i 2 Zg of F is not�rst-order de�nable over F. This will be an immediate orollary of Lemma 4.2.27 way below.Case of (ii): The proof of item (ii) is similar to that of (i). We will onstrut a modelM 2 Mod(Bax�(2) + Ax(k) + Ax(Triv) + Ax(p )) suh that M has properties (a){()formulated on p.168. Let F be a real-losed �eld. Let M be a model over F obtained from the2-dimensional Minkowski model MMF as follows. Intuitively, for eah observer m of MMF weinlude a new observer k suh thatfkm(1x) = 1t and fkm(1t) = 2 � 1x; see Figure 78.The speed of light for new observers is 22 while for the old ones it is 1. Further, the new
1kt := fkm(1t)1kx := fkm(1x) 1t 1kx

1x12 � 1kt 2 � 1x1kt
m

kFigure 78: The piture represents the world-view of observer m.observers are FTL observers relative to the old ones. Formally, M is de�ned over MMF =h(B; Obs;Ph; Ib);F;G; 2;W i as follows:M :def= h(B0; Obs0;Ph0; Ib0);F;G; 2;W 0 i; whereObs0 :def= Obs � f1; 2g;Ph0 :def= Ph� f1; 2g;B0 :def= Ib0 :def= Obs0 [ Ph0;W 0 :def= nDhm; ii; p0; p1; hb; jiE 2 Obs0 � F � F � B0 : W (m; p1; ip0; b)o :We note that the speed of light for observers of the form hm; 1i is 1 while for observers of theform hm; 2i is 22.



172 4.2 BASIC CONCEPTSIt an be heked that M j= Bax�(2) + Ax(k) + Ax(Triv) + Ax(p ). The rest of theproof goes similarly to the proof given for item (i), i.e. we de�ne H exatly the same way asin the proof of item (i); it an be proved that H oinides with f 2i : i 2 Z g, et. We omitthe relatively easy details.To omplete the proof, it remains to prove that f 2i : i 2 Z g is not de�nable over F. Ageneralized version of this will be proved as Lemma 4.2.27 below. Thus the theorem is provedmodulo Lemma 4.2.27.For stating Lemma 4.2.27 we need a onvention and a de�nition.CONVENTION 4.2.25 From now on, Q denotes the ordered �eld of rational numbers.Throughout we identify Q with its universe. Q is embeddable in a natural way into everyordered �eld F. When disussing an ordered �eld F we will pretend that Q is a sub�eld of F.I.e. we identify Q with its unique isomorphi opy sitting inside F.By an algebrai element of F we understand an element whih is algebrai over Q .391 �De�nition 4.2.26 Let F be an ordered �eld. Let H � F. We all H gapy in F iff�H 6= ; and (8 algebrai a 2 H)(9b;  2 F)(a < b <  ^ b 62 H ^  2 H)�;see Figure 79.a is algebrai a 2 H b 62 H  2 H FFigure 79: H � F is gapy in F iff it is nonempty and(8 algebrai a 2 H)( 9b;  as in the �gure ). �Examples: Z; ! and f 2i : i 2 ! g are gapy subsets in F, for any ordered �eld F.LEMMA 4.2.27 Assume F is a real-losed �eld. Then no gapy subset H � F in F is de�nableover F.Proof: Assume F is a real-losed �eld. Throughout the proof we will use the following fatfrom �eld theory.Fat 4.2.28 Let p(x) be a unary term in the language of F extended with the unary operationsymbol \�". Then (i) and (ii) below hold.(i) Assume that p(x) = 0 is a nontrivial392 equation. Then this equation has only �nitelymany solutions. Further, the solutions of p(x) = 0 in F are algebrai elements of F.391For ompleteness we reall that an element of F is algebrai over Q iff it is a root of a nonzero polynomialwith oeÆients in Q . (A root of a polynomial p(x) is the same as a solution of the equation p(x) = 0.)392p(x) = 0 is alled trivial in F iff F j= p(x) = 0.



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 173(ii) The intermediate value theorem holds for the funtion de�ned by p(x), i.e. if p(a)�p(b) < 0then p() = 0 for some  stritly between a and b.393Proof: Assume p(x) is as above. Item (i) follows by the fat that p(x) is a nonzero polynomialwith oeÆients in Z. Hene p(x) has �nitely many roots394 and the roots of p(x) are algebraiover Q . For item (ii) f. [130, Fat 8.4.5, p.386℄. QED (Fat 4.2.28)Now we turn to proving Lemma 4.2.27. The proof goes by ontradition. Assume thatH � F is gapy in F and that H is de�nable over F. Then there is a �rst-order formula '(x) inthe language of F suh that H = f a 2 F : F j= '[a℄ g. By Tarski's elimination of quanti�ersTheorem for real-losed �elds, i.e. by Thm.8.4.4 on p.385 of [130℄ and line 9 on p.376 of [130℄,'(x) is equivalent in F to a quanti�er free formula  (x), i.e. F j= 8x('(x) $  (x)). Then (x) de�nes H, i.e. H = f a 2 F : F j=  [a℄ g :Sine  is quanti�er free, it is a Boolean ombination of atomi formulas. It is not hard to seethat  is equivalent to a disjuntion of formulas of the form395p0(x) = 0 ^ : : : ^ pk�1(x) = 0 ^ q0(x) > 0 ^ : : : ^ qm�1(x) > 0;(+)where m; k 2 ! and pi(x), qj(x) (i 2 k, j 2 m) are unary terms in the language of F extendedwith the operation symbol \�". Warning: here we inlude the unary operation \�" in thelanguage of F. But then H is a �nite union of sets de�nable by formulas of the form (+).Then one of these sets must be gapy in F sine H is gapy in F.396 Therefore there is H 0 � Hsuh that H 0 is gapy in F and H 0 is de�nable by a formula of the form (+). We may assumethat this formula is exatly the one displayed in (+).If one of the (pi(x) = 0)'s is a nontrivial equation, then it has only �nitely many solutionsin F and these solutions are algebrai elements of F (by Fat 4.2.28(i)), hene H 0 is a �nite setof algebrai elements of F whih ontradits the fat that H 0 is gapy in F. Therefore we mayassume k = 0. Thus H 0 = f a 2 F : q0(a) > 0 ^ : : : ^ qm�1(a) > 0 g :(�)We may assume that none of the (qi(x) = 0)'s is trivial. Therefore the setSol :def= f d 2 F : (9i 2 m)qi(d) = 0g(of solutions) is �nite by Fat 4.2.28(i).Claim 4.2.29 (8 algebrai a 2 H 0)(9b;  2 F)�( is algebrai) ^ a < b <  ^ b 62 H 0 ^  2 H 0�:393This an be memorized by e.g. thinking of the Bolzano Theorem from elementary alulus.394That eah nonzero polynomial in F has only �nitely many roots is a well known property of ordered �elds.395using fats like �(x) < �(x), �(x) � �(x) > 0, or :(� < �), (� = � _ � < �) et.396In more detail: H = Si2nHi for some n 2 ! and eah Hi is de�nable by a formula of the form (+). Thenone of the Hi's is gapy in F beause of the following. Assume that none of the Hi's is gapy in F. Without lossof generality we an assume that eah Hi is nonempty. Then, for all i 2 n(9 algebrai ai 2 Hi)(f y : y > ai g � Hi _ f y : y > ai g � F nHi).But then, for a := max f ai : i 2 n g we have that a 2 H and a is algebrai, furtherf y : y > a g � H _ f y : y > a g � F nH .This ontradits our assumption that H is gapy in F. Therefore one of the Hi's is gapy in F.



174 4.2 BASIC CONCEPTSProof: Let a 2 H 0 be suh that a is an algebrai element of F. We have to prove that thereare b;  2 F suh that a < b < , b 62 H 0,  2 H 0 and  is algebrai. Let b; 0 2 F be suhthat a < b < 0, b 62 H 0 and 0 2 H 0. Sine H 0 is gapy in F suh b and 0 exist. To prove thelaim it is enough to prove that there is an algebrai  2 H suh that b < . Clearly,algebrai algebrai or100b0 0ba Figure 80:qi(0) > 0; for all i 2 mby (�) and by 0 2 H 0. See Figure 80. Further, by b 62 H 0 and (�), there is j 2 m suh thatqj(b) � 0. Let suh a j be �xed. Thus, by Fat 4.2.28(ii) (and by b < 0), there is d 2 Fsuh that b � d < 0 and qj(d) = 0. Therefore the set f d 2 Sol : d < 0 g is nonempty (and is�nite), and b � max f d 2 Sol : d < 0 g :Let b0 :def= max f d 2 Sol : d < 0 g :Let 00 :def= � minf d 2 Sol : d > 0 g if (9d 2 Sol)d > 01 otherwise.Clearly, b � b0 < 0 < 00 and none of the equations q0(x) = 0; : : : ; qm�1(x) = 0 has a solutionin the open interval (b0; 00) := fd 2 F : b0 < d < 00 g, f. Figure 80 (reall that qi(0) > 0, forall i 2 !). By this, by Fat 4.2.28(ii), by (�) and by 0 2 H 0, we onlude that (b0; 00) � H 0.Further (by Fat 4.2.28(i)) b0 is an algebrai element of F and 00 is either an algebrai elementof F or is 1. Thus there is an algebrai element  of F suh that  2 (b0; 00) � H 0. For thishoie of  we have b < ,  2 H 0 and  is an algebrai element of F. QED (Claim 4.2.29)Let ai; bi 2 F (i 2 !) be suh that for all i 2 !, ai is an algebrai element of F, ai 2 H 0,bi 62 H 0, and ai < bi < ai+1 < bi+1:By Claim 4.2.29, suh ai's and bi's exist. By (�),397 there are j 2 m and an in�nite subset Iof ! suh that (8i 2 I) ( qj(bi) � 0 ^ qj(ai) > 0 ):Let suh j and I be �xed. Let h : ! ��!� I be an order preserving bijetion. Then learly,(8i 2 !)( qj(ah(i)) > 0 ^ qj(bh(i)) � 0 ^ ah(i) < bh(i) < ah(i+1) < bh(i+1) ):Thus, by Fat 4.2.28(ii), for every i 2 ! there is h(i) 2 F suh that ah(i) < h(i) � bh(i)and qj(h(i)) = 0. By the above we onlude that the equation qj(x) = 0 has in�nitely manysolutions, and this ontradits item (i) of Fat 4.2.28.397and by ai 2 H 0, bi 62 H 0



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 175At this point all parts of the proof of Thm.4.2.23 have been taken are of.One of the reasons for looking at the alternative notions like ?0r, ?00r , eq 2 is that theyan behave better from the point of view of de�nability issues. (There are of ourse otherreasons, too, for experimenting with alternative onepts.) Similarly, we will look at alternativede�nitions of the topology part T of our geometries. Namely, T 0 will be based on Bw whileT 00 will be based on ausality �.De�nition 4.2.30 (Alternatives T 0; T 00 for topology T )Assume n > 1. Let M be a frame model of n dimensions. Mn;Bw;� are de�ned in items 2,7, 6 of Def.4.2.3(I). We de�ne the topologies T 0 and T 00 on Mn in items (i) and (ii) below,respetively.(i) Intuitively, �rst by using Bw we de�ne interiors of simplexes,398 f. the left-hand sideof Figure 81. Then by using these (as a subbase) we de�ne the topology T 0 on Mn thenatural way, formally:For every H � Mn the onvex hull Ch(H) of H is the smallest subset of Mn havingproperties 1 and 2 below.3991. H � Ch(H).2. ( a; b 2 Ch(H) ^ Bw(a; ; b) ) )  2 Ch(H).We de�ne the olletion simplexes � P(Mn) as follows.simplexes :def= fH � Mn : jHj = n+ 1; (9m 2 Obs)Plane(H) = Rng(wm) g :Let H 2 simplexes. Then, intuitively, the neighborhood S 0(H) is de�ned to be the\interior" of the onvex hull Ch(H) of H; formally:S 0(H) :def= Ch(H) n [e2H Plane(H n feg);see the left-hand side of Figure 81. Now, the topology T 0 � P(Mn) is the one generatedby T 00 below, i.e. T 00 is a subbase for T 0.T 00 :def= fS 0(H) : H 2 simplexes g :We note that, assuming Bax� + Ax(p ), T 00 is a base for T 0, f. Figure 81 (and theproof of Thm.4.2.33).(ii) For every a; b 2 Mn with a � b we de�ne the neighborhoodS 00(a; b) :def= f 2 Mn : a �  � b g ;see the right-hand side of Figure 81. Now, the topology T 00 � P(Mn) is the one generatedby T 000 below, i.e. T 000 is a subbase for T 00.T 000 :def= fS 00(a; b) : a; b 2 Mn; a � b g :398We note that if n = 2 then the simplexes are the triangles and if n = 3 then the simplexes are thetetrahedra.399The usual notation in the literature is \o(H)" for our Ch(H).
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b d Plane(H n fag)

S0(H)H = fa; b; ; dg 2 simplexes
a

b S00(a; b)

Figure 81: In the �gure n = 3.We note that, assuming Bax��+Ax(""0)+Ax(p ) and [ (8m 2 Obs) (m thinks thatthere is an upper bound for the speed of light )400 or F = R ℄, T 000 is a base for T 00,where Ax(""0) is de�ned below, f. Figure 81 (and the proof of Thm.4.2.33). �Theorems 4.2.33, 4.2.37 and 4.2.38 below say that topologies T , T 0 and T 00 oinide, undersome assumptions. For stating these theorems we introdue weakened versions Ax(""0) andAx(""00) of our axiom Ax("") saying that eah observer sees any other observer's time owforwards. Reall that m �! k means that trm(k) 6= ; and m STL k means that m sees kmoving more slowly than light. m " k denotes that m sees k's lok running forwards, i.e.m " k def() fkm(1t)t > fkm(�0)t:Note that by Convention 2.3.10 (p.31), m " k implies that fkm is de�ned on 1t and thus m " kimplies m �! k. Similarly, m STL k implies m �! k.Ax("") (8m; k 2 Obs)m " k.Ax(""0) (8m; k 2 Obs) (m �! k ! m " k).Intuitively, if m sees k then k's lok runs forwards as seen by m.Ax(""00) (8m; k 2 Obs) (m STL k ! m " k).Intuitively, if m sees k moving more slowly than light then k's lok runs forwards asseen by m.The reason for introduing Ax(""0) is that Ax("") blurs the distintion between Basaxand Newbasax.401 The reason for introduing Ax(""00) is that Ax(""0), together withBax� + Ax(p ), exludes FTL observers already in two dimensions, f. Prop.4.2.31 below.400formally: (9� 2 F)(8d 2 diretions) m(d) < �.401Newbasax+Ax("") j= Basax beause m �! k implies that fkm is de�ned on 1t (by Convention 2.3.10),and thus m " k implies m �! k.



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 177On the other hand, Ax(""00) does not exlude FTL observers, and hene we an use Ax(""00)in theories in whih we want to allow FTL observers. We will see that the issue of the existeneof FTL observers is relevant to our relativisti geometries. E.g. if there are FTL observers,then the sets of time-like and spae-like lines are not disjoint.PROPOSITION 4.2.31 (i) Bax� +Ax(""0)+Ax(p ) j= \6 9 FTL observers":(ii) Bax� +Ax(""00)+Ax(p ) 6j= \6 9 FTL observers":Proof: (i): In the proof of Thm.3.2.13 (p.118) we proved that Bax� + Ax(p ) j=(9k)m FTL k ! (9k)vm(k) = 1. If vm(k) = 1, then m " k does not hold in spiteof m �! k. This proves (i). (ii): The parameters of the model onstruted in the proof ofThm.4.3.25 (p.500) of AMN [18℄ an be hosen so that Ax(""0) holds in it. This proves (ii).Notation 4.2.32 Assume F is an ordered �eld.(i) Let p 2 nF. Then the square kpk of the Eulidean length of the vetor p is de�ned asfollows.402 kpk def= p20 + p21 + : : :+ p2n�1 :(ii) Let p 2 nF and " 2 +F. Then by S(p; ") we denote the "-neighborhood of p de�ned asfollows.403 S(p; ") def= f q 2 nF : kq � pk < " g :(iii) Let H � nF. We say that H is an open set iff(8q 2 H)(9" 2 +F) S(q; ") � H :The set of open subsets of nF is denoted by Open = Open(n;F).404 �THEOREM 4.2.33 Assume Bax�� +Ax(""0)+Ax(p ). Assume that(8m 2 Obs) (m thinks that there is an upper bound for the speed of light )405 or F = R.Then (i) and (ii) below hold.(i) The topologies T 0 and T 00 oinide.(ii) The topology T 0 = T 00 is a Eulidean one in the following sense:402We use the square of the length instead of the length itself beause we did not assume that F is Eulidean.403In the notation S(p; ") the letter S refers to the word \sphere". Further we note that there is a slightdanger of onfusion beause S will denote the spae-part of our oordinate-system nF. We hope ontext willhelp.404The set Open is of ourse not de�nable (at least not as an entity on its own right) in our frame language,but if we have a de�nable subset like Dom(fmk) then Dom(fmk) 2 Open ounts as a �rst-order formula of ourframe language, i.e. is translatable to a formula of our frame language. A similar remark applies e.g. to Eul,Linb, Rhomb et, and we will not repeat this remark eah time we introdue an abbreviation like Open, Eul,Linb et. Summing it up, one ould say that Open, Eul et. are de�nable only as \prediate symbols" (butnot neessarily as individual objets or entities.)405formally: (9� 2 F)(8d 2 diretions) m(d) < �, where m(d) is de�ned on p.A-21.



178 4.2 BASIC CONCEPTS(a) For any m 2 Obs, fw�1m [H℄ : H 2 T 0 g is the usual Eulidean topology on nF, i.e.the one with base fS(p; ") : p 2 nF; " 2 +F g.(b) T 0 is homeomorphi to a sum topology (i.e. a oprodut)406 of usual Eulidean topolo-gies on nF.Proof: Assume the assumptions of the theorem. By Thm.3.2.6, we have that: the visibilityrelation �! is an equivalene relation when restrited to Obs, and if m �! k then Rng(wm) =Rng(wk), otherwise Rng(wm) \ Rng(wk) = ;.Let O � Obs be a lass of representatives for the equivalene relation �!.407 ThenMn is the disjoint union of the family hRng(wm) : m 2 O i(and the members of this family are mutually disjoint).(�)It is easy to hek that for every m 2 ObsRng(wm) 2 T 0 and Rng(wm) 2 T 00,(��)i.e. Rng(wm) is an open set w.r.t. both topologies. For every m 2 Obs, let T 0 � Rng(wm) andT 00 � Rng(wm) be the subspae topologies of T 0 and T 00 on Rng(wm),408 respetively, i.e.T 0 � Rng(wm) :def= fH \ Rng(wm) : H 2 T 0 g = fH 2 T 0 : H � Rng(wm) g ;T 00 � Rng(wm) :def= fH \ Rng(wm) : H 2 T 00 g = fH 2 T 00 : H � Rng(wm) g ;further let T 0m and T 00m be the topologies on the oordinate system nF de�ned as follows.T 0m :def= �w�1m [H℄ : H 2 T 0 	 :T 00m :def= �w�1m [H℄ : H 2 T 00 	 :It is easy to see that for every m 2 Obswm : nF �! Rng(wm) is a homeomorphism between T 0m andT 0 � Rng(wm) and between T 00m and T 00 � Rng(wm).(� � �)To prove item (i) of the theorem, by (�), (��), (���) above it is enough to prove that for eahm, T 0m and T 00m oinide. This holds by Claim 4.2.34 below.Claim 4.2.34 Let m 2 Obs. Then (a) and (b) below hold.(a) T 0m is the Eulidean topology on nF, i.e. the one with basef S(p; ") : p 2 nF; " 2 +F g.(b) T 00m is the Eulidean topology on nF.Proof:Proof of (a): A set H � nF is alled a simplex iff jHj = n + 1 and for eah p 2 H,f q � p : q 2 H; q 6= p g is a basis409 for the vetor spae nF, f. the left-hand side ofFigure 81.410406Cf. p.198 for oprodut of topologial spaes. Cf. also Engelking [83℄ under the name \sum of spaes".407I.e. (8m 2 Obs) jO \m=�! j = 1, where m=�! is the equivalene lass of m w.r.t. �!, as usual.408i.e. they are the restritions to Rng(wm) of T 0 and T 00, respetively409i.e. a minimal set of generators410This is pratially the same notion as \simplexes" in Def.4.2.30, the only di�erene being that now we arein nF while there we were in hMn; : : :i.



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 179Clearly, a subbase for T 0m isT 0m :def= �w�1m [H℄ : H 2 T 00; w�1m [H℄ 6= ;	 ;where reall that T 00 is the subbase of T 0. Sine the world-view transformations are betweennesspreserving ollineations411 it an be heked (by item 1f of Prop.4.2.64) that T 0m onsists ofthe interiors of the onvex hulls of the simplexes, where interiors of sets are de�ned via theEulidean topology, and onvex hulls of sets are de�ned in Def.4.3.28(iii) (p.509) of AMN [18℄.T 0m is a base for the Eulidean topology (on nF) beause of the following. Let H be anopen set of the Eulidean topology. Then for any p 2 H, there is a \neighborhood" of p in T 0mwhih is ontained in H. Hene H is a union of members of T 0m.But then, T 0m is the Eulidean topology on nF.Proof of (b): Let �m be a binary relation on nF de�ned as follows.�m :def= f hp; qi 2 nF � nF : wm(p) � wm(q) g :For every p 2 nF, letFuturep :def= f q 2 nF : p �m q g;Pastp :def= f q 2 nF : q �m p g:Clearly, a subbase for T 00m isT 00m :def= �w�1m [H℄ : H 2 T 000 ; w�1m [H℄ 6= ;	 ;where reall that T 000 is the subbase of T 00. It is easy to see thatT 00m = f Futurep \ Pastq : p; q 2 nF; p �m q g:(16)By item 1h of Prop.4.2.64 (p.209), we have thatp �m q , [ pt < qt ^ (9k 2 Obs) p; q 2 trm(k) ℄:(17)There are no FTL observers, by Prop.4.2.31. Thus, by Thm.4.3.29 (p.510) of AMN [18℄, by(17) and by Ax5Obs, we have that for any p 2 nFFuturep is the interior of the onvex hull of f q 2 Conem;p : pt < qt g, and(18) Pastp is the interior of the onvex hull of f q 2 Conem;p : pt > qt g;(19)where interiors of sets are de�ned via the Eulidean topology, and onvex hulls of sets arede�ned in Def.4.3.28(iii) (p.509) of AMN [18℄. By (16), (18), (19) and Thm.4.3.29 (p.510) ofAMN [18℄, we onlude that T 00m is a base for the Eulidean topology (on nF), f. the right-handside of Figure 81. Hene, T 00m is the Eulidean topology. QED (Claim 4.2.34)By this, item (i) of our theorem is proved. Item (ii) follows by (�), (��), (� � �) andClaim 4.2.34. Namely, by (�), (��) we have that T 0 is the sum topology (i.e. the oprodut)of the family h T 0 � Rng(wm) : m 2 O i whih in turn, by (� � �), is homeomorphi to thesum topology (i.e. the oprodut) of the family h T 0m : m 2 O i; while by Claim 4.2.34 we havethat eah T 0m is the Eulidean topology on nF.PROPOSITION 4.2.35 Assume Bax� + Ax(p ). Then the topology T 0 is the Eulideanone in the sense of Thm.4.2.33(ii), i.e. it has properties (a) and (b) in the formulation ofThm.4.2.33(ii).Moreover T 00 is a base for T 0.Proof: The proposition is a orollary of the proof of Thm.4.2.33.411by Thm.3.2.6 (p.110) and Ax(p ).



180 4.2 BASIC CONCEPTSTo see when T oinides with T 0 and T 00, we will need the axioms introdued below.We have introdued a strong symmetry priniple Ax(!) in x3.9 of AMN [18℄ (f. the listof axioms here (p.A-19)). Below we introdue four weak variants Ax(!)0, Ax(!)00, Ax(!)℄,Ax(!)℄℄ ofAx(!), where Ax(!)0 and Ax(!)00 an be onsidered as natural weakened versionsof Ax(!); while Ax(!)℄ and Ax(!)℄℄ an be onsidered as natural weakened versions ofAx(!)+Ax(Triv t)� +Ax(p ). I.e.[Ax(!)+Ax(Triv t)� +Ax(p )℄ > Ax(!)℄ > Ax(!)℄℄_ _ _Ax(!) > Ax(!)0 > Ax(!)00:We will use these axioms in formulating some of our theorems.De�nition 4.2.36 Axioms Ax22, Ax41, Ax42 are de�ned in the list of axioms (p.A-19)herein.Ax(!)0 is de�ned to be the disjuntion of the following symmetry axioms: Ax(syt0),Ax(symm), Ax(speedtime), Ax41+Ax(eqtime), Ax42, Ax21+Ax(eqtime),Ax22.412Ax(!)℄ is de�ned to be Ax(!)0+Ax(Triv t)�+Ax(p ).Ax(!)00 is de�ned to be the disjuntion of the following symmetry axioms: Ax(!)0,Ax(eqspae), Ax(eqm)+Ax(Triv t)�.413Ax(!)℄℄ is de�ned to be Ax(!)00 +Ax(Triv t)� +Ax(p ). �For haraterizing the strengths of the just introdued axioms we refer to AMN [18, items6.2.38{6.2.40℄.In onnetion with the following theorem reall thatBasax j= Newbasax j= Flxbasax�:Let Th+ be the theory Flxbasax� +Ax(!)℄ +Ax(diswind)whih will our in Thm.4.2.37 below. This theory or its variants with Basax or Newbasaxin plae of Flxbasax� will often our in our subsequent theorems. Therefore we note that byour previously mentioned 3 results (items 6.2.38{6.2.40 in AMN [18℄), Th+ is almost equivalentto \oÆial speial relativity" with disjoint windows allowed.414412We note that, assuming Flxbasax� + Ax(Trivt)� + Ax(""0) + Ax(p ) these symmetry axioms areequivalent to one another, f. Thm.2.8.17 (p.84) herein, AMN [18, Thm.3.9.11 (p.356), Thm.6.2.98 (p.910)℄and [168℄.413We note that, assuming n > 2 and Flxbasax�+Ax(Trivt)�+Ax(""0)+Ax(p ) the symmetry axiomsinvolved in Ax(!)0 and Ax(!)00 are equivalent to one another.414By \oÆial speial relativity" we refer to Sperel.



4.2.2 FIRST-ORDER DEFINABILITY OF RELATIVISTIC GEOMETRY 181THEOREM 4.2.37 Assume Flxbasax�+Ax(!)℄+Ax(diswind). Then (i) and (ii) belowhold.(i) T and T 0 oinide.(ii) Assume Ax(""0). Then T , T 0 and T 00 oinide.415Further the topology T = T 0 = T 00 is the Eulidean one in the sense of Thm.4.2.33(ii).To save spae, we omit the proof. It is available from the author.Sine Ax(!)℄ was designed to be weak, Theorems 4.2.37, 4.2.38 say that Flxbasax� +( some mild assumptions ) suÆe for T = T 0 = T 00.The next theorem says that if n > 2 then in the above theorem we ould use the weakerAx(!)℄℄ in plae of Ax(!)℄.THEOREM 4.2.38 Assume n > 2 and Flxbasax� + Ax(!)℄℄ + Ax(diswind). Then (i)and (ii) in Thm.4.2.37 hold.The proof is available from the author.Theorems 4.2.11 (p.158), 4.2.21 (p.166), 4.2.22 (p.166), 4.2.33 (p.177) and 4.2.37 motivatethe following de�nition.De�nition 4.2.39(Alternatives G0M; G00M and Ge0(Th); Ge00(Th) for GM and Ge(Th))(i) Assume M is a frame model. Then we de�ne G0M to be the geometry obtained fromGM = hMn;F1; : : :i by replaing ?r; eq by ?0r; eq 2, respetively, i.e.G0M :def= hMn;F1;L; LT ;LPh;LS;2;�;Bw ;?0r; eq 2; g; T i:We de�ne G00M to be the geometry obtained from G0M by replaing the topology T by T 0,i.e. G00M :def= hMn;F1;L; LT ;LPh;LS;2;�;Bw ;?0r; eq 2; g; T 0 i:(ii) Let Th be a set of formulas in our frame language for relativity theory. Then the lassesof relativisti geometries Ge0(Th) and Ge00(Th) assoiated with Th are de�ned as follows.Ge0(Th) :def= I fG0M : M 2 Mod(Th) g ;Ge00(Th) :def= I fG00M : M 2 Mod(Th) g ;where for taking isomorphi opies of our geometries we apply Convention 4.2.4 (i.e. westik with the \real" membership relation \2"). �Our next theorem says, roughly, that our lass Ge(Th) of relativisti geometries is de�nableover the orresponding lass of observational models.In Theorem 4.2.40 below instead of de�nability of the topology part we laim de�nabilityof only a subbase for the topology. An exeption is item (ii) of Thm.4.2.40, beause there abase T 00 will be de�nable, too. The ontent of Thm.4.2.40 below will be presented (disussedet.) in a greater detail in x4.3 (f. the proof of Thm.4.2.40).415A physial onsequene of Thm.4.2.37 is that for the various de�nitions of our topology (i.e. T ; T 0; T 00) theso-alled measurable sets remain the same (under the assumptions of the theorem). The reason for this is thatthe measurable sets are usually derived from the topology. In priniple results like this might be relevant forreent theories of physial measurement (where the notion of measurement is related to measurable sets) f.Attila Andai personal ommuniation. Cf. e.g. Misner-Thorne-Wheeler [192, p.1184 (lower part of the page)℄.Cf. also Andai [6, Chap.4, x5℄ and Pulmanov�a [214℄.



182 4.2 BASIC CONCEPTSTHEOREM 4.2.40(i) The lass Ge0(Th) is uniformly �rst-order de�nable416 over the lass Mod(Th), for anyset Th of formulas in our frame language.417(ii) Ge00(Th) is uniformly �rst-order de�nable over Mod(Th), assumingTh j= Bax� +Ax(p ):(iii) Ge(Th) is uniformly �rst-order de�nable over Mod(Th), assuming n > 2 andTh j= Bax� +Ax(k)� +Ax(Triv t)� +Ax(diswind)+Ax(p ):(iv) Ge(Th) is uniformly �rst-order de�nable over the lass Mod(Th), assumingTh j= Basax +Ax(Triv t)� +Ax(p ):Proof: The theorem is restated and is proved in x4.3 as Theorems 4.3.25 (p.245), 4.3.22(p.244) and 4.3.24.We will see that more is true, namely, Mod(Th) and Ge(Th) are de�nitionally equivalent418,in symbols Mod(Th) �� Ge(Th);assuming Th is strong enough419, f. Thm.4.3.38 (p.261).On the onditions of Thm.4.2.40(iii): The assumption n > 2 annot be omitted by (theproof of) Thm.4.2.23(ii) (p.168). The assumption Ax(k)� is needed beause of (the proofof) Thm.4.2.23(i). Further we onjeture that Ax(diswind) annot be omitted, f. Conje-ture 4.3.23 on p.244 and Fig.93 on p.244.
4.2.3 On the intuitive meaning of the geometry GMReall that Ax(Triv t)� is a weakened version of Ax(Triv t) and Ax(Triv), and it was intro-dued on p.157 in the present setion. We will need Ax(Triv t)� and Ax(Triv) quite oftenfor the following reason. We de�ned, roughly speaking, the set L of lines suh that somethingis a line if it \oinides" with a oordinate axis of some inertial observer. Therefore we haverather few lines, i.e. to have enough lines we need Ax(Triv t)�. We ould have de�ned lines assets \parallel" either with the time-axis �t or with a Eulidean line in the spae part S of ourspae-time for some inertial observer. In that ase we would not need Ax(Triv t)� so often.The only reason why we did not inlude Ax(Triv t)� into our basi theories like Basax orBasax+Ax(symm) is that we ould derive our main theorems (e.g. no FTL observers, Twin416f. (?) in Remark 4.2.9 on p.154 (or for greater detail x4.3)417With the exeption of x4.3 Th is in our frame language (i.e. Th denotes an arbitrary set of formulas in ourframe language).418The notion of de�nitional equivalene will be disussed in x4.3.419The onditions of Thm.4.2.40(iii) together with Ax~+Ax(ext) +Ax(eqtime) are suÆient.



4.2.3 INTUITIVE MEANING OF RELATIVISTIC GEOMETRY 183Paradox) even without Ax(Triv t)�. But whenever we need Ax(Triv t)� for something, wewill assume it without a seond thought.420We will also need Ax(eqm) often, where Ax(eqm) was de�ned on p.145. The reason forour needing Ax(eqm) is the following: Without Ax(eqm), g ould easily beome degeneratebeause g was de�ned via \min". Further, failure of Ax(eqm) an produe strange things, e.g.(eq(a; b; ; d) ) g(a; b) = g(; d)) an fail even in Basax without Ax(eqm). (Connetionsbetween Ax(eqm) and some earlier introdued axioms are disussed in x6.2.7 of AMN [18℄.)Disussion of the intuitive meaning of the geometry GM: Intuitively, the points ofGM are the events. The LT -lines are the life-lines of inertial observers. The LPh-lines are thelife-lines of photons. Intuitively, one ould say that the set of spae-like lines LS onsists ofthe life-lines of the potential faster than light inertial bodies (whih are alled tahions in theliterature). However, these bodies need not exist in our model M. But ertainly, if there existsan FTL inertial body b in a model M, then the life-line f e 2 Mn : b 2 e g of b is in LS, undersome assumptions on M, 421 f. Prop.6.2.55 (p.858) of AMN [18℄. Two events are �T -related ifthere is an inertial observer, whose life-line ontains both events. This is equivalent to sayingthat there is an inertial observer who sees them happening at the same plae, under mildassumptions422, f. Prop.6.2.56(i) (p.858) of AMN [18℄. Two events are �Ph-related if they areonneted by a photon. Two events are�S-related iff there is an inertial observer who sees themhappening at the same time, if we assume Ax(Triv)+Ax(p ), f. Prop.6.2.56(ii) (p.858) ofAMN [18℄. Assuming Ax(Triv)+Ax(p )+Ax(eqm)+Ax4+Ax600, the g-distane g(e; e1)between two events e; e1 is (i) the Eulidean distane between them if they are simultaneousfor some inertial observer, is (ii) the time elapsed between e; e1 if they are on the life-line ofsome inertial observer, is (iii) zero if a photon onnets them and is (iv) unde�ned if no inertialobserver an see both of them (under some mild assumptions).Remark 4.2.41 We have seen in earlier setions that (assuming Ax1, Ax2, Ax30, Ax4,AxE01, Ax600) the irreexive parts of �T and �Ph are disjoint beause no observer moveswith the speed of light,423 hene (e 6= e1 ^ e �T e1) ) e 6�Ph e1.For ompleteness, we note that there is a tradition in the literature whih odes g, �T , �Phup into one omplex-valued (pseudo-metri) funtiong+(e; e1) = 8<: g(e; e1) if e �T e1 or g(e; e1) is unde�ned0 if e �Ph e1i � g(e; e1) otherwise.Here i = p�1 and g+ : Mn�Mn �! C(F), where C(F) = F(i) is the �eld of omplex numbersover F.However, in the present work we will not need g+ beause the information arried by g+ isreoverable from our struture hMn;F1; g;�T ;�Phi.424 �420Omitting (or weakening) ertain axioms of a theory (like Basax +Ax(!)℄) of speial relativity leads toexiting questions (suh an axiom is e.g. AxE) but for some other axioms (e.g. \trm(m) = �t " or the otheraxiom [8p (p 2 `$ p 2 `1)! ` = `1℄) this does not seem to be the ase. It is our impression that Ax(Trivt)�might belong to this seond kind of axioms (though we did not think muh about this, so we may be wrong).421e.g. Bax� +Ax(Trivt)� +Ax6+Ax(p )422e.g. Ax(Triv)+Ax4+Ax600 suÆes423More preisely, no observer has the same life-line as a photon.424In the relativity book d'Inverno [73, pp. 107-108℄, our g+ is alled a Minkowski metri (and is denoted as�ab). More preisely, the square (g+)2 of g+ is alled there a Minkowski metri, we guess that this is donethere in order to avoid omplex numbers. (It is important to note that a Minkowski metri is not a metri [inthe usual sense℄ f. footnote 313 on p.146.)



184 4.2 BASIC CONCEPTSBelow we ontinue the disussion of the intuitive meaning of the parts of our geometries.Intuitively, two lines `; `1 are orthogonal in the relativisti sense (i.e. ?r-related) if there isan inertial observer m who thinks that they are parallel with two di�erent oordinate axes.There is a slight problem with this intuitive de�nition beause in most of our models M noline will be orthogonal to photon-like lines. To help this we introdued a limit onstrutionin our de�nition of ?r. We refer to Remark 4.2.7 (pp. 149{152) for intuitive motivation (andosiderations) for our using limits in the de�nition of ?r. If we assume Bax� and somemild assumptions then our relativisti orthogonality gets very lose to the usual Minkowskianorthogonality, f. Thm.4.2.50 (p.195). On the other hand if we do not assume Bax�, then therelativisti orthogonality ?r an behave in quite interesting, unusual ways. E.g. in NewtKgeometries, two lines are orthogonal iff at least one of them is spae-like. Further, there isa Bax�� geometry with two parallel spae-like lines whih are ?r-orthogonal, see Figure 82.(The \meanings" of ?r;LT ;LS;�T ;�S; : : : are disussed above and in items 6.2.48{6.2.57, pp.�t
�x�y
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Figure 82: Bax�� geometry with two parallel spae-like lines whih are ?r-orthogonal.854{858 of AMN [18℄. Betweenness Bw and equidistane eq are the usual geometri relationsused e.g. by Hilbert [125, 127℄. Bw(a; b; ) means that some inertial observer thinks that eventb is between events a and . Intuitively, eq 0(a; b; ; d) means425 that segments ha; bi and h; dihave the same length, for some inertial observer (and this observer sees these segments onoordinate axes). Further, eq(a; b; ; d) means that there is a �nite hain of inertial observerssuh that they together (in a kind of ollaboration) think that segments ha; bi and h; di havethe same length, see Figure 68 on p.144. Further, a � b means that there is an inertial observerwho thinks that a happened earlier than b and who sees both a and b on his life-line.The reader may ask what the role of the onstant 1 2 F1 is in the geometry GM. Clearly therole of F1 is to represent the range of g as a speial sort (or universe), but for this purpose theadditive group F0 := hF; 0;+;�i would be suÆient. The answer is the following. Later, inx4.5, we will experiment with reonstruting the \observational-oriented" models M from theobserver-independent geometries GM. The role of the onstant 1 is to help us to reonstrut the425Reall that eq was de�ned as the transitive losure of eq 0. Hene eq 0 an be onsidered as a kind of \ore"of eq.



4.2.3 INTUITIVE MEANING OF RELATIVISTIC GEOMETRY 185\units of measurement" or in other words \the size of a hydrogen atom" (f. p.91) in M fromGM, at least to some extent (and under some onditions). E.g., under assuming Ax(eqm),we an reonstrut the units of measurement of M from GM, f. e.g. Thm.4.5.11 (p.290). Inpassing we note that as \patterns" (a)-(e) on p.284 suggest, there will be stronger resultsof \reoverability" than the just quoted one, in later parts of x4.5.1. We will return to thepresent subjet (the role of \1" et) in more detail in x4.5. (Cf. e.g. Remark 4.5.51, p.322.) Inpartiular, we will disuss how muh of M is reoverable from GM without using 1 in the formof a \duality theory" alled in 4.5.4 (p.325) (Go;Mo)-duality.426Summing it up, the role of 1 2 F1 is to help us to reover the units of measurement (in M)from the geometry GM. (Referring bak to the intuitive explanation using hydrogen atoms inx2.8 on p.91 [about justi�ation of Ax(symm)℄, we ould say that the onstant \1" helps usto remember in GM what the \size of a hydrogen atom" was in M.)Let us turn to disussing why we \elebrate" the observer-independent harater of GM.In answering this question we will deliberately mix talking about GM and its (�rst-order logi)theory Th(GM).427(1) Muh of what we should say about this was already said in the introdution x4.1 (ofthis hapter). We will not repeat those thoughts here, the reader is asked to have a look inx4.1.(2) Clearly GM is the same to all observers.(3) By the duality theory to be developed later in x4.5, all the information available in Mis also available in GM,428 so we do not lose information when swithing to GM.(4) GM satis�es ertain important, desirable philosophial priniples (e.g. the one sayingthat all our onepts should be de�nable from observational ones, assoiated with ertainmodern re�nements429 of Oam's razor430). These priniples were already satis�ed by M, andGM inherits this property from M beause GM is �rst-order-logi-de�nable over M (undersome onditions).431(5) Around the end of this hapter, we will see that GM admits mathematially elegantstreamlined versions (f. e.g. the time-like-metri geometry hMn;F1; g�i in x4.6.1 p.346 as anexample). These streamlined versions of GM provide us with a simple, mathematially elegant,and transparent piture of the world (whih, in many respets, is simpler and more elegantthan M).(6) GM provides us with a stepping-stone towards theories admitting aelerated observersand eventually towards general relativity. Cf. e.g. x4.7 on geodesis.(7) In some sense one feels that GM represents \deeper" and more essential aspets ofthe world than M does. One ould say that the ingredients of M are the things one seeson the \surfae" of the phenomena or reality being studied while GM ontains ingredientswhih make these surfae phenomena \tik". One ould say that GM ontains something thatould be regarded as \explanation" for M (where explanation is understood in the sense ofFriedman [91℄). Cf. footnote 275 on p.131.(8) The various reduts of GM provide us with aspets of the world that we an ontem-plate. So for a while we may deide to onentrate on one aspet (represented by one redut)426Forgetting 1 from GM is related to what we alled on p.88 \ant and elephant version of relativity", andwhih we plan to outline in some future work. Cf. also AMN [18, Remark 4.2.1 on p.458℄.427Or more preisely Th(fGM : M j= Th1 g) for some �xed Th1.428under some mild onditions429We mean priniples proposed by Reihenbah, Carnap, Mah (and also by the logial positivists).430For further desirable philosophial priniples satis�ed by GM we refer the reader to the introdution of thepresent hapter (x4.1).431Cf. Thm.4.2.40 (p.182). (In this respet we do not gain overM but we do not lose either.)



186 4.2 BASIC CONCEPTSand ignore the rest. Then we an experiment with how far we an get by onentrating on thisaspet. Later we may onentrate on some other aspet (redut). Eventually we an omparethe results (and try to obtain insight into whih aspet is responsible for whih e�et). Inother words this provides us with the mahinery of \abstration".432 For more on this (\de-omposing" the world into reduts et.) f. the �rst 5 lines of x4.5.4 (p.325), p. 342, and p.341of AMN [18℄. (Note that the same kind of \deomposability" is not available in the originalstrutures the M's.)(9) GM may be helpful in omparing the various observers, seeing their relationships witheah other. We feel that this is so beause in GM when, say, we are thinking about e.g.three inertial observers simultaneously, we are not fored to do so from the world-view ofsome partiular observer, instead we an look at our three observers from, so to speak, the\objetive" perspetive of GM. In ontrast, when working in M, we always have to hoose anobserver and we have to desribe things from his partiular perspetive. This may make e.g.proofs longer (beause we might have to swith perspetives).(10) For more on why we elebrate the observer-independent harater of GM we refer tothe book Matolsi [187℄.(11) For ompleteness, we note the following: Many of the so-alled thought experimentsan be translated into the language of GM, and the outome of the thought experiment anbe predited by knowing GM, f. \laws of nature" part in AMN [18℄. An example is theso-alled twin paradox, assuming e.g. n > 2 and Bax�� + Ax(eqtime). For the aseBasax+Ax(!)℄+Ax(""), 433 the importane of GM is further elaborated in e.g. Misner-Thorne-Wheeler [192, pp. 3{47, 163{175℄.The usefulness of GM will be espeially apparent when we turn to disussing non-inertialobservers. As an illustration, let us assume that we have a body b whose life-line is not inLT . Assume we would like to raise b to the level of being an observer. For simpliity, assumen = 2. Then b would like to oordinatize the \events" Mn, i.e. we would like to de�ne afuntion w b : 2F �! Mn. Using GM, there is a natural way for doing this,434 f. e.g. Misner-Thorne-Wheeler [192, pp. 163{175℄.At this point we stop listing values of GM.Remark 4.2.42 (On the philosophy of our using inertial and not neessarily inertialobservers in the de�nition of GM above.)Before starting, we note that later we will have so-alled windows in GM. Roughly, a windowis a part of Mn visible for one observer.Now, what we want to say about the \philosophy . . . " is the following: (i) Everything thatis \measured" (e.g. g or ?r) (by observers of ourse) is de�ned via Obs \ Ib. As a ontrast;(ii) windows, existene of events (ontology of Mn) are de�ned via Obs (i.e. all observers).(iii) Cf. also the de�nition of G�M in x4.5.5 p.332. �We will start disussing the onnetions with the standard Minkowskian geometry on p.188in x4.2.4.432Deompose the world into aspets, study the aspets separately and in their interation and then put theresults together.433We note that (for n > 2) the members of Ge(Basax+Ax(!)℄+Ax("")) are the Minkowskian geometries,up to isomorphism, f. Def.4.2.44 (p.189) and Thm.4.2.45 (p.190).434This does not ontradit what we will say in x4.5(V) on pp. 332{340 (. . . G�odel inompleteness) aboutunde�nability of non-inertial bodies. (The reason for this is that these two laims about de�nability \live" astwo di�erent levels of abstration.)
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Figure 83: The starship hovering above the blak-hole horizon, and the trajetories alongwhih light travels to it from distant galaxies (the light rays). The hole's gravity deets thelight rays downwards (\gravitational lens e�et"), ausing humans on the starship to see allthe light onentrated in a bright, irular spot overhead.



188 4.2 BASIC CONCEPTSRemark 4.2.43 (On Figure 83 [view from the blak hole℄) Later, in generalizationstowards general relativity, our geometryG will be more sophistiated than the present GM. E.g.life-lines of photons (and other inertial bodies) will be so-alled geodesis instead of Eulideanlines. Geodesis will be disussed in x4.7.Figure 83 on p.187 represents some spetaular e�etaused by geodesis being urved by a blak hole. �The basi properties of L; LT ; LS; �T ; �S ; ?r et. and their interonnetions are disussedin items 6.2.48{6.2.57 of AMN [18℄. In later proofs we will use these basi fats. Thesepropositions establish onnetions between geometri properties on the Mn-side and similarproperties on the nF-side. E.g. they redue orthogonality of two lines in Mn to properties oftheir pre-images in nF.If the reader wants only a quik overview of the high points of this dissertation and if he isfamiliar with the standard Minkowskian geometry of speial relativity, then he an skip the nextthree subsetions (x4.2.4{4.2.6) and go diretly to setion x4.3. These three subsetions disuss(i) onnetions with the standard Minkowskian geometry, (ii) haraterizations of Ge(Th) fordistinguished hoies of Th (and basi properties of our geometries), (iii) streamlined redutslike hMn;L;2;?i of GM whih an be used instead of GM for most of the purposes in thepresent hapter, under some onditions. 435
4.2.4 Connetions with the standard Minkowskian geometryThe style of our above de�nition of GM followed a ertain kind of intuition e.g. (i) events e; e1are de�ned to be spatially separated iff some inertial observer thinks that e and e1 happened atthe same time; and (ii) for events e and e1 the relation e � e1 is de�ned to hold iff some inertialobserver thinks that e preedes e1 in time (and sees e; e1 on his life-line); et. In general, wetried to ahieve the e�et that, intuitively, some relation holds between given objets iff someinertial observer thinks this is so (sometimes we had to take \min" or limits to omplete thepiture, but this was the general intuition).As a ontrast, in De�nition 4.2.44 below, for every Eulidean F, we de�ne a geometry on nFin a \omputational" style. Following the literature436, we all this geometry the Minkowskiangeometry over F.In Thm.4.2.45 below (p.190), we will see that our \intuition-oriented" de�nition of GMis equivalent to the standard Minkowskian de�nition mentioned above, under some assump-tions on M. Further, if n > 2, the observer-independent geometries (in our sense437) of theMinkowski models (the latter is de�ned in x3.8 of AMN [18℄) will turn out to oinide with theMinkowskian geometries, up to isomorphism, f. Prop.4.2.48, p.194. (In x4.2.5 we will see thatrelativisti geometries orresponding to many of our theories an be obtained as \unions" ofMinkowskian geometries if we onentrate on a redut of our geometries, only. Cf. Figures 84,85, pp. 192, 193.)435In some of the later proofs we use lemmas proved in (ii) but we will refer to these when they are needed.436f. e.g. Kostrikin-Manin [148℄, f. also Goldblatt [102℄437in the sense of Def.4.2.3



4.2.4 CONNECTION WITH MINKOWSKIAN GEOMETRY 189On terminology: What we all here Minkowskian geometry, is (usually) alled in the lit-erature \Minkowskian spaetime", f. e.g. Goldblatt [102℄ or Shutz [231℄.438 But e.g. Gold-blatt [102℄ in its introdution uses the expression \Minkowskian geometry" exatly the sameway as we do.De�nition 4.2.44 (Minkowskian geometry)Assume F is Eulidean. Then the n-dimensional Minkowskian geometry over F is de�ned asfollows.Mink(n;F) :def= Mink(F) :def= hnF;F1;L�; LT� ;LPh� ;LS� ;2;��;Bw�;?�; eq�; g�; T�i;where:� F1 :def= hF; 0; 1;+;�i, as de�ned in Def.4.2.3.� L� :def= Eul(n;F) := Eul.� LT� :def= SlowEul.� LPh� :def= PhtEul.� LS� :def= L� n (LT� [ LPh� ).� �� is a binary relation on nF de�ned as follows. Let p; q 2 nF. Thenp �� q def() (pt < qt ^ pq 2 SlowEul):� Bw� = Betw.� The Minkowskian orthogonality ?� � L� � L� is de�ned as follows. Let `; `0 2 L�.Then ` ?� `0def()(8 distint p; q 2 `)(8 distint p0; q0 2 `0)(p0 � q0)(p00 � q00)� �P0<i2n(pi � qi)(p0i � q0i)� = 0.If ` ?� `0 then we say that ` and `0 are Minkowski-orthogonal.� Let us reall that g2� : nF � nF �! F is the square of the Minkowski-distane de�ned inDef.2.9.1.We de�ne the Minkowski distane g� : nF � nF �! F as follows439. Let p; q 2 nF.Then g�(p; q) :def= qg2�(p; q):440438The reason for this is probably the fat that e.g. in Busemann [54, x17℄ the expression \Minkowskiangeometry" is reserved for something else, something not onneted to relativity.439exatly as we did above Prop.6.2.38 on p.844 in AMN [18℄440In onnetion with this de�nition we note that our symbol g2� (introdued on p.101) is not the square ofsomething denoted by g�, but instead it is a basi symbol, like, say . Then, g� ounts as a brand new symbolunrelated to g2� and our de�nition g�(: : :) =qg2�(: : :) should be understood like g�(p; q) =p(p; q). (Thereason for treating g2� as basi symbol [instead of e.g. g�℄ is explained in footnote 82, p.18.)



190 4.2 BASIC CONCEPTS� eq� is a 4-ary relation on nF de�ned as follows. Let p; q; p0; q0 2 nF. Theneq�(p; q; p0; q0)def()�g�(p; q) = g�(p0; q0) ^ [ g�(p; q) = 0 ) ( p = q ^ p0 = q0 ) ℄�.441� T� is de�ned by g� as desribed in item 13 of Def.4.2.3 (p.146).We will sometimes omit the subsript � from L� et. beause the voabulary or similarity typeof Minkowskian geometries is the same as that of relativisti geometries. �Assume M j= Basax. Then for eah m 2 Obs, the bijetion wm : nF �! Mn anbe used to \opy" the geometry Mink(FM) to Mn (as its new universe, i.e. as its new set ofpoints), yielding a geometry MinkmM. However for di�erent observers m, this geometry mightbe di�erent (though isomorphi), beause di�erent observers might opy Mink(FM) di�erentlyto Mn. Assume further M j= Ax(!)℄ + Ax(""). Then the observers will agree on how toopy Mink(FM). Formally, (8m; k 2 Obs)MinkmM = MinkkM;assuming M satis�es the mentioned axioms. This is essentially what Thm.4.2.45 below says.442Assume now M j= Basax + Ax(!)℄ + Ax(""). Then we ould de�ne a Minkowskiangeometry on Mn as follows: MinkM := MinkmMfor an arbitrary but �xed m 2 Obs. Our Thm.4.2.45 below says thatMinkM = GM;assuming n > 2. To keep the number of de�ned symbols in this work relatively small, we willnot rely on the notation MinkM in the rest of this work (at least not without realling it).THEOREM 4.2.45 Assume M 2 Mod(Basax + Ax(!)℄ + Ax("")). Then (i){(iii) belowhold.(i) Let n > 2. Then GM �= Mink(FM);f. Figures 84, 85.Moreover, for every m 2 Obs, wm : nF �! MnM indues an isomorphism betweenMink(FM) and GM the natural way.443441We need the subformula \g�(p; q) = 0 ) : : :" only beause in our de�nition of eq by some aident we hadthe side e�et that photon-like separated pairs of points are not eq-related even to themselves, f. footnote 303on p.144. Further, beause we want to make our de�nition (of GM) omparable with the Minkowskian de�nition(i.e. with Mink(F)).442Atually, this idea of somehow identifying nF with Mn via some observer's world-view an be pushedthrough even inBax�, sine we have seen that the world-view transformations are line preserving, f. Def.4.2.61(p.206) and Prop.4.2.64 (p.208).443Making this preise: Let m 2 Obs. Let gwm : Eul �! MnM be de�ned by gwm : ` 7! wm[`℄. Thenhwm; Id � F; gwmi is a (three-sorted) isomorphism between Mink(FM) and GM, f. item (II) of Def.4.2.3(p.146) for the notion of an isomorphism between geometries.



4.2.4 CONNECTION WITH MINKOWSKIAN GEOMETRY 191(ii) Let n = 2. Then the onlusion of (i) remains true with the exeption of eq, i.e. insteadof GM we have to talk about the eq-free redut of GM. The onlusion of (i) will notremain true if we do not exlude eq from our geometries.(iii) The statement in item (i) remains true if we replae the assumption Ax(!)℄ byAx(Triv t)� + Ax(p ) + Ax, where Ax is any one of Ax(!), Ax(!)0, Ax(!)00,Ax(!)℄℄, Ax(syt0), Ax(symm), Ax(speedtime), Ax41 + Ax(eqtime), Ax42,Ax21 +Ax(eqtime), Ax22, Ax(eqspae), Ax(eqm).The proof is available from the author.444The following theorem says that, if n > 2, then the �-free redut of any Basax+Ax(!)℄℄geometry oinides with the similar redut of a Minkowskian geometry. In onnetion withthe onditions of Theorems 4.2.45 and 4.2.46 we reall that Ax(!)℄℄ is weaker than Ax(!)℄.In Thm.4.2.45 we needed the assumption Ax(!)℄ for the n = 2 ase only; for the n > 2 aseAx(!)℄℄ was suÆient.THEOREM 4.2.46 Assume n > 2. Then (i) and (ii) below hold.(i) Assume G 2 Ge(Basax + Ax(!)℄℄). Then the �-free redut of G oinides with thesimilar redut of a Minkowskian geometry, up to isomorphism, i.e. there is a EulideanF suh that (�-free redut of G) �= (�-free redut of Mink(F));f. Figures 84, 85.(ii) The statement in item (i) remains true if we replae the assumption Ax(!)℄℄ byAx(Triv t)� + Ax(p ) + Ax, where Ax is any one of Ax(!), Ax(!)0, Ax(!)00,Ax(!)℄, Ax(syt0), Ax(symm), Ax(speedtime), Ax41 + Ax(eqtime), Ax42,Ax21 +Ax(eqtime), Ax22, Ax(eqspae), Ax(eqm).The proof is available from the author.Roughly, the following proposition says that, assuming Basax + Ax(!)℄ + Ax(""), theworld-view transformations fmk are exatly those automorphisms of the observer independentgeometry GM whih leave the sort F pointwise �xed, f. items (iii) and (iv) of the proposition.Let us notie that this means, basially, that the world-view transformations of M oinidewith the (nie) automorphisms of GM. In onnetion with the proposition below f. x6.2.8 inAMN [18℄.PROPOSITION 4.2.47 Assume M j= (Basax+Ax(!)℄ +Ax("")). Assume m; k 2 Obs.Then (i){(iv) below hold.(i) The world-view transformation fmk indues an automorphism of the Minkowskian geom-etry Mink(FM) the natural way.445(ii) For every automorphism � of Mink(FM) whih is the identity funtion on the sort F,there are m0; k0 2 ObsM suh that � and fm0k0 oinide on nF.444In onnetion with item (ii) of Thm.4.2.45 f. the �rst 8 lines of the proof of Thm.6.2.22 on p.906 inAMN [18℄.445Making this preise: Let gfmk : Eul �! Eul be de�ned by gfmk : ` 7! fmk[`℄. Then dfmk def= h fmk; Id �F; gfmk i is a (three-sorted) automorphism of Mink(FM). For the notion \three-sorted automorphism" f. item(II) of Def.4.2.3 (p.146).
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unions, Ax6

eq, AxE00

�, Ax(""0)

g; T , Ax(!)℄

Ge(Basax +Ax(!)℄ +Ax("")) = Ge(BaCo)�-free redut ofGe(Basax +Ax(!)℄)
(�; g; T )-free re-dut of Ge(Basax+Ax(Trivt)�)

(g; T )-free redutof Ge(Basax+Ax(Trivt)� +Ax("")) Ge(Newbasax+Ax(!)℄ +Ax(""0))�-free redut ofGe(Newbasax+Ax(!)℄)
(�; g; T )-free redut ofGe(Newbasax+Ax(Trivt)�)

(g; T )-redut ofGe(Newbasax+Ax(Trivt)� +Ax(""0))(eq; g; T )- free redut ofGe(Bax� +Ax(Trivt)�+Ax(""))(�; eq; g; T )-free redut ofGe(Bax� +Ax(Trivt)� +Ax6)
(eq; g; T )-free redutof Ge(Bax�+Ax(Trivt)� +Ax(""0))(�; eq; g; T )-free redut ofGe(Bax� +Ax(Trivt)�) �� relativistiinidenegeometries, p.1174of AMN [18℄.Figure 84: Reduts of geometries agreeing with the orresponding (reduts of) Minkowskiangeometries. Ax(p ) and n > 2 are assumed. Nodes are of form RdL(Ge(Th)) determined bythe hoie of Th and geometri sublanguage L, where the operator RdL is de�ned on p.205 andintuition et. about reduts is in Convention 4.3.1. For detailed explanation f. p.205. Cf. alsoFig.85. For �� f. p.255.
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unions, Ax6 Examples 4.2.54 (p.201)

eq, AxE00

�, Ax(""0)

g; T , Ax(!)℄

Ge(Basax+Ax(!)℄ +Ax("")) Thm.4.2.45 (p.190)�-free redut ofGe(Basax +Ax(!)℄)Thm.4.2.46 (p.191)
(�; g; T )-free re-dut of Ge(Basax+Ax(Trivt)�)Thm.4.2.51(i) (p.195)

(g; T )-free redutof Ge(Basax+Ax(Trivt)� +Ax(""))Thm.4.2.51(ii) Exmp.4.2.54.5 (p.203)Ge(Newbasax+Ax(!)℄ +Ax(""0))�-free redut ofGe(Newbasax+Ax(!)℄)
(�; g; T )-free redut ofGe(Newbasax+Ax(Trivt)�)Thm.4.2.59(i) (p.204)Thm.4.2.60(i) (p.204)

(g; T )-redut ofGe(Newbasax+Ax(Trivt)� +Ax(""0))Thm.4.2.59(ii),Thm.4.2.60(ii)(eq; g; T )- free redut ofGe(Bax� +Ax(Trivt)�+Ax(""))(�; eq; g; T )-free redut ofGe(Bax� +Ax(Trivt)� +Ax6)Thm.4.2.50(i) (p.195) Thm.4.2.50(ii)
(eq; g; T )-free redutof Ge(Bax�+Ax(Trivt)� +Ax(""0))Thm.4.2.56(ii), Thm.4.2.58(ii)(�; eq; g; T )-free redut ofGe(Bax� +Ax(Trivt)�) Thm.4.2.56(i) (p.203)Thm.4.2.58(i) (p.204)Figure 85: This is Fig.84 enrihed with the names of theorems involved.



194 4.2 BASIC CONCEPTS(iii) w�1m Æ wk indues an automorphism fmk of the geometry GM, the natural way.446(iv) For every automorphism � of GM whih is the identity funtion on the sort F, there arem0; k0 2 ObsM suh that � and w�1m0 Æ wk0 oinide on Mn. I.e. dfm0k0 agrees with �.On the proof: Items (i) and (iii), for the ase n > 2, are orollaries of Thm.4.2.45. In thease n = 2, by Thm.4.2.45, we onlude that items (i) and (iii) hold for the eq-free reduts ofthe geometries. Cheking that fmk and w�1m Æ wk are automorphisms of the geometry redutsh2F; eq�i and hMnM; eqMi, respetively, is easy and is left to the reader. The proofs of items(ii), (iv) are available from the author.Items (iii) and (iv) of the above proposition an be summarized, roughly, by saying thatAut(GM) an be identi�ed with the group f fmk : m; k 2 Obs g, whih in turn an be identi�edwith f fmk : m; k 2 Obs g. Cf. AMN [18, x6.2.8 (p.913) and p.779℄. Items (i) and (ii) saybasially the same about Mink(FM) in plae of GM.Let us reall that in De�nition 3.8.42 (p.331) of AMN [18℄, for every Eulidean F, theMinkowski model MMF over F was de�ned. The proposition below says that the observer-independent geometry of the Minkowski model over F is the Minkowskian geometry over F,up to isomorphism.PROPOSITION 4.2.48 Assume F is Eulidean and n > 2. ThenGMMF �= Mink(F):Moreover, for every m 2 ObsMMF , wm : nF �! Mn indues an isomorphism between Mink(F)and GMMF the natural way.447Proof: The proposition follows by Thm.4.2.45.The following theorem says that in Basax models the world-view transformations fmkpreserve Minkowskian orthogonality.THEOREM 4.2.49 Assume Basax. Let `; `0 2 Eul and m; k 2 Obs. Then` ?� `0 ) fmk[`℄ ?� fmk[`0℄:The proof is available from the author.Roughly, the following theorem says that the (�; eq; g; T )-free redut of almost any (Bax�+Ax6)-geometry oinides with the similar redut of a Minkowskian geometry. Further, thesame holds for the (eq; q; T )-free reduts of (Bax� + Ax6 + Ax(""))-geometries. Strongerforms of the following theorem, not involving Ax6, will be stated in x4.2.5 as Theorems 4.2.56,4.2.58.446Making this preise: Let dmk def= w�1m Æ wk. Then dmk is a mapping of Mn into itself. Let gdmk : L �! Lbe de�ned by gdmk(`) = dmk[`℄. Now, dfmk def= hdmk; Id � F;gdmki. More detail and intuitive motivation for dfmkis in AMN [18, p.914℄.447See footnote 443.



4.2.4 CONNECTION WITH MINKOWSKIAN GEOMETRY 195THEOREM 4.2.50 Assume G 2 Ge(Bax�+Ax(Triv t)� +Ax(p ) +Ax6). Then (i) and(ii) below hold.(i) Assume n > 2. Then the (�; eq; g; T )-free redut of G oinides with the similar redutof a Minkowskian geometry, up to isomorphism, i.e. there is a Eulidean F suh thathMn;L; LT ;LPh;LS;2;Bw ;?ri �= hnF;L�; LT� ;LPh� ;LS� ;2;Bw�;?�i;f. Figures 84, 85.(The other diretion also holds by Prop.4.2.48.)448(ii) Assume Ax(""). Then the (eq; g; T )-free redut of G oinides with the similar redutof a Minkowskian geometry, up to isomorphism, i.e. there is a Eulidean F suh thathMn;L; LT ;LPh;LS;2;�;Bw ;?ri �= hnF;L�; LT� ;LPh� ;LS� ;2;��;Bw�;?�i:(The other diretion also holds by Prop.4.2.48.)Proof: The theorem follows by the �rst proof given for Thm.4.2.11 (p.158), by Prop.4.2.48and by Prop.4.2.31 (p.177).Roughly, the following theorem says that the (�; g; T )-free redut of almost any Basaxgeometry G oinides with the similar redut of a Minkowskian geometry. Further, the sameholds for (g; T )-free reduts of (Basax+Ax(""))-geometries. Generalizations of the followingtheorem for Newbasax (in plae of Basax) will be stated in x4.2.5 as Theorems 4.2.59, 4.2.60.THEOREM 4.2.51 Assume n > 2 and G 2 Ge(Basax+Ax(Triv t)� +Ax(p )). Then (i)and (ii) below hold. (Cf. Figures 84, 85.)(i) The (�; g; T )-free redut of G oinides with the similar redut of a Minkowskiangeometry, up to isomorphism, i.e. there is a Eulidean F suh thathMn;L; LT ;LPh;LS;2;Bw ;?r; eqi �= hnF;L�; LT� ;LPh� ;LS� ;2;Bw�;?�; eq�i:(The other diretion also holds by Prop.4.2.48.)(ii) Assume Ax(""). Then the (g; T )-free redut of G oinides with the similar redut of aMinkowskian geometry, up to isomorphism, i.e. there is a Eulidean F suh thathMn;L; LT ;LPh;LS;2;Bw ;�;?r; eqi �=hnF;L�; LT� ;LPh� ;LS� ;2;Bw�;��;?�; eq�i.(The other diretion also holds by Prop.4.2.48.)On the proof: A proof an be obtained by the proof given for Thm.4.2.11 (p.158), byProp.4.2.48, by Claim 6.2.84 (p.892) and Prop.6.2.88 (p.895) of AMN [18℄ and by Prop.4.2.31(p.177).448I.e. this redut of any Minkowskian geometry is obtainable as a redut of a (Bax� + : : :)-geometry (up toisomorphism of ourse).



196 4.2 BASIC CONCEPTSRemark 4.2.52(i) In Basax we know that if we are given a possible life-line ` then ` ompletely determinesthe relation of simultaneity of observers living on `. (By relation of simultaneity we meana binary relation between events). This generalizes to Bax� +Ax(p ), but it does notgeneralize e.g. to Reih(Basax).(ii) In Basax(4) + Ax(Triv t)� + Ax(p ) we have the following property. Assume we aregiven four lines `; `1; `2; `3 2 L interseting at one point and mutually ?r-orthogonal.Assume exatly one of them is time-like. Then there is an observer whose oordinateaxes are exatly these four lines. The other diretion is also true: the oordinate axes ofany observer behave like `; : : : ; `3.This generalizes to Bax� +Ax(Triv t)� +Ax(p ). �
4.2.5 Getting familiar with our geometries;unions of geometries and modelsIn this setion we will analyze how the geometries GM are \put together" i.e. how one anhave a grasp on them. Roughly, we will see that GM is obtained from the world-views (nowregarded as geometries) of inertial observers by gluing them together in some way, f. Fig.91(p.211). For more on the intuition behind this (or how these ideas will be implemented) seep.208 above Prop.4.2.64.As a motivation for studying disjoint union of geometries (and generalizations of this initems 3,4,5 below) we refer the reader to Remark 4.2.66 and Figure 92 on p.212 on the on-netions with Penrose diagrams from general relativity.We will use the onept of disjoint unions of Bax� models as well as disjoint unions ofgeometries similar to our observer-independent geometries GM. In both ases we will assumethat the �eld reduts of the strutures in question oinide.1. Disjoint, generalized disjoint and photon-disjoint unions of models:Let M;N 2 ModF(Bax�). Assume BM \ BN = ;. Then the disjoint union is de�nedas follows.M :[ N :def= hBM [ BN;ObsMm [ ObsN;PhM [ PhN; IbM [ IbN;F;G;2;WM [WNi:For more detail we refer to the de�nition in the statement of Theorem 3.3.12 (p.196) ofAMN [18℄. Then M .[ N j= Bax�:Atually, M .[ N to be de�ned and to be a Bax� model, we do not need to assumeBM \ BN = ; sine the \disjointness onditions"449 in the statement of Thm.3.3.12 of449these onditions were ObsM \ BN = ;; PhM \ BN � PhN; IbM \ BN � IbN, together with the sameonditions but with M and N interhanged.



4.2.5 GETTING FAMILIAR WITH RELATIVISTIC GEOMETRY 197AMN [18℄ are suÆient. This more general notion (using the disjointness onditions) isalled generalized disjoint union and is denoted by M [N.Instead of only two models, we an form the union of any lass K of models (satisfyingsome disjointness onditions) exatly as we did in Thm.3.3.12 of AMN [18℄. In partiularlet K � ModF(Bax�). Assume(8 distint M;N 2 K) BM \ BN = ;:Then the disjoint union :S K of K is de�ned exatly as in Thm.3.3.12 of AMN [18℄, i.e.:[ K :def= D [M2KBM; : : : ;F;G;2; [M2KWME:Then :S K j= Bax�. Again (for having :S K j= Bax�) instead of omplete disjointnessof BM and BN it is suÆient to require the milder disjointness onditions (on K) in theformulation of Thm.3.3.12 in AMN [18℄. This more general kind of union is again alledgeneralized disjoint union (as it was in the ase of two models above) and is denoted bySK.We note that if SK is a generalized disjoint union then(8 distint M;N 2 K)ObsM \ ObsN = ;,while this does not neessarily hold for Ph in plae of Obs.Generalized disjoint union SK is alled photon-disjoint union iff(8 distint M;N 2 K)PhM \ PhN = ;.Note that disjoint unions form a speial ase of photon-disjoint unions, and photon-disjoint unions form a speial ase of generalized disjoint unions.2. Disjoint unions of non-body-disjoint models: Let M;N 2 ModF(Bax�) be suhthat BM \BN 6= ;.450 The disjoint union M .[ N of M and N is de�ned as follows. LetN0 2 ModF(Bax�) be an isomorphi opy of N suh that (a) and (b) below hold.(a) There is an isomorphism between N and N0 whih is the identity funtion on thesort F.(b) N0 is body-disjoint from M, i.e. BM \ BN0 = ;.Now, M .[ N :def= M .[ N0;where M .[ N0 has already been de�ned.The disjoint-union of an arbitrary lass K � ModF(Bax�) of non-body-disjoint451 modelsis de�ned analogously to the ase of two models and is denoted by :S K.We note that disjoint unions of (non-body-disjoint) models are determined only up toisomorphism (but this should be no disadvantage, moreover this an be easily avoided ifsomeone wanted to).450The ondition BM \ BN 6= ; is in priniple superuous but we did not want the present de�nition ofM .[ N overwrite the one in item 1 (approximately previous page).451K is non-body-disjoint if there are distint M;N 2 K suh that BM \ BN 6= ;.



198 4.2 BASIC CONCEPTS3. Disjoint unions of geometries:In the de�nition of disjoint unions of geometries we will use the following notions fromtopology.Topologial spaes: By a topologial spae we understand a pair X = hX;Oi with O �P(X) losed under �nite intersetions and in�nite unions, and suh that ;; X 2 O. X isthe set of points of X while O is the set of open sets of X. If Y 2 O then (X n Y ) isalled a losed set . Hene the losed sets are the omplements of the open ones.Coprodut of topologies: Assume X0 = hX0;O0i and X1 = hX1;O1i are disjoint topolog-ial spaes, i.e. X0 \X1 = ;. Let us reall from topology that the oprodut (i.e. sum)452X0 ` X1 of the topologial spaes X0 and X1 is de�ned as follows.X0 ` X1 :def= hX0 [X1;O0 ` O1i; whereO0 ` O1 :def= fU0 [ U1 : U0 2 O0; U1 2 O1 g:Assume Xi = hXi;Oii are topologial spaes, for i 2 I with �xed set I. Assume thatXi's are pairwise disjoint, i.e. that Xi \Xj = ;, for i 6= j. Then the oprodut `i2IXiof the family hXi : i 2 Ii is de�ned as follows.ai2I Xi :def= h[i2IXi;ai2I Oii; whereai2I Oi :def= f[i2I Ui : hUi : i 2 Ii 2 Pi2IOi g;where Pi2IOi is the usual Cartesian produt of the sets Oi, i 2 I. (Pi2IOi is thegeneralization of the diret produt O0 �O1). To help the intuition we note thatai2I Oi = f[i2I Ui : (8i 2 I)Ui 2 Oi g:Note that the \oprodut" `i2I Oi of Oi's has been de�ned, too.Disjoint unions of geometries: Disjoint unions of geometries in Ge(;) are de�ned similarlyto the ase of models (in item 1 above), as follows.Assume Gi = hMni;F1;Li; : : : ; gi; Tii 2 Ge(;), for i 2 I with any �xed set I and witha ommon \�eld" redut F1.453 Assume Mni \ Mnj = ;, for i 6= j (i; j 2 I). Thedisjoint union of G0;G1 is de�ned byG0 :[ G1 :def= hMn0 [Mn1;F1;L0 [ L1; : : : ; g0 [ g1; T0 ` T1i:For the general ase, the disjoint union of the family hGi : i 2 Ii is:[i2IGi :def= D[i2IMni;F1;[i2I Li; : : : ;[i2I gi;ai2I TiE:452Cf. Engelking [83℄ under the name \sum of spaes".453I.e. the \�eld" reduts of Gi and Gj oinide, for all i; j.



4.2.5 GETTING FAMILIAR WITH RELATIVISTIC GEOMETRY 1994. Geometry G?0M and the lass Ge?0(Th):For every frame model M we de�ne G?0M to be the geometry obtained from GM byreplaing the orthogonality ?r by the basi orthogonality ?0 (f. p.141 for ?0). Further,for any set Th of formulas in our frame language we de�neGe?0(Th) :def= �G : (9M 2 Mod(Th)) G �= G?0M 	 :A note to the reader: At a �rst reading, the reader may skip item 5 (\Photon-glued . . . ")below, in suh a way that later whenever \photon-glued disjoint unions" are mentionedthen the expression \photon-glued . . . " should be replaed by \disjoint unions" andAx(diswind) should be added to the assumptions. This is possible beause if we assumeAx(diswind) then photon-glued disjoint unions beome plain disjoint unions. I.e. in theremaining part of this material using photon-glued disjoint unions an be avoided at theexpense of assuming Ax(diswind).5. Photon-glued disjoint unions of geometries: In the present item we onentrateon the ?0-versions of our geometries beause of the following. The point is that in the?0-versions if two lines are orthogonal then they are in LT [ LS. This enables us tode�ne ?0 in the photon-glued disjoint unions to be the same as it was in the \ordinary"disjoint unions. (If we tried to extend this to ?r then we would fae the nontrivial task ofde�ning ?r-orthogonality between the new lines obtained by \gluing" photon-like lines.)Assume Gi = hMni;F1;Li; : : :i 2 Ge?0(;), for i 2 I with any �xed set I and with aommon \�eld" redut F1. Assume Mni \ Mnj = ;, for i 6= j (i; j 2 I). Then thedisjoint union :Si2I Gi is de�ned analogously to the ase of Ge(;) in item 3.When forming a disjoint union :Si2I Gi of geometries (Gi 2 Ge?0(;)) sometimes wemight want to glue ertain photon-like lines together into a single, new, longer photon-like line. The idea is the following. We hoose a parameter H � LPh = Si2I LPhi withjH \ LPhi j � 1 for all i 2 I. Then GlueH� :[i2I Gi�is obtained from :Si2I Gi by adding the new, \long" line SH to LPh and throwing away(all the \old" lines in the set) H from LPh, and by adjusting L; g; T to the new set ofphoton-like lines. In more detail: The new sets of photon-like lines and lines are454LPhGlue :def= (LPh nH) [ fSHgLGlue :def= LPhGlue [ LT [ LS; where454For the \non-set-theory-oriented" reader, we would like to illuminate the intuitive ontent of the expression(LPh nH)[fSHg. Assume LPh = f `; fag; fbg g and H = f fag; fbg g. Then SH = fa; bg, fSHg = f fa; bg g.Hene (LPh nH) [ fSHg = f `; fa; bg g. Intuitively, this is what we wanted, we wanted to glue together thephoton-like lines fag, fbg into a single new line fa; bg, and then to replae the old \short" photon-like linesfag, fbg by the single new line fa; bg. Summing it up: SH is the new long photon-like line obtained by gluing;and H is the set of the old short lines whih we want to throw away sine they are replaed by their longerversion SH . Important: SH is a line, while H is not. (It is a set of lines.)



200 4.2 BASIC CONCEPTSLT = Si2I LTi and LS = Si2I LSi ; and, letting Mn = Si2I Mni, the pseudo-metri andthe topology (of the new geometry) aregGlue :def= g [ f he; e1; 0i 2 Mn�Mn� F : (9` 2 LPhGlue)e; e1 2 ` g;TGlue is the topology on Mn determined by gGlueas desribed in item 13 on p.146. The rest of the ingredients of the new geometry arethe same as those of :Si2I Gi.455We may glue together more than one sequene H of photon-like lines. Namely, letH � P(LPh) be given suh that(8H 2 H) (8i 2 I)jH \ LPhi j � 1:Now we apply the above outlined gluing proedure for eah H 2 H. Formally, we obtainGlueH� :[i2IGi�whih di�ers from :Si2I Gi only in LPh, L, g and T , where the new sets of photon-likelines and lines are LPhGlue(H) :def= (LPh nSH) [ fSH : H 2 Hg ;LGlue(H) :def= LPhGlue(H) [ LT [ LS;and the pseudo-metri and the topology (of the new geometry) aregGlue(H) :def= g [ fhe; e1; 0i 2 Mn�Mn� F : (9` 2 LPhGlue(H))e; e1 2 ` g;TGlue(H) is the topology on Mn determined by gGlue(H).For a representation of this \glued" :Si2I Gi see Figure 98 (p.275) and the lower piturein Figure 91 (p.211). We all the above de�nedGlueH� �[i2IGi�a photon-glued disjoint union of the family hGi : i 2 I i of geometries.6. Disjoint and photon-glued disjoint unions of non-disjoint geometries:Disjoint unions of non-disjoint geometries are de�ned analogously to the ase of non-body-disjoint models (in item 2 above), as follows.Assume Gi = hMni;F1;Li; : : :i 2 Ge(;), for i 2 I with any �xed set I and with aommon \�eld" redut F1 and assume that Gi's are non-disjoint, i.e. Mni \Mnj 6= ; forsome distint i; j 2 I. Let G0i = hMn0i;F1;L0i; : : :i 2 Ge(;), for i 2 I be suh that (a)and (b) below hold.456455Let us notie that :Si2I Gi j= ( ` ?0 `0 ! `; `0 2 LT [ LS ) by the de�nition of ?0.456Conrete onstrution of the family of geometries hG0i : i 2 I i satisfying (a) and (b): Let i 2 I . LetMn0i := Mn � fig. Let hi : Mn ��!� Mn0i be the bijetion de�ned by hi : e 7! he; ii. Let h+i = hhi; Id �F; ehii, where ehi : Li �! fhi[`℄ : ` 2 Li g is de�ned by ehi : ` 7! hi[`℄. Now we de�ne G0i to be the isomorphiopy of Gi along h+i (i.e. it is the unique struture for whih h+i : Gi ��!� G0i is an isomorphism).



4.2.5 GETTING FAMILIAR WITH RELATIVISTIC GEOMETRY 201(a) There is an isomorphism beteen Gi and G0i whih is the identity funtion on thesort F.(b) (8 distint i; j 2 I)Mn0i \Mn0j = ;.Now, the disjoint union of the family hGi : i 2 I i is de�ned to be the disjoint unionof the family hG0i : i 2 Ii (whih in turn has already been de�ned in item 3), and isdenoted by :Si2I Gi.Assume Gi = hMni;F1;Li; : : :i 2 Ge?0(;), for i 2 I with any �xed set I andwith a ommon \�eld" redut F1 and assume that Gi's are non-disjoint. Let G0i =hMn0i;F1;L0i; : : :i 2 Ge?0(;), for i 2 I be suh that (a) and (b) above hold. By aphoton-glued disjoint union of the family hGi : i 2 I i we understand a photon-glueddisjoint union of the family hG0i : i 2 I i.We note that disjoint unions and photon-glued disjoint unions of (non-disjoint) geome-tries are determined only up to isomorphism (but this should be no disadvantage, more-over this an be easily avoided, f. footnote 456).Remark 4.2.53 We note that unions ommute with \geometrization" in the following sense.Let M;N 2 ModF(Bax�). Assume that they satisfy the disjointness onditions457 inThm.3.3.12 of AMN [18℄, i.e. that M [N is a generalized disjoint union.Then G?0(M[N) = \a photon-glued disjoint union of G?0M and G?0N ":Intuitively, a generalized disjoint union in the \observational world" orresponds to a photon-glued disjoint union in the \geometry world", f. Figure 86.Assume in addition that PhM \PhN = ;, i.e. that M[N is a photon-disjoint union. ThenG(M[N) = GM .[ GN:Intuitively, a photon-disjoint union in the \observational world" orresponds to a disjoint unionin the \geometry world", f. Figure 86. �Examples 4.2.541. Let M;N 2 ModF(Basax) with BM \ BN = ;. ThenM .[ N 2 Mod(Newbasax):Similarly for any lass K � ModF(Basax). This remains true for generalized disjointunions of Basax models.Mod(Newbasax) is the lass of all generalized disjoint unions of members ofMod(Basax). Further, it is the smallest lass whih is losed under taking generalizeddisjoint unions and ontains Mod(Basax).Mod(Newbasax + Ax(diswind)) is the lass of all photon-disjoint unions of membersof Mod(Basax). Further, it is the smallest lass whih is losed under taking photon-disjoint unions and ontains Mod(Basax).457f. footnote 449 on p.196



202 4.2 BASIC CONCEPTS
Mod(Th) Mod(Th0)
Ge?0(Th) Ge?0(Th 0)geometrization

losing up underphoton-glued disjoint unions

losing up undergeneralized disjoint unions Mod(Th) Mod(Th 0 +Ax(diswind))
Ge(Th 0 +Ax(diswind))Ge(Th)losing up underdisjoint unions

geometrization
losing up underphoton-disjoint unions

hTh ; Th 0 i 2 f hBasax; Newbasax i; hSperel; Newbasax+Ax(symm)y i;hReih(Basax); Reih(Newbasax) i; hBax� +Ax6; Bax� i gFigure 86: Generalized disjoint unions of models orrespond to photon-glued disjoint unions ofgeometries, while photon-disjoint unions of models orrespond to disjoint unions of geometries.(Further, the above diagrams ommute in the sense of Remark 4.2.53.)2. The examples in item 1 above show up in the \geometry world" in the following \shape".See Figure 86.Let G1;G2 2 Ge(Basax) with a ommon \�eld" redut. ThenG1 �[ G2 2 Ge(Newbasax):Similarly for any family hGi : i 2 I i of Basax geometries. This remains true forphoton-glued disjoint unions of Basax geometries, i.e. the photon-glued disjoint unionsof geometries from Ge?0(Basax) are in Ge?0(Newbasax).Ge?0(Newbasax) is the lass of all photon-glued disjoint unions of members ofGe?0(Basax). Further, it is the smallest lass whih is losed under taking photon-glueddisjoint unions and ontains Ge?0(Basax).Ge(Newbasax + Ax(diswind)) is the lass of all disjoint unions of members ofGe(Basax). Further, it is the smallest lass whih is losed under taking disjoint unionsand ontains Ge(Basax).(If we formed the non-disjoint union of two Basax geometries say G0;G1 then we ouldobtain a geometry G0 [G1 whih is not even a Bax� geometry.)3. Examples similar to those given in items 1 and 2 are illustrated in Figure 86.4. Let G0;G1 2 Ge(Basax). Assume they are disjoint. Then in G0 .[ G1 the parts Mn0 andMn1 are sometimes alled windows. Cf. Figure 98 (p.275) and Figure 91 (p.211). Simi-larly for photon-glued disjoint unions of Basax geometries (i.e. Ge?0(Basax)-strutures).More generally in a Newbasax geometry, say G, the maximal \Basax subgeometries"458458Reall that any Newbasax geometry G is a photon-glued disjoint union of Basax geometries say Gi's.These Gi's (more preisely the Mni's) are alled the windows of G.



4.2.5 GETTING FAMILIAR WITH RELATIVISTIC GEOMETRY 203are alled windows. (Here we use the notion of a sub-geometry in an intuitive sense only,but it ould be formalized suh that all details would math.459)In G 2 Ge(Bax�) two points e; e1 2 Mn are in the same window iff they are onneted, i.e.e � e1. If G = GM, for some M j= Bax�, then these windows are exatly the Rng(wm)'s,i.e. the subsets of Mn of the form Rng(wm) (with m 2 Obs). Cf. Remark 4.2.13 (p.160).5. Assume n > 2. Then every G 2 Ge(Newbasax+Ax(!)℄℄+Ax(""0)+Ax(diswind)) isobtainable as a disjoint union of Minkowskian geometries.460 Further, Ge(Newbasax+Ax(!)℄℄ + Ax(""0) + Ax(diswind)) is the disjoint unions losure of the lass ofMinkowskian geometries.6. Mod(Flxbasax) is not losed under taking disjoint unions, but disjoint unions ofFlxbasax models are Bax models.We did not have time to think about whether Ge(Flxbasax) is losed under takingdisjoint unions but we think it is not losed. �CONVENTION 4.2.55 Besides geometries in Ge(;) and in Ge?0(;) we will also disussreduts of these (e.g. GM, GM, et.) and also slight variants of Ge(;) e.g. ?0r or ?00r in plae of?r.We extend the above de�ned notions of disjoint unions and photon-glued disjoint unions tothese kinds of geometries the natural (and obvious) way. (In the ase of generalizing photon-glued disjoint unions we restrit attention to suh geometries where relativisti orthogonalityis ?0.) �Now, having disjoint unions et. at our hands we an state a stronger form of Theo-rem 4.2.50, not involving Ax6. Further, we will generalize Theorem 4.2.51 from Basax toNewbasax. Roughly, the just quoted theorems say that ertain reduts of our geometriesagree with the orresponding reduts of Minkowskian geometries, for ertain hoies of Th.Very roughly the new theorems will say that our relativisti geometries orresponding to manyof our theories an be obtained as disjoint (or photon-glued disjoint) unions of Minkowskiangeometries if we regard a redut only.THEOREM 4.2.56 Assume G 2 Ge(Bax�+Ax(Triv t)�+Ax(p )+Ax(diswind)). Then(i) and (ii) below hold. (Cf. Figures 84, 85.)(i) Assume n > 2. Then the (�; eq; g; T )-free redut of G is a disjoint union of the similarreduts of Minkowskian geometries (up to isomorphism).(The other diretion also holds.)(ii) Assume Ax(""0). Then the (eq; g; T )-free redut of G is a disjoint union of the similarreduts of Minkowskian geometries (up to isomorphism).(The other diretion also holds.)459One possibility is to add Ax(diswind) to Newbasax.460This follows by example 1, Remark 4.2.53 (p.201) and Thm.4.2.45 (p.190).



204 4.2 BASIC CONCEPTSProof: The theorem follows by Thm.4.2.50 (p.195), Remark 4.2.53 (p.201) and by notiingthat eah Bax� +Ax(diswind) model is a photon-disjoint union of Bax� +Ax6 models.Theorem 4.2.58 below is the \photon-glued" version of Theorem 4.2.56 above. For statingthis theorem we de�ne the ?0-versions of Minkowskian geometries.De�nition 4.2.57 Assume F is Eulidean. Then the ?0-version Mink?0(F) of theMinkowskian geometry Mink(F) is de�ned to be the geometry obtained from Mink(F) byreplaing ?� by (?0)� de�ned below.(?0)� :def= �h`; `0i 2 ?� : `; `0 2 LT� [ LS�; ` \ `0 6= ;	 : �THEOREM 4.2.58 Assume G 2 Ge?0(Bax� + Ax(Triv t)� + Ax(p )). Then (i) and (ii)below hold. (Cf. Figures 84, 85.)(i) Assume n > 2. Then the (�; eq; g; T )-free redut of G is a photon-glued disjoint unionof reduts of ?0-versions of Minkowskian geometries (up to isomorphism).(The other diretion also holds.)(ii) Assume Ax(""0). Then the (eq; g; T )-free redut of G is a photon-glued disjoint unionof reduts of ?0-versions of Minkowskian geometries (up to isomorphism).(The other diretion also holds.)Proof: The theorem follows by Thm.4.2.50 (p.195), Remark 4.2.53 (p.201) and by notiingthat eah Bax� model is a generalized disjoint union of Bax� +Ax6 models.The following two theorems are generalizations of Theorem 4.2.51 (p.195).THEOREM 4.2.59 Assume n > 2 and G 2 Ge(Newbasax + Ax(Triv t)� + Ax(p ) +Ax(diswind)). Then (i) and (ii) below hold. (Cf. Figures 84, 85.)(i) The (�; g; T )-free redut of G is a disjoint union of reduts of Minkowskian geometries(up to isomorphism).(The other diretion also holds by item 5 of Examples 4.2.54.)(ii) Assume Ax(""0). Then the (g; T )-free redut of G is a disjoint union of reduts ofMinkowskian geometries (up to isomorphism).(The other diretion also holds.)Proof: The theorem follows by Thm.4.2.51 (p.195), Remark 4.2.53 (p.201) and by notiingthat eah Newbasax +Ax(diswind) model is a photon-disjoint union of Basax models.Theorem 4.2.60 below is the \photon-glued" version of Theorem 4.2.59 above.THEOREM 4.2.60 Assume G 2 Ge?0(Newbasax + Ax(Triv t)� + Ax(p )) and n > 2.Then (i) and (ii) below hold. (Cf. Figures 84, 85.)



4.2.5 GETTING FAMILIAR WITH RELATIVISTIC GEOMETRY 205(i) The (�; g; T )-free redut of G is a photon-glued disjoint union of reduts of ?0-versionsof Minkowskian geometries (up to isomorphism).(The other diretion also holds.)(ii) Assume Ax(""0). Then the (g; T )-free redut of G is a photon-glued disjoint union ofreduts of ?0-versions of Minkowskian geometries (up to an isomorphism).(The other diretion also holds.)Proof: The theorem follows by Thm.4.2.51 (p.195), Remark 4.2.53 and by Thm.3.3.12 ofAMN [18℄ saying that eah Newbasax model is a generalized disjoint union of Basax models.Theorems 4.2.56, 4.2.58, 4.2.59, 4.2.60 above are all involved in Figures 84, 85 (pp. 192{193). Here we give an intuitive explanation for these �gures.Notation: For a lass K of models, VoK denotes the voabulary of K, f. p.220. Assume L isa sub-voabulary of VoK. Then RdL(K) denotes the lass of reduts of members of K to thevoabulary L.461Intuitive explanation for Figures 84, 85: The �gures represent reduts of geometriesagreeing with the orresponding reduts of (possibly unions of) Minkowskian geometries. Eahnode (in the �gure) is of the form RdL(Ge(Th)) for some relativity theory Th (observational)and subvoabulary L of the voabulary of our relativisti geometries GM. Hene, eah node isharaterized by two piees of data Th and the \geometri redut" (i.e. the geometri voab-ulary) L. Ax(p ) and n > 2 are assumed in the �gures. If we disregard the \RdL Ge"-parti.e. if we onsider the Th-part only then the �gure beomes a sublattie of the lattie of ourdistinguished theories disussed on pp. 451{453 of AMN [18℄, f. also Fig.223 on p.653 ofAMN [18℄ and Remark 4.5.14(III) pp. 294{295 herein. If we want to disregard Th, then weget a 6-element lattie of distinguished geometry-reduts of our relativisti geometries GM. Atthe bottom of this lattie are the hMn;L; LT ;LPh;LS;2;Bw ;?ri geometries whih are basi-ally the same what we all relativisti inidene geometries Gein(Th) in x6.7.4 (p.1174) ofAMN [18℄. More preisely Gein(Th) is de�nitionally equivalent462 with our \bottom" geom-etry, with Th as indiated in the �gure, assuming Ax(diswind), f. Thm.6.7.31 (p.1164) ofAMN [18℄. The top of the lattie represents the whole of GM's, of ourse. Besides labelling thenodes, we labelled some of the edges too in Fig.84. The labels on an edge indiate (roughly)the hanges that happen when moving along that edge, the same hange happens when movingalong parallel edges. E.g. the label unions, Ax6 indiate that, intuitively, we an move fromthe higher end of that edge to the lower one by taking (possibly photon-glued) disjoint unionsof our geometries and dropping Ax6 from our Th, loosely speaking.To understand our observer-independent geometries GM (and their onnetions with theoriginal modelsM), below we introdue \observer-dependent" geometriesGm, for eah observerm 2 ObsM. After this we will introdue restritions G � N of geometries to subsets N � Mnof their set of points.Our next de�nition may look, at �rst sight, somewhat longish, but at seond reading itwill turn out to be just the natural thing, and it will turn out to be quite useful. E.g. in461Cf. Convention 4.3.1 (p.220) for more familiarity with these notions.462Cf. Def.4.3.33 on p.255 for de�nitional equivalene.



206 4.2 BASIC CONCEPTSProp.4.2.64 we will see that GM an be obtained from the world-views of observers i.e. fromthe wm's by gluing them together (as we planned in the �rst 2 sentenes of x4.2.5). For this,�rst, the wm's have to be \geometrized". The geometrized versions of the wm's will be theGm's de�ned below.De�nition 4.2.61 Let N be a frame model and GN = hMn;F1;L; : : :i be the geometryorresponding to it. Then using the world-view funtion wm eah observer m an opy thegeometry GN to his oordinate system nF, obtaining the observer-dependent geometry Gmde�ned below, f. Figure 87. Let m 2 Obs. For every ` 2 L, throughout this de�nition, let
GN = hMn; : : :i

�t
�xm Gm = hnF; : : :i

Rng(wm)

w�1m
Figure 87: Using the world-view funtion wm eah observer m an opy the geometry GN tohis oordinate system nF. `m :def= w�1m [`℄:Now, Gm :def= hnF;F1;Lm; LTm;LPhm ;LSm;2;�m;Bwm;?m; eqm; gm; Tm i;where Lm :def= f `m : ` 2 L; `m 6= ; g ;LTm :def= � `m : ` 2 LT ; `m 6= ;	 ;LPhm :def= � `m : ` 2 LPh; `m 6= ;	 ;LSm :def= � `m : ` 2 LS; `m 6= ;	 ;2 is the membership relation between nF and Lm,



4.2.5 GETTING FAMILIAR WITH RELATIVISTIC GEOMETRY 207�m :def= f hp; qi 2 nF � nF : wm(p) � wm(q) g ;Bwm :def= � hp; q; ri 2 3(nF) : Bw(wm(p);wm(q);wm(r))	 ;?m :def= f h`m; `0mi : ` ?r `0; `m 6= ;; `0m 6= ;g ;eqm :def= � hp; q; r; si 2 4(nF) : eq(wm(p);wm(q);wm(r);wm(s))	 ;gm :def= f hp; q; �i 2 nF � nF � F : g(wm(p);wm(q)) = � g ;Tm :def= �w�1m [H℄ : H 2 T 	 :We de�ne G?0m to be the geometry obtained from Gm by replaing ?m by (?0)m de�nedbelow. (?0)m :def= f h`m; `0mi : ` ?0 `0; `m 6= ;; `0m 6= ; g ;f. p.141 for the de�nition of ?0. �De�nition 4.2.62 Let G = hMn;F1;L; : : : ; T i be an observer-independent geometry. LetN � Mn. Then the restritions G � N and G �+ N of G to N are de�ned in (i) and (ii)below, respetively. See Figure 88, f. also Figure 90.
G GG � N G �+ NN N

Figure 88: Illustration for De�nition 4.2.62.(i) G � N :def= hN; F1; L � N 463 ; LT � N; LPh � N; LS � N; 2;� � N 464; Bw � N; ?N ; eq � N; g � 2N; T � N 465i, where?N :def= f h` \N; `0 \Ni : `; `0 2 L; ` ?r `0 g:(ii) We de�ne G �+ N to be the geometry obtained from G � N by replaing L � N; LT �N; LPh � N; LS � N; ?N by LN ; LT \ LN ; LPh \ LN ; LS \ LN ; ?r � LN , respetively,where LN :def= f ` 2 L : ` \N 6= ; g.463L � N := f ` \N : ` 2 L g. This is the natural restrition of \Lines" to N � \Points". Similarly for thetopology T in plae of lines L.464We use the restrition symbol � for relations too the natural way. I.e. � � N := � \ (N �N). Similarlyfor other relations of perhaps di�erent ranks. (Sine funtions are speial relations our usage of � is ambigous.We hope ontext will help.)465T � N := fH \N : H 2 T g, f. footnote 463.



208 4.2 BASIC CONCEPTS(iii) We extend the de�nitions of the restritions G � N and G �+ N to similar geometries,e.g. G?0N the natural way. E.g. G?0N � N is de�ned the natural way. �Remark 4.2.63 Let G be an observer-independent geometry and N 2 T , i.e. N � Mn isan open set. Then G �+ N is a strong submodel of G, in symbols (G �+ N) � G. G � Nis not neessarily a submodel of G; moreover there is G and N 2 T suh that G � N is notisomorphi to any submodel of G. Suh G and N are represented in Figure 89 below, f. alsoitem 2f of Prop.4.2.64 (p.210) and footnote 471 in it. �L = f`; `1; `2; `3g?r= fh`; `1i; h`2; `3ig`1 \N = `2 \N` `1`2`3NG
Figure 89: G � N is not isomorphi to any submodel of G.Item 1 of our next proposition says that, assumingBax�, any observer-dependent geometryGm is basially the familiar piture whih we often alled the world-view of observer m; e.g.,in Gm, the set of points is nF, L onsists of Eulidean lines, LT onsists of the traes (i.e.life-lines) of observers as seen by m, LPh is the set of life-lines of photons as seen by m,two lines are ?0-orthogonal iff they are two oordinate axes of some observer as seen by m,et. For a seond, let us all these familiar strutures nF-geometries. Item 3 says that anyobserver-independent geometry GN is a disjoint union of suh familiar nF-geometries, assumingBax� +Ax(diswind). Formally GN = :[m2OGmfor some O � Obs. Ax(diswind) an be omitted if we use photon-glued disjoint unions and?0-versions of our geometries. Cf. Figure 91 (p.211).PROPOSITION 4.2.64 (On Bax�geometries)Let N j= Bax�. Consider the observer-independent geometry GN. Then 1{5 below hold.1. Let m 2 Obs. Consider the observer-dependent geometry Gm. Then (a){(h) below hold.(a) Lm � Eul. Hene, (8` 2 L)w�1m [`℄ 2 Eul [ f;g.466(b) LTm = f trm(k) : k 2 Obs; m �! k g.() LPhm = f trm(ph) : ph 2 Ph; m �! ph g.(d) LSm = f fkm[�xi℄ : k 2 Obs; m �! k; 0 < i 2 n g.(e) (?0)m = f hfkm[�xi℄; fkm[�xj℄i : k 2 Obs; m �! k; i 6= j g.466Cf. Prop.6.2.48 (p.854) in AMN [18℄.



4.2.5 GETTING FAMILIAR WITH RELATIVISTIC GEOMETRY 209(f) Assume Ax(p ). Then Bwm and Betw oinide.(g) (8 distint p; q; r 2 nF)(Bwm(p; q; r) _ Bwm(p; r; q) _ Bwm(q; p; r) ) , ( p; q; r are ollinear ):467(h) Assume Ax(""0)+Ax(p ). Let p; q 2 nF. Thenp �m q () �pt < qt ^ (9k 2 Obs) p; q 2 trm(k)�:2. Let m 2 Obs. Consider the observer-dependent geometry Gm. Then (a){(g) below hold.(a) Assume Ax6. Then Gm �= GN and G?0m �= G?0N :Atually, the world-view funtion wm indues an isomorphism between Gm and GN(and between G?0m and G?0N ) the natural way.468(b) Gm �= (GN � Rng(wm)) and G?0m �= (G?0N � Rng(wm));see Figure 90. Atually, the world-view funtion wm indues an isomorphism be-tween Gm and GN � Rng(wm) the natural way.469() (8` 2 LT [ LS) ( ` \ Rng(wm) 6= ; ) ` � Rng(wm) ).Intuitively, time-like and spae-like lines do not stik out from the window Rng(wm),see Figure 90.(d) Assume Ax(diswind). Then, intuitively, lines do not stik out from the windowRng(wm), formally:(8` 2 L) ( ` \ Rng(wm) 6= ; ) ` � Rng(wm) );f. Figure 90 (in the �gure some photon-like lines do stik out from the windowRng(wm)).Therefore (GN � Rng(wm)) = (GN �+ Rng(wm));f. Figure 88 (p.207).(e) Assume Ax(diswind). Then Gm is isomorphi to a strong submodel of GN (andRng(wm) 2 T ). In more detail:Gm �= (GN � Rng(wm)) = (GN �+ Rng(wm)) � GN;f. Remark 4.2.63.The world-view funtion wm indues an embedding of Gm into GN the naturalway.470 See Figure 90 and the the upper piture in Figure 91.467Cf. Prop.4.2.14 on p.160.468Making this preise: Let gwm : Lm �! fwm[`℄ : ` 2 Lm g be de�ned by gwm : ` 7! wm[`℄. ThenRng(gwm) = LN and hwm; Id � F; gwmi is a (three-sorted) isomorphism between Gm and GN (and betweenG?0m and G?0N ). Cf. item (II) of Def.4.2.3 (p.146) for isomorphisms between geometries.469Making this preise: Let gwm be de�ned as in footnote 468. Then hwm; Id � F; gwmi is an isomorphismbetween Gm and GN � Rng(wm).470Let gwm be de�ned as in footnote 468, p.209. ThenRng(gwm) = f ` 2 LN : ` � Rng(wm) g = f ` 2 LN : ` \Rng(wm) 6= ; g;and hwm; Id � F; gwmi is an embedding of Gm itno GN.



210 4.2 BASIC CONCEPTSGN = hMn; : : :i

�t
�xm Gm = hnF; : : :i

GN � Rng(wm)

wm
Figure 90: Gm and GN � Rng(wm) are isomorphi.(f) The assumption Ax(diswind) is needed in item (e) above. I.e. there is M 2Mod(Bax�) and k 2 ObsM suh that Gk is not isomorphi to any submodel ofGM.471(g) Assume k 2 Obs is suh that m �! k. Then the geometies Gm and Gk are iso-morphi, i.e. Gm �= Gk. Atually, the world-view transformation fmk indues anisomorphism between Gm and Gk the natural way.4723. By Thm.3.2.6 (and Ax4), �! is an equivalene relation when restrited to Obs.473 LetO � Obs be a lass of representatives for the equivalene relation �!.474 Then (a) and(b) below hold.(a) Assume Ax(diswind). Then GN is the disjoint union of the familyhGN � Rng(wm) : m 2 O i.Therefore, by item 2b, GN is the disjoint union of the familyhGm : m 2 O i, up to isomorphism, i.e.GN �= :[m2OGm;471E.g. let M be the generalized disjoint union of two NewtK models M1, M2 with PhM1 = PhM2 . Thenfor eah observer k, LPhk \ LSk 6= ;, while LPh \ LS = ;. Thus for eah k, Gk is not ismorphi to any submodelof GM.472Cf. footnote 445 on p.191.473assuming Bax� of ourse474I.e. (8m 2 Obs) jO \m=�! j = 1, where m=�! is the equivalene lass of m w.r.t. �!, as usual.



4.2.5 GETTING FAMILIAR WITH RELATIVISTIC GEOMETRY 211
Assume Ax(diswind) andO = fm; k; h; bg. ThenGN �= (Gm .[ Gk .[ Gh .[ Gb): GN

Assume O = fm; k; h; bg. ThenG?0N is a photon-glued disjoint union of G?0m ;G?0k ;G?0h ;G?0b , up to isomorphism:
Gm

Gk Gh Gb

G?0m
G?0k

G?0bG?0h

G?0N

wk wm wh w b

wk wm wh w b

b

m

k h

b

m

k h

Figure 91: Notie that a \photon-line" splits up to two in the lower piture.
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Figure 92: The geometry of a rotating blak hole (general relativity) represented by a Penrosediagram.



4.2.5 GETTING FAMILIAR WITH RELATIVISTIC GEOMETRY 213see Figure 91.(b) G?0N is a photon-glued disjoint union of the familyhG?0N � Rng(wm) : m 2 O i.Therefore, by item 2b, G?0N is a photon-glued disjoint union of the family hG?0m :m 2 O i up to isomorphism. See Figure 91.4. (a){(e) below hold.(a) Assume Ax(diswind). Then two distint lines meet in at most one point; formally:(8 distint `; `0 2 L) j` \ `0j � 1.(b) Assume we are given two distint lines suh that one of them is time-like or spae-like. Then the two lines meet in at most one point. Formally:(8 distint `; `0 2 L) (` 2 LT [ LS ) j` \ `0j � 1):() LT \ LPh = ;.(d) Assume m(d) <1. Then LS \ LPh = ;.(e) Assume Ax(p ) + (m(d) <1) and (n > 2 or Ax(""0)). Then i, ii below hold.i. LT ;LPh;LS are pairwise disjoint.ii. The irreexive parts of relations �T ;�Ph;�S are pairwise disjoint.5. Assume Ax(diswind). Let m 2 Obs and `; `0 2 L be suh that w�1m [`℄ 6= ; and w�1m [`0℄ 6=;. Then w�1m [`℄;w�1m [`0℄ 2 Eul (by item 1a), and (a), (b) below hold.(a) ` kG `0 () w�1m [`℄ k w�1m [`0℄.(b) Assume `; `0 are distint and ` \ `0 6= ;. ThenPlane(`; `0) = Plane0(`; `0) = wm[Plane(w�1m [`℄;w�1m [`0℄)℄:On the proof: The proof is left to the reader, but we note the following. Items 1b, 1 holdfor arbitrary frame model, i.e. the assumption Bax� is not needed in these items. The proofof the proposition is based on the following. Assume Bax�. Let m; k 2 Obs. Then (i)-(vii)below hold.(i) wm is an injetion.(ii) Assume m �! k. Then fmk is a bijetive ollineation by Thm.3.2.6 (p.110).(iii) (Rng(wm) \ Rng(wk) = ; or Rng(wm) = Rng(wk)) and(m �! k , Rng(wm) = Rng(wk)). This holds by Thm.3.2.6 and Ax4.(iv) Assume Ax(p ) and m �! k. Then fmk is betweenness preserving by Prop.4.5.4(i)(p.289).(v) There are no photons at rest by AxE01.(vi) Assume Ax(diswind) and Rng(wm) \ Rng(wk) = ;. Assume ph is a photon suh that(9e 2 Rng(wm)) ph 2 e. Then (8e 2 Rng(wk)) ph 62 e.(vii) Assume Ax(p ) + (m(d) < 1) and (n > 2 or Ax(""0)). Then there are no FTLobservers by items 3.2.13 (p.118) and 4.2.31 (p.177) herein.



214 4.2 BASIC CONCEPTSIn onnetion with the following remark reall that Pax is weaker than Bax�, f. x3 hereinor p.482 in x4.3 of AMN [18℄.Remark 4.2.65 The following items remain true if the assumption Bax� is replaed by Paxin them: Remark 4.2.13 (p.160), Prop.4.2.14 (p.160), Prop.4.2.16 (p.161), Prop.4.2.35 (p.179),Thm.4.2.40(ii) (p.182), and almost the whole of Prop.4.2.64, i.e. Prop.4.2.64 with the exeptionof items 1h, 4, 4d, 4e. �Remark 4.2.66 (On Figure 92) Figure 91 shows that our geometries GM an be viewedas being glued together from \windows" whih in turn an be regarded as world-views ofindividual observers. There is a (deliberate) analogy here with the so-alled Penrose diagramsfrom general relativity. (We will not explain Penrose diagrams here but ertain properties are\visible" without explanation.) Figure 92 on p.212 represents a Penrose diagram (of a generalrelativisti spae-time geometry) from Hawking-Ellis [116℄. It is visible in Figure 92 that thisgeometry, too, onsists of regions like our windows in Figure 91. (Cf. e.g. regions I, II. III onthe diagram.) Roughly, eah of these regions an be regarded as the window of some observer(just as in our Fig.91). Of ourse, besides the similarities there are some dissimilarities whihwe do not disuss here. We note that the fat that our geometries are glued together fromwindows is intended to make transitions towards general relativity easier. In passing we notethat Figure 92 is the Penrose diagram of a rotating blak hole whih ontains losed time-likegeodesis (\time travel"). Therefore it is related to Figure 134 on p.365 whih also ontainslosed time-like geodesis (among other exoti and exiting features). Figure 92 is in \Penrose-diagram form" while Figure 134 is in a more usual spae-time diagram form. �The next remark illustrates some properties of our geometries. Intuitively, it says thatquite many of our exible theories of relativity have an interesting geometrial property.Remark 4.2.67 Let Th = Bax�+Ax(Triv t)�+Ax(k)�+Ax(p )+Ax6. This Th is strongenough to imply that \simultaneities" i.e. spae-like hyper-planes475 are Eulidean geometries.In more detail, assume that G 2 Ge(Th) and that H is a spae-like hyper-plane of G. Then the\subgeometry" G � H = hH;F1; : : : ; eq � H; : : :i 476 of G (obtained by restriting the points ofG to H the natural way) is Eulidean, if n > 2. This is proved as Thm.'s 6.6.114{6.6.115 ofAMN [18, pp.1130-1131℄.477 If we drop Ax6, then, roughly, we get disjoint unions of Eulidean475For the de�nition of spae-like hyper-planes we refer to p.1130, Def.6.6.112 in AMN [18℄.476where L;Bw; : : : ; T are restrited to H the natural way477In passing we note that general relativisti geometries usually fail to have this property (i.e. \pure" spae isalready urved). However, the simpli�ed blak hole geometry in Andr�eka et al. [26℄ enjoys this property at leastfor some (kinds of) spae-like hyper-planes (more preisely spae-like \geodesi hyper-surfaes"). Besides beingEulidean, these spae-like hyper-surfaes are disjoint from eah other, and their union overs the whole ofspae-time. The same applies to the simpli�ed blak hole geometry in Rindler [222℄ on p.124 given by equation(7.28) desribing the metri of the manifold in question. (The two simpli�ed geometries, in [26℄ and in [222℄,are obtained via di�erent trains of thought.) As a uriosity we note that one of the main features of the modelonstruted in G�odel's osmologial papers (and re�ned in Ozsv�ath-Sh�uking [209℄ for a �nite universe) isthat the whole of spae-time of that model annot be obtained as a disjoint union of spae-like geodesi hyper-surfaes. Suh a disjoint union of spae-like geodesi hyper-surfaes ould be regarded as a kind of \absolute"(even if arti�ial) temporal struture for the whole universe. We note that universes with rotating blak holeshave the same \G�odelian" property. (When we write \universe" e.g. in onnetion with the works of G�odel,Ozsv�ath et. we mean a mathematial struture whih is in many respets similar to our G's but in whih



4.2.6 REDUCTS OF RELATIVISTIC GEOMETRIES 215geometries. We did not hek what happens if Bax� is replaed by other weak theories likeBax� or Reih(Bax) or Bax. But we tend to onjeture that the answer will be negativein the ase of Lo(Basax) substituted to the plae of Bax�. Related kinds of results are initems 6.6.111-6.6.118 (pp.1129-1132) in AMN [18℄.The mahinery for studying GM developed so far is strong enough for developing a purelyalgebrai (or model theoreti) haraterization of our symmetry axioms (e.g. the ones in x2.8,or Ax(!)0 on p.180). We present this haraterization in AMN [18, x6.2.8℄.
4.2.6 Some reduts of our relativisti geometries;onnetions with the literatureThe reader might feel that the geometri objet GM de�ned in De�nition 4.2.3 (pp. 137{146)seems to have too many omponents. However, we will onentrate on disussing reduts ofGM instead of the full struture.A very niely streamlined redut is alled the time-like-metri redut whih will be in-trodued and disussed in x4.6.1 (p.346). About that redut we note that it is not onlymathematially elegant, but also is most useful e.g. an be generalized smoothly suh that itbeomes a suitable framework for a possible formalization of the basis of general relativity,f. Busemann [55℄. All the same, below we start our disussion with a more \lassial", more\Eulidean" redut (of the inidene geometry kind).478(1) Perhaps the most well known redut of GM isGTM := hMn;L; 2;Bw ;?; eqiwhih we all the Goldblatt-Tarski redut of GM. This is a geometry of the formhPoints;Lines; 2;Bw ;?; eqi:Tarski's axiomati approah to Eulidean geometries over ordered �elds F, basially, studiesstrutures of this form: hPoints;Lines; 2;Bw ;?; eqi:More preisely, there, the �rst part hPoints;Lines; 2i is oded up into a one sorted struture479hPoints; ollinear(x; y; z)i. But as it will be disussed in x4.4 (p.274) below, this auses nogeodesis disussed in x4.7 way below play a dominant role.) Cf. footnote 270 on p.130 for referenes et. SeeFigure 134 on p.365 for an intuitive piture of G�odel's (osmologial) model. What we alled above a disjointunion of spae-like hyper-surfaes is alled a foliation of spae-time (or universe) in e.g. Marsden-Tipler [184℄.Cf. also p.627 lines 18-17 bottom up in Barrow-Tipler [42℄ with an introdution by J. A. Wheeler. (We notethat, intuitively, this \G�odelian property" prevents the implementation of global Laplaian determinism, f.e.g. Earman [77, p.44℄. Very roughly, the above outlined properties an be summarized by saying that themanifold in question does not ontain a so-alled Cauhy-surfae � in the sense of e.g. Hawking-Ellis [116,p.205℄. Suh a � is a spae-like hyper-surfae with ertain onditions.)478Our exuse for starting with this redut is that, strething it a little bit, one ould say that it was knownalready by the anient Greeks.479To be preise, Tarski uses hPoints; Bwi to \ode" hPoints; ollineari. Hene under very mild as-sumptions the geometries of form hPoints; Bwi are de�nitionally equivalent to the geometries of formhPoints; ollinear;Bwi. The latter version is used extensively in the literature.



216 4.2 BASIC CONCEPTSessential di�erene. Atually, Tarski omitted ? beause it is de�nable from Bw and eq, andGoldblatt in [102℄ did not inlude eq probably beause it is de�nable from the rest of GTM inthe ases of Minkowskian and Eulidean geometries. From now on we will ignore the fat thatTarski and Goldblatt omitted ? and eq, respetively.480As we will reall, Hilbert, Tarski and their followers proved that for the Eulidean asethe language of hPoints;Lines; 2;Bw ;?; eqi is expressive enough in the sense that all familiaronepts of lassial geometry, e.g. irles an be de�ned in the �rst-order language of thesestrutures hPoints; : : : ; eqi.481If we assume some onditions on M, then instead of the h�; g;Fi-free redut of GM it isenough to keep GTM beause of the following.THEOREM 4.2.68 The inidene geometry expanded with ?, GM = hMn;L; 2;?i is ex-pressive enough to reover most of the g-free part of GM, under Bax� + auxiliary axioms.More onretely, LT ;LPh;LS;Bw are de�nable in �rst-order logi over GM, assuming n > 2and M j= (Bax� +Ax(Triv t)� +Ax(p ) +Ax(diswind)).Idea of proof: Let ` 2 L. Then ` 2 LPh iff ` ? `. Further ` 2 LT iff(8 2-dimensional plane482 P )[` � P there is a photon line in P interseting ` in a single point℄.Of ourse, one has to prove that these de�nitions work. The details are available from theauthor. De�nability of Bw follows by Thm.6.7.1 (p.1137) of AMN [18℄.COROLLARY 4.2.69 The �; g-free redut of GM is �rst-order logi de�nable483 over theGoldblatt-Tarski redut GTM = hMn;L; 2;?; eqi, under the onditions of Thm.s 4.2.37, 4.2.68above.Proof. The topology part follows from the fat that T 0 is de�ned from Bw on p.175.We note that eq is not de�nable from GM under the onditions of Thm.4.2.68 (f. AMN [18,p.1147℄). However, if we are willing to assume Newbasax, then the situation improves asfollows.THEOREM 4.2.70 The h�; gi-free redut of GM is �rst-order de�nable over the \slim"geometry hMn;?i, hene also over GM, assuming n > 2 and M j= Newbasax+Ax(Triv t)�+Ax(p ) +Ax(diswind).480For some of our hoies of M, eq is not de�nable from the rest of GTM and ? is not de�nable from therest of GTM either. Cf. x4.6.481A di�erene between Hilbert's and Tarski's approah to axiomatizing geometry is that Tarski insisted onusing purely �rst-order logi, and to onsider all the models (in the model theoreti sense) of his �rst-orderaxioms. (Hilbert used a seond-order axiom besides �rst-order ones.) The approah to studying geometriesover arbitrary Eulidean �elds was started well before Hilbert's and Tarski's work. Referring to so many peoplewould render our present disussion a little umbersome. Therefore, instead of writing \Hilbert's, Tarski's, theirpreursor's and their follower's work" we will simply write Tarski's work or something similar. This is only forsimpliity and by this we do not want to belittle the importane of Hilbert's, their preursor's and their follower'swork. An inomplete list of referenes inludes e.g. [62, 102, 122, 125, 127, 225, 232, 245, 247, 248, 252, 255℄. Werefer to Appendix (\Why �rst-order logi?") of AMN [18℄ for more information, as well as for an explanationof why it is more useful to axiomatize something in �rst-order logi than in seond-order logi.482The notion of a 2-dimensional plane is de�ned as follows. P is a 2-dimensional plane iff there are distinta; b;  2 Mn suh that they are pairwise onneted (i.e. �-related), :oll(a; b; ), and P = Plane(fa; b; g).483in the sense elaborated in x4.3 below



4.2.6 REDUCTS OF RELATIVISTIC GEOMETRIES 217Proof. The proof follows from AMN [18, items 6.7.31,6.7.41℄.By items 4.2.68{4.2.70 above, studying GM an be redued to studying the sleek geometryGM if we are willing to ignore�; g and assume Bax�+\some extra". Atually, GM is expressiveenough to support our (Go;Mo)-duality theory, under Newbasax + auxiliaries, or if we arewilling to assume only Bax� + auxiliaries, then hGM; eqi an support our duality theory. So,muh what we do in this hapter an be done by using only GTM in plae of GM, if we arewilling to assume Bax�+auxiliaries. This is part of the ful�llment of our promise made abovethe de�nition of GM (�rst few lines of x4.2.1, p.136). The rest of the promise will ome inx4.6.1 (p.346). Cf. also Theorem 6.7.42 of AMN [18℄ (as a ontrast).We will disuss the remaining interde�nability onnetions between the basi relationsLT ;LPh; : : : ;Bw ;?; eq; g of our language for geometries in the setion \On the hoie of ourgeometrial voabulary (or language)" (pp. 342{349) and muh more fully in AMN [18, x4.6,pp.342{349℄.In passing we note that there is a very natural motivation for Tarski's hoie of the prim-itives of his geometries.484 Let us pretend for a seond that Tarski's geometries are of theform hPoints; ollinear; eqi.485 This hoie of primitives mathes niely the traditional \rulerand ompass" oneption of Eulidean geometry (f. e.g. L�anzos [151, p.48℄, namely, ollinearorresponds to ruler (lines) while eq orresponds to ompass (irles).486 Let Col abbreviateollinear, f. p.277.By the above, it is natural to onsider the hPoints;Col; eqi reduts of our geometries as adistinguished level of abstration. Sine in our relativisti geometries Bw and ? are not aseasily de�nable in terms of Col and eq as in the Eulidean ase (f. AMN [18, x4.6℄), we willoften onsider the hPoints;Col;Bw;?; eqi redut as a natural level of abstration. We willsee in our de�nability setion (x4.3) that this level of abstration is \equivalent" to the levelrepresented in the Goldblatt-Tarski reduts hMn;L;2;Bw ;?; eqi of our geometries disussedabove.Further onnetions with the literature are disussed in xx4.6.1, 4.4, 4.5.2, and in AMN [18,x6.5 (\... onnetions with Tarski's ...") (p.991), x6.2.9 (p.923), x6.7.3 (p.1169℄), to mentiononly a few suh plaes.

484The same argument motivates our distinguishing the Goldblatt-Tarski redut of our relativisti geometries.485Tarski uses Bw in plae of ollinear, but we will see later (f. AMN [18, x6.7.1℄) that in the presene ofeq, Bw and ollinear are interde�nable, hene for the sake of the argument, here we may assume that theprimitives are ollinear and eq.486Instead of \ruler and ompass based oneption" we ould say \points, lines and irles based oneption".



218 4.3 DEFINABILITY IN MANY-SORTED LOGIC4.3 De�nability in many-sorted logi, de�ning new sorts487
On historial bakground:The theory of de�nability as understood in the present work is a branh of mathematiallogi (and its model theory) whih goes bak to Tarski's pioneering work [250℄. It goes bak evenfurther, to Padoa (1900), Reihenbah 1920-23 [218℄, and Tarski 1926. Beginning with 1926,1931, 1934 [250℄, Tarski did muh to help the theory of de�nability to beome a fully developedbranh of mathematial logi whih is worth studying in its own right. Of the many worksillustrating Tarski's onern for the theory of de�nability we mention only Henkin-Tarski [123℄,[120, Part I℄, Tarski-Givant [254℄, Tarski-Mostowski-Robinson [256℄ and Tarski [250, 251℄, f.also Tarski [249℄ and [253, Volume 1, pp. 517-548℄ (whih �rst appeared in 1931 and whihalready addresses the theory of de�nability).In passing we note that the reation of the theory of ylindri algebras an be viewed asa by-produt of Tarski's interest in developing and publiizing the theory of de�nitions (aylindri algebra over a model an be viewed as the olletion of all relations de�nable in thatmodel).Below, we try to summarize the theory of de�nability (allowing de�nitions of new sorts) in astyle tailored to the needs of the present work and in a spirit onsistent with Tarski's originalideas and views on the subjet. Here the emphasis will be on de�ning new sorts (whih isusually not addressed in lassial logi books suh as e.g. Chang-Keisler [60℄).The subjet matter of the present sub-setion is relevant to the de�nability issues disussedin the literature on relativity f. e.g. Friedman [91, pp. 62{63, 65, 378 (index)℄. In Reihenbah'sbook \Axiomatization of the Theory of Relativity" [218℄ on the �rst page of the Introdution(p.3) he already explains the di�erene between expliit and impliit de�nitions and emphasizestheir importane. (He also traes this distintion (underlying de�nability theory) to Hilbert'sworks.) In passing we note that on p.5, Reihenbah [218℄ also explains in onsiderable detailwhy it is desirable to start out with observational onepts when building up our theory (likewe do in Chapters 1,2) and later de�ne theoretial onepts over observational ones usingde�nability theory (as we do in the present hapter). For the time being we do not disussonnetions between de�nability theory and de�nability issues in relativity theory expliitly,but we plan to do so in a later work.488For the physial importane of de�nability f. the relevant parts of the introdution of thishapter. Further, we note the following. If in our language we allow using ertain onepts andif some other onept is de�nable from these, this other onept is available in our languageeven if we do not inlude it (expliitly). So if we allow only suh onepts whih are de�nablefrom observational ones, the e�et will be the same as if we allowed only observational onepts.I.e. the physial priniple of Oam's razor has been respeted.� � �487Aknowledgement: We would like to express our thanks to Wilfrid Hodges for a areful reading of an earlierversion of this setion, and for his helpful remarks.488But we note that Reihenbah [218℄ makes it lear that he onsiders de�nability theory very important forrelativity, and he also explains rather onviningly why he does so. This is also lear from the relativity worksFriedman [91℄, or Gr�unbaum [109℄,[110℄, to mention only a few. Cf. also Stein [238℄.



4.3 DEFINABILITY IN MANY-SORTED LOGIC 219Let M = hU0; : : : ; Uj; R1; : : : ; Rli be a many-sorted model with universes or sortsU0; : : : ; Uj, and relations R1; : : : ; Rl (j; l 2 !).489 Sine funtions are speial relations wedo not indiate them expliitly in the present disussion.490 We use the semiolon \;" toseparate the sorts (or universes) from the relations of M.When disussing many-sorted models, we always assume that they have �nitely many sortsonly.491 The \big universe" Uv(M) of the model M is the union of its universes (or sorts).Formally Uv :def= Uv(M) :def= [ fUi : Ui is a universe of M g :492In passing we note that although the sorts U0; : : : ; Uj of M need not be disjoint, the followingholds. To every many-sorted model M there is an isomorphi opy M0 of M suh that thesorts U 00; : : : ; U 0j of M0 are mutually disjoint (i.e. U 00 \U 01 = ; et.). Therefore we are permittedto pretend that the sorts (i.e. universes) of M are disjoint from eah other whenever we wouldneed this.By a redut of a many-sorted model M we understand a model M� obtained from M byomitting some of the sorts and/or some of the relations of M. I.e. ifM = hU0; : : : ; Uj; R1; : : : ; Rlithen the redut M� may be of the formhU0; : : : ; Uj�1; R1; : : : ; Rl�1i(assuming R1; : : : ; Rl�1 do not involve the sort Uj).A model M+ is alled an expansion of M iff M is a redut of M+. I.e. an expansionM+ is obtained by adding new sorts and/or new relations to M. We will use the followingabbreviation for denoting expansions:M+ = hM; Unew ; �Rnewiwhere Unew is the new sort and �Rnew = hRnew1 ; : : : ; Rnewr i is the sequene of new relations. Ofourse there may be more new sorts too, then we writeM+ = hM; Unew1 ; : : : ; Unew% ; �Rnewi:489The assumption that l is �nite is irrelevant here in the sense that we will never make use of it (exeptwhen we state this expliitly). What we write in this setion makes perfet sense if the reader replaes l by anarbitrary ordinal. As a ontrast, we do use the assumption that j 2 !.490All the same, we will not hesitate to use funtions beause it is well known how to eliminate funtionsymbols in �rst-order logi (without hanging the meanings of our formulas). Cf. Bell-Mahover [46, x2.10\elimination of funtion symbols"℄.491In some minor items there may be exeptions from this rule but then this will be learly indiated.492Although, in general, Uv is not a universe of M, we an pretend that it is a universe beause there areonly �nitely many sorts. E.g. if we want to simulate the formula (9x 2 Uv) (x) then we write [ (9x 2U0) (x) _ (9x 2 U1) (x) _ : : : _ (9x 2 Uj) (x) ℄. Then although the �rst formula (9x 2 Uv) (x) doesnot belong to the language ofM, the seond formula \[ (9x 2 U0) : : :℄" does belong to this language (assuming(9x 2 Ui) (x) already belongs to the language) and the meaning of the seond formula is the same as theintuitive meaning of the �rst one. If (9x 2 Ui) (x) did still not belong to our many-sorted language then thereis some extra routine work to do in translating this formula into our many-sorted language. This translationis explained in detail in the logi books whih redue many-sorted logi to one-sorted logi (f. [45, 82, 194℄).These books were quoted in x2 where we �rst enountered many-sorted logi. We also note that the quotedtranslation is straightforward. For more on why and how we an pretend that Uv(M) is a universe of M werefer to the just quoted logi books.



220 4.3 DEFINABILITY IN MANY-SORTED LOGICHowever, we will onentrate on the ase % = 1 (for didatial reasons). Informally the generalpattern is:\New model" = h\Old model"; \New sorts"; \New relations/funtions"i:We will ask ourselves when M+ will be (�rst-order logi) de�nable over493 M. By de�nablewe will always (throughout this work) mean �rst-order logi de�nable. If hM; Unew ; �Rnewi isde�nable over M then we will say that the new sort Unew together with �Rnew are de�nable inM. When de�ning a new sort Unew (in an \old" model M) we need the new relations �Rnewtoo beause it is �Rnew whih will speify the onnetions between the new sort Unew and theold sorts of M.Although we will start out with disussing de�nability over a single model M, the reallyimportant part will be when we generalize this to de�nability (of an expanded lass K+) overa lass K of models (whih is �rst-order axiomatizable).We will disuss two kinds of de�nability in many-sorted logi: impliit de�nability in x4.3.1and expliit de�nability in x4.3.2.494Throughout model theory there is a distintion between symbols like Obs and objets likeObsM denoted by these symbols in a model M. This distintion between symbols and objetsthey denote is even more important in the theory of de�nitions than in other parts of logi.Therefore, in the next two items we larify notions and notation onneted to this distintion.CONVENTION 4.3.1 By the voabulary of a model M we understand the system of sort-symbols, relation symbols and funtion symbols interpreted by M. Sine funtion symbols arespeial relation symbols, we will restrit our attention to sort symbols and relation symbols.Assume e.g. that M is of the formM = hUM0 ; : : : ; UMj ;RM1 ; : : : ; RMl i ;and assume that Ui is the sort symbol \denoting" UMi and Ri is the relation symbol \denoting"RMi . Then the voabulary of M isVo(M) def= hfU0; : : : ; Ujg; fR1; : : : ; Rlgi:Throughout we assume that a relation symbol R0 ontains the extra information whih weall the rank of R0. This an be implemented by postulating that R0 is an ordered pairR0 = hR00; R01i where R00 is the symbol we write on paper while R01 is the rank of R0. E.g. in thease of the usual model N = h!;�;+i the rank of \�" is 2 while that of \+" is 3. If there ismore than one sort, then the rank of a relation is a sequene of sort symbols. So, a voabularyis an ordered pair Vo = h\Sort symbols"; \Relation symbols"iwhere \Sort symbols" and \Relation symbols" are two sets as disussed above subjet to theondition that the sorts ourring in the ranks of the relation symbols all our in the set ofsort symbols. Now, a model M of voabulary Vo an be regarded as a pair M = hM0;M1iof funtions suh that M0 : \Sort symbols" �! \Universes of M"493\De�nable over" is the same as \de�nable in".494In passing, we note that in the speial ase of the most traditional one-sorted logi when only relations arede�ned (i.e. de�ning new sorts is not onsidered) the distintion between impliit and expliit de�nability iswell investigated and is well understood f. e.g. Chang-Keisler [60, p.90℄ or Hodges [130, pp.301-302℄.



4.3 DEFINABILITY IN MANY-SORTED LOGIC 221and M1 : \Relation symbols" �! \Relations of M";with the restrition that M1 is \rank-preserving" in a natural sense.E.g. if M = hUM0 ; : : : ; UMj ;RM1 ; : : : ; RMl i, thenM0 : fUi : i � jg �! fUMi : i � jgM1 : fRi : 0 < i � lg �! fRMi : 0 < i � lg:I.e. with eah sort symbol in Vo(M), M assoiates a universe (i.e. a set) and with eah relationsymbol R0 in Vo(M), M assoiates a relation (of rank R01 as indiated way above).We all two models M and N similar if they have the same voabulary, i.e. if Vo(M) =Vo(N).Let Vo 0;Vo be two voabularies. We say that Vo 0 is a sub-voabulary of Vo, in symbolsVo 0 � Vo, if the natural onditions Vo 00 � Vo0 and Vo 01 � Vo1 hold. Assume Vo 0is a sub-voabulary of Vo(M) for a model M. Then the redut M � Vo 0 of M to thesub-voabulary Vo 0 is de�ned asM � Vo 0 def= hM0 � Vo00; M1 � Vo01i:Let M = hU0; : : : ; Uj;R1; : : : ; Rli and M0 = hU 00; : : : ; U 0j;R01; : : : ; R0li be similar models.By a homomorphism h between M and M0, in symbols h : M �! M0, we mean a systemhhi : 0 � i � ji of mappings hi : Ui �! U 0i suh that for all 1 � k � l, if Rk is of sorthUi1 ; : : : ; Uini, then we have(*) R(u1; : : : ; un) ) R0(h1(u1); : : : ; hn(un))for all u1; : : : ; un 2 Uv(M). We all h one-to-one or injetive (onto, or surjetive) if all thehi's are one-to-one (onto), and the inverse of h is hh�1i : 0 � i � ji. As usual, an isomorphismbetween similar many-sorted strutures is a one-to-one and onto homomorphism whose inverseis also a homomorphism. Reall that funtions fi and onstants i are regarded as speialrelations, hene (*) above also applies to them.495 �Remark 4.3.2 (On the intuitive ontent of Convention 4.3.1 above) On a very intu-itive informal level, one an think of a model M as a funtion assoiating objets with symbols.E.g. M assoiates UMi with the symbol Ui and RMi to Ri. It is then a matter of notationalonvention that we write UMi for the value M(Ui) and RMi for M(Ri). Then the domain ofthe funtion M is the olletion of those symbols whih M an interpret. Hene, the domainof M is the same thing as its voabulary.If the best way (from the intuitive point of view) of thinking about a model is regarding itas a funtion, then why did we formalize the notion of a model as a pair of funtions (insteadof a single funtion)? The answer is that formally it is easier to handle models as pairs offuntions, but intuitively we think of models as funtions, we think of voabularies as domainsof these funtions and we onsider two models similar if they have the same domain when theyare regarded as funtions.496 �495And it requires e.g. h2(f(u)) = f 0(h1(u)) if f is a unary funtion of sort hU1; U2i and hi() = 0 if  is aonstant of sort Ui.496We do not laim that it is always the ase that the best way of thinking about models is regarding themas funtions. What we laim is that in many situations, e.g. in de�nability theory, this is a rather good way.In other situations it might be better to visualize a model as a set of objets equipped with some relations andfuntions.



222 4.3 DEFINABILITY IN MANY-SORTED LOGICCONVENTION 4.3.3 Throughout, by a lass K of models we understand a lass ofsimilar models, i.e. we always assume (8M;N 2 K) Vo(M) = Vo(N). For any lass Kof similar models, Vo(K) = VoK denotes the voabulary of K, that is, the voabulary of anarbitrary element of K.A redut K� of K is obtained from K by omitting a part of the voabulary of K, i.e. K� isa redut of K iff Vo(K�) � Vo(K) andK� = �M � Vo(K�) : M 2 K	 :Expansion is the opposite of redut. K+ is an expansion of the lass K iff K is a redut ofK+, i.e. K+ is an expansion of K iff Vo(K+) � Vo(K) andK = �M � Vo(K) : M 2 K+ 	 :Note that forming expansions or reduts of a lass K is somehow uniform over the membersof K. E.g. we forget the same symbols (relation symbols or sort symbols) from all modelsM 2 K, when taking a redut of K.If Vo is a voabulary with Vo � Vo(K), then we use the following abbreviation:K � Vo def= fM � Vo : M 2 Kg:Examples: FM� = fFM : M 2 FM g is a redut of our lass FM of frame models. LetL = fF : F is a �eld g. Then f hF; +i : hF; +; �; 0; 1i 2 L g is a redut of L.Intuitively, we think of Vo(K) as a set of symbols where eah symbol ontains informationabout its nature, i.e. about whether it is a sort symbol or a relation symbol of a ertain rank.Therefore, we will write Vo \ Vo 0 for hVo0 \ Vo00;Vo1 \ Vo 01i, similarly for Vo [ Vo 0 ,for Vo � Vo 0 et. �
Before getting started, we emphasize that in order to de�ne something over a model M orover a lass K of models, �rst of all we need new symbols Rnewi , Unewi (with i in some indexset) not ourring in the language of M or of K. (The new symbols may be relation symbolslike Rnewi or sort symbols Unewi or both.) What we will de�ne then (using de�nability theory)will be the meanings of the new symbols in M+ or K+. Most of the time we will not talkabout the new symbols like Rnewi beause we will identify them with the new relations like(Rnewi )M+ whih they denote in the expansion M+ of the model M. Our reason for identifyingthe \symbol" with the \objet" it denotes is to simplify the disussion. However, oasionallyit will be useful to remember that an expansion M+ = hM; Ri of a model M involves two newthings not available in M, namely: a relation symbol and a relation denoted by this symbol(in M+).



4.3.1 IMPLICIT DEFINABILITY IN MANY-SORTED LOGIC 2234.3.1 Impliit de�nability in many-sorted (�rst-order) logiLet M be a many-sorted model. Assume M+ = hM; Unew ; �Rnewi is an expansion of M. Wesay that M+ is de�nable impliitly up to isomorphism over M ifffor any model hM; U 0; �R0i j= Th(M+)(expanding M) there is an isomorphismh : M+ ��!� hM; U 0; �R0isuh that h is the identity funtion on the sorts of M (i.e. for eah sort Uiof M we have h � Ui = Id � Ui).(?)
M+ is said to be de�nable impliitly without taking reduts over M iff in addition to theabove the isomorphism h mentioned above is unique.We say that Unew ; �Rnew are de�nable impliitly over M iff hM; Unew ; �Rnewi is de�nableimpliitly without taking reduts over M. Informally we might say in suh situations thatthe new sort Unew is de�nable impliitly in M (but then �Rnew should be understood from theontext, otherwise the de�nability laim is sort of under-spei�ed).In the above notion of de�nability, the set of formulas de�ning Unew ; �Rnew impliitly overM is Th(M+). Hene, Th(M+) is alled an impliit de�nition of Unew , �Rnew over M if (?) aboveholds and the isomorphism h is unique. Further, for any set � of formulas in the languageof M+, � is alled an impliit de�nition of Unew ; �Rnew over M iff (?) above holds with � inplae of Th(M+) in suh a way that h is unique.497Remark 4.3.4 The reader might feel that the above notion of (impliit) de�nability withouttaking reduts (of M+) is not strong enough and he might want to replae h by the identityfuntion (requiring Unew = U 0, �Rnew = �R0). However, we laim that the above notion is \bestpossible" beause (i) it is reasonable to assume that the �rst-order de�nition of M+ (over M) isinluded in Th(M+) and (ii) any isomorphi opy M0 = hM; U 0; �R0i of M+ will automatiallyvalidate Th(M+) hene, in �rst-order logi we annot de�ne the new sort Unew ; �Rnew morelosely than up to (a unique) isomorphism.498 �M+ = hM; Unew ; �Rnewi is said to be de�nable impliitly with parameters over M iff thereare s 2 ! and �p 2 sUv(M) suh that the expansion hM+; �pi is de�nable impliitly withouttaking reduts over the expansion hM; �pi.499� � �497The set � of formulas whih we all an impliit de�nition is alled a \rigidly relatively ategorial" theoryin Hodges [130, p.645℄. If � is an impliit de�nition up to isomorphism only, then it is alled a \relativelyategorial" theory on p.638 of [130℄ (x12.5 therein).498A possible way out of this would be if we required �Rnew to ontain membership relations \2" and projetionfuntions pji (and then add some restritions postulating e.g. that 2 and pji are the \real" set theoreti oneset., f. p.232 for the de�nition of the pji's). We will not do this beause we feel that it would lead to toomany ompliations without yielding enough bene�ts.499We use \de�nable impliitly" and \impliitly de�nable" as synonyms. I.e. we are exible about word order.



224 4.3 DEFINABILITY IN MANY-SORTED LOGICLet us turn to de�nability over lasses of models. Let K be a lass of models with Unew ; �Rnewin the language of K. For M 2 K let M� be the redut of M obtained by omitting (forgetting)Unew ; �Rnew . Let K� := �M� : M 2 K	 :We ask ourselves when K is de�nable over K� or equivalently (but informally) when Unew ; �Rneware de�nable over K�. We say that the lass K of models is de�nable impliitly without takingreduts over K� iff there is a set � � Th(K) of formulas suh that ondition (??) below holds.For every M;N 2 Mod(�) similar to members of K and suh that M� =N� 2 K�, there is a unique isomorphism h : M ��!� N whih is theidentity on the universes of M�.(??)If the isomorphism h is not neessarily unique then we say that K is de�nable impliitlyup to isomorphism over K�. Informally, we say that the new sort Unew and �Rnew arede�nable impliitly over K� iff K as understood above is de�nable impliitly without tak-ing reduts over K�. When speaking about de�nability of Unew ; �Rnew over K�, it should belear from ontext how K is obtained from the data K� and Unew ; �Rnew . If (??) holds, then �in (??) is alled an impliit de�nition of K over K�.We leave it to the reader to generalize the above de�nitions to the ase when we havearbitrary sequenes �Unew and �Rnew of new sorts and new relations. However, herein we restritour attention to the ase when there are �nitely many new symbols (i.e. both �Unew and �Rneware �nite sequenes of sorts and relations respetively). The lassial notion of de�nabilityof new relations (without new sorts) is obtained as a speial ase of our general notion byhoosing �Unew = ;, i.e. �Unew is the empty sequene.Let K and L be two lasses of models, i.e. L is not neessarily a redut of K. We say thatK is de�nable impliitly over L i� some expansion K+ of K is de�nable impliitly withouttaking reduts over L. (In this ase, L will be a redut of K+, of ourse.)500 This means thatstatements (i) and (ii) below hold for some expansion K+ of K:(i) L is a redut of K+,(ii) K+ is de�nable impliitly over L without taking reduts. (Sine here L is a redut ofK+, our earlier de�nition of impliit de�nability without taking reduts on p.224 an beapplied.)We note that here we have to take seriously that our languages are �nite, i.e. K+ has only�nitely many new symbols that do not our in L.501 In this ase we say that � is animpliit de�nition of K over L if � is an impliit de�nition of K+ over L. Thus an impliitde�nition of K over L may ontain symbols not ourring in K.We will apply the same onvention for single models too, i.e. N is de�nable impliitlyover M iff this holds for fNg and fMg. We will sometimes abbreviate \impliitly de�n-able without taking reduts" by \nr-impliitly de�nable", where \nr" stands for \taking noreduts".500It would be more areful of us if we would all this new impliit de�nability (whih permits taking reduts)weak impliit de�nability. This is so beause when taking reduts then the uniqueness ondition, f. p.223, onisomorphisms may get lost.501Cf. Examples 4.3.9 (2).



4.3.1 IMPLICIT DEFINABILITY IN MANY-SORTED LOGIC 225Example 4.3.5 The new sort nF together with the projetion funtions pji : nF �! F(i < n), f. p.232, are de�nable nr-impliitly over the lass FM of our frame models. �Note that (??) above is a straightforward generalization of (?) on p.223. Therefore M+ isde�nable nr-impliitly over M iff the lass fM+g is de�nable nr-impliitly over the lass fMg.In situations like the one involving statement (??) above, we also say that Unew ; �Rneware uniformly de�nable (impliitly) over K�.502 The set � of formulas is onsidered as auniform (impliit) de�nition of Unew ; �Rnew over K�. Hene in the example above we an alsosay that nF et. are uniformly de�nable over FM. We have not yet disussed non-uniformde�nability whih is also alled \loal" or \one-by-one" de�nability: We will disuss thisnotion below Examples 4.3.9, on p.230.Although we began this sub-setion with disussing de�nability over a single model M,the main emphasis in this work will be on de�nability over a lass K of models suh thatK = Mod(Th(K)) i.e. suh that K is axiomatizable in �rst-order logi.We note that impliit de�nability without taking reduts of K over K� is stritly strongerthan impliit de�nability up to isomorphism. This remains so even if we assume that Kand K� are �rst-order axiomatizable lasses of models. We leave the onstrution of a simpleounterexample to the reader, but f. Example 4.3.9(8) way below. For the onnetions betweenthe various notions of de�nability we refer the reader to Figure 97 on p.270.Remark 4.3.6 The following are intended to provide a kind of \intuitive" haraterization ofimpliit de�nability without taking reduts of a lass K of models over its redut K� (as wasde�ned above).(1) Assume K� is a redut of the lass K (i.e. K� is of the form fM� : M 2 Kg).Then K is de�nable impliitly over K� without taking reduts i� (i){(ii) below hold.(i) (8M 2 K)M is de�nable nr-impliitly over its redut M�.(ii) There is a single set � of formulas suh that for every M 2 K, � is an impliitde�nition of M over M�. In other words, not only eah M is nr-impliitly de�nableover M�, but this de�ning an be done uniformly for the whole of K.(2) Further, assume K is impliitly de�nable without taking reduts over its redut K�. Thenthe funtion rd def= fhM;M�i : M 2 Kgis a bijetion up to isomorphism503 rd : K �!� K�suh that eah M 2 K is de�nable nr-impliitly over rd(M) and these de�nitions oinidefor all hoies of M. �502We will explain soon, beginning with item 11 of Examples 4.3.9 (p.227), what aspet of the above situationwe are referring to with the adjetive \uniform" here.503I.e. rd(M) = rd(N) ) M �= N. Roughly, something holds \up to isomorphism" iff it holds moduloidentifying some of the isomorphi models.



226 4.3 DEFINABILITY IN MANY-SORTED LOGICRemark 4.3.7 (properties of \general" de�nability of lasses) Assume K is de�nableimpliitly over L. Then (1)-(2) below hold.(1) K and L agree on their ommon voabulary, i.e.K � (VoK \ VoL) = L � (VoK \ VoL):(2) There is a surjetive funtion504 f : L �!� K suh that for all M 2 L, f(M) isimpliitly de�nable over M505; moreover the de�nition of f(M) over M is the same (setof formulas) for all hoies of M. �Now we turn to giving examples.Examples 4.3.8 (Traditional, one-sorted examples)1. Let PA be the lass of models of Peano's Arithmeti, f. any logi book, e.g. Monk [194℄or Chang-Keisler [60℄ for PA. The operation symbols of PA are +; �; 0; 1. Consider theextra unary operation symbol \ ! " intended to denote the fatorial. Let �! be the set ofthe following two formulas!(0) = 18x[!(x + 1) = (x + 1)�!(x)℄.I.e. �! = f !(0) = 1; 8x[!(x + 1) = (x + 1)�!(x)℄ g. We laim that �! is a (orret)impliit de�nition of \ ! " over PA. (The proof is not easy but is available in almost anylogi book.) The point in the above example is that PA is an axiomatizable lass andthat �! works over eah member of PA. If we want an impliit de�nition over a singlemodel instead of an axiomatizable lass, that is easy:2. Consider the model h!; 0; su;+i.506 Let �+ be the set of the following formulas:x+ y = y + x0 + x = xx+ su(y) = su(x + y).Now, �+ de�nes + impliitly over the model h!; 0; sui. However, it is important to notethat over the axiomatizable hull Mod(Th(h!; 0; sui)) of this model, �+ is not an impliitde�nition507, and moreover addition is not nr-impliitly de�nable in Mod(Th(h!; 0; sui)).This shows that nr-impliit de�nability over a single model is muh weaker than nr-impliit de�nability over an axiomatizable lass of models. (Sine primarily we areinterested in theories, and theories orrespond to axiomatizable lasses, we are moreinterested in de�nability over axiomatizable lasses than over single models.)3. Let E = f2 � n : n 2 !g be the set of even numbers. Then E as a unary relation isde�nable nr-impliitly over the model h!; sui.504f is a funtion only up to isomorphism, f. AMN [18, footnote 941 on p.971℄ for more detail.505I.e. there is an impliit de�nitional expansionM+ of M with f(M) a redut of M+.506Where su : ! �! ! is the usual suessor funtion on !, i.e. su(n) = n+ 1 for all n 2 !.507i.e. it does not satisfy (??) way above



4.3.1 IMPLICIT DEFINABILITY IN MANY-SORTED LOGIC 2274. Let BA0 be the lass of Boolean algebras with \\", \[", 0; 1 as basi operations. Now,fx \ �x = 0; x [ �x = 1g is an impliit de�nition of omplementation over BA0.This impliit de�nition, however, an easily be rearranged into the form of an expliitde�nition as follows508:�(x) = y , [x \ y = 0 ^ x [ y = 1℄:5. As an exerise, it is useful to experiment with (i) de�ning the Boolean partial ordering\�" over BA0, (ii) de�ning \[" over the basi operations \\;�" (and the same with theroles of \[" and \\" interhanged).6. The model h!;�i is impliitly de�nable over h!; 0; sui, but it is not nr-impliitly de�n-able beause h!;�i is not an expansion of h!; 0; sui. If M+ = hM; �Rnewi, i.e. if M+ doesnot ontain new sorts, then M+ is nr-impliitly de�nable over M i� M+ is impliitlyde�nable over M. This is not neessarily true when M+ ontains new sorts, too. �Examples 4.3.9 (More advaned, many-sorted examples)1. Let F be an ordered �eld. Then the two-sorted model hF;P(F); 2i is not de�nableimpliitly up to isomorphism over F. Hene it is not nr-impliitly de�nable, either.Proof-idea: Assume jFj = !. Then jP(F)j > !. But by the downward L�owenheim-Skolem theorem hF;P(F); 2i has an elementary submodel with eah sort ountable.2. Let �R be any ountable sequene of relations de�ned on the sorts F;P(F) in example 1above. Then hF;P(F); 2; �Riis not de�nable impliitly up to isomorphism over F.Hint: The reason remains the same as in example 1.This means that F+ def= hF;P(F); 2i is not impliitly de�nable over F, either.However, there is an expansion F++ of F+ with unountably many new relations suhthat F++ is nr-impliitly de�nable over F. Indeed, let us take a new onstant x foreah element x of F [ P(F). Then F++ def= hF;P(F); 2; hx : x 2 F [ P(F)ii is an nr-impliitly de�nable expansion of F. This shows the importane of allowing only �nitelymany relation symbols in our languages when de�ning impliit de�nability, f. p.224.3. Let F be a �nite �eld. Then hF;P(F); 2i is de�nable nr-impliitly over F. The sameapplies for any �nite struture in plae of F.Notation: For any set H and ardinal � we let P�(H) be the olletion of those subsetsof H whose ardinality is smaller than �. In partiular, P!(H) denotes the set of �nitesubsets of H.4. Let A be a(n in�nite) struture with universe A. Then hA;Pi(A); 2i is nr-impliitlyde�nable over A for any i 2 !.508We have not disussed expliit de�nitions yet, but they will be disussed soon (beginning with x4.3.2 onp.230).



228 4.3 DEFINABILITY IN MANY-SORTED LOGIC5. Let A = h!;�i be the set of natural numbers with the usual ordering. Then the expansionhA;P!(!); 2i is nr-impliitly de�nable over A.Hint: An impliit de�nition is the following set of formulas:f8x1 : : : xn 2 !9y 2 P!(!)y = fx1; : : : ; xng : n 2 !g[f8y 2 P!(!)9x 2 !8z 2 !(z 2 y �! z � x)g[f8y; z 2 P!(!)(y = z $ 8x 2 !(x 2 y $ x 2 z))g.(In the above, y = fx1; : : : ; xng abbreviates any formula with the intended meaning.)As a ontrast, we inlude the following example.6. Consider the expansion h!;P!(!); 2i of the \plain" struture h!i. Then this struture(i.e. h!;P!(!); 2i) is not impliitly de�nable up to isomorphism over h!i.Hint: Take any ountable elementary submodel B of an ultrapower of h!;P!(!); 2iwhih ontains a \nonstandard" element in P!(!). Then the \!-part" of B is isomorphito h!i, but B is not isomorphi to h!;P!(!); 2i.7. h!;P!(!); su; 2i is impliitly de�nable over h!; sui. We do not know whether it isnr-impliitly de�nable over h!; sui or not. (We onjeture that the answer is in thenegative.)8. hA; Unewi is not impliitly de�nable up to isomorphism over A, for any struture A andin�nite set Unew . Here Unew is a new sort, and there are no new relations. If 1 <jUnew j < !, then Unew is impliitly de�nable and impliitly de�nable up to isomorphism,but not impliitly de�nable without taking reduts. If jUnew j � 1, then Unew is impliitlyde�nable without taking reduts.9. Let A be any struture and let B be any �nite struture. Then hA;Bi as a two-sortedstruture is impiitly de�nable over A.10. Let A be a �xed struture. ConsiderK = f hA; Unewi : jUnew j < ! g :Then K is not nr-impliitly de�nable over fAg (not even up to isomorphism).Reading the examples below is not neessary for understanding the rest of the presentwork. They are designed to illustrate the distintion between uniform and non-uniformde�nability.11. For k 2 !, let Uk be the usual k + 1 element linear ordering Uk = hf0; : : : ; kg; <i where\<" is the usual ordering of the natural numbers. Reall from set theory that �k is thek'th in�nite ardinal regarded as a speial ordinal. E.g. �0 = !. LetK := f h�k;Uki : k 2 ! gwhere hUnew ; �Rnewi = Uk. I.e. K� is obtained by forgetting the Uk-part. Then K is notuniformly nr-impliitly de�nable over K� although for eah M 2 K, we have that M isnr-impliitly de�nable over M�, i.e. Uk is nr-impliitly de�nable over h�ki.



4.3.1 IMPLICIT DEFINABILITY IN MANY-SORTED LOGIC 22912. The following is a generalization of item 11 above. Let A0; : : : ;Ak; : : : (k 2 !) be any!-sequene of elementarily equivalent one-sorted models.509 Let Uk be as in item 11above. K := f hAk;Uki : k 2 ! g :Then K is not uniformly nr-impliitly de�nable over K� = fAk : k 2 ! g while everyM 2 K is nr-impliitly de�nable over M�.Hint: The key idea an be formulated with using A1, A2 only. The rest of the Ak'sserve only as deoration. So, one starts with A1 �ee A2 and510 jU1j 6= jU2j are �nite.(Where Ui is the universe of Ui, similarly for Ai.) It is important to note that thereare no inter-sort relations permitted here i.e. sort Ai is isolated from sort Ui. Next,one uses the following property of many-sorted logi. Assume A;B are two struturesof disjoint languages. Consider the new many-sorted struture hA;Bi. We laim thatTh(hA;Bi) = Th(A) [ Th(B). The reason for this is the fat that an atomi formulaxRy belongs to a many-sorted language only if x and y are of the same sort. Hene e.g.(9x 2 U0)(9y 2 U1) x 6= y is not a (many-sorted) formula.The present example does not work for \impliitly de�nable" in plae of \impliitlyde�nable without taking reduts".Someone might think that the reason why the above ounterexample works is that allelements of K� are elementarily equivalent. Below we show that this is not the ase.13. Let the language of K� onsist of ountably many onstant symbols 0; : : : ; i; : : : andjust one sort. Let Uk (k 2 !) be as in item 11 above.K� := f hU; iii2! : the set f i 2 ! : i = 0 g is �nite andU is a set with (8i 2 !) i 2 U g :K := � hU; i; Ukii2! : k = j f i 2 ! : i = 0 g j and hU; iii2! 2 K� 	 :That isK = � hM; Uki : M 2 K� and k = j f i 2 ! : in M we have i = 0 g j	 :Now, K is not uniformly nr-impliitly de�nable over K� while eah onrete M 2 K isnr-impliitly de�nable over M�, further(8M;N 2 K)[M� �ee N� ) M �ee N ℄:Idea for a proof:Assume � = Th(K) de�nes K impliitly over K� (up to isomorphisms). Then by usingultraproduts one an show that there is N = hU; i; U2ii2! 2 Mod(�) suh that (8i >0)(i 6= 0 holds in N). But learly for M := hN�; U1i we have N� = M� 2 K� andM 2 K hene by M 6�= N we onlude that � annot be a de�nition of K. �509I.e. (8k 2 !)Th(A0) = Th(Ak).510Reall that �ee denotes the binary relation of elementary equivalene de�ned between models.



230 4.3 DEFINABILITY IN MANY-SORTED LOGICThe above three examples were designed to illustrate the di�erene between uniform (nr-impliit) de�nability and one-by-one (nr-impliit) de�nability where by the latter we under-stand the ase when eah M 2 K is de�nable over its redut M� in K� (but these de�nitionsmight be di�erent for di�erent hoies of M); in more detail: Let K be a lass of modelswith Unew ; �Rnew in the language of K. For M 2 K let M� be the redut of M obtainedby omitting (forgetting) Unew ; �Rnew . Let K� := fM� : M 2 K g. Then we say that Kis one-by-one nr-impliitly de�nable over K� iff eah M 2 K is nr-impliitly de�nable overits redut M� 2 K�. Sometimes, informally we will use instead of one-by-one de�nability\non-uniform" or \loal" de�nability as synonyms. We hope that the above three examplesillustrate (the generally aepted opinion) that uniform de�nability is a more useful oneptthan one-by-one de�nability (when onsidering lasses K of models) and is loser to what onewould intuitively understand under de�nability.For ompleteness, we refer the interested reader to the distintion between the \loal" andthe \usual" versions of expliit de�nability desribed in Andr�eka-N�emeti-Sain [31℄ De�nitions55{56 (Beth de�nability properties) therein. We also note that most standard textbooksonentrate on uniform de�nability only and they do not mention what we all here one-by-one de�nability. We too will onentrate on uniform de�nability and unless otherwise spei�ed,by de�nability we will always understand uniform de�nability.Remark 4.3.10 A useful re�nement of the notion of nr-impliit de�nability is �nite nr-impliit de�nability. Assume K and K� are as above statement (??) on p.224 (de�nitionof nr-impliit de�nability). Assume K is nr-impliitly de�nable over K�. Then K is said to be�nitely nr-impliitly de�nable over K� iff there is a �nite set �0 � Th(K) of formulas suh that�0 de�nes K impliitly over K�, i.e. (??) holds for � = �0. In most of our onrete examplesand appliations we will have �nite nr-impliit de�nability, but for simpliity we will write just\de�nability".To illustrate the importane of �nite nr-impliit de�nability, onsider the simple modelh!; sui. There are ontinuum many di�erent impliit de�nitions (involving one new relationsymbol R) over this model while there are only ountably many �nite impliit de�nitions(and we will see that there are only ountably many expliit de�nitions over this model).(This example annot be generalized from a single model like M = h!; sui to �rst-order-axiomatizable lasses K of models, assuming there are only �nitely many sorts).511 �
4.3.2 Expliit de�nability in many-sorted (�rst-order) logiSo far we have disussed impliit de�nability whih is a quite general notion of de�nability.Below we will turn to a speial kind of impliit de�nability whih we all expliit de�nability.Eah expliit de�nition an be onsidered as an impliit de�nition. The other diretion is nottrue however, there are impliit de�nitions whih are not expliit de�nitions. (I.e. there is511The reason for this is the following. In the above reasoning we heavily used the fat that every element ofh!; sui is de�nable \as a onstant". (Therefore in�nite impliit de�nitions an be given by listing the elementsof R and the non-elements of R.) This does not remain true in Mod(Th(h!; sui)).



4.3.2 EXPLICIT DEFINABILITY IN MANY-SORTED LOGIC 231an impliit de�nition � whih in its given form is not an expliit de�nition.) In de�nabilitytheory, the onnetion between expliit and impliit de�nitions is an important subjet. Wewill return to this subjet in x4.3.5. In partiular, we will state a generalization of Beth'stheorem, saying that impliit de�nability is equivalent to expliit de�nability (even in ourgeneral framework where we allow de�nitions of new sorts, too [besides de�nitions of newrelations℄, f. Theorem 4.3.48 and Corollary 4.3.49 on p.268.Expliit de�nability will turn out to be (i) a speial ase of impliit de�nability and (ii) astrong and useful onept e.g. in the following way. Assume K = Mod(Th(K)) and that K+ isan expansion of K whih is expliitly de�nable over the lass K of models. Then the theoriesTh(K) and Th(K+) as well as the languages of K and K+ will be seen to be equivalent in arather strong sense to be explained later, see Theorems 4.3.27 and 4.3.29 on p.245.The key ingredients of expliit de�nability will be introdued in items (1){(2.2) below.Then, on p.235, they will be ombined into a desription of what we mean by expliit de�n-ability. The generalization from de�nability over single models M to de�nability over lassesK of models will be given on p.235.Notation: Assume M is a many-sorted model and that  is a formula in the language of Msuh that all the free variables of  belong to x0; : : : ; xi; : : :. Assume �a 2 !Uv(M) and thatthe sort of ai oinides with the sort of the variable xi, for every i 2 !. ThenM j=  [�a℄is the standard model theoreti notation for the statement that  is true in M under theevaluation �a of its free variables f. e.g. Monk [194℄, Enderton [82℄, Chang-Keisler [60℄. Some-times we write M j=  [a1; : : : ; an℄ in whih ase it is understood that the free variables of  are among x1; : : : ; xn. The latter is often indiated by writing  (x1; : : : ; xn) instead of  . I.e.if we write  (x1; : : : ; xn) in plae of  then this means that while talking about the formula  we want to indiate asually that the free variables of  are among x1; : : : ; xn.The following is also a standard notation from logi. Assume � is a term. Then  (x=�)denotes the formula obtained from  by replaing all free ourrenes of x by � . Similarly for (x1=�1; : : : ; xn=�n). We ould say that \(x=�)" is the \operator" of substituting � for x.If  (x) is a formula and y is a variable (of the same sort as x), then  (y) denotes  (x=y);and similarly for a sequene �x of variables.Sometimes below we will write \de�nable" for \expliitly de�nable" to save spae. Similarly,we write \de�nitional expansion" for \expliit de�nitional expansion". In general, we will tendto omit the adjetive \expliit", beause our primary interest will be expliit de�nability.(1) Expliit de�nability of relations and funtions in M.Let M = hU0; : : : ; Uj; R1; : : : ; Rli be a many-sorted model with universes or sortsU0; : : : ; Uj, and relations R1; : : : ; Rl. Let Rnew � Ui1 � : : : � Uim be a (new) relation, withi1; : : : ; im 2 (j + 1). Now, Rnew is alled (expliitly) de�nable (as a relation) over M iff thereis a formula  (xi1 ; : : : ; xim) in the language of M suh thatRnew = f hai1 ; : : : ; aimi 2 Ui1 � : : :� Uim : M j=  [ai1 ; : : : ; aim℄ g :Suh de�nable relations an be added to M as new basi relations obtaining a(n expliit)de�nitional expansion of M in the formM+ := hU0; : : : ; Uj; R1; : : : ; Rl; Rnewi:



232 4.3 DEFINABILITY IN MANY-SORTED LOGICTo make M+ \well de�ned" we have to add a new relation symbol to the language of Mdenoting Rnew . The formula Rnew(�x) $  (�x) is alled an (expliit) de�nition of Rnew (overM). Notie that � def= fRnew(�x) $  (�x)g is also a(n impliit) de�nition of M+ over M. Weall � an expliit de�nition of type (1). If � is a de�nition of M0 over M, then we say thatM0 is obtained from M by step (1). Note that if M0 is de�ned over M by �, then M0 is M+above.(2) Expliit de�nability of new sorts (i.e. universes) in M.De�ning a new sort expliitly (in M) takes a bit more are than de�ning a new relation.This is understandable, sine now we want to de�ne (or reate) a new universe of entities(in terms of the old universes and old relations already available in M) while when de�ninga relation we de�ned only a new property of already existing entities (or of tuples of suhentities) in M. If we de�ne a new relation, then this amounts to de�ning a new property ofalready existing entities. I.e. we remain on the same ontologial level . In ontrast, if we de�nenew entities whih \did not exist" before, then we go up to a higher ontologial level.512If we want to de�ne a new sort in M, �rst of all we need a new sort-symbol, say Unew ,whih does not yet our in the language of M. If there is no danger of onfusion then we willidentify a sort-symbol like Unew with the universe, say (Unew)M+, whih it denotes in a modelM+.An expliit de�nition of a new sort, say Unew , desribes the elements of Unew as beingonstruted from \old" elements in a systemati, \tangible" and uniform way. More onretely,�rst we will introdue a few (basi onstrutions or) basi kinds of expliit de�nition and then\general" expliit de�nitions will be obtained by iterating these basi kinds. We will refer tothe just mentioned basi kinds (of expliit de�nition) as basi steps of expliit de�nitions. Ourbasi steps for building up expliit de�nitions of new sorts are desribed in items (2.1), (2.2)below. Our hoie of basi steps might look ad-ho at �rst reading, but Theorem 4.3.48 at theend of this setion will say that our seleted few steps (i.e. examples of expliit de�nitions)over (via iteration) all ases of impliit de�nitions (assuming there is a sort with more thanone elements). We will return to a more areful disussion of the present issue of hoosing ourbasi steps in Remark 4.3.53.(2.1) The �rst way of de�ning a new sort Unew in M expliitly.The simplest way of de�ning a new sort Unew in a model M = hU0; : : : ; Uj; R1; : : : ; Rli isthe following. Let R 2 fR1; : : : ; Rlg be �xed. Assume R is an r-ary relation, i.e. R � rUv(M).We want to postulate that Unew oinides with R. So the �rst part of our de�nition of Unewis the postulate: Unew :def= R:But, if we want to expand M with Unew as a new sort obtaining something likeM0 := hU0; : : : ; Uj; Unew ; R1; : : : ; Rlithen we need some new relations or funtions onneting the new sort Unew to the old onesU0; : : : ; Uj. In our present ase (of Unew = R) we use the projetion funtions pji : R �!Uv(M) with i < r. Formally, pji(ha0; : : : ; ar�1i) :def= ai: 513512In onnetion with de�ning new sorts, for ompleteness, we also refer e.g. to the de�nition of the \new"many-sorted struture Aeq from the \old" struture A in Hodges [130, p.151℄ (f. also pp. 148, 212, 213 therein).Cf. also the de�nition of relative ategoriity in Hodges [130℄ p.638 together with p.638 line 3 bottom up top.639 line 9.



4.3.2 EXPLICIT DEFINABILITY IN MANY-SORTED LOGIC 233To identify the domain of pji we should write something like pjRi , but for brevity we omitthe supersript R. Now, the (expliit) de�nitional expansion of M obtained by the hoieUnew := R isM+ := hU0; : : : ; Uj; Unew ; R1; : : : ; Rl; pj0; : : : ; pjr�1i = hM; Unew ; pjiii<r:We note that M+ = hU0; : : : ; Uj; R; R1; : : : ; Rl; pjRi ii<r:If x is a variable, then (9 !x) (x) denotes the formula expressing that there is exatly one valuefor whih  holds, i.e. it denotes the formula (9x)( (x) ^ (8z)[ (z)! z = x℄). Let� def= f(9 !u 2 Unew)(pj1(u; x1) ^ : : : ^ pjr(u; xr))$ R(x1; : : : ; xr) ,(9u 2 Unew)(pj1(u; x1) ^ : : : ^ pjr(u; xr))! R(x1; : : : ; xr) ,(8u 2 Unew)(9 !xi)pji(u; xi) : 1 � i � rg .Then � is an impliit de�nition of M+ over M. We all � an expliit de�nition of type (2.1).If � is a de�nition of M0 over M, then we say that M0 is obtained from M by Step (2.1).Notie that if � is a de�nition of M0 over M, then M0 is isomorphi to M+ above via anisomorphism whih is identity on M.Remark 4.3.11 This seond form of M+ might indue the (misleading) impression that M+ontains nothing new: it onsists of a rearranged version of the old parts of M. However, letus notie that as a �rst step we might de�ne a new relation Rnew in M (in the style of item(1) above) obtaining M+ := hU0; : : : ; Uj; R1; : : :Rl; Rnewiand then we may de�ne Unew := Rnew obtaining the de�nitional expansionM++ := hU0; : : : ; Uj; Unew ; R1; : : : ; Rnew ; pjiii<rof M+. Now, we will postulate that a de�nitional expansion of a de�nitional expansion of Mis alled a de�nitional expansion of M again. Hene the above obtained M++ is a de�nitionalexpansion of the original M. Using our abbreviation from p.219 we an write:hM; Unew ; Rnew ; pjiii<r := M++:Now, if we do not want to have Rnew as a relation, we an take the redutM++� := hM; Unew ; pjiii<rby forgetting Rnew as a relation but not as a sort. We will all M++� a generalized de�nitionalexpansion of M (f. p.235). �513By the standard elimination of funtion symbols, pji(x) = y abbreviates pji(x; y), hene funtion symbolslike pji an our in atomi formulas only in the form pji(x) = y.



234 4.3 DEFINABILITY IN MANY-SORTED LOGICExample 4.3.12 Let F = hF; : : : ; � i be a �eld. We want to de�ne the plane F � F overF as a new sort expanding F. First we de�ne the relation R = F � F by the formula(x0 = x0 ^ x1 = x1). Clearly, in F this formula de�nes the relation F � F. Then we expandF with this as a new relation obtainingF+ = hF; +; � ;F � Fiwhere F � F is used as a relation interpreting the relation symbol RelF�F . Now, in F+ wede�ne the new sort Unew := F � F together with the projetion funtions as indiated above,obtaining the model F++ = hF;F � F; +; � ;F � F; pj0; pj1iwhere pji : F � F �! F. Now, we take a redut of F++ by forgetting the relation symbolRelF�F , but not the sort F � F. We obtainF++� = hF;F � F; +; � ; pj0; pj1i = hF;F � F; pj0; pj1i:Clearly this model F++� is the expansion of the �eld F with the plane F �F as a new sort aswe wanted.The above example shows that the usual expansion of F with the plane as a new sort, isindeed a de�nitional expansion i.e. the plane as a new sort is (�rst-order) de�nable expliitlyin F. �Similarly to the above example, nF is �rst-order de�nable (expliitly) as a new sort in anyframe model M. Later we will introdue uniform expliit de�nability over a lass K of models.Then we will see that nF as a new sort is uniformly (expliitly) de�nable over the lass of allframe models. (In de�ning nF we use pji : nF �! F, i 2 n, the same way as we did in thease of F++�.)(2.2) The seond way of de�ning a new sort Unew in M expliitly.To de�ne a new sort Unew in a model M = hU0; : : : ; Uj; R1; : : : ; Rli expliitly the seondway, we begin by seleting an old sort U := Ui and old relation R := Rk (i � j, 0 < k � l)in M. We proeed only if R happens to be an equivalene relation over U (i.e. if R � U � Uet.). We de�ne the new sort to be the quotient set of R-equivalene lasses514Unew := U=R:Again, similarly to the ase of pji's in item (2.1) above, we need a new relation onneting thenew sort Unew to the old ones. Now we hoose the set theoreti membership relation2 := 2Unew := 2U;Unew := f ha; a=Ri : a 2 U gating between U and U=R. Sine 2Unew � Ui�Unew , this relation onnets the new sort Unewwith the old one Ui. Let us notie that from the notation 2U;Unew we may omit the �rst indexobtaining the simpler notation 2Unew or we may omit both indies obtaining 2. The (expliit)de�nitional expansion of M obtained by the hoie Unew = Ui=Rk is de�ned to be the modelM+ = hU0; : : : ; Uj; Unew ; R1; : : : Rl;2Unew i= hU0; : : : ; Ui=Rk; R1; : : : ; Rl;2i= hM; Unew ; 2Unew i= hM; Ui=Rk; 2Unew i:Let514U=R def= fa=R : a 2 Ug where a=R def= fb 2 U : ha; bi 2 Rg. I.e. U=R is the set of all \bloks" of R, anda=R is the \blok" of R a is in.



4.3.2 EXPLICIT DEFINABILITY IN MANY-SORTED LOGIC 235� def= f(9u 2 Unew)(2(x; u) ^ 2(y; u))$ R(x; y),[2(x; u) ^ 2(x; v)℄! u = v g.Then � is an impliit de�nition of M+ over M. We all � an expliit de�nition of type (2.2).If � is a de�nition of M0 over M, then we say that M0 is obtained from M by Step (2.2).Notie that if � is a de�nition of M0 over M, then M0 is isomorphi to M+ above via anisomorphism whih is identity on M. � � �We are ready for de�ning our notion of expliit de�nability. We all a new sort or relation(expliitly) de�nable in M iff it is de�nable by repeated appliations of the steps desribed initems (1), (2.1), (2.2) above.A model N is alled a de�nitional expansion of M iff N is obtained from M by re-peated appliations of steps (1), (2.1), (2.2) above (involving �nitely many steps only). Anexpliit de�nition of N over M is the union of the expliit de�nitions of type (1), (2.1), (2.2)involved in a sequene leading from M to N. We all � an expliit de�nition if � is an expliitde�nition of some de�nitional expansion.A model N is alled a generalized de�nitional expansion of M if (i), (ii) below hold.(i) N is a redut of a de�nitional expansion, say M+, of M.(ii) N is an expansion of M, i.e. M is a redut of N.We all N (expliitly) de�nable in M iff item (i) above holds. If we want to indiate thatwe do not take a redut while de�ning say M+ from M expliitly (i.e. that M+ is obtainable byrepeatedly applying steps (1), (2.1), (2.2) to M) then we say that M+ is expliitly de�nable inM without taking reduts . Sometimes we write \de�nitional expansion without taking reduts"to emphasize that we mean de�nitional expansion and not generalized de�nitional expansion.We emphasize that a preise statement laiming that Unew is de�nable as a new sort shouldalso mention the relations and/or funtions (of N) onneting Unew to the original sorts of M.Examples of suh \onneting relations" are pji and 2Unew disussed above.We note that expliit de�nability with parameters is ompletely analogous with impliitde�nability with parameters f. p.223.Let us turn to (expliit) de�nability over a lass K of models (instead of over a singlemodel M). We say that K is a(n expliit) de�nitional expansion of its redut K� i� K anbe obtained from K� by (a �nite sequene of) repeated (uniform) appiations of the stepsdesribed in items (1), (2.1), (2.2) on pp.231{235. This is equivalent to saying that there isan expliit de�nition whih de�nes K over K� (as an impliit de�nition). In this ase we alsosay that K is (expliitly) de�nable over (or in) K� without taking reduts. We say that K isa generalized de�nitional expansion of K� if K is an expansion of K� and K is a redut of ade�nitinal expansion of K�. We say that K is (expliitly) de�nable in L if K is a redut of ade�nitional expansion of L.This is ompletely analogous with the ase of impliit de�nability. Uniform (expliit)de�nability and one-by-one (expliit) de�nability are obtained from the notion of (expliit)de�nability for single models the same way as their ounterparts were obtained in the ase ofimpliit de�nability, f. pp. 225, 230.



236 4.3 DEFINABILITY IN MANY-SORTED LOGICFinally, we introdue one more notion of de�nability whih we will all rigid de�nability.We will use this in our examples to ome. About the importane of this notion see Theorem4.3.31 on p.251.Assume M+ = hM; �Unew ; �Rnewi is an expansion of M (with new sorts and relations). Wesay that M+ is (expliitly) rigidly de�nable over M if M+ is de�nable in M and the identityis the only automorphism of M+ whih is the identity on M. Informally, we will say that thenew sorts and relations �Unew ; �Rnew are rigidly de�nable over M if hM; �Unew ; �Rnewi is rigidlyde�nable over M.Further, K+ is rigidly de�nable over K iff K+ is a generalized de�nitional expansion of Kand eah M+ 2 K+ is rigid(ly de�nable) over its K-redut.In our opinion, rigid de�nability is \just as good" as de�nability without taking reduts.In other words, we feel that if �Unew et. are rigidly de�nable over K then �Unew et. are almostas well determined by K (or desribable in K) as if they were de�nable without taking reduts.We note that rigid de�nability seems to be perhaps, our most important (or most entral)version of de�nability515 (f. e.g. Theorem 4.3.29, Theorem 4.3.31 and Theorem 4.3.48).CONVENTION 4.3.13 Assume K+ is a de�nitional expansion of K. For M+ 2 K+ theredut M+ � VoK may have more than one de�nitional expansions in K+. (However theseexpansions are isomorphi.) Therefore K may have several di�erent de�nitional expansions K�with the same set of de�ning formulas say � whih de�nes K+ from K. In suh ases, of oursewe have IK� = IK+. The largest suh lass is alled a maximal de�nitional expansion of K.Sine most of the time we will be interested in lasses of models losed under isomorphisms,sometimes, but not always, we will onentrate on maximal de�nitional expansions. There areimportant exeptions to this516, e.g. the lass of two-sorted geometries517 is not losed underisomorphisms and despite of this we will say that it is a de�nitional expansion of the lass ofone-sorted geometries (in Tarski's sense), under some onditions of ourse. �Remark 4.3.14 (On isomorphism losure) In Convention 4.3.13 above, and in the def-inition of de�nitional equivalene \��" (p.255) way below, we are \navigating around" twodi�erent trends both present in the present work (i.e. we are trying to make the onsequenesof these two trends \onsistent" with eah other). These are the following.Trend 1. When disussing de�nability over M or over K, what we are really interested in isde�nability over IfMg or IK. More generally in the present work, most of the time, we tendto onentrate our attention to isomorphism-losed lasses K = IK of models, moreover we areinlined to identify isomorphi models.A motivation behind Trend 1 (i.e. isomorphism invariane) is that when disussing de�n-ability over a struture like M, we want to regard M as an abstrat struture (and not aonrete struture).518 Cf. also the note on p.137 on this and f. Remark 4.2.5 on p.149.515Our de�nition of K+ being expliitly de�nable over K is strongly related to the notion of K+ being\oordinatisable over" K as de�ned in Hodges [130, p.644℄, while K+ is rigidly de�nable over K is stronglyrelated to \oordinatised over" as de�ned in [130℄ (same page). We will return to disussing this onnetion inthe sub-setion beginning on p.268.516i.e. to onentrating on maximal de�nitional expansions517in the sense of hPoints;Lines; 2i, f. p.274518Reall that a struture is alled abstrat if it is de�ned only up to isomorphism. I.e. when disussingan abstrat struture we want to abstrat from knowing what its elements are. (Sine our foundation is settheory the elements of a struture A are sets whose elements are again sets et. When regarding a strutureas abstrat, we want to disregard these details about the elements of the elements of our struture.)



4.3.2 EXPLICIT DEFINABILITY IN MANY-SORTED LOGIC 237Trend 2. For purely aesthetial reasons, some of our distinguished lasses of models are notquite losed under isomorphisms. E.g. in the de�nition of our lass FM of frame models weinsisted that the relation 2 onneting nF and G should be the real set theoretial membershiprelation.519 This aesthetis motivated deision is the only reason why FM 6= IFM. Similarlyin our two-sorted geometries of the kind hPoints;Lines; 2i we insisted that Lines � P(Points)and \2" is the real set theoreti one. This is the only reason why our two-sorted geometriesare not losed under isomorphisms.If only Trend 1 were present then we ould simplify muh of the presentation in this sub-setion by disussing only isomorphism losed lasses K = IK, K+ = IK+ et. However, weannot arry through this simpli�ation beause Trend 2 presents a \purely administrative"obstale to it. We all this obstale purely administrative beause the deision behind Trend2 is purely aesthetial (everything would go through smoothly if we worked with IFM in plaeof FM). As a onsequene we do the following: On the intuitive level we tend to follow thesimpli�ations suggested by Trend 1. At the same time, on the formal level we take Trend 2into aount in order to make our results (and de�nitions) appliable to lasses like FM or totwo-sorted geometries even when we take the formal details fully into aount. Therefore onthe formal level, we try to make sure that our de�nitions make sense (and mean what theyshould) even when K 6= IK. We suggest that the reader keep in mind the \intuitive level"(when we use only Trend 1 and replae FM by IFM et.) and to treat the \formal level" asseondary, beause this simpli�es the piture without loosing any of the essential ideas. �We lose sub-setion 4.3.2 with some examples. As an appliation, we also will apply thejust de�ned notions to the geometries we de�ned earlier in this hapter.Example 4.3.15 (Expliit de�nability of the rational numbers in the ring Z of in-tegers.)Let Z = hZ; 0; 1;+; � i be the (usual) ring of integers. We will disuss how the set Q ofrationals is de�nable expliitly as a new sort in Z.520 (Moreover with a little strething of ourterminology, we an say that the �eld Q of rationals is de�nable in Z.) Here, the new funtionsonneting the new sort Q to the old one Z are (i) the ring-operations +Q and �Q on the sortQ, and (ii) an injetion repr : Z ��! Q representing the integers as rationals. The role ofrepr is to tell us whih member of sort Z is onsidered to be equal with whih member of thenew sort Q. (Although the present \onneting-funtions" do not oinide with our standard\expliit de�nability theoretial" ones pji and 2, we will see that they are �rst-order de�nablefrom the latter.)Let us get started! We start out with Z. First we de�neR = f ha; bi : a; b 2 Z; b 6= 0 gas a new relation, obtaining the expansion hZ; Ri. Then we de�ne the new sort U to be Rwith projetions pj0; pj1 and for simpliity we forget R as a relation (but we keep it as a sortnamed U). This yields the de�nitional expansionZ+ = hZ; U ; 0; 1;+; � ; pj0; pj1i = hZ; U ; pj0; pj1i519This is so if we understand the de�nition of FM in aordane with Convention 2.1.3 on p.10. (OtherwiseFM an be understood in suh a way that it beomes losed under isomorphisms.)520Although we promised, in x2, not to use the letter Q for other purposes than denoting the \quantity"-sortof our frame language, in the examples of the present sub-setion we make an exeption (sine here there is nodanger of reating a onfusion).



238 4.3 DEFINABILITY IN MANY-SORTED LOGICwhere pji : U �! Z are the usual. Next, we de�ne the equivalene relation � on U as followsha; bi � h; di def() a � d = b � :Note, that it is this point where we need the operations pji, namely, \ha; bi" is not an expressionof our �rst-order language, but we an simulate it by using the projetions as follows. We de�ne� by x � y def() pj0(x) � pj1(y) = pj1(x) � pj0(y);where x; y are of sort Q. By using item (2.2) of our outline for de�nability, we de�ne the newsort Q by Q := U=� together with the usual membership relation 2 onneting sort U withsort Q.Now, using the symbols 2; pj0; pj1 one an de�ne the operations +Q; �Q, repr as follows.Assume x 2 Z and y 2 Q. Thenrepr(x) = y def() (9z 2 y) [ pj0(z) = x ^ pj1(z) = 1℄:Assume x; y; z 2 Q. Thenx �Q y = z def() (9x0 2 x)(9y0 2 y)(9z0 2 z)[ pj0(x0) � pj0(y0) = pj0(z0) ^ pj1(x0) � pj1(y0) = pj1(z0)℄:The rest is easy, hene we omit it.The above shows that the strutureZ++ = hZ;Q; +Q; �Q; repriis de�nable over Z+ hene it is also de�nable over Z.In passing, we note that the above de�nitional expansion makes sense and remains �rst-order if instead of Z we start out with an arbitrary ring, say A. �Examples 4.3.16 (Geometries over �elds)1. Let F be a �eld. Consider the geometri expansionGF := hF;Points;Lines; pj0; pj1; eiof F where Points = F�F and pji : F�F �! F and e � Points�Lines is the inidenerelation (the usual way) and Lines � P(Points) is the set of lines in the Eulidean sense.Then GF is rigidly de�nable over F. See the Hint in Example 2 below.2. With eah �eld F let GF be assoiated as in item 1 above. ThenK+ := fGF : F is a �eld gis rigidly de�nable (expliitly) over the lass K of �elds.521Hint: First we de�ne Points = F � F (with pji) as a new sort. Then we de�neR = f hp; qi 2 Points � Points : p 6= q g ;as a new relation. Then we de�ne the new auxiliary sort U to be R with the newprojetions pji : R �! Points and we forget R as a relation (but we keep it as a sortnamed U). Then we de�ne the equivalene relation � on U by saying521From now on we will tend to omit \expliitly" sine we agreed that de�nability automatially meansexpliit de�nability.



4.3.2 EXPLICIT DEFINABILITY IN MANY-SORTED LOGIC 239hp; qi � hr; sidef()(p; q; r; s are ollinear in the Eulidean sense).Then we de�ne the new sort Lines := U=� together with 2 � U � Lines. From thesedata we de�ne our �nal inidene relation e := ePoints,Lines the usual way.522 �
In the ase of impliit de�nability we saw that uniform and one-by-one de�nability arewildly di�erent. The example below is intended to demonstrate, for the ase of expliit de�n-ability, the same kind of di�erene between uniform and one-by-one (expliit) de�nability. Inthis example we restrited ourselves to the most lassial ase: one sort only and the de�nedthing is a relation over the old sort. Besides providing explanation, this example was alsodesigned to provide motivation for onsistently stiking with the uniform versions of the kindsof de�nability we onsider.Example 4.3.17 Let ! = h!; 0; 1;+; � i be the usual standard model of Arithmeti. Let ushoose R � ! suh that R is not expliitly de�nable even in higher-order logi over ! (andeven with parameters). Suh an R exists.523 LetK := f h!; ; P i :  2 !; P � ! and ( 2 R ) P = fg) and ( 62 R ) P = ;) g :Let K� be the P -free redut of K i.e.K� := f h!; i :  2 ! g :Claim: Eah member M = h!; ; P i of K is expliitly de�nable over its P -free redut M� =h!; i. I.e. K is one-by-one expliitly de�nable over its redut K�.We will see that K is very far from being uniformly expliitly de�nable over K�. (MoreoverK is far from being uniformly �nitely impliitly de�nable.)For n 2 !, we denote the onstant-term 1 + : : :+ 1| {z }n-times by �n. Assume P is uniformly expliitlyde�nable over K�. Then K j= [P (x)$  (; x) ℄;522I.e. p e ` def() (9x 2 `)[ pj0(x); pj1(x); p are ollinear as omputed in F ℄.523One an hoose R to be so far from being omputable that R is not even in the so-alled AnalytialHierarhy f. [44℄.



240 4.3 DEFINABILITY IN MANY-SORTED LOGICfor some formula  (x; y) in the language of !.524 Now, for any n 2 ! we have the following:n 2 R ) [K j= �n =  ! P (�n) heneK j= �n =  !  (; �n) heneK� j= �n =  !  (; �n) heneK� j= �n =  !  (�n; �n) hene525K� j=  (�n; �n) hene! j=  (�n; �n) ℄:n 62 R ) [K j= �n =  ! :P (�n) moreoverK j= �n =  ! P = ; heneK� j= �n =  ! : (; �n) heneK� j= �n =  ! : (�n; �n) hene525! j= : (�n; �n) ℄:But then  (x; x) expliitly de�nes R(x) in !, whih is a ontradition.We have seen that while in K� the new relation P is one-by-one expliitly de�nable (inother words loally expliitly de�nable), P is very far from being uniformly expliitly de�nableover the same K�. �We hope that the above onstrution and proof explain why and how one-by-one de�nabilityis so muh weaker than526 uniform de�nability. We also hope that the above example illustrateswhy most authors simply identify uniform de�nability with de�nability.Appliation: de�nability of the observer-independent geometriesNow we turn to the issue of de�nability of the observer-independent geometries GM overthe (\observational") frame models M, whih has already been disussed in x4.2.2 and Re-mark 4.2.9 (p.153). The propositions and the theorems below serve to illuminate parts ofRemark 4.2.9.The following proposition says, roughly, that the set of points Mn, and our various kindsof lines L; : : : ;LS are de�nable over the \observational" models M.PROPOSITION 4.3.18 For every frame model M let M+ := hM;Mn; 2Mni be the expan-sion of M with the set of events Mn := S fRng(wm) : m 2 Obs g and the set theoretimembership relation 2Mn � B �Mn. LetFM+ := �M+ : M 2 FM	 :Then (i) and (ii) below hold.(i) FM+ is rigidly de�nable over the lass FM of frame models.524This is so beause  (; x) is in the language of K�, whih is the same as the language of ! expanded witha onstant symbol .525by K 6j= n 6=  (i.e. by (9M 2 K)M j= n = ) and sine under any evaluation of the variables (in a memberof K) the value of the onstant term �n oinides with the element n of !.526One-by-one de�nability is not only weaker than uniform de�nability, but also it is muh less satisfatoryfrom the point of view of re-apturing the intuitive idea of de�nability. In our opinion one-by-one de�nabilitydoes not apture the intuitive notion of de�nability while uniform de�nability does. (All the same, one-by-onede�nability is useful as a mathematial auxiliary onept.)



4.3.1 APPLICATION TO RELATIVISTIC GEOMETRIES 241(ii) For every M+ 2 FM+ let M++ := hM+;L; LT ;LPh;LS;2Li be the expansion of M+,where LT ;LPh;LS;L are, respetively, the sets of time-like, photon-like, spae-like, andall lines as de�ned in item 4 of Def.4.2.3(I); and 2L � Mn� L is the membership (orequivalently the inidene) relation between points (elements of Mn) and lines. Then thelass FM++ := �M++ : M+ 2 FM+ 	is rigidly de�nable over the lass FM of frame models.Proof:Proof of (i): The new sort nF together with the projetion funtions are rigidly de�nable overFM, therefore we will pretend that nF is an old sort of FM. In de�ning FM+ over FM up tounique isomorphism, �rst we de�neR := f hm; pi 2 B � nF : m 2 Obs gas a new relation. Then we de�ne the new auxiliary sort U to be R together with pj0; pj1 andwe forget R as a relation (but we keep it as a sort named U). Then we de�ne the equivalenerelation � on U by sayinghm; pi � hk; qi def() wm(p) = wk(q); formally:hm; pi � hk; qi def() (8b 2 B) [W(m; p; b)$W(k; q; b) ℄;while if we want to get rid of the notation \hm; pi" we an write the following. Let a; d 2 U .Then a � d def() (8b 2 B) [W(pj0(a); pj1(a); b)$W(pj0(d); pj1(d); b) ℄:Then we de�ne the new sort Mn := U=� together with 2 � U �Mn. From these data �nallywe de�ne the \membership" relation eMn � B�Mn as follows. Let b 2 B and e 2 Mn. Thenb eMn e def() (9a 2 e)W(pj0(a); pj1(a); b):So far we have de�ned Mn and eMn, hene all parts of (an isomorphi opy of) FM+ havebeen de�ned (over FM). The \rigid-ness" (i.e. \uniqueness") part of de�nability stated in (i)omes from the fat that the axiom of extensionality holds for eMn, i.e.(8e; e1 2 Mn) [ e = e1 $ (8b 2 B)(b eMn e$ b eMn e1) ℄:Proof of (ii): By item (i) it is suÆient to prove that FM++ is rigidly de�nable over FM+. Inde�ning FM++ over FM+ up to unique isomorphism, �rst we de�neR := fhh; ii 2 B � F : h 2 Obs [ Ph; i 2 n; (h 62 Obs ) i = 0) gas a new relation. Then we de�ne the new auxiliary sort U to be R together with pj0; pj1 andwe forget R as a relation (but we keep it as a sort named U). Intuitively, the elements of Uwill ode the lines.527 We de�ne a kind of inidene relation E � Mn � U as follows. Lete 2 Mn and ` 2 U . Then527We ode lines by elements of U aording to the following intuition. Photon-like lines and time-like linesare oded by hh; 0i where h is a photon or an observer (then hh; 0i odes the life-line of h). Spae-like lines areoded by an observer h and an axis �xi (i 6= 0) and the oded line is what h sees on the �xi axis i.e. it is wh[�xi℄.



242 4.3 DEFINABILITY IN MANY-SORTED LOGICe E `def()[ pj1(`) = 0 ^ pj0(`) 2Mn e ℄ _ W0<i2n[ pj1(`) = i ^ (9q 2 �xi) (e = wpj0(`)(q))528 ℄.Then we de�ne the equivalene relation � on U as follows. Let `; `0 2 U . Then` � `0 def() (8e 2 Mn) (e E ` $ e E `0):We de�ne the sort L := U=� together with the membership relation 2 � U � L. Now, the\membership" (or inidene) relation eL � Mn � L is de�ned as follows. Let e 2 Mn and` 2 L. Then e eL ` def() (9`0 2 `) e E `0:Finally, the unary relations LT ;LPh;LS on L are de�ned asLT := f ` 2 L : (9`0 2 `) ( pj0(`0) 2 Obs ^ pj1(`0) = 0 ) g ;LPh := f ` 2 L : (9`0 2 `) ( pj0(`0) 2 Ph ^ pj1(`0) = 0 ) g ;LS := f ` 2 L : (9`0 2 `) ( pj0(`0) 2 Obs ^ pj1(`0) > 0) g :So far we have de�ned L;LT ;LPh;LS and eL, hene all parts of (an isomorphi opy of)FM++ have been de�ned (over FM+). The \rigid-ness" (i.e. \uniqueness") part goes exatlyas in the ase of (i).Our next proposition says, roughly, that the topology part T (of our geometries) is de�nableover the \observational" models M.PROPOSITION 4.3.19 Let FM+ be as in Proposition 4.3.18 above. For every M+ 2 FM+let hM+; T0; 2i be the expansion of M+ with the subbaseT0 = �S(e; ") : e 2 Mn; " 2 +F 	for the topology T (as de�ned in item 13 of Def.4.2.3(I)) and with the (standard) membershiprelation 2 � Mn� T0. Then the lassFM++ := � hM+; T0; 2i : M+ 2 FM+ 	is rigidly de�nable over the lass FM of frame models. Roughly, this means that the (\heart"of the) topology part of our geometries assoiated with FM is also de�nable over FM, but f.the disussion in (? ? ?) of Remark 4.2.9 on p.155.Proof: Let FM+; FM++ be as above. By Prop.4.3.18(i) it is suÆient to prove that FM++ isrigidly de�nable over FM+. In de�ning FM++ over FM+ up to unique isomorphism, �rst wede�ne the pseudo-metri g : Mn�Mn o�! F as a new relation as it was de�ned in item 12 ofDef.4.2.3(I) (p.145). It an be heked that the just quoted de�nition of g an be translatedinto a �rst-order formula in the language of FM+. Then we de�neR := � he; "i : e 2 Mn; " 2 +F 	528We note that \e = wpj0(`)(q)" is a formula sine the following is a formula.(8b 2 B) [ b 2 e $ W (pj0(`); q; b) ℄.



4.3.1 APPLICATION TO RELATIVISTIC GEOMETRIES 243as a new relation. Then we de�ne the new auxiliary sort U to be R together with pj0; pj1 andwe forget R as a relation (but we keep it as a sort named U). Then we de�ne the equivalenerelation � on U by sayinghe; "i � he1; "1i def() (8e2 2 Mn) ( g(e; e2) < " $ g(e1; e2) < "1 ):(Of ourse one uses the projetion funtions pj0; pj1 to formalize the above de�nition of �.)Then, we de�ne the new sort T0 := U=� together with the membership relation 2U;T0 �U � T0. Finally we de�ne the \membership" relation e � Mn � T0 as follows. Let e 2 Mn,A 2 T0. Then e e A def() (9a 2 U) [ a 2U;T0 A ^ g(pj0(a); e) < pj1(a) ℄:So far we have de�ned T0 and e, hene all parts of (an isomorphi opy of) FM++ have beende�ned (over FM+). The \rigid-ness" (i.e. \uniqueness") part goes exatly as in the ase ofProp.4.3.18(i).In onnetion with the following two propositions reall that alternative versions T 0 andT 00 of the topology part T of our geometries were de�ned in Def.4.2.30 (p.175). Further, T 00and T 000 are subbases for T 0 and T 00, respetively, as de�ned in Def.4.2.30.PROPOSITION 4.3.20 Proposition 4.3.19 remains true if we replae T0 by T 000 in it, whereT 000 was de�ned in Def.4.2.30(ii).We omit the easy proof.Our next proposition says, roughly, that the topology part T 0 (of our geometries) is de�n-able over the \observational" models M, assuming Bax� +Ax(p ).PROPOSITION 4.3.21(i) For every frame modelM letM+ be de�ned as in Prop.4.3.18, i.e.M+ := hM;Mn; 2Mni.Further, let hM+; T 00; 2i be the expansion of M+ with the subbase T 00 for T 0, where T 00is de�ned in Def.4.2.30(i); and with the membership relation 2 � Mn � T 00. Then thelass Mod(Bax� +Ax(p ))+ := � hM+; T 00; 2i : M 2 Mod(Bax� +Ax(p ))	is rigidly de�nable over the lass Mod(Bax� +Ax(p )).(ii) Sine in Bax� +Ax(p ) T 00 is a base for our topology T 0, for all pratial purposes (i)\means" that the topology T 0 is de�nable over these models (f. (? ? ?) on p.155).We omit the proof, but we note that a proof an be obtained using Propositions 4.2.16 (p.161),4.2.64 (p.208), f. also Thm.4.2.35 (p.179) and the proof of Thm.4.2.33 (p.177).Our next three theorems say, roughly, that our lass Ge(Th) of relativisti geometries isde�nable over the orresponding lass of observational models.529529These three theorems were stated as Theorem 4.2.40 in the previous sub-setion on p.182.



244 4.3 DEFINABILITY IN MANY-SORTED LOGICTHEOREM 4.3.22 The lass Ge(Th) is de�nable over the lass Mod(Th), assuming thatn > 2 and Th is a set of formulas in our frame language suh that Th j= Bax�+Ax(k)� +Ax(Triv t)� +Ax(diswind)+Ax(p ):More preisely, instead of de�nability of the topology part T we laim de�nability of only asubbase T0 for T , together with 2 � Mn� T0 of ourse.530Proof: The theorem follows by Propositions 4.3.18 (p.240), 4.3.19 (p.242) and by Theo-rems 4.2.11 (p.158), 4.2.19 (p.163) and 4.2.22 (p.168). Cf. Remark 4.2.9 (p.153).Conjeture 4.3.23 We onjeture that in the above theorem Ax(diswind) is needed (beausewe onjeture that ?r is not �rst-order de�nable in Mod(Th n fAx(diswind)g + Ax), whereTh is as in Thm.4.3.22 above and Ax is531 Ax~+Ax(ext)+Ax(eqtime)), f. Figure 93.�
`; `1 ` `1`2 `3 `2 `3`4 `5

Figure 93: We onjeture that Ax(diswind) is needed in Thm.4.3.38, i.e. that without assum-ing Ax(diswind) ?r is not de�nable. (Hint: `; `1; : : : 2 LPh, ` ?r `1 by losing ?r up underlimits; and ` ?r `1 ) `2 ?r `3 ) `4 ?r `5 ) : : :, by losing ?r up under parallelism.)The theorem below says that if in Thm.4.3.22 above Basax is assumed in plae of Bax�then the assumptions n > 2, Ax(k)� and Ax(diswind) are not needed.THEOREM 4.3.24 The lass Ge(Th) is de�nable over the lass Mod(Th), assuming that This a set of formulas in our frame language suh that Th j= Basax+Ax(Triv t)� +Ax(p ).(More preisely instead of de�nability of T we laim de�nability of T0 only.)Proof: The theorem follows by Propositions 4.3.18 (p.240), 4.3.19 (p.242) and by Theo-rems 4.2.11 (p.158), 4.2.21 (p.166). Cf. the proof of Thm.4.3.22 and Remark 4.2.9 (p.153).In onnetion with the next two theorems reall that Ge0(Th) and Ge00(Th) are alternativeversions of Ge(Th) and are introdued in De�nition 4.2.39 (p.181).530Cf. the disussion of de�nability of T in (? ? ?) of Remark 4.2.9 on p.155.531For the relevane of Ax f. Thm.4.3.38 (p.261). In brief, we will have to add Ax to Th when proving theother diretion, i.e. that Mod(Th) is also de�nable over Ge(Th).



4.3.3 ELIMINABILITY OF DEFINED CONCEPTS 245THEOREM 4.3.25(i) Ge0(Th) is de�nable over Mod(Th), for any set Th of formulas in our frame language.(More preisely instead of de�nability of T we laim de�nability of T0 only.)(ii) Ge00(Th) is de�nable over Mod(Th),532 assuming that Th is a set of formulas in ourframe language suh that Th j= Bax� +Ax(p ).Proof: The theorem follows by Propositions 4.3.18, 4.3.19, 4.3.20, 4.3.21. Cf. the proof ofThm.4.3.22 and Remark 4.2.9 (p.153).
4.3.3 Eliminability of de�ned onepts.Notation 4.3.26 For a lass K of (many-sorted, similar) models, Fm(K) denotes the set offormulas of the language of K. Hene Th(K) � Fm(K). Sometimes we refer to Fm(K) as thelanguage of K.533 �THEOREM 4.3.27 (First translation theorem) Let K and K+ be two lasses of (many-sorted) models. Assume that K+ is a generalized expansion of K. Then there is a \natural"translation mapping Tr : Fm(K+) �! Fm(K)having the following property (alled preservation of meaning):534Assume  (�x) 2 Fm(K+) is suh that all its free variables (indiated as �x)belong to \old"535 sorts, i.e. to sorts of K. ThenK+ j= [ (�x) $ Tr( )(�x) ℄:(?) Further, for all  2 Fm(K+) K+ j=  , K j= Tr( ):Moreover, Tr is very simple (transparent) from the omputational point of view, e.g. it isTuring-omputable in linear time.532Cf. Prop.4.3.21(ii) in onnetion with de�nability of T 0 in Ge00(Th).533Aording to our philosophy, Fm(K) is the language, while the system of basi symbols (like relationsymbols, sort symbols et.) is the voabulary of this language, f. Convention 4.3.1 on p.220. We note thisbeause some logi books use the word \language" for what we all the voabulary (of a language or a model).534The existene of suh a translation mapping Tr is often alled in the literature \uniformredution property", f. Hodges [130, p.640℄. A result of Pillay and Shelah is that for �rst order axiomati-zable lasses impliit de�nability without taking reduts implies the redution property, f. [213℄. Cf. alsoLemma 12.5.1 in Hodges [130, p.641℄.535A symbol (e.g. a sort) is alled old if it is available already in K (and not only in K+).



246 4.3 DEFINABILITY IN MANY-SORTED LOGICTheorem 4.3.27 follows from the stronger Theorem 4.3.29 (and its proof) to be stated soon,so we do not prove it here.COROLLARY 4.3.28 Let K and K+ be lasses of one-sorted models suh that the name oftheir sorts agree. Then K is de�nable in K+ in the lassial sense, i.e. suh that we allow onlystep (1) in the de�nitions i� K is de�nable in K+ in the new many-sorted sense, i.e. suh that weallow the use of steps (1) - (2.2). In other words, the possibility of de�ning new universes (andthen forgetting them) does not reate new de�nitional expansions among one-sorted models.�Before stating the stronger version of Theorem 4.3.27, let us ask ourselves in what senseTr in Thm.4.3.27 preserves the meanings of formulas. To answer this question, let us notiethat the onlusion of Theorem 4.3.27 implies (i) and (ii) below.(i)  and Tr( ) have the same free variables �x, and in some intuitive sense they say thesame thing about these variables �x.(ii) Let M 2 K+, M� be the redut of M in K and let �a be a sequene of members of Uv(M�)mathing the sorts of �x. In other words �a is an evaluation of the variables �x. ThenM j=  [�a℄ () M� j= (Tr( ))[�a℄ ;f. the notation on p.231. Intuitively, whatever an be said about some \old" elements�a in a model M in K+, it an be said (about the same elements �a) already in the \old"model M� (in K). This will be generalized to \new" elements also (i.e. to arbitraryelements), in our next theorem.Reall that K is a redut of K+. In some sense (i) and (ii) above mean that the poorer lass Kand the riher lass K+ of models are equivalent from the point of view of expressive power oflanguage. So, the \language + theory" of K+ is equivalent to the \language + theory" of K inmeans of expression. Therefore, on some level of abstration, we may onsider the languagesof K and K+ to be the same exept that they536 hoose di�erent \basi voabularies" forrepresenting this language. (In passing we note that a stronger form of this kind of samenesswill appear in the form of de�nitional equivalene ��, f. beginning with p.255 (and the �gureon p.260).)Generalization of Theorem 4.3.27 to permitting free variables of new sorts to ourin  and Tr( )Let us turn to disussing the restrition in Theorem 4.3.27 whih says (in statement (?))that the free variables of  belong to the sorts of K. The theorem does admit a generalizationwhih is without this restrition on the free variables. This will be stated in Theorem 4.3.29below. But then two things happen disussed in items (I), (II) below.(I) Consider the proess of de�ning K+ over K as a sequene of steps (as desribed onp.235). Assume that a relation like pji or 2U onneting a new sort to an old one isintrodued in one step and then is forgotten at the (last) redut step. Then we all therelation (e.g. pji) in question an auxiliary relation of the de�nition of K+ over K. Now,for the generalization of Theorem 4.3.27 we have in mind, we have to assume that all536i.e. K and K+



4.3.3 ELIMINABILITY OF DEFINED CONCEPTS 247auxiliary relations (of the de�nition of K+) remain de�nable in K+. We will formulatethis ondition as \K+ and K have a ommon (expliit) de�nitional expansion (withouttaking reduts)".That K+ and K have a ommon de�nitional expansion expresses that K+ is de�nable overK with reoverable auxiliaries beause of the following. Assume that K++ is a ommonde�nitional expansion of K+ and of K. Then K+ is a redut of K++ whih is a de�nitionalexpansion of K, hene K+ is de�nable in K. Also, all the relations and sorts that getforgotten in the redut-forming from K++ to K+ are de�nable in K+ sine K++ is ade�nitional expansion of K+.(II) The formulation of the theorem gets somewhat ompliated. Intuitively, the generalizedtheorem says that all new objets537 an be represented as equivalene lasses of tuplesof old objets, and then (using this representation) whatever an be said about elementsof Uv(M) in an expanded model M 2 K+ an be already said in the redut M� 2 K ofM. This intuitive statement is intended to serve as a generalization the text below item(ii) in the disussion of the intuitive meaning of Theorem 4.3.27 (presented immediatelybelow Theorem 4.3.27). Cf. Figure 94.Notation: Var(Ui) denotes the (in�nite) set of variables of sort Ui (where Ui is treated as asort symbol or equivalently Ui is the name of one of the universes of the models in K+).THEOREM 4.3.29 (Seond translation theorem) Assume K is a redut of K+ and K andK+ have a ommon de�nitional expansion (without taking reduts). This holds e.g. wheneverK+ is a de�nitional expansion of K. Assume Unew1 ; : : : ; Unewk are the new sorts.538 Then thereis a translation mapping Tr : Fm(K+) �! Fm(K)for whih the following hold. For eah Unewi there is a formula odei(x; ~x) 2 Fm(K+) suh thatthe following 1-2 hold.1. x 2 Var(Unewi ) and ~x is a sequene of variables of old sorts.2. (a){() below hold.(a) K+ j= 8x 9~x odei(x; ~x), 539(b) K+ j= [ odei(x; ~x) ^ odei(y; ~x) ℄ ! x = y, where y 2 Var(Unewi ). 540() Our translation mapping541 Tr : Fm(K+) �! Fm(K)537By objets we mean elements of some sort.538I.e. they are available in K+ but not in K.539Note that here \8x" means \8x 2 Unewi " automatially sine we know that x is of sort Unewi (as a variablesymbol of the language of K+).540Note that items (a), (b) mean that odei represents an unambiguous oding of elements of Unewi withequivalene lasses of tuples of elements of old sorts, f. (II) preeding the statement of the theorem and thetext immediately below the theorem.541�xed at the beginning of the formulation of the present theorem



248 4.3 DEFINABILITY IN MANY-SORTED LOGICsatis�es the following stronger 542 property of meaning preservation. Assume (y; �z) 2 Fm(K+) is suh that y 2 Var(Unewi ) and �z is (a sequene of variables) ofold sorts suh that the variables in �z are distint from those ourring in ~y. ThenK+ j= odei(y; ~y) ! [ (y; �z)$ (Tr( ))(~y; �z) ℄:Intuitively, whatever is said by  about y and �z, the same is said by the translatedformula Tr( ) about the ode ~y of y and �z. The ase when  ontains an arbitrarysequene, say �y, of variables of various new sorts is a straightforward generalizationand is left to the reader.
Fm(K+) 3 odeM+i Ui  2 Fm(K+)

Tr( ) 2 Fm(K)M 2 KK+ 3M+
Figure 94: Illustration for the seond translation theorem (Thm.4.3.29). Whatever an be saidof a new element in M+ an be said of its \ode" in the old model M. (In the Figure, theodes of the new elements have length 1.)We note that the intuitive meaning of \odei(x; �y)" is \�y odes x". Property (b) thensays that \�y odes only one element", property (a) says that \every new element has a ode",and property () then tells us that \whatever an be said of a new element x in the newlanguage, an be said of any of its odes �y in the old language", f. (II) before the statementof Theorem 4.3.29 and Figure 94.Proof:(I) The ase of step (2.1): Assume that K+ is obtained from K by applying step (2.1) sothat we de�ned Unew def= R where R is an old r-ary relation. For simpliity we assume r = 2and R � U0 � U1 where U0; U1 are old sorts. Then the new symbols (in K+) are Unew andpj0; pj1. We want to represent objets (variables) of sort Unew with pairs of objets of (\old")sorts. To this end, we �x an injetive funtionrep : Var(Unew) ��! Var(U0)� Var(U1)suh that the values rep(x)i of rep are all distint.543 For simpliity, we will denote rep(x)i byxi. We also assume that x0; x1 do not our in the formulas to be translated.542stronger than in Theorem 4.3.27543rep(x) = hrep(x)0; rep(x)1i; and rep(x)i = rep(y)j i� hx; ii = hy; ji.



4.3.3 ELIMINABILITY OF DEFINED CONCEPTS 249Now, we de�ne Tr by reursion as follows.� Tr((9x 2 Unew) ) := (9x0 2 U0; x1 2 U1)[R(x0; x1) ^ Tr( )℄; if x 2 Var(Unew);� Tr((9y) ) := (9y)Tr( ); if y is a variable of old sort;� Tr(: ) := :Tr( ), Tr( ^ ') := Tr( ) ^ Tr(');� Tr(x = y) := (x0 = y0 ^ x1 = y1), for any x; y 2 Var(Unew);� for any other atomi formula  , Tr( ) is obtained from  by replaing eah ourreneof pji(x) with xi (i.e. with rep(x)i) in  for every variable x 2 Var(Unew) and i 2 2; i.e.Tr( ) :=  (pji(x)=xi)x2Var(Unew);i<2.We introdue the formula ode(x; x0; x1) (saying expliitly that the values of x0; x1 formreally the ode of the value of x) as follows:ode(x; x0; x1) def() [ x0 = pj0(x) ^ x1 = pj1(x) ^ R(x0; x1) ℄:Now, it is not diÆult to hek that Tr : Fm(K+) �! Fm(K) is well de�ned, and (a)-()in the statement of Theorem 4.3.29 hold.(II) The ase of step (2.2): Assume that K+ is obtained from K by applying step (2.2) sothat the only new symbols (in K+) are Unew = U=R and 2, where U is an (old) sort of K, andR(x; y) 2 Fm(K) where x; y are variables of sort U .We �x an injetive funtion rep : Var(Unew) ��! Var(U)and we denote rep(x) by x. So x 2 Var(U) if x 2 Var(Unew). As before, we assume that thevariables x do not our in the formulas to be translated.Now, we de�ne Tr by reursion as follows.� Tr((9x 2 Unew) ) := (9x 2 U)Tr( ); if x 2 Var(Unew);� Tr((9y) ) := (9y)Tr( ); if y is a variable of old sort;� Tr(: ) := :Tr( ), Tr( ^ ') := Tr( ) ^ Tr(');� Tr(x = y) := R(x; y), where x; y 2 Var(Unew);� Tr(2(z; x)) := R(z; x) and Tr( ) :=  ; for any other atomi formula  with no variablesof new sort.We introdue the formula ode(x; x) as follows:ode(x; x) def() 2(x; x) :Now, it is not diÆult to hek that Tr : Fm(K+) �! Fm(K) is well de�ned, and (a)-()in the statement of Theorem 4.3.29 hold.(III) The ase of expliit de�nability without taking reduts: If K+ is obtained fromK by step (1) then we have an obvious translation with all the good properties known fromlassial de�nability theory.544544In the ase of step (1), \ode" is not needed beause there are no new sorts involved. Hene (if we wantto preserve uniformity of the steps) we an hoose ode(x; y) to be x = y.



250 4.3 DEFINABILITY IN MANY-SORTED LOGICBy this we have overed all the steps (i.e. (1){(2.2)) whih might our in an expliit de�-nition. I.e. we de�ned ode, Tr to all three kinds of \one-step" expliit de�nitions representedby items (1){(2.2).Assume now that K+ is expliitly de�ned over K without taking reduts. Now, the de�nitionof K+ is a �nite sequene of steps with eah step using one of items (1), (2.1), (2.2). Hene bythe above, we have a meaning preserving translation mapping Trk for the k'th step for eahnumber k < n := \number of steps in the de�nition of K+":Besides Trk we also have a formula odek for eah number k. Also for eah Trk we havethat (a)-() in the statement of Theorem 4.3.29 hold. But then we an take the ompositionTr := Tr1 Æ Tr2 Æ : : : Æ Trn of these meaning preserving funtions, and then the ompositiontoo will be meaning preserving if we also ombine the formulas ode1; : : : ; oden into a single\big" formula ode.One an hek that for the just de�ned Tr and ode, (a)-() in the statement of Theo-rem 4.3.29 hold.(IV) The general ase: Assume now that K is a redut of K+ and that K++ is a ommonde�nitional expansion of K and K+. By the previous ase we have translation mappings Tr1 :Fm(K++) �! Fm(K) and Tr2 : Fm(K++) �! Fm(K+) together with appropriate ode1; ode2whih satisfy (a)-() in the statement of Theorem 4.3.29. Note that Fm(K+) � Fm(K++).Now we de�ne Tr def= Tr1 � Fm(K+); ode(x; ~x) def= Tr2(ode1(x; ~x))whenever x is a variable of new sort in the language of K+. One an hek that Tr and odeas de�ned above satisfy (a)-(). In more detail: Assume that Ui is a new sort of K+, i.e. Ui isnot a sort of K. Then Ui is a new sort of K++, therefore there is ode1i (x; �x) 2 Fm(K++) whih\mathes" Tr1. We annot use ode1i in the interpretation from K+ to K beause ode1i maynot be in the language of K+. We will use Tr2 to translate ode1i into the language of K+ asfollows. Sine K+ is an expansion of K, all the variables in x; �x have sorts whih our in K+.Thus by the properties of Tr2 we haveK++ j= ode1i (x; �x)$ Tr2(ode1i (x; �x)):Let odei(x; �x) def= Tr2(ode1i (x; �x)). Then odei(x; �x) 2 Fm(K+) andK+ j= odei(x; �x)! [ (x; �x)$ Tr( )(�x; �z)℄beause K++ j= ode1i (x; �x)! [ (x; �z)$ Tr1( )(�x; �z)℄:This �nishes the proof.More is true than stated in Theorem 4.3.29, namely, the existene of a translation mappingas in the theorem is atually suÆient for de�nability, as Theorem 4.3.31 below states.Remark 4.3.30 (In onnetion with Theorems 4.3.27, 4.3.29.) These theorems state thatthe expressive powers of two languages Fm(K+) and Fm(K) oinide. However, the proofs ofthese theorems prove more. Namely, there exists a omputable translation mapping Tr atingbetween the two languages. Even more than this, Tr preserves the logial struture of theformulas i.e. in the sense of algebrai logi, Tr is a \linguisti homomorphism". (Whetherone is interested in this extra property of being a \linguisti homomorphism" is related to a



4.3.3 ELIMINABILITY OF DEFINED CONCEPTS 251di�erene between the algebrai logi approah and the abstrat model theoreti approah tode�ning the equivalene of logis [hene, in partiular, to how one approahes haraterizationsof logis like the elebrated Lindstr�om theorems℄.) �The following theorem says that eliminability of new symbols is an essential feature ofexpliit de�nability: If the new relations and sorts are arbitrary but are eliminable in thesense that there exist a mapping Tr : Fm(K+) �! Fm(K) together with \oding" formulasodei(x; ~x) for all new sorts Ui of K+ whih satisfy 1,2 in Theorem 4.3.29, then we an expliitlyonstrut these new relations and sorts by using our onrete steps (1) - (2.2) (in suh a waythat some additional auxiliary new sorts and relations get de�ned in the way, but then we anforget these).We note that both (ii) and (iii) in Theorem 4.3.31 say that K+ is a speial redut of somede�nitional expansion of K. In (ii) we allow to forget relations and sorts whih then an be\de�ned bak" (i.e. K+ is a redut of its de�nitional expansion, so we forget the relations andsorts of a de�nitional expansion). In (iii) we allow to forget only as many relations and sortsthat the remaining ones still \�x" the new sorts and relations.If Tr and odei satisfy the onlusion of Theorem 4.3.29, then we say that they interpretK+ in K.545THEOREM 4.3.31 Assume K is a redut of K+. Then (i) and (ii) below are equivalent andthey imply (iii). If, in addition, K+ is losed under taking ultraproduts, then (i)-(iii) beloware equivalent.(i) K+ is interpreted in K by some Tr and odei, i.e. the onlusion of Theorem 4.3.29 istrue: there are Tr and odei satisfying 1-2 of Theorem 4.3.29.(ii) K+ and K have a ommon de�nitional expansion.(iii) K+ is rigidly de�nable over K.Proof: Proof of (i) ) (ii): Assume that Tr : Fm(K+) �! Fm(K) and odei 2 Fm(K+) aresuh that 1,2 in Theorem 4.3.29 hold. We want to show that K+ is expliitly de�nable overK with reoverable auxiliaries, i.e. that K+ and K have a ommon de�nitional expansion K++.Now we set to de�nining K++.Let Ui be a new sort of K+. First from the formula odei we will extrat an expliitde�nition for Ui, f. Figure 95.Consider odei(x; �x). De�ne546Æ(�x) def= Tr(9xodei(x; �x)) and�(�x; �y) def= Tr(9x(odei(x; �x) ^ odei(x; �y))).Now Æ(�x); �(�x; �y) 2 Fm(K). Let �x = hx1; : : : ; xki and let the sorts of x1; : : : ; xk beUj1 ; : : : ; Ujk. These latter are sorts of K. Fix a model M 2 K.First we de�ne the relation Snewi by Snewi $ Æ, i.e.545Cf. the de�nition of interpretations in Hodges [130, p.212, 221℄. The existene of a tuple Tr; odei inter-preting K+ in K (as in Theorem 4.3.29) is stritly stronger than the uniform redution property in [130, p.640℄.Atually, the existene of Tr; odei is equivalent to K+ being oordinatised over K in the sense of [130, p.644℄.This equivalene is proved in [21℄.546Æ stands for \domain of odei�1" while � stands for \equivalene relation de�ned by odei�1".



252 4.3 DEFINABILITY IN MANY-SORTED LOGICSnewi def= f�u 2 Uj1 � : : :� Ujk : M j= Æ(�u)g.Then Snewi is a k-ary relation de�ned in M by step (1). Seond, from Snewi we de�ne thenew sort Dnewi and pji1; : : : ; pjik by step (2.1):Dnewi def= Snewi andpjir def= fh�u; uri : �u 2 Dnewi g, for 1 � r � k.Now we de�ne the new binary relation Rnewi by step (1) as follows:Rnewi def= fhv; wi 2 2Dnewi : M j= �(pji1(v); : : : ; pjik(v); pji1(w); : : : ; pjik(w)).Intuitively, Rnewi is the relation de�ned by � \projeted up" to Dnewi . Then Rnewi is anequivalene relation on Dnewi , by the properties of odei;Tr and by the de�nitions of �; Æ. Wethen an de�ne, as in step (2.2), the fator-sort:Ui def= Dnewi =Rnewi ,2idef= fhv; v=Rnewi i : v 2 Dnewi g.LetN def= hM; Dnewi ; Ui; pji1; : : : ; pjik; 2i; Snewi ; Rnewi i.Let M+ 2 K+ be any expansion of M. The name of the sort Ui in N is the same as inM+, but its \value" may be di�erent, i.e. UNi may be di�erent from UM+i . However, there isa natural bijetion between these sets, as follows. LetCodei(u; �x) def= (9v 2 Dnewi )(2i(v; u) ^Vr pjir(v; xr) ^ Snewi (�x)).Then Codei(u; �x) is in the language of N. By the above onstrution and by the propertiesof our translation, there is a bijetion f : UNi �! UM+i suh that for all u 2 UNi and �a 2 kUvMN j= Codei[u; �a℄ i� M+ j= odei[f(u); �a℄.See Figure 95.Let Mi be the isomorphi opy of N where we replae eah element u of UNi by f(u). ThenMi is a de�nitional expansion of M, obtained by steps (1),(2.1),(1),(2.2). Let U1; : : : ; Ut beall the new sorts of K+ and let us do the above for all new sorts. Let M0 be the de�nitionalexpansion of M we get by expanding M with all the new sorts and relations ofMi, for 1 � i � t.Then M0 ontains all the new sorts of K+, UvM+ � UvM0, and moreover, for all 1 � i � tM0 j= Codei[u; �a℄ i� M+ j= odei[u; �a℄.Now we set to de�ning the new relations of K+ in M0.Let Tj be a new relation in K+ with arity hU1; : : : ; Umi. Assume that, of these, Ui1 ; : : : ; Ui`are sorts of K, while the rest, Uj1 ; : : : ; Ujs are new sorts of K+. Let � def= Tr(Tj(�y)). Then bythe properties of the translation funtion Tr we have thatK+ j= odej1(yj1; �x1) ^ : : : ^ odejs(yjs; �xs)! [Tj(�y)$ �(�x1; : : : ; �xs; yi1; : : : ; yi`)℄.
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Snewi

2iRnewiDnewi pji1pji2pji3
M

Figure 95: Illustration for the proof of Theorem 4.3.31 (i) ) (ii). From the formula odei weonstrut an expliit de�nition for Ui.Now we de�ne the new relation Tj in M0 by the formulaTj(�y)$ 9�x1 : : : �xs(Vr Codejr(yj1; �xr) ^ �(�x1; : : : ; �xs; yi1; : : : ; yi`)).By the onstrution, Tj denotes the same relation in M0 and in M+. Let now M++ be thede�nitional expansion of M0 with all the new relations Tj, let L def= fM++ : M 2 Kg and letK++ def= fN 2 L : N � VoK+ 2 K+g. Then K++ is a de�nitional expansion of K and K+ is aredut547 of K++. We want to show that K++ is a de�nitional expansion of K+ also. The new(relative to K+) sorts and relations of K++ areSnewi ; Dnewi ; pjir; Rnewi and 2iwhen Ui is a sort of K+ whih is not present in K. We de�ne Snewi ; Dnewi ; pjir; and Rnewi by usingsteps (1),(2.1),(1) as we did in K. Sine K+ is an expansion of K, and these were all de�nablein K, we immediately have that the same de�nition will work for them in K+, too. We thende�ne 2i by step (1) (and not by step (2.2) sine Ui is an \old" sort in K+) as follows:2i(v; u)$ 9�x(odei(u; �x) ^ pji1(v; x1) ^ : : : ^ pjik(v; xk))).By the above, (i) ) (ii) has been proved. (ii) ) (i) was proved as Theorem 4.3.29.Proof of (i) ) (iii): Assume that K+ is interpreted in K by some translation mapping Trand formulas odei. Then K+ is de�nable in K, as we have seen above. By the properties of atranslation mapping then K+ is rigidly de�nable over K.547We introdued L into the piture only beause we did not assume that K+ is losed under isomorphismand we want K+ be a redut of K++.



254 4.3 DEFINABILITY IN MANY-SORTED LOGICProof of (iii) ) (i): Here we will use Beth's de�nability theorem for one-sorted models(i.e. for de�ning relations only). Assume that K+ is rigidly expliitly de�nable over K. LetK++ be a de�nitional expansion of K and assume that K+ is a redut of K++. Let odei;Trbe a translation of K++ to K. Sine K+ is a redut of K++, then Tr : Fm(K+) �! Fm(K).Let Ui be a new sort of K+. Then Ui is a new (relative to K) sort of K++, therefore there isodei 2 Fm(K++) whih has good properties w.r.t. Tr. The problem is that odei may not bein Fm(K+). We will show that odei is expressible in Fm(K+), i.e. it is equivalent in K+ witha formula in the language of K+.For any new sort Ui of K+ let Ri be a new relation symbol and let �(Ri) be the set of thefollowing three formulas, where �i(�x; �y) is Tr(9x(odei(x; �x) ^ odei(x; �y)), as in the proof of(i) ) (ii):8x9�xRi(x; �x)9x(Ri(x; �x) ^Ri(x; �y))$ �i(�x; �y)(Ri(x; �x) ^ Ri(y; �x)) �! x = yThen �(Ri) is a set of formulas in the language of K expanded with one new relationsymbol Ri. For any new relation Tj of K+ let Ui1 ; : : : ; Ui` be the sorts of K, and Uj1 ; : : : Ujt bethe new sorts of K+ ourring in the arity of Tj and let �(Tj) denote the formulaTj(�y)$ 9�x1 : : : �xt(VrRj1(ujr ; �xr) ^ Tr(Tj(�y))(�x1; : : : ; �xt; yi1; : : : ; yi`)).Let � be the set of all the above formulas, i.e.� def= Sf�(Ri) : Ui is a new sort of K+g [ f�(Tj) : Tj is a new relation of K+g.Now, � is a set of formulas in the language of K+ expanded with new relation symbols Ri forall new sorts Ui. We will show that � is an impliit de�nition of hRi : Ui is a new sort in K+iin K+, in the usual sense. Indeed, let M+ 2 K+, �R0 def= hR0ii and �R00 def= hR00i i be systems ofonrete relations in M+ suh thathM+; �R0i j= � and hM+; �R00i j= �.Then, by using the onstrution of �, one an show that there is an isomorphism f betweenhM+; �R0i and hM+; �R00i suh that f is identity on the sorts of K, i.e.. f is identity on M 2 K,where M is the redut of M+ in K. Rigidity of K+ over K implies that then f is identity onM+ also, beause both Id and f are isomorphisms on M+ that are identity on M. Sine fis the identity, we get that �R0 = �R00. Thus in eah model M+ 2 K+ there is at most onesystem �R of onrete relations satisfying �. To be able to use the Beth theorem, we need thatthis property holds for all M+ in the axiomatizable hull Mod(Th(K+)) of K+ as well. By theKeisler-Shelah theorem, and by our assumption that K+ is losed under taking ultraprodutswe have that N 2 Mod(Th(K+)) i� an ultrapower IN=F of N is in K+. Assume that thereare two di�erent systems of relations satisying � in N. Then the same is true in IN=F . Thisontradits our earlier argument showing that on eah model M+ 2 K+ there is at most onesystem of relations satisfying �. Thus � is an impliit de�nition in the axiomatizable hullMod(Th(K+)) of K+. By Beth's theorem then eah of Ri is de�nable in the language of K+.Let i(x; �x) 2 Fm(K+) be suh that Th(K+) [ � j= Ri(x; �x) $ i(x; �x). By the onstrutionof � we also have that



4.3.4 DEFINITIONAL EQUIVALENCE OF THEORIES 255K++ j= odei(x; �x)$ Ri(x; �x).Thus, Tr � Fm(K+) toghether with the i's is a good translation from K+ to K. This�nishes the proof of Theorem 4.3.31.Remark 4.3.32 (Disussion of Theorem 4.3.31.) (i) Theorem 4.3.31 is true forarbitrary languages, we do not need that there are only �nitely many sorts or that we haveonly ountably many symbols in the language. (ii) The ondition that K+ is losed underultraproduts is needed for the diretion (ii) ) (i). An example showing this is the following.Let K be the lass of �nite linear orderings on sort U0. Let K+ be the lass of two-sortedmodels where the sorts are U0; U1, there is a �nite linear ordering both on U0 and on U1 andjU0j = jU1j. Now K+ is rigidly expliitly de�nable over K. But the lass UpK+ of all ultra-produts of members of K+ is not rigid over the lass UpK of all ultraproduts of members ofK. (To see this, take any in�nite ultraprodut of elements of K+. Then there is a nontrivialautomorphism of the linear ordering on U1.) However, it is not diÆult to see that if K and K+have a ommon de�nitional expansion, then UpK and UpK+ also have a ommon de�nitionalexpansion, whih would imply that UpK+ is rigid over UpK. Thus K and K+ do not have aommon de�nitional expansion. (iii) Thm4.3.48 together with Thm.4.3.31 will imply that ifK+ is rigidly de�nable over K and K is axiomatizable, then K+ is nr-impliitly de�nable overK. �
4.3.4 De�nitional equivalene of theories.In setion 4.3.3 we dealt with lasses K and L where L was an expansion of K. In this sub-setionwe turn to the ase when L is not neessarily an expansion of K.De�nition 4.3.33 Let K and L be two lasses of models. We say that they arede�nitionally equivalent , in symbols K �� L, iff they admit a ommon (expliit) de�nitionalexpansion M (without taking reduts).548Further, M �� N abbreviates fMg �� fNg. If M �� N, then we say that M and N arede�nitionally equivalent models. Two theories Th1, Th2 are alled de�nitionally equivalent iffMod(Th1) �� Mod(Th2). �Cf. also in Hodges [130℄ under the name \de�nitional equivalene" pp. 60{61; f. also Henkin-Monk-Tarski [120, Part I, e.g. p.56℄.We will see that one an say that two de�nitionally equivalent theories an be regarded asbeing essentially the same theory and the di�erene between them is only that their \syntatideorations" are di�erent (i.e. they \hoose" to represent their [essentially℄ ommon languagewith di�erent basi voabularies).The same applies to lasses of models K, L when K �� L. As an example, hoose K to beBoolean algebras with f\;�g as their basi operations while hoose L to be Boolean algebras548I.e. M is a de�nitional expansion (without taking reduts) of K and the same holds for L in plae of K.Note that Th(M) an be regarded as an impliit de�nition of M over K, and the same for L in plae of K.



256 4.3 DEFINABILITY IN MANY-SORTED LOGICwith f[;�; 0; 1g as basi operations. (Then K �� L.) At a ertain level of abstration, Kand L an be regarded as a olletion of the same mathematial strutures (namely, Booleanalgebras) and the di�erene (between K and L) is only in the hoie of their basi voabularies(whih is \\;�" in the one ase while \[;�; 0; 1" in the other). Summing it up: In somesense, de�nitionally equivalent theories Th1 �� Th2 an be onsidered as just one theory withtwo di�erent linguisti representations. The same applies to de�nitionally equivalent lassesof models.The relation �� de�ned above is symmetri and reexive. For ertain \administrative"reasons it is not transitive, but the ounterexamples (to transitivity) are so arti�ial that wewill not meet them (in this work). We ould de�ne ��� to be the transitive losure of �� andthen use ��� as de�nitional equivalene. If this were a logi book we would do that. However,in the present work we will not need ���, hene we do not disuss it, and we all�� de�nitionalequivalene (though it is ��� whih is the really satisfatory notion of de�nitional equivalene.)Disussion of the de�nition of ��(1) Assume K �� L. Then K and L agree on the ommon part of their voabularies.549 I.e.K �� L ) K � (VoK \ VoL) = L � (VoK \ VoL):(2) For any de�nitional expansion K+ of K we have K �� K+. In general, if K+ is an expansionof K and K is losed under taking ultraproduts, then K+ �� K i� K+ is rigidly de�nable overK, see Thm.4.3.31.(3) Assume K �� L. Then L and K are de�nable over eah other. Moreover one an hoosetheir de�nitions over eah other to be the same. Indeed, if M is the ommon de�nitionalexpansion of K and L mentioned in the de�nition of ��, then Th(M) is a de�nition of K overL as well as a de�nition of L over K.(4) De�nitional equivalene is stronger than mutual (expliit) de�nability: there exist lassesK and L suh that they are de�nable over eah other, yet K 6�� L (see Examples 4.3.46, p.266).Moreover, this is so even in the one-sorted ase: We an hoose K and L suh that both K and Lhave only one, ommon, sort. Suh an example an be found in Andr�eka-Madar�asz-N�emeti [22℄.(5) Assume K �� L. Then there is a bijetion-up-to-isomorphismf : K��!�Lbetween K and L, and there are de�nitions �K;�L suh that for all hM;Ni 2 f the followinghold:(i) M � (VoK \ VoL) = N � (VoK \ VoL)(ii) M and N have a ommon de�nitional expansion M+(iii) �K de�nes M+ over M and �L de�nes M+ over N.549As a ontrast, K ��� L does not imply this, however as we said we will not need the generality of ��� inthis work.



4.3.4 DEFINITIONAL EQUIVALENCE OF THEORIES 257Indeed, if M is a ommon de�nitional expansion of K and L with de�nitions �K;�L over Kand L respetively, then we an hoose f to bef = fhM � VoK;M � VoLi : M 2 Lg:(6) Assume K �� L. Then the bijetion-up-to-isomorphism f : K��!�L in (5) above hasthe following property. For all M 2 K, the automorphism group of M is isomorphi to theautomorphism group of f(M), in symbols550hAut(M); Æi �= hAut(f(M)); Æi:This is so beause of the following. Let M+ 2 M be suh that M+ is impliitly de�nablewithout taking reduts both over M and over f(M). Sine M+ is impliitly de�nable withouttaking reduts over M, eah automorphism of M extends in a unique way to an automorphismof M+, and this implies that the automorphism groups of M and M+ are isomorphi. We getthe same for f(M) and M+ ompletely analogously, and this proves that the automorphismgroups of M and f(M) are isomorphi.(7) Eah of the properties in items (3) and (5) are equivalent to K �� L. This is proved inThm.4.3.34 below.(8) For more on de�nitional equivalene, its importane, and for motivation for the way wede�ned and use �� we refer to [120, pp. 56-57, Remark 0.1.6℄, [130, pp. 58-61℄. �THEOREM 4.3.34 Let K and L be two lasses. Then (i)-(iii) below are equivalent.(i) K �� L(ii) There is a � suh that � de�nes K over L and � de�nes L over K.(iii) For every M 2 K there is N 2 L and for every N 2 L there is M 2 K suh that M andN have a ommon de�nitional expansion, and moreover the de�nitions of the expansionover M and over N an be hosen uniformly.Proof: Proof of (ii) ) (i): Assume � de�nes K over L and � de�nes L over K. Then thereare K+ and L+ suh that K+ is a de�nitional expansion of K, de�ned by �, and L is a redutof K+ and the analogous statement for L+. It is easy to see that then VoK+ = VoL+ =VoK[VoL[Vo�, where Vo� denotes the set of sort and relation symbols ourring in �.Let M def= K+ [ L+. Then M is an expansion of both K and L. Also, M j= � beause K+ j= �and L+ j= �. Thus, � is an nr-impliit de�nition of M both over K and over L.Proof of (iii) ) (i): Let �K;�L be the uniform de�nitions in (iii). Let M def=fM : M � VoK 2 K; M � VoL 2 L and �K de�nes M over M � VoK;�L de�nes M over M � VoLg. Then M is a lass of similar models, namely, VoM =VoK[VoL[Vo�K [Vo�L. Then both K and L are reduts of M, i.e. K = M � VoK et.,by (iii). Also, M j= �K [�L, thus M is a de�nitional expansion of both K and L.(i) ) (ii), and (i) ) (iii) was shown already in the disussion of ��.550f(M) exists only up to isomorphism, but we talk only about the automorphism group of f(M) whih isde�ned by the isomorphism type of M up to isomorphism. So this makes sense.



258 4.3 DEFINABILITY IN MANY-SORTED LOGICTHEOREM 4.3.35 Let K, L be two lasses of models and assume that IK is losed undertaking ultraproduts. Then (i) and (ii) below are equivalent.(i) K �� L(ii) K and L have a ommon extension whih is rigidly de�nable both over K and over L.Proof: Let M be a ommon rigidly de�nable expansion of K and L. Sine IK is losed undertaking ultraproduts, then IM is losed under taking ultraproduts, too. Hene we an applyThm.4.3.31 to obtain ommon de�nitional expansions K+ and L+ of K and M and of L and Mrespetively. We also may assume that the new sorts and relations in K+ and L+ have di�erentnames, i.e. VoK+ \ VoL+ = VoM. Then it is not diÆult to see that there is a ommonde�nitional expansion M+ of K+ and L+. Now, M+ is a ommon de�nitional expansion of Kand L.In onnetion with Theorem 4.3.35 we note that it is not diÆult to see that if K+ isnr-impliitly de�nable over K, then IK is losed under ultraproduts i� IK+ is losed underultraproduts.We will also need the following lemma.LEMMA 4.3.36 Let K, L and K+ be lasses of models. Assume that K+ is rigidly de�nableover K, IL is losed under taking ultraproduts, VoK+ \ VoL = VoK \ VoL, and K �� L.Then K+ �� L.Proof: Assume that K; L;K+ satisfy the onditions of the lemma. Let M be a ommonde�nitional expansion of L and K and let �;� be the respetive de�nitions of M over L andK. Sine IL is losed under taking ultraproduts and K �� L, we have that IK also is losedunder taking ultraproduts, and sine K+ is de�nable over K, then IK+ is losed under takingultraproduts. Thus by Thm.4.3.31, K and K+ have a ommon de�nitional expansion M+. Let�1;�1 be the respetive de�nitions of M+ over K and K+.We may assume that VoM is disjoint from VoK+ n VoK (by our assumption VoK+ \VoL = VoK\VoL), and that VoM+nVoK+ is disjoint from VoM. Hene VoM+\VoM =VoK.Let N 2 L be arbitrary. There are M 2 K and M+ 2 M suh that M+ is a ommonde�nitional expansion of N and M. There are M1 2 K+ and M+1 in M+ suh that M+1 is aommon de�nitional expansion of both M and M1. By VoM \VoM+ = VoK, the union ofM+ and M+1 is a model, M++. Then M++ is a ommon expansion of N and M1 2 K+. Sine� de�nes M+ over N and �1 de�nes M+1 over M, we have that � [�1 de�nes M++ over N.Similarly, �[�1 de�nes M++ over M1. The proof of the other diretion, (8M 2 K+9N 2 L) : : :is ompletely analogous. K+ �� L then follows by Thm.4.3.34(iii))(i).Remark 4.3.37 (How and why an de�nitionally equivalent theories [and lassesof models℄ be regarded as idential [as a orollary of the translation theorems℄?)In addition to the text below, we also refer the reader to [120, p.56℄ and [130, pp.58{61℄for explanations of why de�nitionally equivalent lasses of models an be regarded as (in somesense) idential.Let K and L be two de�nitionally equivalent lasses of models (formally, K �� L). Then,by the de�nition of ��, there is a lass M whih is a de�nitional expansion (without takingreduts) of both K and L. We will argue below that this M establishes a very strong onnetion



4.3.4 DEFINITIONAL EQUIVALENCE OF THEORIES 259between K and L. (Cf. also item (5) in the disussion of the de�nition of ��.) Our argumentbegins with the following: We an apply Theorem 4.3.27 to the pair M and K with M in plaeof K+ in that theorem. The same applies to the pair M and L. By Theorem 4.3.27, then wehave two translation mappings Fm(M)Tr1Fm(K) Fm(L)Tr2
both of whih preserve meaning (in the sense of Theorem 4.3.27). Both of Tr1 and Tr2 aresurjetive. Intuitively, Tr1 identi�es K with M while Tr2 identi�es M with L. Hene K getsidenti�ed with L. (Perhaps the best way of thinking about this is that we identify both K andL with their ommon expansion M. As a by-produt of this we identify K and L with eahother, too.)By surjetiveness of Tr1 and Tr2, whatever an be said in the language Fm(K), the samean be said in Fm(M) and hene (using Tr2) the same an be said in the language Fm(L) ofL. Similarly, whatever an be said in Fm(L) the same an be said in Fm(K), too.Now, if we want some more detail, let '(�z) 2 Fm(K) with a sequene �z of variablesbelonging to ommon sorts K and L. Then there are '0(�z) 2 Fm(M), '00(�z) 2 Fm(L) suh thatTr1('0) = ' and Tr2('0) = '00. I.e.'(�z) Tr2'0(�z)Tr1 '00(�z):Atually, we an hoose '0 = ' if we want to. Using Theorem 4.3.27 we an onludeM j= '(�z)$ '00(�z):(23)I.e. the same things an be said about the ommon variables �z in Fm(K) and in Fm(L). Henethe languages of K and L have the same expressive power.On the basis of (23) above and what was said before (23), we an introdue two, morediret, translation mappingsFm(K) T2T1 Fm(L)de�ned as follows. In de�ning T1 and T2 we an rely on the fat thatFm(K) � Fm(M) = Dom(Tr1)and that Tr1 � Fm(K) = Id � Fm(K) whih is the identity funtion. Hene we an hooseT1 := Tr1 � Fm(L) andT2 := Tr2 � Fm(K):551



260 4.3 DEFINABILITY IN MANY-SORTED LOGICFm(M)Tr1Fm(K) Fm(L)Tr2T2T1Assume ' 2 Fm(M) involves only ommon free variables of K and L. ThenM j= (T2Tr1')$ Tr2':M j= (T1Tr2')$ Tr1':So in this \logial sense" the above diagram ommutes.For ompleteness, about the above diagram we also note the following ommutativity prop-erty: T2 � (Tr1)�1 Æ Tr2 ;T1 � (Tr2)�1 Æ Tr1 :Here we note that (Tr1)�1 Æ Tr2 is a binary relation but not neessarily a funtion.Using Theorem 4.3.27, and (23) way above, one an hek that for all ' 2 Fm(K) and forall  2 Fm(L), if ' and  use only variables of ommon sorts (of K and L) then:M j= '(�z)$ (T2')(�z);(24) M j= (T1 )(�z)$  (�z); furtherK j= '(�z)$ (T1T2')(�z);(25) L j=  (�z)$ (T2T1 )(�z):These statements an be interpreted as saying that T1 and T2 are kind of inverses of eahother and that they establish a kind of logial isomorphism between equivalene lasses offormulas in Fm(K) and Fm(L) involving free variables of ommon sorts only. For ompleteness,we note that (24{25) an be generalized to formulas involving free variables of arbitrary sortsby using Theorem 4.3.29. For formulating this generalized version of (24{25) one needs to usethe formulas \ode" as they were used in Theorem 4.3.29. E.g. the �rst line of (25) beomesK j= ode(x; ~x)! ['(x; �z)$ (T1T2')(~x; �z)℄;where x belongs to a sort of K not in L, and �z is a sequene of variables of ommon sorts ofK and L. Here ode(x; ~x) is the formula we get from ombining the orresponding formulas551In passing, we also note that Tr1 an be regarded as injetive in the sense that if  (�z); (�z) 2 Fm(M)involve free variables of K only then [Tr1( ) = Tr1() ) M j=  (�z)$ (�z)℄. Similarly for Tr2 and L.



4.3.4 APPLICATION TO RELATIVISTIC GEOMETRY 261belonging to Tr1 and Tr2. We leave the details of generalizing (23{25) to treating free variablesnot in the ommon language to the interested reader.(We note that the generalization of (25) above reminds us of the notion of equivalenebetween two ategories, in the sense of ategory theory.)We hope, the above shows how and to what extent we onsider two de�nitionally equivalentlasses (and theories) as being essentially idential. �Appliation: de�nitional equivalene of of the observer-independent geometrieswith frame models.We proved in this setion that Ge(Th) is de�nable over Mod(Th), under some onditionson Th (f. Thm.4.3.22). We will see that if we add some more, reasonable, onditions552on Th, then not only Mod(Th) is also de�nable over Ge(Th), but the muh stronger state-ment holds that Mod(Th) and Ge(Th) are de�nitionally equivalent. De�nitional equivaleneis a very strong onnetion between our frame-models Mod(Th) and our observer-independentgeometries Ge(Th), as we have just seen this in Remark 4.3.37 above. The methodologi-al importane of these kinds of theorems (from the point of view of physis) was disussedin the introdution of x4.2.2 (p.152) and in the introdution to the present hapter (x4.1).The theorem below says that Mod(Th) and Ge(Th) are de�nitionally equivalent under someassumptions. But if two theories (or axiomatizable lasses of models) are de�nitionally equiv-alent then this means that, basially, they are the same theory \represented" in two di�erentways; f. Remark 4.3.37 (p.258) and the disussion on p.972 (in x4.3). The same applies tolasses of models (like Ge(Th) and Mod(Th)) in plae of theories. Therefore our next theoreman be interpreted as saying that our observational world Mod(Th) is basially the same asour theoretial world Ge(Th). The theorem implies that our theoretial onepts are alreadyavailable in Mod(Th) as \abbreviations" or \shorthands"553; and that in the other diretion,our observational onepts (like observer, oordinate system et.) are present in our theoretialworld Ge(Th) as \abbreviations".THEOREM 4.3.38 Mod(Th) and Ge(Th) are de�nitionally equivalent, in symbolsMod(Th) �� Ge(Th),assuming n > 2 and Th j= Bax� + Ax(Triv t)� + Ax(k)� + Ax(eqtime) + Ax(ext) +Ax~+Ax(p ) +Ax(diswind).Proof of Thm.4.3.38: Assume n > 2 and that Th satis�es the assumptions of the the-orem. Let Ge�(Th) be the topology free redut of Ge(Th). Let Ge�(Th) + T0 denotethe expansion of Ge�(Th) with the subbase T0 (of the topology) and the membership re-lation 2Mn�T0 as indiated in Prop.4.3.19 on p.242. Hene, the models Ge�(Th) + T0 areof the form hG; T0; 2Mn�T0i with G 2 Ge�(Th) and T0;2Mn�T0 as indiated on p.242. By552Ax~+Ax(ext)+Ax(eqtime). It an be seen that these onditions are sort of neessary for de�nabilityin the other diretion.553This diretion an be interpreted as onluding that our theoretial onepts are aeptable (or well hosen)from the point of view of Mahian-Einsteinian-Reihenbahian philosophy of theory making.



262 4.3 DEFINABILITY IN MANY-SORTED LOGICthe proof of Prop.4.3.19, Ge�(Th) + T0 is rigidly de�nable over Ge�(Th). By this and byLemma 4.3.36, we onlude that it is suÆient to prove Mod(Th) �� Ge�(Th) for provingMod(Th) �� (Ge�(Th) + T0). Aording to our onvention below (??) on p.155 we onsiderthe latter suÆient for proving Mod(Th) �� Ge(Th). Therefore to prove the present theorem,it enough to prove Mod(Th) �� Ge�(Th). We will do just this.To prove Mod(Th) �� Ge�(Th), by Thm.4.3.35, it is enough to �nd a lass M suhthat M is rigidly de�nable both over Mod(Th) and Ge�(Th). Now, we turn to onstrutingsuh an M. First, we de�ne the voabulary of M. (The ommon voabulary of Mod(Th)and Ge�(Th) onsists of the sort symbol F and relation/funtion symbols +; �;�.) LetVoM :=\VoMod(Th) + Vo Ge�(Th) + (relation symbols O and P , where the rank of O ishB;Mn; : : : ;Mn| {z }(n+ 1)-times i, and the rank of P is hB;Li)". Now,M :def= In hM;GM; O;P i : M 2 Mod(Th),O = f hm;wm(�0);wm(10); : : : ;wm(1n�1)i : m 2 ObsM gP = � hph; f e 2 Mn : ph 2 e gi : ph 2 PhM 	o.By the proof of Prop.4.3.18 (p.240) and Thm.4.3.22 (p.244) it is not hard to see that M isrigidly de�nable over Mod(Th). By Def.4.5.38 (p.310), and Claim 4.5.44 (p.315) in the proofof Prop.4.5.43 it is not hard to see that M is rigidly de�nable over Ge�(Th).Weak de�nitional equivalene
De�nition 4.3.39 Let K and L be two lasses of models and let f : K �! L be a funtion.We say that f is a �rst-order de�nable meta-funtion iff for eah M 2 K f(M) is �rst-orderde�nable over M (in the sense of x4.3.2) and the de�nition of f(M) over M is uniform, i.e. isthe same for all hoies of M 2 K.554 �A typial example for �rst-order de�nable meta-funtions is e.g.G : Mod(Th) �! Ge(Th), where G : M 7! GM, if Th is strong enough, f. Thm.4.3.22 (p.244).A similar example will be a kind of inverse to this funtionM : Ge(Th) �! Mod(Th), f. Prop.4.5.41 (p.313) and Def.4.5.38 (p.310).We note that if f : K�!�L is a surjetive �rst-order de�nable meta-funtion then L isde�nable over K; and, more generally, if f : K �! L is a �rst-order de�nable meta-funtionthen Rng(f) is de�nable over K. In the other diretion, if L = IL is de�nable over K then thereis a �rst-order de�nable meta-funtion f : K �! L suh that Rng(f) is L up to isomorphism.To be able to laim this for the ase when L 6= IL we make the following onvention.554A �rst-order de�nable meta-funtion (ating between lasses of models) is a rather di�erent kind of thingfrom an ordinary funtion like fatorial : N �! N de�nable in a model, say in N 2 Mod(Peano's arithmeti),f. Example 4.3.8(1) on p.226. (This is the reason why we all f a meta-funtion and not simply a funtion.)



4.3.4 APPLICATION TO RELATIVISTIC GEOMETRY 263CONVENTION 4.3.40 (Class form of the axiom of hoie)In onnetion with the above de�nition, for simpliity, throughout the present hapter we as-sume the lass form of the axiom of hoie. More onretely we assume that our set theoretiuniverse V is well-orderable by the lass Ordinals of ordinal numbers. I.e. there is a bijetionf : Ordinals��!�V:This implies that any proper lass is well-orderable and therefore there exists a bijetionbetween any two proper lasses. �
f

interpretationTrf

KBAlattiesmodels ofset theory(1)(2)(3) Lgroupsposetsmodels ofPeano'sarithmeti
(1)(2)(3)Rng(f)(1) BooleangroupsFm(L)group theorytheory of posetsPeano's arithmeti (1)(2)(3)Fm(K)BA-theorylattie theoryset theory translation(interpretation)(1)(2)(3)

K L

Figure 96: Examples for �rst-order de�nable meta-funtions f and the indued translationsbetween theories. For more explanation in onnetion with this piture f. item (III) of Re-mark 4.5.14, pp. 294{295. The orresponding theories are labelled by the same numbers. E.g.BA is interpreted in \groups", \latties" in \posets" et. Here f , or the pair hf;Trf i, or Trfare (often) alled interpretations, f. footnote 1022 on p.1023 in AMN [18℄. E.g. Trf interpretsgroup theory in BA-theory. Equivalently f interprets BA's in groups. (This �gure also servesas an illustration for Prop.4.3.41, p.264.)The following proposition makes onnetions between the following three things: (i) \in-terpretations" of one theory in another, (ii) �rst-order de�nable meta-funtions f : K �! Lbetween lasses of models, and (iii) de�nability of a lass Rng(f) over another lass K, seeFig.96. In this ontext the funtion Trf (in the proposition) below is what we all an interpre-tation (or translation). Cf. item (III) of Remark 4.5.14 on p.294; and footnote 1022 on p.1023in AMN [18℄ for the intuitive idea behind interpretations.555 In partiular the propositionsays that any �rst-order de�nable meta-funtion f : K �! L indues a natural syntatial555In the one-sorted ase an interpretation Tr : Fm(L) �! Fm(K) is the same thing as a ylindri algebraihomomorphism between the ylindri algebras of formulas Fm(L) and Fm(K). I.e. if we endow Fm(L) with theylindri algebrai struture (of �rst-order formulas) and do the same with Fm(K) then the homomorphismsbetween the two algebras of formulas are typial examples of interpretations.



264 4.3 DEFINABILITY IN MANY-SORTED LOGICtranslation mapping from the language Fm(L) of L to that of K. Moreover, this translation ismeaning preserving w.r.t. the semantial funtion f .556PROPOSITION 4.3.41 Assume f : K �! L is a �rst-order de�nable meta-funtion. Thenthere is a \natural" translation mappingTrf : Fm(L) �! Fm(K)suh that for every '(�x) 2 Fm(L) with all free variables belonging to ommon sorts of K andL 557, A 2 K and evaluation �a of �x in the ommon sorts (i.e. universes) of A and f(A) thefollowing holds.558 f(A) j= '[�a℄ , A j= Trf(')[�a℄:Cf. Fig.96.Proof: The proposition follows easily by Thm.4.3.27 (�rst translation theorem) on p.245. Inmore detail: Assume f : K �! L is a �rst-order de�nable meta-funtion. Then there is anexpansion K+ of Rng(f) suh that K+ is de�nable over K without taking reduts. Then,by Thm.4.3.27, there is a translation mapping Tr : Fm(K+) �! Fm(K) suh that (?) inThm.4.3.27 holds. Let Trf := Tr � Fm(L). One an hek that Trf has the desired properties.We will have results analogous to the onlusion of Prop.4.3.41 above at various points inthe remaining part of this hapter, f. e.g. Thm.4.5.42 on p.315.The following is a weaker form of de�nitional equivalene. We will use it e.g. in Thm.4.5.26(p.303).De�nition 4.3.42 (Weak de�nitional equivalene)Let K; L be two lasses of models. K and L are alled weakly de�nitionally equivalent , insymbols K �w� L;iff there are �rst-order de�nable meta-funtionsf : K �! L and g : L �! Ksuh that for any M 2 K and G 2 L, (i) and (ii) below hold.(i) (f Æ g)(M) �= M and (g Æ f)(G) �= G, and(ii) moreover there is an isomorphism between the two strutures M and (f Æ g)(M) whihis the identity map on the redut M � (VoK \ VoL) 559 of M. Similarly for struturesG and (g Æ f)(G).556Translation funtions of the type Tr : Fm(L) �! Fm(K) play an important role in the present work.They have two important features: (i) they are meaning preserving, and (ii) they respet the logial strutureof the languages involved, e.g. Tr(:') = :Tr(') and analogously for the remaining parts of our logi. (We donot disuss property (ii) expliitly, but sine it is important we mention that it is disussed in the algebrailogi works e.g. in Andr�eka et al. [31℄.) In other words (ii) ould be interpreted as saying that our translationmappings are grammatial, i.e. they respet the grammar of the languages involved. Cf. Remark 4.3.30 onp.250.557i.e. to Vo0K \ Vo0L558We note that the formulas ' and Trf (') have the same free variables (therefore the statement below makessense).559VoK \ VoL is the ommon part of the voabularies of K and L.



4.3.4 APPLICATION TO RELATIVISTIC GEOMETRY 265�Intuitively, K and L are weakly de�nitionally equivalent iff they are de�nable over eah otherand the �rst-order de�nable meta-funtions indued by these de�nitions are inverses of eahother up to isomorphism.PROPOSITION 4.3.43 Assume K, L are two lasses of models. ThenK �� L ) K �w� L;i.e. if K and L are de�nitionally equivalent then they are also weakly de�nitionally equivalent.We omit the proof.In onnetion with the above proposition we note that the other diretion does not hold ingeneral, i.e. K �w� L 6) K �� L:This (i.e. 6)) is so even if we assume that K and L are both axiomatizable, f. Examples 4.3.46(p.266) and Thm.4.5.26 (p.303).Examples ome at the end of this setion.Remark 4.3.44 Assume that f : K �! L and g : L �! K are �rst-order de�nable meta-funtions as in Def.4.3.42. Then Rng(f) is L up to isomorphism and Rng(g) is K up toisomorphism. Moreover, for every A 2 L there is A0 2 Rng(f) suh that there is an isomorphismbetween the strutures A and A0 whih is the identity map on the redut A � (VoK \ VoL)of A; and the analogous statement holds for every B 2 K. �The following proposition says that if K �w� L then the language Fm(K) of K an betranslated into the language Fm(L) of L in a meaning preserving way and vie-versa; morepreisely these translations work well for the sentenes560 only or more generally for thoseformulas whih ontain only suh free variables that range over the ommon sorts of K andL. Moreover these translation mappings are inverses of eah other (up to logial equivalene\$"). We note that if in addition we have �� in plae of �w� 561 then this nie, meaningpreserving translation mapping extends to all formulas, f. the end of Remark 4.3.37 on p.260.PROPOSITION 4.3.45 Assume K �w� L. Then there are \natural" translation mappingsTf : Fm(L) �! Fm(K) and Tg : Fm(K) �! Fm(L)suh that for every '(�x) 2 Fm(L),  (�y) 2 Fm(K) with all their free variables belonging toommon sorts of K and L, A 2 L and B 2 K, and evaluations �a;�b of the variables �x; �y,respetively, (i){(iv) below hold, where f and g are as in Def.4.3.42.(i) f(B) j= '[�a℄ , B j= Tf (')[�a℄ and g(A) j=  [�b℄ , A j= Tg( )[�b℄.(ii) A j= '[�a℄ , g(A) j= Tf (')[�a℄ and B j=  [�b℄ , f(B) j= Tg( )[�b℄.(iii) A j= '(�x)$ (Tf Æ Tg)(')(�x) and B j=  (�y)$ (Tg Æ Tf )( )(�y).560Sentene means losed formula, i.e. formula without free variables.561i.e. K �� L



266 4.3 DEFINABILITY IN MANY-SORTED LOGIC(iv) L j= ' , K j= Tf (') and K j=  , L j= Tg( ).Proof: Item (i) of the proposition follows by Prop.4.3.41 above. Items (ii){(iv) follow by item(i) and Remark 4.3.44.In onnetion with Prop.4.3.45 above f. Remark 4.3.37 on p.258. We will have resultsanalogous to the onlusion of Prop.4.3.45 above at various points in the remaining part ofthis hapter, f. e.g. Thm.4.5.12 on p.291.Examples 4.3.46 In all three examples below we state K 6�� L for some lasses K; L. In allthree examples we an use item (6) on p.257 to prove K 6�� L.1. Let K be the lass of two-element algebras without operations. I.e.K = fA : jAj = 2 g:Let L be the lass of two-element ordered sets. Important: The sort symbol of K and thesort symbol of L are di�erent. ThenK �w� L; but K 6�� L:2. Let K2 be the same as K was in item 1. above. Let K3 be the lass of three elementalgebras without operations. Let the sort symbols of K2 and K3 be di�erent. ThenK2 �w� K3; but K2 6�� K3:3. More sophistiated example, aÆne strutures : Let AB be the lass of Abelian (i.e. om-mutative) groups.Assume G = hG; +;�; 0i 2 AB.We de�ne the aÆne relation R+ on G as follows.R+(a; b; ; d; e; f) def() (a� b) + (� d) = (e� f):The aÆne struture assoiated with the group G isAG := hG; R+i:The lass of aÆne strutures is Af := fAG : G 2 AB g:Let the sort symbols of AB and Af be di�erent. Claim:AB �w� Af; but AB 6�� Af:Hint: De�nability of Af over AB is trivial. De�nability of AB over Af: Let hG; R+i 2 Af.We de�ne a new relation eq as follows.ha; bi eq h; di def() R+(a; b; a; a; ; d):Let us notie that eq is an equivalene relation on G�G. Now, letA := G�G=eq



4.3.4 APPLICATION TO RELATIVISTIC GEOMETRY 267be a new sort. Furtherha; bi=eq + h; di=eq = he; fi=eq def() R+(a; b; ; d; e; f):Now, de�ning the rest of the Abelian group hA;+; : : :i over the aÆne struture hG; R+iis left to the reader.The proof of 6�� is based on looking at the large number of automorphisms of the aÆnestruture hG; R+i. We omit the details. (The idea is similar to that of example 1.) �Remark 4.3.47 (Making �w� strong by using parameters)Consider the appliations of �w� in items (i), (ii) below.(i) In Thm.4.5.23 (p.301) it is stated that(Fields) �w� (pag-geometries):Theorems 4.5.19, 4.5.26 are analogous.(ii) Mod(Th) �w� Mog(TH ) for ertain hoies of Th; TH , where the lass Mog(TH ) ofgeometries is de�ned on p.326. We note that this is not proved or even stated in thepresent work, but it an be proved.Now, if in the ontext (or bakground) of items (i), (ii) above we replae the notion of de�n-ability by parametri de�nability using �nitely many parameters only (in the usual sense f.p.235 and p.223, immediately below Remark 4.3.4, or e.g. Hodges [130, pp. 27{28℄)562 thenwe will obtain that the lasses in question e.g. Mod(Th) and Mog(TH ) beome de�nitionallyequivalent in this weaker parametri sense. (I.e. they have a single ommon parametrially de-�nable de�nitional expansion et.) More onretely we ould add (n+ 1)-many new onstantsto pag geometries suh that(Fields) �� (pag-geometries + these onstants):Completely analogous improved versions of Theorems 4.5.19, 4.5.26 (pp. 300, 303) are alsotrue.Also we ould add n + 1 new onstants to Mog(TH ) and a onstant (a distinguishedobserver) to Mod(Th) yielding(Mod(Th) + new onstant) �� (Mog(TH ) + new onstants);for ertain hoies of Th and TH . This works even if we assume Ax(eqtime) 2 Th (f.Conjeture 4.5.58 on p.329).It is these new auxiliary onstants whih are alled parameters in the theory of parametride�nability.We leave elaborating the details of this parametri diretion to the interested reader. �
562Parametri de�nability is a slightly weaker notion than de�nability.



268 4.3 DEFINABILITY IN MANY-SORTED LOGIC4.3.5 A generalization of Beth's theorem. Connetions with the literature.
Many-sorted de�nability theory with new sorts (i.e. the notion of impliit and expliit de�ni-tion) is a generalization of one-sorted de�nability theory (without new elements) disussed intraditional logi books. This observation leads to several natural questions whih we disusshere only tangentially. One of these is the question whether Beth's theorem (about the equiv-alene of the two notions of de�nability) generalizes to our present ase. Note that Thm.4.3.31already establishes a onnetion between \syntatial aspets" (like existene of translationfuntions) and \semantial aspets" (like onstrutibility with means of steps (1)-(2.1)) ofde�nability.THEOREM 4.3.48 Assume K = Mod(Th(K)) is a redut of K+ suh that K+ has only �nitelymany sorts. Assume that the language of K+ is ountable, and that K has a sort with morethan one element. Then (i) and (ii) below are equivalent.(i) K+ is impliitly de�nable over K without taking reduts.(ii) K+ is rigidly expliitly de�nable over K.Outline of proof: The proof uses Thm.4.3.31 and Gaifman's theorem (f. Hodges [130,Thm.12.5.8, p.645℄), whih is about one-sorted strutures, together with ideas from Pillay &Shelah [213℄, and an be found in Andr�eka-Madar�asz-N�emeti [21℄. Here we outline the mainsteps in that proof.First we show that we may assume that K+ is axiomatizable, too. Here we an use theorollary of Thm.4.3.31 that if K is axiomatizable and K �� K+, then K �� Mod(Th(K+)),too.Let T def= Th(K+) denote the one-sorted version of Th(K+) suh that there is an additionalunary relation P whih denotes the union of universes of sort those of K. (I.e. P denotes the\old universes" inside the new universes.)In the literature there are three properties for one-sorted theories whih are useful for us,these are the following: T has the redution property, T is oordinatized over P and T is rigidlyrelatively ategorial over P , f. Hodges [130℄. We have mentioned these properties in footnotesso far, but see also the following part about onnetions with the literature and Figure 97.Gaifman's theorem (whih is based on the Chang-Makkai de�nability theorem) states thatthe latter two properties oinide for ountable languages when T is omplete and has in�nitemodels. In AMN [21℄ we showed that the onditions on T an be eliminated. Further, usingour Thm.4.3.31 and that we have only �nitely many sorts, we proved that K �� K+ i� Th(K+)is oordinatized over P and K+ is impliitly de�nable over K without taking reduts i� Th(K+)is rigidly relatively ategorial over P . This �nishes the proof of Thm.4.3.48.COROLLARY 4.3.49 (Beth's theorem generalized to de�ning new sorts) AssumeK = Mod(Th(K)) is a redut of K+ suh that K+ has only �nitely many sorts. Assume thatthe language of K+ is ountable, and that K has a sort with more than one element. Then (i)and (ii) below are equivalent.(i) K+ is impliitly de�nable over K.(ii) K+ is expliitly de�nable over K.



4.3.5 BETH THEOREM FOR MANY-SORTED DEFINABILITY 269QUESTION 4.3.50 Can Theorem 4.3.48 and Corollary 4.3.49 above be generalized to thease when in�nitely many sorts are allowed? (First one has to generalize the de�nition ofexpliit de�nability. This an be done easily, e.g. we may allow iteration of steps (1), (2.1),(2.2) along an in�nite ordinal, taking \unions" of asending hains of expansions in the limitsteps.) �The above question seems to be more about logi than about relativity, so we do not disussit here.Connetions with the literatureFor investigations related to de�nability of new sorts as disussed in the present setion(x4.3 herein) we refer to Hodges [130℄ Chapter 12, and within that hapter to x12.3 (pp.624-632), x12.5 (pp.638-652). E.g. p.638 last 3 lines { p.639 line 9 disusses generalizability ofBeth's theorem, and similarly for p.645 line 6, p.649 lines 5-6. (We would also like to pointout Exerises 13, 14 on p.649 of [130℄.) We also refer to Myers [197℄, Hodges-Hodkinson-Mapherson [131℄, Pillay-Shelah [213℄, Shelah [234℄. In passing we note that our subjetmatter (i.e. de�nability of new sorts) is related to the diretions in reent (one-sorted) modeltheory alled \relative ategoriity" or \ategoriity over a prediate", and \theory of stabilityover a prediate".Below we outline some onnetions between our notions and the ones used in a substantialpart of the above quoted (one-sorted) literature. We will systematially refer to Hodges [130℄.Assume K+ = Mod(Th(K+)) and that K has �nitely many sorts U0; : : : ; Uk. Let P =U0 [ : : : [ Uk be the union of these sorts regarded as a unary prediate. Then:(1) \K+ is impliitly de�nable up to isomorphism over K" is equivalent to \Th(K+) is rela-tively ategorial over P".(2) \K+ is impliitly de�nable without taking reduts over K" is equivalent to \Th(K+) isrigidly relatively ategorial over P".(3) \K+ is expliitly de�nable over K" is not equivalent to \Th(K+) is oordinatizable overP".(4) \K+ is a de�nitionally equivalent expansion of K" is equivalent to \Th(K+) is oordina-tized over P".In items (1)-(4) above, on the left hand side we have many-sorted notions, while on the right-hand side we have one-sorted notions (like relative ategoriity). So it needs some explanationwhat we mean by laiming their equivalene. The answer is the following: First we translateour many-sorted notions into one-sorted ones (by treating the sorts as unary prediates ofone-sorted logi) the usual, natural way, and then we laim that the so translated version ofour many-sorted notion is equivalent into the other one-sorted notion quoted from Hodges[130℄. E.g., the so elaborated version of item (1) looks like the following. \The one-sortedtranslation of (K+ is impliitly de�nable up to isomorphism over K)" is equivalent to \(the



270 4.3 DEFINABILITY IN MANY-SORTED LOGICone-sorted version of Th(K+)) is relatively ategorial over P". The point here is that relativeategoriity is de�ned only for one-sorted logi in Hodges [130℄. Therefore, to use it as apossible equivalent of (our many-sorted) \impliit de�nability up to isomorphism", �rst wehave to translate everything into one-sorted logi, and then make the omparison. Indeed,items (1)-(4) are understood this way. They are proved in AMN [21℄.Connetions between the various notions of de�nabilityFigure 97 below shows the onnetions between the various notions introdued in thissub-setion. It also indiates the above outlined onnetions with some notions used in theliterature (relative ategoriity, oordinatizability). The onnetions indiated are fairly easyto show, exept for the following proposition (and, of ourse where Theorem 4.3.48 and Corol-lary 4.3.49 are indiated).
impliitly de�nablewithout taking reduts(rigidly relatively ategorial)
impliitly de�nable
impliitly de�nableup to isomorphism(relatively ategorial)

Prop.4.3.51
Cor.4.3.49

Thm.4.3.48 rigidly expliitlyde�nable(oordinatised)
expliitly de�nable(oordinatisable)

expliitly de�nablewithout taking reduts

Figure 97: Connetions between the various notions of de�nability. We assume that K =Mod(Th(K)) is a redut of K+ suh that K+ has only �nitely many new sorts. We also assumethat the language of K+ is ountable, and that K has a sort with more than one element. On the�gure we write \impliitly de�nable without taking reduts" for \K+ is impliitly de�nable overK without taking reduts", and similarly for the other notions. For the impliation \impliitlyde�nable" to \impliitly de�nable up to isomorphisms" we need the extra assumption K+ =Mod(Th(K+)).PROPOSITION 4.3.51 (Hodges [130℄) Assume the hypotheses of Theorem 4.3.48 (whihare the same as the hypotheses used in Figure 97). Then \K+ is impliitly de�nable over K upto isomorphism" does not imply \K+ is impliitly de�nable over K".



4.3.5 BETH THEOREM FOR MANY-SORTED DEFINABILITY 271Proof: A 6-element ounterexample proving this is given in Hodges [130, Example 2 on p.625℄.There two strutures are de�ned, A and B, with A a redut of B. B is impliitly de�nable upto isomorphism over A (this follows from the fat that B is �nite). At the same time, B is notde�nable impliitly over A, beause A has an automorphism � of order 2 (i.e. � Æ � = IdA)whih annot be extended to an automorphism � of B of order 2. Indeed, if B was impliitlyde�nable over A, then an expansion B+ of B would be impliitly de�nable over A withouttaking reduts. Hene the automorphism � would extend to an automorphism � of B+. Sinethe identity of A extends to a unique automorphism of B+, then � Æ � = IdB+ should hold.But then � � B would be an automorphism of B of order 2 and extending �. (Cf. Thm.12.5.7in [130, p.644℄.) Sine A and B are �nite strutures, we an take K = IfAg and K+ = IfBg,and then the hypotheses of Proposition 4.3.51 hold for K and K+. This �nishes the proof.On the hoie of basi steps in expliit de�nabilityRemark 4.3.52 (Forming disjoint union of two sorts) For didatial reasons we willrefer to items (1){(2.2) as steps (1){(2.2) to emphasize their roles in onstruting an expliitde�nition (for some new lass K+) in a step-by-step manner.We ould have inluded in this list of steps as step (2.3) the de�nition of a new sort as adisjoint union of two old sorts. This goes as follows:Assume Uk; Um are old sorts, i.e. sorts of M, while Unew is not a sort of M. Then, we ande�ne the new sort as Unew := Uk �[ Umwith two injetions i1 : Uk ��! Unew and i2 : Um ��! Unewsuh that Unew is the union of Rng(i1), Rng(i2) and Rng(i1) \ Rng(i2) = ;. Here k = m ispermitted. But even if k = m, i1 and i2 are di�erent. Now the expanded model isM+ := hM; Unew ; i1; i2i:We note that suh an M+ is always impliitly de�nable over M, further all the nie propertiesof expliit de�nitions563 in items (1){(2.2) hold for this new kind of expliit de�nition whihfrom now on we will onsider as step (2.3) of expliit de�nability.All the same, we do not inlude step (2.3) into the list of permitted steps of building upan expliit de�nition. We have two reasons for this.(i) Step (2.3) an be redued to (or simulated by) steps (1){(2.2). Namely, assume M+ isde�ned from M by using step (2.3). Assume further that M has a sort Ui with more thanone elements (i.e. jUij > 1). Then by using steps (1){(2.2) one an de�ne an expansionM++ from M suh that M+ is a redut of M++.564Further:(ii) We will not need step (2.3) in the present work. I.e. in the logial analysis of relativity,expliit de�nitions of form (2.3) did not ome up so far.563As an example we mention that expliitly de�ned symbols an be eliminated from the language, f. sub-setion 4.3.3 on p.245.564More preisely there is a unique isomorphism h between M+ and this redut of M++ suh that h �M isthe identity funtion.



272 4.3 DEFINABILITY IN MANY-SORTED LOGICItem (i) above shows that adding step (2.3) to the permitted steps of expliit de�nitions wouldinrease the olletion of sorts and relations de�nable over M only in the pathologial asewhen all universes of M have ardinalities � 1.Therefore while noting that step (2.3) ould be inluded without hanging the theory ofexpliit de�nability signi�antly, we do not inlude it. However, sometimes (in some intuitivetext) when we want to get \dreamy" we might refer to expliit de�nability as involving foursteps (1){(2.3). �Remark 4.3.53 One might want to develop a more systemati understanding of what expliitde�nitions are. For suh a more systemati understanding of expliit de�nitions let us rearrangethe basi steps into steps (1�){(5�) below.(1�) De�nition of new relations �Rnew expliitly the lassial way (as in item (1) on p.231).(2�) De�nition of new sorts as diret produts of old sorts together with projetion funtions(Unew := Ui � Uj et) (as in item (2.1) on p.232).(3�) De�nition of new sorts as disjoint unions of old sorts together with inlusion funtions(Unew := Ui �[ Uj et) (as in item (2.3) on p.271).(4�) De�nition of a new sort as a de�nable subset of an old sort together with an inlusionfuntion. I.e. Unew := fx 2 Ui : M j=  (x) gand inew : Unew �! Ui is the usual inlusion funtion. The expanded model is M+ =hM; Unew ; inewi.(5�) De�nition of a new sort as a de�nable quotient of an old sort exatly as in item (2.2) onp.234 (i.e. Unew = Ui=R et).Now, an expliit de�nition in the new sense is given by an arbitrary sequene (i.e. iteration)of steps (1�){(5�) above.If we disregard the trivial ase when all sorts are singletons or empty, then expliit de�ni-tions in the new sense are equivalent to expliit de�nitions as introdued in x4.3.2. We leaveheking this laim to the reader.We would like to point out that expliit de�nitions as built up from steps (1�){(5�) are notad-ho at all. In the ategory theoreti sense the formation of disjoint unions is the dual ofthe formation of diret produts and the formation of sub-universes (or sub-strutures) is thedual of the formation of quotients. So, we are left with two basi steps and their duals.It is interesting to note that our steps (2�){(5�) orrespond to basi operations produingnew models from old ones. (Indeed if Ui is a universe of M then we an restrit M to Ui andthen we obtain a one-sorted redut of M with universe Ui. Hene reating new sorts from oldones is not unrelated to reating new models from old ones. All the same, we do not want tostreth this analogy too far.)What we would like to point out here, is that steps (2�){(5�) seem to form a natural, wellbalaned set of basi operations, while step (1�) has been inherited from the lassial theoryof de�nability.Further, we note that while seleting our basi steps (e.g. steps (1�){(5�) above) we had tobe areful to keep them impliitly de�nable i.e. they should not lead to \expliitly de�nablethings" whih are not impliitly de�nable. Therefore operations like formation of powersets



4.3.5 BETH THEOREM FOR MANY-SORTED DEFINABILITY 273f. Example 4.3.9(1) (or all �nite subsets of a set f. Example 4.3.9(6))565 are ruled out fromthe beginning. �Further reent results on de�nability theory (sometimes in algebrai form566) are inMadar�asz [167℄, [164℄, [163℄, Madar�asz-Sayed [178℄, Hoogland [134℄.Some further results on de�nability: As we mentioned, the importane, for relativity,of the logial theory of de�nability was pointed out already in 1924 by Reihenbah in hisrelativity book [218℄. Reihenbah redits the origins of de�nability theory to David Hilbert byreferring to Hilbert's 1921 book of the foundations of geometry (f. [218, p.3℄). The reognitionof the importane of de�nability for relativity theory has been more and more reognizedever sine, f. e.g. Friedman [91℄. As it turns out in the Appendix (\Why exatly FOL") ofAMN [18℄, it is relevant to the present investigations to study properties of di�erent logialsystems. Indeed, this is the subjet matter of the general theory of logis (f. e.g. Barwise-Feferman [45℄, or Andr�eka-N�emeti [205℄ and also of algebrai logi, f. e.g. Adr�eka-N�emeti-Sain [31℄ or Madar�asz [170℄. The subjet matter of studying de�nability properties of variouslogial systems and to haraterize them algebraially was initiated by Alfred Tarski andhis followers (f. Pigozzi [212℄) and Daigneault [65℄. There are more than one de�nabilityproperties, one of them is the already disussed \Beth de�nability property" while anotherrather important one is the so-alled Craig interpolation property. Pigozzi [212℄ formulated thequestion of �nding the preise algebrai ounterpart of the Craig property.567 Several authorsworked on this problem, and the �nal answer was found in Madar�asz [164, 166℄ whih saysthat this ounterpart is exatly the so-alled super-amalgamation property (SUPAP for short).Related results are in Madar�asz [161℄,[165℄. Having found the algebrai ounterpart of thisimportant logial property, the following papers ontain results on the question whih lassesof algebras have the algebrai ounterpart of one or the other of the distinguished de�nabilityproperties: Madar�asz [163℄, [167℄, Madar�asz-Sayed [178℄. Using the above mentioned kindsof equivalene results, these papers answer the question of whih logis have the de�nabilityproperty in question. In partiular, Madar�asz [167℄ answers questions impliit in the lassialpaper Henkin-Tarski [123℄ onerning logis of shemas568 of formulas. In passing we note thatall the questions that remained open in the historial paper Pigozzi [212℄569 are answered inMadar�asz [167℄. (A survey of all the answers is given in Madar�asz-Sayed [178℄.)
565Seeing that P!(Ui) leads to problems (i.e. heking Example 4.3.9(6)) is not obvious, it is not neessary tohek this for understanding this work.566Cf. our setion on duality theory (in partiular xA.3).567The question seems to go bak to Tarski.568To illustrate the importane of the question, we note that most mathematiians use shemas of formulasinstead of single formulas (think of the indution axiom shema of Peano's Arithmeti as an example).569whih is often regarded as a ompanion of Henkin-Monk-Tarski [120℄, f. the referenes in [120℄ to thispaper



274 4.4 CONNECTION WITH TARSKI'S LANGUAGE FOR GEOMETRY4.4 On the onnetion between Tarski's language for geometry andours (both in �rst-order logi), and some notational onventionIn this setion we heavily use the results and methods of x4.3 (\De�nability of new sorts"),and the ontent of this setion will be used in x4.5.2 (\Coordinatization") way below.In onnetion with the present setion it might be useful for the non-logiian reader tohave a look at the Appendix (entitled: \Why �rst order logi?") on higher-order logi versus�rst-order logi in AMN [18, p.1245℄.In the disussion below we say \the language" and then instead of speifying the languagewe have in mind we write down a typial struture of the language. We hope, this auses noonfusion.Tarski uses the languageGTa = hPoints; Col; \extra relations"i; 570while we use the languageGWe = hPoints;Lines; 2; \extra relations"i571for studying geometry, where Col � 3Points is a ternary relation alled ollinearity, while2 � Points � Lines is the usual inidene relation of geometry. Sine the \extra rela-tions" part is essentially the same for both approahes, let us ompare hPoints; Coli andhPoints;Lines; 2i. Intuitively Col(a; b; ) holds iff a; b;  are on the same line. Now, we laimthat the two languages (that of GTa and GWe) are of the same expressive power i.e. they arede�nitionally equivalent572, under some very mild onditions; this laim will be formulatedas Prop. 4.4.2 below (where information on the proof will also be given). Cf. also e.g. Exam-ple 4.3.16 (p.238). It remains to simulate the inidene relation \2". We do this by postulating 2 ha; bi i� Col(a; b; ) holds.573A detailed explanation of the onnetions between our two-sorted language and strutureshPoints;Lines; 2i and Tarski's one-sorted version hPoints; Coli is given both in our de�nabilitysetion x4.3 together with items 4.4.2 herein and 6.5.6 in AMN [18℄, in Givant [98, pp.582-584℄, and in Appendix A of Goldblatt [102℄. Cf. also the �rst 6 lines on p.viii of [102℄. Wewould like to emphasize that the di�erene between the two languages is only \notational", f.Remark 4.3.37 (p.258), the intuitive text above that remark and Prop. 4.4.2.To formulate the onditions whih we need to prove de�nitional equivalene betweenTarski's language and ours we introdue axiom Det in the language of hPoints;Lines; 2iand axiom det in the language of hPoints; Coli. The aronym \Det" abbreviates \pointsdetermine lines". Similarly for \det".570Atually instead of Col Tarski uses Bw , but Col is de�nable from Bw (in Tarski's geometries).571Sometimes we write \Points, Lines" instead of \Mn; L" only to sound more intuitive or more suggestive.Summing it up: Points denotes Mn and Lines denotes L.572More preisely the theory of the language hPoints;Lines; 2i and another one of the language hPoints; Coliare de�nitionally equivalent assuming very mild axioms on both sides. Cf. Def.4.3.33 (p.255) for de�nitionalequivalene.573We note that Col (de�nable from Lines) is slightly di�erent from oll (whih was de�ned from Bw , onp.159 way above). Cf. Item 4.5.36, p.308.



4.4 CONNECTION WITH TARSKI'S LANGUAGE FOR GEOMETRY 275Det (8p; q 2 Points)(8`; `0 2 Lines) [ (p 6= q ^ p; q 2 ` \ `0) ! ` = `0 ℄ ^(8` 2 Lines)(9p; q 2 Points) [ p 6= q ^ p; q 2 ` ℄.Intuitively, two di�erent lines interset eah other in at most one point; and on eah linethere are at least two points.Note that axiom Det is an extra possible assumption about our frame models M onsideredin this setion. At the end of this setion, we will return to disussing the role of axiom Det.Below we introdue axiom det in Tarski's language.det ( Col(a; b; ) ! (Col(a; ; b) ^ Col(b; a; ) ^ Col(a; a; b) ) ) 574 ^( [ (Col(a; b; ) ^ Col(a; b; d) ^ a 6= b ) ! Col(a; ; d) ℄ ^[Col(a; a; a) ! (9b)(b 6= a ^ Col(a; b; b)) ℄ ).Intuitively, det says two things, the seond part is basially a translation of our axiomDet above, while the �rst part says that Col is invariant under permutations and even\transformations" of its arguments. We note that Ge(Newbasax) 6j= Det, whileGe(Newbasax) +Ax(diswind) j= Det, f. Fig. 98 (or Prop. 6.5.8 in AMN [18℄).ph1
ph2Figure 98: Illustration for a model of Newbasax in whih axiom Det fails.Now, we an formally de�ne Tarski's lass GeTa and ours GeWe as of geometries we promisedway above.De�nition 4.4.1GeTa :def= f hPoints; Coli : hPoints; Coli j= det g ;GeWe :def= f hPoints;Lines; 2i : hPoints;Lines; 2i j= Det g : �The following proposition says that Tarski's language and our language are de�nitionallyequivalent, under some mild assumptions.PROPOSITION 4.4.2 GeTa and GeWe are de�nitionally equivalent, i.e.GeTa �� GeWe :574We note that this part of det implies that for any funtion � : fa; b; g �! fa; b; g, Col(a; b; ) !Col(�(a); �(b); �()).



276 4.4 CONNECTION WITH TARSKI'S LANGUAGE FOR GEOMETRYProof of Prop.4.4.2: The proof an be found in AMN [18℄ on pp. 994-996, but f. alsoExample 4.3.16 herein.Remark 4.4.3 By Prop. 4.4.2 and Remark 4.3.37 in x4.3, we onlude that there are verystrong meaning-preserving translation mappings between Tarski's language Fm(GeTa) and oursFm(GeWe) going in both diretions. Therefore, as we explained on p. 255, we regard the twolanguages as two syntati representations of the same single language di�ering only in whatwe regard as basi voabulary and what we regard as onvenient abbreviations. �Remark 4.4.4 By Thm.6.5.5 and Remark 6.5.6 of AMN [18℄, formulas in two-sorted languagehPoints;Lines; 2i of our inidene geometries are abbreviations for formulas in Tarski's one-sorted language hPoints; Coli. Atually, we an introdue some further useful abbreviationsmaking our language even more intuitive and more \ompat". For our next de�nition, weneed the expanded version hPoints; Col;Bwi of Tarski's language also due to Tarski. Besidesthe new sort Lines we an extend Tarski's language with new sorts Planes, Half-lines and theinidene relations 2Pl � Points � Planes and 2Hl � Points �Half-lines as follows. We usethe rules of expliit de�nability introdued on pp. 230-235 in our setion x4.3.2 on de�nability.Our de�nitions of Planes et. are expliit de�nitions (in the sense of x4.3.2). The detailsof these de�nitions are in AMN [18, Remark 6.5.7, p.997℄. By the above, the many-sortedgeometri strutures (and language)hPoints;Lines;Planes;Half-lines; 2;2Pl;2Hl;Bw ;Coliare de�nitional expansions of the one-sorted strutures (and language) hPoints; Col;Bwi.Our de�nition of Planes, Half-lines et. in AMN [18, Remark 6.5.7℄ followed the steps pre-sribed in x4.3.2(2) on pp. 230-235 for onstruting expliit de�nitional expansions of models.Hene our hPoints;Lines;Planes; : : : ;Coli is a de�nitional expansion of the original Tarskiangeometry hPoints;Col;Bwi. In x4.3.2(2) we also indiated how to write up the set of formulas� whih onstitute the expliit de�nitions themselves. We leave it to the reader to use ourabove onstrution (for Planes et.) for writing up the expliit de�nition of �; in view ofx4.3.2(2) this is a routine task.We note that we do not have to stop with introduing Planes as a onvenient abbreviation.In the same spirit we an introdue the remaining geometri objets, e.g. hyper-planes or3-dimensional subspaes, or irles, spheres et. All these remain abbreviations only andwe remain in the language hPoints; Col;Bw ; eqi. In other words the expanded languagehPoints;Lines; : : : ; 3-dimensional subspaes; : : :i remains a de�nitional expansion of Tarski'soriginal language hPoints; Col;Bw ; eqi. �Convention: Throughout this onvention we assume the axiomDet. Motivated by Thm.4.4.2above, we an identify our many-sorted geometryG0M = hMn;L; LT ;LPh;LS;2;�;Bw ;?r; eqiwith a one-sorted strutureG0M� = hMn; Col;ColT ;ColPh;ColS;�;Bw ;?; eqi575



4.4 CONNECTION WITH TARSKI'S LANGUAGE FOR GEOMETRY 277

Figure 99: A massive objet suh as a galaxy, or even a blak hole, an at as a giant lens.Light from a distant soure (e.g. a quasar) is bent by the gravitational spae warp surroundingthe objet. This e�et an produe multiple images of a distant soure.where Col(a; b; ) def() (9` 2 L) a; b;  2 ` for a; b; ;2 Mn. Further, ColT � Mn�Mn�Mnis T -ollinearity, de�ned from LT the natural way, i.e. ColT (a; b; ) def() (9` 2 LT ) a; b;  2 `,for a; b;  2 Mn.576 Similarly for ColPh and ColS. In the other diretion, in G0M�, LT is ade�ned relation and not a basi symbol, similarly L is a de�ned sort. Further in G0M� ? isa relation between pairs of points, i.e. it is a 4-ary relation on Mn. Intuitively, ha; b; ; di 2 ?iff the lines determined by ha; bi and h; di are ?r-orthogonal aording to G0M. We emphasizethat, as it was explained in x4.3, from the point of view of �rst-order logi there is no realdi�erene between G0M and G0M�. More preisely, the di�erene between G0M and G0M� is thesame as that between a Boolean algebraB1 = hB;_;^;�; 0; 1i and B2 = hB;_;�; 0i: �Let us inlude g into G0M obtainingG0Mg = hMn;F1;L; LT ;LPh;LS;2;�;Bw ;?; eq; gi:Let us try to make G0Mg one-sorted in the style of the above disussion. Then we obtain thefollowing struture(G0Mg)� = hMn;F1; Col;ColT ;ColPh;ColS;�;Bw ;?; eq; gi:This leaves us with two problems listed in (i) and (ii) below.(i) (G0Mg)� remains many-sorted beause it has two sorts Mn and F.(ii) We an replae L by Col only when we assume axiom Det on our model M from whihthe geometry is obtained. In speial relativity (i.e. in the present setion) we are allowedto do this and this auses no loss of generality. However in general relativity this is notallowed (beause axiom Det would kill essential features of the theory). Cf. Fig.99 onp.277.575For ompleteness we note that G0M� is a legitimate struture even in the most lassial and most puristversion of �rst-order logi.576Here, Col;ColT ;ColPh;ColS are de�ned from L;LT ;LPh;LS ; respetively, f. footnote 571 on p.274.



278 4.4 CONNECTION WITH TARSKI'S LANGUAGE FOR GEOMETRYWe will return to the diÆulty outlined in item (ii) at the end of this sub-setion (p.278).We will extend the above identi�ation of G0Mg with (G0Mg)� to identifying GM with itsvariant G�M := hMn;F1; Col;ColT ;ColPh;ColS;�;Bw ;?; eq; g; T i:However, we will remain autious with this identi�ation in onnetion with generalizationstowards general relativity beause of item (ii) above.We will return to the subjet of identifying G0M, G0Mg, GM with G0M�, (G0Mg)�, G�M,respetively, et. in x4.6, but f. also x4.3. These issues are studied in more detail in AMN [18,x4.6 (Interde�nability)℄.By the above, we will onsider our geometries e.g. GM as natural, de�nitional expansions ofTarski's geometries hMn; Col; \extra relations"i. Our reason for doing so is that we would liketo use the insights of Tarski's shool in our framework.In our theorems in the present setion we used axiom Det. As we said, this restrits thelass of all frame models to the smaller lassMDet := fM 2 FM : GM j= Detg:We note that MDet is axiomatizable in its original language too, this follows from Prop.4.3.18(p.240) and Prop.4.3.41 on p.264. The investigations in Chapters 1{4 in this work do nothange essentially if we restrit our attention to MDet. E.g, the properties of the theoriesTh 2 fNewbasax; Bax; Reih(Bax); : : :g remain basially the same if instead of Mod(Th)we investigate ModDet(Th) = MDet \Mod(Th).Therefore, the geometrial ounterpart of the theory developed in Chapters 1{4 of thiswork an be built up in the Tarskian one-sorted frameworkG0M� = hMn; Col;ColT ;ColPh;ColS;�;Bw ;?; eqi;or if g plays an important role then in the metri version G�M of the Tarskian geometry G0M�.577However, when we generalize our approah to general relativity theory then it will beessential to use many-sorted geometries of the kind hMn;L; 2i for the following reason. Aswe already said, we an add axiom Det to our presently disussed relativity theories likeNewbasax, Bax et. without hanging the essential, harateristi properties of these theories.This will not be the ase with general relativity f. Fig.99 (p.277). (See also Figures 134, 83on pages 365, 187.) Namely, in general relativity it is an essential feature for life-lines `; `0of inertial bodies that the number of intersetions of ` and `0 an be arbitrarily large. Thatis, in general relativity, for every n 2 ! it is possible to have ` 6= `0 suh that j` \ `0j > n.Hene it is impossible to ode lines578 with n-tuples of points.579 Therefore, the way Tarskirepresented (or oded) lines with pairs (or n-tuples) of points does not seem to work in generalrelativity. Therefore, it seems to be the ase, that if, for general relativity, we want to arrythrough the programme represented by \the geometry of Tarski's shool580", Suppes [242℄, andGoldblatt [102℄, then we will have to develop �rst-order logi of geometry in the many-sortedstyle hPoints;Lines; 2i and not in the one-sorted style hPoints; Coli.577where G�M was introdued on p. 278 below item (ii) disussing (G0Mg)�.578more preisely, life-lines of photons (f. x4.7 entitled \geodesis" herein)579Roughly speaking, adding axiom Det to general relativity would basially redue general relativity to thelevel of speial relativity, f. Fig.99 (p.277). Hene we do not want to add axiom Det to general relativity.580f. e.g. [255, 252, 245, 232℄



4.4 CONNECTION WITH TARSKI'S LANGUAGE FOR GEOMETRY 279As we said before, we will disuss the interonnetions between our basi relation (andfuntion) symbols ColT , ColPh,. . . , eq, g (i.e. between the ingredients of GM) in x4.6.For more information, results and proofs on the subjet matter of the present setion werefer to x6.5 of AMN [18℄. We omitted these items for lak of spae.



280 4.5 DUALITY THEORY4.5 Duality theory: onnetions between relativisti geometries(GM) and models (M) of relativityAssume we have two essentially di�erent ways of thinking about the world. Assume we anestablish some very strong interonnetions between these two ways of thinking.581 (Call this\duality theory" between the two ways.) Then suh a system of interonnetions (i.e. \dualitytheory") an be rather useful beause then we an use these two ways of thinking ombined,and ideas or reasonings formulated in one of these ways of thinking an be translated into theother. One ould say that suh a duality theory enables us to reason about the world by usingthe two ways of thinking simultaneously, ahieving a kind of \stereo" e�et.

Figure 100: A duality theory an be viewed as a bridge onneting two worlds of mathematis,permitting two-way traÆ. The bridge idea is explained in great detail in Andr�eka et al. [31℄,f. xII \Bridge . . . " therein. Cf. also [30℄ and Mikul�as [191, x1.3 (\Bridge between logis andalgebras")℄.A seond, equally important, motivation for duality theories is the following. Duality the-ories often establish two-way \translations"World1 T1�! �T2 World2between two \worlds"582 of mathematis suh that problems formulated in World1 are ofteneasier to solve the following way: (i) translate \problem" into World2, then solve T1(problem)in World2 and translate the result bak along T2 into World1. With ertain other problems581Later we will refer to this interonnetion, in a �gurative way of speaking, as a bridge, f. Fig.100.582One world an be a branh, like Boolean algebras, while the other world an be another branh of mathe-matis, like topologial spaes. On p.1103 of AMN [18℄ we see that these worlds an be arbitrarily far apart,e.g. one an be a part of analysis while the other a part of algebra (Laplae transformation).



4.5 DUALITY THEORY 281(originating from World2) the other diretion might sometimes work better. See Fig.100. Withthis \pragmati view" we do not mean to diminish the importane of the intelletual pleasureand sienti� value of integrating World1 and World2 into a uni�ed perspetive, we only want toemphasize that this pragmati, problem-solving-oriented motivation is there, too. An exampleis the \proof theory" �! � \model theory"duality built on G�odel's ompleteness theorem: some proof-theoreti problems are easier tosolve in the world of model theory, like proving Th 6` ' by onstruting a model M 2 Mod(Th)with M 6j= '.Before starting our partiular appliation of this idea (i.e. that of duality theories) wenote, that we list widely used examples of duality theories and motivation for duality theoriessattered through setion x6.6 (duality theory) of AMN [18℄. The main part of these itemsremain in AMN [18, pp. 1078{1105℄, and here we reall only a few. For the rest the reader iskindly referred to AMN [18, pp. 1078{1105℄.So muh for duality theories in general. In the present setion we will investigate ertainonrete duality theories. More onretely, the subjet matter of the present setion onernsthe onnetions between the \observation-oriented" models Mod(Th) and the \theoretiallyoriented" models Ge(Th).583 The investigation of suh onnetions has already been proposedby Reihenbah [218℄ and has been pursued to some extent in a model-theoreti spirit (similar toours, in many respets) in Friedman [91, x VI.3 (p.236)℄ under the title \Theoretial Strutureand Theoretial Uni�ation".584 (\Theoretial struture" in the title an be interpreted asreferring to the strutures in Ge(Th),585 while \theoretial uni�ation" an refer to a uni�edstudy of Ge(Th) and Mod(Th) and their interonnetions [e.g. what we do in the presentsetion℄.) Cf. the introdution to the present hapter, i.e. x4.1 (p.130).Among other things, in this setion we will omplete the proof that our \observation-oriented" models Mod(Th) are de�nitionally equivalent to our relativisti geometries Ge(Th),assuming Th is strong enough. Formally,Mod(Th) �� Ge(Th);under some assumptions, f. Thm.4.3.38 (p.261). Besides this, we will also elaborate dualitytheories between the worlds Mod(Th) and Ge(Th), f. Fig.100 (p.280) and e.g. xx 4.5.1, 4.5.3,A.2. We note that a duality theory between Mod(Th) and Ge(Th) means a weaker onnetionthan de�nitional equivalene. Hene, duality theories (between Mod(Th) and Ge(Th)) are moregeneral in the sense that they hold under milder assumptions on Th. (Atually Mod(Th) ��Ge(Th) implies isomorphism between the ategories586 Mod(Th) and Ge(Th) if we hooseelementary embeddings as morphisms; whih seems to be the strongest possible form of duality,f. item (5) on p.256.)583As the reader might expet at this point, this onnetion will appear in the form of a duality theory.584In passing we note that the emphasis on model theory (in onnetion with studying relativity, of ourse),harateristi of the present work, is not without preursors, e.g. the relativity theory book Friedman [91℄ putsquite a bit of emphasis on using model theory in a spirit similar to ours. Cf. e.g. our referene to Friedman'sA and B on p.130 herein.585Or more \literally" as referring to a ommon expansion hM;GMi of M and GM, but we are loser to thespirit of the onnetions between [91℄ and the present work if we interpret \theoretial struture" as GM orequivalently Ge(Th).586Categories will be introdued later, f. xA.2 (p.A-6).



282 4.5 DUALITY THEORYThe following onvention is made only to have a nier duality theory between the framemodels and the observer independent geometries.CONVENTION 4.5.1(i) Throughout the present hapter (\Observer independent geometry") we postulate thatthe empty model587 similar to our frame models is a frame model too (i.e. is a memberof FM). Further we postulate that for any M 2 FMObsM = ; ) (M is the empty model):In the present onvention the de�nition of the lass of frame models FM was modi�ed.The de�nition of Mod(Th) is modi�ed aordingly, for any set Th of formulas in ourframe language.588(ii) Deviating from the onvention usually made in Algebra, in the present hapter, in aor-dane with item (i), algebrai strutures with empty universes are allowed, e.g. h;; +; �iwith +; � binary operations on ; is a �eld.589 �Let us reall that by a relativisti geometry we understand an isomorphi opy of GM, forsome frame model M. Let us also reall that for any set Th of formulas in our frame languagefor relativity theory we de�nedGe(Th) :def= fG : (9M 2 Mod(Th)) G �= GMg:Let G = hMn; : : : ;L;2; : : :i 2 Ge(;). Then we reall that we assumed that the relation 2between Mn and L is the, real, set-theoreti membership relation, and that this does not auseloss of generality.
4.5.1 A duality theory between models and geometries (�rst part of the �rstversion590)Given a relativisti geometry G �= GM for a frame model M, it is a natural question to askwhether we an reonstrut M (up to isomorphism) from G.591 A possible answer to suh a587We all a model empty if all its sorts (i.e. universes) are empty.588The ase of the empty model an be handled by making appropriate onventions. (E.g. one de�nes whihformulas are valid in the empty model.) Cf. e.g. M�arkusz [183℄ or Burmeister [52℄. To save spae, here we donot go into this issue.589The onvention of allowing empty algebras and empty models omes from ategory theory f. e.g. Ad�ameket al. [2, p.15, item 3.3(2)(e)℄. Also the motivation for allowing suh strutures omes from ategory theoretiresults; but f. also the model theory book Hodges [130, x1.1, p.2℄ whih does permit empty models, f. Exerise10 on p.11 (x1.2) in [130℄.590By the �rst version we mean the (M;G)-duality to be introdued soon while by the seond version wemean the (Mo;Go)-duality to be introdued in x4.5.4 muh later.591Here, the emphasis is on the ase when G 6= GM; f. Remark 4.2.5 (p.149).



4.5.1 DUALITY THEORY BETWEEN MODELS AND GEOMETRIES 283question onsists of elaborating a duality theory592 ating between the geometrial world Ge(;)and the world Mod(;) of our frame models. This onsists of two funtionsG : Mod(;) �! Ge(;) and M : Ge(;) �! Mod(;); 593see Figure 101. We de�ne G to be the funtion M 7! GM (spei�ed in Def.4.2.3 way above).

Frame models Frame models

Geometries Geometries
G G G M M

Figure 101: Conneting two worlds, namely, the world of frame models and the world ofgeometries.The funtionM will be de�ned later, in x4.5.3. Sometimes we all G andM funtors beause(i) they onnet lasses of strutures, (ii) they preserve ertain onnetions between strutures,e.g. isomorphisms and embeddability, and (iii) the orresponding \things" in Stone dualitytheory are alled funtors for ategory theoreti reasons. (Cf. item (II) in Remark 6.6.4 onp.1015 of AMN [18℄ for Stone duality.) Atually,M and G will beome \real" funtors in xA.2way below.CONVENTION 4.5.2 If f is a funtion and H � Dom(f) then the notation \f : H �! K"means that f � H : H �! K. �In the spirit of the above onvention G : Mod(Th) �! Ge(Th), for any set Th of formulas inour frame language.Besides de�ning M, a duality theory is supposed to prove some theorems stating that thefuntors G and M behave niely in some sense. In order to prove suh theorems we assumesome axioms on our models M. Therefore the duality theory will be of the form:G : Mod(Th) �! Ge(Th) and M : Ge(Th) �! Mod(Th);592For duality theories f. pp. 280{281, Remark 4.5.14 (pp. 293{296), pp. A-1{A-4, pp. A-11{A-12, pp. A-14{A-18.593Despite of the fat that G and M are only proper lasses of ordered pairs (as opposed to being a set ofordered pairs) we all them funtions.



284 4.5 DUALITY THEORYi.e. Mod(Th) G�! �M Ge(Th)and our theorems will be of the form (a){(i) below, and they will be stated for ertain hoiesof Th, see Figure 102. Motivation for disussing theorem shemas (a){(i) an be found in xA.2(p.A-6) and Remark 4.5.14 (p.293). For formulating items (a){(i) we will need the followingde�nition.De�nition 4.5.3 (Embeddability, weak submodel) Assume A and B are similar models.(i) We say that A is embeddable into B, in symbols A ��! B (or B  �� A) iff thereis an injetive homomorphism h : A �! B. Cf. Convention 2.1.1 (p.2).(ii) A is a weak submodel of B, in symbols A �w B iff A � B and the identity funtionIdA is a homomorphism from A to B.594 Hene weak submodels are always embeddable.Further, the de�nition for the many-sorted ase is ompletely analogous. I.e. the existeneof an idential embedding of say M into N is equivalent to M being a weak submodel ofN.595 �Assume M 2 Mod(Th). ThenM is embeddable into (G ÆM)(M), i.e.M ��! (G ÆM)(M),f. Fig.107 (p.292) and Fig.102.(a)In duality theories similar to our (G;M)-duality, in addition to item (a) it is sometimesrequired that the embedding (or morphism) \��!" ourring in (a) is the \shortest one"in some intuitive sense, f. Fig.103 (p.287). This will be made preise in De�nitions A.2.6(p.A-11) and A.2.7 (p.A-13) in our ategory theoreti sub-setion xA.2. An analogous remarkapplies to item (b) below.Assume G 2 Ge(Th). Then(MÆ G)(G) is embeddable into G, i.e.G �� (MÆ G)(G),f. Fig.102.(b)
594A is a strong submodel of B if every weak submodel C of B with the same universe as that of A (i.e. withC = A) is a weak submodel of A, too. In other hapters of the present work we write simply \submodel"for \strong submodel". Further, the de�nition (of weak and strong submodels) for the many-sorted ase isompletely analogous with the above one. For more on the distintion between strong and weak submodels f.e.g. [52℄ or [29℄. We note that if A � B, i.e. if A is a strong submodel of B then A is also a weak submodel of B,i.e. A �w B. The other diretion does not hold in general, i.e. A �w B ( A � B but A �w B 6) A � B.595Using the notation Uv(M) on p.219 (x4.3), we ould say that M is a weak submodel of N if the inlusionfuntion of Uv(M) in Uv(N) is an embedding of M in N.
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(a) (b)this ase is missing fromour �rst duality theory
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Figure 102: Illustration for theorem shemas (a){(h) for duality theory.



286 4.5 DUALITY THEORYWe will have two kinds of dualities, one represented by (M;G) and the other representedby (Mo;Go). In the �rst ase (i.e. in the ase of M;G) the (b)-type theorems will beomedegenerate in that they will be of the form (d) below.596G ÆM has a strong �xed-point property in the sense that for anyM 2 Mod(Th) (G ÆM)(M) �= M,597f. the right-hand side of Fig.105 (p.291) and Fig.102.()
MÆG has a strong �xed-point property in the sense that for anyG 2 Ge(Th) (MÆ G)(G) �= G,f. the left-hand side of Fig.105 (p.291) and Fig.102.(d)
The members of the range of G are �xed-points598 of MÆG, formally: Forany M 2 Mod(Th) (MÆ G)(G(M)) �= G(M),599f. Fig.102.(e)
The members of the range of M are �xed-points of G ÆM, formally: Forany G 2 Ge(Th) (G ÆM)(M(G)) �=M(G),f. Fig.102.(f)

For any funtion f , f 2 :def= f Æ f .G ÆM has a �xed-point property in the sense that for anyM 2 Mod(Th) (G ÆM)2(M) �= (G ÆM)(M),f. the left-hand side of Fig.106 (p.292) and Fig.102.(g)
596I.e. as a side-e�et of our hoieM and G we will have (b))(d). This e�et will disappear when we turntoMo and Go (i.e. to our seond duality theory).597i.e. M is a �xed-point of G ÆM, up to isomorphism.598i.e. G(M) is a �xed-point up to isomorphism ofMÆG.599This is the typial form of basi statements of Galois onnetions600, e.g. Th(Mod(Th(K))) = Th(K), orin the ase of Galois theory of �eld extensions �(H(�(G))) = �(G), f. items (I), (IV) of Remark 6.6.4 ofAMN [18℄.600The de�nition of Galois onnetion is in Def.A.1.2 (p.A-3) and motivation for Galois onnetion is inRemark A.1.1 (p.A-1).



4.5.1 DUALITY THEORY BETWEEN MODELS AND GEOMETRIES 287MÆG has a �xed-point property in the sense that for anyG 2 Ge(Th) (MÆ G)2(G) �= (MÆ G)(G),f. the right-hand side of Fig.106 (p.292) and Fig.102.(h)
For any M;N 2 Mod(Th) and G;H 2 Ge(Th)M��!N ) G(M)��!G(N); and601G��!H ) M(G)��!M(H):602(i)We will refer to items (a){(i) above as theorem-shemas for our duality theories.Figure 103 intends to illustrate our (M;G)-duality603, theorem shemas (a), (b), and theidea of a shortest \��!" in the explanation below (a). The �gure itself uses the terminologyof ategory theory whih will be explained in xA.2 (p.A-6). It also intends to serve as aomplement for Fig.102. G e(Th)

M od(Th)M
G(M)

M(G(M))8
89!

M M G 8 G e(Th)
G G

M(G) 89! M od(Th)
G M

G(M(G))

Figure 103: (M;G) is an adjoint pair of funtors, under ertain onditions. For the missingde�nitions (e.g. M od(Th), G e(Th)) f. xA.2 (p.A-6).601On p.1015, p.1016 of AMN [18℄ we see that the funtors like M, G an be arrow reversing. This meansthat theM image of a pattern A��!B is of the form M(A)� �M(B). For suh arrow reversing dualitiesshema (i) obtains the form M��!N ) G(M) � � G(N)M�!�N ) G(M) ��G(N)et.602(i) implies that M��!N ) (G ÆM)(M)��!(G ÆM)(N)whih orresponds to losure operators (indued by Galois onnetions) being order preserving f. footnote 607on p.288 and p.A-3 (xA.1).603Sometimes we write (G;M)-duality for (M;G)-duality. They are the same thing.



288 4.5 DUALITY THEORYWe note that in the ase of (M;G), i.e. in our �rst duality theory,() ) (d) , (e) ) (f) , (g) ) (h):604In the above shema, e.g. \() ) (d)" means that for eah Th for whih (M;G) satis�es(), (M;G) also satis�es (d). (Similarly for the rest of the impliations.)Items () and (d) above imply Mod(Th) �w� Ge(Th);i.e. that Mod(Th) and Ge(Th) are weakly de�nitionally equivalent605, for any Th in our framelanguage, assuming M;G are �rst-order de�nable meta-funtions606 with M : Ge(Th) �!Mod(Th) suh that the isomorphisms mentioned in () and (d) an be hosen suh that theyare identity funtions on the sort F.Further, if Th is strong enough, then Mod(Th) and Ge(Th) turns out to be de�nitionallyequivalent, in symbols Mod(Th) �� Ge(Th);f. Thm.4.3.38 (p.261). For the intuitive meaning and methodologial importane of this f.the text above Thm.4.3.38 on p.261.If for Th items (a) and (g) above hold, then we will say that GÆM is a losure operator607on hMod(Th);�wi up to isomorphism608 (and the values of G ÆM are �xed-points up to iso-morphism), assuming it preserves the partial order �w up to isomorphism, f. Fig.104. In thisase, we all (G ÆM)(M) the losure (or the (G;M)-losure) of M. Further, if for Th items(b) and (h) hold, then we will say that M Æ G is a losure operator on hGe(Th); w�i up toisomorphism, assuming it preserves w� up to isomorphism, where Gw� H iff H �w G. In suhsituations, sometimes, (MÆ G)(G) is alled the interior , whih means dual-losure, of G.  Figure 104: A possible losure operator.Below we will start developing suh a duality theory. For stating our �rst theorems (ofshema (a){(i)) we introdue two new axioms Ax(Bw), Ax(1ph) and the new axiom systemPax+.604This is so beause, if G : Mod(Th) �! Ge(Th) then, Rng(G) is Ge(Th) up to isomorphism.605f. Def.4.3.42 (p.264) for the notion of weak de�nitional equivalene606in the sense of Def.4.3.39 (p.262)607Let hP;�i be a partially ordered set (or lass) and f : P �! P . Then f is a losure operator on hP;�i ifffor all x; y 2 P , x � f(x) = f2(x) and (x � y ) f(x) � f(y) ). (In passing we note that this notion admitsa natural generalization to pre-ordered sets in plae of partially ordered ones.)608The up to isomorphism part is important, beause what we know of M 2 Rng(G ÆM) is that it is a�xed point of G ÆM only up to isomorphism and for M 2 Mod(Th) \M �w (G ÆM)(M)" holds only up toisomorphism.



4.5.1 DUALITY THEORY BETWEEN MODELS AND GEOMETRIES 289Ax(Bw) (8m; k 2 Obs)[m �! k ) (fmk is betweenness preserving) 609℄.Ax(1ph) (8m 2 Obs)(8ph; ph0 2 Ph)� [ �0 2 trm(ph) \ trm(ph0) ^ ( ph and ph0 move in thesame diretion as seen by m ) ^ vm(ph) =1 ℄ ! vm(ph0) =1�.Intuitively, no observer an emit simultaneously in the same diretion two photons onewith in�nite speed and the other one with �nite speed.In onnetion with Ax(Bw) and Ax(1ph) we state Propositions 4.5.4, 4.5.8 whih willbe needed later. Reall that Pax is weaker than Bax�, f. x3 and AMN [18, p.482 in x4.3℄.The proposition below says that Pax + Ax(p ) implies Ax(Bw) and that if n > 2, thenBax� implies Ax(Bw).PROPOSITION 4.5.4(i) Pax+Ax(p ) j= Ax(Bw).(ii) Assume n > 2. Then Bax� j= Ax(Bw).Proof: Item (i) follows from Thm.3.2.6 on p.110 saying that the word-view transformations arebijetive ollineations in all models of Pax, and from Lemma 3.1.6 on p.163 of AMN [18℄ sayingthat a line preserving bijetion is an aÆne transformation omposed by a �eld automorphism(f. also footnote250 on p.119). Item (ii) follows from Thm.3.4.40 on p.241 of AMN [18℄ sayingthat Bax implies that fmk = e' Æ f , for some f 2 Aftr and ' 2 Aut(F), from Thm.3.2.13 onp.118 whih says that Bax does not allow FTL observers, and from Lemma 4.5.5 below.LEMMA 4.5.5 Let F = hF;�i be an ordered �eld. Let ' 2 Aut(F) be suh that (8x 2F) (jxj < 1 ) j'(x)j < 1).Then we have ' 2 Aut(F), i.e. ' is order preserving.We omit the proof.QUESTION 4.5.6 Assume n > 2. Does Bax�� j= Ax(Bw) hold? �Remark 4.5.7 Many of the theorems of the present work as well as of AMN [18℄ remaintrue if we replae the assumption Ax(p ) by the \weaker" Ax(Bw). An example of suh atheorem is Thm.3.2.13 saying that if n > 2 then Pax� + Ax(p ) exludes FTL observers.There are similar examples almost in every hapter. By replaing Ax(p ) with Ax(Bw),usually we obtain theorems stronger than the original one, sine usually Pax is assumed andthen Prop.4.5.4(i) implies that the new theorem is stronger (or equivalent). �PROPOSITION 4.5.8 Bax� j= Ax(1ph).We omit the easy proof.De�nition 4.5.9 Pax+ :def= Pax+AxE01 +Ax(Bw)+Ax(1ph) +�[Ax(eqtime) ^ (8m; k 2 Obs)(80 < i 2 !) trm(k) 6= �xi ℄ _ Ax(eqm)�.610�609This an be formalized as (8p; q; r 2 nF)(Betw(p; q; r) ) Betw(fmk(p); fmk(q); fmk(r)).610Instead of Ax(eqtime) we ould use the weaker axiom Ax(eqtime) _Ax(eqspae)�. Then we wouldobtain a weaker axiom system Pax+�. The theorems of the present sub-setion (i.e. x4.5.1) remain true if wereplae Pax+ by Pax+� in them. For an even more general duality theory f. Remark 4.5.51 (p.322).



290 4.5 DUALITY THEORYIf we replae Ax(Bw) by Ax(p ) in Pax+ then we get a stronger axiom system thanPax+(by Prop.4.5.4(i)). Note that Pax+ j= Ax(eqtime).The theory Pax+ above is designed to be weak, just strong enough for de�ning the funtionM : Ge(Pax+) �! Mod(Pax+).611 This is why Pax+ is so arti�ial. Our next propositionshows that in our de�nitions, and statements the assumption Pax+ an be replaed by morenatural (but stronger) theories. In passing we note that Pax+(2) allows Basax+Ax(symm)models with FTL observers.PROPOSITION 4.5.10 Assume n > 2. Then (i){(iii) below hold.(i) Bax�� +Ax(Bw)+Ax(eqtime) j= Pax+.(ii) Bax�� +Ax(p ) +Ax(eqtime) j= Pax+.(iii) Bax� +Ax(eqtime) j= Pax+.Proof: Assume n > 2. Then, by the proof of Thm.3.2.13 (p.118), Bax��+Ax(Bw) exludesFTL observers. Further, Bax� j= Ax(1ph) by Prop.4.5.8. Therefore item (i) of the propo-sition holds. Item (ii) follows by (i) and by Prop.4.5.4(i). Item (iii) follows by Thm.3.4.19(p.221) of AMN [18℄ and by Prop.4.5.4(ii) herein.Below we state a theorem orresponding to the theorem shemas () and (d) on p.286 wayabove. The theorem below implies that Mod(Th) �w� Ge(Th), if we assume that Th satis�esAx(diswind) and ondition (?) in the theorem. We note that more than this is true, namely,Thm.4.3.38 says that Mod(Th) �� Ge(Th) under the same onditions.THEOREM 4.5.11There is a �rst-order de�nable meta-funtion M : Ge(Pax+) �! Mod(Pax+) suh that(i){(iii) below hold, for any Th satisfying ondition (?) way below. Moreover, this M is thenatural meta-funtion de�ned in Def.4.5.38 (p.310).(i) M : Ge(Th) �! Mod(Th) (and of ourse G : Mod(Th) �! Ge(Th)).(ii) Both MÆG and G ÆM have the strong �xed-point property in the sense that for anyG 2 Ge(Th) and M 2 Mod(Th)(MÆ G)(G) �= G and (G ÆM)(M) �= M;moreover there is an isomorphism between G and (MÆG)(G) whih is the identity mapon F, and the analogous statement holds for M and (G ÆM)(M), see Figure 105 andpitures (), (d) in Figure 102 (p.285).(iii) Moreover, G and M are �rst-order de�nable meta-funtions, assuming Th j=Ax(diswind).(?) n > 2 and Th j= Bax� +Ax(Triv t)� +Ax(k)� +Ax(eqtime)+Ax(ext)+Ax~+Ax(p ).Proof: The theorem is proved in the proof of Thm.4.5.43 (p.315) way below.The following theorem implies that the sentenes in our frame language an be translated (ina meaning preserving way) into sentenes in the language of our observer independent geome-tries and vie-versa, under some assumptions. Cf. the text above Thm.4.3.38, Remark 4.3.37,introdution of x4.2.2 and the text above Prop.4.3.45 (p.265). In onnetion with the followingtheorem we note that F is a ommon sort of Mod(Th) and Ge(Th).611That funtorM will be de�ned later (beginning with p.308).
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takingisomorphiopiesMod(Th) Ge(Th)

Ge(Th)MÆ G Ge(Th)Mod(Th)
Mod(Th)G ÆMM

G GM
Figure 105: (MÆ G)(G) �= G and (G ÆM)(M) �= M.THEOREM 4.5.12 Let M : Ge(Pax+) �! Mod(Pax+) be a �rst-order de�nable meta-funtion suh that for this hoie of M the onlusions of Thm.4.5.11 above hold. Assumen > 2 and that Th is as in Thm.4.3.38 above. Then there are \natural" translation mappingsTM : Fm(Mod(Th)) �! Fm(Ge(Th)) and TG : Fm(Ge(Th)) �! Fm(Mod(Th))suh that for every '(�x) 2 Fm(Mod(Th)),  (�y) 2 Fm(Ge(Th)) with all their free variablesbelonging to sort F, M 2 Mod(Th) and G 2 Ge(Th), and evaluations �a;�b of �x; �y, respetively(in F of ourse), (i){(iv) below hold.612(i) M(G) j= '[�a℄ , G j= TM(')[�a℄ and G(M) j=  [�b℄ , M j= TG( )[�b℄.(ii) M j= '[�a℄ , G(M) j= TM(')[�a℄ and G j=  [�b℄ , M(G) j= TG( )[�b℄.(iii) M j= '(�x)$ TG(TM('))(�x) and G j=  (�y)$ TM(TG( ))(�y).(iv) Mod(Th) j= ' , Ge(Th) j= TM(') and Ge(Th) j=  , Mod(Th) j= TG( ).Proof: The theorem follows from Theorems 4.5.11 and by Prop.4.3.45 on p.265 (and bynotiing that Thm.4.5.11 implies that Mod(Th) �w� Ge(Th)).Below we state a theorem orresponding to the theorem shemas (a), (){(h) on p.286way above. In onnetion with the formulation of the next theorem we note that for any Th,G : Mod(Th) �! Ge(Th) by the de�nition of G. (Hene, in partiular G : Mod(Pax+) �!Ge(Pax+).)THEOREM 4.5.13There is a �rst-order de�nable meta-funtion M : Ge(Pax+) �! Mod(Pax+) suh that (i){(iv) below hold. Moreover, thisM is the natural meta-funtion de�ned in Def.4.5.38 (p.310).(i) The members of the range of M are �xed-points of G Æ M, formally: For any G 2Ge(Pax+) (G ÆM)(M(G)) �=M(G);see piture (f) in Figure 102 (p.285).612We note that the formulas ' and TM(') have the same free variables (therefore (i) below makes sense).Similarly for TG et.



292 4.5 DUALITY THEORY(ii) Both G Æ M and M Æ G have �xed-point property in the sense that for any M 2Mod(Pax+) and G 2 Ge(Pax+)(G ÆM)2(M) �= (G ÆM)(M) and (MÆ G)2(G) �= (MÆ G)(G);see Figure 106 and pitures (g) and (h) in Figure 102 (p.285).Mod(Th) Ge(Th)Mod(Th)Ge(Th)Mod(Th)Ge(Th) G MGMM G Ge(Th) Mod(Th)Ge(Th)Mod(Th)Ge(Th)Mod(Th) M GMGG M
Mod(Th)

Mod(Th)Mod(Th) G ÆM(G ÆM)2 G ÆM
Ge(Th)

Ge(Th)Ge(Th) MÆ G(MÆ G)2 MÆ G

Th = Pax+

Figure 106: These diagrams ommute up to isomorphism.Th = Pax+ +Ax(ext)+Ax~ Mod(Th)
Mod(Th) Ge(Th)GMG ÆMembeddings

Figure 107: M ��! (G ÆM)(M)(iii) M : Ge(Pax+ +Ax(ext)+Ax~) �! Mod(Pax+ +Ax(ext)+Ax~) andfor any M 2 Mod(Pax+ +Ax(ext)+Ax~)M is embeddable into (G ÆM)(M), i.e.M ��! (G ÆM)(M);see Figure 107 and piture (a) in Figure 102 (p.285).



4.5.1 DUALITY THEORY BETWEEN MODELS AND GEOMETRIES 293(iv) M : Ge(Pax+ + Ax(eqm)) �! Mod(Pax+ + Ax(eqm)) (and of ourse G :Mod(Pax+ +Ax(eqm)) �! Ge(Pax+ +Ax(eqm))), andMÆ G has a strong �xed-point property in the sense thatfor any G 2 Ge(Pax+ +Ax(eqm))(MÆ G)(G) �= G;(f. the left-hand side of Fig.105 and piture (d) in Fig.102).Further, the members of the range of G are �xed-points of M Æ G, formally: For anyM 2 Mod(Pax+ +Ax(eqm)) (MÆG)(G(M)) �= G(M);f. piture (e) in Figure 102 (p.285).Proof: The theorem follows by Thm.4.5.43 (p.315) way below.Assume for M : Ge(Pax+) �! Mod(Pax+) that the onlusions of Thm.4.5.13 hold andM is a �rst-order de�nable meta-funtion. LetTh := Pax+ +Ax(eqm)+Ax(ext)+Ax~:Then, by Thm.4.5.13, G Æ M and M Æ G are losure operators on hMod(Th);�wi andhGe(Th); w�i up to isomorphism, respetively (f. p.288), assuming G ÆM andMÆG preserve�w. Further, M Æ G is the \identity operator" on Ge(Th) up to isomorphism, i.e. for anyG 2 Ge(Th), (MÆ G)(G) �= G. The analogous statement for G ÆM does not hold in general,i.e. there is M 2 Mod(Th) suh that (G ÆM)(M) 6�= M. This asymmetry is aused by ourhoie of G, i.e. by the fat that G is surjetive in the sense that Rng(G) is Ge(Th) up toisomorphism. We will have a duality theory for the (g; T )-free redut of our geometries inx4.5.4 whih will be more symmetri.Further theorems in this line (duality theories, Galois onnetions et.) will follow afterwe elaborate the de�nitions of e.g. the funtion M. For that de�nition we will need somepreparation e.g. oordinatization of our geometries summarized in x4.5.2 below.Remark 4.5.14 (Duality theories, Galois theories, Galois onnetions all overmathematis, in analogy with the ones in the present work)In onnetion with \theorem patterns" (a){(i) above there is an analogy between our presentfuntors G and M and the various Galois theories, duality theories, Galois onnetions inmathematis in the sense outlined in Remark 6.6.4 of AMN [18℄, f. Def.A.1.2 (p.A-3) for Galoisonnetions and Remark A.1.1 (p.A-1) for motivation for studying Galois onnetions.613(I) As motivating examples614, we reall from the literature e.g. the Galois theory of �elds,that of ylindri and relation algebras, Stone duality and related duality theories in AMN [18,xx 6.6.5{6.6.7, pp. 1078{1107℄. The notion of a duality theory is presented in AMN [18℄ in suha way that the well known examples of Laplae transform and Fourier transform are shownthere to be speial ases of this notion.613The reader not familiar with abstrat algebra may safely skip this disussion of onnetions with Galoistheory.614for duality theories in general, and Galois onnetions in partiular. (We regard ategory theoreti adjointsituations too as duality theories [f. AMN [18℄ for explanation of this℄.)



294 4.5 DUALITY THEORYIn AMN [18℄, Stone duality is abbreviated by the notationBA S�! �LBA Boolean topologial spaes,where S and LBA are two funtors. We will use this notation below.(II) Connetions of Stone duality with the (syntax, semantis)-duality in logi and inpartiular with parts of de�nability theory disussed in x4.3 (p.218):In onnetion with Fig.96 (p.263) and Fig.108 (p.295), for the interested reader, we note thatthe (syntax, semantis)-duality as disussed in this work is an organi part of algebrai logi.Therefore if the reader wants to learn more about this duality he an �nd more informationin works usually lassi�ed as algebrai logi (or sometimes as its ategory-theoreti-orientedparts).Notation: For any �rst-order theory Th,Fm(Th) :def= Fm(Mod(Th));i.e. Fm(Th) is the set of formulas of the language of the theory Th. In this de�nition we assumethat the voabulary of Th is somehow determined by Th. I.e. when speifying a theory onehas to speify its voabulary, too. (We often leave this to ontext).Convention: In the present remark (explaining duality theories et.), we treat interpretationsin a somewhat simpler way/form than in the de�nability setion x4.3. The di�erene is that inthe duality item we onsider only one-sorted theories. I.e. the objets of the ategory Theoriesin Fig.108 are one-sorted theories. In the de�nability setion we onentrated on many-sortedtheories. Hene there interpretations were understood between many-sorted theories whihmade them slightly more ompliated objets than interpretations in the present part.615 Cf.p.263, p.251, footnote 545 (p.251) herein and p.1023 footnote 1022 in AMN [18℄.Here we sketh an analogy between two duality theories. One of them is Stone duality, whilethe other duality ats between the ategory of �rst-order theories (and translation mappingsbetween them as morphisms) and the ategory of axiomatizable model lasses (and �rst-orderde�nable meta-funtions i.e. interpretations between them). (For the latter duality see Fig.96on p.263, while for the analogy with Stone duality f. Fig.108.) In more detail, the ategoryof Boolean algebras is put into analogy with the ategory of (�rst-order) theories (in thesyntatial sense) whose objets are the hFm(Th);Thi pairs. The morphisms of this ategoryare the translation mappings or interpretations like Trf in Fig.96 on p.263 f. also footnote 1022on p.1023 of AMN [18℄, Prop.4.3.41 (p.264) and Theorems 4.3.27, 4.3.29 (pp. 245, 247). (Thesetranslation mappings are often alled interpretations.616) E.g. we an onsider hFm(Th1);Th1i,hFm(Th2);Th2i as two BA's and any translation mapping Tr from Th1 to Th2 will be ahomomorphism between these BA's. Let, now, K1 and K2 be two axiomatizable lasses ofmodels. Let f : K2 �! K1 be a �rst-order de�nable meta-funtion617. Then f indues a615E.g. in x4.3 an interpretation onsisted of a funtion Tr together with something alled \ode" (f. p.251).In the present item we do not need \ode" but only Tr.616The hoie between using \translation mapping" or \interpretation" depends only on whih aspets orwhih perspetive/bakground we want to emphasize (and also on with whih part of the literature we wantto emphasize the onnetions f. footnote 1022 on p.1023 of AMN [18℄.617f. p.262, Def.4.3.39
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BAhomomorphisms Boolean topologial spaesontinuous funtions

Theoriestranslations(interpretations) Axiomatizable lasses of models�rst-order de�nable meta-funtions(interpretations)

SLBA
semantisModThsyntaxFigure 108: The analogy between Stone duality and (syntax, semantis)-duality.translation mapping Trf : Fm(K1) �! Fm(K2) satisfying the onlusion of Prop.4.3.41, p.264.Let us notie that Fm(Ki) are theories hene they orrespond to BA's (of equivalene lassesof formulas) and Trf turns out to be a BA-homomorphism. Further K2; K1 are Booleantopologial spaes618 and f is a ontinuous funtion. Now if we apply Stone duality to theBA-homomorphism Trf then we will obtain the ontinuous funtion f as its dual. See Fig.108.For more detailed exposition of the above see AMN [18, Rem.6.6.4, p.1014℄.Summing it up, what we tried to say in the above disussion is that Stone duality is,basially, the same thing as the (key idea of) (syntax, semantis)-duality of logi whih wasused impliitly in x4.3 (and whih, in partiular, makes translation mappings between formulasgo in the opposite diretion as they go between the models).619* * *(III) Analogy with Galois theory of Cylindri algebras: Let us take the Galois theory ofCylindri algebras as an example, f. Andr�eka-Comer-N�emeti [8, 9℄ and Comer [61℄. Here, M618if we ollapse the elementarily equivalent models619Stone duality onentrates on the ategory of BA's. Syntax-semantis duality onentrates on the ategoryof theories. But a theory Th indues a Boolean algebra whih we denote as Fm(Th)=Th . This gives us aonnetion . . . et.Else: In passing we note that Fm(Th)=Th is a slightly more omplex objet than a plain BA. Therefore (inlogial (syntax, semantis)-duality) when forming the dual S(Fm(Th)=Th) of Fm(Th)= : : : we do not take allprime ideals of Fm(Th)=Th , but only those ones, say P , whose omplements �P form onsistent theories ofour logi. (To this end we have to view �P as a subset of Fm(Th).) Equivalently, we ould use the primeideals of the subalgebra Fmlosed(Th)=Th , but we think that requiring �P to be a onsistent theory is morehelpful in building good logial intuition.For ompleteness: To make the onnetion with Stone duality even loser, we have the following extra option:We an stik with Fm(Th)=Th on the BA side (using all prime ideals) and on the topology side use model-evaluation pairs hM; �ai as points of our topology \Mod(Th)". In this setting the analogy with Stone dualityis perfet. This train of thought when pushed to the extreme leads eventually to ylindri algebras (CA's) inplae of BA's, and to represented CA's in plae of represented BA's (whih are nothing but Boolean spaes).



296 4.5 DUALITY THEORYorresponds to a ylindri set algebra, say A, and G(M) orresponds to the Galois group of A.Reall that a ylindri set algebra A is an algebra whose elements are onrete relations on abase set, and the Galois group G(A) of A is the group of all permutations of this base set whihleave all elements of A �xed. If G is a group of permutations on a base set U , then M(G)onsists of all those relations on U whih remain �xed by all elements of G. Then M(G(M))orresponds to the Galois losure A+ of A, for whih it is true that A++ = A+ � A. TheGalois losure A+ of A ontains extra relations whose existene is kind of suggested by therelations in A. So in a sense, in analogy with this, M(G(M)) is a kind of \Galois losure" ofthe original model M (whih will ontain extra observers whose existene is kind of suggestedby the observers already existing in M). These ideas on ylindri and related algebras areimpliitly used in Madar�asz [167℄, [170℄, [169℄, [177℄, [23℄, [20℄. We note that the Galois theoryof ylindri algebras is strongly analogous with the Galois theory of �elds, f. item (I) inAMN [18, p.1014℄.(IV) Analogy with algebrai logi will be disussed in xA.3, p.A-17. Algebrai logi anbe regarded as a very important duality theory (atually it is a system or olletion of dualitytheories) as this is shown e.g. in Madar�asz [170℄, [165℄, [164℄, [166℄. Connetions with Galoisonnetions and adjoint funtors are disussed in xx A.1, A.2 pp. A-1{A-17 herein, but f. alsoxx 6.6.5, 6.6.6 in AMN [18, pp. 1078{1105℄. For further uses of Galois theories and dualitytheories (e.g. in onnetion with di�erential equations) f. Janelidze [139, p.369℄. For furtherduality theories in physis we refer to Varadarajan [268℄, but f. also Lawvere-Shanuel [156,pp. 5{6, pp. 76{77℄. Important additional information is in Remark A.1.1 (\Motivation forGalois onnetions") item (II) and footnote 1077 (p.1079) in AMN [18℄. Duality theoriesinvolving C�-algebras, and Laplae transform are on pp. 1098{1105 in AMN [18℄. Furtherexamples of duality theories (in and outside of physis) are given in AMN [18, pp. 1078{1080,pp. 1096{1105℄.This onludes Remark 4.5.14 (Galois theories, Galois onnetions, duality theories all overmathematis, in analogy with the ones in the present work). �Our next sub-setion is on oordinatization. For appliations of this kind of oordinatizationin physis f. e.g. Varadarajan [268℄.
4.5.2 Coordinatization of geometries by ordered �eldsIn the present sub-setion our geometries, in most of the ases, are of the form hMn; Bwi,where Mn is the set of points and Bw is a ternary relation (of betweenness) on Mn. We donot assume that our geometries hMn; Bwi are reduts of relativisti geometries. It is knownfrom elementary geometry that if a geometry hMn; Bwi satis�es ertain axioms, then it anbe oordinatized by an ordered �eld and this ordered �eld is unique up to isomorphism (f.e.g. Hilbert [127℄ or Goldblatt [102℄ or Shwabh�auser-Szmielew-Tarski [232℄). We will reallthis oordinatization proedure from the literature (f. [102, 127, 232℄) in a slightly modi�edform. Before realling the oordinatization we ollet some axioms obtaining the axiom system



4.5.2 COORDINATIZATION OF GEOMETRIES BY FIELDS 297opag whih620 will be suÆient for the oordinatization621 of hMn; Bwi by an ordered �eld.The \geometrial theory" opag and the theory of ordered �elds will turn out to be weaklyde�nitionally equivalent, f. Prop.4.5.26 (p.303).Roughly speaking, opag is an axiomatization of aÆne geometry. AÆne geometry hasbeen thoroughly studied in the literature, and several axiomatizations for aÆne geometryare available in the literature, f. Remark 6.7.17 on p.1148 of AMN [18℄. (So opag is notpartiularly new, it has been put together to suit our purposes in the present work.)Beside the geometry hMn; Bwi we will also disuss the geometry hMn; oll i. In the ase of\hMn; Bwi" oll is a de�ned relation, i.e. we use the abbreviation oll over hMn; Bwi exatlyas it was introdued in item 4.2.12 on p.159.The new sort lines of hMn; olli as well as of hMn; Bwi together with the inidenerelation 2 � Mn� lines are expliitly de�ned (in the sense of x4.3.2) as follows. (Reall thatin the ase of \hMn; Bwi" oll is a de�ned relation.) First we de�neR := f ha; bi : (9 2 Mn) oll(a; b; ); a 6= b gas a new relation. Then we de�ne the new auxiliary sort U to be R together with pj0; pj1.Intuitively, the elements of U will ode the elements of lines. We de�ne a kind of inidenerelation E 0 between Mn and U as follows. Let e 2 Mn and ` 2 U . Thene E 0 ` def() oll(pj0(`); pj1(`); e):Then we de�ne the equivalene relation � on U as follows. Let `; `0 2 U . Then` � `0 def() (8e 2 Mn)(e E 0 ` $ e E 0 `0):We de�ne the new sort lines := U=� together with 2U;U=� � U�U=� . Finally, the inidenerelation e � Mn� lines is de�ned as follows. Let e 2 Mn and ` 2 lines. Thene e ` def() (9`0 2 `) e E 0 `0:Sine the axiom of extensionality holds for the inidene relation e we identify e with the realset theoreti membership relation 2. More preisely, without loss of generality we may assumethat lines � P(Mn) and that e oinides with the set theoreti 2, so we will do this from nowon.622 This ompletes the expliit de�nition of the two sorted geometry hMn; lines; 2; oll iover the one-sorted geometry hMn; olli, and the expliit de�nition of the two sorted geometryhMn; lines; 2;Bw ; oll i over the one-sorted geometry hMn; Bwi. For the onnetion of lineswith L of GM f. Item 4.5.36 on p.308.Next, we introdue axioms A0{A4, P1, P2, Pa. Though these axioms will be in the two-sorted language of hMn; lines; 2; oll i, by Thm.4.3.27 (p.245), they an be translated into theone-sorted languages of both hMn; olli and hMn; Bwi.620\opag" stands for ordered Pappian aÆne gometry621The oordinatizations (by Hilbert and others) of (syntheti) geometries mentioned above are related to thesubjet matter of the present setion beause observer m oordinatizesMn by the world-view funtion wm, i.e.wm : nF �! Mn is a oordinatization of Mn. In passing we note that the oordinatization methods of Hilbert,von Neumann, von Staudt (f. in [10℄), and others are applied in pure logi e.g. in Andr�eka-Givant-N�emeti [10,pp. 16{19℄. (The referene to von Neumann an be found in [10℄.) Tarski's shool all suh oordinatizationresults representation theorems. The idea is that we represent an abstrat axiomati geometry as a onrete(analyti) geometry in the Cartesian spirit. Cf. Remark 6.6.87 (p.1106) of AMN [18℄.622For more detail on why and how we an do this (with \2", e and lines) we refer to Appendix (\Why�st-order logi?") of AMN [18℄.



298 4.5 DUALITY THEORYA0 (8a; b;  2 Mn)[ oll(a; b; )$ (9` 2 lines) a; b;  2 ` ℄.Intuitively, a; b;  are ollinear iff there is a line that ontains a; b; .A1 (8a; b 2 Mn)( a 6= b ! (9!` 2 lines) a; b 2 ` ).Informally, any two distint points lie on exatly one line.623Though axioms A2, A3, A4 below are not �rst-order formulas in their present form, theyan be easily reformulated in the �rst-order languages of both hMn; Bwi and hMn; oll i.Throughout n � 2 is the dimension of our geometry. If H � Mn then we will use the de�nitionof Plane0(H) exatly as it was introdued in Def.4.2.15(ii) (p.161). Intuitively, Plane0(H) isthe n-long losure of H under oll. Reall that the de�nition of Plane0(H) is a �rst-order oneover both strutures hMn; oll; Hi and hMn; Bw ; Hi.A2 Intuitively, if H is a less than n + 2 element subset of Mn then the \n-long losure"Plane0(H) of H under oll will be losed under oll, hene the plane Plane(H) generatedby H oinides with Plane0(H) (f. Def.4.2.15, p.160), formally:(8H � Mn)�( jHj � n+ 1 ^ a; b 2 Plane0(H) ^ oll(a; b; ) ) !  2 Plane0(H)�.For introduing axioms A3 and A4 we need the following de�nition.De�nition 4.5.15 Consider a geometry hMn; Bwi.(i) Let H � Mn. Then H is alled independent iff (8e 2 H) e 62 Plane0(H n feg).(ii) Let P � Mn. Then P is alled an i-dimensional plane i� there is an i + 1 elementindependent subset H of Mn suh that Plane0(H) = P . �A3 Intuitively, if i � n and H is an i + 1 element independent subset of Mn then there isexatly one i-dimensional plane that ontains H, formally:(8H;H 0 � Mn)�( jHj = jH 0j � n + 1 ^ (both H and H 0 are independent) ^ H �Plane0(H 0) ) ! Plane0(H) = Plane0(H 0)�.A4 Mn is an n-dimensional plane.Our next two axioms P1 and P2 onern \parallel lines". For these axioms we need thenotion of parallelism.De�nition 4.5.16 Informally, two lines are parallel if they are in the same 2-dimensionalplane, they do not meet or they oinide, formally: Let `; `0 2 lines. Then ` and `0 are parallel ,in symbols ` k `0, iff (9a; b;  2 Mn)`; `0 � Plane 0(fa; b; g) and (` \ `0 6= ; or ` = `0).624 �623Cf. axiom AS1 in Golblatt [102, p.112℄ and axioms I1 and I2 in Hilbert [127, x2℄.624If we apply these de�nitions (i.e. the def. of lines and k) to GM then (assuming Pax +Ax(diswind)):(i) lines and L are potentially di�erent but L � lines, further(ii) k and kG are potentially di�erent but kG is the restrition of k to L. Cf. Item 4.5.36 on p.308.



4.5.2 COORDINATIZATION OF GEOMETRIES BY FIELDS 299P1 (8` 2 lines)(8a 2 Mn)(9!`0 2 lines)(a 2 `0 ^ ` k `0).Informally, if we are given a line ` and a point a, then there is exatly one line `0 thatpasses through point a and is parallel to line `.625 This axiom is alled Eulid's axiomin the literature.P2 (` k `0 ^ `0 k `00) ! ` k `00.I.e. the relation of parallelism is transitive.626De�nition 4.5.17 (aÆne geometry)(i) ag :def= fA0;A1;A2;A3;A4;P1;P2g.(ii) If hMn; oll i j= ag then we say that hMn; oll i is an aÆne geometry. �An algebrai struture D = hD; +; �i with binary operations + (addition) and � (multi-pliation), is alled a division ring iff 1{3 below hold.1. hD; +i is an Abelian (i.e. ommutative) group. We let 0 denote its neutral (i.e. identity)element.2. hD n f0g; �i is a group.3. The distributive lawsx � (y + z) = x � y + x � z; (y + z) � x = y � x + z � xhold for all x; y; z 2 D.We note that a division ring in whih the multipliation is ommutative (x �y = y �x) is a �eld.Assume D = hD; +; �i is a division ring. Then the set of lines Eul(n;D) � P(nD) ofthe \oordinate system nD" is de�ned ompletely analogously to the ase of �elds on p.18.Further, ollD is a ternary relation on nD de�ned asollD :def= f hp; q; ri 2 nD � nD � nD : (9` 2 Eul(n;D))p; q; r 2 ` g :The following fat (known from geometry) says that a geometry is an aÆne one iff it anbe oordinatized by a division ring.FACT 4.5.18 Assume n > 2. Then hMn; oll i j= agm(there is a division ring D = hD; +; �i suh that hMn; oll i �= hnD; ollDi).625Cf. axiom AS3 in Goldblatt [102, p.113℄, and axiom IV in Hilbert [127, x7℄.626Cf. axiom AS4 in Goldblatt [102, p.113℄.



300 4.5 DUALITY THEORYOn the proof: A proof an be reovered from Goldblatt [102, pp. 23-27, 71, 114℄ andHilbert [127, x24℄. Cf. also the proof of Fat 4.5.25 (p.302).Fat 4.5.18 above gives hints on how one an try to �nd relativisti models behind geome-tries. It also gives an idea for a possible generalization of our approah, namely, in our frametheory for relativity instead of requiring that F is an ordered �eld we ould require only thatF is an ordered division ring.Our theorem below implies that the theory of division rings and the theory of aÆne geome-tries are weakly de�nitionally equivalent. Therefore, by Prop.4.3.45 (p.265), there are meaningpreserving translation mappings between the two theories suh that these translation mappingsare inverses of eah other in some sense. Cf. the disussion of weak de�nitional equivalene onpp. 263{265 for more intuition for the next theorem.THEOREM 4.5.19 Assume n > 2. Then(the lass of division rings) �w� f hMn; oll i : hMn; oll i j= ag g ; but(the lass of division rings) 6�� f hMn; oll i : hMn; oll i j= ag g ;i.e. the theory of division rings and the theory of aÆne geometries (if n > 2) are weaklyde�nitionally equivalent, but they are not de�nitionally equivalent.On the proof: We omit the proof but f. the proof of Thm.4.5.26.It is interesting that by the above theorem the \one-sorted" lass of division rings is weaklyde�nitionally equivalent with the geometries hMn; lines; 2; olli satisfying ag.To make our division ringD in Fat 4.5.18 ommutative (i.e. to make it a �eld) we introduea new axiom Pa alled Pappus-Pasal Property in the literature, f. e.g. Hilbert [127℄ orGoldblatt [102, p.21℄. In the axiom Pa we will use the following abbreviation.Notation 4.5.20 Let a; b; ; d 2 Mn. Thenha; bi k h; didef()�a 6= b ^  6= d ^ (9`; `0 2 lines)(` k `0 ^ a; b 2 ` ^ ; d 2 `0)�. �Pa (8`; `0 2 lines)(8a; b;  2 ` n `0)(8a0; b0; 0 2 `0 n `)[ ( ha; b0i k ha0; bi ^ ha; 0i k ha0; i ) ! hb; 0i k hb0; i ℄;see Figure 109.De�nition 4.5.21 (Pappian aÆne geometry)(i) pag def= ag +Pa.(ii) If hMn; oll i j= pag then we say that hMn; oll i is a Pappian aÆne geometry. �The following fat (known from geometry) says that a geometry is a Pappian aÆne one iffit an be oordinatized by a �eld.
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a b 

0 b0 a0
`
`0Figure 109: Pappus-Pasal Property.FACT 4.5.22 hMn; oll i j= pagm(there is a �eld F suh that hMn; oll i �= hnF; ollFi).On the proof: A proof an be reovered from Goldblatt [102, pp. 23-27, 71, 114℄ andHilbert [127, x24℄. Cf. also the proof of Fat 4.5.25 (p.302).THEOREM 4.5.23(the lass of �elds) �w� f hMn; oll i : hMn; oll i j= pag g ; but(the lass of �elds) 6�� f hMn; oll i : hMn; oll i j= pag g ;i.e. the theory of �elds and the theory of Pappian aÆne geometries are weakly de�nitionallyequivalent, but they are not de�nitionally equivalent.On the proof: We omit the proof but f. the proof of Thm.4.5.26.To make our �eld an ordered �eld in Fat 4.5.22 we need a few further axioms. Thesefurther axioms onern betweenness Bw , and they are in the language of hMn; Bwi. (oll is ade�ned relation.)B1 Bw(a; b; ) ! ( a 6= b 6=  6= a ^ Bw(; b; a) ^ :Bw(b; a; ) ).Intuitively, if b lies between a and  then a; b;  are distint points and b lies between and a. Further, for any three points a; b;  at most one of them lies between the othertwo.627B2 a 6= b ! (9)Bw(a; b; ).Informally, for any two distint points a; b there is at least one point  suh that b liesbetween a and .628Axiom B3 below is alled Pash's Law in the literature.627Cf. axioms B1, B3 in Goldblatt [102, pp. 70-71℄ and axioms II1 and II3 in Hilbert [127, x3℄.628Cf. axiom B2 in Goldblatt [102, p.70℄ and axiom II2 in Hilbert [127, x3℄.



302 4.5 DUALITY THEORYB3 Intuitively, if a line ` lies in the plane determined by a triangle ab, and passes between aand b but not through , then ` passes between a and , or between b and ,629 formally:(:oll(a; b; ) ^ ` � Plane0(fa; b; g) ^ (9d 2 `)Bw(a; d; b) ) !(9e 2 `)(Bw(a; e; ) _ Bw(b; e; )), see Figure 110.a
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Figure 110: Pash's Law.So far it was lear what we meant when we wrote hMn; oll i j= pag. Now, be-side oll we want to use Bw too, and we want to write hMn; oll;Bwi j= pag +(some new axioms [onerning Bw ℄). Sine oll is de�nable from Bw , we will writehMn; Bwi j=\. . . " instead of hMn; oll;Bwi j=\. . . ". We hope that the similarity be-tween the expressions hMn; oll i and hMn; Bwi will reate no onfusion630 (beause ontextwill help).De�nition 4.5.24 (ordered Pappian aÆne geometry)(i) opag = pag + fB1;B2;B3g.(ii) If hMn; Bwi j= opag then we say that hMn; Bwi is an ordered Pappian aÆnegeometry . �The following fat (known from geometry) says that a geometry is an ordered PappianaÆne one iff it an be oordinatized by an ordered �eld.FACT 4.5.25 hMn;Bwi j= opagm(there is an ordered �eld F suh that hMn;Bwi �= hnF;Betwi).Proof: Proof of diretion \*" goes by heking the axioms, while diretion \+" follows fromProp.4.5.35 (p.308) way below. (Cf. also Def.4.5.34 on p.307).629Cf. axiom B40 in Goldblatt [102, p.136℄ and axiom II4 in Hilbert [127, x3℄.630Cf. Convention 4.3.1 on p.220.



4.5.2 COORDINATIZATION OF GEOMETRIES BY FIELDS 303THEOREM 4.5.26(the lass of ordered �elds) �w� f hMn; Bwi : hMn; Bwi j= opag g ; but(the lass of ordered �elds) 6�� f hMn; Bwi : hMn; Bwi j= opag g ;i.e. the theory of ordered �elds and the theory of ordered Pappian aÆne geometries are weaklyde�nitionally equivalent, but they are not de�nitionally equivalent.On the proof: A proof for the \�w�" part an be obtained by Def.4.5.28, Prop.4.5.29,Def.4.5.31, Prop.4.5.32 and Examples 4.3.16 (p.238).A proof for the \6��" part an be obtained by using item (6) on p.257 and Fat 4.5.25 asfollows. It an be seen that hnF;Betwi has many non-trivial automorphisms for any ordered�eld F. (E.g. x 7! 2x indues suh an automorphism of hnF;Betwi.) Thus any ordered PappianaÆne geometry has many non-trivial automorphisms, in partiular, the automorpism grouphas more than one element, by Fat 4.5.25. On the other hand, there are ordered �elds withone-element automorphism groups (e.g. the ordered �eld R of real numbers is suh). Then(6) on p.257 implies that the lass of ordered �elds annot be de�nitionally equivalent (��)with the lass of ordered Pappian aÆne geometries. By this, the \6��" part of our theorem isproved, too.Assume hMn; Bwi j= opag. In Def 4.5.28 below, for every o; e 2 Mn with o 6= e wewill de�ne an \ordered �eld" Foe orresponding to o; e. Prop.4.5.29 says that Foe is indeedan ordered �eld. In Prop.4.5.30 we will see that the ordered �eld Foe does not depend onthe partiular hoie of o; e. Thus, there is a unique ordered �eld F behind the geometryhMn; Bwi. In Def.4.5.31 we will de�ne this ordered �eld F expliitly over hMn; Bwi. Finally,in Def.4.5.34 we will de�ne a oordinatization of the geometry hMn; Bwi by F = hF; : : :i whihwill be proved to be an isomorphism between hMn; Bwi and hnF;Betwi as Prop.4.5.35.Notation 4.5.27 Let hMn;Bwi be a geometry, and o; e 2 Mn. Then the half-line [oe withorigin o and ontaining e is de�ned as follows.[oe :def= f a 2 Mn : oll(o; e; a) ^ :Bw(a; o; e) g :631 �De�nition 4.5.28 (The ordered �eld Foe)Assume hMn; Bwi j= opag. Let o; e 2 Mn with o 6= e. We de�ne an \ordered �eld" Foeorresponding to o and e as follows. Our o and e represent 0 and 1, respetively. LetFoe :def= f a 2 Mn : oll(o; e; a) g ;i.e. Foe is the line determined by o and e. We will �rst de�ne addition +oe as a ternaryrelation +oe � Foe � Foe � Foe and later (in Prop.4.5.29) we will see that it is a funtion+oe : Foe � Foe �! Foe. We will de�ne multipliation �oe � Foe � Foe � Foe in an analogousstyle. Further we will de�ne \ordering" �oe � Foe � Foe.Let a; b;  2 `.631We note that we have a slightly di�erent notion of a half-line denoted as ~̀oe in x6.2.6, p.891 of AMN [18℄.Our present notion \[oe" of a half-line is slightly di�erent (it is tailored for the struture hMn; Bwi, while theone in AMN [18℄ is tailored for GM), but the basi idea is the same.
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ob
a b0o0
Foe `+oe(a; b; )def()(9` 2 lines)�o 62 ` ^ ` k Foe ^(9o0; b0 2 `)( ho; o0i k hb; b0i ^ ho0; ai k hb0; i )�.

oa
be

a0 e0
Foe

`
�oe(a; b; )def()(9` 2 L)�` \ Foe = fog ^(9a0; e0 2 `)(he; e0i k ha; a0i ^ hb; e0i k h; a0i)�.

(8d 2 Foe)(o �oe d def() d 2 [oe ); anda �oe b def() (9d 2 Foe) ( a+ d = b ^ o �oe d ):We de�ne the algebrai struture Foe asFoe :def= hFoe; +oe; �oe;�oei:Foe is an ordered �eld by Prop.4.5.29 below. �PROPOSITION 4.5.29 Assume hMn; Bwi j= opag. Assume o; e 2 Mn with o 6= e.Then Foe is an ordered �eld.On the proof: A proof an be reovered from Goldblatt [102, pp. 23-27, 71, 114℄ andHilbert [127, x24℄.Item (i) of the following proposition says that the ordered �eld Foe does not depend on thepartiular hoie of o and e. I.e. if we hoose o; e di�erently we obtain an ordered �eld isomor-phi to Foe. In item (ii) we state that there is an isomorphism between the ordered �elds Foeand Fo0e0 suh that it is (uniformly) �rst-order de�nable over the struture hMn; Bw ; o; e; o0; e0i.PROPOSITION 4.5.30 Assume hMn; Bwi j= opag. Assume o; e; o0; e0 2 Mn are suh thato 6= e and o0 6= e0. Then (i){(iii) below hold.(i) Foe �= Fo0e0.



4.5.2 COORDINATIZATION OF GEOMETRIES BY FIELDS 305(ii) There is an isomorphism f o0e0oe : Foe �! Fo0e0 whih is �rst-order de�nable over thestruture hMn; Bw ; o; e; o0; e0i and the �rst-order de�nition of this isomorphism f o0e0oe doesnot depend on the partiular hoie of o; e; o0; e0; i.e.(iii) the de�nition of the relation f o0e0oe is uniform over the lassf hMn; Bw ; o; e; o0; e0i : hMn; Bwi j= opag; o; e; o0; e0 2 Mn; o 6= e; o0 6= e0 gof models; where we note that f o0e0oe � Mn�Mn.Outline of proof: Assume the assumptions. Let f o0e0oe � Foe � Fo0e0 be de�ned as follows.Let ha; a0i 2 Foe � Fo0e0. Before reading the formula below the reader is advised to onsultFigure 111. Then ha; a0i 2 f o0e0oedef()�[ ( o = o0 ^ :oll(o; e; e0) ) ! ( (i) below hold ) ℄ ^[ ( o = o0 ^ oll(o; e; e0) ) ! ( (ii) below hold ) ℄ ^[ o 6= o0 ! ( (iii) below hold ) ℄�,see Figure 111.
o = o0 e a

e0 a0
Foe
Fo0e0

(i)
(iii) (iii)

(ii)
`o = o0 e e0 a a0

e1 a1
FoeFo0e0

oo0
e ae1 a1e01 a01e0 a0

`̀ 0
Foe
Fo0e0

FoeFo0e0o0 o e0 a0 e a
e01 a01 a1e1 ``0Figure 111: (i) is the easy ase when o = o0 and o; e; e0 are not ollinear, (ii) is somewhat moreompliated beause there o; e; e0 are ollinear, et.(i) he; e0i k ha; a0i.(ii) (9` 2 lines)(9e1; a1 2 `)(` \ Foe = fog ^ he; e1i k ha; a1i ^ he1; e0i k ha1; a0i ).(iii) (9 distint `; `0 2 lines)(9e1; a1 2 `)(9e01; a01 2 `0)(` \ Foe = fog ^ `0 \ Fo0e0 = fo0g ^ ` k `0 ^he; e1i k ha; a1i ^ ho; o0i k he1; e01i k ha1; a01i ^ he01; e0i k ha01; a0i).



306 4.5 DUALITY THEORYThen f o0e0oe is an isomorphism between Foe and Fo0e0. A proof of this an be reovered fromGoldblatt [102, pp. 23-27, 71, 114℄ and Hilbert [127, x24℄.The present de�nition of the isomorphism f o0e0oe is somewhat ompliated. Probably wewould obtain a less ompliated de�nition for this isomorphism if we �rst de�ned it for thespeial ases (i)632 and ho; o0i k he; e0i ^ ho; ei k ho0; e0i, and then we would obtain anisomorphism for the general ase as a omposition of three isomorphisms de�ned for the speialases.De�nition 4.5.31 (The ordered �eld F orresponding to hMn; Bwi)Assume hMn; Bwi j= opag. We de�ne the ordered �eld F expliitly (in the sense of x4.3.2)over hMn; Bwi as follows. First, we de�ne the new relationR := � ha; o; ei 2 3F : o 6= e; a 2 Foe 	 :Then we de�ne the new auxiliary sort U to be R together with the projetion funtionspj0; pj1; pj2. Then we de�ne the equivalene relation� on U as follows. Let ha; o; ei; ha0; o0; e0i 2U . Then ha; o; ei � ha0; o0; e0i def() ha; a0i 2 f o0e0oe ;where f o0e0oe : Foe �! Fo0e0 is the isomorphism whih was de�ned in (the proof of) Prop 4.5.30.Of ourse one uses pj0; pj1; pj2 in the formal de�nition of �. We de�ne the sort F to be U=�together with 2 � U � F.633 Now, we de�ne +; � � 3F and � � 2F as follows. Leta; b;  2 F. Then +(a; b; )def()(9a0 2 a)(9b0 2 b)(90 2 )�pj1(a0) = pj1(b0) = pj1(0) ^ pj2(a0) = pj2(b0) = pj2(0) ^pj0(a0) +pj1(a0)pj2(a0) pj0(b0) = pj0(0)�,�(a; b; )def()(9a0 2 a)(9b0 2 b)(90 2 )�pj1(a0) = pj1(b0) = pj1(0) ^ pj2(a0) = pj2(b0) = pj2(0) ^pj0(a0) �pj1(a0)pj2(a0) pj0(b0) = pj0(0)�,a � bdef()(9a0 2 a)(9b0 2 b)�pj1(a0) = pj1(b0) ^ pj2(a0) = pj2(b0) ^pj0(a0) �pj1(a0)pj2(a0) pj0(b0)�.Let F :def= hF; +; �;�i:F is �rst-order de�ned over hMn; Bwi. F is an ordered �eld by Prop.4.5.32 below.We will often use the elements of F in the form ha; o; ei=� where o 6= e and a 2 Foe. �632i.e. for the ase o = o0 and :oll(o; e; e0)633We use the notation pj and 2 in the style of x4.3.2. If someone wants to avoid this then he an use anotation like +(ha0; a1; a2i=�; : : : ; h0; 1; 2i=�) def() 9a0[a0 � a et.



4.5.2 COORDINATIZATION OF GEOMETRIES BY FIELDS 307PROPOSITION 4.5.32 Assume hMn; Bwi j= opag. Let F = hF; : : :i be the \ordered�eld" orresponding to hMn; Bwi de�ned in Def.4.5.31. Assume o; e 2 Mn. Let Foe =hFoe; : : :i be the ordered �eld orresponding to o; e de�ned in Def.4.5.28. Let foe : Foe �! Fbe de�ned by a 7! ha; o; ei=�.Then foe is an isomorphism between Foe and F.On the proof: The proposition an be proved by Prop.4.5.30.Assume hMn; Bwi j= opag. We will use n + 1 tuples ho; e0; e1; : : : ; en�1i wherefo; e0; : : : ; en�1g is an n + 1 element independent subset of Mn to identify potential oor-dinate systems. We will think of o as the origin and e0; : : : ; en�1 as the unit vetors. We willde�ne a oordinatization for suh n + 1 tuples in Def.4.5.34 below. In Def.4.5.34 we will usethe following notation.Notation 4.5.33 Assume hMn;Bwi is a geometry. Let a; b 2 Mn and H � Mn. Thenha; bi k Plane0(H) def() (9; d 2 Plane0(H)) ha; bi k h; di: �De�nition 4.5.34 (oordinatization)Assume hMn; Bwi j= opag. Reall that for every o; e 2 Mn with o 6= e the ordered �eldFoe = hFoe; : : :i was de�ned in Def.4.5.28. Let F = hF; : : :i be the ordered �eld orre-sponding to hMn; Bwi de�ned in Def.4.5.31. Let ho; e0; : : : ; en�1i 2 n+1Mn be suh thatfo; e0; e1; : : : ; en�1g is an n+ 1 element independent subset of Mn. We de�ne the oordinati-zation Coho;e0;:::;en�1i : Mn �! nFas follows. Let a 2 Mn. For every i 2 n, let ai 2 Foei be suh that if a 62 Foei thenha; aii k Plane0(fo; e0; : : : ; en�1g n feig), otherwise ai = a, see Figure 112. Suh ai's exist and
oe2 e1

a
a1

a0e0 a2
Figure 112:are unique.We de�ne Coho;e0;:::;en�1i(a) :def= hfoe0(a0); : : : ; foen�1(an�1)i;where foe0 ; : : : ; foen�1 are as de�ned in Prop.4.5.32 (p.307). �



308 4.5 DUALITY THEORYPROPOSITION 4.5.35 Assume hMn; Bwi j= opag. Assume ho; e0; : : : ; en�1i 2 n+1Mn issuh that fo; e0; : : : ; en�1g is an n + 1 element independent subset of Mn. Let F = hF; : : :i bethe ordered �eld orresponding to hMn; Bwi de�ned in Def.4.5.31.Then Coho;e0;:::;en�1i is an isomorphism between hMn; Bwi and hnF;Betwi.On the proof: A proof an be reovered from Goldblatt [102, pp. 23-27, 71, 114℄ andHilbert [127, x24℄.Item 4.5.36 (Summary of some notation)Let us return to Ge(Pax). Our de�nitions of lines, k make sense for the geometries in Ge(Pax),too. Now, we have strongly related triples of notions L;Col; kG and lines; oll; k. The di�erenesbetween these two are rather small. The reason for the di�erenes is that by the onstrutionof GM some lines (in the sense of oll) may be missing from L (in some sense).634 AssumePax + Ax(diswind). (Reall that L;Col, and kG belong together, while lines, oll and kbelong together.) Now, L � lines, Col � oll and kG � k. Further Col and kG are the naturalrestritions (of oll and k) to the \world of L". If we assume Bax� +Ax(Triv t)� +Ax(p )in addition then L, Col, kG oinide, respetively, with lines, oll, k. �
4.5.3 Reovering frame models from geometries: de�ning the funtor M. (Con-tinuation of duality theory.)Let us reall from p.293 that our purpose with x4.5.2 was to prepare ourselves to the de�nitionof our funtor M.In Def.4.5.38 below we de�ne the funtorM : Ge(Pax+) �! Mod(;). In this de�nition wewill use fats and propositions stated in x4.5.2 for ordered Pappian aÆne geometries (i.e. foropag) and notation introdued in x4.5.2. Therefore we inlude Prop.4.5.37 below. Intuitively,the proposition says that the windows of (Pax+Ax(Bw))-geometries are ordered PappianaÆne geometries.PROPOSITION 4.5.37 Assume G = hMn; : : :i 2 Ge(Pax + Ax(Bw)). Assume o 2 Mn.Let Mno be the \window of o", i.e. Mno :def= f e 2 Mn : e � o g.635 ThenhMno; Bw � Mnoi j= opag:Outline of proof: Let G = hMn; : : :i 2 Mod(Pax+Ax(Bw)). Then G �= GM = hMnM; : : :ifor some M 2 Mod(Pax + Ax(Bw)). Let this M be �xed. Let o 2 MnM and (MnM)o =f e 2 MnM : o � e g. To prove the proposition it is enough to proveh(MnM)o; BwM � (MnM)oi j= opag:(�)634The reason for this is that L was obtained from oordinate axes (and traes of photons) only. If we hadde�ned L suh that a set of events is in L if some inertial observer thinks that it is a Eulidean line then wewould have obtained all of lines as elements of L. In other words L orresponds to inertial oordinate axes(and traes of photons), while lines orresponds to Eulidean lines. I.e. ` 2 L if some inertial m thinks it is aoordinate axis (or is a trae of a photon), while ` 2 lines if some inertial m thinks it is a Eulidean line.635Reall that � is a binary relation of onnetedness on Mn de�ned in Def.4.2.12 (p.159).



4.5.3 RECOVERING FRAME MODELS FROM RELATIVISTIC GEOMETRIES 309Let m 2 Obs be suh that o 2 Rng(wm). Then by Thm.3.2.6 (p.110) of AMN [18℄, wm isan isomorphism between hnF; Betwi and h(MnM)o; BwM � (MnM)oi. Cf. Prop.4.2.64 (p.208).But then (�) above holds.Intuitive idea for the de�nition of the funtor M : geometries �! frame models.Assume we are given a geometry G 2 Ge(Pax+). We want to de�ne (by using �rst-order logi only) an observational model M(G) over this geometry G. Moreover, we wouldlike to hoose M(G) suh that its geometry G(M(G)) should be as lose to the original Gas possible (f. potential theorem shemas (a){(i) for duality on pp. 284{287). (In a sense,one ould say, that using the funtor M we would like to reover from IG [but using onlythe \legitimate geometrial" struture of G℄ that \long forgotten" observational model whosegeometri ounterpart G is.) Cf. here the relevant motivational parts of the introdution (pp.129-778) to the present hapter. What do we need in order to �nd an observational M insideour geometry G? Surely we need to �nd a �eld FM in G, but that is no problem as we sawin x4.5.2 (\Coordinatization . . . "). This is a good start, but what else do we need to �nd inG? Certainly we will need to �nd observers in G. But what is an observer? We an identifyan observer m with his oordinatization636 wm : nF �! Mn of (a part of Mn). What iswm? It is a oordinatization of (a part of) Mn 637 by nF. For simpliity, in this intuitiveremark we �x n = 3. We an represent suh a oordinatization wm : nF �! Mn, by ahoie of wm's origin o 2 Mn and by wm's three unit-vetors 1t, 1x, 1y. More preisely, weare thinking of the wm-images of the origin, and of the unit-vetors as they appear in Mn.Let us notie that in geometry, i.e. in Mn, vetors are easily represented by pairs of points.Atually, wm(�0);wm(1t);wm(1x);wm(1y) are nothing but 4 elements o; et; ex; ey 2 Mn of ourgeometry satisfying some onditions.638 So the idea naturally omes to one's mind to try torepresent (or ode or de�ne) observers as four-tuples ho; : : : ; eyi of points (in Mn) satisfyingertain onditions.To make this idea work, we still have to �gure out how to reonstrut the whole of theoordinatization wm from the origin o and the unit vetors et; : : : ; ey, but having aess tothe whole geometry GM, one an believe that, one way or another, at least some wm an bereonstruted from ho; : : : ; eyi. So, our plan is to ode (or represent639) observers (found inG) by tuples ho; : : : ; eyi 2 4Mn satisfying some onditions. It is natural to identify photonswith photon-like lines i.e. elements of LPh. It is also natural to hoose B = Ib = Obs [ Ph.At this point we already have a grasp on what the FM, BM, ObsM, PhM parts of our modelM(G) = M = hB; : : : ;F;G;2;Wi will be. It is, again, natural to hoose G = Eul(F). Henethe only remaining part of M whih we still have to de�ne over G is WM whih in turn isequivalent to de�ning wm for eah m 2 Obs. However, by knowing m's unit vetors640 andhaving the geometri tools of G (e.g. g; lines; k)641 at our hand it is only a matter of patieneto work out a de�nition for wm. E.g. for � 2 F, wm(h�; 0; 0i) 2 Mn is on the line determinedby o; et and its g-distane from o is j� � g(o; et)j. There are only two suh points in Mn, and itis easy to �gure out (by using e.g. Bw) whih one to hoose. We leave the details of de�ningW to the formal de�nition below. Now, we are ready for the formal (�rst-order) de�nition ofM(G) over G, whih omes below.636or world-view funtion637Eventually, we will need a oordinatization of a part of P(B) instead of Mn but that hange will be easyto make, hene we postpone worrying about it.638e.g. o � et, o 6= ex and ho; eti ?r ho; exi et.639or identify640i.e. knowing wm(�0);wm(1t); : : : ;wm(1y)641L � lines, f. Item 4.5.36 on p.308.



310 4.5 DUALITY THEORYThe de�nition given below beomes simpler and more intuitive if ondition (e) is omitted.The so obtained simpler de�nition still works but less \spetaularly". What we mean by thisis explained in footnote 642.De�nition 4.5.38 (the funtor M)We de�ne M : Ge(Pax+) �! Mod(;) as follows. Let G 2 Ge(Pax+). Then we de�neM(G) = h(B; Obs;Ph; Ib);F;Eul(F); 2;W ias follows:1. Obs :def= f ho; e0; : : : ; en�1i 2 n+1Mn : (a){(f) below holdg, see Figure 113.
o � e0g(o; e0) = 1 o e1e2

e0
`0 2 LT

`1 2 LS
LS 3 `2

`0
`0 2 LPh

P � ` 2 LPh
e0 Plane0(`; `0)
o

This is not the ase:

(a){(d), (f) (e)
eq

Figure 113: Illustration for the de�nition of Obs.(a) fo; e0; : : : ; en�1 g is an n + 1 element independent subset of Mn.(b) o � e0.() ho; e0i eq ho; eii, for all i 2 n.(d) (9`0 2 LT )(9`1; : : : ; `n�1 2 LS)�(8i 2 n) o; ei 2 `i ^ (8 distint i; j 2 n) `i ?r `j�.Convention: To eah hoie of ho; : : : ; en�1i we will use `0; `1; : : : ; `n�1 as �xed by(d) above.(e) P := Plane 0(fo; e1; : : : ; en�1g) is spae-like in the following sense:(8`; `0 2 LPh) �[o 2 ` � P ^ o 2 `0 � Plane0(`; `0) ℄ ! ` = `0�,see the right-hand side of Figure 113. In Bax� geometries, intuitively, this meansthat if P ontains the trae of a photon then the speed of this photon is in�nite.642642Item (e) is required only in order to make the following statement true: If G is a Bax�� geometry thenM(G) is a Bax�� model, assuming Pax+ of ourse.



4.5.3 RECOVERING FRAME MODELS FROM RELATIVISTIC GEOMETRIES 311Without assuming Bax�, ondition (e) orresponds to axiom Ax(1ph) on p.289as part of the theory Pax+ (Def.4.5.9).(f) g(o; e0) = 1.2. Ph :def= LPh.3. B :def= Ib :def= Obs [ Ph.4. De�nition of the world-view relation W: First for every m 2 Obs we de�ne the oordi-natization funtion w0m : nF��!Mn as follows.643 Let m = ho; e0; : : : ; en�1i 2 Obs.(Notie that, by (), o; e0; : : : ; en�1 are pairwise onneted, i.e. �-related.) We use thenotation Foe introdued in Def.4.5.28, i.e. Foe is the line determined by the points o ande. First, by using parallel lines644, we obtain a oordinatization mappingFoe0 � Foe1 � : : :� Foen�1��!Mn;as depited in the left-hand side of Fig.114. Next, for every i 2 n, we identify Foei withFoe0 as depited in the right-hand side of Fig.114, using lines parallel with Feie0. By
oe2Foe2

Foe0
Foe1a2 a1

a0e0
e1

a
ha0; a1; a2i 7! a ei 7! e0, bi 7! b0, i 7! 0hei; e0i k hbi; b0i k hi; 0i

we an makemeasurementsalong this lineFoe0
Foeiei bi ie0b0

0

Figure 114: In the left-hand side of the piture we assume that n = 3.these identi�ations and the above oordinatization, we obtain a oordinatizationnFoe0��!Mn:We identify F by Foe0 using g, the natural way, i.e. 0 and 1 get identi�ed with o ande0, repetively, and x 2 F gets identi�ed with a 2 Foe0 suh that g(o; a) = jxj and(Bw(a; o; e0) , x < 0). (This identi�ation an be done beause by the assumption643The problem whih we will have to irumnavigate is that by g we an make reliable measurements onlyon the line determined by o; e0 (sine we assumed Ax(eqtime) but not Ax(eqm)). I.e. by g we an suitablymeasure the o; e0 distane, while by the same g we annot suitably measure the o; e1 distane. This is why wewill use parallel lines, f. the right-hand side of Fig.114.644Here we use lines and k both de�nable in G, f. Item 4.5.36 (p.308). Note that L � lines but lines 6� Lmay happen. Cf. footnotedi�erent on p.298.



312 4.5 DUALITY THEORYPax+ we an make reliable measurements along Foe0 by g.) In this way, from the aboveoordinatization nFoe0��!Mn we obtain the oordinatizationw 0m : nF��!Mn:In the next step, from w0m we de�ne the real world-view funtion wm (whose range is asubset of P(B)). To this end we \represent" Mn as part of P(B) i.e. we de�ne a mappingf : Mn �! P(B) the natural way. Let e 2 Mn. Then we say that a photon ` 2 Ph ispresent in event e iff e 2 `, and an observer ho0; e00; : : : ; e0n�1i 2 Obs is present in event eiff e 2 Fo0e00 . Let f : Mn �! P(B)be de�ned by f(e) :def= f b 2 B : b is present in e g; for all e 2 Mn:Let wm :def= w0m Æf . The world-view relation W is de�ned from the wm's the obvious way,i.e. W :def= f hm; p; bi 2 Obs � nF � B : b 2 wm(p) g :Thus, all ingredients of M(G) are de�ned exept for the ordered �eld F. Now we turnto de�ning F.5. De�nition of F: To de�ne the ordered �eld F from the geometry G it is enough to de�nemultipliation on F (from G), sine F1 = hF; 0; 1;+;�i is ontained in G. Now we turnto doing this.First let us notie that there is an original ordered �eld FM behind G, sine G �= GM,for some M 2 Mod(Pax+). Let suh an M be �xed. LetFM1 :def= hFM; 0M; 1M;+M;�Mi:Now, F1 �= FM1 by G �= GM. Of ourse we are not allowed to use FM when we arede�ning something from G, sine FM is not expliitly inluded in G. (We use FM onlyfor didatial [i.e. explanatory℄ purposes.) Now, we start de�ning multipliation overG. Assume o; e 2 Mn, o �T e and g(o; e) = 1. Suh o; e exist by Ax(eqtime) (andby AxE01 + (8m; k)(80 < i 2 n) trm(k) 6= �xi) or by Ax(eqm) (and AxE01). LetMno :def= f a : o � a g. ThenhMno; Bw � Mnoi j= opag by Prop.4.5.37. Let Foe = hFoe; +oe; �oe;�oei be the ordered�eld orresponding to o; e de�ned in Def.4.5.28. By Prop.4.5.29, Foe is indeed an ordered�eld (and is isomorphi to FM). Let goe : Foe �! F be de�ned as follows: Let a 2 Foe.Then goe(a) :def= � g(o; a) if a 2 [oe�g(o; a) otherwise.Clearly, goe(o) = 0 and goe(e) = 1 by our hoie of o; e. We note that goe : Foe �! Fis an isomorphism between hFoe; o; e;+oe;�oei and F1. Now we use these goe's to opythe multipliations �oe on Foe's to obtain multipliation � on F. We de�ne multipliation� � F � F � F as follows. Let x; y; z 2 F�(x; y; z)def()(9o; e 2 Mn)h o �T e ^ g(o; e) = 1 ^ g�1oe (z) = g�1oe (x) �oe g�1oe (y) i.



4.5.3 RECOVERING FRAME MODELS FROM RELATIVISTIC GEOMETRIES 313By this, multipliation � is de�ned on F. By the above the struture F := hF; +; �;�i isde�ned. We will prove as Claim 4.5.40 that F is an ordered �eld isomorphi to FM.By items 1{5 above, the frame modelM(G) is de�ned.END OF DEFINITION OF THE FUNCTOR M. �Remark 4.5.39 We note that, if n > 2, thenM is de�ned on Ge(Bax�+Ax(eqtime)) andGe(Bax�� + Ax(p ) +Ax(eqtime)), by Proposition 4.5.10 (p.290). �Claim 4.5.40 below serves to prove orretness of Def.4.5.38 above.Claim 4.5.40 Assume G 2 Ge(Pax+). Let M 2 Mod(Pax+) be suh that G �= GM. Let thestruture F be de�ned as in item 5 of Def.4.5.38 above. Then F is an ordered �eld isomorphito FM.Outline of proof: Let G;M;F be as in the laim. Without loss of generality we an assumethat G = GM, beause the funtorM was de�ned in suh a style that it assoiates isomorphimodels with isomorphi strutures. Assume o; e 2 Mn are suh that o �T e and g(o; e) = 1.Let Mno := f a 2 Mn : a � o g. Let m 2 Obs be suh that o; e 2 wm[�t ℄. It exists. Thenwm : hnF; Betwi ��!� hMno; Mno � Bwiis an isomorphism by Thm.3.2.6 (p.110). Let o0 := w�1m (o) and e0 := w�1m (e). Clearly o0; e0 2 �t.Let Fo0e0 = hFo0e0; : : :i and Foe = hFoe; : : :i be the ordered �elds orresponding to o0; e0 and o; e,respetively de�ned in Def.4.5.28 (p.303). Then Fo0e0 = �t and je0t � o0tj = 1. The latter holdsby g(o; e) = 1 and AxE01 +�(Ax(eqtime) ^ (8m; k)(80 < i 2 n)trm(k) 6= �xi ) _ Ax(eqm)�.(�)Without loss of generality we may assume that e0t � o0t = 1. Let goe : Foe �! FM be de�nedas on p.312. Now, (wm � �t ) Æ goe : Fo0e0 �! FM and (wm � �t ) Æ goe : p 7! pt � o0t by(�). Thus, (wm � �t ) Æ goe : Fo0e0 ��!� FM is an isomorphism. By this and by notiing thatwm � �t : Fo0e0 ��!� Foe is an isomorphism, we onlude thatgoe : Foe ��!� FMis an isomorphism. By this it an be heked that the multipliation de�ned on FM on p.312oinides with the multipliation of FM. Hene F and FM are isomorphi. (Atually, by ourassumption that G = GM F and FM oinide.)Next we state that the funtorM onstruted so far is of the kind we need for our dualitytheory outlined on pp.282-284, f. Fig.101 (p.283).PROPOSITION 4.5.41 M : Ge(Pax+) �! Mod(Pax+) andM is a �rst-order de�nablemeta-funtion. HeneM[Ge(Pax+)℄ � Mod(Pax+) is �rst-order de�nable over Ge(Pax+).



314 4.5 DUALITY THEORYOutline of proof: First-order de�nability of M omes immediately from the de�nition ofM (by using Remark 4.3.52 on p.271). To prove M : Ge(Pax+) �! Mod(Pax+) let G 2Ge(Pax+). Let M 2 Mod(Pax+) be suh that G �= GM. Without loss of generality we anassume that G = GM. The visibility relation �! is an equivalene relation when restrited toObsM by Thm.3.2.6. Let O � ObsM be a set of representatives for the equivalene relation �!.Reall that for every k 2 ObsM Gk = hnF; : : :i is the observer-dependent geometry de�nedin Def.4.2.61 (p.206). Then similarly to item 3b of Prop.4.2.64 (p.213) the ?r-free redut ofG is a photon-glued disjoint union of the familyh?r-free redut of Gk : k 2 Oi:Further Bwk = Betw and Lk � Eul by Thm.3.2.6 for every k 2 ObsM. Thus G is a photon-glued disjoint union of the familiar nF-geometries. By this, it an be heked that M(G) j=Pax+Ax(Bw)+AxE01+Ax(1ph). Thus it remains to prove thatM(G) j= (Ax(eqtime)+(8m; k)(80 < i 2 n)trm(k) 6= �xi) or M(G) j= Ax(eqm). By M j= Pax+, we have M j=(Ax(eqtime) + (8m; k)(80 < i 2 n)trm(k) 6= �xi) or M j= Ax(eqm). For the ase M j=(Ax(eqtime)+ : : :) heking M(G) j= (Ax(eqtime)+ : : :) is easy and is left to the reader.(Hint: LT \ LS = ; and LT \ LPh = ; hold in this ase.)Assume M j= Ax(eqm). We will prove thatM(G) j= Ax(eqm). Let g� : Mn�Mn o�! Fbe the partial funtion de�ned as follows. Let e; e1 2 Mn and � 2 F. Theng�(e; e1) = �def()(9m 2 ObsM)(9i 2 n)(9p; q 2 �xi)(wm(p) = e ^ wm(q) = e1 ^ jp� qj = �).By Ax(eqm), g� is well de�ned. By Ax(eqm)+AxE01, it is easy to hek that g and g�agree on time-like separated pairs of points. For every m 2 ObsM(G) let w0m : nF �! Mn bede�ned as on p.311 in Def.4.5.38. If we prove(8m 2 ObsM(G))(8i 2 n)(8p; q 2 �xi) jp� qj = g�(w0m(p);w0m(q))(�)then M(G) j= Ax(eqm) will hold (by the de�nition of W on p.312). Thus it is enough toprove (�) above. For every o; e 2 Mn with o 6= e and o � e let Foe = fa 2 Mn : oll(a; o; e) g;and for every o; e; o0; e0 2 Mn with o 6= e, o0 6= e0, o � e and o0 � e0 let f o0e0oe : Foe �! Fo0e0 bede�ned as in the proof of Prop.4.5.30 on p.305. Now items 1 and 2 below hold beause of thefollowing. It is easy to hek that items 1,2 hold when eq is replaed by eq 0 in them. By this,by f o0e0oe Æ f o00e00o0e0 = f o00e00oe and sine eq is de�ned to be the transitive losure of eq 0 we have that1 and 2 below hold. (In proving this, LT \ LPh = ; is used too).1. ha; bi eq h; di ) g�(a; b) = g�(; d).2. (8o; e; o0; e0 2 Mn)�(o 6= e ^ o0 6= e0 ^ ho; ei eq ho0; e0i) !(8a; b 2 Foe) ha; bi eq hf o0e0oe (a); f o0e0oe (b)i�.Now we turn to proving (�) above. Let m 2 ObsM(G), i 2 n, p; q 2 �xi. Then m =ho; e0; : : : ; en�1i for some o; e0; : : : en�1 2 Mn satisfying (a){(f) on p.310. By 2 above andby ho; e0i eq ho; eii, we have that hw0m(p);w0m(q)i eq hf oe0oei (w 0m(p)); f oe0oei (w0m(q))i. Hene, by 1above, g�(w0m(p);w 0m(q)) = g�(f oe0oei (w0m(p); f oe0oei (w0m(q))). By the de�nition of M(G), 645 we645and by notiing that foe0oei (w0m(p)); foe0oei (w0m(q)) 2 Foe0 , hw 0m(p); foe0oei (w 0m(p))i k hei; e0i,hw 0m(q); foe0oei (w0m(q))i k hei; e0i



4.5.3 RECOVERING FRAME MODELS FROM RELATIVISTIC GEOMETRIES 315have jp� qj = g�(f oe0oei (w0m(p)); f oe0oei (w0m(q))). Thus jp� qj = g�(w0m(p);w0m(q)) and this provesthe proposition.The following theorem implies that the sentenes in our frame language an be translatedinto sentenes in the language of our relativisti geometries (in a meaning preserving way), as-suming Pax+. More intuitively, whatever an be said in the language of the (\observational")frame models an be said in the \theoretial terminology" of relativisti geometries, too. (Cf.Thm.4.5.12 on p.291.)THEOREM 4.5.42 There is a \natural" translation mappingTM : Fm(Mod(Pax+)) �! Fm(Ge(Pax+))suh that for every '(�x) 2 Fm(Mod(Pax+)) with all its free variables belonging to sort F,G 2 Ge(Pax+) and evaluation �a of �x (in F of ourse)M(G) j= '[�a℄ , G j= TM(')[�a℄:Proof: The theorem follows by Prop.4.5.41 and by Prop.4.3.41 (p.264).Atually, TM admits a very natural desription whih suggests itself if we look at thede�nition of M and ontemplate Figure 96 (p.263).The following theorem says that for our (G;M)-duality, theorem shemas (a){(h), holdunder some onditions.THEOREM 4.5.43 For the hoie ofM given in Def.4.5.38 above, the onlusions of The-orems 4.5.11 (p.290) and 4.5.13 (p.291) hold. E.g. G and M are �rst-order de�nable meta-funtions and Mod(Th) G�! �M Ge(Th),assuming Th satis�es ondition (?) in Thm.4.5.11 and Ax(diswind). Further, theoremshemas (a){(h) hold, et.Proof:Case of Thm.4.5.11:Let Th be as in Thm.4.5.11. Assume n > 2. Clearly, Th j= Pax+ (by Thm.4.5.10(i)).Let M 2 Mod(Th). Let hObs : ObsM �! Obs(GÆM)(M) be de�ned by hObs : m 7!hwm(�0);wm(10); : : : ;wm(1n�1)i and hPh : PhM �! Ph(GÆM)(M) be de�ned by hPh : ph 7!fe 2 MnM : ph 2 e g.Claim 4.5.44 hhObs [ hPh; Id � F; Id � Gi : M ��!� (G ÆM)(M)is an isomorphism, assuming n > 2 and M j= Bax�+Ax(Triv t)�+Ax(k)�+Ax(eqtime)+Ax(ext)+Ax~+Ax(p ).Proof: We will prove Claim 4.5.44 by several steps, whih steps we will use in later partsof this proof, too. In the following we will simply write h for hObs; hPh. Assume now thatM j= Pax+ is arbitrary. Let M+ def= MGM.



316 4.5 DUALITY THEORY(1) h : ObsM �! ObsM+; by M j= Pax+:To see (1), it is enough to hek that h(m) = hwm(�0); : : : ;wm(1n�1)i satis�es (a)-(f) inDef.4.5.38(1). In this, one uses Pax+. E.g., the last axiom of Pax+ is used when hek-ing g(wm(�0);wm(1t)) = 1.(2) h(m) = h(k) implies wm = wk, by Pax+Ax(eqtime), for any m; k 2 ObsM.Indeed, h(m) = h(k) implies wm(�0) = wk(�0) and wm(1t) = wk(1t). Thus trm(k) = �t andfmk(�0) = �0. By Ax(eqtime) then fmk is identity on �t. By Pax and Thm.3.2.6, fmk is a bijetiveollineation, hene it is an aÆne transformation omposed with e' for some �eld-automorphism'. By fmk � �t � Id then ' must be the identity, hene fmk 2 Aftr. By h(m) = h(k) we havefmk(1i) = 1i for all i < n. Sine fmk 2 Aftr, this implies that fmk = Id. This means thatwm = wk.Clearly, h : PhM �! PhM+, and hPh is injetive if M j= Ax(ext). Thus by (1),(2) abovewe have(3) h : BM��!BM+ if M j= Ax~+Ax(ext):(4) h : ObsM�!�ObsM+ is surjetive, wheneverM j= Bax� + Ax(Triv t)� + Ax(p ) + Ax(eqtime) + Ax(k)� + Ax(diswind) andn > 2.To prove (4), let K def= ho; e0; : : : ; en�1i 2 ObsM+. Let `0; : : : ; `n�1 be as in Def.4.5.38(1)(p.310), i.e. `0 2 LT , o; e0 2 `0 et. By Bax� + Ax(Triv t)� + Ax(p ), there is an observerm 2 ObsM whose oordinate axes are exatly `0; : : : ; `n�1, see Remark 4.2.52 (ii) (p.196). Theno = wm(�0). By Ax(eqtime) and g(o; e0) = 1 we have that e0 = wm(1t). Let 0 < i < n.We may assume that wm(ei) lies on the half-line determined by o; ei, by Ax(Triv t)�. Bythe de�nition of eq, we then have that ho; e0i eq ho;wm(1i)i. Sine ho; e0i eq ho; eii (byK 2 ObsM+), and eq is transitive, we have ho; e0i eq ho;wm(1i)i. Sine e0 and wm(1i) areon the same \side" of o by our hoie of m, we have ei = wm(1i) by item 2 on p.167. Thus,h(m) = K and this proves surjetivity of hObs.(5) FM = FM+, by the proof of Claim 4.5.40 (p.313), see the last sentene there.(6) h preserves the world-view relation.



4.5.3 RECOVERING FRAME MODELS FROM RELATIVISTIC GEOMETRIES 317Indeed, let m 2 ObsM and b 2 ObsM [ PhM. We will show that for every p 2 nF,WM(m; p; b) i� WM+(h(m); p; h(b)):It is not hard to hek that w0h(m) as de�ned in Def.4.5.38(4) (p.311) oinides with wm. Now,h(ph) 2 wh(m)(p) i� ph 2 w0h(m)(p) i� ph 2 wm(p), and h(k) 2 wm(p) i� wm(p) 2 Fw k(�0)w k(1t)i� p 2 trm(k) i� k 2 wm(p). Sine WM(m; p; b) i� b 2 wm(p), and the same for M+ in plaeof M, we are done. By this, Claim 4.5.44 has been proved, too.By Claim 4.5.44 above, (8M 2 Mod(Th))(G ÆM)(M) �= M:(�)Let G 2 Ge(Th). Then G �= G(M) for some M 2 Mod(Th). Let this M be �xed. Then(G Æ M)(M) �= M by (�) above. Hene, (M Æ G)(G(M)) �= G(M). Thus, (M Æ G)(G) �=G. By the above, item (ii) of Thm.4.5.11 is proved. By (�) above, and by the fat thatRng(G) is Ge(Th) up to isomorphism we onlude that M : Ge(Th) �! Mod(Th). Further,G : Mod(Th) �! Ge(Th) holds by the de�nition of G. First-order de�nability of M omesfrom Prop.4.5.41 while �rst-order de�nability of G omes from Thm.4.3.22 (p.244). By this,Thm.4.5.11 is proved.Case of Thm.4.5.13: For any G 2 Ge(;) let G� be the geometry obtained from G byomitting T and replaing g with g � �ha; bi 2 Mn�Mn : a �T b	.Claim 4.5.45 G� �= [(MÆ G)(G�)℄�, for any G 2 Ge(Pax+), andG �= (MÆ G)(G�), for any G 2 Ge(Pax+ +Ax(eqm)).Proof: To prove this laim let M;M+ be suh that G� = (G(M))� and M+ = M(G�)(=MG(M)). We want to prove G� = G(M+)�. Let G+ = hMn+; : : : ;?+; eq+;�+; : : :i = G(M+)�and G� = hMn; : : : ;?; eq;�; : : :i = G(M).Reall the funtion h : ObsM [ PhM �! BM+ given at the beginning of this proof. Theonstrution of M gives us a natural funtionf : Mn�!�Mn+de�ned as f(e) = fh(m) : m 2 ObsM [ PhMg [ fho; e0; : : :i 2 ObsM+ : ollG(o; e0; e)g. ByM j= Pax we have that f : Mn��!�Mn+ is a bijetion. We want to show that hf; Id � Fi isatually an isomorphism between G� and G+.In the following, in order to make the proof more intuitive, we will identify Mn with Mn+(along f) and we will identify ObsM with a subset of ObsM+ (along h).646First one heks LT+ = LT , LPh+ = LPh, LS+ = LS. These follow from the onstrution(the de�nitions).To see that Bw+ = Bw , �rst we observe that Bw � Bw+ sine in the proess of M 7!M+old observers do not disappear. To see the other diretion, assume ha; b; i 2 Bw+. Then thereis m+ 2 ObsM who \thinks" b is between a and . By Prop.4.5.41 we have M j= Pax+. Sinethe life-line of m+ is a time-like line in G(M)� = G�, there is an \old" observer m 2 Obs whosees m+, hene by basi properties of Pax, i.e. by Thm.3.2.6 on p.110, m sees events a; b; . ByAx(Bw) 2 Pax+, the world-view transformations fmm+ , fm+m preserve betweenness. Hene,646Reall that wm = w0h(m) and so wm Æf = w0h(m) Æf = wh(m). See also Step (2) in the proof of Claim 4.5.44.



318 4.5 DUALITY THEORYin M+, m thinks ha; b; i 2 Bw+. But by the onstrution of M+ then, in the original M, wehave ha; b; i 2 Bw . This ompletes the proof of Bw+ = Bw .Next we observe ?0�?+0 �?. Sine the operator G reates ? from ?0 by losing underlimits and parallelism647 we onlude ?+= losure of ?+0 � ?= losure of ?0. So ?+=?.Analogously to the ase of ?, we prove eq0 � eq+0 � eq. Of these, eq+0 � eq is harderthan the ?-ase was. The proof of eq+0 � eq will go by using item 2 from the proof ofProp.4.5.41 (p.314) together with Figure 114, i.e. the de�nition of the oordinatization Foe0 �: : :� Foen�1��!Mn in the onstrution of M (p.311). Indeed, assume ha; bi eq+0 h; di. Thenthere is m+ 2 Obs+, i; j suh that m+ thinks that a; b 2 �xi and ; d 2 �xj and they are of the\same length". Assume �rst that 0 =2 fi; jg. Now, m+ measures the ab-distane by projetingfa; bg to �t by using f oe0oei : �xi �! �t, f. item 2 in the proof of 4.5.41. Then ei 7! e0, a 7! a0 andb 7! b0 where a0; b0 2 �t. By the quoted item 2 then(*) ha; bi eq ha0; b0i,sine ho; eii eqho; e0i. Analogously, using f o;e0oej : �xj �! �t we obtain o 7! o, ej 7! e0,  7! 0 andd 7! d0 with(**) h; di eq h0; d0i.By the de�nition of the oordinatization of m+, i.e. by Figure 114 right side, this implies thatm+ thinks ha0; b0i and h0; d0i are of the same length (this is so beause m+ \thinks" that a; band ; d are of the same length). Clearly, there is an \old" m 2 Obs with trm(m+) = �t. ByAx(eqtime), intervals on �t are of the same lengths for m+ and m. Hene m, too, thinks thatha0; b0i and h0; d0i are of the same length. Then ha0; b0i eq h0; d0i. By (*),(**) and transitivityof eq we onlude ha; bi eq h; di.The other ase, when 0 2 fi; jg, is ompletely analogous, we omit it.Sine eq is the transitive losure of eq0, analogously to the ?-ase, eq = losure of eq0 =losure of eq+0 = eq+.Proving �=�+ is based on the fat that � is tied up with time-like life-lines of observersand their diretions of time. These data are easy to trae through our onstrution.To see that g = g+, reall that g = g ��T . Now g(e; e1) is determined by observerswho see e; e1 on one of their axes. If M j= Ax(eqm), then these all will agree both in Mand in M+. Further, any \new" observer has an \old" brother. If M 6j= Ax(eqm), thenM j= Ax(eqtime) and no observer in M will see e; e1 on a spae-axis, by M j= Pax+. Heneg(e; e1) is determined by the loks of time-like observers onneting e and e1. But two suhobservers are \brothers" by de�nition and by Ax(eqtime) they will measure the distanebetween e and e1 the same way. This remains true in M+ sine we heked that LT = LT+.Thus, g = g+.To prove G �= (MÆ G)G for any G 2 Ge(Pax+ + Ax(eqm)), assume that M j= Pax+ +Ax(eqm). We want to show that G and G(M+) agree on g-distanes of all events, not onlyon time-like separated events. The last part of the previous ase just proved this. This �nishesthe proof of Claim 4.5.45.For any G 2 Ge(Pax+) we have M(G) = M(G�) beause we used only the struture ofG� when onstruting M. Therefore, for any G 2 Ge(Pax+), M(G) �= (G Æ M)(M(G)).This proves item (i) of the theorem. Item (ii) follows from item (i) by the fat that Rng(G)647and sine these are basially the same in G� and in (GM(G�))�



4.5.3 RECOVERING FRAME MODELS FROM RELATIVISTIC GEOMETRIES 319is Ge(Th) up to isomorphism. Item (iii) follows from steps (3),(6) and (7) in the proof ofClaim 4.5.44. Item (iv) follows by the proof of Prop.4.5.41 and from Claim 4.5.45.Remark 4.5.46 (Disussion of Thm.4.5.43) Ax(eqm) is needed in Claim 4.5.45, i.e.there is a model M j= Pax+ suh that GM 6�= (MÆG)(GM). By Claim 4.5.45 this an happenonly in the way that G def= GM and G+ def= (M Æ G)(GM) do not agree on some spae-likedistane. The idea of this model is illustrated in Figure 115.LT 3 `0 `1 2 LTe01 o 2 e2e3
e1 `2 2 LS

`3 2 LSFigure 115: Illustration of GM.For showing the idea of M, assume n = 2, let FM def= R, and let `1; `2 be in Eul(n;R) be asdepited in Figure 115. Let m be an observer in M. There are two kinds of observers in m'sworld-view (passing through �0). The �rst kinds are brothers of m: their time-axis is �t theirspae-axes have slope less than that of `2 and they measure distanes on the axes aordingto the Eulidean distane. In more detail: To any line ` with slope less than that of `2 thereis an observer k def= m(�t; `) suh that 1kt = 1t, 1kx is on ` and j1kxj = 1. The life-lines of theseond kinds of observers are `1 (in m's world-view), their spae-axes have slopes less thanor equal to that of `2 and they measure distanes on the axes to be twie of the Eulideandistane. In more detail: To any line ` with slope less than equal to that of `2 there is anobserver k def= m(`1; `) suh that 1kt 2 `1, 1kx 2 ` and j1kt j = j1kxj = 1=2. Figure 115 shows (partof) the geometry G = GM.648 Let m def= m(�t; �x); k def= m(`1; �x) and h def= m(`1; `2). In the �gure,o = wm(�0) and e2 = wh(h0; 2i). We will show that g(o; e2) = 2 in G while g(o; e2) = 1 in G+.We have g(o; e2) = 2 in G beause every observer measures the distane oe2 to be 2 (sinethere is no observer of �rst-kind who sees o; e2 on an axis). In G we have �t ?r `2 beause`2 is the limit of spae-axes of observers with life-line �t. Let e0 = wm(1t). Then in G wehave ho; e0i eq ho; e2i beause this omes in by transitivity: e3 = wm(h0; 1) = wk(h0; 2i) ande1 = wk(1t) = wh1t (thus ho; e0i eq0 ho; e3i eq0 ho; e1i eq0 ho; e2i aording to observers m; k; hrespetively). Therefore we will have a new observer m+ in M(G), one whose life-line is �t,spae-axis is `2, time-unit is e0 and spae-unit is e2. This observer m+ will measure the distaneo; e2 to be 1, and therefore g(o; e2) = 1 in G+.648We identi�ed `1 and `2 in the �gure with their images aording to wm.



320 4.5 DUALITY THEORYThis model M is not hard to modify to be a model of Pax+ + Ax~ + Ax(ext) withG 6�= G+. This shows that theorem shema (D) is not true for Th = Pax+ or for Th =Pax+ + Ax~ + Ax(ext). By using similar models, one an show that theorem shemas(C) and (A) are not true for Pax+ + Ax(eqm) and theorem shema (C) is not true forPax+ +Ax~+Ax(ext)+Ax(eqm). �The next proposition says that for ertain hoies of Th, if G is a Th-geometry thenM(G)is a Th-model. More intuitively, our duality theory works for these hoies of Th.PROPOSITION 4.5.47M : Ge(Th) �! Mod(Th) and G : Mod(Th) �! Ge(Th); 649assuming Th := Th1 +Pax+;where Th1 2 f ;; Bax��; Bax� + Ax(k)� + Ax(p ) + Th2; Flxbasax +Th2; Newbasax + Th2; Basax + Th2; Basax + Ax(!)0 + Th2 g, where Th2 �fAx(Triv); Ax(Triv t)�; Ax(k) g.Further, for these hoies of Th and for M de�ned in Def.4.5.38 onlusions (i){(iii) ofThm.4.5.13 (p.291) hold when Pax+ is replaed by Th in them.On the proof: We will give a proof for the ase Th1 = Bax�� and n > 2. The proofs forthe remaining ases an be obtained by Remark 4.2.52 (ii) (p.196), and Propositions 6.2.88(p.895) and 6.2.92 (p.901) of AMN [18℄, and are left to the reader.Assume n > 2. Let G 2 Ge(Bax�� + Pax+). Then M(G) 2 Ge(Pax+) by Prop.4.5.41.Thus to prove M(G) 2 Ge(Bax�� +Pax+) it remains to prove (�) below.In the world-view of any observer m 2 ObsM(G) for any point p and for anydiretion d the following holds. There is exatly one photon trae forwardsin diretion d passing through p and the \speed of this photon trae" is not1; and for all speeds less than the speed of this photon trae there is anobserver moving in diretion d with this speed and passing through pointp.(�)
Throughout the proof we taitly use Prop.4.2.64 (p.208). Let M 2 Mod(Bax�� + Pax+)be suh that G �= GM. Without loss of generality we may assume that G = GM.650 Letm 2 ObsM(G). Then m = ho; e0; : : : ; en�1i for some o; e0; : : : ; en�1 2 Mn satisfying (a){(f)on p.310. Let `0 2 LT be suh that o; e0 2 `0. Let P be de�ned as in item (e) on p.310.Intuitively P is the spae part of observer m. We laim that there are no photon-like lines inP . To prove this laim, assume that there is a photon-like line in P . Then, by Thm.4.3.17(p.488) of AMN [18℄, there is ` 2 LPh suh that o 2 ` � P . Let this ` be �xed. Then by item(e) on p.310 there is exatly one photon-like line in the plane determined by ` and `0 passingthrough o. `0 is the life-line of some observer k 2 ObsM, i.e. `0 = f e 2 Mn : k 2 e g. Let thisk be �xed. Then, sine M j= Bax�, and sine there is only one photon-like line in the planedetermined by ` and `0 passing through o we onlude that for k the photon whose life-line is649The G : Mod(Th) �! Ge(Th) part is easy by the de�nition of Ge(Th), so the emphasis is on theM : Ge(Th) �! Mod(Th) part.650This is so sineM preserves the property of being isomorphi as we already noted.



4.5.3 RECOVERING FRAME MODELS FROM RELATIVISTIC GEOMETRIES 321` moves with in�nite speed. This ontradits \�", i.e. ontradits Bax��. Thus there are nophoton-like lines in P .Now, we turn to proving (�) above for m and for p = �0. Let P 0 be a 2-dimensional planethat ontains `0. Sine M j= Bax�� and the life-line of k 2 ObsM is `0 there are exatly twophoton-like lines in P 0 passing through o. These two photon-like lines divide the plane P 0 intotwo regions as illustrated below.
Let `P be the intersetion of P 0 and P . Neither one of the two photon-like lines oinides with`P sine in P there are no photon-like lines. We will prove that `P and `0 are in di�erentregions. Assume that `P and `0 are in the same region. See the left-hand side of Figure 116.Then, sine M j= Bax� and the life-line of k is `0, we onlude that k sees an observer h onk `0 k `0P 0 PP P 0`P `Ph

Figure 116:`P , i.e. `P is the life-line of observer h 2 ObsM. Sine through any point and in any diretionh sees a photon and h's life-line `P is ontained in P we onlude that there is a photon-likeline in P . This leads to a ontradition sine we proved that there are no photon-like linesin P . Thus, `0 and `P are in di�erent regions, f. the right-hand side of Figure 116. Thenany line in the same region as `0 passing through o is time-like. This an be proved by usingthe world-view of observer k. But then it an be seen that any line in the same region as `0passing through o is a \life-line" of an observer in the model MM(G), too.651 Thus we provedthat (�) above holds for m and for p = �0. Sine, by Thm.4.3.17 (p.488) of AMN [18℄, straightlines parallel to traes of photons are traes of photons again and sine any line parallel to atime-like line is a time-like line by Ax4, we onlude that (�) above holds for arbitrary p andnot only for �0.QUESTION 4.5.48 Does Proposition 4.5.47 above generalize from Th1 = Bax�� toTh1 = Bax�? �The next proposition says that the operator G ÆM makes our models more \puritan" insome sense.651All observers of M show up in (G ÆM)(M) in a modi�ed form.



322 4.5 DUALITY THEORYPROPOSITION 4.5.49 Assume M 2 Mod(Pax+). Then(G ÆM)(M) j= Ax(ext)+Ax~:We omit the easy proof.It might be interesting to notie that by the above proposition some of the onditions of theategoriity theorem (Thm.3.8.7 on p.299 of AMN [18℄) beome true in (G ÆM)(M).Question for future researh 4.5.50 It would be interesting to see for whih redut of GMdoes the above outlined duality theory still go through. We note that in x4.5.4 we will havean analogous duality theory for the (g; T )-free redut of our geometries. �We lose the present sub-setion with Remark 4.5.51 below. Further theorems about(G;M)-duality will be stated in xA.1 (p.A-1) and xA.2 (p.A-6).The following remark shows how to remove the ondition Ax(eqtime) (or Ax(eqm))from our duality theory (G;M), i.e. how to reonstrut M (at least a version of M) from thegeometry GM even if Ax(eqtime) is not assumed.Remark 4.5.51 On a possible more general funtion M+ : Geometries ! Models (not re-quiring the whole of Pax+ to be assumed before the de�nition):(A) Assume G 2 Ge(Pax+Ax(Bw)). Let o; e 2 Mn with o 6= e and o � e. Let Foe = hFoe; : : :ibe the ordered �eld orresponding to o; e as de�ned Def.4.5.28. An element a of Foe is alledpositive iff o �oe a and o 6= a, as one would expet. Consider the possible properties (i), (ii)below.(i) (8 positive a; b 2 Foe) [a 6= b ) g(o; a) 6= g(o; b)℄.Let goe : Foe �! F be de�ned bygoe(a) :def= � g(o; a) if a is positive�g(o; a) otherwise.652(ii) goe : hFoe; o; e;+oe;�oei �! F1 is an isomorphism.If (i) and (ii) hold for o; e 2 Mn with o 6= e and o � e then we say that g is nie on Foe.Question for future researh: Do we need (ii) or is (i) enough? That is, is (i) ) (ii) true insome sense?De�nition ofM+(G): We distinguish two ases.Case (I): Assume G is suh that g is nie on some Foe. Then we de�ne multipliation \�" onF as follows. �(x; y; z)def()(9o; e 2 Mn)ho 6= e ^ o � e ^ (g is nie on Foe) ^g�1oe (z) = g�1oe (x) �oe g�1oe (y) i.652This goe is the same as the goe on p.312.



4.5.3 RECOVERING FRAME MODELS FROM RELATIVISTIC GEOMETRIES 323Then we onstrutM+(G) the same way asM(G) was onstruted, exept that we do notrequire item (f) to hold in the de�nition of Obs, i.e.Obs := �ho; e0; : : : ; en�1i 2 n+1Mn : (a){(e) hold on p.310	and F := hF;+; �;�i, where � is de�ned above. At the end of the remark we will prove thatF is an ordered �eld.(|)The rest of the ingredients of M+(G) are de�ned exatly as those of M(G).Case (II): Assume that for any o; e 2 Mn with o 6= e and o � e, g is not nie on Foe. Thenwe throw g away and use an arbitrary o; e 2 Mn with o 6= e and o � e and an arbitraryisomorphism653 i : hFoe; o; e;+oe;�oei �! F1 to opy the multipliation �oe of Foe to Fobtaining an ordered �eld F. The rest of M+(G) is de�ned as in Case (I).We note that in Case (II) M+(G) is not �rst-order de�nable over G in general while inCase (I) M+(G) is �rst-order de�nable over G.Now, we onjeture that the theorems stated for M go through for M+ with very littlehange (and the same onditions). Further we guess that some simple theorems like (G ÆM+)2(M) �= (G ÆM+)(M) will be true, for M j= Pax+Ax(Bw).(B) Item (A) above suggests the following possibility for improving/generalizing our (G;M)-duality theory. First, one formulates an axiom in our frame language whih implies about Mthat in GM g is nie on some Foe, assuming Pax. Let us notie that there exist very mildhoies for suh an axiom, e.g. Ax(mild) below is suh. We note that Ax(mild) is muhweaker than Ax(eqtime) _Ax(eqm), assuming e.g. Bax�� +Ax(p ) and n > 2.Ax(mild) (9m 2 Obs)(9i 2 n) [(8ph 2 Ph)trm(ph) 6= �xi ^ (8p; q 2 �xi)(8k 2 Obs)( the distane between events wm(p) and wm(q) as measured by k is not smaller than thedistane between these two events as measured by m, i.e. if k sees both wm(p) and wm(q)on the same oordinate axis then the distane between wm(p) and wm(q) as measuredby k is not smaller than jp� qj )℄.Then, one an obtain a duality theory (between frame models and geometries) in whih oneuses the milder Ax(mild) in plae of Ax(eqtime). I.e. one de�nes a �rst-order de�nablemeta-funtion M� : Ge(Pax+Ax(Bw)+Ax(mild)) �! FM exatly as M+ was de�ned initem (A) for Case (I).Proof of (|): Now we turn to proving that F de�ned in Case (I) is an ordered �eld. LetG 2 Ge(Pax + Ax(Bw)) be suh that g is nie on some Foe and let \�" and F be de�ned asin Case (I) above. Then there is M j= Pax + Ax(Bw) suh that G �= GM. Let this M be�xed. Without loss of generality we may assume that G = GM. Hene F1 = FM1 . To avoidambiguity we will denote the multipliation of the ordered �eld FM by \�" (instead of theusual \�"). To prove that F de�ned in Case (I) above is an ordered �eld it is enough to provethat � and � oinide, i.e. (8x; y; z 2 F) ( �(x; y; z) , x � y = z ):(?)Let o; e 2 Mn be �xed suh that o 6= e and o � e. Observer m is alled good for Foe iff m seesFoe on a oordinate axis (i.e. wm[�xi℄ = Foe for some i 2 n) and the distane between o and e653It an be proved that hFoe; o; e;+oe;�oei is isomorphi with F1.



324 4.5 DUALITY THEORYas measured by m is 1 (i.e. jw�1m (e)� w�1m (o)j = 1). For every observer m whih sees Foe on aoordinate axis we de�ne a funtion gm : Foe �! F as follows. Intuitively, gm(a) will be thesigned distane between o and a as measured by m. Let m 2 Obs be suh that m sees Foe ona oordinate axis. Let a 2 Foe. Thengm(a) :def= � jw�1m (a)� w�1m (o)j if a is positive�jw�1m (a)� w�1m (o)j otherwise.By Thm.3.2.6 (p.110), it is easy to see thatgm : hFoe; o;+oe;�oei ��!� hF; 0;+;�i is an isomorphism andif m is good for Foe then gm : Foe ��!� FMis an isomorphism.(??)Claim 4.5.52 Assume that g is nie on Foe. Then for every x; y; z 2 F there is an observerm suh that m is good for Foe, (gm)�1(x) = g�1oe (x), (gm)�1(y) = g�1oe (y), and (gm)�1(z) =g�1oe (z).Proof: Assume g is nie on Foe. To prove the laim it is enough to prove that for every a; b;  2Foe there is an observer m suh that m is good for Foe and gm(a) = goe(a), gm(b) = goe(b),gm() = goe(). Let a; b;  2 Foe. For every f 2 Foe by �oef we denote the inverse of f taken inthe group hFoe; o;+oei. Sine for every f 2 Foe, gm(�oef) = �gm(f) and goe(�oef) = �goe(f)without loss of generality we may assume that a; b;  are non-negative, i.e. that o �oe a et.Let d := e+oe a +oe b+oe :Let m 2 Obs be suh that m sees Foe on a oordinate axis and the distane between o and das measured by m is g(o; d), formally jw�1m (d) � w�1m (o)j = g(o; d). Suh an m exists by thede�nition of g. Hene, gm(d) = goe(d):By (??), gm(d) = gm(e) + gm(a) + gm(b) + gm();and gm(e), gm(a), gm(b), gm() are non-negative. Further, (sine goe is nie on Foe) we have,goe(d) = goe(e) + goe(a) + goe(b) + goe();and goe(e), goe(a), goe(b), goe() are non-negative. Further,goe(e) � gm(e); goe(a) � gm(a); goe(b) � gm(b); goe() � gm()by the de�nitions of g; goe; gm (i.e. by the fat that for every positive f 2 Foe gm(f) isthe distane between o and f as measured by m while goe(f) is the minimum of the distanesbetween o and f measured by observers who see Foe on a oordinate axis). Therefore, jw�1m (e)�w�1m (o)j =: gm(e) = goe(e) = 1, gm(a) = goe(a), et., i.e. observer m has the desired properties.(QED Claim 4.5.52)Now, we turn to proving (?) above. Let x; y; z 2 F.Proof of diretion \)": Assume �(x; y; z). Then there are o; e 2 Mn suh that o 6= e, o � e,g is nie on Foe and g�1oe (z) = g�1oe (x) �oe g�1oe (y). Let suh o; e be �xed. Then, by Claim 4.5.52,there is an observer m suh that m is good for Foe, (gm)�1(x) = g�1oe (x), (gm)�1(y) = g�1oe (y),



4.5.4 DUALITY THEORY FOR (g; T )-FREE REDUCTS 325and (gm)�1(z) = g�1oe (z). Let this m be �xed. Now, (gm)�1(z) = (gm)�1(x) �oe (gm)�1(y). Thus,by the seond part of (??), z = x � y.Proof of diretion \(": Assume z = x � y. Let o; e 2 Mn be suh that g is nie on Foe(and, of ourse, o 6= e, o � e). If m 2 Obs is good for Foe then by z = x � y and (??),we have (gm)�1(z) = (gm)�1(x) �oe (gm)�1(y). By Claim 4.5.52 there is m suh that m isgood for o; e, (gm)�1(x) = g�1oe (x), (gm)�1(y) = g�1oe (y), and (gm)�1(z) = g�1oe (z). Thereforeg�1oe (z) = g�1oe (x) �oe g�1oe (y). Hene �(x; y; z) and this ompletes the proof of (|). �
4.5.4 Duality theory for the (g; T )-free reduts of our geometriesMotivation for looking at reduts of our relativisti geometry GM is given in x4.5.6 (p.341) andin the introdution of x6.7 (\Interde�nability . . . ") in AMN [18, pp. 1134{1135℄. A furthermotivation for the physiist might be that depending on whih aspet of the physial worldwe want to onentrate on we will \see" di�erent reduts654 of our GM.The main message of our (G;M)-duality is that we an reonstrut the original observa-tional model M from the streamlined, more abstrat geometry GM assoiated with it (undersome onditions of ourse). So, we do not lose information if we move from the \detail-rih"world M to the geometry abstrated from it. The question naturally omes up: How muh ofGM is needed for this reonstrution? In other words, from whih reduts of GM is our \orig-inal world" M reonstrutible? Of ourse, if we take a too small redut e.g. hMn;L; 2i thenwe will not be able to reonstrut M from this redut. Below we will see that if we omit g andT from GM then M remains reonstrutible from this weaker geometry G0M = hMn; : : : ; eqi,under some onditions.655 We will do more than just reonstruting M from G0M, namely,we will elaborate a duality theory (analogous to our original one) between Mod(Th) and ourweaker geometries.656In more detail: In the present sub-setion we will see that even if we omit g from ourgeometries we an still develop a duality theory between geometries and models. As a ontrast,later (in x4.5.6) we will see that we annot omit muh more from our geometries without losingthe possibility for building a (similarly strong) duality theory.The present duality theory will be more symmetri than the previous one (M;G), namely,in the new duality the geometries will be axiomatially de�ned just as the frame models are,f. the text below Thm.4.5.13 on p.293.At the same time, we note that at least from a ertain point of view, the new duality willinvolve losing (or forgetting) a bit more \information" than in the ase of (M;G). Namely,654e.g. we may want to onentrate on the so-alled onformal struture (i.e. the light-ones) of spae-time,or we may want to onentrate on orthogonality, or on the metri g et.655A prie we will have to pay for omitting g is that we will have to add Ax6 to our assumptions.656We leave it, partially, to the reader to deide exatly whih other reduts of GM are strong enough so thatM is reoverable from them. In other words: whih reduts of GM are strong enough to support a dualitytheory analogous to (G;M)-duality and the one below. Cf. also item 4.5.50 (p.322). In x4.5.6 and x4.6 we willobtain some partial information in this diretion.



326 4.5 DUALITY THEORYunder some assumptions,M j= Ax(eqtime) ) (G ÆM)(M) j= Ax(eqtime):I.e. G ÆM \preserves" Ax(eqtime). This property will be lost in the ase of the new duality.(This an be sometimes be an advantage and some other times a disadvantage).De�nition 4.5.53(i) For every frame model M, G0M is de�ned to be the (g; T )-free redut of GM = hMn; : : :i,i.e. G0M :def= hMn;L; LT ;LPh;LS;2;�;Bw ;?r; eqi:(ii) For any set Th of formulas in our frame language the orresponding lass Ge0(Th) ofgeometries is de�ned as follows.Ge0(Th) :def= �G : (9M 2 Mod(Th))G0M �= G	 :(iii) GEO is de�ned to be the lass of all strutures of the similarity type of Ge0(;) in whihthe axiom of extensionality holds for the inidene relation 2 (2 � Mn� L). Beause ofthis, without loss of generality we may assume that our inidene relation is the real settheoreti 2. Atually throughout we will assume this.(iv) For any set TH of formulas in the language of GEOMog(TH ) :def= fG 2 GEO : G j= TH g :657We introdue axioms L1 and L2 in the language of GEO. We use the abbreviation ollintrodued in item 4.2.12 and the new sort lines whih is �rst-order de�ned from oll (andMn) on p.297. Axioms L1, L2 below state that L-lines are also lines-lines, and that any pointis the intersetion of two photon-like lines.L1 L � lines.(This is one of the plaes where we heavily use the assumption in Def.4.5.53(iii), i.e. thatthe geometri inidene relation is the set theoreti 2. Of ourse the axiom ould beformulated without relying on this assumption, but then it would beome longer.)L2 (8a 2 Mn)(9`; `0 2 LPh) ` \ `0 = fag.Reall that opag is the axiom system for ordered Pappian aÆne geometries de�ned onp.302 in Def.4.5.24.De�nition 4.5.54 lopag :def= opag + L1 + L2. �657Sine TH is a theory and Mog(TH ) onsists of the models of that theory we ould have used the notationMod(TH ) in plae of Mog(TH ). However we wanted to emphasize that the language of our present TH is thegeometri language of GEO. Therefore the models of TH will be geometries. To emphasize this we use thenotation Mog(TH ) to remind the reader that the language is now that of geometries.



4.5.4 DUALITY THEORY FOR (g; T )-FREE REDUCTS 327In the following de�nition we de�ne the funtors Go and Mo onneting the two worldsMod(: : :) and Mog(lopag); aording to the patternMod(: : :) Go�! �Mo Mog(lopag)and more generally Mod(Th) Go�! �Mo Mog(TH ),where Th and TH are in two di�erent languages.Muh of the intuitive idea for the de�nition ofM on p.309 applies to the de�nition ofMogiven below.De�nition 4.5.55 (funtors Go and Mo)(i) We de�ne the funtor Go : FM �! GEO to be the funtion M 7! G0M.(ii) We de�ne the funtor Mo : Mog(lopag) �! FM as follows. Let G 2 Mog(lopag).Then the modelMo(G) = h(B; Obs;Ph; Ib);F;Eul(F); 2;W i is de�ned as follows.Obs :def= f ho; e0; : : : ; en�1i 2 n+1Mn : (a){(e) on p.310 hold g.If Obs = ;, then Mo(G) is de�ned to be the empty model, otherwise the rest of theingredients of Mo(G) are de�ned as follows.Ph :def= LPh.B :def= Ib :def= Obs [ Ph.F = hF; : : :i is the ordered �eld orresponding to hMn; Bwi de�ned in Def.4.5.31 (p.306).For every ho; e0; : : : ; en�1i 2 Obs the oordinatizationCoho;e0;:::;en�1i : Mn �! nFis de�ned in Def.4.5.34 (p.307). By Prop.4.5.35, we have that these oordinatizations arebijetions. For every m = ho; e0; : : : ; en�1i 2 Obs, we de�new0m :def= Co�1ho;e0;:::;en�1i:Now the world-view relationW is de�ned from the funtions w 0m's exatly as in Def.4.5.38.Let m 2 Obs and p 2 nF. Thenwm(p) :def=f ` 2 Ph : w0m(p) 2 ` g [ f ho; e0; : : : ; en�1i 2 Obs : oll(o; e0;w0m(p)) g :658W is de�ned from the wm's the obvious way, i.e.W :def= f hm; p; bi 2 Obs � nF � B : b 2 wm(p) g :658For a more intuitive (but longer) formula de�ning wm f. the de�nition ofM, p.312.



328 4.5 DUALITY THEORY�Now we introdue the axiom system Wax in our frame language whih will niely \math"with the geometrial axiom system lopag. Ax(Ph) below is one of the axioms of Wax.Ax(Ph) (8m 2 Obs)(8p 2 nF)(9ph1; ph2 2 Ph) trm(ph1) \ trm(ph2) = fpg.Intuitively, eah observer at any point p sees at least two photons, and these two photonsdo not meet at any point di�erent from p.De�nition 4.5.56 Wax :def= fAx1;Ax2;Ax3;Ax4;Ax6;Ax(Bw);Ax(Ph)g. �We note that the following \weak" axiom systems are stronger than Wax. Bax�� +Ax(p ) + Ax6, Bax�� + Ax(Bw) + Ax6, Pax + Ax(p ) + Ax(Ph) + Ax6,Pax + Ax(Bw) + Ax(Ph) + Ax6; and if n > 2 Bax�(n) + Ax(p ) + Ax6,Bax�(n) +Ax(Bw)+Ax6, Bax(n) +Ax6.Item (ii) of the following theorem is of the pattern of theorem-shemas (g), (h) on p.286way above. (Cf. Thm.4.5.13 for a similar theorem.) The whole theorem is of the patternMod(Wax) Go�! �Mo Mog(lopag).THEOREM 4.5.57(i) Go : Mod(Wax) �! Mog(lopag); Mo : Mog(lopag) �! Mod(Wax),andMo is a �rst-order de�nable meta-funtion.(ii) Both Go Æ Mo and Mo Æ Go have �xed-point property in the sense that for any M 2Mod(Wax) and G 2 Mog(lopag)(Go ÆMo)2(M) �= (Go ÆMo)(M) and (Mo Æ Go)2(G) �= (Mo Æ Go)(G):(iii) For any M 2 Mod(Wax) and G 2 Mog(lopag)Go(M) ��(Mo Æ Go)(Go(M)) and Mo(G)��!(Go ÆMo)(Mo(G)):We omit the proof, but f. the proof of Thm.4.5.43.Galois onnetions will be introdued on p.A-3, xA.1. Motivated by the above theorem weonjeture that there is a Galois onnetion between Rng(Go) and Rng(Mo),659 f. Thm.A.1.10(p.A-5). Atually, this Galois onnetion an be regarded as an adjoint situation (to be intro-dued on p.A-13) too aording to the following patternRng(Mo) Go�! �Mo Rng(Go),659To show that this is a Galois onnetion one has to de�ne appropriate pre-orderings on the lasses Rng(Go)and Rng(Mo).



4.5.4 DUALITY THEORY FOR (g; T )-FREE REDUCTS 329f. Conjeture A.2.9 (p.A-13). Further, we onjeture that between Rng(Go Æ Mo) andRng(Mo Æ Go) the same onnetion turns out to be an equivalene of ategories (f. p.A-13)of the pattern Rng(Go ÆMo) Go�! �Mo Rng(Mo Æ Go),f. Conjeture A.2.12 (p.A-14).Conjeture 4.5.58 We onjeture thatMod(Th) �� Mog(TH );for ertain natural hoies of Th and TH . We note that these hoies of Th we have in mindontain the axiom (8m)(8h 2 Exp)(9k)fmk = h.660Hint: Use the onstrution in the proof of Thm.4.3.38 (p.261) omitting of ourse any referenesto those parts of the geometry whih do not exist in the present ase, e.g. g. �Further theorems in this line will be stated in the Appendix.The following theorem says that the sentenes in our frame language an be translated intosentenes in the language of our relativisti geometries (not involving the funtion g and thetopology T ) in a meaning preserving way, assuming lopag on both sides. (Cf. Thm.4.5.42 fora similar theorem.)THEOREM 4.5.59 There is a \natural" translation mappingTMo : Fm(FM) �! Fm(GEO)suh that for every G 2 Mog(lopag) and sentene ' 2 Fm(FM)Mo(G) j= ' , G j= TMo('):Proof: The theorem follows by item (i) of Thm.4.5.57 and by Prop.4.3.41 (p.264).The next proposition says that the operators Go Æ Mo and Mo Æ Go make our modelsand geometries \smooth" in some sense. (Cf. Prop.4.5.49 for a similar proposition.) Wealready know, by Thm.4.5.57, that for any M j= Wax (Go ÆMo)(M) j= Wax. Item (i) ofthe proposition states that besides Wax some further axioms beome true when Go ÆMo isapplied to M. A similar remark applies to lopag and item (ii) below.PROPOSITION 4.5.60(i) Assume M 2 Mod(Wax). Then(Go ÆMo)(M) j= Ax(ext) + Ax~ + (8m; k)(fmk 2 Aftr) ++ Ax(1ph) + (8m)(8h 2 Exp)(9k)fmk = h.660Intuitively, this means that there are arbitrarily large as well as arbitrarily small animals, f. Remark 4.2.1on p.458 of AMN [18℄.



330 4.5 DUALITY THEORY(ii) Assume G 2 Mog(lopag). Then(Mo Æ Go)(G) j= L3 + L4 + L5 + L6 + L7 + L8 + L9 + L10;where axioms L3; : : : ;L10 are introdued below the present proposition.Moreover;(iii) Rng(Mo) j= Ax(ext) + Ax~ + (8m; k)(fmk 2 Aftr) + Ax(1ph) andRng(Go) j= L3 + L4 + L5 + L6 + L7 + L8 + L9 + L10;where axioms L3; : : : ;L10 are introdued below.We omit the proof.Now we turn to introduing axioms L3; : : : ;L10 in the language of GEO. These axioms aremotivated by item (ii) of the above proposition and/or by ontemplating the idea that theyare very natural (it is hard to imagine a reasonable geometry in whih one of them would fail).L3 ( [ a � b ^ (Bw(a; b; ) _ Bw(a; ; b) ) ℄ ! a �  ) ^( [ a � b ^ (Bw(; a; b) _ Bw(a; ; b) ) ℄ !  � b ).Intuitively, Bw and � are both kinds of orderings. The axiom says that these two are\in harmony". In partiular if we know Bw on a line `, and two points of ` are �-relatedthen this fat indues a �-onnetion between any two other points of `.L4 Intuitively, eq is (very) symmetri, formally:ha; bi eq h; di ! ( h; di eq ha; bi ^ hb; ai eq h; di ^ ha; ai eq h; i ).L5 eq is transitive, i.e.( ha; bi eq h; di ^ h; di eq he; fi ) ! ha; bi eq he; fi.L6 (For the intuitive meaning of this axiom see Fig.117.)(8`; `0 2 L)(8o; e; e0; a; a0 2 Mn)�[ ` \ `0 = fog ^ e; a 2 ` ^ e0; a0 2 `0 ^he; e0i k ha; a0i ^ ho; ei eq ho; e0i ℄ ! ho; ai eq ho; a0i�.
o e0 a0

e a
`0

`
(he; e0i k ha; a0i ^ ho; ei eq ho; e0i) ! ho; ai eq ho; a0i

Figure 117: Axiom L6.
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If this is the ase then ha; bi eq h; di.
Figure 118: Axiom L7.L7 (For the intuitive meaning of this axiom see Fig.118.)(8` 2 LT [ LS)(8a; b; ; d; e; f 2 Mn) [ ( a; b; ; d 2 ` ^ha; bi k he; fi k h; di ^ ha; ei k hb; fi ^ h; ei k hd; fi ) ! ha; bi eq h; di ℄.L8 ?r is symmetri, i.e.(8`; `0 2 L) (` ?r `0 ! `0 ?r `).L9 ?r is losed under parallelism, i.e.(8`; `1; `2 2 L) [ ( ` ?r `1 ^ `1 k `2 ) ! ` ?r `2 ℄.L10 ?r is losed under taking limits, i.e. ?r satis�es item (ii) on p.141. This property an beformulated in the language of GEO as follows. (See Fig.119.)` `0a a0 `01`1

`2 `02
 eb d d0 b0 0e0

Figure 119: Illustration for axiom L10.(8`; `0 2 L)�(9 distint a; b 2 `)(9 distint a0; b0 2 `0)(9`1; `01 2 L)h ` \ `1 = fbg ^ `0 \ `01 = fb0g ^ (8; d 2 `1)(80; d0 2 `01)[ (Bw(; b; d) ^ Bw(0; b0; d0) ) ! (9e; e0 2 Mn)(9`2; `02 2 L)(Bw(; e; d) ^ Bw(0; e0; d0) ^ e; a 2 `2 ^ e0; a0 2 `02 ^ `2 ?r `02 ) ℄ i ! ` ?r `0 �, f.Fig.119.



332 4.5 DUALITY THEORYImproving our relativisti dualities; uni�ation and integration. By \our relativistidualities" we refer to the (G;M)-duality, (Go;Mo)-duality and their variants disussed sofar. In Appendix A we show that our relativisti dualities form what are alled \Galois-onnetions" e.g. in algebra. Moreover, we expand them to the world of ategory theory wherethey lead to e.g. \adjoint situations". This way we reah an enrihed onept of duality theorieswhih plays an important role all over mathematis and mathematial physis. The disussion(in Appendix A) also reveals how the methods (and results) in the author's earlier papers e.g.Madar�asz [161, 165, 164, 166, 170, 163℄, Madar�asz et al. [177, 176℄ have lead to the results of thepresent work (as well as to more obviously related work e.g. AMN [16℄, AMN et al. [25℄). Manyof the methods of the present work were published by the author in the above mentioned earlierpapers; but beause of the terminologial di�erenes explained in Appendix A, it is diÆultto give preise referenes at all the relevant points in the dissertation. Therefore we olletedthese onnetions into Appendix A, but f. also the end of x4.3.
4.5.5 Geometri dualities, de�nability, G�odel inompletenessThe present setion is related to the subjet matter of x3.8 in AMN [18℄ (\Making Basax om-plete. . . ", pp.294-346), to the \relativity and G�odel inompleteness papers Andr�eka-Madar�asz-N�emeti [16℄, [17℄, and to the \Aelerated observers" materials, e.g. the Aelerated ObserversChapter in Andr�eka-Madar�asz-N�emeti-S�agi-Sain [24℄, and [117℄, [26℄.Notation 4.5.61 For any axiom system Axi, we write T(Axi) for the theory generated byAxi. I.e. T(Axi) :def= Th(Mod(Axi)): �Let G�M be de�ned exatly as GM was de�ned in Def.4.2.3 (p.137) with the followinghanges. L :def= LT [ LPh [ LS [ \life-lines of inertial bodies"; i.e.L :def= LT [ LPh [ LS [ ffe 2 Mn : b 2 eg : b 2 Ibg:Now, G�M def= hMn;F1;L;LT ;LPh;LS;2;�;Bw ;?r; eq; g; T i:I.e. G�M is obtained from GM by inluding the life-lines of inertial bodies as extra lines. Thisis in perfet harmony with our Ax3 (p.20) (or even Ax30) whih say that the life-lines ofinertial bodies are straight lines.Instead of GM, we ould have investigated G�M in the present hapter (Chap.4), the hangeswould be inessential. The only reason why we hose GM as a basis of the present hapter(instead of G�M) was to make it shorter. However, the nature of the present sub-setion (x4.5.5)is suh that G�M is more suitable as a basis for it than GM. So we will onentrate on G�Minstead of GM in the present sub-setion. Sine the di�erenes are small, to avoid ompliated,heavy notation, we will simply pretend in the present sub-setion that GM := G�M (i.e. thatGM denotes G�M) and that all the results, de�nitions et. of the present hapter are about G�M.



4.5.5 GEOMETRIC DUALITIES, G �ODEL INCOMPLETENESS 333CONVENTION 4.5.62 In the present sub-setion (x4.5.5) we will pretend that GM := G�M,hene in partiular, that the life-lines of inertial bodies are lines in GM. This onvention isvalid only inside this sub-setion, after the end of this sub-setion GM will retain its originalde�nition. Whenever the present onvention would lead to inonsistenies, we leave it toontext and the reader's ommon sense to eliminate these inonsistenies.? ? ?The purpose of this sub-setion is threefold:(i) We saw, e.g. in Thm.4.3.38 (p.261), that the \world" of observation-oriented models,the M's, and the world of observer-independent geometries, the G's, are de�nitionallyequivalent (under some assumptions). From [16, 17℄, and/or from the relevant partof the present work we know that G�odel's inompleteness theorems do apply to manyof the M's.661 In brief, the limitative theorems662 of metamathematis do apply tothe \world" of the M's. At the same time, one may reall from logi ourses, thatG�odel's inompleteness theorems have a tendeny of not being appliable to geometristrutures and in this respet geometries have a tendeny of behaving similarly to real-losed �elds (or R itself) in that they usually do not satisfy the onditions of G�odel'sinompleteness theorems (hene, these theorems do not apply to these strutures).663Cf. e.g. Goldbatt [102, p.169 lines 11-10 bottom up℄ where it is stated that the theoryof Minkowskian geometry over R is deidable. In partiular, there are natural frame-theories Th � Sperel, suh that G�odel's inompleteness theorems apply to Th butdo not apply to Ge(Th) or to M[Ge(Th)℄ = (G ÆM)[Mod(Th)℄. All these lead to thefollowing question: How is it possible that two \worlds" are equivalent and G�odel'stheorems apply to one of them but not to the other? Similarly, we ould ask, whydoes the (G;M)-duality not \import" G�odel inompleteness properties from the side (or\world") of the M's to the side (or \world") of the geometries, the GM's.665 (Below wewill see that the answer is in the onditions of our theorems, and that the just outlined\tension"666 an lead to interesting observations.)661Hene e.g. T(Basax) is undeidable, moreover T(Basax+ some extra axioms) is hereditarily undeidable,it admits a formulation Con(Basax + extra) of its own onsisteny et. The tehniques of provingthis (formalizability of own onsisteny) ensure that the Liar Paradox expressing \this sentene is notprovable from (Basax+ extra)" an be formulated in \Basax + extra", whih in turn leads to stronghereditary inompleteness results. If someone wants to make this theory omplete, then he will proba-bly try by adding the Liar Paradox to (Basax + extra) as a new axiom. But this spetaularly fails,beause then there will be a new inarnation of the \Liar" saying \this sentene is not provable from(Basax + extra + \Liar formulated for (Basax + extra)"). Et.662See e.g. Bell-Mahover [46, Chapter 7, \Logi-limitative results"℄ or Chaitin [59℄.663In passing we note that if our �eld F is strange enough (i.e. is far from being a real-losed �eld) then wean lose deidability of e.g. Th(Mink(4;F)). Cf. [17℄. But this is not too relevant to our present onerns, sowe do not disuss this and we pretend that Th(F) is always deidable. Although in the typial well behavedases G�odel's theorems do not apply to GM whenever F is a real-losed �eld,664 we note that there are exotiexeptions. E.g. we onjeture that either for the geometry GM onstruted in the proof of Thm.4.2.23(p.168) G�odel's inompleteness theorems do apply, or one an onstrut an analogous GM for whih G�odel'sinompleteness theorems apply.664E.g. in Minkowskian geometries this is always so (i.e. [F is real-losed℄ ) [G�odel's inompletenesstheorems do not apply to Mink(F)℄), f. e.g. Goldblatt [102, p.169℄ for this.665Of ourse, there are strutures in Ge(Th) to whih the onditions of G�odel's theorems do apply, but theyare the exeptional ones, in some sense (from the physial point of view they are somewhat strange); whileon the Mod(Th) side it is muh more typial, frequent (and natural) to have these onditions satis�ed, f.Andr�eka-Madar�asz-N�emeti [16℄,[17℄ (e.g. having a periodially moving body is suÆient).666By tension we mean something whih looks like a ontradition (but is not one).



334 4.5 DUALITY THEORY(ii) Can we extend our (G;M)-duality to handling non-inertial bodies (or at least non-inertialobservers) well? (I.e. an we extend our duality suh that non-inertial bodies or observerswould not neessarily disappear from (G ÆM)(M)?)(iii) We will briey ask ourselves whether the life-lines of some non-inertial bodies are de�n-able in Ge(Th), for nie enough hoies of Th.Before going on, we note that the above three issues (i)-(iii) are interonneted as follows:If all non-inertial bodies of M would reappear in G ÆM(M) 667 then probably all non-inertialbodies of M would be (at least parametrially) de�nable in G(M). (This would answer item(iii).) But, if this would be the ase, then appliability of G�odel's inompleteness theoremsfor M would probably be inherited by G(M),668 beause non-inertial bodies of M played anessential role in applying these theorems to M in [16℄, [17℄. So items (i)-(iii) are interonneted.A perspetive on items (i)-(iii): In onnetion with item (i), in Statement (?) below, we willsee that (G ÆM) tends to streamline our models, it tends to make our originally ompliated,\untidy" M into a \streamlined", \tidy", and smooth variant (G Æ M)(M) of the originalM. As a byprodut, it may happen that M satis�es the onditions of G�odel's inompletenesstheorems but (G ÆM)(M) does not.Now, in items (ii), (iii) we ask ourselves: Is this good for us or is this bad for us? Roughly,the answer will be the following. At the present level of investigations this is not bad at all.However, in later generalizations towards general relativity, e.g. in the theory of aeleratedobservers669 this might reate inonvenienies (whih we will have to be areful to avoid).Let us turn to disussing (some of) the questions (i)-(iii) above.In x4.5.3 we had a proposition saying, roughly, that the operator G ÆM makes our pos-sibly ompliated and \inhomogeneous"670 models M (whih might ontain random features)symmetri, \tidy" and \smooth", e.g.(G ÆM)(M) j= Ax~+Ax(ext):671(?)In the \G�odel inompleteness" papers Andr�eka-Madar�asz-N�emeti [16℄, [17℄ related to thepresent work672, we saw that, roughly, suh \smooth" models usually have a deidable theoryto whih G�odel's inompleteness theorems do not apply (assuming F is a real-losed �eld).673Though (?) an be viewed as a positive result, in a ertain other sense it will turn out tobe a limitative one, f. e.g. Thm.4.5.66, Conj.4.5.68.667This would be a positive answer to (ii).668at least in most of the ases (i.e. when non-inertial bodies were responsible for \inompleteness")669Cf. e.g. [16℄, [17℄, [26℄, [24, Chap. \Aelerated Observers"℄, [117℄, [192℄.670We mean here that on some (but not all) life-lines there may be many indistinguishable observers in arandom manner, and that there may be many non inertial bodies with ompliated life-lines in one part of Mbut not in another et.671In passing we note that many other duality theories tend to do this \streamlining" of their objets. E.g. inthe ase of Galois onnetions (pp. A-1{A-4) if p 2 P then g(f(p)) is the \losure" of p and usually has moresymmetry properties than p. A similar remark applies to the (Mod;Th)-duality on p.1026 of AMN [18℄ whereto the possibly \untidy" or \random" � � Fm, the streamlined Th(Mod(�)) is assoiated (whih is losedunder \j=").672f. also the G�odel inompleteness hapter of a future edition [19℄ of AMN [18℄673As we already mentioned in onnetion with geometries (in footnote 663), there might be exeptionalmodels M whih are \smooth" in the above sense with FM = R and still have an undeidable theory. Cf.Andr�eka et al. [16, Thm.9(iii)℄.



4.5.5 GEOMETRIC DUALITIES, G �ODEL INCOMPLETENESS 335Independently of this, we saw in xx 4.5.3, 4.5.4 that the funtionM : Ge(Th) �! Mod(Th)is a �rst-order de�nable meta-funtion (assuming Th is strong enough), i.e. that M(G) isuniformly �rst-order de�nable over G. Moreover Mod(Th) is de�nable over Ge(Th) if Th isstrong enough, f. Theorems 4.5.11, 4.3.38 and Prop.4.5.41.First-order de�nability ofM(G) over G inludes the laim that (intuitively speaking) everyobserver m ofM(G) is �rst-order de�nable from G by using n+ 1 parameters. Namely, eahm is de�nable by using (as parameters) n+ 1 points o; e0; : : : ; en�1 satisfying (a){(f) on p.310.(This kind of de�nability is alled parametrial de�nability in standard mathematial logi, f.x4.3 [pp. 235, 223℄.)Summing it up, every observer of M(G) is parametrially de�nable in G. Moreoverevery body of M(G) is parametrially de�nable in G.(??)All the bodies in M(G) are inertial. But in our relativity theories, e.g. (Basax+Ax(!)℄)non-inertial bodies also play some important role, f. e.g. the formalization of the Twin Para-dox in x2 (p.13 and Figure 7 on p.13) and the ontinuation of this work on aelerated ob-servers [26℄, the aelerated observers hapter in [24℄, [117℄, and the related disussions in thepresent work.Therefore, as we already said, the following question naturally omes up: Can we de�ne(by �rst-order means) strongly non-inertial bodies674 from G? Further, an we extend ourduality theory G : Mod(Th) �! Ge(Th); M : Ge(Th) �! Mod(Th)by possibly strengthening Th (and improving the de�nition ofM) suh that it would \handle"strongly non-inertial bodies too? We will see that the answer is no, at least if we want to keepour geometries GM at least remotely similar to the geometries onsidered in the literature,e.g. if we want to stik with the three sorts Points, Lines and Quantities (i.e. F) only.675 Onthe other hand, we will indiate in Remark 4.5.63 that a positive answer is possible in theframework of �rst-order logi on the expense of making our strutures riher than \geome-tries". Sine aelerated observers with onstant aeleration will play an important role laterin generalizing our theory,676 we note the following. (Life-lines of) aelerated bodies withonstant aeleration are parametrially de�nable in most of our geometries G 2 Ge(Pax).Remark 4.5.63 We note that to reover strongly non-inertial bodies from GM we will needto add, among others, an extra sort representing, roughly, a possibly nonstandard model ofPeano's Arithmeti as it was done in the development of nonstandard temporal logis andnonstandard dynami logi f. e.g. Sain [227℄, Andr�eka-Goranko et al. [12℄ and the referenestherein. We plan to do suh things in a later work related to the present one. Suh devel-opments will also represent onnetions with nonstandard analysis.677 We note that in thisapproah we will add the following extra sorts to G. (i) A sort usually denoted as I whih674Cf. Def.4.5.67 for strongly non-inertial bodies.675or anything in the spirit of hPoints;Lines;Planes;Quantitiesi-like arrangement to whih e.g. our de�nitionof G�M does onform676in the diretion of general relativity theory677This would mean a onnetion between the presently disussed kind of \logi-based relativity" and non-standard analysis.



336 4.5 DUALITY THEORYrepresents funtions from the sort F1 into itself. I.e. I � FF. (ii) Further, a binary operationvalue : I � F �! F suh that for f 2 I, value(f; x) 2 F is onsidered to be the value \f(x)"for x 2 F. (iii) A unary relation N � F whih plays the role of the positive integer elementsof F, e.g. 0; 1 2 N and N is losed under +; � of F1, moreover hN; 0; 1;+; �i is a model ofPeano's Arithmeti. (iv) We will postulate the omprehension axiom-shema for I saying thatall funtions f : F �! F whih are de�nable in the language of the so expanded model Gappear as elements of I. I.e. all �rst-order de�nable678 funtions f : F �! F show up in I,roughly f 2 I. The purpose of all this mahinery is to enable us to express in �rst-order logi(i.e. in the �rst-order language of the so expanded G) the things whih we want to expressin order to develop our theory of, say, aelerated observers (and/or motion in general). Thisapproah will be desribed in [19℄.679 �Notation 4.5.64 Mink(n; r) denotes the lassIfMink(n;F) : F is a real-losed �eld680gof all n-dimensional Minkowskian geometries over real-losed �elds. �Items 4.5.66, 4.5.68 below an be interpreted as saying that not all important aspets of(speial) relativity an be reovered from the geometries GM (or from Minkowskian geometry).A body b 2 B is alled periodially moving, or periodial for short, if there is m 2 Obssuh that trm(b) an be interpreted as a funtion trm(b) : �t �! n�1F and this funtion isperiodial. See Figure 120. For simpliity we will use the following simpler de�nition.m b
Figure 120: b is a periodially moving body in m's world-view.De�nition 4.5.65 Let M be �xed. Body b is alled periodial iff there is m 2 Obs suhthat letting H := �t \ trm(b) the set H � F is disrete681 and o�nal in F, and for any two678We mean de�nable in the many-sorted struture hG; I; value; et.i.679We note that at this point we did not explain why and how adding suh extra sorts inluding an extraarithmetial sort will help. Consulting Sain [227℄, Andr�eka-Goranko-et al [12℄, Montague [195℄, Gallin [94℄ maygive useful hints.680Cf. p.301 of AMN [18℄ for the notion of real-losed �elds.681We use the language of F. H is disrete if any point in H has a suessor and a predeessor in H unlessit is an endpoint of H .



4.5.5 GEOMETRIC DUALITIES, G �ODEL INCOMPLETENESS 337neighboring pairs a; b; a0; b0 2 H we have jb� aj = jb0� a0j (where a and b are neighbors682 andthe same holds for a0; b0). �Intuitively, the following theorem says that life-lines of periodial bodies are not de�nablein our geometries like Ge(Bax). Reall that Ax(r) is the usual axiom system for real-losed�elds de�ned in the List of axioms and on p.301 in x3.8 of AMN [18℄.THEOREM 4.5.66(i) Let n > 1 and onsider the lass Mink(n; r) of Minkowskian geometries.Then, there exists M 2 Mod(Basax + Ax(!)℄) suh that GM = hMn;F; : : :i 2Mink(n; r) and for no periodial body b of M is the life-line f e 2 Mn : b 2 e g ofb de�nable parametrially in the geometry GM.683(ii) Statement (i) remains true if we replae Mink(n; r) by any one of our dis-tinguished lasses Ge(Th) of geometries. (Here Th ranges over our hierarhyBax�;Bax; : : : ;Basax).Outline of proof: In AMN [16℄, [17℄ as well as in the \deidability . . . G�odel inompleteness"part of AMN [19℄ we see that if we add the existene of a periodial body as an extra axiom(this extra axiom is denoted by � there) to any one of our distinguished theories Th, then theso obtained (Th + �) beomes essentially undeidable as a theory, it satis�es the onditionsof G�odel's inompleteness theorems, hene the onlusions of G�odel's inompleteness theorems(both of them) apply to the theory (Th + �).684Therefore, if a periodial body was parametrially de�nable in Mod(Th) then this wouldrender Th(Mod(Th)) essentially undeidable et. (The parameters [in our notion of de�nability℄ause no problem in this argument beause we an use quanti�ers in our language to makethe parameters \disappear" when translating number theoreti formulas to formulas in thelanguage of Mod(Th). This tehnique [for getting rid of the parameters℄ was used e.g. inN�emeti [202℄).Having seen that Mod(Th) would beome essentially undeidable if formula � was added toit, one an push the same argument through to show that Ge(Th) would beome hereditarilyundeidable if � was expressible in the language of Ge(Th). Sine we know that Ge(Th +(F is a real-losed �eld)) an be extended to a deidable onsistent theory, f. the \MakingBasax omplete . . . " setion of AMN [18℄, i.e. x3.8 pp.294-346 of AMN [18℄, we onludethat � annot be expressible in the �rst-order language of Ge(Th). But this implies that noperiodial body an be parametrially de�ned685 in Ge(Th). This �nishes the proof.682I.e., [a < b and (� 2 H) a <  < b℄.683I.e. for no �nite number of parameters p1; : : : ; pk from GM (i.e. from Uv(GM) = Mn [ F [ L) is the life-line of any periodial body of M (�rst-order) de�nable in GM by using p1; : : : ; pk as parameters. That is, let�p = hp1; : : : ; pki. Then no �rst-order formula '(x; �p) in the language of GM de�nes the trae f e 2 Mn : b 2 e gof a periodial body b of M.684This an be seen by interpreting Robinson's arithmeti denoted by R in Monk [194, Def.14.9, p.247℄ in thetheory (Th+�). Note that this version R of arithmeti is muh weaker than Peano's arithmeti, in partiular,it involves no indution axiom shema. Hereditary undeidability et. of R is in Thm.16.1, p.280 of Monk [194℄.For more detail on (Th + �) f. Andr�eka-Madar�asz-N�emeti [17℄.685Here, we mean uniform de�nability for the whole lass Ge(Th). However one an re�ne the presentargument to prove that there is a geometry G 2 Ge(Th) in whih no suh body is parametrially de�nable.



338 4.5 DUALITY THEORYDe�nition 4.5.67 Let M be �xed. A body b is alled strongly non-inertial iff there is anobserver m suh that trm(b) \ �t is a nonempty set and is gapy in the following sense:(8p 2 trm(b) \ �t )(9q; r 2 �t )(pt < qt < rt ^ q 62 trm(b) ^ r 2 trm(b)):686(�) �If a body b is periodial (in the sense of Def.4.5.65) then it is strongly non-inertial.Intuitively, the next onjeture says that the life-lines of strongly non-inertial bodies arenot de�nable in our geometries, e.g. Ge(Bax).Conjeture 4.5.68 Theorem 4.5.66 remains true for strongly non inertial bodies in plae ofperiodial ones.Possible idea of proof: We hoose a model M 2 Mod(Th) suh that FM is a real-losed�eld and suh that GM is the Minkowskian geometry over FM, up to isomorphism. ThenGM is de�nable over FM. Assume that the life-line of a strongly non-inertial body b of M isparametrially de�nable over GM. Then (�) above holds for some m 2 Obs. Let this m be�xed. Then the intersetion f e 2 Mn : b;m 2 e g of the life-lines of b and m is parametriallyde�nable over GM by a formula '(x; �p) with parameters �p. Sine GM is de�nable over FM, thereis a de�nitional expansion G+M of FM suh that GM is a redut of G+M. Now, by Thm.4.3.29(p.247) there is a translation mapping Tr : Fm(G+M) �! Fm(FM) suh that the onlusion ofThm.4.3.29 holds for this Tr. Now, if we apply this Tr to our formula '(x; �p) then we obtaina new formula whih de�nes a relation on FM parametrially. We onjeture that from this,one an obtain a further formula whih de�nes a subset H of FM parametrially whih is gapyin the sense of Def.4.5.67 immediately above. Now, to suh a gapy H one an apply the proofof Lemma 4.2.27 (p.172) to derive a ontradition. Namely, by the proof of Lemma 4.2.27it follows that H is not parametrially de�nable over FM. (The proof of Lemma 4.2.27 goesthrough for the present ase if one uses arbitrary polynomials in the proof and not onlypolynomials with rational oeÆients and if one uses \gapy" in the sense of Def.4.5.67 aboveand not in the sense of Def.4.2.26). �Remark 4.5.69 (On G�odel's logi proofs, relativity proof, and Esher:)Some of Esher's pitures an be assoiated both with G�odel's inompleteness proof (logi)and to his rotating universe onstrution for general relativity. So these two seemingly distantreations of G�odel are more losely related than is usually aknowledged in the literature. Butf. Yourgrau [270℄, Dawson [70, pp. 176{177℄ for positive exeptions (where the \two G�odel's"are onneted). See Figure 121. For G�odel's rotating universe see Figure 134 on p.365. �Items 4.5.66, 4.5.68 above seem to say that our duality theoryG : Mod(Th) �! Ge(Th); M : Ge(Th) �! Mod(Th)annot be easily extended to a duality theory onsisting of some G+ and M+ whih wouldsatisfatorily handle periodially moving (or strongly non-inertial) bodies present in the modelsM 2 Mod(Th). Or in other words, the duality theory based on G and M abstrats from686Cf. Def.4.2.26 (p.172) and note that though the two de�nitions are similar they are not the same.
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Figure 121: Print Gallery, by M.C. Esher. Cf. Fig.122 for the \logi" of this piture and forits onnetions with G�odel's proof. A key idea in G�odel's proof is self referene: \this senteneis not provable" (a variant of the well-known Liar paradox).
Gallery
Pituredepition inlusion

Figure 122: A ollapsed version of Fig.121 (i.e. of Esher's Print Gallery).



340 4.5 DUALITY THEORYstrongly non-inertial bodies (and therefore also from strongly non-inertial observers (!)), andthis feature seems to be unavoidable in view of items 4.5.66, 4.5.68. More preisely, thisseems to be so unless we expand our geometries in the \nonstandard dynami logi" stylementioned/promised in Remark 4.5.63 way above.Let us return to answering items/questions (i)-(iii) on p.333 lose to the beginning of thissub-setion. The above disussion, theorem, et. answer items (ii), (iii)687.To answer (i), let us assume some nie, strong frame-theory688 e.g. Th+ :def= Basax +Ax(!)+Ax(Triv)+Ax(k)+Ax(p ) +Ax(r)+Ax(eqm)+Ax(eqtime).Now, we are looking at Mod(Th+) and at G�[Mod(Th+)℄ = fG�M : M j= Th+g whereG� : Mod(Th) �! Ge(Th) with G�(M) :def= G�M for all M. Aording to the proofs in [16, 17℄,there are many models M j= Th+ satisfying the onditions of G�odel's inompleteness theorems.At the same time, G�M fails to satisfy the onditions of G�odel's theorems for many689 hoiesof the above M. The reason for this is item (?) on p.334 together with the fat that inThm.10 of [16℄ we used the presene of periodially moving bodies to prove the onditions ofG�odel's theorems (for models satisfying Th+). But the funtor G� removes (or forgets) thetraes of suh bodies. Hene the \periodial body method" in [16℄,[17℄ is no longer appliableto the struture G�M.690 Reall that here we pretend that the (G;M)-duality is really some(G�;M�)-duality where G� orresponds to G�M de�ned on p.332 (beginning of x4.5.5) andM�mathes G� the same way and spirit as M mathed G. In summary, we an say that theapparent paradox in (i) is aused by the following. It is true that G ÆM(M) is almost thesame as M (hene almost all properties of M should probably hold for G ÆM(M)), but it isexatly that remaining little di�erene between M and G ÆM(M) whih really matters in theG�odel inompleteness issue. Namely, (G ÆM) preserves all nie properties but it forgets thenon-inertial bodies. And it are exatly these bodies whih are used in the proof in [16℄, [17℄.691So this is why our (G;M)-duality or (G�;M�)-duality does not preserve the G�odel in-ompleteness properties of the strutures involved.692 One still an ask why the de�nitionalequivalene theorem693 Mod(Th) �� Ge(Th)does not export G�odel inompleteness properties (e.g. hereditary undeidability) fromMod(Th) to Ge(Th). The answer is simple: The ondition of the just quoted theorem(Thm.4.3.38) on Th exludes the kinds of appliability of G�odel's inompleteness theo-rems even to Mod(Th) whih we used in e.g. [16℄. Indeed, it is indiated in [16℄,[17℄ thatAx~;Ax(ext);Ax(p );Ax(diswind);Ax(eqtime)694 are all axioms working against satis-�ability of the onditions of G�odel's theorems. E.g. Ax~ exludes periodi (hene non-inertial)bodies.687at least to some extent688The purpose of assuming suh a theory is to avoid being side-traked by some, more-or-less, inessentialdetail.689We are inlined to write \for most hoies".690There are other \G�odel inompleteness methods" in [16℄, but they are less important from the physialpoint of view. (And even most of these are \killed" by the G ÆM-transition, with the exeption of one or two.)Anyway, these alternative methods from [16℄ are exluded now by our hoie of Th+.691There were other inompleteness methods in [16℄, [17℄, but that is, so to speak, beside the point here, forvarious reasons.692There are also similar minor e�ets, e.g. G Æ M makes Ax(ext) true whih, by [16℄, eliminates furtherpossibilities of appliability of G�odel's theorems, but to save spae we do not disuss these here.693Thm.4.3.38, p.261694The ondition of Thm.4.3.38 requires all these axioms to be provable from Th .



4.5.6 RELATIVISTIC MODELS AND REDUCTS OF GEOMETRIES 341Our next sub-setion (4.5.6) is related to setion 4.6 whih in turn, is onerned withstreamlining our relativisti geometry GM (among others), as was promised in the introdution.
4.5.6 Reoverability of relativisti models from reduts of geometryLet us return to the question, formulated at the beginning of this setion of whether we anreonstrut M from GM or from a redut of GM. In the duality theory developed in xx4.5.1{4.5.4 above we saw that M an be reonstruted from GM (under some onditions onM). Below, we will look at the same question somewhat di�erently. We will look at redutgeometries GiM and we will prove things whih might be interpreted as saying that M annotbe reonstruted from GiM. In this form these sound like negative results. However, in theform we will state them they will sound like positive results. Roughly speaking, assume weintrodued the notation Gei(Th) = IfGiM : M j= Thg. Then for ertain hoies of Th1 andTh2 we will state that Gei(Th1) = Gei(Th2);(?)(for ertain hoies of i). This might be interpreted as a representation result stating thatevery geometry in Gei(Th1) is representable as a geometry of some Th2-model (and vie-versa).Theorems of style (?) above an be read of from Fig.84 (p.192).Intuitively, from a relativity theoreti point of view these results (of form (?)) an be usedthe following way. Consider ertain kinds of thought-experiments the harateristi featureof whih is that they an be formulated in the language of GiM. Then a result of the type(?) above an be interpreted by saying that the relativity theories Th1 and Th2 annot bedistinguished by thought-experiments of \type Gi". A result of this kind might be of intereste.g. when Th1 is Reihenbahian version of relativity like Reih(Basax) and Th2 is somethingmore \lassial" like Basax, f. e.g. Theorems 6.6.107{6.6.110 in AMN [18℄.In AMN [18, x6.6.10℄ we de�ne progressively weaker reduts G0M{G5M of our relativistigeometry GM (inluding the Goldblatt-Tarski geometry GTM as one of the \levels"). Thephysial motivation for looking at suh reduts is given at the beginning of x4.5.4 on p.325.The main idea is that at di�erent times one may want to onentrate at di�erent aspets ofthe world, and later one might want to ompare the results and/or experienes so obtained.Conrete works on physis are listed in the prefae of Shutz [231℄ whih indeed onentrateon di�erent aspets of the world e.g. on ?r, or on, �, or g. Some relatively signi�ant physialonlusions (of the investigation of G0M; : : : ;GiM) are summarized on p.1147 at the end of item(2) of x6.7.1 in AMN [18℄. After this, in AMN [18℄, we ask ourselves whether M is reoverablefrom GiM, and for whih hoies of i and of Th1;Th2 is (*) above true.The issue presented above is elaborated in detail (in the form of theorems, de�nitions et)in AMN [18, x6.6.10℄. Further, the related issue of haraterizing the kinds of geometries weobtain by restriting GM to hyperplanes is investigated in AMN [18, x6.6.11℄. For lak of spaewe omit these results.



342 4.6 INTERDEFINABILITY IN RELATIVISTIC GEOMETRY4.6 Interde�nability questions;on the hoie of our geometrial voabulary (or languageL;LT ; : : : ; g; T )Our GM has a large number of omponents. As we have indiated in the introdution (x4.1),in AMN [18, x6.7℄ the present author explored how GM an be streamlined so that it willonsist only of a few omponents and eah remaining omponent will either be de�nable interms of these or turn out to be superuous. Our riteria here are that (i) the theory ofthe streamlined geometry be simple and perspiuous and (ii) the streamlined geometry be afamiliar mathematial struture.695 In other words: In [18, x6.7℄ we investigate how the variousingredients (i.e. non-logial symbols) of our geometries in Ge(Th) are de�nable from eah other.Among other things, this amounts to asking ourselves whether one or another ingredient issuperuous (in presene of the others). Below we present a sample of these results of thepresent author.Convention. For brevity, we will refer to AMN [18, x6.7℄ simply as x6.7. This will ause nomisunderstanding sine the present work has no x6.7.In x6.7 we onentrate on two basi versions of geometry assoiated with M, these areGM and G0M = \the g; T -free redut of GM" de�ned in Def.4.5.53 (p.326). The reason whyG0M an ompete with GM as the right geometry assoiated with M is that (i) in G0M wean de�ne a topology T 0 or T 00 as shown in Def.4.2.30 and on pp.175-179. By Thm.4.2.37,T and T 0; T 00 oinide under some reasonable assumptions, hene we do not lose muh byomitting T from G0M. Further, by Prop.4.2.35, T 0 is as nie as we an wish, under very mild696assumptions, hene we lose pratially nothing by omitting T from G0M. The justi�ation foromitting g from G0M is slightly weaker, namely, it goes by saying that we an use eq in plae ofg for measuring relativisti distanes between events. We prove in x6.7 that what we lose byforgetting g is information about what the units of measurement were in M. We prove therethat this information is really lost, e.g. GM is not de�nable from G0M even if we assume ourstrongest onditions (like BaCo et) on M.Among other things, we prove in x6.7 that, for all n, there is M j= Flxbasax +Ax(diswind) suh that Bw is not de�nable from the hMn;Col;?; eqi redut of GM. More-over, Bw is not de�nable from the Bw-free redut of GM. As a ontrast, Bw is �rst-orderde�nable from hMn;Coli under assuming M j= Newbasax + Ax(diswind) and n > 2. A-tually, Bw is de�nable from hMn;Coli i� � is de�nable in FM, under some extremely mildonditions on M. These results are among Thm.s 6.7.4, 6.7.8, 6.7.10, 6.7.13.Then, beginning with x6.7.2 we prove that G0M is de�nitionally equivalent to some of itsvery \slim" and streamlined reduts, under some onditions. One of these is the famous\ausality" redut hMn;�i, f. e.g. Thm.6.7.20 therein. Further suh reduts are hMn;ColPhiand hMn;ColT i, under extremely mild assumptions697 (here we onsider the �-free redut ofG0M). Cf. Thm.s 6.7.30-6.7.32. The above is only a small sample from the \streamlineability"results on G0M in x6.7. There we prove analogous results for GM too, where hMn;F1; gi isone of the various reduts of GM from whih GM is reoverable (de�nable), f. e.g. AMN [18,Thm.6.7.39 (p.1167)℄.695These two riteria were kept in mind by Tarski and his followers while building up algebrai logi. Cf.xA.3.696Bax� +Ax(p )697Bax� + some of our auxiliary axioms like Ax(p ).



4.6 INTERDEFINABILITY IN RELATIVISTIC GEOMETRY 343Motivated by the last result, next we briey disuss uses of eq; g and their visualizations.698On irles or spheres (and drawing them)We note that having eq around is nie beause it enables us to speak about irles orspheres.699 We note that for n > 2 in Basax + Ax(Triv t)� in terms of eq a sphere lookslike as in Figure 123 when interseted with Plane(�t; �x). So far we talked about irles basedon eq. Let us all them eq-irles. Similarly we an onsider irles based on g. Let usall these seond kind of irles g-irles.700 We use the expression \irles" in 2-dimensionalmodels and \spheres" in n > 2 dimensional ones. We note that the set of neighborhoodsT0 :def= fS(e; ") : e 2 Mn; " 2 +F g de�ned on p.146 oinides with the set of g-irles (in anyG 2 Ge(;)).(i) A g-irle in Basax(2) +Ax(!)℄ looks like as in Figure 123 (where the lines of our sheetof paper represent the lines in GM).

Figure 123: A g-irle in Basax+Ax(!)℄. An eq-irle in Basax may look like this. Cf. alsoFig.29 on p.51.(ii) However, a g-irle in Basax(2) may look like as any one of those in Figure 124.(iii) A g-irle in Bax(2) may even look like as in Figure 125.(iv) If n > 2, a g-sphere as well as an eq-sphere in Bax� +Ax(eqspae) +Ax(eqtime)+Ax(Triv t)� may look like as in Figure 126. We note that the hyperboloid part isneessary, and the horizontal part is an (almost) arbitrary surfae. Under these axiomsthe sides of the sphere always form a hyperboloid, while the top may be an arbitrarilyompliated surfae. The bottom surfae is the reetion of the top one w.r.t. the origin.This g-sphere is typial of Bax� + \auxiliaries". If we throw Ax(eqtime) away then698We just stated that GM is reoverable from g, under some assumptions on M. Hene if we learn intuitiveways of drawing g, then we also learn how to draw GM hene by the earlier duality theory, to draw M itself.699For ompleteness we note that irles were already touhed upon in Chapter 2 (f. p.52).700By a g-sphere we understand a maximal set of suh points of Mn whose g-distane is the same (onstant)from a given point. Similarly for g-irles and for eq in plae of g.
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Figure 124: A g-irle in Basax may look like any of these. No one of these an be an eq-irleof Basax, f. also Fig.29 on p.51.

Figure 125: A g-irle in Bax may even look like this.the top and bottom surfaes of the g-sphere may be replaed by louds of points. If wethrow Ax(Triv t)� away then the sides of the g-sphere may beome \gapy".A possible way of visualizing a relativisti geometry say GM (or equivalently the model M)is to draw a g-sphere or g-irle as in Figures 123{126. More preisely if we do not assumeany \symmetry" property on M then this piture will represent the model or geometry fromthe point of view of a ertain observer. However assuming the axioms listed in item (iv)together with Ax("") ensure that suh a drawing ontains information about the world-viewsof all other observers too, hene about the whole model M (or geometry), assuming Ax~ andAx(ext) of ourse. Cf. Figure 29 on p.51 for more information in this diretion.Finally, we turn to onnetions with works of Busemann, e.g. Busemann [55℄, where Buse-mann shows how to modify (atually, loalize) strutures like our GM to obtain models forgeneral relativity. So, in a sense, what omes below shows expliit onnetions with the stru-tures GM studied in the present setion and general relativity. At the same time, what omesbelow is an example of the streamlinings701 of GM we elaborated in x6.7.701\streamlining" means �nding a streamlined redut of GM de�nitionally equivalent to the original GM.
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Figure 126: A g-sphere or an eq-sphere in Bax�(3) + Ax(eqspae) + Ax(eqtime) +Ax(Triv t)�.



346 4.6 INTERDEFINABILITY4.6.1 The streamlined, partial metri g�Reall that the Reihenbahian relativisti geometry702 GRM = hMn; : : : ; gR; T Ri assoiatedwith M is de�ned in item (VI) of Def.4.2.3 on p.147 and is motivated by x4.5 of AMN [18℄.GeR(Th) is the lass of Reihenbahian relativisti geometries assoiated with Th, i.e.GeR(Th) :def= IfGRM : M 2 Mod(Th) g:703De�nition 4.6.1 Assume G is a relativisti (or a Reihenbahian relativisti) geometry.(i) The reexive hull � := � [ Id of � is de�ned as follows:a � b def() [ a � b or a = b ℄; a; b 2 Mn:(ii) The time-like-metri704 g� is de�ned to be g � (�), i.e.g� def= f ha; b; �i 2 Mn�Mn� F : a � b and g(a; b) = � g:705(iii) hMn;F1; g�i is alled the time-like-metri redut of G. For \time-like-metri redut" wewill also use the expressions \time-like-metri geometry", \time-like-metri struture",and \time-like-metri relativisti geometry". �We will see that under some assumptions on M, g� satis�es ertain very nie and familiarlooking axioms, e.g. is more \streamlined" than g is, from the mathematial point of view, f.p.347. Therefore we will often refer to hMn;F1; g�i as the streamlined partial metri redutof GM. Beginning with p.347 we will see that in many regards hMn;F1; g�i is the moststreamlined redut of GM and at the same time it seems to be rather suitable (to serve as astepping-stone) for generalizations in the diretion of general relativity.The next theorem says that the Reihenbahian geometry GRM is de�nable from its stream-lined, time-like-metri redut hMn;F1; g�i, under mild assumptions on M. The seond theo-rem (Thm.4.6.3) says the same for the full geometry GM, under some stronger onditions onM.THEOREM 4.6.2(i) GeR(Th) is de�nable from its streamlined, simple redut hMn;F1; g�i more preisely fromits redut of language hMn;F1; g�i, assuming n > 2 and Th j= Bax�� + Ax(TwP)+Ax(p ) +Ax(diswind).702Reihenbahian relativisti geometry is a short name for Reihenbahian version of the observer-independent geometry GM.703We note that GeR(Th) oinides with Ge5(Th), where Ge5(Th) was de�ned in AMN [18, p.1125℄.704\Time-like-metri" is the same as \streamlined partial metri".705I.e. g�(a; b) = g(a; b) if a � b else is unde�ned.



4.6.1 STREAMLINED RELATIVISTIC GEOMETRY 347(ii) Statement (i) above remains true if the assumption Ax(TwP) is replaed by any one ofR(Ax syt0) +Ax(Triv), Bax+Ax(syt0).(iii) Statements (i) and (ii) above remain true if we omit the assumption n > 2 and assumeinstead Ax(""0) as a substitute.Idea of proof:Case of (i): Assume the assumptions. Then Th j= Ax(eqtime) by Prop.6.8.25 on p.1201in AMN [18℄ and there are no FTL observers by Thm.3.2.13 on p.118. By these (and by theassumptions, of ourse), one an hek that the following de�nitions work.ColT (a; b; ) def() �g+(a; b) = g+(a; ) + g+(; b) _g+(a; ) = g+(a; b) + g+(b; ) _g+(b; ) = g+(b; a) + g+(a; )�; whereg+(a; b) = � def() g�(a; b) = � _ g�(b; a) = �:Bw is de�nable from ColT by the proof of AMN [18, Thm.6.7.1 (p.1137)℄ and Fig.344 onp.1161.706 a �T b def() (9 2 Mn)ColT (a; b; ):a �Ph b def() a = b _ �a 6�T b ^ (9 2 Mn)[ 6= b ^  � b ^(8d 2 Mn)(Bw(b; d; ) ! a �T d)℄�:ColPh(a; b; ) def() a �Ph b �Ph  �Ph a:a � b def() a 6= b ^ (9� 2 F) g�(a; b; �):gR(a; b; �) def() g�(a; b; �) _ g�(b; a; �) _ (a �Ph b ^ � = 0):T R is de�ned by gR.Case of (ii): Item (ii) follows by item (i), and by AMN [18, Thm.4.7.15 (p.622), Thm.4.2.9(p.461)℄.Case of (iii): Item (iii) follows by the proof of item (i) and Prop.4.2.31 on p.177.THEOREM 4.6.3 Ge(Th) is de�nable from hMn;F1; g�i i.e. from its redut of languagehMn;F1; g�i, assuming n > 2 and Th j= Newbasax +Ax(!)℄℄ +Ax(p ) +Ax(diswind).Idea of proof: Assume the assumptions. By Thm.4.2.46 (p.191) and by Examples 4.2.54(p.201), the �-free reduts of members of Ge(Th) are disjoint unions of �-free reduts ofMinkowskian geometries. Using this fat together with Thm.4.6.2 and the theorems in x6.7.2one an omplete the proof.Axiomatis of g�Under some mild assumptions on M,707 the following simple axioms G1{G4 hold in thetime-like-metri redut hMn;F1; gi of GM.706To avoid misunderstandings we note that this is Bw for all lines and not only for e.g. LT or LT [ LPh.707e.g. Bax��;Ax(TwP);Ax(p );Ax(""0) are suÆient



348 4.6 INTERDEFINABILITYG1 The domain 4 := Dom(g�) is a reexive partial ordering.G2 g�(x; y) � 0 if it is de�ned.G3 g�(x; y) = 0 , x = y.G4 g�(x; y) + g�(y; z) � g�(x; z) if x 4 y 4 z.We de�ne the axiom system busg as follows.busg :def= G1 +G2 +G3 +G4:It is interesting to ompare busg with the usual708 axiomatizations of metri spaes (wefeel that busg is loser to the usual axiomatizations of metris709 than e.g. the axioms whihould desribe g).The above axiomatization busg is not unrelated to the one given in Busemann [55, p.7℄.Unlike Busemann, however, we regard the topology on hMn;F1; g�i to be de�ned from thepartial metri g� (or from �) in the style of either Def.4.2.30(ii) (p.175) or of Def.4.2.3(VI)(p.148), i.e. in the style of our de�ning the Reihenbahian topology T R from the Reihen-bahian partial metri gR.710 I.e. for e 2 Mn and " 2 +F we letS�(e; ") :def= f e1 2 Mn : 0 < g�(e; e1) < " g:Now, our topology T � is the one generated by the subbasefS�(e; ") : e 2 Mn; " 2 +F g:When the topology T � is present, we add to busg the extra axiomG5 hMn; T �i is a Hausdor� (i.e. T2) spae711 and g� : Mn�Mn o�! F0 is ontinuous.It is shown in Busemann [55℄ that the topologial struturehMn;F1; g�; T �ihas many desirable properties from the point of view of mathematial elegane, and at thesame time admits a relatively natural generalization in the diretion of general relativity theory(f. e.g. Busemann [55, p.7, axioms T1{T4℄).The generalization in the \loal" diretion of busg tailored for general relativity theorystates only that �rst we are given a Hausdor� topology T � and then for any point e 2 Mnthere is a neighborhood Ue of e suh that a partial ordering 4e and a partial funtion g�e arede�ned on Ue. Then the axioms of busg are stated only for the little strutures hUe;F1; 4e; g�e i,e 2 Mn.712 In addition to these axioms one has to add some onsisteny axioms for the ase708non-relativisti709both in omplexity and in spirit710The di�erene between gR and g� seems to be minor but is not negligible. Else: We note that instead ofg� we ould use � for de�ning the topology in the style of Fig.81, p.176. Cf. Def.4.2.30 (ii), p.175.711For Hausdor� spaes f. footnote 1009 on p.1018 in AMN [18℄.712It would be suÆient to write hUe;F1; g�e i, e 2 Mn for these strutures, sine 4e is obviously de�nablefrom g�e .



4.6.1 STREAMLINED RELATIVISTIC GEOMETRY 349when Ue and Ue0 overlap. These onsisteny axioms are rather simple and natural, we donot reall them, they an be found in Busemann [55, p.7℄ axiom T4. The so obtained loalversion of busg is ompletely onsistent with (and is appliable to) general relativity theory, f.Busemann [55℄ for more information on this. Summing it up, the general relativisti versionsof the time-like-metri strutures hMn;F1; g�; T �i look like hMn;F1; T �;4e; g�e ie2Mn (f. thede�nition of nF1 on p.16 for the h: : : ; g�e ie2Mn notation). Further, the lass of these struturesis axiomatized by the list of axioms just quoted from Busemann [55, p.7℄ (ending with T4).In onnetion with the general relativisti (i.e. loalised) strutures hMn;F1; T �;4e; g�e ie2Mn we note that although we inluded the topology T � into the struture, it is de-�nable from the rest GG := hMn;F1; 4e; g�e ie2Mn. Therefore one an de�ne GG without T �and then later one an de�ne T � from GG. Namely, assume e 2 Mn and " 2 +F. ThenS�(e; ") :def= f e1 2 Mn : 0 < g�e (e; e1) < " gis an open set, and it is an element of the subbase of T � we want to de�ne. Now, we postulatethat f S�(e; ") : e 2 Mn; " 2 +F gis a subbase of our topology T �. We note this only as a possibility; we do not explore thegeneral relativisti time-like-metri strutures GG, in this setion any further.Remark 4.6.4 In the language of time-like-metri strutures hMn;F1; g�i we ould de�ne akind of ollinearity relation oll� the following way and ould enrih the axiom-system busgby adding natural onditions on this ollinearity: First we de�neBw�(a; b; ) def() g�(a; ) = g�(a; b) + g�(b; ):Then we de�ne oll� from Bw� basially the same way as oll was de�ned from Bw on p.159.�It would be interesting to know how many further axioms we need to add to busg in orderto ensure that the partial metri struture hMn;F0; g�i omes from a model of one of ourrelativity theories Mod(Th). Looking into this might be a nie future researh task.



350 4.7 GEODESICS4.7 GeodesisIn the present setion (taken together with its ounterpart, x6.8, in AMN [18℄) we disussgeodesis whih, among other things, will help us to understand the onnetions between gand L. In later work, in moving in the diretion of general relativity, geodesis will playan important role (they do so already in the ase of aelerated observers even in \at"spae-time).713 In moving towards general relativity geodesis will replae L as possible life-lines of inertial bodies. (They will play other important roles, e.g. they an be used forreognizing urvature of spae-time). At the same time, studying geodesis may be onsideredas a ontinuation of x4.6 disussing reoverability of various parts (or reduts) of our relativistigeometries from eah other. Geodesis an be regarded as an attempt to reover the lines ofour geometry, basially, from g, in a style di�erent from the Alexandrov-Zeeman style proofs inAMN [18, x6.7.2℄.714 For ompleteness we note that by Corollary 6.7.15 in AMN [18, p.1145℄,the present author proved that L and ? are �rst-order logi de�nable from eq as well as from gunder some reasonable assumptions on M (e.g. (Basax+Ax(Triv)+Ax(p )+Ax(eqtime))is suÆient for this).Though we will not prove this, by using geodesis one an reover from g;�T ; �Ph;�S715 the potential life-lines of inertial bodies even when the axiom Det 716 is not assumed(but ertain onditions are still needed, of ourse). Roughly speaking, in generalizations ofour geometries in the diretion of general relativity (f. e.g. the geometries GG on p.349 inx4.6.1), geodesis will remain suitable for representing life-lines of inertial bodies. Further,time-like geodesis will be the possible life-lines of inertial observers, photon-like geodesis willbe the life-lines of photons, while spae-like geodesis an be regarded as potential life-linesof hypothetial FTL partiles alled tahyons in the literature (assuming suh things exist);all this is understood under suÆient onditions. Already in the world-view of an aeleratedobserver717, say m, it will be onvenient to say that for m the life-lines of inertial bodiesare geodesis [determined by g;F0;�T ;�Ph℄ beause in the world-view wm : nF �! Mn ofm the Eulidean lines of nF do not neessarily orrespond to inertial bodies (if m is reallyaelerated).718To make a long story short, the present setion on geodesis intends to prepare the road713Cf. e.g. [24℄, [19℄, [26℄. For ompleteness we note that sometimes geodesis are used in speial relativity,too, f. e.g. Friedman [91, pp.125-126, 128�℄.714To be able to use g, we will need its odomain F0, too. To make our life easier, we will also use �T ; �Ph; �S , but with suÆient (oding) e�ort these data ould be reovered from g, where g is understood togetherwith its domain Mn and odomain F0. We will not disuss here how, under suÆient onditions �T , �Phare reoverable from hMn;F0; gi. Cf. Remark 4.2.41 on p.183. Cf. also the �rst 15 lines of (III) on p.1166 ofAMN [18℄. On p.1150 of AMN [18℄ we used F1 as the odomain of g. The reason for the di�erene is thathere we think of g slightly di�erently than we did there. So this is not an inonsisteny, but simply a hangein perspetive. The hoie of perspetive depends on for what purposes we want to use g. (One we identify itwith hMn;F0; gi and one with hMn;F1; gi.) For ompleteness we note that �T ;�Ph;�S are de�nable fromg (more preisely, from hMn;F0; gi) if n > 2 and some onditions hold, f. items 6.7.38-6.7.39 (p.1167) inAMN [18℄.715and F0, Mn of ourse716Cf. x4.4, p.275 for Det (Det says that \points determine lines").717Cf. e.g. [26℄ and the relevant parts of this work.718A more important point will be that in general relativity the life-lines of inertial bodies do not satisfy theaxiom Det, i.e. di�erent geodesis an meet in several points. This is true in the approximation of generalrelativity built on \speial relativity"+\aelerated observers"+\Newtonian approximations" in Rindler [222,x7.7, e.g. item (7.28) on p.124℄.



4.7 GEODESICS 351for generalizations (in the diretion of general relativity). For further motivation we refer toFigure 134 (p.365), Figure 83 (p.187) and Figure 99 (p.277).Remark 4.7.1 We note that we ould have based our theory of geodesis entirely on thestreamlined, time-like metri redut hMn;F1; g�i of GM. This would have advantages (i) fromthe point of view of aesthetis and (ii) from the point of view of generalizability towards generalrelativity (as the latter is illustrated in Busemann [55℄). To save spae we use below a \bigger"redut. We leave it as a future researh task to elaborate a version of the present setion (x4.7\Geodesis") based entirely on the streamlined, time-like metri redut hMn;F1; g�i. �We base our de�nition of geodesis in GM (Def.4.7.2) below on the de�nition of geodesisin e.g. Busemann [54℄, [55℄, f. also Busemann-Beem [56℄. Part of the relevant mathematialliterature uses the same kind of de�nition while another part uses a de�nition (of geodesis)whih goes e.g. via using derivatives719. (Within this, they distinguish \aÆne geodesis" and\metri geodesis" whih distintion is niely illuminated e.g. in Friedman [91, pp.349,357℄.)720Busemann's version is simpler (as far as we have a metri around). One might think that a largepart of the literature uses the derivatives oriented version beause that is needed for generalrelativity. However, this is not the ase sine Busemann [55℄ shows that general relativity anbe based on his simple de�nitions.721 So, here we stik with Busemann's simple de�nition(espeially beause in the introdution to AMN [18℄ we adopted a poliy to keep things assimple as possible, postponing the introdution of more ompliated ideas to the point wherethey beome useful/needed). A further motivation for adopting Busemann's de�nition ofgeodesis is that Busemann [54℄ is an ambitious mathematis (modern geometry) book whosemain subjet matter is the study of geodesis.The de�nition of geodesis (Def.4.7.2) below is not intended to be a �rst-order logi de�ni-tion over (a redut of) the struture G. This auses no harm to our �rst-order logi orientedphilosophy (for building up physial theories). We will return to disussing this briey inRemark 4.7.3 below the de�nition.De�nition 4.7.2 (Geodesis) Assume G is a relativisti geometry.1. Throughout F0 = hF; 0;+;�i is the ordered group redut of the sort F1 of G.2. The pseudo-metri redut M of G is de�ned as follows.M :def= hMn;F0; g;�T ;�Ph;�Si:In the de�nition of geodesis of the geometry G we will use only its pseudo-metri redut.If we wanted to onentrate on the time-like geodesis, then it would be suÆient to usethe streamlined, time-like-metri redut hMn;F1; g�i disussed in x4.6.1 (p.346).719Cf. e.g. d'Inverno [73, pp.75, 83, 99℄ or Misner-Thorne-Wheeler [192℄, or Hawking-Ellis [116℄, or Hiks [124,pp.19,27℄.720In Friedman [91, p,357℄ it is explained that the above \metri-aÆne" distintion behaves di�erently innon-relativisti geometries and in relativisti ones (this might perhaps be related to our Corollary 4.7.13).721It seems a more likely explanation that the derivatives-oriented version is suitable for disussing the metrigeodesi aÆne geodesi distintion and that it an be used on a level of abstration where we throw g and eqaway (i.e. we don't have a metri) e.g. in di�erential topologial approahes to relativity.



352 4.7 GEODESICS3. Let ` � Mn. Then ` is alled a photon-like geodesi iff(8a; b 2 `) a �Ph b:Any photon-like geodesi is also alled a photon-like quasi geodesi, and a photon-likeArhimedean geodesi.4. By an interval of F0 we mean an open interval(x; y) := f z 2 F : x < z < y g ;where x; y 2 F [ f�1;1g, and x < y.7225. Let ` � Mn. By a parameterization of ` we understand a funtion h mapping an intervalof F0 onto `, suh that h is loally distane preserving, i.e. for any z 2 Dom(h) there is" 2 +F suh that, letting D := (z � "; z + "), (�) below holds.723h � D is distane preserving, i.e.(8x; y 2 D) g(h(x); h(y)) = jx� yj.(�)If ` admits suh a parametrization, then we all it a parametrizable urve.6. Let ` � Mn. ` is alled a time-like quasi geodesi iff there is a parameterization h of `suh that for every z 2 Dom(h) there is " 2 +F suh that, for D := (z � "; z + "), (��)below holds. (8x; y 2 D) h(x) �T h(y):(��)7. A time-like quasi geodesi ` is alled a short time-like geodesi iff there is a parameteri-zation h of ` suh that, for D := Dom(h), (�) and (��) above hold.8. Let `; h be as in item 5 above. Intuitively, ` is a spae-like quasi geodesi if it is a union of\intervals" h[D℄ eah one of whih onsists of events 1/2-simultaneous for some observer,f. Figure 127. Formally:` is alled a spae-like quasi geodesi i� there is a parameterization h of ` suh that forany z 2 Dom(h) there is " 2 +F suh that, for D := (z � "; z + "), (� � �) below holds.Intuitively, the seond part of (� � �) says that there is an observer who thinks that allthe events in h[D℄ are 1/2-simultaneous, f. Figure 127.(8x; y 2 D) h(x) �S h(y) andthere are a short time-like geodesi `0 and a 2 `0 suhthat (8x 2 D)(9; d 2 `0)[ 6= d ^ g(a; ) = g(a; d) ^  �Ph h(x) �Ph d ℄,724(� � �)see Figure 127.722In this setion �1 6=1 deviating from our onvention on p.534 of AMN [18℄. As usual, �1 < x <1,for any x 2 F.723Note that suh a parameterization h : \interval of F0" �! ` is always ontinuous w.r.t. the naturaltopology on F0 and the topology indued by g on `. I.e. ondition (�) (postulated for every D as above)implies this kind of ontinuity. This ontinuity is slightly weaker than ontinuity w.r.t. the topology T of G;the latter amounts to viewing h as h : \interval of F0" �! Mn.724We note for \general relativitists" that if we make the above ondition loal by requiring `0 \D 6= ; thenthe ondition will get only stronger whih means that our theorems will get weaker, i.e. omitting this loalityondition makes our theorems stronger.
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ad h(x) `
`0
 h[D℄
Figure 127: Illustration for (� � �).9. Let ` � Mn. ` is alled a quasi geodesi iff it is a time-like or a photon-like or a spae-likequasi geodesi.10. A quasi geodesi ` is alled a time-like geodesi iff there is a parameterization h of ` suhthat for every x; y 2 Dom(h) with x < y there is " 2 +F suh that for any z 2 (x; y),letting D := (z � "; z + "), (�) and (��) above hold.11. A quasi geodesi ` is alled a spae-like geodesi iff there is a parameterization h of ` suhthat for every x; y 2 Dom(h) with x < y there is " 2 +F suh that for any z 2 (x; y),letting D := (z � "; z + "), (�) and (� � �) above hold.12. A quasi geodesi ` is alled a geodesi iff it is a time-like or a photon-like or a spae-likegeodesi.13. A geodesi ` is alled a time-like Arhimedean geodesi iff there is a parameterization hof ` suh that for every x; y 2 Dom(h) with x < y there is k 2 ! and intervals I0; : : : ; Ikof F0 suh that(x; y) � I0 [ : : : [ Ik ^ (8i 2 k) Ii \ Ii+1 6= ; ^(8i 2 (k + 1)) [ (�) and (��) above hold for D := Ii ℄.14. A geodesi ` is alled a spae-like Arhimedean geodesi iff there is a parameterization hof ` suh that for every x; y 2 Dom(h) with x < y there is k 2 ! and intervals I0; : : : ; Ikof F0 suh that(x; y) � I0 [ : : : [ Ik ^ (8i 2 k) Ii \ Ii+1 6= ; ^(8i 2 (k + 1)) [ (�) and (� � �) above hold for D := Ii ℄.15. A geodesi ` is alled an Arhimedean geodesi iff it is a time-like or a photon-like or aspae-like Arhimedean geodesi.16. A spae-like geodesi ` is alled a short spae-like geodesi iff there is a parameterizationh of ` suh that, for D := Dom(h), (�) and (� � �) above hold.17. A geodesi ` is alled a short geodesi iff it is a photon-like geodesi or it is a time-likeshort geodesi or it is a spae-like short geodesi.18. A geodesi ` is alled a strong geodesi iff it is either photon-like or there is a parameter-ization h of ` whih is ontinuous w.r.t. the natural topology on F0 and the relativisti



354 4.7 GEODESICStopology T of G,725 and h satis�es the onditions in the de�nition of geodesis (initems 10{12 above).726 We de�ne the strong versions of our speial kinds of geodesisde�ned in items 6{17 ompletely analogously, i.e. by requiring that the parameterizationh ouring in their de�nitions is ontinuous w.r.t. the relativisti topology T of G.19. A geodesi ` is alled a maximal geodesi iff(8 geodesi `0)[`0 � ` ! `0 = `℄:The de�nition of \maximality" remains ompletely analogous for speial kinds ofgeodesis in plae of just geodesis. (E.g. a maximal strong spae-like quasi geodesiis a strong spae-like quasi geodesi whih is maximal among the strong spae-like quasigeodesis.)20. Let e 2 Mn and " 2 +F. Let us reall that the "-neighborhood of e is de�ned asS(e; ") := f e1 2 Mn : g(e; e1) < " g :72721. Let ` � Mn. Then ` is alled a weak geodesi iff(8e 2 `)(9" 2 +F) [ g � (` \ S(e; ")) is additive ℄;where additivity means that, letting D := ` \ S(e; "),(8a; b 2 D) (g(a; b) is de�ned) ^(8a; b;  2 D) [ g(a; b); g(b; ) � g(a; ) ! g(a; ) = g(a; b) + g(b; ) ℄.A quasi geodesi whih is also a weak geodesi will be alled loally additive.72822. Let ` � Mn. ` is alled additive iff g � ` is additive.23. A weak geodesi ` is alled a ontinuous weak geodesi iff there is a ontinuous funtionh mapping an interval of F0 onto `. �We will see in Thm.4.7.12 (p.361) that the seond part of ondition (� � �) on spae-likequasi geodesis and geodesis in the above de�nition is needed, f. Figure 133 (p.362).725i.e. h is ontinuous from an interval of F0 into the topology hMn; T i726Assume ` is a strong geodesi with parameterization h. Then h is a \loal" homeomorphism in the sensethat (8x 2 Dom(h))(9" 2 +F) [h � (x� "; x+ ") is a homeomorphism w.r.t. the relativisti topology T of G ℄.Cf. the notion of a parameterized urve in Hiks [124, p.10℄ and urves in Kurusa [150℄. In passing we notethat in general, ontinuity w.r.t. hMn; T i is stronger than ontinuity w.r.t. the topology on ` indued by g asdisussed in footnote 723 (p.352). Hene, in general, there are fewer strong geodesis than geodesis.727In the ase of Minkowskian geometry our notation S(e; ") might be ambiguous sine it both denotes therelativisti \"-sphere" and the Eulidean \"-sphere". Throughout the present setion by S(e; ") we always meanthe relativisti sphere.728Therefore being loally additive is a property of geodesis and in some situations there may be fewer loallyadditive geodesis than geodesis.



4.7 GEODESICS 355Remark 4.7.3 (Connetions with �rst-order logi de�nability) We also note that ourde�nition of geodesis over hMn;F0; g; : : : ;�Si is not a �rst-order logi de�nition in the senseof x4.3. To save spae, here we do not address the question of how and under what prie729we ould turn the de�nition of geodesis into a �rst-order logi one. We only note that ifwe inlude the geodesis together with their parameterization into G obtaining a struturehG; geodesis; pameterizations : : :i as extra sorts730, then things an be arranged so that thelass of so expanded strutures does admit a �rst-order logi axiomatization. We note that bythe above we do not mean that the G-redut of hG; geodesis; : : :i would determine the rest ofthe struture (e.g. the sort geodesis) uniquely. We only mean to say that in the expandedstruture hG; geodesis; : : :i the geodesis would behave well enough for our working with themin aordane with our intuition and for basing our relativity theoreti ideas on them. (This isvery muh like the di�erene between standard models of higher-order logi and Henkin-stylenonstandard models of that logi. Our expanded strutures hG; geodesis; : : :i are very muhlike Henkin-style nonstandard models.)In passing we note that if we assume enough axioms of speial relativity on M, thengeodesis beome �rst-order logi de�nable over hMn; g;�T ;�Ph;�Si, but the greatest valueof geodesis is in their use in general relativity where these axioms are not assumed. Henewe do not disuss this diretion here. �In passing we note that for the purposes of aelerated observers and general relativity (toome in a later work) \quasi geodesi", \short geodesi" and \geodesi" are \loal" oneptswhile \maximal geodesi" seems to be more on the \global" side. Further, in general relativitythe emphasis is on time-like and photon-like geodesis, f. e.g. Busemann [54, 55℄ or Ehlers-Pirani-Shild [78℄.In the present setion we will onentrate on quasi geodesis, geodesis, Arhimedeangeodesis, and the maximal versions of these geodesis. By our de�nition,` is an Arhimedean geodesi ) ` is a geodesi ) ` is a quasi geodesi:The analogous statements hold, respetively, for time-like, spae-like, and photon-like versionsof Arhimedean geodesis, geodesis and quasi geodesis, e.g. (` is an Arhimedean time-likegeodesi) ) (` is a time-like geodesi) ) (` is a time-like quasi geodesi). In some of theases these impliations hold in the other diretion, too. In onnetion with this we inludePropositions 4.7.4 and 4.7.6 below.PROPOSITION 4.7.4 Assume M = hMn;F0; : : :i is the pseudo-metri redut of a rela-tivisti geometry. Assume that F0 is isomorphi with the ordered additive group redut of theordered �eld R of reals. Let ` � Mn. Then` is an Arhimedean geodesi , ` is a geodesi , ` is a quasi geodesi:The analogous statements hold, respetively, for spae-like, time-like and photon-like versionsof Arhimedean geodesis, geodesis and quasi geodesis.729we mean under what extra onditions and what modi�ation of the de�nition of GM730Atually, it is enough to inlude parameterizations of geodesis as an extra sort Geod together with an extrainter-sort operation valueof : Geod�F ! Mn. Intuitively, for h 2 Geod, e = valueof(h; x) means that e = h(x),i.e. e is the value of parameterization h at value x 2 F. Atually, valueof is a partial funtion only sine we donot want to require Dom(h) = F. The details are analogous with the style of Nonstandard Dynami Logi, f.e.g. Sain [227℄, Andr�eka, Goranko et al. [12℄.



356 4.7 GEODESICSWe omit the easy proof.For stating our next proposition we need the following de�nition.De�nition 4.7.5 An ordered group hG; 0;+;�i is said to be Arhimedean iff for any a; b 2 G(8i 2 !)ia < b ) a = 0:731 �We note that an ordered �eld F is Arhimedean iff its ordered additive group redut F0 isArhimedean in the sense of the above de�nition.PROPOSITION 4.7.6 Assume M = hMn;F0; : : :i is the pseudo-metri redut of a rela-tivisti geometry. Assume that F0 is Arhimedean. Let ` � Mn. Then` is an Arhimedean geodesi , ` is a geodesi:The analogous statements hold, respetively, for spae-like, time-like and photon-like versionsof Arhimedean geodesis and geodesis.We omit the easy proof.Let us onsider how the notion of geodesis helps us to reover the \truly geometri parts"LT ;LPh et. from g and �T ;�Ph.Let us reall that the geometry GM assoiated with a model M looks likeGM = hMn;F1;L; LT ;LPh;LS;2;�;�T ;�Ph;�S;Bw ;?r; eq; g; T i: 732Among other things, below we ompare lines (i.e. elements of L) with geodesis.733 Wehave time-like, photon-like and spae-like lines and the same applies to geodesis. This givesus, roughly, 4 kinds of omparisons, lines with geodesis in general, and then speial lines withspeial geodesis.Reall that we all the elements of L lines of GM. Above we de�ned the geodesis of GM,but they are not neessarily the same as lines of GM. We will elaborate this subjet in thefollowing disussion of the theorems whih will ome soon. We will see that, under someassumptions on Th, all elements of L turn out to be geodesis, i.e.L � (geodesis);in Ge(Th) of ourse (f. Prop.4.7.7).734 Under stronger assumptions, L oinides with the setof maximal geodesis, i.e. L = (maximal geodesis)(AMN [18, Cor.6.8.33, p.1204℄). Under somewhat milder assumptions, we will already haveLT = (maximal time-like geodesis)731Here ia is understood in the sense 3a = a+ a+ a.733We mean to ompare lines of G with geodesis of the same G.734As a ontrast, we will have no theorem saying the reverse of this, i.e. that under some assumptions on Th ,say, L � (maximal geodesis) without laiming equality, i.e. without laiming L = (maximal geodesis).



4.7 GEODESICS 357(AMN [18, Thm.6.8.24, p.1200 and Corollary 6.8.27, p.1202℄).LPh = (maximal photon-like geodesis);under some (reasonably mild) assumptions on Th (item (v) of Prop.4.7.7). The onditions inthe above quoted theorems are quite strong, hene we will address the issue whether they arereally needed. We will do this in the form of onjetures, open problems, et.(We will also see that the various kinds of geodesis (e.g. \maximal geodesis") introduedin Def.4.7.2 are needed for forming a lear piture of the subjet of this setion.)The following proposition says that lines (i.e. elements of L) are geodesis under ertainassumptions.PROPOSITION 4.7.7 Assume Bax��+Ax(eqm). Then the elements of L are geodesis.Further,(i) LT � (time-like Arhimedean geodesis); 735 andLT � (short time-like geodesis)LT � (maximal loally additive time-like geodesis):(ii) LPh � (photon-like geodesis) = (photon-like Arhimedean geodesis).(iii) LS � (spae-like Arhimedean geodesis):(iv) Assume Reih(Bax)� +Ax(diswind). ThenLPh = (maximal photon-like geodesis):For a proof and an essentially sharper formulation of this proposition we refer to AMN [18,4.7.7, 6.8.8℄. Here we reall only Figure 128 illustrating ideas for the proof.Remark 4.7.8 (Disussing some of the onditions of Prop.4.7.7)Item (iv) of Prop.4.7.7 does not generalize form Reih(Bax)� to Bax��. The idea of aproof is illustrated in the right-hand side of Figure 129. In the �gure ` is a maximal photon-likegeodesi. We note that in Reih(Bax) the right-hand side of Figure 129 is exluded by theharaterization theorem of Reih(Th)-models in AMN [18, x4.5℄. This is the theorem whihstates that every model of Reih(Th) an be obtained from some model of Th by \relativizing"with an arti�ial simultaneity (under some onditions on Th). �In onnetion with Proposition 4.7.7 above we ask the following.735Note that (Arhimedean geodesis) � (geodesis) and the same holds for time-like ones et. Therefore theonlusions of the present proposition remain true if the adjetive Arhimedean is omitted. Later we will notreturn to indiating the onsequenes of this observations expliitly.
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Figure 128: Illustration for the proof of Prop.4.7.7.
light-one

e`
` light-one

Newbasax Bax��Figure 129: Illustration for Remark 4.7.8. On the right-hand side ` is a maximal photon-likegeodesi. (Here ` is on the surfae of the light-one.) On the left-hand side, ` [ feg is aphoton-like geodesi.



4.7 GEODESICS 359QUESTION 4.7.9 Assume n > 2, G 2 Ge(Bax�� +Ax(p ) + Ax(eqtime)) and that F0is isomorphi with the ordered additive group redut of R. Is there a time-like geodesi ` suhthat ` has a non-injetive parameterization? �In onnetion with the above question we note that if we assume that F0 is non-Arhimedean (instead of F0 �= hR; 0;+;�i), then the answer is \yes", f. the proof of Theo-rem 4.7.11 (p.359), and Fig.130 (p.360).Intuitively, Question 4.7.9 is equivalent with the following question. Does there exist ageodesi time-travel, i.e. an the life-line of a time-traveler who meets his younger himself bea geodesi?Remark 4.7.10 In AMN [18, Thm.6.8.11℄ the present author proved that (i) in Minkowskiangeometries the maximal Arhimedean geodesis are exatly the lines, (ii) in Minkowskiangeometries over Arhimedean �elds the maximal geodesis are exatly the lines, and (iii) inthe Minkowskian geometry over the �eld R of reals the maximal quasi geodesis are exatlythe lines. This remains true for the LT ; LPh; LS ases, too (when these are treated separately).For the details we refer to AMN [18, Thm.6.8.11℄.Roughly, the just quoted theorem (Thm.6.8.11 of AMN [18℄) says that in Mink(n;F) thevarious geodesis behave as one would expet them to behave, assuming F is Eulidean. Amongother things, the following theorem says that the ondition that F is Eulidean annot beomitted from this theorem.THEOREM 4.7.11 Assume F is a non-Arhimedean and Eulidean ordered �eld. Then (i){(iv) below hold.(i) For any n � 2 in Mink(n;F)LT \ (maximal time-like geodesis) = ;; butLT � (maximal loally additive time-like geodesis); whileLT 6� (maximal loally additive time-like geodesis):(ii) For any n � 2 in Mink(n;F)LS \ (maximal spae-like geodesis) = ;;i.e. if ` 2 LS then ` is not a maximal spae-like geodesi.(iii) In Mink(2;F)LS � (maximal loally additive spae-like geodesis); whileLS 6� (maximal loally additive spae-like geodesis):(iv) As a ontrast with item (iii), for any n > 2 in Mink(n;F)LS \ (maximal loally additive spae-like geodesis) = ; andLS \ (maximal additive spae-like geodesis) = ;:
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Figure 130: ` 2 LT and ` [ `0 is a time-like geodesi.Outline of proof: Assume F is non-Arhimedean and Eulidean. Idea of proof forLT \ (maximal time-like geodesis) = ; in Mink(F)is depited in Figure 130. In the �gure ` 2 LT and ` [ `0 is a time-like geodesi. Hene, ` isnot a maximal time-like geodesi. By Prop.4.7.7(ii) on p.357 (and by Thm.4.2.45 on p.190),in Mink(F) LT � (maximal loally additive time-like geodesis):Idea for the proof ofLT 6� (maximal loally additive time-like geodesis) in Mink(F)is depited in Figure 131. In the �gure ` is a maximal loally additive time-like geodesi. Thisholds by the proof of item (ii) of Prop.4.7.7. Clearly, ` (in Fig.131) is not a time-like line. By
in�nitely small elements of �t in�nitely small elements of �x

�t
�x

`
`Figure 131: ` is a maximal loally additive time-like geodesi in the Minkowskian geometryover a non-Arhimedean F.these item (i) of our theorem is proved. Proofs for items (ii) and (iii) an be obtained by theproof of item (i). (The proofs of (ii) and (iii) are left to the reader.)



4.7 GEODESICS 361To prove item (iv) let ` 2 LS. Consider a Robb plane736 that ontains `. Let `0 beonstruted as in Figure 130 but suh that `0 is ontained in the Robb plane, see Figure 132.Then, in Figure 132, `[`0 is an additive spae-like geodesi, f. hint for the proof of Thm.4.7.12on p.362. Hene, ` is not a maximal loally additive spae-like geodesi and is not a maximaladditive spae-like geodesi.

in�nitely smallelements of F`
Robb plane

`0
Figure 132: ` [ `0 is an additive spae-like geodesi in the Minkowskian geometry over anon-Arhimedean F.

The following theorem says that the seond part of ondition (� � �) (on p.352) is neededin the de�nition of spae-like quasi geodesis, geodesis and Arhimedean geodesis. In otherwords, if we omit ondition (���) from the de�nition of geodesis, then they do not \work" inrelativisti geometries, e.g. in Minkowskian spae-times. Although they do work in Eulideangeometry and more generally in Riemannian geometries. This further implies that if we usethe de�nition of geodesis as given e.g. in the book \Geometry of Geodesis" (Busemann [54℄),then they do not work in relativisti geometries (n > 2), e.g. in Minkowskian geometry.737736f. e.g. Goldblatt [102℄ or p.1163 in AMN [18℄ for the notion of a Robb plane. If n > 3 then we antalk about Robb hyper-planes (f. p.804 in AMN [18℄) whih in Goldblatt [102℄ are alled Robb threefolds (ifn = 4). However, there still exist Robb planes, too, whih are (two-dimensional) and planes with the Robbproperty. In the above proof of Thm.4.7.12 it is important that we talk about Robb planes and not aboutRobb hyper-planes.737This entails nothing negative about Busemann [54℄, sine it does not deal with relativisti geometries.Caution is needed with the word \Minkowskian geometry", sine here (f. also Goldblatt [102℄, Shutz [231℄)we use it for ertain relativisti geometries while e.g. in Busemann [54, x17℄ it is used for other kinds of(non-relativisti) spaes.



362 4.7 GEODESICSTHEOREM 4.7.12 Assume n � 3. Then in the Minkowskian geometry Mink(n;R) there isa \urve" ` � nR suh that (8p; q 2 `) p �S q,(8e 2 `)(9" 2 +F) [ no three distint points of ` \ S(e; ") are ollinear ℄;and there is a homeomorphism h : R ��!� ` whih is di�erentiable in�nitely many times andis distane preserving in the sense that(8x; y 2 R) jx� yj = g�(h(x); h(y));see Figure 133. Moreover this funtion h is a homeomorphism w.r.t. (the usual topology onR and) any one of the following topologies on `: the topology indued by g�, the relativistitopology T� of Mink(R) and the Eulidean topology on nR. Atually these topologies oinideon `.

`
Robb plane

g(p,q)=g(p ,q )y y
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Figure 133: Condition (� � �) is needed in the de�nition of spae-like geodesis.On the proof: Hint: Assume n � 3. The Robb planes738 have the following \exoti"property in Mink(R) (in onnetion with the metri g� and geodesis). Let P be a Robbplane ontaining the �y axis. Then the relativisti distane g�(p; q) between points p; q 2 Poinides with the absolute value of the di�erene between the y-oordinates py and qy of pand q, respetively. Cf. Figure 133. Therefore the metri g� is additive on the whole Robbplane. Atually this idea works in many of our relativisti geometries, e.g. in the ase ofGe(Bax� +Ax(eqspae)+Ax(Triv t)� +Ax(p )) they do.738f. e.g. Goldblatt [102℄ or p.1163 in AMN [18℄ for the notion of a Robb plane.



4.7 GEODESICS 363COROLLARY 4.7.13 Assume n � 3 and onsider G def= Mink(n;R) as in Thm.4.7.12 above.Then(i) If we omit ondition (� � �) from the de�nition of geodesis, then there are geodesis in Gwhih are not straight lines. Further,(ii) there exist many Robb planes739 in G, and(iii) almost740 every urve in every Robb plane ounts as a geodesi if we omit ondition (���)from the de�nition of geodesis.Disussion of Thm.4.7.12 and Corollary 4.7.13. The ondition (� � �) is not presentin the usual de�nition of geodesis. Items 4.7.12, 4.7.13 say that this ondition is needed inrelativisti geometries if we want to disuss spae-like geodesis, too.The de�nition of usual geodesis is obtained from Def.4.7.2 by replaing all ourrenes ofondition (� � �) by (8x; y 2 D)x �S y.What we obtain this way is more or less the usual de�nition of geodesis (f. Busemann [54℄)adapted to the relativisti situation where we have �T ;�Ph;�S.741 Now, what items 4.7.12,4.7.13 say is that even in the most lassial, most standard form of speial relativity, i.e. inMinkowskian spae-time with n > 2, usual geodesis (as de�ned above) do not \work". (Theydo not behave as we wanted them to behave when de�ning them.)COROLLARY 4.7.14 Let n > 2 and onsider G def= Mink(n;R). Then there areusual geodesis ` in G whih are not straight lines, moreover ` an be hosen to be ontinu-ous and di�erentiable suh that (8p 2 `)(8" 2 +F)the "-neighborhood of p in ` is not straight.Moreover, this ` is an Arhimedean, short, usual geodesi, f. Def.4.7.2 items 14, 17. Further,it is a maximal geodesi, and a strong geodesi. Through any two distint spae-like separatedpoints of G there are ontinuum many suh usual geodesis.Proof. The proof goes by inspeting Figure 133 (and the proof of Thm.4.7.12) and by hekingall the items quoted from Def.4.7.2.COROLLARY 4.7.15 Let n > 2. A statement analogous to items 4.7.12-4.7.14 applies toour geometries in Ge(Bax� + ax(eqspae) +Ax(Triv t)� +Ax(p )).Proof. The proof goes by heking that already under the axioms Bax�+ : : :+Ax(p ) listedabove, the Robb plane exhibits the strange properties illustrated in Figure 133.Items 4.7.12-4.7.15 show that ondition (� � �) is really needed and is not easily replaedby something \more traditional". Further, they indiate that the (simplest) usual notion ofgeodesis742 does not work in relativisti situations for spae-like geodesis. This might be739eah photon line is ontained in a Robb plane whih is unique i� n = 3. So, if n > 3, then the Robb planein question is not unique.740Instead of de�ning preisely whih urves in the Robb plane we mean, we give only an intuitive desription:Let ` be a \ontinuous, di�erentiable" onneted urve in the Robb plane as illustrated in Figure 133. Assume(8p; q 2 `)p �S q. Assume further that ` is a homeomorphi image of some onneted interval of F0. Then `ounts as a geodesi (without (� � �)).741i.e., so to speak, adapted from Riemannian geometries to pseudo-Riemannian ones; or in other words,adapted to so-alled \inde�nite metris".742Cf. the de�nition of usual geodesis above.



364 4.7 GEODESICSonneted to the historial fat that in general relativity muh less attention is paid to spae-like geodesis than to time-like or photon-like ones. E.g. the basi book Hawking-Ellis [116℄does not even mention spae-like geodesis.743 A further indiation of this744 is that in theworld-famous basi book of relativity Misner-Thorne-Wheeler [192℄ the statement of Exerise13.6 on p.324 (disussing spae-like geodesis) seems to be either false or not very arefullyformulated. (We mean this of ourse wrt. the de�nitions given in that book.745) Further, asfar as we know, this (about the book) has not yet been pointed out in the literature. Withthis we stop disussing items 4.7.12-4.7.15 (and return to disussing our notion of geodesis inour relativity theories).In the seond part of AMN [18, x6.8(geodesis)℄ the present author generalizes our earlierpositive results from the onrete ase of Minkowskian geometries to a broader lass of ourobserver independent geometries of the \axiomati form" Ge(Th). For lak of spae we omitthese results and refer the reader to items 6.8.24{6.8.36 in AMN [18℄.Summary of some further results by the author on geodesis and our \more exibletheories of relativity": Assume Bax��+Ax(eqm). Then all the elements of L turn out tobe geodesis (f. Prop.4.7.7). If in addition we assume n > 2, Basax+Ax(Triv t)�+Ax(p )and that F is Arhimedean, then the set L of lines oinides with the set of maximal geodesis(f. Corollary 6.8.33, p.1204 of AMN [18℄). We onjeture that the ondition n > 2 is neededin the previous sentene, namely, we onjeture that there is a model M of Basax(2) +Ax(Triv t)� +Ax(eqm) with FM = R the ordered �eld of reals in whih some maximal time-like geodesis of GM are not in LM (f. Conjeture 6.8.35, p.1205 of AMN [18℄). Further, weonjeture that for any n � 2, maximal time-like geodesis are not neessarily lines even if weassume Basax and F = R (f. Conjeture 6.8.35 of AMN [18℄). As a ontrast, if n > 2 andif we assume Bax�� +Ax(p ) +Ax(TwP) or Bax�� +Ax(p ) +R(Ax syt0) togetherwith some auxiliary axioms and that F is Arhimedean, then the set of maximal time-likegeodesis oinides with the set LT of time-like lines, f. AMN [18, Thm.6.8.24 (p.1200) andCorollary 6.8.27 (p.1202)℄. The latter ondition (i.e. that F is Arhimedean) is needed even ifwe assume BaCo+Ax(r), f. AMN [18, Thm.4.7.11 (p.359)℄ and Figure 130 (p.360) herein.Assuming Reih(Bax)� + Ax(diswind), the maximal photon-like geodesis are exatly themembers of LPh (f. item (iv) of Prop.4.7.7 herein).

743This in turn might be motivated by the famous quotation for Eddington [55, p.22℄ \Assuming that amaterial partile annot travel faster than light . . . we ourselves are limited by material bodies and have diretexperiene of time-like intervals."744i.e. that relativity theorists seem to pay little attention to spae-like geodesis745But it seems to remain false for any usual de�nition of geodesis known to the present author.747This �gure is from Hawking-Ellis [116℄.
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coordinate-line

Figure 134: G�odel's rotating universe with the irrelevant oordinate z suppressed. The spaeis rotationally symmetri about any point; the diagram represents orretly the rotationalsymmetry about the axis r = 0, and the time invariane. The light one opens out and tipsover as r inreases (see line L) resulting in losed time-like urves. The diagram does notorretly represent the fat that all points are in fat equivalent.747



A INTEGRATING DUALITY INTO LANDSCAPE A-1A APPENDIX: Integrating our duality theories intothe landsape of dualities all over mathematis
A.1 Galois onnetionsIn this setion we will see that (G;M) and (Go;Mo) form \Galois onnetions". We will men-tion e.g. in item A.1.1(II) below that this fat indiates one of the various onnetions betweenthe present work and the more algebrai papers of the present author, e.g. Madar�asz [170℄ or[165℄. In Def.A.1.2 below, we will reall from the literature the notion of a Galois onnetionf. e.g. Ad�amek-Herrlih-Streker [2, item 6.26(4), p.81℄. We ompare Galois onnetions withadjoint funtors and with further related onepts in the mathematial literature in item en-titled \Connetions between adjoint situations, Galois onnetions, . . . " on p.1096 at the endof x6.6.6 of AMN [18℄. Cf. also Remark 4.5.14 (pp. 293{296) herein and Remark 6.6.4 (Galoistheories, Galois onnetions, duality theories all over mathematis, in analogy with the ones inthe present work) in AMN [18℄ as motivations for studying Galois onnetions. That remarkalso serves as a kind of mathematial perspetive/bakground for the present setion.Remark A.1.1(Motivations for Galois onnetions [for the physiist reader℄)(I) Galois onnetion is a simpli�ed form of adjoint situation (from ategory theory)748 whihin turn is regarded as one of the most important749 oneptual tools of ategory theory. (Tounderstand adjoint situations well, the �rst step is to understand Galois onnetions [as speialadjoint situations℄.) Galois onnetions are obtained from adjointness by onsidering the simplekinds of ategories alled pre-orderings (where between any two objets there is at most onemorphism); for these kinds of ategories et. f. the subtitle \Connetions between adjointsituations, Galois onnetions, . . . " on p.A-15.Galois onnetion is a generalization of isomorphism. The idea is that isomorphism is veryuseful but it is a too rigid onept (and therefore it ours rarely). So let us make isomorphism alittle bit more exible so that it would retain most of its useful properties750 but would beomemore exible (more often appliable). The result i.e. the exible version of isomorphism isalled Galois onnetion (in the ase when it onnets pre-orderings). The de�nition is givenin Def.A.1.2 below. In the general ase (of ategories) the name of \exible isomorphisms" isadjoint situations or adjoint pairs of funtors. To see a glimpse of the idea let us reall thatan isomorphism from hP;�i onto hQ;�i is a homomorphism f suh that there is a bakward748Cf. xA.2 (p.A-6) for ategory theory.749Cf. e.g. Ad�amek-Herrlih-Streker [2℄, p.283 �rst sentene (Chap.18, Adjoint funtors). There they write:\Perhaps the most suessful onept of ategory theory is that of adjoint funtor. Adjoint funtors ourfrequently in many branhes of mathematis . . . surprising range of appliations." Cf. also (y) on p.1096 ofAMN [18℄ for importane of adjointness in physis.750e.g. we an transfer \onstrutions" from one side to the other



A-2 APPENDIX Ahomomorphism g hP;�i f�! �g hQ;�iwith (f Æ g)(x) = x and (g Æ f)(y) = y. For easier formulation (of what omes) we replaehomomorphism by dual-homomorphism (i.e. order reversing map). Now, to make the oneptless rigid, we replae the ondition (f Æg)(x) = x by the weaker one (f Æg)(x) � x and similarlyfor gÆf . The result is summarized in Fat A.1.3 below, but f. also (?) on p.A-15 whih might bea more suggestive (equivalent) de�nition of \exible isomorphism". Then Fat A.1.5 indiatesthat the resulting notion of \exible isomorphisms" (i.e. Galois onnetions) retains many ofthe useful properties of isomorphisms.751(II) Galois onnetions an serve as a uni�ed theory of the researh-branhes mentioned onpp. 1096{1105 of AMN [18℄ ranging from Boolean algebras with operators, residuated-residualpairs, onjugates of operators, linear logi, Lambek alulus, relation algebras, losure op-erators, geometry, vetor spaes, C�-algebras, but f. also Janelidze [139℄ for more daringappliations via Galois theories (whih are of ourse strongly tied up752 with Galois onne-tions). Some of these examples are explained in more detail in the present work, too (onpp.A-15{A-17). Some of the above are investigated and used in Madar�asz [161℄, [165℄, [164℄,[167℄, [169℄, [170℄, [176℄, [20℄, [23℄, [178℄.In partiular, studying Galois onnetions an serve as an abstrat, uni�ed study of dualitytheories or adjoint situations, whih in turn, aording to Ad�amek et al. [2℄, Lawvere [153℄ andothers753 pervade muh of mathematis and modern mathematial physis. We hope, reallingthe patterns: hP;�i f�! �g hQ;�i Galois onnetionMod(Th) G�! �M Ge(Th) duality theory754gives a hint for the above idea (of Galois onnetions serving as a uni�ed, abstrat study ofdualities).(III) Whenever we are given two sets or lasses say K, L and a binary relation R � K � Lbetween them then R indues a natural Galois onnetion between P(K) and P(L) as follows.For X � K, fR(X) = f y 2 L : (8x 2 X) x R y g. So fR : P(K) �! P(L) is order751The same idea in di�erent words: A homomorphism f is alled an isomorphism iff it admits a two-sidedinverse g (g Æ f = Id and f Æ g = Id). Now, in order to be a exible isomorphism it is enough to admit aquasi-inverse as skethed in footnote 767 on p.A-15.752A Galois theory is always a (speial) Galois onnetion, f. items (I), (V) of Remark 6.6.4 of AMN [18℄(pp. 293, 295)753A sample of the referenes laiming and illustrating with examples that duality theories, i.e. adjoint situ-ations are very broadly appliable (and applied) throughout mathematis and also in mathematial physis isLawvere [153, 155, 154℄, Arbib-Manes [34, 33℄, Manes [180℄, Guitart [111℄, Ma Lane [159℄, Goldblatt [101℄,Handbook of Categorial Algebra [50℄, Barr-Wells [41, x1.9, p. 50{63℄, Freyd-Sedrov [88℄, Ad�amek etal. [2℄, [3℄, Varadarajan [268℄, Lawvere-Shanuel [156℄, Nel [201℄, Pelletier-Rosik�y [210℄, Dimov-Tholen [72℄,Janelidze [139℄, Davey-Priestley [67℄. These referenes give examples ranging from algebrai geometry, om-pat Galois groups, geometry and analysis, sheaves of ontinuous maps, metri spaes, tensor algebra, Banahspaes and spaes of generalized Lipshitz funtions, omputability & automata & linear systems. (Cf. theworks of Arbib, Manes, Guitart for the latter four topis.) Cf. also (y) on p.1096 of AMN [18℄.754We have not yet de�ned a struture like \�" on Mod(Th), Ge(Th) but that will ome later (and is kind ofimpliit already in shemas (a){(i) on pp.284{287).



A.1 GALOIS CONNECTIONS A-3reversing. gR : P(L) �! P(K) is de�ned analogously. Cf. item (IV) of Remark 6.6.4 ofAMN [18℄ (p.1026) whih is about the (Mod;Th)-Galois onnetion indued by the relation j=.Cf. also p.453 of AMN [18℄. This kind of Galois-onnetion is generalized to the ase whenR is a so-alled partial relation in Madar�asz [165℄ establishing a representation theorem fornon-normal Boolean algebras with operators whih in turn solves a problem left open in 1952in J�onsson-Tarski [142℄. This problem appears impliitly already in the 1948 version of theJ�onsson-Tarski paper (in Abstrats of Amer. Math. So.).755(IV) Cf. Remark 4.5.14, pp. 293{296.END OF MOTIVATION FOR GALOIS CONNECTIONS. �De�nition A.1.2 (Galois onnetion)Let hP;�i and hQ;�i be pre-ordered lasses andf : P �! Q and g : Q �! P:The pair (f; g) is alled a Galois onnetion between hP;�i and hQ;�i iff for all p 2 P andq 2 Q p � g(q) , q � f(p): �The following fat states a (known) equivalent reformulation of the de�nition of Galoisonnetions.FACT A.1.3 Assume hP;�i and hQ;�i are pre-ordered lases and that f : P �! Q andg : Q �! P . Then the pair (f; g) is a Galois onnetion between hP;�i and hQ;�i iff (a) and(b) below hold.(a) f and g are both order-reversing, i.e. if p � p0 2 P then f(p) � f(p0), and if q � q0 2 Qthen g(q) � g(q0).(b) f Æ g and g Æ f are both monotonous, i.e.p � (f Æ g)(p) for all p 2 P and q � (g Æ f)(q) for all q 2 Q.Notation A.1.4 Assume that hP;�i is a pre-ordered lass. Then the binary relation ' onP is de�ned as p ' p0 def() (p � p0 ^ p0 � p):We note that ' is an equivalene relation. �755The non-normal harater of the algebras in question is important for the foundation of several logis thatbeame important reently. Some of these are logis of ation and dynami logi. Interestingly, nonstandarddynami logi (f. e.g. Sain [227℄) is losely related to the subjet of the present work, e.g. beause both areonerned with proesses happening in time, both handle temporality by a ertain way of using many-sortedlogi, both an be related to nonstandard analysis in a ertain way, et. In partiular, the tehniques we planto use in generalizing the present approah to handling aelerated observers in [26℄ are borrowed from the justquoted version of dynami logi. (Logi of ations an also, perhaps, be developed to a platform adequate forhandling the pseudo-paradoxes assoiated with losed timelike loops in general relativity.)



A-4 APPENDIX AFat A.1.5 below is known from algebra. Items (i){(iii) of this fat say that if (f; g) is aGalois onnetion then both f Æg and g Æf are losure operators up to the equivalene relation' (f. the notion of a losure operator up to isomorphism on p.288.) Further, item (iv) saysthat the losed \up to '" elements of f Æ g are the elements of the range of g (\up to '").Similarly for g Æ f .FACT A.1.5 Assume hP;�i and hQ;�i are pre-ordered lasses and (f; g) is a Galoisonnetion between them. Then for all p 2 P and q 2 Q, (i){(iv) below hold.(i) p � (f Æ g)(p) and q � (g Æ f)(q):(ii) Both f Æ g and g Æ f have �xed-point property in the sense(f Æ g)2(p) ' (f Æ g)(p) and (g Æ f)2(q) ' (g Æ f)(q):(iii) If p � p0 2 P and q � q0 2 Q then(f Æ g)(p) � (f Æ g)(p0) and (g Æ f)(q) � (g Æ f)(q0):(iv) (g Æ f)(f(p)) ' f(p) and (f Æ g)(g(q)) ' g(q):For the motivation of the following de�nition f. Propositions 4.5.49 (p.322) and 4.5.60(p.329).De�nition A.1.6Pax++ :def= Pax+ +Ax(eqm)+Ax(ext)+Ax~;Wax+ :def= Wax+Ax(ext)+Ax~+Ax(1ph)+ (8m; k)(fmk 2 Aftr)lopag+ :def= lopag+ L3 + L4 + L5 + L6 + L7 + L8 + L9 + L10: �Remark A.1.7 We note that item (iii) of Prop.4.5.60 (p.329) states, by Thm.4.5.57 (p.328),that Rng(Mo) j= Wax+ and Rng(Go) j= lopag+: �We will prove that (Go;Mo) forms a Galois onnetion between the lasses Mod(Wax+)and Mog(lopag+) for a ertain hoie of pre-orderings �Mo and �Go of these two lasses. (I.e.�Mo is a pre-ordering of Mod(Wax+), and similarly for �Go and Mog(lopag+)). We willprove an analogous statement about (G;M) and Mod(Pax++), Ge(Pax++).De�nition A.1.8 (�Mo; �Go; �M;�G)(i) We de�ne �Mo to be the smallest transitive binary relation on Mod(Wax+) for whih 1and 2 below hold.1. M �Mo (Go ÆMo)(M), and2. M �= N ) M �Mo N, for all M;N 2 Mod(Wax+).(ii) We de�ne �Go to be the smallest transitive binary relation on Mog(lopag+) for whih 1and 2 below hold.1. G �Go (Mo Æ Go)(G), and2. G �= H ) G �Go H, for all G;H 2 Mog(lopag+).



A.1 GALOIS CONNECTIONS A-5(iii) We de�ne �M to be the smallest transitive binary relation on Mod(Pax++) for whih 1and 2 below hold.1. M �M (G ÆM)(M), and2. M �= N ) M �M N, for all M;N 2 Mod(Pax++).(iv) We de�ne �G to be the smallest transitive binary relation on Ge(Pax++) for whih 1and 2 below hold.1. G �G (MÆ G)(G), and2. G �= H ) G �G H, for all G;H 2 Ge(Pax++). �Next we state some simple properties of the pre-orderings �Mo et.PROPOSITION A.1.9(i) Let M;N 2 Mod(Wax+). Then(M �Mo N ^ N �Mo M) ) M �= N; andM �Mo N ) M ��! N:(ii) Let G;H 2 Mog(lopag+). Then(G �Go H ^ H �Go G) ) G �= H; andG �Go H ) G �� H:(iii) Let M;N 2 Mod(Pax++). Then(M �M N ^ N �M M) ) M �= N; andM �M N ) M ��! N:(iv) Let G;H 2 Ge(Pax++). Then(G �G H ^ H �G G) ) G �= H; andG �G H ) G �� H:We omit the proof.THEOREM A.1.10(i) Go : Mod(Wax+) �! Mog(lopag+) andMo : Mog(lopag+) �! Mod(Wax+):(ii) (Go;Mo) is a Galois onnetion between hMod(Wax+); �Moi and hMog(lopag+); �Goi.



A-6 APPENDIX AWe omit the proof.We suggest that the reader ompare Theorem A.1.10 with the intuitive text on p.328 belowThm.4.5.57 together with Remark A.1.7 (p.A-4).The following orollary is of the pattern of theorem shemas (a), (b), (e){(h) and it is aorollary of Theorem A.1.10, Fat A.1.5, and Prop.A.1.9.COROLLARY A.1.11For any M 2 Mod(Wax+) and G 2 Mog(lopag+), (i){(iii) below hold.(i) M��!(Go ÆMo)(M) and G ��(Mo Æ Go)(G):(ii) The members of the range of Go are �xed-points of Mo Æ Go and the members of therange of Mo are �xed-points of Go ÆMo, i.e.(Mo Æ Go)(Go(M)) �= Go(M) and (Go ÆMo)(Mo(G)) �=Mo(G):(iii) Both Go ÆMo and Mo Æ Go have �xed-point property in the sense(Go ÆMo)2(M) �= (Go ÆMo)(M) and (Mo Æ Go)2(G) �= (Mo Æ Go)(G):
THEOREM A.1.12(i) M : Ge(Pax++) �! Mod(Pax++) (and G : Mod(Pax++) �! Ge(Pax++)).(ii) (G;M) is a Galois onnetion betweenhMod(Pax++); �Gi and hGe(Pax++); �Mi.Proof: The theorem follows by Thm.4.5.13 (p.291) and Fat A.1.3.At this point we ould formulate a orollary of Thm.A.1.12 whih would be analogous withCorollary A.1.11 of Thm.A.1.10. This orollary of Thm.A.1.12 basially oinides with ourThm.4.5.13 formulated on p.291.
A.2 Adjoint funtors, ategoriesMotivation for adjoint funtors for the physiist reader is found in Remark A.1.1 (p.A-1). Cf.also p.1096 of AMN [18℄. For adjoint situations in physis f. e.g. Lawvere-Shanuel [156, pp.5{6, pp. 76{77℄; but see also the referenes in footnote 753, p.A-2.756756Category theory has been beoming inreasingly popular and often used in physis reently, f. e.g. Baez-Dolan [37℄, Crane [64℄, Freed [87℄, Andai [4℄, Kassel [147℄, Baez [38℄. Cf. also Lawvere-Shanuel [156℄.



A.2 ADJOINT FUNCTORS, CATEGORIES A-7The subjet matter of this setion is strongly onneted to Remark 4.5.14 (p.293) entitled\Galois theories, Galois onnetions, duality theories all over mathematis . . . ."In this setion we will see that (M;G) and (Mo;Go) are \adjoint pairs of funtors" in theategory theoreti sense, under ertain onditions.We use the notion of a ategory in the usual ategory theoreti sense, f. e.g. Ma Lane [159℄.Assume C is a ategory. Then Ob C and Mor C denote the lasses of objets and morphismsof C , respetively. f : A �! B means that f is a morphism with domain A 2 Ob C andodomain B 2 Ob C . For any A;B 2 Ob C ,hom(A;B) :def= f f 2 Mor C : (f : A �! B) g :Further, omposition Æ is a partial binary operation on Mor C , and if f : A �! B andg : B �! C then f Æ g : A �! C. We use the notion of a funtor in the usual sense, i.e. afuntor is a map from a ategory to a ategory whih takes objets to objets, morphisms tomorphisms, preserves domains and odomains, identities757 and omposition Æ. If C and D areategories and D is a funtor from C to D , then we will write D : C �! D .De�nition A.2.1 (strong embedding)Terminology from model theory: Let f : A��!B be an embedding of model A into model B.By the f -image f [A℄ of A we understand the unique (weak) submodel of B suh that f is anisomorphism between A and f [A℄.Now, f : A��!B is alled a strong embedding iff it is an embedding and the f -image f [A℄of A is a strong submodel of B. �De�nition A.2.2 (ategories M od(Th); G e(Th); M og(TH ))Let Th be a set of formulas in our frame language.(i) Mod(Th) forms a ategory M od(Th) the following way. The lass of objets of M od(Th)is Mod(Th) and the morphisms are those embeddingsf : M0 ��!M1whih are surjetive on the sets of photons (i.e. f [Ph0℄ = Ph1), unless M0 is the emptymodel.758 More preisely, the morphisms of the ategory M od(Th) are triples of the formhM; f;Ni, where f : M ��! N is suh that f [PhM℄ = PhN or M is the empty model.The reason why we need triples instead of f in itself is that when looking at a morphismwe have to be able to tell what its domain and odomain are. For simpliity, if there isno danger of onfusion we will use f as a morphism instead of the triple hM; f;Ni. Wehope ontext will help. The omposition Æ is the usual one.759757A morphism f : A �! A is alled an identity if for every morphism g with domain A, f Æ g = g and forevery morphism g0 with odomain A, g0 Æ f = g0.758Surjetiveness on the sets of photons is required only beause eventually we want M to be a funtorbetween G e(Th) and M od(Th). It is not quite obvious to see why this purpose (funtoriality ofM) makes usto need the surjetiveness ondition. Hint: this is onneted to ondition (e) on p.310. If we omitted item (e)on p.310 from the de�nition of M, then we ould de�ne morphisms of M od(Th) to be the embeddings. Thereader is invited to elaborate an alternative version to our (M;G)-duality by omitting ondition (e) from thede�nition ofM and then dropping the present surjetiveness ondition w.r.t. Ph.759I.e. hM; f;Ni Æ hM1; g;N1i = hM; f Æ g;N1i if N =M1 and is unde�ned otherwise.



A-8 APPENDIX A(ii) Ge(Th) forms a ategory G e(Th) in the following way. The lass of objets of G e(Th) isGe(Th) and the morphisms are those embeddingsh : G0 ��! G1whih are (i) strong embeddings on the hMn; Bwi reduts and are (ii) surjetive onthe sets of photon-like lines (i.e. h[LPh0 ℄ = LPh1 ), unless G0 is the empty model. (Theomposition Æ is the usual one.)(iii) For any set TH of formulas in the language of GEO, Mog(TH ) forms a ategory M og(TH )in a ompletely analogous way with item (ii), i.e. the lass of objets of M og(TH ) isMog(TH ) and the morphisms are those embeddingsh : G0 ��! G1whih are (i) strong embeddings on the hMn; Bwi reduts and are (ii) surjetive on thesets of photon-like lines (i.e. h[LPh0 ℄ = LPh1 ), unless G0 is the empty model. �De�nition A.2.3 Pax++ def= Pax+ +Ax(diswind). �The funtions M; G;Mo; Go are de�ned on the objets of the ategories G e(Pax++),M od(Pax++), M og(lopag), M od(Wax), respetively. In the following de�nition we extendthese funtions to the morphisms. In this way we obtain funtorsM : G e(Pax++) �! M od(Pax++); G : M od(Pax++) �! G e(Pax++);Mo : M og(lopag) �! M od(Wax); Go : M od(Wax) �! M og(lopag):De�nition A.2.4 (the funtors M;G;Mo;Go)To de�ne a funtor, one has to de�ne what it does with the objets and what it does withthe morphisms (of the ategory in question). On the objets M;G;Mo;Go agree withM;G;Mo;Go, respetively. It remains to de�ne our funtors on the morphisms.M. For every morphism h : G0 �! G1 of G e(Pax++) we will de�ne the morphism M(h) :M(G0) �! M(G1) of M od(Pax++), see the left-hand side of Figure 135. Sine thede�nition looks somewhat \longish" we note that in it we will do the \natural thing"(following the struture of the de�nition of M). Let h : G0 �! G1 be a morphisms ofG e(Pax++), i.e. G0 = hMn0; : : :i; G1 = hMn1; : : :i 2 Ge(Pax++) and h is an embeddingsatisfying the onditions in the de�nition of the ategory G e(Pax++), i.e. in Def.A.2.2(ii).Then h is a tuple hhM ; hF ; hLi with hM : Mn0 ��! Mn1, hF : F0 ��! F1 andhL : L0 ��! L1. Further, M(G0) = hB0; : : :i; M(G1) = hB1; : : :i 2 Mod(Pax++)by Prop.4.5.41 (p.313). Then M(h) := hM(h)B;M(h)F ;M(h)Gi, where M(h)B :B0 �! B1, M(h)F : F0 �! F1 and M(h)G : G0 �! G1 are de�ned as follows. Tode�ne M(h)B let b 2 B0. Then either b = ho; e0; : : : ; en�1i 2 Obs0 � n+1Mn0, for someo; : : : ; en�1 or b 2 Ph0 = LPh0 . Now,M(h)B(b) :def= � hhM(o); hM(e0); : : : ; hM(en�1)i if b = ho; e0; : : : ; en�1i 2 Obs0hL(b) if b 2 Ph0.



A.2 ADJOINT FUNCTORS, CATEGORIES A-9G0 M(G0)
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Figure 135:M(h)B takes observers to observers and photons to photons. M(h)F is de�ned to behF and M(h)G is naturally indued by M(h)F , i.e. M(h)G : Eul(F0) �! Eul(F1) isde�ned by ` 7! M̂(h)F [`℄.We will prove as Claim A.2.5(i) that M(h) : M(G0) �!M(G1) is indeed a morphismof M od(Pax++), moreover that M : G e(Pax++) �! M od(Pax++) is a funtor.G. For every morphism f : M0 �!M1 of M od(Pax++) we will de�ne the morphism G(f) :G(M0) �! G(M1), see the right-hand side of Figure 135. Let f : M0 �! M1 be amorphism of M od(Pax++), i.e. M0 = hB0; : : :i; M1 = hB1; : : :i 2 Mod(Pax++) and f isan embedding satisfying the onditions in the de�nition of the ategory M od(Pax++), i.e.in Def.A.2.2(i). Then f is a tuple hfB; fF ; fGi with fB : B0 ��! B1, fF : F0 ��! F1and fG : G0 ��! G1. Further, G(M0) = hMn0; : : :i; G(M1) = hMn1; : : :i 2 Ge(Pax++).Then G(f) := hG(f)M ;G(f)F ;G(f)Li, where G(f)M � Mn0 �Mn1, G(f)F : F0 �! F1and G(f)L � L0 � L1 are de�ned as follows. Let he0; e1i 2 Mn0 � Mn1 and h`0; `1i 2L0 � L1. Then he0; e1i 2 G(f)Mdef()(9m 2 Obs0)(9p 2 nF0)�wm(p) = e0 ^ w fB(m)(ffF (p)) = e1�.Further h`0; `1i 2 G(f)Ldef()(9m 2 Obs0)�(9i 2 n) ( `0 = wm[�xi℄ ^ `1 = w fB(m)[�xi℄ )760 _(9ph 2 Ph) ( `0 = wm[trm(ph)℄ ^ `1 = w fB(m)[tr fB(m)(fB(ph))℄ )�.G(f)F is de�ned to be fF .We will prove as Claim A.2.5(ii) that G(f) : G(M0) �! G(M1) is indeed a morphism ofG e(Pax++), moreover that G : M od(Pax++) �! G e(Pax++) is a funtor.760The �rst �xi is the i-th oordinate axis in nF0 while the seond �xi is the i-th oordinate axis in nF1.



A-10 APPENDIX AMo. For every morphism h : G0 �! G1 of M og(lopag) we will de�ne the morphismMo(h) : Mo(G0) �! Mo(G1) of M od(Wax). Let h : G0 �! G1 be a mor-phism of M og(lopag), i.e. G0 = hMn0; : : :i; G1 = hMn1; : : :i 2 Mog(lopag) and h isan embedding satisfying the onditions in the de�nition of the ategory M og(lopag),i.e. in Def.A.2.2(iii). Then h is a pair hhM ; hLi with hM : Mn0 ��! Mn1 andhL : L0 ��! L1. Further, Mo(G0) = hB0; : : :i; Mo(G1) = hB1; : : :i 2 Mod(Wax) byThm.4.5.57. Then Mo(h) := hMo(h)B;Mo(h)F ;Mo(h)Gi where Mo(h)B : B0 �!B1, Mo(h)F � F0 � F1 and Mo(h)G � G0 � G1 are de�ned as follows. Mo(h)Bis de�ned analogously to the ase of M, i.e. as follows. Let b 2 B0. Then eitherb = ho; e0; : : : ; en�1i 2 Obs0 � n+1Mn0, for some o; : : : ; en�1 or b 2 Ph0 = LPh0 . Now,M(h)B(b) :def= � hhM(o); hM(e0); : : : ; hM(en�1)i if b = ho; e0; : : : ; en�1i 2 Obs0hL(b) if b 2 Ph0.To de�ne Mo(h)F let hp; qi 2 F0�F1. In the de�nition below, we will use F0;F1;F0;F1whih were introdued in De�nitions 4.5.31 (p.306) and 4.5.55 (p.327). Then,hp; qi 2Mo(h)Fdef()(9p0 2 p)(9q0 2 q)�pji(q0) = hM (pji(p0)); for all i 2 3�.Mo(h)G is indued by Mo(h)F the natural way, f. the de�nition of M(h)G in itemM. above.We will prove as Claim A.2.5(iii) that Mo(h) : Mo(G0) �! Mo(G1) is indeed amorphism of M od(Wax), moreover thatMo : M og(lopag) �! M od(Wax) is a funtor.Go. For every morphism f : M0 �!M1 of M od(Wax) we will de�ne the morphism Go(f) :Go(M0) �! Go(M1) of M og(lopag). Let f : M0 �!M1 be a morphism of M od(Wax),i.e. M0 = hB0; : : :i; M1 = hB1; : : :i 2 Mod(Wax) and f is an embedding satisfying theonditions in the de�nition of the ategory M od(Wax), i.e. in Def.A.2.2(i). Further,Go(M0) = hMn0; : : :i; Go(M1) = hMn1; : : :i 2 Mog(lopag) by Thm.4.5.57. We de�nethe morphism Go(f) : Go(M0) �! Go(M1)of M og(lopag) to be hG(f)M ;G(f)Li, where G(f)M and G(f)L are de�ned as in item G.above.We will prove as Claim A.2.5(iv) that Go(f) : Go(M0) �! Go(M1) is indeed a mor-phism, moreover that Go : M od(Wax) �! M og(lopag) is a funtor. �Claim A.2.5 below serve to prove orretness of Def.A.2.4 above.Claim A.2.5 (M; G; Mo; Go are funtors)(i) M : G e(Pax++) �! M od(Pax++) is a funtor.(ii) G : M od(Pax++) �! G e(Pax++) is a funtor.(iii) Mo : M og(lopag) �! M od(Wax) is a funtor.



A.2 ADJOINT FUNCTORS, CATEGORIES A-11(iv) Go : M od(Wax) �! M og(lopag) is a funtor.The proof is available from the author.Next, we reall the notion of adjoint pair of funtors from ategory theory e.g. from MaLane [159℄. For this, �rst we introdue the notion of a reetion and oreetion in Def.A.2.6below. We will use the notion of a subategory in the usual way, f. e.g. Ma Lane [159℄.De�nition A.2.6 (reetion, oreetion) Let C and D be two ategories.(i) Assume D is a subategory of C . Let A 2 Ob C .(a) B 2 Ob D is alled the reetion of A in D iff B is the \nearest" objet to A in D ,i.e. iff there is a morphism f : A �! B whih is the shortest one in the followingsense: (8B0 2 Ob D )(8f 0 2 hom(A;B0))(9!g 2 hom(B;B0)) f Æ g = f 0;see the left top piture in Figure 136.(b) B 2 Ob D is alled a oreetion of A in D iff there is a morphism f : B �! Awhih is the shortest one in the following sense:(8B0 2 Ob D )(8f 0 2 hom(B0; A))(9!g 2 hom(B0; B)) g Æ f = f 0;see the right top �gure in Figure 136.(ii) Assume C : D �! C is a funtor. Let A 2 Ob C .(a) B 2 Ob D is alled a reetion of A in D iff B is the nearest objet to A in D , i.e.there is a morphism f : A �! C(B) whih is the shortest one in the following sense:(8B0 2 Ob D )(8f 0 2 hom(A; C(B0)))(9!g 2 hom(B;B0)) f Æ C(g) = f 0;see the left bottom piture in Figure 136.The morphism f : A �! C(B) above is alled the C-reetion arrow761 of theobjet A.(b) B 2 Ob D is alled a oreetion of A in D iff there is a morphism f : C(B) �! Awhih is the shortest one in the following sense:(8B0 2 Ob D )(8f 0 2 hom(C(B0); A))(9!g 2 hom(B0; B)) C(g) Æ f = f 0;see the right bottom piture in Figure 136.The morphism f : C(B) �! A above is alled the C-oreetion arrow of theobjet A. �



A-12 APPENDIX A
B is a reetion of A in D B is a oreetion of A in D
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B 8B09!g DFigure 136: Reetion and oreetion.
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Figure 137: (M;G) is an adjoint pair of funtors, under ertain onditions.



A.2 ADJOINT FUNCTORS, CATEGORIES A-13De�nition A.2.7 (adjoint situation)762Let C and D be two ategories and letC : D �! C and D : C �! D(?)be two funtors. Then (C;D) is alled an adjoint pair iff for every A 2 Ob C , D(A) is thereetion of A in D and for every B 2 Ob D , C(B) is the oreetion of B in C , f. Figure 137.Further, we say that (?) above is an adjoint situation iff (C;D) is an adjoint pair of funtors.�De�nition A.2.8 Pax+++ def= Pax++ +Ax(diswind). �For the following onjetures reall that M, G, Mo, Go are funtors by Claim A.2.5(p.A-10).Conjeture A.2.9 We strongly onjeture that (i) and (ii) below hold.(i) M : G e(Pax+++ ) �! M od(Pax+++ ) and G : M od(Pax+++ ) �! G e(Pax+++ ) is anadjoint situation,763 f. Figure 137.(ii) Mo : M og(lopag+) �! M od(Wax+) andGo : M od(Wax+) �! M og(lopag+) is an adjoint situation. �Let f : A �! B be a morphism of the ategory C . We all f an isomorphism (of C ) if(9g 2 hom (B;A))(f Æ g and g Æ f are identity morphisms);f. footnote 757 on p.A-7 for identity morphisms.De�nition A.2.10 (equivalene of ategories)764The ategories C and D are alled equivalent iff there is an adjoint pair of funtorsC : D �! C and D : C �! Dsuh that the following holds. For every objet A of C the C-reetion arrow is an isomorphismand the same holds for the D-oreetion arrows of objets B 2 Ob D . In suh situations thepair (C;D) of funtors is alled an equivalene of ategories (C and D ).765 �761We ould all this f intuitively D -reetion arrow.762We refer to e.g. Ma Lane [159℄ for the \oÆial" de�nition of adjointness. Cf. also Ad�amek [1, p. 138{148, (sub-setion 3F)℄, and Ad�amek-Herrlih-Streker [2, pp. 283-300℄ where a large number of mathematialappliations/examples of adjointness and what we all here duality theories is given.763In aordane with our Convention 4.5.2 (p.283) here we are talking about the restritions of M and Gto G e(Pax+++ ) and M od(Pax+++ ). We will use this onvention throughout the present appendix.764We refer to e.g. Ma Lane [159℄ or Ad�amek et al [2, p.26, Def.3.33℄ for the \oÆial" de�nition of equivaleneof ategories. OÆially a funtor F : C �! D is an equivalene iff it is a bijetion on every hom(A;B), i.e.F : homC (A;B) ��!� homD (F (A); F (B)), and it is surjetive with respet to isomorphisms.765An adjoint situation (C;D) ould be alled a Galois-adjoint situation iff Rng(C) and Rng(D) are ategoriesand (C;D) is an equivalene between ategoriesRng(C) and Rng(D). The so obtained notion ould be onsideredas a speial kind of adjoint situations and at the same time as a generalization of Galois onnetions.



A-14 APPENDIX AConjeture A.2.11 We strongly onjeture that M od(Th) and G e(Th) are equivalent ate-gories, and (M;G) is an equivalene between these two ategories, assuming n > 2 and Th j=Bax�+Ax(Triv t)�+Ax(k)�+Ax(eqtime)+Ax(ext)+Ax~+Ax(p )+Ax(diswind).�In onnetion with the above onjeture f. Thm.4.3.38 (p.261) saying that Mod(Th)and Ge(Th) are de�nitionally equivalent, assuming the assumptions of the above onjeture.Thm.4.3.38 already implies isomorphism, hene equivalene, between ategories Mod(Th) andGe(Th) if we hoose elementary embeddings as morphisms, f. p.281.Before stating our next onjeture we note the following. Consider the funtor G :M od(Pax++) �! G e(Pax++). Then G is surjetive in the sense that Rng(G) is G e(Pax++)up to isomorphism. This holds for any Th with Th j= Pax++ in plae of Pax++.Conjeture A.2.12 We strongly onjeture that (i) and (ii) below hold.(i) Consider the funtors M : G e(Pax+++ ) �! M od(Pax+++ ) and G :M od(Pax+++ ) �! G e(Pax+++ ). Then Rng(M) is a ategory and Rng(M) andG e(Pax+++ ) are equivalent ategories, and (M; G � Rng(M)) is an equivalene be-tween these two ategories.(ii) Consider the funtors Mo : M og(lopag+) �! M od(Wax+) and Go :M od(Wax+) �! M og(lopag+). Then Rng(Mo) and Rng(Go) are equivalent ate-gories and (Mo � Rng(Go); Go � Rng(Mo)) is an equivalene between these twoategories. �Items (i) of Conjetures A.2.9 and A.2.12 together say that (M;G) is a Galois-adjoint situationin the sense of footnote 765, assuming Pax+++ ; while items (ii) of the same onjetures say that(Mo;Go) is a Galois-adjoint situation, assuming Wax+ and lopag+. Cf. also the intuitivetext on p.328 above Conjeture 4.5.58 together with Remark A.1.7 and ompare them withConjetures A.2.9, A.2.12.For the idea of systematially extending the duality theories studied herein to \ategorytheoreti adjoint situations" we refer to AMN [18℄ p.1095 (Exerise 6.6.85) and to related partstherein.Notation A.2.13 Let A be a set and let �(x) be a term with input variable x, de�ned forx 2 A. Reall that then f := h�(x) : x 2 Ai denotes a funtion f : A �! Rng(f), f. p.2where we used expr in plae of � .We will use the intuitive notation �(�) for denoting this funtion f . I.e.�(�) :def= h�(x) : x 2 Ai:This notation is somewhat under-spei�ed sine A, i.e. the domain of �(�), is not expliitlyindiated. This intuitive notation �(�) omes from ategory theory. Cf. also the notationalonvention g(�; y; z) above Def.4.3.35 (partial derivative) on p.518 (in x4.3) of AMN [18℄. Thatonvention is the same as the present one (with some extra parameters added). �



A.2 ADJOINT FUNCTORS, CATEGORIES A-15Connetions between adjoint situations, Galois onnetions, and other duality theories:Before getting started, we note that Remark A.1.1 (p.A-1) is also about our present subjet.Assume that in our ategory C there is at most one morphism between any two objets, i.e.assume j hom(A;B)j � 1 is valid in C . Then C beomes a pre-ordering. (Hint: We use A � Bto denote hom(A;B) 6= ;.) Assume the same for ategory D . Then funtors C : C �! D andD : D �! C beome order preserving mappings between pre-orderings C and D . Then it is anatural question to ask whih pairs (f; g) of order preserving mappings between pre-orderingsP;Q are atually adjoint situations. Translating the de�nition of adjoint situations way above(from the language of ategories to that of pre-orderings) gives us a natural answer to thisquestion. Assume for simpliity that our pre-orderings are atually partial orderings (posetsfor short). Then (f; g) forms an adjoint pair iff (?) below holds.f(p) = inff q 2 Q : p � g(q) gg(q) = supf p 2 P : q � f(p) g.(?)Atually, we note that (?) works for haraterizing adjointness even in the more general ase ofpre-orderings, too. More preisely, if we want (?) to work for pre-orderings too, then it is enoughto replae \f(p) = inff: : :g" by \f(p) is a smallest element766 of the set f q 2 Q : p � g(q) g"and similarly for \g(q) = supf: : :g".Summing it up, (?) is the order-theoreti ounterpart of adjointness. The paper Andr�eka-Greehie-Streker [13℄ disusses and investigates equivalent versions and appliations of (order-theoreti) adjointness of the form (?) above. In that paper (?) shows up in the fourth linebeginning with \If (f; g) is suh a pair, then f(p) = : : :". (This is the seond, equivalentde�nition they give for order-theoreti adjointness.) They all an (order-theoreti) adjoint pair(f; g) satisfying (?) a residuated-residual pair . Among other things, they show that residuated-residual pairs are equivalent with Galois onnetions. They disuss the onnetions with Galoistheory, too. Residuatedness plays an extremely important role in many branhes of algebra,in sophistiated duality theories, and in Algebrai Logi. One of the slogans in a large partof Algebrai Logi says that all extra Boolean operators in Algebrai Logi are residuated.767Cf. e.g. J�onsson-Tarski [142℄, J�onsson [141℄, J�onsson-Tsinakis [143℄, Thompson [258, p.340℄and Jipsen-J�onsson-Rafter [140℄ and the referenes in the latter. Atually, Birkho� in hisfamous Lattie Theory book [47℄ introdues relation algebras as \residuated Boolean latties"(where we note that relation algebras are one of the main themes in the literature of TarskianAlgebrai Logi). In passing we note that the residual g of f is very strongly related to what isalled the onjugate of f in a large part of abstrat algebra, f. e.g. J�onsson [141, pp. 129-130℄,Thompson [258, p.340℄ and Henkin-Monk-Tarski [120, Part I, p.175℄. If our posets are Booleanalgebras then for any mapping g its dual768 g� is also de�ned. Now, if (f; g) are residuatedthen g� is exatly the onjugate of f . I.e. the onjugate of f is the dual g� of the residual gof f . Therefore, onjugates of mappings are extremely lose to residuals of mappings, e.g. in766In pre-orderings, x is a smallest element of H iff x 2 H and (8y 2 H)x � y.767An operator f on a Boolean algebra, or more generally a funtion f : pre-order �! pre-order is alledresiduated iff it is part of a residuated-residual pair (f; g). Then g is alled the residual of f . (We ould allg the \right residual" of f and f the \left-residual" of g, but we do not do this e.g. beause it would auseonfusion with the slashes to be disussed soon [the slashes are alled left and right residuals of Æ℄.) In passingwe note that the area we are disussing is known as \Boolean algebras with operators", or more reently aslatties with operators, f. e.g. Bahl et al. [39℄. The originators and promoters of this area are e.g. Tarski,J�onsson, van Benthem and other lassis of mathematial logi.It is sometimes useful to think of the residual g of f as a kind of quasi-inverse (w.r.t. the pre-ordering �) off . Hene f is residuated iff it is quasi-invertible w.r.t. the pre-order in question.768g�(x) := �g(�x)



A-16 APPENDIX Athe ase of Boolean algebras the two onepts are term-de�nable from eah other.769 (Moregenerally, the mathematial idea of a \onjugate" in general is strongly related to the idea ofa residual pair, i.e. of an adjoint situation.) In the literature of Algebrai Logi and in thatof Sub-strutural Logis (e.g. Lambek alulus, linear logi et.) the residuals of any �xed\entral" binary operation, say Æ, are denoted by the slashes =; n while the onjugates of thesame entral operation are denoted by the triangles /; ., f. Andr�eka-Mikul�as [28℄, Jipsen-J�onsson-Rafter [140℄, Marx-Venema [186℄, van Benthem [265, pp. 194, 195, 230, 231℄, [267,p.246℄ and Bahls-Cole-Galatos-Jipsen-Tsinakis [39℄770.The paper Andr�eka et al. [13℄ disusses further important appliations and variants ofadjointness of the form (?) above. About this subjet f. also our next setion on AlgebraiLogi. The present subjet is ontinued in a broader perspetive in the part entitled \On theimportane . . . duality theories" on pp. 1098{1105 of AMN [18℄.Madar�asz-N�emeti [176℄ solves a lassial, distinguished problem (Problem 2.10) of Henkin-Monk-Tarski [120, Part I (1971)℄, using the level of abstration of Boolean algebras withoperators (BAO's for short) mentioned several times above impliitly. In the literature theabove outlined area involving residuation, onjugates, the slashes =; n, /; ., Æ et. (related e.g.to Lambek alulus, linear logi) is often referred to as BAO-theory [beause it goes bak to thehistorial paper J�onsson-Tarski [142℄ (entitled BAO's) the abstrat of whih appeared in 1948℄.Madar�asz [165℄ refutes a onjeture in the original 1952 version of the histori paper J�onsson-Tarski [142℄.771 This was a onjeture whih inuened the development of BAO theory andmodal logi until the publiation of [165℄ in a kind of misleading way.772 After this, [165℄elaborates (i) a syntax-semantis duality theory for not neessarily normal modal logis, and(ii) a representation theory for all BAO's (inluding non-normal ones).On the importane, \omnipresene" and literature of duality theories:For a disussion of this subjet we refer to AMN [18℄ pp. 1098-1105, but here we also notethe following.Further examples, appliations, explanations and motivation for duality theories i.e. ad-jointness an be found in the following referenes. Most of the expository works on at-egories emphasize that adjoint situations (hene duality theories) are extremely importantfor (almost) the whole of mathematis and that besides this they turn out to be a su-essful vehile for unifying and deepening mathematial thought.773 Cf. Guitart [111℄, MaLane [159℄, Goldblatt [101℄, Handbook of Categorial Algebra [50℄, Barr-Wells [41, x1.9, p.769Though the residual of f is its quasi-inverse, the onjugate of f is not a quasi-inverse (but the dual ofa quasi-inverse). E.g. if  is a omplemented ((�(x)) = �(x)) losure operator on a Boolean algebra (f.Fig.104) then  is its own onjugate, f. Henkin-Monk-Tarski [120, Part I, p.175℄, while the residual � of  isthe interior operator �(x) = �(�x) naturally orresponding to .770In this paper, though the residuals \=", \n" are de�ned, the lattie we are working in is not required evento be distributive.771The onjeture in question says that all BAO's are term-de�nitionally equivalent with normal BAO's.Methodologial onsequenes of this onjeture are the onjetures that (i) the representation theory of normalBAO's provides a representation theory of all BAO's, and (ii) the theory of normal BAO's provides a theoryfor all BAO's hene investigating non-normal BAO's is superuous. These ((i),(ii)) were also disproved, f.e.g. Thm.3.6 (pp.79-80) in [165℄. But f. also the remark mentioning Goldblatt on p.78 immediately abovex 3 therein. (Cf. also items 5.6, 5.12, 5.17 there.) Naming the refuted onjeture in the 1952 version of [142℄remained impliit in [165℄ (for ertain onsiderations). The refutation of the onjeture in question is disussedin more detail in Andr�eka-Madar�asz-N�emeti-Sain [27℄, items (*2), 3.13-3.15.772The onjeture itself was removed from the new version of the paper but the formulation of its method-ologial onlusions remained there, f. [142, p.379 lines 10-7 bottom up℄.773Typial examples of this are e.g. Lawvere [153℄, Ma Lane [159℄ (but almost all the remaining referenessay this with di�erenes only in emphasis).



A.3 Algebrai logi as a duality theory A-1750{63℄, Freyd-Sedrov [88℄, Ad�amek et al. [2℄, [3℄, Varadarajan [268℄, Lawvere-Shanuel [156℄,Nel [201℄, Pelletier-Rosik�y [210℄, Dimov-Tholen [72℄, Janelidze [139℄, Davey-Priestley [67℄,Marx [185, Fig.1.2 (p.12) and x2.2 (. . . \duality theory")℄ and Mikul�as [191, x1.3 \Bridge be-tween. . . "(p.18)℄. Several examples of appliation of duality theories and similar algebraiideas in physis an be found in Shafarevih [233℄ f. e.g. Example 2 in x21 or Example 8 in x5,or the parts on groups of symmetry and laws of nature, or on elementary partiles and grouprepresentations in x18 item E, or the Galois theory of linear di�erential equations in x18 itemB. The study of duality theories is an ative, fruitful and steadily growing branh of math-ematis and mathematial physis nowadays. To illustrate this we mention only (i-v) below.(i) The duality between not-neessarily normal Boolean algebras with operators (non-normalBAO's for short) on the one side and partial Kripke-frames on the other was disovered onlyreently774, f. Madar�asz [165℄. This duality extends to a duality for non-normal modal logiswith modalities of higher ranks. (Cf. e.g. Marx-Venema [186℄ or Blakburn et at. [48℄ for the lat-ter.) Further duality results relevant to the present work are in Madar�asz [161, 164, 166, 170℄.(ii) The results in the very reent Hirsh-Hodkinson book [129℄ ontains new developmentson dualities under the name \representation theorems". (iii) The reent duality paper Gold-blatt [103℄. (iv) Makkai's duality for ultra-ategories and �rst-order-logi theories [179℄. (v)As a further illustration that duality theories are dynamially evolving with appliations inphysis, we inlude here a small sample of further referenes: Stinespring [239℄, Sankaran [229℄,Joyal-Street [144℄, Shauenburg [230℄, Gootman-Lazar [105℄.As we indiated in Remark A.1.1 item (II), footnote 753 on p.A-2 herein, and in foot-note 1077 on p.1079 of AMN [18℄ the appliation areas range from geometry, analysis, algebra,through to sheaves, omputability, logi and other things.
A.3 Algebrai Logi as a duality theory, in analogy with the onesin the present workThere is a methodologial onnetion here with algebrai logi (for the latter f. e.g.Madar�asz [170℄, Andr�eka-N�emeti-Sain [31℄), Madar�asz [161℄, [165℄, [164℄, [167℄, Madar�asz-Sayed [178℄ as follows.In algebrai logi, a logial system L is a tuple L = hFm; : : : ;`i whih, in some sense, islose to a ertain intuitive oneption of logi. Then a funtion Alg is de�ned whih with eahlogi L assoiates a lass Alg(L) of algebras. The idea is that Alg(L) is a mathematially morestreamlined objet than L, while L is loser to a ertain intuition. Therefore it is worthwhileto develop a so-alled duality theory \Logial systems"�! �\Classes of algebras" whih enablesus to \translate" problems and results in both diretions f. Andr�eka-N�emeti-Sain [31℄, andMadar�asz [170℄.775For disussing the ase of our present theory, let G and M be the funtions as de�nedabove. Then our frame models M are in analogy with logial systems L, M G7�! GM isin analogy with the funtion L 7! Alg(L) and M is in analogy with the onstrution of774but already reeives appliations e.g. in onnetion with partial orretness of programs775This methodology has been further re�ned in Madar�asz [161, 165, 164, 166℄. Its algebrai \side" has beenfurther explored in Madar�asz [163, 167℄, Madar�asz-Sayed [178℄.



A-18 APPENDIX Aa logial system from a lass of algebras (whih we did not reall from Algebrai Logi).Indeed, as in the ase of algebrai logi, M is also lose to a ertain intuitive piture of bodies,motion, observation et, while GM is a mathematially more streamlined objet. (Just asour geometries GM (M 2 Mod(Th)) form a ategory the natural way, the same applies tothe Alg(L)'s [for L 2 Logis℄. I.e. the Alg(L)'s form a ategory.) In this onnetion f. theobservational/theoretial distintion in the introdution to Chapter 4, e.g. p.129.To pursue the analogy, for many logis, Alg(L) is a lass of ylindri algebras (e.g.this is the ase for lassial �rst-order logi). It is ustomary to investigate \reduts" ofAlg(L) e.g. a ertain redut of Alg(L) is a lass of Boolean algebras, while another is alass of distributive latties. The experiene is that investigating these reduts helps usin understanding the behavior of Alg(L) and even the original objet L itself. In analo-gous manner, in relativity theory it seems to be interesting to investigate reduts of GM oneG1M = hMn;L; LT ;LPh;LS;2;�;Bw ;?r; T i of whih is obtained by omitting g and eq whileanother one G2M = hMn;L; LT ;LPh;LS;2;�;Bw ;?ri is obtained by omitting (or forgetting)g, T and eq.A point to make here is the observation that none of the two worlds (that of L and thatof Alg(L)) is better than the other. The useful and illuminating thing is that we an movebetween the two (without making one superior to the other). Similar observation applieshere to M and GM, the important thing is that we an reonstrut one from the other (i.e.move between them) without thinking that one is superior and the other should be forgottenforever. Reent results in the above kind of algebrai logi, relevant to the present work, are ine.g. Madar�asz [161, 165, 164, 166, 163, 170, 167℄, Madar�asz-N�emeti [176℄, Andr�eka-Madar�asz-N�emeti [23℄.Appliations of duality theories to de�nability theory (as used in the present work) are e.g.in Madar�asz [167, 164, 166, 163℄, Madar�asz-Sayed [178℄, Hoogland [134℄.The onnetions between our duality theories, representation theorems776, adjoint funtorsand the subjet of the logial onnetions between physial and mathematial theories willbe further disussed in a later work (f. [171℄). But we emphasize already here the following:Duality theories, adjoint situations, representation theorems are di�erent words for the samething. One uses di�erent words for putting the emphasis on di�erent aspets of the (same)subjet.777

776f. e.g. Madar�asz [165℄ for a representation theorem in this spirit777Baez [38℄, too, treats duality theories, representation theorems and adjointness as belonging together. Healso writes about these onepts being important for physis.



LIST OF AXIOMS AND AXIOM SYSTEMS A-19List of axioms and axiom systemsConvention: In this list the axiom systems (i.e. theories) to be realled will be boxed in. Theonly purpose of this is to make searhing in the list easier.(1) Main axiom systemsBasax def= fAx1;Ax2;Ax3;Ax4;Ax5;Ax6;AxE g (f. p.23), where:Ax1 G = Eul(n;F), p.18.Ax2 Obs [ Ph � Ib, p.20.Ax3 (8h 2 Ib)(8m 2 Obs) trm(h) 2 G, p.20.Ax4 (8m 2 Obs) trm(m) = �t, p.20.Ax5 (8m 2 Obs)(8` 2 G) �ang2(`) < 1 ) (9k 2 Obs) ` = trm(k) andang2(`) = 1 ) (9ph 2 Ph) ` = trm(ph)�, p.22.Ax6 (8m; k 2 Obs) Rng(wm) = Rng(wk), p.22.AxE (8m 2 Obs)(8ph 2 Ph) vm(ph) = 1, p.23.Newbasax def= (Basax n fAx6;Ax3;AxE g) [ fAx600;Ax601;Ax30;AxE0 g =fAx1;Ax2;Ax30;Ax4;Ax5;Ax600;Ax601;AxE0 g (f. p.191 of AMN [18℄ and p.122herein), where:Ax600 (8m; k 2 Obs) wm[trm(k)℄ � Rng(wk), p.110.Intuitively, observer k sees all those events whih are seen by another observer m on k'slife-line.Ax601 (8m; k 2 Obs) Dom(fmk) 2 Open, p.110 herein and p.190 of AMN [18℄.Ax30 (8h 2 Ib) (trm(h) 2 G [ f;g ^ (9k 2 Obs)trk(h) 6= ;), p.109.AxE0 (8m 2 Obs)(8ph 2 Ph)(trm(ph) 6= ; ) vm(ph) = 1), p.191 of AMN [18℄.m �! b def() trm(b) 6= ;, p.110.Bax def= (Newbasax n fAx5;AxE0 g) [ fAx5Obs;Ax5Ph;AxE00;AxE01 g =fAx1;Ax2;Ax30;Ax4;Ax5Obs;Ax5Ph;Ax600;Ax601;AxE00;AxE01 g (f. p.219 ofAMN [18℄ and also p.121 herein), where:Ax5Obs (9ph)(8`)�m �! ph ^ [ang2(`) < vm(ph) ) (9k)` = trm(k)℄�, p.218 of AMN [18℄.Ax5Ph ang2(`) = vm(ph) ) (9ph)` = trm(ph), p.219 of AMN [18℄.



A-20 LIST OF AXIOMS AND AXIOM SYSTEMSAxE00 (m �! ph1; ph2) ) vm(ph1) = vm(ph2), p.218 of AMN [18℄.AxE01 vm(ph) 6= 0, p.115.Flxbasax def= Bax +AxE02 =fAx1;Ax2;Ax30;Ax4;Ax5Obs;Ax5Ph;Ax600;Ax601;AxE00;AxE01;AxE02g (f. p.428of AMN [18℄ and p.121 herein), where:AxE02 (8m; k 2 Obs)(8ph; ph1 2 Ph)[(m �! ph ^ k �! ph1) ) vm(ph) = vk(ph1)℄, p.427 of AMN [18℄.Bax� def= (Bax n fAx5Obs;Ax5Ph;AxE00 g) [ fAx5Obs;Ax5Ph;AxP1 g =fAx1;Ax2;Ax30;Ax4;Ax5Obs;Ax5Ph;Ax600;Ax601;AxP1;AxE01 g (f. p.479 ofAMN [18℄ and p.117 herein), where:AxP1 Intuitively, starting out from one point p of spae-time, in every diretion (forwards)there is at most one \speed of light" (i.e. photon-trae), formally:(8m 2 Obs)(8ph1; ph2 2 Ph)(8d 2 diretions)778 �(ph1 and ph2 are moving forwards indiretion d as seen by m and trm(ph1) \ trm(ph2) 6= ;) )trm(ph1) = trm(ph2)�, p.115.Ax5Ph Intuitively, from any point p of spae-time in any diretion there is a photon movingforwards in that diretion, f. Fig.138 (p.477) of AMN [18℄, formally:(8m 2 Obs)(8p 2 nF)(8d 2 diretions)(9ph 2 Ph)[p 2 trm(ph) ^ (ph is moving forwards in diretion d as seen by m)℄,p.115.Ax5Obs Intuitively: Let us �x an observer m, a diretion d, and a point p of spae-time. Wewill speak about things moving forwards in diretion d through point p as seen by m(without mentioning all this data). Assume there is a photon moving in diretion d.Then there is a photon in the same diretion whih is limiting in the following sense: Forall speeds less than this limiting photon, there is an observer moving with this speed, f.Fig.139 (p.478) of AMN [18℄. Formally:(8m 2 Obs)(8p 2 nF)(8d 2 diretions)�h(9ph 2 Ph)(p 2 trm(ph) ^ (ph is moving forwards in d as seen by m)i )h(9ph 2 Ph)�p 2 trm(ph) ^ (ph is moving forwards in d as seen by m) ^(8� 2 F)(0 � � < vm(ph) ) (9k 2 Obs)(p 2 trm(k) ^ vm(k) = � ^(k is moving forwards in diretion d as seen by m))�i�, p.117.Pax def= fAx1;Ax2;Ax30;Ax4;Ax5Obs��;Ax600;Ax601 g (f. p.482 of AMN [18℄ andp.109 herein) where:778Let us reall that diretions are (nonzero) spae-vetors, i.e. diretions = n�1F n f�0g, f. p.108.



LIST OF AXIOMS AND AXIOM SYSTEMS A-21Ax1, Ax2, Ax30, Ax4, Ax600, Ax601 have already been listed.Ax5Obs�� Intuitively, for eah diretion d there is a positive � suh that through any pointthere are observers moving forwards in diretion d with all speeds smaller than �. Morepreisely, for any observer m and for any plane P parallel with �t there is � 2 +F suhthat for any straight line ` in P , with ang2(`) < �, ` is the trae of an observer (as seenby m, of ourse). In other words:(8m 2 Obs)(8d 2 diretions)(8p 2 nF)(9� 2 +F)(8q 2 nF)hspae(p)� spae(q) = Æ � d for some Æ 2 F ) (80 � " < �)(9k 2 Obs)(k moves forwards in diretion d with speed " and q 2 trm(k))i, p.109.� � �Assume Ax1, Ax2, Ax30, AxP1. Let m 2 Obs. Thenm : nF � diretions o�! F [ f1gis a partial funtion suh that m(p; d) is de�ned iff m sees a photon at point p moving forwardsin diretion d, and m(p; d) is the speed of this photon,779 f. p.116 herein and pp. 473, 535 ofAMN [18℄.Let Th be one of our theories suh that Th j= fAx1;Ax2;Ax30;AxP1 g. ThenTh� def= Th + m(p; d) <1, p.117.Next, we turn to listing the Reihenbahian versions of our theories. For this we reallsome notation.Assume Bax�. By Thm.4.3.17 (p.488) of AMN [18℄, the speed m(p; d) does not dependon p. This motivates the following: m(d) def= m(�0; d);f. p.488 of AMN [18℄. Intuitively, m(d) is the (square of the) speed of light in diretion d asseen by observer m.Notation: Let m 2 Obs and d 2 diretions. ThenTm(d) def= 8<: 1=pm(d) if 0 6= m(d) <1;1 if m(d) = 0;0 if m(d) =1;f. p.555 of AMN [18℄. Tm(d) is the reiproal of the \speed of light", i.e. it is the time neededfor a photon to over the unit distane in diretion d (as seen by observer m).Reih0(Bax) def= Bax� +R(AxE00) (f. p.562 of AMN [18℄), whereR(AxE00) Ax(p ) and(8d; d1 2 diretions)[Tm(d) + Tm(�d) = Tm(d1) + Tm(�d1)℄, p.557 of AMN [18℄.779There is only one suh speed beause of AxP1.



A-22 LIST OF AXIOMS AND AXIOM SYSTEMSReih0(Flxbasax) def= Bax� +R(AxE02) (f. p.562 of AMN [18℄), whereR(AxE02) (8m; k 2 Obs)(8d; d1 2 diretions)Tm(d) + Tm(�d) = Tk(d1) + Tk(�d1), and Ax(p ), p.557 of AMN [18℄.Reih0(Newbasax) def= Bax� +R(AxE) (f. p.562 of AMN [18℄), whereR(AxE) Ax(p ) and(8m 2 Obs)(8d 2 diretions)Tm(d) + Tm(�d) = 2, p.557 of AMN [18℄.Reih0(Basax) def= Reih0(Newbasax) +Ax6, p.562 of AMN [18℄.Let Th 2 fBax;Flxbasax;Newbasax;Basax g. ThenReih(Th) def= Reih0(Th) +R�(E) (f. p.576 of AMN [18℄), whereR�(E) (8m 2 Obs)(9r 2 F)(8d1; d2; d3 2 diretions)hd1 + d2 + d3 = �0 )jd1j � Tm(d1) + jd2j � Tm(d2) + jd3j � Tm(d3)jd1j+ jd2j+ jd3j = ri; p.574 of AMN [18℄:
(2) Axioms onerning the diretion of ow of timeThe binary relation " � Obs � Obs is de�ned as follows.m " k def() fkm(1t) t > fkm(�0) t; p.176:Intuitively, m " k means that m sees k's lok running forwards. Cf. p.176. Further, ifm; k 2 Obs then m STL k means that m sees k moving more slowly than light (f. p.91).Ax(") (8m;m0 2 Obs) ( trm(m0) = �t ) m " m0 ), p.296 of AMN [18℄.Ax("") (8m; k 2 Obs)m " k, p.176.Ax(""0) (8m; k 2 Obs) (m �! k ! m " k), p.176.Ax(""00) (8m; k 2 Obs) (m STL k ! m " k), p.176.



LIST OF AXIOMS AND AXIOM SYSTEMS A-23(3) Auxiliary axiomsReall that Triv = f f : f is an isometry of nF and f(1t)� f(�0) = 1t g ;f. p.81.Ax(Triv) (8m 2 Obs)(8f 2 Triv)(9k 2 Obs) fmk = f , p.82.Ax(Triv t) (8m 2 Obs)(8f 2 Triv) �f [�t ℄ = �t ) (9k 2 Obs) fmk = f�, p.82.Ax(Triv t)� Assume we are given an observer m and a Triv transformation f that leavesthe time-axis �xed. Then m has a brother, all it k, suh that m thinks that (i) theoordinate axes of k are the f -images of the original oordinate axes �xi, and (ii) thelok of k runs forwards, formally:(8m 2 Obs)(8f 2 Triv) [ f [�t ℄ = �t )(9k 2 Obs)(8i 2 n)( fkm[�xi℄ = f [�xi℄ ^ m " k ) ℄, p.157.Ax(k) (8m; k 2 Obs)�trm(k) k �t ) (fmk is an isometry)�, p.82.Ax(k)� (8m; k 2 Obs \ Ib)[ trm(k) = �t ) (fmk = h Æ I; for some expansion h and isometry I) ℄, p.167.Ax(p ) (80 < x 2 F)(9y 2 F) y2 = x, p.55.Ax(r) (Axiom shema for real-losed �elds)Ax(p ) + f�2n+1 : n 2 ! g, where8x0 : : :8xn9y [xn 6= 0 ! (x0 + x1 � y + : : :+ xn � yn = 0)℄;(�n)p.301 of AMN [18℄.Ax(diswind) (Axiom of disjoint windows)(8m; k 2 Obs \ Ib) [(m �! ph ^ k �! ph) ) m �! k℄, p.157.(4) Axioms onerning measuring distanesAx(eqtime) Observers with ommon life-line agree on time-like distanes, i.e.(8m;m0 2 Obs)�trm(m0) = �t ) (8p; q 2 �t ) jp� qj = jfmm0(p)� fmm0(q)j�, p.77.Ax(eqspae) Observers agree on spatial distanes, i.e.(8m; k 2 Obs)(8p; q 2 nF)� (pt = qt ^ fmk(p) t = fmk(q) t) ) jp� qj = jfmk(p)� fmk(q)j�,p.83.Ax(eqm) Inertial observers agree on distanes, i.e.(8m; k 2 Obs \ Ib)(8i; j 2 n)(8p; q 2 �xi)(8p0; q0 2 �xj)�[wm(p) = wk(p0) ^ wm(q) = wk(q0)℄ ) jp� qj = jp0 � q0j�, p.145.



A-24 LIST OF AXIOMS AND AXIOM SYSTEMS(5) Axiom systems Pax+, Pax++, Pax++, Pax+++ , Wax, Wax+Ax(Bw) (8m; k 2 Obs)[m �! k ) (fmk is betweenness preserving) ℄, p.289.Ax~ B = Obs [ Ph, p.125.Ax(1ph) (8m 2 Obs)(8ph; ph0 2 Ph)� [ �0 2 trm(ph) \ trm(ph0) ^ ( ph and ph0 move in thesame diretion as seen by m ) ^ vm(ph) =1 ℄ ! vm(ph0) =1�, p.289.Intuitively, no observer an emit simultaneously in the same diretion two photons onewith in�nite speed and the other one with �nite speed.Ax(ext) (8m; k 2 Obs) [wm = wk ) m = k℄ ^(8b; b1 2 B nObs)(8m 2 Obs) [trm(b) = trm(b1) ) b = b1℄,p.125.Ax(Ph) (8m 2 Obs)(8p 2 nF)(9ph1; ph2 2 Ph) trm(ph1) \ trm(ph2) = fpg, p.328.Pax+ def= Pax+AxE01 +Ax(Bw)+Ax(1ph) +�[Ax(eqtime) ^ (8m; k 2 Obs)(80 < i 2 !) trm(k) 6= �xi ℄ _ Ax(eqm)�,p.289.Pax++ def= Pax+ +Ax(eqm)+Ax(ext)+Ax~, p.A-4.Pax++ def= Pax+ +Ax(diswind), p.A-8.Pax+++ def= Pax++ +Ax(diswind), p.A-13.Wax def= fAx1;Ax2;Ax3;Ax4;Ax6;Ax(Bw);Ax(Ph) g, p.328.Wax+ def= Wax+Ax(ext)+Ax~+Ax(1ph)+ (8m; k)(fmk 2 Aftr), p.A-4.(6) Symmetry axiomsAx(symm0) (8m; k 2 Obs)(9m0; k0 2 Obs)�trm(m0) = trk(k0) = �t ^ fmk = fk0m0�, p.75.Ax(symm) is de�ned to be Ax(symm0)+Ax(eqtime), p.77.Ax(syt0) (8m; k 2 Obs)�trm(k) 6= ; )(8p 2 �t ) jfmk(p) t � fmk(�0) tj = jfkm(p) t � fkm(�0) tj�, p.81.Ax(syt00) (8m; k 2 Obs) [fmk(�0) = �0 ) jfmk(1t)tj = jfkm(1t)tj℄, p.90.Ax(syt)� fmk(�0) = �0 ) fmk(1t)t = fkm(1t)t, p.721 of AMN [18℄.



LIST OF AXIOMS AND AXIOM SYSTEMS A-25Ax(syx)� (m; k are in pre-standard on�guration780) ) jfmk(1x)xj = jfkm(1x)xj, p.725 ofAMN [18℄.Ax(speedtime) (8m; k;m0; k0 2 Obs) �vm(k) = vm0(k0) )(8p 2 �t ) jfmk(p) t � fmk(�0) tj = jfm0k0(p) t � fm0k0(�0) tj�, p.83.Ax21 (8m; k;m0 2 Obs)(9k0 2 Obs)fmk = fm0k0, p.87.Ax22 (8m; k;m0; k0 2 Obs)(trm(k) = trm0(k0)!there is an isometry N of nF suh that N [�t ℄ k �t and fmk = fm0k0 ÆN), p.350 of AMN [18℄.Ax41 (8m; k 2 Obs)(9k0 2 Obs)(trm(k) = trm(k0) ^ fmk0 = fk0m), p.351 of AMN [18℄.Ax42 (8m; k 2 Obs) (there is an isometry N of nF suh thatN [�t ℄ k �t and fmk = N Æ fkm ÆN), p.351 of AMN [18℄.Ax(!)0 is de�ned to be the disjuntion of the following symmetry axioms: Ax(syt0),Ax(symm), Ax(speedtime), Ax41+Ax(eqtime), Ax42, Ax21+Ax(eqtime),Ax22, p.180.Ax(!)00 is de�ned to be the disjuntion of the following symmetry axioms: Ax(!)0,Ax(eqspae), Ax(eqm)+Ax(Triv t)�, p.180.Ax(!)℄ is de�ned to be Ax(!)0+Ax(Triv t)�+Ax(p ), p.180.Ax(!)℄℄ is de�ned to be Ax(!)00 +Ax(Triv t)� +Ax(p ), p.180.Ax(symm)y is de�ned to be Ax(symm)+Ax(Triv)+Ax(k), p.100.Ax(!) Ax21 ^Ax22 ^Ax41 ^Ax42, p.351 of AMN [18℄.Ax(!�) Ax21 _Ax22 _Ax41 _Ax42, p.351 of AMN [18℄.
(7) Symmetry axioms adequate for Reihenbahian theoriesR+(Ax eqsp) Intuitively, the thikness of spaeships do not hange in the diretion orthog-onal to movement (f. pp. 608{614 of AMN [18℄), formally:Assume m; k 2 Obs suh that m �! k. Assume P;Q are parallel planes of nF suh thatthey are parallel with both �t and trm(k). ThenEudist(P;Q) = Eudist(fmk[P ℄; fmk[Q℄); p.614 of AMN [18℄, whereEudist(H;H1) def= inf f kp� qk : p 2 H and q 2 H1 g :780m and k are said to be in pre-standard on�guration iff fmk(�0) = �0 and fmk[Plane(�t; �x)℄ = Plane(�t; �x). Cf.Def.4.6.5 (p.602) of AMN [18℄ and Fig.201 (p.603) of AMN [18℄.



A-26 LIST OF AXIOMS AND AXIOM SYSTEMSR(Ax eqsp) Intuitively, the thikness of spaeships do not hange in the diretion orthogonalto movement (f. pp. 608{614 of AMN [18℄), formally:Assume m and k are in pre-standard on�guration781. Let P be a (2-dimensional) planeparallel with Plane(�t; �x). Then the distane between P and Plane(�t; �x) is the same as thedistane between fmk[P ℄ and fmk[Plane(�t; �x)℄. Formally,Eudist(P;Plane(�t; �x)) = Eudist(fmk[P ℄; fmk[Plane(�t; �x)℄); p.611 of AMN [18℄, whereEudist(H;H1) def= inf f kp� qk : p 2 H and q 2 H1 g ; f. p.609 of AMN [18℄:See Fig.205 on p.611 of AMN [18℄.R(Ax syt0) Intuitively m and k literally see, via photons, eah other's loks slowing downwith the same rate, see Fig.207 (p.616) of AMN [18℄, formally:(8m; k 2 Obs)[fmk(�0) = �0 )(8p 2 �t )jviewm(fkm(p))j = jviewk(fmk(p))j℄ (f. p.615) of AMN [18℄,where viewm def= f hp; qi 2 nF � �t : pt � qt and (9ph 2 Ph) p; q 2 trm(ph) g, f. Fig.206(p.615) of AMN [18℄.R(sym) is de�ned to be R(Ax eqsp)+ R(Ax syt0), p.616 of AMN [18℄.(8) Twin paradoxLet m; k 2 Obs. Then m STL k means that m sees k moving more slowly than light, f.p.91.Ax(TwP) (8m; k1; k2 2 Obs)(8p; q; r 2 nF)� [m STL k1 ^ m STL k2 ^ pt < qt < rt ^fpg = trm(m) \ trm(k1) ^ fqg = trm(k1) \ trm(k2) ^ frg = trm(m) \ trm(k2) ℄ )jpt � rtj > jfmk1(p) t � fmk1(q) tj+ jfmk2(q) t � fmk2(r) tj �, p.92(f. Fig.42 on p.93).(9) Axiom systems Sperel, Flxsperel, BaCo, Compl, NewtK�, NewtKSperel def= Basax +Ax(symm)y, p.100.Flxsperel def= Bax +Ax6+Ax(symm)y +AxE02, p.428 of AMN [18℄.Compl def= fAx(symm);Ax~;Ax(");Ax5+;Ax(ext);Ax(Triv t) g (f. p.298 ofAMN [18℄), whereAx5+ ` 2 SlowEul ) (9k 2 Obs) (` = trm(k) ^ m " k), p.297 of AMN [18℄.BaCo def= Basax +Compl, p.125 herein and p.298 in AMN [18℄.NewtK� def= Bax + Ax6 + Ax(symm)y + (8m 2 Obs)m = 1 (f. p.426 of AMN [18℄),where m is the speed of light for observer m, assuming Bax.NewtK def= NewtK� +Ax("")+Ax21, p.426 of AMN [18℄.781Cf. footnote 780 on p.A-25 for the notion of a pre-standard on�guration.



LIST OF AXIOMS AND AXIOM SYSTEMS A-27(10) Loal versions of our axiom systems for relativityThese axiom systems are introdued to prepare generalization toward general relativity.782 Thekey idea is that observer m uses only a subset Dom(w�m) � nF of nF for oordinatizing eventsas this is explained at the end of x3 and in muh more detail in AMN [18, x4.9℄. The totalworld-view funtions wm are replaed with their partial versions w�m, wherew�m def= fhp; ei 2 wm : e 6= ; g :This move will ause \partiality" to dominate our loal theories. Therefore we use the adje-tives \loal" and \partial" interhangeably. (\Loal" refers more to the philosophial aspetswhile \partial" to the tehnial aspets of our approah.)783 The partial version of fmk isf�mk :def= (w�m) Æ (w�k )�1:We obtain the loal version of an axiom by replaing all wm's in it with their partial versions(the w�m's) and relativizing the whole axiom to Dom(w�m) (or to the domains if there were moreobservers involved). E.g. Ax4 said trm(m) = �t, by relativizing this statement to Dom(w�m)we obtain its partial versionAx4par trm(m) = �t \Dom(w�m) 6= ;.Lo(Bax�)def= fAx1;Ax2;Ax3par0 ;Ax4par;Ax5parObs;Ax5parPh;Ax600;Ax6par01 ;AxP1;AxE01 g.whereAx3par0 (8h 2 Ib)(9` 2 G)[ trm(h) = ` \Dom(w�m) or trm(h) = ; ℄.Ax5parObs Intuitively, everywhere in Dom(w�m) in eah diretion d m sees a photon ph whih islimiting in the sense that for all speeds v < vm(ph) there is an observer k moving withspeed v in diretion d. Formally:(8p 2 Dom(w�m))(8d 2 diretions)�h(9ph 2 Ph)(p 2 trm(ph) ^ (ph is moving forwards in d as seen by m))i )h(9ph 2 Ph)�p 2 trm(ph) ^ (ph is moving forwards in d as seen by m) ^(8� 2 F)(0 � � < vm(ph) ) (9k 2 Obs)(p 2 trm(k) ^ vm(k) = � ^(k is moving forwards in diretion d as seen by m))�i�.Ax5parPh Intuitively, everywhere in Dom(w�m) there are photons moving forwards, in all dire-tions. Formally:(8p 2 Dom(w�m))(8d 2 diretions)(9ph 2 Ph)[ p 2 trm(ph) ^ (ph is moving forwards in diretion d as seen by m)℄.Ax6par01 (8m; k 2 Obs)Dom(f�mk) 2 Open.I.e., we replaed fmk with f�mk in this axiom.782Similar preparations are e.g. x4.7 on geodesis, the setion on aelerated observers in AMN et al. [24℄{[26℄,and the Reihenbahianizations of our theories in AMN [18, SS4.5{4.7℄.783We use \loal" in the same sense as Einstein did.



A-28 LIST OF AXIOMS AND AXIOM SYSTEMSLo(Bax��) = Lo(Bax�) + \the speed of photons is not 1"We use the following extra axiom in our loal no FTL theorem in Chapter 3. The axiomsays that f�mk � S(p; ") preserves betweenness both forward and bakward, as follows.Ax(syBw)par (8p 2 Dom(f�mk))(9" 2 +F)(8q; r; s 2 S(p; ")) �Betw(q; r; s), Betw(f�mk(q); f�mk(r); f�mk(s))�.(11) Geometrial axioms and axiom systemsAxioms A0{A4 and P1, P2, Pa below apply to geometries with reduts hMn; Bwi orhMn; olli. In the ase of \hMn; Bwi" oll is a de�ned relation, f. p.159. The new universe(or sort) lines is (expliitly) de�ned over hMn; olli on p.297. For H � Mn, Plane0(H) isintuitively the \n-long losure of H under oll" (f. Def.4.2.15 on p.160), where throughout nis the dimension of our geometry and n � 2.A0 (8a; b;  2 Mn)[ oll(a; b; )$ (9` 2 lines) a; b;  2 ` ℄, p.298.A1 (8a; b 2 Mn)( a 6= b ! (9!` 2 lines) a; b 2 ` ), p.298.A2 Intuitively, if H is a less than n + 2 element subset of Mn then the \n-long losure"Plane0(H) of H under oll will be losed under oll, hene the plane Plane(H) generatedby H oinides with Plane0(H) (f. Def.4.2.15, p.160), formally:(8H � Mn)�( jHj � n+ 1 ^ a; b 2 Plane0(H) ^ oll(a; b; ) ) !  2 Plane0(H)�, p.298.A3 Intuitively, if i � n and H is an i + 1 element independent subset784 of Mn then there isexatly one i-dimensional plane785 that ontains H, formally:(8H;H 0 � Mn)�( jHj = jH 0j � n + 1 ^ (both H and H 0 are independent) ^ H �Plane0(H 0) ) ! Plane0(H) = Plane0(H 0)�, p.298.A4 Mn is an n dimensional plane, p.298.In onnetion with axioms P1, P2 below we note that the relation of parallelism k on linesis de�ned the usual way in Def.4.5.16 on p.298.P1 (Eulid's axiom)(8` 2 lines)(8a 2 Mn)(9!`0 2 lines)(a 2 `0 ^ ` k `0), p.299.P2 (` k `0 ^ `0 k `00) ! ` k `00, p.299.ag def= fA0;A1;A2;A3;A4;P1;P2g, p.299. ag is the axiom system for aÆne geometries.For a; b; ; d 2 Mn, the abbreviation ha; bi k h; di means that a 6= b,  6= d, and there are`; `0 2 lines suh that a; b 2 `, ; d 2 `0 and ` k `0, f. p.300.784Let H � Mn. H is alled independent iff (8e 2 H) e 62 Plane0(H n feg), f. p.298.785Let P �Mn. P is alled an i-dimensional i� there is an i+1 element independent subset H of Mn suhthat Plane0(H) = P , where for the notion of an independent subset f. footnote 784. Cf. Def.4.5.15(ii) onp.298.



LIST OF AXIOMS AND AXIOM SYSTEMS A-29Pa (Pappus-Pasal property)(8`; `0 2 lines)(8a; b;  2 ` n `0)(8a0; b0; 0 2 `0 n `)[ ( ha; b0i k ha0; bi ^ ha; 0i k ha0; i ) ! hb; 0i k hb0; i ℄;see Fig.109, p.300.pag def= ag +Pa, p.300. pag is the axiom system for Pappian aÆne geometries.Axioms B1{B3 below apply to geometries with reduts hMn; Bwi. (oll is a de�ned rela-tion.)B1 Bw(a; b; ) ! ( a 6= b 6=  6= a ^ Bw(; b; a) ^ :Bw(b; a; ) ), p.301.B2 a 6= b ! (9)Bw(a; b; ), p.301.B3 (Pash's Law)Intuitively, if a line ` lies in the plane determined by a triangle ab, and passes betweena and b but not through , then ` passes between a and , or between b and , formally:(:oll(a; b; ) ^ ` � Plane0(fa; b; g) ^ (9d 2 `)Bw(a; d; b) ) !(9e 2 `)(Bw(a; e; ) _ Bw(b; e; )), p.302 (f. Fig.110 on p.302).opag def= pag + fB1;B2;B3g, p.302. opag is the axiom system for orderedPappian aÆne geometries.Axioms L1; : : : ;L10 below apply to geometries with redutshMn;L; LT ;LPh;LS;2;�;Bw ;?r; eqi:Further, oll is a de�ned relation and it is de�ned over hMn; Bwi, f. p.159, and lines is thenew sort �rst-order de�ned from oll.L1 L � lines, p.326.L2 (8a 2 Mn)(9`; `0 2 LPh) ` \ `0 = fag, p.326.lopag def= opag + L1 + L2, p.326.L3 ( [ a � b ^ (Bw(a; b; ) _ Bw(a; ; b) ) ℄ ! a �  ) ^( [ a � b ^ (Bw(; a; b) _ Bw(a; ; b) ) ℄ !  � b ), p.330.L4 Intuitively, eq is (very) symmetri, formally:ha; bi eq h; di ! ( h; di eq ha; bi ^ hb; ai eq h; di ^ ha; ai eq h; i ), p.330.L5 eq is transitive, i.e.( ha; bi eq h; di ^ h; di eq he; fi ) ! ha; bi eq he; fi, p.330.L6 (For the intuitive meaning of this axiom see Fig.117 on p.330.)(8`; `0 2 L)(8o; e; e0; a; a0 2 Mn)�[ ` \ `0 = fog ^ e; a 2 ` ^ e0; a0 2 `0 ^he; e0i k ha; a0i ^ ho; ei eq ho; e0i ℄ ! ho; ai eq ho; a0i�, p.330.



A-30 LIST OF AXIOMS AND AXIOM SYSTEMSL7 (For the intuitive meaning of this axiom see Fig.118 on p.331.)(8` 2 LT [ LS)(8a; b; ; d; e; f 2 Mn) [ ( a; b; ; d 2 ` ^ha; bi k he; fi k h; di ^ ha; ei k hb; fi ^ h; ei k hd; fi ) ! ha; bi eq h; di ℄, p.331.L8 ?r is symmetri, i.e.(8`; `0 2 L) (` ?r `0 ! `0 ?r `), p.331.L9 ?r is losed under parallelism, i.e.(8`; `1; `2 2 L) [ ( ` ?r `1 ^ `1 k `2 ) ! ` ?r `2 ℄, p.331.L10 ?r is losed under taking limits, p.331.lopag+ def= lopag + L3 + L4 + L5 + L6 + L7 + L8 + L9 + L10, p.A-4(12) \Speed of light free" axiom systems for relativity(axioms and axiom systems used in Chapter 5 of AMN [18℄)Relnoph0 def= (Ax1{Ax4)786 + Ax6 + Ax21 + Ax41 + Ax(p ) + Ax(Triv) + Ax(k),p.705 of AMN [18℄.Ax(5nop) 8m; k (8� 2 +F)[� < vm(k) ) 9k0 (vm(k0) = �)℄, p.706 of AMN [18℄.The intuitive idea of Ax(5nop) is that if a ertain speed is realized by some observerthen the smaller speeds are also realized by some observers.Relnoph def= Relnoph0 +Ax(5nop), p.707 of AMN [18℄.Ax(5nop)� 8m (9 2 +F)(8� 2 +F)[� <  ) (9k)vm(k) = �℄, p.761 of AMN [18℄.Ax(5nop)�+ (8m)(9 > 0)(8`)[ang2(`) < ) (9k 2 Obs)` = trm(k)℄, p.763 of AMN [18℄.Relnoph� is obtained from Relnoph by replaing Ax(5nop) with Ax(5nop)�, p.761 ofAMN [18℄.Bax�nobs def= Bax� n fAx5Obsg+Ax(5nop)�, p.762 of AMN [18℄.Relnoph�� def= Relnoph� n fAx41g+Ax(symm), p.764 of AMN [18℄.Assume Ax1, Ax2, Ax30, AxP1. Let m 2 Obs. Thenm : nF � diretions o�! F [ f1gis a partial funtion suh that m(p; d) is de�ned iff m sees a photon at point p moving forwardsin diretion d, and m(p; d) is the speed of this photon,787 f. pp. 473, 535 of AMN [18℄. Further,for any m 2 Obs and d 2 diretions m(d) def= m(�0; d);f. p.488 of AMN [18℄. Hene, m : diretions o�! F [ f1g is a partial funtion. For axiomsand axiom systems not listed here we refer to the Index.786Ax1, Ax2, Ax3, Ax4.787There is only one suh speed beause of AxP1.
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SperelBaCo
BasaxNewbasax
BaxReih(Bax)�

Bax(P1)
Bax��++Bax��Bax n \photons" =fAx1;Ax2;Ax30;Ax4;Ax600;Ax601g
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Figure 138: The lattie of our theories introdued so far, where Th1 < Th2 means Th2 +m(p; d) < 1 + Ax(p ) j= Th1. Some parts of this lattie represent onjetures only (whileothers are theorems).



Index(?0)�, 204(?0)m, 207(9 !x) (x), 233(x; y), interval, 352+oe, 303, 304[oe, 303A��!B, 284nF, 15, 16nF1, 16nF2, 16k�k, A-14SK, 197?, 136, 140?!r , 161?ir, 162?0, 141?0-version of the Minkowskian geometry,204?�, 189?m, 207?r, 141?0r, 156?00r , 156?000r , 163�oe, 304�=, relation of isomorphism between stru-tures, 140�w�, weak de�nitional equivalene, 264�!�, 2`1 k `2 when `1; `2 2 lines, 298�p, 101�S , 147�T , 147�Ph, 147��!, 2, 284��!�, 21, 18ha; bi k h; di, 300� � �, A-14�m;p;d, 117h expr(x) : x 2 D i, 2�Mo; �Go; �M; �G, A-4�oe, 304 ��, 284j=, 3, 10

A f�! B, 1�FTLObs, 117j=OFG , 10!, 1pq, 36k, 39, 300kG, 140, 147�, 139��, 189�m, 2074, 347�, 346 (x=�), 231 (y), 231�, 159', A-3:Si2I Gi, 198, 201:S K, 197�(�), A-14", 176e', 102�w, 284h : M �!M0, 221m " k, 176nH, 1nF, 8, 16(nF) nF, 81jaj, 6jpj, 62+, 551, 6T1, 259T2, 259?, 141?r, 140���, 256�� , 255"-neighborhood, 177`1 k `2, 391i, 371t; 1x; 1y; 1z, 37A1, 298Aftr = Aftr(n;F), 101ag, 299A3, 298A-32



INDEX A-33A2, 298A4, 298ang2(`), 18A0, 298Aut(�), 86Aut(A), 102Aut(M), 86Aut(F), 102Ax1, 18Ax10, 18Ax2, 20Ax3, 20Ax3par, 122Ax4, 20Ax4par, 122Ax5, 22Ax6, 22Ax21, 87Ax(Bw), 289Ax(!)00, 180Ax(!)0, 180Ax(diswind), 157AxE, 23AxE01, 115Ax(eqm), 145Ax(eqspae), 83Ax(eqtime), 77Ax(ext), 125AxG, 7Ax30, 109Ax601, 110Ax600, 110Ax~, 125Ax(""), 176Ax(""0), 176Ax(""00), 176Ax(mild), 323AxOF, 6Ax(!)℄, 180Ax(!)℄℄, 180Ax5Obs, 117Ax5Obs��, 109Ax5Ph, 115AxP1, 115Ax(k), 82Ax(k)�, 167Ax(1ph), 289Ax(Ph), 328

Ax(speedtime), 83Ax(syBw)par, 123, A-28Ax(symm), 77Ax(symm)y, 100Ax(symm0), 75Ax(syt0), 81Ax(syt00), 90Ax(p ), 55Ax(Triv), 82Ax(Triv t), 82Ax(Triv t)�, 157Ax(TwP), 92Ax(""), 125B, 6B, 6B1, 301B2, 301B3, 302BaCo, 125BAO, A-16Basax, 23Basax geometry, 147Bax, 121Bax�0 , 115Bax�, 117Betw(p; r; q), 140Bw , 139Bw�, 189Bwm, 207 : Obs � nF � diretions �! F1, 116Ch(H), onvex hull of H � Mn, 175m, 121m(p; d), 116Coho;e0;:::;en�1i, 307ode, 249oll(a; b; ), 159Col(a; b; ), 277ollF; ollD, 299ColT ;ColPh;ColS, 277Conem;p, 116Det, 275det, 275diretions, 108Do�(m), 122Dom(R), 1d k d1, when d; d1 2 n�1F, 109eq, 144ha; bi eq h; di, 144



A-34 INDEXeqm, 207eq 0, 144eq i, 144eq�, 190Eul = Eul(n;F), 18Exp = Exp(n;F), 102expr(�), A-14F, 6, 16F1, 116f : A �! B, 1, 283F1 = hF; 0; 1;+;�i, 138F, 6, 16F, 6, 16f 2 := f Æ f , if f is a funtion, 286FM, 6f [A℄, A-7f Æ g, 1FF, 10Flxbasax, 121FM, 10, 282Fm, 3FM, 6fmk, 27f�mk, A-27fmk(p), 31Fm(K), 245Fm(Th), 294Foe, 303Foe, 303+F, 137f � C, 2f(x), 1f [X℄, 1G, 7G, 6g, 145g, pseudo-metri, 145Ge(Th), 147Ge0(Th), 326Ge?0(Th), 199g(e; e1), 145G1, 347GEO, 326geod, 23Geom(Th), 147GeR(Th), 346GeTa, 275G e(Th), A-7

Ge0(Th), 181Ge00(Th), 181GeWe , 275G, 283G0 :[ G1, 198Gm, 206G?0m , 207G : Mod(Th) �! Ge(Th), 283GM, 137G�M, 332G0M, 326G0M, 181G00M, 181G?0M , 199GRM, 147G-parallel, 140G � N , 207G �+ N , 207G3, 348G2, 348gm, 207GM, 137GM, 138g�, 189g2�, 101g2�(p; q), 101G4, 348Go;Mo, 327G5, 348g�, 346gR(e; e1), 147GTa, 274GTM, 215GWe , 274g(�; y; z); g(x;�; z); g(x; y;�), A-14I, 136Ib, 7Id, 2IdA, 2i-dimensional plane in hMn; Bwi, 298IK, 136j-dimensional plane, 37K is de�nable impliitly over L, 224k sees p, 110K � Vo, 222L, 139L1, 326L3, 330



INDEX A-35L6, 330L7, 331Linb = Linb(n;F), 101lines, de�ned sort of hMn; Bwi orhMn; olli, 297Lines = Lf. footnote 571 on p, 274L2, 326L9, 331Lm, 206LM, 140L�, 189LPh� , 189LS� , 189LT� , 189L4, 330L8, 331Lo(Th), 122Lo(Bax�), A-27Lo(Bax��), A-28lopag, 326lopag+, A-4Lor = Lor(n;F), 101L5, 330LPh, 138LPhm , 206LR, 147LS, 139LSm, 206LT , 138L10, 331LTm, 206M, 3M, 84M od(Th), A-7M; G; Mo; Go, A-8min, see footnote 308 on p, 145Mink?0(F), 204Mink(n; r), 336Mink(n;F), 189Mink(F), 189m �! b, 110M, 310M0 is obtained from M by step (1), 232M0 is obtained from M by Step (2.1), 233M0 is obtained from M by Step (2.2), 235M j=  [�a℄, 231M [N, 197

M :[ N, 196M og(TH ), A-7M � Vo, 221M :[ N, 197Mn, 138MnM, 140Mod(Th), 282ModOFG(Th), 10Mod(�), 10Mog(TH ), 326Mor C , A-7` moves in diretion d, 109MS, 52MS(M; m), 52n, 6, 17"-neighborhood of an event in an observer-independent (or a relativisti) ge-ometry, 146Newbasax, 122Ob C , A-7Obs, 7opag, 302Open = Open(n;F), 177Ordinals, 141P(H), 1Pa, 300pag, 300Pax, 109Pax+++ , A-13Pax+, 289Pax++, A-8Pax++, A-4P1, 299Ph, 7PhtEul = PhtEul(n;F), 28pi, 15pji, 232P2, 299Plane(`1; `2), 161Plane(H), 160Plane0(H), 161Plane(`1; `2), 39Plane(�t; �x), 39hPoints; Coli, 274hPoints;Lines; 2i = hMn;L; 2i, 274Points = Mnf. footnote 571 on p, 274Poi = Poi(n;F), 101



A-36 INDEXpt, 17px, 17py, 17pz, 17Q, 6R, 1R, 1R�1, 1R Æ S, 1Reih(Th), 123rep, 248, 249Rhomb, 42Rng(R), 1R[X℄, 1S, 25S(e; "), 146S, spae-part, 107S 00(a; b), 175S 0(H), 175simplexes, 175SLor = SLor(n;F), 101SlowEul = SlowEul(n;F), 28spae(p), 108spae, 108S(p; "), 177Sperel, 100SR(e; "), 148STL, 91su, 226�t, 17T , 146�t, time-part, time-axis, 107T 0, alternative version of the topology partT of observer-independent geome-try, 175T 00, alternative version of the topology partT of observer-independent geome-try, 175T0, a subbase for the topology T , 146T 00, a subbase for the topology T 0, 175T 000 , a subbase for the topology T 00, 175TR0 , 148�t-axis, 17Th+�, 167Th geometry, 147Th + ', 55Th(F), 3Th(M), 3

Th�, 117time(p), 108time, 108T�, 190Tm, 207T(Axi), theory generated by the axiom sys-tem Axi � Fm, 332T R, 148Tran = Tran(n;F), 101Triv = Triv(n;F), 81trm(b), 19Tr, 249Trk, 250(TwP), 13Uv(M), 219Var(Ui), 247vm(b), 19~vm(b), 20Vo \ Vo 0, 222Vo [ Vo 0, 222Vo(M), 220Vo(K), 222W, 8Wax, 328Wax+, A-4w�m, 122wm, 8w�m, A-27Wtm, 30�x, 17�xi, 17X = hX;Oi, hMn; T i, topologial spae,198�y, 17�z, 173-sorted �rst-order language, 2, 30, 6�0, 16(a){(i), theorem shemas for duality theo-ries, 287absolute value, 6abstrat lass of strutures, see footnote 287on p, 137, 147abstrat struture, see footnote 287 on p,137abstrat/onrete distintion, f. foot-note 287 on p, 137



INDEX A-37additive (geodesi, quasi geodesi), 354additive, g � D is additive, 354adjoint pair of funtors, A-13adjoint situation, A-13aÆne geometry, 299aÆne strutures, 266aÆne transformation, 101algebra, 136algebrai element of F, 172Algebrai Logi, A-17AMN [18℄, vArhimedean �eld = Arhimedean ordered�eld, 35Arhimedean geodesi, 353Arhimedean ordered �eld, see footnote 109on p, 35Arhimedean ordered group, 356automorphism, 32automorphism group, 86auxiliary axioms, 82auxiliary relation, 246axiom of disjoint windows (Ax(diswind)),157axiom system, 107bakwards, 109base for a topology, see footnote 353, 155basi equidistane (eq0) of an observer-independent geometry, 142basi orthogonality (?0) of an observer-independent geometry, 141betweenness (Bw), a ternary relation ofan observer-independent (or a rel-ativisti) geometry, 139big universe of a many-sorted model, 219binary relation, 1bodies, 6body having an inner lok, 70Boolean Algebras with Operators, A-16brothers, 77Carnap, 133Cartesian geometry over a �eld, 15ategory, A-7ategory theoreti onvention for introdu-ing funtions like f(�) or g(�; p),A-14ausality pre-ordering relation, �, 139lass form of the axiom of hoie, 263

loks get out of synhronism, 54, 59loks slow down, 54, 55losed set of a topology, 198losure operator up to isomorphism, 288losure operator, f. footnote 607 on p, 288odomain of a morphism, A-7ollineation, 32omposition Æ of a ategory, A-7onrete lass of strutures, see footnote 287on p, 137, 147onnetedness, (�) a binary relation onpoints of relativisti geometries, 159ontinuous weak geodesi, 354onvergene, 141onvex hull of a set of points of a relativistigeometry, 175oordinate-system, 8, 107oordinatization (of an ordered PappianaÆne geometry), 307oprodut of topologies = sum of topologies,198oreetion, A-11oreetion arrow, A-11urve, 352de�nability, 230de�nability of topologial spaes, 155de�nable, 231de�nable impliitly, 224de�nable impliitly up to isomorphism, 223,224de�nable impliitly with parameters, 223de�nable impliitly without taking reduts,223, 224de�nable in, 220, 235de�nable over, 220, 235de�nable relation, 231de�nitional expansion, 231, 235de�nitional expansion without takingreduts, 235de�nitionally equivalent, 255de�nitionally equivalent languages, f. foot-note 572 on p, 274de�nitionally equivalent theories, 255de�nitionally equivalent, weakly, 264diretion, 108disjoint unions of frame models, 196, 197disjoint unions of geometries, 198, 201



A-38 INDEXdisjoint unions of non-body-disjoint models,197disjoint unions of non-disjoint geometries,201division ring, 299domain of a morphism, A-7duality theory, duality theories, 280{282,293{296, 325Einstein's Speial Priniple of Relativity,74, 84Einstein's SPR, 73, 74, 84, 87embeddable, 284empty model, f. footnote 587 on p, 282equidistane (eq), a 4-ary relation of anobserver-independent (or a rela-tivisti) geometry, 142equivalene of ategories, A-13equivalent ategories, A-13Eulid's axiom, 299Eulidean �eld = Eulidean ordered �eld,55Eulidean length, 62, 177Eulidean ordered �eld, 55Eulidean straight line, 18Eulidean topology, 177evaluation, 231, 246event, 8, 138expansion, 102expansion of a lass of models, 222expansion of a model, 219expliit de�nability with parameters, 235expliit de�nition, 232, 235expliit de�nition of N over M, 235expliit de�nition of type (1), 232expliit de�nition of type (2.1), 233expliit de�nition of type (2.2), 235expliit de�nitional expansion, 231, 235expliitly de�nable, 231, 235expliitly de�nable in, 235expliitly de�nable over, 235expliitly de�nable relation, 231expliitly de�nable without taking reduts,235expliitly rigidly de�nable, 236�eld, 6�eld redut, 6�ne-resolution, 105

�nitely nr-impliitly de�nable, 230�rst-order de�nable meta-funtion, 262�rst-order language, f. language, 2�rst-order logi, 2FOL, viforwards, 108frame model, 9frame theory, 10frame-language, 6, 9Friedman, 129{131FTL, 70FTL, 123funtion, 1funtion notation f(�), expr(�) :def=h expr(x) : x 2 A i, A-14funtor, A-7G�odel's rotating universe, 130, 134, 215, 338Galileo's relativity priniple, 22Galois onnetion, A-3Galois theory of Cylindri algebras, 295gapy in F, 172generalized de�nitional expansion, 235generalized disjoint unions of frame models,197generalized manifold, 138geometry, 137, 215, 217geometry, Busemann's, 347, 348geometry, Busemann's general relativisti,349geometry, Hilbert's, 216geometry, Minkowskian (Minkowskianspae-time), 189geometry, observer-independent, 137geometry, relativisti, 137geometry, Tarski's, 216(G;M)-duality, 284, 287Goldblatt-Tarski redut GTM of GM, 215(Go;Mo)-duality, 327half-line in a geometry hMn; Bwi (de�nedby Bw), 303half-line with origin o and ontaining e (de-�ned by Bw), 303higher-order logi, 149homeomorphism, see footnote 320 on p, 146homomorphism, 32, 221hyper-plane, 39imaginary observer, 150



INDEX A-39impliit de�nition, 223, 224impliitly de�nable, 223, 224impliitly de�nable without taking reduts,224inidene relation, 139independent, 43, 44independent axiom system, 43independent subset of Mn, 298inertial bodies, 7injetive many-sorted homomorphism, 221interpret, 251interpretation of one theory (or language)in another, Fig.96, 263, 294interval of F0, 352inverse of a many-sorted homomorphism,221isometry, 81isomorphism, 221isomorphism as a distinguished morphism ofa ategory, A-13isomorphism between observer-independent(or relativisti) geometries, 146Kant, 129, 132language = �rst-order language = a lan-guage of �rst-order logi = sim-ilarity type, f. any textbook onlogi e.g. Monk [194, p.14℄ or En-derton [82℄, 2language of �rst-order logi, 2language, language of K, f. also foot-note 533, 245law of nature, 85laws of nature, 131lego harater, 105Leibniz, 129Leibniz's priniple of identity of indistin-guishable onepts, f. footnote 269on p, 129life-line, 19light-one, Conem;p, 116limit, 141limit of lines, 141limit of sequenes, 141linear transformation, 32linearly ordered �eld, 6, 16lines, 6, 7Lines = L

f. footnote 571 on p, 274lines (L) of an observer-independent (or arelativisti) geometry, 139lines, see L, lines, Eul e.g. on p, 139loal de�nability, 225, 230loally additive geodesi, 354loally FTL, 123loation, 8logi, f. in AMN [18℄ item 1.1.(XI) andfootnote 55 on pp, 6logial positivism, 129, 133Lorentz transformation, 101Lorentzian metri, see footnote 312 on p,145manifold, 138many-sorted approximation of higher-orderlogi see higher-order logi, 149many-sorted �rst-order language, 2many-sorted �rst-order logi, 2many-sorted logi, 2many-sorted logi, f. item 1.1.(XI) andfootnote 55 on pp, 6many-sorted models, f. in AMN [18℄ item1.1.(XI) and footnote 55 on pp, 6map, 32mapping, 32mathematial logi, f. in AMN [18℄ item1.1.(XI) and footnote 55 on pp, 6maximal de�nitional expansion, 236maximal geodesi, 354(M;G)-duality, 284, 287Minkowski distane, 189Minkowski-irles, 52Minkowski-distane, 101Minkowski-orthogonal lines, 189Minkowski-sphere, 52Minkowskian geometry, 189Minkowskian geometry, ?0-version, 204Minkowskian orthogonality (?�), 189(Mo;Go)-duality, 327morphisms of a ategory, A-7move bakwards in diretion d, 109move forwards in diretion d, 108move in diretion d, 108natural number, 1neighborhood, 177non-body-disjoint models, 197



A-40 INDEXnon-standard higher-order logi, 149non-standard higher-order logi = many-sorted approximation of higher-order logi, see higher-order logi,149non-uniform de�nability, 230nr-impliitly de�nable, 224objets of a ategory, A-7observational, 129observational/theoretial, 129observe, 8observer brothers, 77observer-dependent geometry, 206observer-independent geometry GM, 136,137observers, 7Oam, 129Oam's razor, 74Oam's razor, f. footnote 269 on p, 129one-by-one (expliit) de�nability, 235one-by-one de�nability, 225, 230one-by-one nr-impliitly de�nable, 230one-sorted vetor spae, 16one-to-one many-sorted homomorphism,221only-the-heart, viionto many-sorted homomorphism, 221open set, 177open set of a topology, 198ordered �eld, 6, 16ordered �eld orresponding to an orderedPappian aÆne geometry, 306ordered �eld redut of a frame model, 6, 16ordered Pappian aÆne geometry, 302orthogonality (?r, ?), a relation of anobserver-independent (or a rela-tivisti) geometry, 140orthogonality, Minkowskian (?�), 189orthogonality, relativisti, 140Pappian aÆne geometry, 300Pappus-Pasal Property, 300paradigmati e�ets, 54paradigmati theorems, 54parallel lines, 298parallel lines (` kG `1) in an observer-independent (or in a relativisti) ge-ometry, 140

parallel straight lines, 39parameterization, 352parametrizable urve, 352Pash's Law, 301periodial body, 336photon-disjoint unions of frame models, 197photon-glued disjoint unions of geometries,200, 201photon-glued disjoint unions of non-disjointgeometries, 201photon-like Arhimedean geodesi, 351photon-like geodesi, 351photon-like lines, LPh, 138photon-like quasi geodesi, 351photon-like separated events, e �Ph e2, 147photon-line, 28photon-preserving transformation, 32photons, 7plane, 39plane generated by a set of points of a rela-tivisti geometry, 160Poinar�e transformation, 101Points = Mnf. footnote 571 on p, 274points (Mn) of an observer-independent ge-ometry, 138points of a topology, 198poset, A-15potential law of nature, 84potential laws (of nature), 131priniple of parsimony, 74, 130projetion funtions, 232pseudo-metri redut of a relativisti geom-etry, 351pseudo-metri, g, 145quantities, 6quasi geodesi, 352rank of a relation symbol, 220redut, 6redut of a lass of models, 222redut of a model, 219, 221referene frames, 25reetion, A-11reetion arrow, A-11Reihenbah, 129{133Reihenbahian version of the observer-independent geometry, 147
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SUMMARY
The subjet matter of the dissertation is a mathematial logial investigation of the logialstruture of (mainly speial) relativity theories with an emphasis on the branh of logi alledde�nability theory.Combining mathematial logi and relativity is not a new disipline, it goes bak e.g. toHilbert, Reihenbah, Carnap, G�odel, Tarski, Suppes, Goldblatt. De�nability theory, in par-tiular, was initiated around 1920 beause of the needs of relativity theory. Then Tarski tooka life-long interest in developing de�nability theory. In the dissertation we extend de�nabilitytheory to the ase when new elements and new universes of new elements an also be de�ned.We do this beause we need it for studying relativity. We extend (and prove) the main the-orems of de�nability from the lassial ase to the new situation. E.g. we prove a Beth styletheorem about eliminability of de�ned onepts. We apply these results to proving de�nitionalequivalene of major, seemingly \disjoint" approahes to relativity. In partiular, we prove astrong equivalene between purely geometrial theories and observation-oriented versions ofrelativity. Then we build so-alled duality theories (on top of these equivalenes) like adjointsituations in ategory theory. These duality theories onnet various parts/versions of rela-tivity with other, purely mathematial theories like Busemann's streamlined time-like-metrispaes.Besides the above, we strive to build up relativity as a theory purely in �rst-order logiusing as simple and as transparent axioms as we an. One of our goals is to prove strongtheorems of relativity from a small number of easily understandable, onvining axioms. Wetry to eliminate all tait assumptions from relativity and replae them with expliit axioms inthe spirit initiated by Tarski in his �rst-order axiomatization of geometry.



�OSSZEFOGLAL�O
A disszert�ai�o matematikai logikai (�es matematikai) eszk�oz�okkel vizsg�alja a relativi-t�aselm�eletek (els}osorban de nem kiz�ar�olag a spei�alis relativit�aselm�elet) logikai strukt�ur�aj�at.A matematikai logika �es relativit�aselm�elet �otv�oz�ese nem �ujkelet}u gondolat, Hilbert, Re-ihenbah, Carnap, G�odel, Tarski, Suppes, Goldblatt �es m�asok munk�ait, kezdem�enyez�eseitkell p�eld�aul eml��ten�unk. A logika de�n��i�oelm�elet nev}u fejezet�et pl. kifejezetten a rela-tivit�aselm�elet sz�uks�egletei h��vt�ak �eletre 1920 t�aj�an (Reihenbah, Hilbert). Tarski eg�esz�elet�en v�egigvonul ezut�an a de�n��i�oelm�elet mint egyik f}o motiv�al�o er}o. A dolgozatbantov�abbfejlesztj�uk a de�n��ioelm�eletet olyan ir�anyban, hogy �uj elemekb}ol �all�o �uj univerzumokatis lehessen de�ni�alni (ne sak r�egi elemeken �ertelmezett �uj rel�ai�okat). A de�n��i�oelm�eletentr�alis t�eteleit kiterjesztj�uk, bizony��tunk az �uj szitu�ai�ora pl. egy Beth-tipus�u t�etelt a de�ni�altfogalmak elimin�alhat�os�ag�ar�ol. (A t�etel el}ot�ort�enete: Padoa 1900, Tarski 1926, Beth 1953,Makkai Mih�aly �es mai modellelm�el�eszek, pl. Shelah �es Pillay.) Az ��gy nyert eredm�enyeket rela-tivit�aselm�eletre alkalmazzuk, pl. bizony��tjuk, hogy a relativit�aselm�elet k�et f}o (l�atsz�olag elt�er}oszellem}u) k�ozel��t�ese de�n��i�osan ekvivalens. Tiszt�an geometriai elm�eletek �es meg�gyel�es ori-ent�alt relativit�aselm�elet v�altozatok k�oz�ott szoros ekvivaleniat�etelt bizony��tunk. Bizony��tjuk,hogy a relativit�aselm�elet un. elm�eleti fogalmai mat. logikai �ertelemben expliiten de�ni�alhat�okmeg�gyel�es orient�alt fogalmaib�ol. Ezekre az eredm�enyekre egy �atfog�obb dualit�aselm�eletet�ep��t�unk, mely a relativit�aselm�elet k�ul�onb�oz}o r�eszeit/v�altozatait kapsolja �ossze egym�assal is�es m�as tiszt�an matematikai elm�eletekkel is.Fentiek mellett egy tov�abbi �elunk a relativit�aselm�elet fel�ep��t�ese tiszt�an logikai elm�eletk�entaz els}orend}u logika keretein bel�ul. Ezt a programmot Tarski �es Suppes hirdett�ek meg annakmint�aj�ara, ahogy Tarski a geometri�at els}orend}u logik�aban fel�ep��tette. T�oreksz�unk arra, hogykev�es, k�onnyen �erthet}o, meggy}oz}o, j�ol �atl�athat�o axi�om�ab�ol er}os relativit�aselm�eleti t�eteleketbizony��tsunk. Ez t�obbek k�oz�ott azt a �elt is szolg�alja, hogy meg�erts�uk a relativit�aselm�eletegzotikus, k�oznapi intu��i�oval ellenkez}o prediki�oinak \logikai ok�at".


