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Abstract. We examine the current status of the physical version
of the Church-Turing Thesis (PhCT for short) in view of latest
developments in spacetime theory. This also amounts to inves-
tigating the status of hypercomputation in view of latest results
on spacetime. We agree with Deutsch et al [17] that PhCT is
not only a conjecture of mathematics but rather a conjecture of
a combination of theoretical physics, mathematics and, in some
sense, cosmology. Since the idea of computability is intimately
connected with the nature of Time, relevance of spacetime theory
seems to be unquestionable. We will see that recent developments
in spacetime theory show that temporal developments may exhibit
features that traditionally seemed impossible or absurd. We will
see that recent results point in the direction that the possibility
of artificial systems computing non-Turing computable functions
may be consistent with spacetime theory. All these trigger new
open questions and new research directions for spacetime theory,
cosmology, and computability.

“Of all the entities I have encountered in my life in physics, none
approaches the black hole in fascination. And none, I think, is a more
important constituent of this universe we call home. The black hole
epitomizes the revolution wrought by general relativity. It pushes to an
extreme—and therefore tests to the limit—the features of general rela-
tivity (the dynamics of curved spacetime) that set it apart from special
relativity (the physics of static, “flat” spacetime) and the earlier me-
chanics of Newton. Spacetime curvature. Geometry as part of physics.
Gravitational radiation. All of these things become, with black holes,
not tiny corrections to older physics, but the essence of newer physics.”

—John Archibald Wheeler (2000).
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gary. Research supported by the Hungarian National Foundation for scientific
research grant No. T43242, as well as by COST grant No. 274. Appeared in Journal

of Applied Mathematics and Computation 178 (2006), 118-142.
1



RELATIVISTIC COMPUTERS AND THE TURING BARRIER 2

1. Aims, perspective

We discuss the perspectives and scope of applicability of the Physical
Church-Turing Thesis (PhCT). Roughly, PhCT is the conjecture that
whatever physical computing device (in the broader sense) or physical
thought experiment will be designed by any future civilization, it will
always be simulatable by a Turing machine. We carefully defined what
we understand by PhCT in Etesi-Németi [26], here we do not recall
that definition in detail.

In this paper we discuss the issue of whether in the light of latest
developments in theoretical physics and cosmology there is likely to be a
theoretical possibility for going beyond PhCT or not. By going beyond
PhCT we do not mean a perhaps “cheap” or easy negation of PhCT, i.e.
we do not visualize a beyond-Turing computer like a pocket calculator
or a laptop, but we mean it as a perhaps extremely expensive, physical
experiment which needs the latest, most exotic results of theoretical
physics or cosmology (as its theoretical foundation). By beyond-Turing
computer or hypercomputer we refer to situations where an artificial
system or physical thought experiment performs a computation which
is beyond the Turing limit (i.e. implements a non-Turing computable
function).

For such a discussion we have to clarify the nature of PhCT. We
agree with Deutsch et al [17] in that PhCT is not a purely mathemati-
cal conjecture, but rather it is a combination of physical, mathematical
and in some sense cosmological conjectures. The main emphasis is on
the part which says that PhCT is partly a physical-cosmological conjec-
ture. (It also has some connections with the mathematical foundations
of Artificial Intelligence research as was pointed out in Leeuwen and
Wiedermann [43], [87] but for brevity we omit these aspects while com-
pletely agreeing with what Leeuwen and Wiedermann say.) This view
of Deutsch et al [17] that PhCT is mostly a physical conjecture has
been recently advocated by many authors.

The PhCT was formulated and generally accepted in the 1930’s. At
that time a general consensus was reached declaring PhCT valid, and
indeed in the succeeding decades the PhCT was an extremely useful and
valuable maxim in elaborating the foundations of theoretical computer
science, logic and related areas. As an exception, we would like to
mention that László Kalmár, one of the leading logicians of that time,
expressed occasionally his hope that sometime in the future mankind
will be able to supersede the PhCT, [40].

But since PhCT is partly a physical, cosmological conjecture, we
emphasize that the general consensus of the 1930’s was based on the
physical world-view of the 1930’s. Moreover, many thinkers consid-
ered PhCT as being based on mathematics + common sense. But
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“common sense of today” means “physics of 100 years before”. There-
fore we claim that the general consensus accepting PhCT in the 1930’s
was based on the world-view deriving from Newtonian mechanics. Ein-
stein’s equations became known to a narrow circle of specialists around
1920, but around that time the consequences of these equations were
not even guessed at. In other words, the world-view of modern black
hole physics was very far from being generally known until much later,
until after 1970. Summing up, PhCT became generally accepted on
the basis of the world-view of, basically, Newtonian mechanics.

Our main point is that in the last few decades (well after 1970) there
has been a major paradigm shift in our physical world-view as well as
our cosmological one. This started in 1970 by Hawking’s and Penrose’s
singularity theorem firmly establishing black hole theory and putting
general relativity into a new perspective. After that, discoveries and
new results have been accelerating. About 10 years ago astronomers
obtained firmer and firmer evidence for the existence of larger and more
exotic black holes, not to mention evidence supporting the assumption
that the universe is not finite after all. Nowadays the whole field is in
a state of constant revolution.

What does this tell us about the PhCT? Roughly, it tells us that
the background world-view on the basis of which PhCT was generally
accepted (even formulated) is not valid any more. (Actually, our world
has changed so much that no one can bring back that kind of world-view
ever in the future.) If the background foundation on which PhCT was
based has changed so fundamentally, so radically, then it is desirable
to re-examine the status and scope of applicability of PhCT in view of
the new evidence, in view of the change of our general world-picture.

Indeed, in [26] we prove that it is consistent with Einstein’s equa-
tions, i.e. with general relativity, that by certain kinds of relativis-
tic experiments, future generations might find the answers to non-
computable questions like the halting problem of Turing machines or
the consistency of Zermelo Fraenkel set theory (the foundation of math-
ematics, abbreviated as ZFC set theory from now on). For brevity, we
call such thought experiments relativistic computers. Moreover, the
spacetime structure we assume to exist in these experiments is based
in [26] on huge slowly rotating black holes the existence of which is
made more and more likely (almost certain) by recent astronomical
observations.

Before going more into this, let us step back for a second and ask
ourselves what the general idea behind this kind of developments is.
Why would the switch to general relativity and new cosmology help us
in designing beyond-Turing computing devices?

A special feature of the Newtonian world-view is the assumption of
an absolute time scale. Indeed, this absolute time has its mark on
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the Turing machine as a model for computer. As a contrast, in gen-
eral relativity there is nothing even similar to absolute time. Kurt
Gödel was particularly interested in the exotic behavior of time in gen-
eral relativity (GR). Gödel [31],[32] was the first to prove that there
are GR spacetimes (models of GR) which, technically speaking, do
not admit a foliation. Foliation of a spacetime 〈M, g〉 means that a
“global time” (or global temporal preordering) satisfying certain nat-
ural properties can be put on 〈M, g〉. In particular, various observers
at various points of spacetime in different states of motion might expe-
rience time radically differently. Therefore we might be able to speed
up the time of one observer, say Oc, relatively to the other observer,
say Op. Thus Op may observe Oc computing very fast. The difference
between general relativity and special relativity is (roughly) that in
general relativity this speed-up effect can reach, in some sense, infinity
assuming certain conditions are satisfied. Of course, it is not easy to
ensure that this speed-up effect happens in such a way that we could
utilize it for implementing some non-computable functions. Actually,
there were many false starts before the arrangement elaborated in e.g.
[26] was arrived at. Very strongly related positive results, similar in
spirit to [26] were arrived at e.g. in Hogarth [37], [36], [38], Mala-
ment [46], Earman-Norton [21],[22], Earman [20, Chap. 4], Tipler [80,
pp.447-448], Barrow [7], Bacon [3], Brun [10]. Nowadays there is an
ever broadening circle of researchers including Hogarth, Earman, Etesi,
Andréka, Sági, Shagrir, Pitowsky, the present authors and others (cf.
also the references) who are working on refining the idea of beyond-
Turing computers based on the latest findings of spacetime theory.

The purpose of the present paper is to discuss whether it is consis-
tent with general relativity, GR, that future generations might be able
to design beyond-Turing computers. So, technically, we are working
inside GR. Whenever we claim that something is possible, the safe in-
terpretation of this claim is that there is a GR spacetime 〈M, g〉 in
which the claimed arrangement is possible. To save space, we will not
restate this ramification whereever we should. Occasionally we will
venture beyond GR (like black holes emitting radiation, acceleration
of the expansion of the universe) but e.g. because of the nonexistence
of a decisive theory of quantum gravity, these ventures remain on the
level of speculation designed to trigger new research in interesting di-
rections. In these parts we tried to use the latest developments in
cosmology, astronomy, spacetime theory, but all the same, they remain
on the level of speculations designed to trigger research interest in con-
trast with the firmer conclusions of the pure GR parts. In particular, in
section 5 we discuss some ideas about the physical realizability of our
relativistic computers. Section 2 below intends to illustrate the general
idea of relativistic computers (on an intuitive but logically coherent
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level), without paying attention to the above indicated distinction be-
tween what is real and what is only “mathematical imagination”. The
precise presentation comes in section 4.

We will be careful to avoid basing the beyond-Turing power of our
computer on “side-effects” of the idealizations in our mathematical
model/theory of the world. For example, we will avoid relying on in-
finitely small objects (e.g. pointlike test particles, or pointlike bodies),
infinitely elastic balls, infinitely (or arbitrarily) precise measurements,
or anything like these. Moreover, we devote the whole of section 5 to
discussing physical realizability and realism of our design for a com-
puter. In other words, we will make efforts to avoid taking advantage
of the idealizations which were made when GR (or whatever theory we
use) was set up.

2. An intuitive idea for relativistic hypercomputers

In this section we would like to illuminate the ideas of why relativis-
tic computers work, why they can work in principle at least, without
going into the mathematical details. We will return to the details in
section 4, and also the details have been elaborated among others in
[26] and in [37]. To make our narrative more tangible, here we use
the example of huge slowly rotating black holes for our construction of
relativistic computers. However, as it was emphasized in [26] and [38],
any one of the many different kinds of the so-called Malament-Hogarth
(MH) spacetimes is suitable for carrying through essentially the same
construction. These MH-spacetimes will be defined in section 4.

Let us start out from the so-called Gravitational Time Dilation (GTD)1

(or gravitational redshift). What is the GTD? The GTD is a theorem of
relativity which says that gravity makes time run slow. More sloppily:
gravity slows time down. Clocks that are deep within gravitational
fields run slower than ones that are farther out. We will have to ex-
plain what this means but before explaining what this means we would
like to mention that this is not only a theorem of general relativity.
This theorem, GTD, can be already proved in (an easily understand-
able logic-based version of) special relativity in such a way that we
simulate gravity by acceleration. For this direction we refer to [44],
[45]. So one advantage of GTD is that actually why it is true can be
traced down by using only the simple methods of special relativity. An-
other advantage of GTD is that it has been tested several times, and
these experiments are well known. Roughly, GTD can be interpreted
by the following thought experiment. Choose a high enough tower on
the Earth, put precise enough (say, atomic) clocks at the bottom of the
tower and the top of the tower, then wait enough time, and compare
the readings of the two clocks. Then the clock on the top will run faster

1In the popular literature GTD is sometimes referred to as timewarp.
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(show more elapsed time) than the one at the basement, at each time
one carries out this experiment. Therefore we will often refer to GTD
as the “Tower Paradox”.2 Actually, the experiment done at Harvard
was carried out in a way simpler than this. Namely, they simply mea-
sured the redshift of photons emitted in the basement of the tower and
received at the top. For more detail cf. [64] or [81].3

How could we use the Tower Paradox for hypercomputation? In
the above outlined situation, by using the gravity of the Earth, it is
difficult to make practical use of the Tower Paradox. However, instead
of the Earth, we could choose a huge black hole. A black hole is a
region of spacetime from which even light cannot escape (cf. Cambridge
homepage on Relativity). There are several types of black holes, we
will distinguish between them later. An excellent source is Taylor and
Wheeler [78]. All the kinds of black holes we will use in this paper
have an outer event horizon. The outer event horizon is a bubblelike
hypersurface surrounding the black hole from which even light cannot
escape (because of the gravitational pull of the black hole). From points
outside the outer event horizon light can escape, this is the reason for
the adjective “outer”.

For simplicity, at the beginning we will restrict attention to the sim-
plest kind of black holes which have only one event horizon. These
are called Schwarzschild black holes. We will introduce more complex
black holes when we need them, but we note that all what we will say
about Schwarzschild black holes remain true for the more general ones
if we replace “event horizon” with “outer event horizon” (everywhere
in our sentences). So, for a while we will write “event horizon” for
“outer event horizon”.

As we approach the event horizon from far away outside the Schwarz-
schild black hole, the gravitational “pull” of the black hole approaches
infinity as we get closer and closer to the event horizon. This is rather
different from the Newtonian case, where the gravitational pull also
increases but remains finite even on the event horizon. On the other
hand, the event horizon also exists in the Newtonian case, namely,
in the Newtonian case, too, the event horizon is the “place” where
the escape velocity is the speed of light (hence light cannot escape to
infinity from inside this event horizon “bubble”).4

2The word “Paradox” here does not refer to a logical impossibility. Instead, it
only refers to contradicting Newtonian intuition. This is similar to the use in Twin
Paradox.

3More direct tests of the Tower Paradox (gravity causes slow time) were carried
out several times by comparing atomic clocks in high orbit around the Earth and
comparing them with similar clocks on the Earth e.g. by NASA, cf. [5, chap.26.2]
or [35], or see the literature on GPS (global positioning system).

4The Newtonian event horizon was discovered by e.g. Laplace 1799 (and by J.
Mitchell 1784).
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Let us study observers suspended over the event horizon. Here, sus-
pended5 means that the distance between the observer and the event
horizon does not change. (Since the black hole has a gravitational pull,
the world-lines of these suspended observers are not geodesics.) As-
sume one suspended observer H is higher up and another one, L, is
suspended lower down. So, H sees L below him while L sees H above
him. Now the gravitational time dilation (GTD) effect discussed above
will cause the clocks of H run faster than the clocks of L. Moreover,
they both agree on this if they are watching each other e.g. via photons.
Let us keep the height of H fixed. Now, if we gently lower L towards
the event horizon, then this ratio between the speeds of their clocks
increases. Moreover, as L approaches the event horizon, this ratio ap-
proaches infinity. This means that for any integer n, if we want H’s
clocks to run n times as fast as L’s clocks, then this can be achieved
by lowering L to the right position.

Let us see what this means for computational complexity. This
means that if the programmer wants to speed up his computer with
an arbitrarily large ratio, say n, then he can achieve this by putting
the programmer to the position of L and putting the computer to the
position of H. Already at this point we could use this situation, the
arrangement with the black hole, for making computers faster. The
programmer goes very close to the black hole, leaving his computer far
away. Then the programmer has to wait a few days and the computer
does a few million year’s job of computing and then the programmer
knows a lot about the consequences of, say, ZFC set theory or whatever
mathematical problem he is investigating. So we could use this for just
speeding up computation which means dealing with complexity issues.
However, we do not want to stop at complexity issues. Instead, we
would like to see whether we can attack somehow the “Turing barrier”.

At this point our assumption that the black hole is huge becomes
useful since this ensures that the programmer does not experience too
big tidal forces at the event horizon. We note that astronomical evi-
dence suggests the existence of black holes much bigger than what we
need, e.g. black holes of 1010m⊙ (m⊙ refers to solar mass) seem to exist
whose size is roughly that of the solar system. We will return to this
issue later.

The above arrangement for speeding the computer up raises the ques-
tion of how the programmer avoids consequences of the fact that the
whole manoeuver will slow down the programmer’s own time relative
to the time on his home planet, e.g. on the Earth. We will deal with
this problem later. So the reader is kindly asked to believe for a while
that this effect will be circumnavigated somehow. Let us turn now to

5Equivalently, instead of suspended observers, we could speak about observers
whose spaceship is hovering over the event horizon, using their rockets for main-
taining altitude.
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the question of how we can use this effect of finite (but unbounded)
speed-up to achieve an infinite speed-up, i.e. to breaking the Turing
barrier.

If we could suspend the lower observer L on the event horizon itself
then from the point of view of H, L’s clocks would freeze, therefore
from the point of view of L, H’s clocks (and computers!) would run
infinitely fast, hence we would have the desired infinite speed-up upon
which we could then start our plan for breaking the Turing barrier. The
problem with this plan is that it is impossible to suspend an observer on
the event horizon. As a consolation for this, we can suspend observers
arbitrarily close to the event horizon.

To achieve an “infinite speed-up” we could do the following. We
could lower and lower L again towards the event horizon such that
L’s clocks slow down (more and more, beyond limit) in such a way
that there is a certain finite time-bound, say b, such that, roughly,
throughout the whole history of the universe L’s clocks show a (proper)
time smaller than b. More precisely, by this we mean that whenever H
decides to send a photon to L, then L will receive this photon before
time b according to L’s clocks. This is possible.

Are we done, then? Not yet, there is a remaining task to solve. As
L gets closer and closer to the event horizon, the gravitational pull or
gravitational acceleration tends to infinity. Since L has to approach the
event horizon very slowly, it has to withstand this enormous gravity (or
equivalently acceleration). The problem is that this increasing gravi-
tational force (or acceleration) will kill L before his clock shows time
b, i.e. before the planned task is completed. To solve this problem, we
would like to achieve slowing down the “fall” of L not by brute force
(e.g. rockets), but by an effect coming from the structure of spacetime
itself. Let us see if there is a variant of our originally simplistic black
hole in which besides the gravitational pull of the black hole (needed
to achieve the time dilation effect) there is a counteractive repelling
effect which would cause L to slow down in the required rate. So the
idea is that instead of the rockets of L, we would like to use for slowing
the fall of L a second effect coming from a second feature of the black
hole.

As it turns out, there are at least two kinds of black holes with
this secondary repelling effect (or force). One is the slowly rotating
Kerr black hole where the centrifugal force (coming from the rotation)
provides this repelling effect6, while the other is the electrically charged
black hole where, very roughly, the electrostatic repelling force provides

6The rotational effect is transferred from the rotating ring (source) to γp via the
so-called drag effect [or “dragging of inertial frames”]. This drag effect helps γp to
achieve a large enough angular momentum (around the rotational axis of the black
hole) which yields the centrifugal force (acting on γp) needed for the above outlined
plan. In passing we note that the orbital motion characterized by this angular
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this effect. The latter are also called Reissner-Nordström black holes
or RN spacetimes.

In some black holes with such a repelling force, two event horizons
form, see Figures 1,2. The outer one is the result of the gravitational
pull and behaves basically like the event horizon of the Schwarzschild
hole, i.e. as described above. The inner horizon marks the point where
the repelling force overcomes the gravitational force. So inside the
inner horizon, it is possible again to “suspend” an observer, say L, i.e.
it becomes possible for L to stay at a constant distance from the center
of the black hole (or equivalently from the event horizons).

Let us turn to describing how a slowly rotating black hole implements
the above outlined ideas, and how it makes possible to realize our plan
for “infinite speed-up”. Figure 1 represents a slowly rotating huge Kerr
black hole and Figure 2 represents its spacetime structure. Figure 5 is
the “causal diagram” of this spacetime.

As we said, there are two event horizons, the inner one surrounded by
the outer one. The source of gravity of the black hole is a ring shaped
singularity situated inside the inner horizon. The path of the infalling
observer L can be planned in such a way that the event when L reaches
the inner horizon corresponds to the time-bound b (on the wristwatch
of L) mentioned above before which L receives all the possible messages
sent out by H. In Figures 1,2 the world-lines of L and H are denoted
as γp and γ because we think of L as the programmer and we think of
H as L’s computer.

By this we achieved the infinite speed-up we were aiming for. This
infinite speed-up is represented in Figure 2 where γp measures a finite
proper time between its separation from the computer γ and its touch-
ing the inner horizon at proper time b. On the other side, whenever γ
decides to send a photon towards γp, that photon will reach γp before
γp meets the inner horizon. A more detailed but also more abstract
representation of this is in Figure 5. The above outlined intuitive plan
for creating an infinite speed-up effect is elaborated in more concrete
mathematical detail in section 4.

Let us see how we can use all this to create a beyond-Turing com-
puter, in particular, to decide whether ZFC set theory is consistent.
I.e. we want to learn whether from the axioms of set theory one can
derive the formula FALSE. (This formula FALSE can be taken to be
∃x(x 6= x).) This means that we can start a computer which checks
one by one the theorems of set theory, and as soon as the computer
finds a contradiction in set theory, i.e. a proof of the formula FALSE,
from the axioms of set theory, the computer sends a signal to the pro-
grammer indicating that set theory is inconsistent. (This is a special
example only. The general idea is that the computer enumerates a

momentum of γp “rotates” in the same direction as the rotation of the black hole.
The relevance of this is illustrated by [2].
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Ring singularity

b

γp

Inner event
horizon r = r−

Outer event horizon r = r+

Axis of rotation(θ = 0)

Figure 1. A slowly rotating (Kerr) black hole has
two event horizons and a ring-shape singularity. The
ring singularity is inside the inner horizon r = r− in the
“equatorial” plane of axes x, y. Time coordinate is sup-
pressed. See Figure 2 for a spacetime diagram with x, y
suppressed. (Figure 2 denotes z as r.) Rotation of ring
is indicated by an arrow. Orbit of infalling programmer
γp is indicated, it enters outer horizon at point e, and
meets inner horizon at point b.

recursively enumerable set and, before starting the computer, the pro-
grammer puts on the tape of the computer the name of the element
which he wants to be checked for belonging to the set. The computer
will search and as soon as it finds the element in question inside the
set, the computer sends a signal.) If it does not find the thing in the
set, the computer does nothing.

How can the programmer use this? What happens to the program-
mer γp from the point of view of the computer γ? This is represented in
Figure 2. Let γ’s coordinate system be the one represented in Figure 2.
By saying “from the point of view of γ” we mean “in this particular
coordinate system (adjusted to γ) in Fig.2”. In this coordinate system
when the programmer goes closer and closer to the inner horizon of
the black hole, the programmer’s clock will run slower and slower and
slower, and eventually on the inner event horizon of the black hole the
time of the programmer stops. Subjectively, the programmer does not
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inner event
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t̄ r = r− r = r+

r
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γ

γp

Figure 2. The “t-r slice” of spacetime of slowly rotat-
ing (i.e. slow Kerr) black hole in Eddington-Finkelstein
coordinates where r is the axis of rotation of black hole.
The pattern of light cones between the two event hori-
zons r− and r+ illustrates that γp can decelerate so much
in this region that he will receive (outside of r−) all mes-
sages sent by γ. Compare with Figures 1,5. r+ is the
outer event horizon, r− is the inner event horizon, r = 0
is the “center” of the black hole as in Figure 1. The tilt-
ing of the light cones indicates that not even light can
escape through these horizons. That there is an outward
push counteracting gravity can be seen by the shape of
the light-cones in region III (central region of the black
hole). The length of γp is finite (measured between the
beginning of the experiment and the event when γp meets
the inner event horizon at b) while the length of γ is
infinite.

experience it this way, this is how the computer will coordinatize it in
the distance, or more precisely, how the coordinate system shown in
Figure 2 represents it. If the computer thinks of the programmer, it
will see in its mind’s eye that the programmer’s clocks stop and the
programmer is frozen motionless at the event horizon of the black hole.
Since the programmer is frozen motionless at the event horizon of the
black hole, the computer has enough time to do the computation, and
as soon as the computer has found, say, the inconsistency in set theory,
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the computer can send a signal and the computer can trust that the
programmer—still with his clock frozen—will receive this signal.

What will the programmer see? The programmer will see that as
he is approaching the inner event horizon, his computer is running
faster and faster and faster. Then the programmer falls into the inner
event horizon of the black hole. Since the black hole is enormous,
the programmer will feel nothing when he passes either event horizon
of the black hole—one can check that in case of a huge black hole
the so-called tidal forces on the event horizons of the black hole are
negligibly small.7 So the programmer falls into the inner event horizon
of the black hole and either the programmer will experience that a light
signal arrives from the direction of the computer, of an agreed color and
agreed pattern, or the programmer will observe that he falls in through
the inner event horizon and the light signal does not arrive. After
the programmer has crossed the inner event horizon, the programmer
can evaluate the situation. If a signal arrives from the computer, this
means that the computer found an inconsistency in ZFC set theory,
therefore the programmer will know that set theory is inconsistent. If
the light signal does not arrive, and the programmer is already inside
the event horizon, then he will know that the computer did not find
an inconsistency in set theory, did not send the signal, therefore the
programmer can conclude that set theory is consistent. So he can build
the rest of his mathematics on the secure knowledge of the consistency
of set theory.

The next question which comes up naturally is whether the program-
mer can use this new information, namely that set theory is consistent,
or whatever he wanted to compute, for his purposes, continue research
in mathematics, and so on. He could take a huge spaceship while he
goes into the black hole, he takes all his mathematical and scientist
friends with himself, and after he crossed the inner event horizon he
wants to process the information he obtained (from the above out-
lined experiment with the computer) and base their future research
on this. But a pessimist could say that OK they are inside a black
hole, so—now we are using common sense, we are not using relativity
theory—common sense says that the black hole is a small unfriendly
area and the programmer will sooner or later fall into the middle of the
black hole where there is a singularity and the singularity will kill the
programmer. This is why some authors, for example Pitowsky in 1990,
concluded this story by saying that now the programmer disintegrates
with a happy smile on his face because he knows the solution to the
problem in question, e.g. whether ZFC set theory is consistent or not.
But this disintegration need not be the case. It is suggested only by
common sense, reality may be different.

7We will return to this in subsection 5.2.1.
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The reason why we emphasized at the beginning that we wanted to
choose our black hole to be a huge slowly rotating one, say of mass
1010m⊙, is the following. If the programmer falls into a black hole
which is as big as this and it rotates slowly, then the programmer will
have quite a lot of time inside the black hole because the center of the
black hole is far from the event horizon, relatively far. Such a black
hole might be roughly of the size of the solar system. More precisely,
this size8 is in the range of 3×1010 km ∼ 200 AU (Astronomical Units).
But this is not the key point. The key points are that the black hole
is big and it rotates slowly. If it rotates, then the “matter content”,
the so-called singularity which “keeps the black hole together” so to
speak, which is the source of the gravitational field of the black hole,
is not a point. It is a ring. (This “matter”, this source of gravitational
field is technically called the singularity.) So if the programmer chooses
his route in falling into the black hole in a clever way, say, relatively
close to the north pole instead of the equatorial plane, so his motion is
roughly perpendicular to the plane of the ring, then the programmer
can comfortably pass through the middle of the ring, never get close
to the singularity and happily live on forever.9 We mean, the rules of
relativity will not prevent him from happily living forever. He may
have descendants, he can found society, he can use the so obtained
mathematical knowledge.

So the key point is that in this arrangement (which is described e.g.
in [26]) based on a huge slowly rotating black hole the programmer
may not get even close to the singularity and therefore the above men-
tioned usual common sense argument saying that eventually the black
hole will destroy the programmer is not true. There is enough room
(both space and time) for the programmer to stay there, and actually
the extended theory of the so-called Kerr black holes says that the
programmer can come out on the other side of the ring. Moreover, he
may decide to stay in the central, ring dominated region indefinitely
or he might try to come out at the “other side” of the black hole. If
he succeeds to come out, it might be a different universe maybe not
ours, or it might be a different part of our universe, and he might be
able to go on to do interesting things.10 But now the key point is not

8By the size of a black hole we mean how big the spheroid of the event horizon
is for a distant observer outside the black hole.

9In order to have all the beneficial effects on his side, the programmer will have
to plan his approach of the rotating hole quite carefully. In [26, pp.355-356] we
described in detail the path the programmer has to choose. For completeness we
note that in the textbook O’Neill [53, pp.245-247] such paths are called “timelike
long flyby orbits of type B”. Cf. also Fig.4.19 therein.

10As it is discussed in [26], embarking on such an adventure (involving unknown
universes) does present risks (dangers) for the programmer. But this does not render
the project impossible (only risky . . . somewhat). One can make preparations for
reducing the risks. We will come back to this later, in section 5.
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coming out to other universes and exploring exciting things which is
definitely interesting, now our point is only to do this computation,
that is, deciding whether Zermelo-Fraenkel set theory is consistent or
not and surviving the consequences of this.

It is like the original sin when the knowledge was grabbed by Adam
when he took the apple from Eve and had a bite of it. Reaching
this sacred knowledge, the question is whether it destroys the scientist
who seeks the knowledge like for example in the story of Prometheus
the gods punished him because of his knowledge, seeking this sacred
knowledge, whether it kills the programmer or not. We claim that
it does not necessarily kill the programmer, the programmer has to
choose a suitable enough black hole which roughly means a huge slowly
rotating black hole like the ones in the centers of galaxies—which have
recently been discovered year by year by astronomers—and navigate
inside the black hole in a clever enough way and then he will not ever
even feel strong tidal forces we mentioned earlier.

This is the general idea for how the relativistic computer works, and
what the essential ingredients of the computer are.

3. A brief history of the ideas outlined above

The paper [13] in New Scientist credited the idea to Etesi, Németi,
Malament, Hogarth (as independent sources) and it traced the idea
back to Herman Weyl. However, Weyl never suggested anything like
the idea of a relativistic computer, the only speculation which he made
was the observation that if we could speed up a Turing machine in-
definitely, e.g. doubling its speed after each step, then this imaginary
device could in principle compute a non-Turing-computable function,
cf. Weyl [86, p.42]. This consideration is basically a reformulation of
the Achilles and Tortoise paradox from antiquity and it is explained
in e.g. Earman [20, Chap.4] that this does not yet involve a significant
step in the direction of physics-based beyond-Turing computers like
e.g. relativistic computers. The general relativistic idea as outlined in
section 2 was found independently by Németi in 1987 [52], Pitowsky in
1990 [63], Malament in 1988 [46] and Hogarth in 1992 [36]. Németi’s
idea used large slowly rotating black holes (slow Kerr spacetimes) but
the careful study of feasibility and transversability of these was done
later in Etesi-Németi [26].

Pitowsky 1990 used a simpler spacetime (special relativistic space-
time with accelerated observers; or even Schwarzschild spacetime) in
which the idea cannot completely pushed through for the reasons we
mentioned in section 2 when discussing why we needed a more complex
black hole than the simplest kind, i.e. Schwarzschild. About this, Ear-
man [20, p.107] writes “Malament (1988) and Hogarth (1992) sought
to solve the conceptual problem with Pitowsky’s example by utilizing
a different spacetime structure”. Malament and Hogarth elaborated a
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very general approach—of which Kerr black holes form only a specific
example—exhibiting a large family of solutions of Einstein’s equations
in each of which possibly there exist relativistic beyond-Turing com-
puters. These spacetimes are called MH (for Malament and Hogarth)
spacetimes and will be introduced in the next section. An excellent and
convincing work elaborating the details and realizability of relativistic
computers is Hogarth [37] to which Hogarth [36], [38] are valuable
additions. Tipler [80, pp.447-448] also describes a general relativistic
computer which can compute a non-Turing-computable function. In
this respect Tipler’s argument is similar to ours, and it points in the
same direction. Tipler also discusses the physical realizability aspects
of our kind of non-Turing computers. Barrow and Tipler belong to
the early proponents of relativistic beyond-Turing computability, see
e.g. [7]. The argument in Penrose [61, section 7.10, especially p.383
line 3] points in the same direction as ours. Earman [20, Chap. 4],
Earman-Norton [22], van Leeuwen-Wiedermann [43], [87], Etesi [25],
Shagrir-Pitowsky [72] contain important contributions to the theory of
relativistic computers, to mention a few.

Sections 3.7 - 3.12 of Hogarth [37, pp.88-113] contain an extremely
careful, scholarly, highly valuable re-evaluation/re-thinking of Church’s
Thesis including PhCT. It also puts PhCT into a new perspective tak-
ing into consideration the 1995 world-view of modern physics and cos-
mology which of course was not available to the founding fathers in
the 1930’s. Hogarth’s just quoted work also provides a careful histor-
ical analysis of the emergence of PhCT. Therefore it would be fruitful
to take this excellent piece of highly relevant work more into account
in the debates about hypercomputation. There is also a very useful
new perspective on these issues (PhCT etc) in Cooper [15]. The anal-
ogy with “artificial horses” at the end of [15] is particularly nice and
illuminating.

4. More formal definition of relativistic computers

By a Malament-Hogarth spacetime (MH-spacetime) we understand
a general relativistic spacetime 〈M, g〉 in which there is a point q ∈ M
and a future-directed infinite timelike half-curve γ : R+ → M such
that the whole of γ lies in the causal past of q. The definition of
MH-spacetimes in more detail11 goes as follows.

Definition 4.1. By a general relativistic spacetime we mean a pair
〈M, g〉 where M is a smooth, oriented, and time-oriented 4-manifold

11We try to be as self-contained here as possible. The few concepts not intro-
duced here can be found in any textbook on general relativity, e.g. in Wald [85]. For
Einstein’s equations we refer to [85, p.72], as well as to [74, sec.4.4] in this volume.
A very elementary introduction to the basic concepts of relativity theory can be
found in [1]. In this volume [28, section 3], [4, section 2.4], [75], [54, section:Infinite
time], [50, end of section 6] also touch upon Malament-Hogarth spacetimes.
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while g is a smooth Lorentzian metric on M which is a solution to Ein-
stein’s equations, w.r.t. a physically reasonable matter field represented
by a smooth stress-energy tensor T on M (i.e. T satisfies one of the
standard energy conditions).

In the above, M represents the set of events, and g represents the
“local metric”. In particular, for a vector v (in the tangent space Tq of

a point q ∈ M), we think of
√

|gq(v, v)| as the “length” of the vector
v. We usually omit the index q. When v is timelike, this length means
roughly “rate of time passing at q in direction v”.

Definition 4.2. The length of an at least once continuously differen-
tiable timelike half-curve γ : R+ → M from a to b, where a ∈ R+ and
either b ∈ R+ or b is “infinity”, is the integral

‖γ‖b
a =

b
∫

a

√

|g(γ̇(t), γ̇(t))| dt.

We say that the curve γ is well-parameterized if ‖γ‖b
a = b − a for

all a ≤ b, a, b ∈ R+. We say that the curve γ is upward-infinite if
‖γ‖∞0 = ∞.

Intuitively, the integral ‖γ‖b
a is the length of the curve γ from a to

b according to the metric g. As usual, we interpret a future-directed,
timelike, well-parameterized curve γ as the world-line of an observer
(living in the spacetime 〈M, g〉). Imγ is the collection of the events
happening to γ during his life, and we imagine that t is the time showed
on the wristwatch of γ at the event γ(t). From now on we always
assume that the curves are well-parameterized, and we say that t shows
“proper” time, or “wristwatch time” of observer γ.

Definition 4.3. The causal past of the event q ∈ M is defined as

J−(q) := {x ∈ M : there is a future-directed nonspacelike
continuous curve joining x with q}.

Intuitively, J−(q) consists of those events x ∈ M from which one can
send signals to q. Summing up:

Definition 4.4. A spacetime 〈M, g〉 is called a Malament–Hogarth
spacetime if there is a future-directed timelike half-curve γ : R+ → M
such that ‖γ‖∞0 = ∞ and there is a point q ∈ M satisfying Imγ ⊆
J−(q). The event q ∈ M is called a Malament–Hogarth event.

Before going on, we give two examples. As the first example, take
〈M, g〉 where M = R4 and the metric tensor g at each p ∈ R4 is given
by the 4 × 4 matrix
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∣

.

This is Minkowski spacetime, it is not a MH–spacetime, see Figure 3.12

q

γ

Figure 3. Conformal diagram of Minkowski space-
time. Minkowski spacetime is not MH! All upward-
infinite timelike curves γ converge to points like q which
are not in the spacetime.

For the second example take the so-called vacuum Kerr spacetime
〈M, g〉 with parameters m > 0 and a. Below we use the so-called
Boyer–Lindquist coordinates (t, ϕ, r, ϑ). Here, (t, ϕ, r, ϑ) are kind of
polar-cylindric coordinates, r being radius13 and ϕ, ϑ being angles. The
metric tensor g at p = (t, ϕ, r, ϑ) is given by the 4 × 4 matrix

∣

∣

∣

∣

∣

∣

∣

∣

−1 + µ −µa sin2 ϑ 0 0
−µa sin2 ϑ gϕϕ 0 0

0 0 Σ/∆ 0
0 0 0 Σ

∣

∣

∣

∣

∣

∣

∣

∣

,

where Σ = r2 + a2 cos2 ϑ, ∆ = r2 − 2mr + a2, µ = 2mr/Σ, and
gϕϕ = (r2+a2+µa2 sin2 ϑ) sin2 ϑ. This spacetime is called the spacetime
of a rotating Kerr black hole of zero electric charge; m is thought
of as the mass of the black hole (one can visualize it as hiding in
the ring-singularity) and a is thought of as the angular momentum
per unit mass. The values of r 6= 0 yielding ∆ = 0 represent the

12Figures 3-5 are so-called conformal diagrams or Penrose diagrams of space-
times. As opposed to “ordinary” spacetime diagrams like Figure 2, conformal
diagrams intend to represent causal relations between events (disregarding metric
ones). On conformal diagrams photon world-lines are always straight lines of slope
45o. Hence no light-cones are tilted (helping to represent causality).

13To be precise, r is the logarithm of the radius.
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locations of the event horizons. When |a| < m, there are two event-
horizons, an outer one and an inner one. The assumption |a| < m
means that we are in the slow (Kerr) case, by definition. Figure 2
represents such a slow Kerr hole in Eddington-Finkelstein coordinates,
while Figure 5 shows the Penrose-diagram or conformal diagram for a
slow Kerr hole. Figure 5 is more informative than (the more intuitive)
Figure 2. Figure 5 reveals that this is indeed a MH-spacetime, there
are MH-events on the inner event horizon as represented in the figure.
For more on the Kerr spacetime with the above metric g we refer to
the textbook O’Neill [53, sec.2.1, pp.58-59]. The fact that this is a
MH-spacetime is proved both in [26] and in [25, Prop.2.4]. The proof
can be reconstructed e.g. on the basis of [53, pp.246-7(cases B and S)].

The so-called Kerr-Newman black holes or spacetimes are obtained
from the Kerr case described above by adding an extra parameter e for
electric charge in an appropriate way. These, too, are MH-spacetimes,
assuming |a| + |e| 6= 0. If a = 0 but e 6= 0 this becomes the so-
called Reissner-Nordström black hole. If a = e = 0, this becomes the
Schwarzschild spacetime, which does not have the MH-property, see
Figure 4.

future singularity
does not reach(spacelike, unavoidable)

this light signal

q′ q

γ

γp

γp

Figure 4. Penrose diagram of Schwarzschild black
hole. There is no point in the spacetime whose causal
past contains all of an upward-infinite future-directed
curve. Hence, MH property fails.

Another example of physically realistic MH-spacetimes is the anti
de Sitter spacetime (illustrated in [28, Fig.1], this volume). Earman
and Norton [21],[22] investigate MH-spacetimes in general, and show
their importance from the point of view of the cosmic censor hypoth-
esis. Etesi [25] contains a classification of MH-spacetimes satisfying
appropriate energy conditions and points out another interesting rela-
tionship between such MH-spacetimes and the strong cosmic censorship
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reach
signals sent by

inner event horison

other universe?

infalling observer 

ring singularity is timelike

hence avoidable by  

a Malament−Hogarth event!  
e1

e

γ2

γ

γp

γ
γp

Figure 5. Penrose diagram of slowly rotating black
hole along the symmetry axis. This is a Malament-
Hogart spacetime. The length of γp is finite, while the
length of γ is infinite. (γ2 will be used later, in sec-
tion 5.3.2.)

hypothesis. Gödel’s rotating cosmological models [31], [32], Gott’s ele-
gant spacetime with two cosmic strings [30], are all MH-spacetimes and
there are many more.14 For computing a non-Turing computable func-
tion, Hogarth uses anti de Sitter spacetimes in [37], Etesi and Németi
use slow Kerr spacetime or Kerr-Newman spacetimes in [26], and Ear-
man uses Reissner-Nordström spacetimes in [20].

The way a MH-spacetime is used for defining relativistic computers
is the following. We add an extra timelike curve γp such that q lies on
the curve γp and an initial segment of γp coincides with that of γ. The
latter means that there is a bound d ∈ R such that for all d > r ∈ R+ we

14Some of the above involve CTC’s (closed timelike curves), but CTC’s are
not necessary for MH, there are many MH-spacetimes without so-called “strong
causality violations”, cf. Etesi [25]. On the other hand, existence of CTC’s implies
the MH-property.
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have γ(r) = γp(r).
15 We regard γp as the world-line of the programmer,

γ as the world-line of the computer. The event q happens at a fixed
finite time according to the proper time of γp, say q = γp(b). As a
contrast, every event on the curve γ (i.e. every event occurring to the
computer) is in the causal past of q. Below the bound d the computer γ
and the programmer γp are together, not moving relative to each other
and their proper times (wristwatch times) agree. After “timepoint” d
they move on separate world-lines. The programmer uses the time-
period before d for transferring input data to the computer γ as well as
for programming γ. Suppose the task for the pair 〈γp, γ〉 is to decide
whether ZFC set theory is consistent. (The case when the task is
to find whether a number, say n, is in a recursively enumerable set
H of the integers is completely analogous.) Then γ starts checking
whether the theorems derivable from the axioms of ZFC contain the
contradictory formula FALSE. So γ derives the theorems of ZFC one
by one and checks whether FALSE is among them. If γ finds FALSE
among the consequences of ZFC, it sends a signal towards γp. Suppose
this happens at proper time t of γ. Then since, by definition of MH-
spacetimes, γ(t) is in the causal past of q = γp(b), we know that we
can arrange that γp receives this signal latest at the event q. I.e. the
signal arrives at t0 ≤ b on the world-line of the programmer γp. So if
ZFC is inconsistent, then γp will receive a signal latest at event q, i.e.
latest at proper time b (which is a fixed number). On the other hand,
if γp never finds an inconsistency in ZFC, then it never sends a signal
to the programmer γp, hence at proper time b, γp will know that no
signal was sent. I.e. at proper time b, the programmer γp will know
whether or not ZFC is consistent.

Definition 4.5. By a relativistic computer in a MH-spacetime 〈M, g〉
we understand a triple 〈γp, γ, q〉 such that γ is an upward-infinite future-
directed timelike curve lying in the causal past of the event q ∈ M , γp

is a timelike curve such that q lies on γp and an initial segment of γp

coincides with that of γ.

By the above we described how the relativistic computer 〈γp, γ, q〉
decides the set of theorems provable from ZFC (or from any other re-
cursively axiomatizable theory). This task is well known to be “beyond
the Turing barrier”, i.e. non-Turing-computable.

For any other recursively enumerable set, say H, of the integers a rel-
ativistic computer 〈γp, γ, q〉 deciding whether any given number is in H
(i.e. deciding H) is constructed completely analogously. The case, when
the task for 〈γp, γ, q〉 is computing a usual Turing computable function

15Here, for simplicity, we do not worry about showing the existence of such a γp,
we may assume that it is included in the definition of a MH-spacetime. In e.g. [26]
we prove the existence of γp whenever needed, moreover we prove many feasibility
conditions on γp. Hogarth [37, p.73] proves that such a curve γp always exists.
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is discussed in [26], in Hogarth [37], in Leeuwen-Wiedermann [87]. For
brevity, we do not recall this case here. Here, it is not our purpose to
investigate how far one can push the limits of relativistic computabil-
ity along these lines (i.e. along the so-called degrees of unsolvability
or, in other words, along the arithmetical hierarchy Σn, Πn, n ∈ ω).
To some extent this was discussed in [26] and this limit was pushed
very-very far in works of Hogarth [36], [38] and Wischik [88]. Leeuwen-
Wiedermann [43] gives a characterization for the class of sets decidable,
and the class of functions computable, by a relativistic computer.

Instead, we would like to concentrate on the question whether the
above outlined idea of relativistic computers 〈γp, γ, q〉 going beyond the
Turing limit is physically realistic. In other words, we are interested
in finding out whether one really can “break the Turing limit” by us-
ing new physics. This direction was also the main thrust of [26], but
we hope that by now we can add a little to the degree of confidence
achieved there.

5. On physical realizability of beyond-Turing

relativistic computers

As we already indicated, we are not aiming for making our relativistic
computers routinely realizable “cheap” devices like a laptop or a PC.
Instead, we are aiming to show that, in principle, if a beyond-Turing
task becomes extremely important for (a future generation of) mankind
like e.g. deciding whether the foundation of mathematics, ZFC, is con-
sistent or not, then with sufficient concentration of effort, resources,
time and energy, it can be made physically realizable (under perhaps
extremely high costs) as opposed to something which is absolutely im-
possible (like e.g. building perpetuum motion machines, or finding a
Turing machine which decides the halting problem).

In [26] we start out from the spacetime of a huge slowly rotating black
hole like the ones in the centers of galaxies, like the Milky Way. Such
a black hole exists in the center of the Milky Way according to [49], cf.
also [24],[27],[69] and astronomical evidence reviewed in section 5.2.2
below. In [26], starting out from such a spacetime we construct a
relativistic computer 〈γp, γ, q〉 as above. Then we make certain that
in addition to the properties described in Def.4.5, this configuration
has certain further realizability properties. E.g. we prove that γp and
γ have only very strictly bounded acceleration, so that realizing them
requires only a finite amount of energy. (Actually, the acceleration of
γ in [26] is uniformly 0.) Also, from any point p of the world-line γ,
a light signal can be sent such that it arrives at γp strictly before the
MH-event q (on the inner horizon).

A large part of [26] is devoted to ensuring/studying the physical
realizability of the relativistic computer 〈γp, γ, q〉 based on a so-called
galactic size slowly rotating black hole. Earman [20, sec.4.8, p.119]
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is also devoted to the discussion of physical realizability of relativistic
computers. Here we address some problems left open in [26] and in
[20]. We do not aim at completeness. As we discussed at the end
of section 1, and as pointed out in [26, bottom of p.343], there are
two different kinds of realizability issues here. The first issue concerns
realizability of computation by some idealized device with respect to
some concrete physical theory (such as some concrete spacetime of
classical general relativity). The second issue concerns realizability by
taking into account all of our present day physical, cosmological, etc.,
knowledge about the universe we are living in. We will not carefully
indicate below which of the two issues is being addressed at which point,
but we hope context will help. In the answers we will concentrate on the
(slow Kerr-based) relativistic computer outlined in [26] and in section 4
herein, but occasionally we will mention relativistic computers based
on some other (than Kerr) MH-spacetimes. If not indicated otherwise,
by a black hole we will always mean a slowly rotating (Kerr) black hole.

5.1. Do we need to implement a so-called supertask? The an-
swer is definitely “no”. Realizability of our kind of relativistic com-
puter is a strictly weaker assumption than realizability of a proper
supertask in the sense of e.g. Earman-Norton [21],[22] or Earman [20,
Chap.4]. The reason for this is the following. Relativistic computers
do not perform infinitely many steps in finite time. This is so because
the computer performs its infinitely many steps in infinite time, and
the programmer implements only finitely many steps (namely, detect-
ing and decoding the signal sent by the computer) in finite amount of
time. Therefore e.g. eventual discreteness of spacetime in some versions
of quantum-gravity (or Planck scale physics for that matter) does not
interfere with the functioning of this relativistic computer. This was
already mentioned in Etesi-Németi [26, item 4 on p.367], but recent
experience tells us that this point needs to be spelled out with more
emphasis. To emphasize that we do not need a proper supertask for rel-
ativistic computers, Barrow [7] distinguished pseudo-supertasks from
supertasks. Our relativistic computer involves only a pseudo-supertask
because γp need not observe all the infinity of events in its causal past.
Instead, γp needs only to decode a single prearranged message coming
from γ and may ignore the rest of events happening with γ. See also
[22, sec.11, p.251].

5.2. Will the programmer survive? The first group of questions
concerns whether the programmer will survive after getting the answer
from the computer. We already discussed this issue in section 2. There
we discussed two questions, namely whether the programmer survives
passing the event horizon, and whether he can avoid falling into the
singularity.
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5.2.1. Tidal forces. We said that if the black hole is big enough then the
tidal forces on the event horizon will be small. Black holes are known
to exist between 107m⊙ and 1010m⊙. E.g. to ensure safe traversability
of such a black hole for a humanlike traveler, it is amply enough that
the size of the black hole reaches 107m⊙ (the bigger the safer because
the tidal forces on the event horizon of a bigger black hole are smaller).
These tidal forces and similar effects were checked in [26] and were also
recalled from the literature yielding reassuring results.

For example, a careful analysis of the situation was carried out by Ori
[55][56] in the case of the Reissner–Nordström black hole, and partially
in the case of the Kerr–Newman black hole. In accordance with his
calculations (accepting the validity of certain technical assumptions)
it seems that despite the existence of the scalar curvature divergence,
the tidal forces remain finite moreover negligible in the case of realistic
slow Kerr black holes when crossing the inner horizon. Though the
inner horizon (which contains the Malament–Hogarth event) is a real
curvature singularity, it is only a so-called weak singularity since the
tidal forces still remain finite on it [55], [56]. As an example, [56]
computes that for a Kerr black hole of mass M = 107m⊙ the relative
distortion of an object of typical size l crossing the inner horizon is

∆l

l
≤ 10−55.

Thus, in theory at least, the MH-event can be approached by the ob-
server γp safely, although it is situated in a “dangerous” region of the
Kerr–Newman spacetime.

5.2.2. Existence of supermassive slowly rotating black holes. The exis-
tence of supermassive (or galactic) black holes of mass approximately
1010m⊙ is made likely by many recent astronomical observations, e.g.
in [69], [27], [77, section 25.5 “Supermassive black holes”]. In this last
work, the second sentence writes “. . . is a rotating supermassive black
hole of order a billion solar masses . . . ”. Cf. also [41], [42], Melia [48].

5.2.3. Not the programmer travels. For the case the reader should feel
uncomfortable about the arrangement in section 2 that it is the pro-
grammer γp who takes the journey to the exotic regions of the universe
(e.g. into a huge and “tame” Kerr black hole) and it is the computer γ
who stays safely away from the black hole (actually the computer may
move farther and farther away from the black hole e.g. in order to not
disturb the hole’s equilibrium), we note the following. This division of
labor is not necessary for MH computers. The roles can be switched,
e.g. by replacing the black hole with an anti de Sitter spacetime as in
Hogarth [37], Earman [20, p.113] or we can use setting appropriate val-
ues for the cosmological constant Λ (which needs not be really constant
according to latest findings) amounting to a repulsive kind of gravity
which may be responsible for the acceleration of the expansion of the
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universe, in order to make the same relativistic idea work with the roles
of γp and γ interchanged.16

5.3. Can the programmer receive and understand the signal

sent by the computer?

5.3.1. The so-called blueshift problem. This is the problem of commu-
nication between the computer γ and the programmer γp. This prob-
lem has been extensively discussed in Earman [20], Hogarth [37, p.87],
Etesi-Németi [26, item 4 on p.367]. The problem was basically solved
there but some technicalities were left open. We agreed in [26] that in
order to avoid burning γp by an infinite amount of energy (cf. Lemma
4.2 in [20] or Prop.6 in [26]) the computer sends only a “yes” or “no”
type signal. To be able to distinguish the signal from background
“noise”, γp and γ still have to agree on a long enough and complicated
enough signal, but the point is that they know in advance how long
the (finite) signal will be. The remaining problem was that although
the signal is of a fixed finite length, the gravitational effects may make
the signal’s wavelength so short that γp cannot recognize it. A possi-
ble solution is the following. When γ finds the inconsistency in ZFC
set theory, it calculates how close γp is to the inner event horizon and
from this γ calculates the blueshift to be expected. So, γ knows what
frequency it should use for the signal so that after the blueshift it will
appear just right for γp. But how could γ generate an arbitrarily low
frequency signal?17 Well, γ sends a spaceship S in the direction op-
posite to the direction of the Kerr hole. Now if S moves fast enough,
then any signal sent from S to γp will be redshifted because of the
speed of S. Now, γ chooses the speed of S to be such that the redshift
caused by this speed exactly cancels out the blueshift caused by the
gravitational effects where γp is when he receives the signal. Since γ
has enough time and enough data for making these calculations (and
since γp is still outside the inner horizon when receiving the signal),

16For cosmological realism of a non-vanishing cosmological constant Λ we refer
to the latest results in cosmology, cf. e.g. Sir Martin Rees [67],[68]. Also recent
discussions of “dark energy” and “negative energy” cf. e.g. Kaku [39] are relevant
here making relativistic computing easier in some sense. For recent ideas on negative
energy and cosmic censor violations cf. e.g. [34]. For actuality of Λ > 0 and its
variants cf. also item 5.4.3 way below.

17This question was originally posed in 1988 when one of the present authors
proposed the present relativistic beyond-Turing computer at the Algebra Seminar
of Prof. Ervin Fried (Eötvös Univ. Budapest 1988). The objection was that the
computer γ will need longer and longer antennas for emitting the low frequency
signal in the direction of γp. Since the blueshift tends to infinite, the length of the
antenna would also tend to infinite, which seems to be a physical impossibility. We
think that the arrangement proposed here will take care of this problem. It was
this objection which resulted in postponing the publication of the present Kerr-
based 〈γp, γ, q〉 machine from 1987 to 2000. We mention this as a curiosity of the
dynamics of developments of ideas and effects of the Iron Curtain.
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this arrangement is possible (in theory at least). If we want to avoid
using too much fuel for speeding S, we could use a second black hole for
redshifting the signal from S (sent towards γp) appropriately. Namely,
we deposit a large enough Schwarzschild black hole far away from the
Kerr black hole such that it should not disturb the working of the Kerr
one. Then, when γ finds the inconsistency, γ “drops” the spaceship S
into the Schwarzschild black hole in such a way that the message sent
out by S gets redshifted in exactly such an extent that this redshift
cancels the blueshift effect out at the receiving end, i.e. at γp.

A different solution to the blueshift problem is at the end of subsec-
tion 5.4.1. It is an interesting future research possibility to solve the
communication problem between γ and γp by some quantum-information
theoretic methods.

5.3.2. Recognizability of the signal. With the above solution to the
blueshift problem, the problem remains to see the details of how γp

can recognize the signal coming from γ.
In order to achieve our main goal, we managed to slow down the

subjective time (or proper time) of γp relative to the computer γ such
that on the inner event horizon, roughly, γp’s clocks are frozen mo-
tionless from the point of view of γ. This gives γ sufficient time for
computing the desired task. But when γ has obtained the result, there
remains the engineering task of transferring the result to γp in such
a way that γp can “notice” the result. If γ simply sends a stream of
photons to γp whose clocks are frozen motionless, then this “frozen”
γp will experience the presence of these photons for an infinitely short
time period only as measured by the clocks of γp. But any measuring
instrument needs some finite (nonzero) time for reacting to a change in
the surrounding electromagnetic field or to a change in anything, i.e.
to a signal. So if we do not do something, then γp might not be able
to notice the signal.

In other words, to achieve our main purpose, we “transformed” γp

into a new “world” in which time passes differently from that of the
“world” of γ. To communicate the result to γp, γ encodes this result
into a physical system S2. If we just send S2 to γp, then γp might not be
able to decode the message in S2 because the clocks of S2 are not tuned
to those of γp. A reasonable solution to this is that we “transform” S2

from the “world” of γ to the world of γp. E.g. we can choose S2 to be
a so-called messenger spaceship. After γ obtained the result, it puts
the result into the spaceship S2 and sends S2 after γp with the task of
getting itself to the same “state of motion” or “same world” as γp is.
Then S2’s clocks would be, roughly, synchronized to γp’s ones. After
this, S2 is supposed to communicate the result to γp. In what comes
below, the world-line of S2 is denoted as γ2.
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For more detail let us look at Figure 5. Assume that γ finds the
inconsistency of ZFC at a point e on its world-line. As can be seen
in Figure 5, there is a timelike curve γ2 starting from e and ending
on a point e1 on γp somewhere beyond the MH-event q of γp. This
new curve γ2 intersects the inner horizon IH somewhere in the causal
past of q. Now, a possibility is that after finding the inconsistency,
the computer γ sends out a second spaceship S2 towards the black
hole, with world-line γ2. When S2 meets γp, it can safely transfer the
message to γp. Here we need to worry about the time γp has to wait
after the MH-event q for the arrival of S2. To ensure that this time
period is strictly bounded, S2 can start sending light-signals to γp after
it crosses the IH. These light-signals need not get blue-shifted, since γp

and S2 live in the same segment of the Kerr space-time, cf. Figure 5,
and their world-lines are “roughly parallel”. Now, S2 can repeat the
signal arbitrarily many times without a danger of “burning” γp.

18

A different solution to the background noise problem (together with
the blueshift one) is at the end of subsection 5.4.1 below.

5.4. Can the computer “live” for an infinite amount of time?

As it turns out, this problem has much in common with latest investiga-
tions in the literature concerning whether mankind can survive forever.
Cf. [39], [67], [80] or the Omega point argument in Barrow-Tipler [8,
pp.676-677].

5.4.1. Evaporation of black hole. In [26, p.368] the theoretical worry
is mentioned that if we take quantum effects also into account, then,
many authors think, perhaps even the largest Kerr black holes might
evaporate eventually, so if the computer finds the inconsistency in ZFC
set theory, say, only after 10100 years, then it will not be able to notify
the programmer19. There are many things to be said about this:

(1) This does not affect theoretical possibility of beyond-Turing com-
puters in general relativity, and the GR version is our main aim here.
So, our “first issue” is taken care of.

(2) The programmer γp can program his fleet of self-reproducing
robots (serving the computer γ) so that these robots fly to farther and
farther reaches of the universe and send matter into the Kerr hole, so
as to prevent its evaporation. The amount of matter sent this way
into the black hole need not be much, what is important is that it
should never stop. The possibility of this seems to depend on the rate
of expansion of our universe. There are two cases. (I) The expansion

18There is a different kind of solution to the same (recognizability of signal)
problem which uses mirrors (surrounding γp) instead of messenger ships. The end-
result is similar: the physical system S2 carrying the message remains around γp

for a long enough proper time of γp. This is available from the authors.
19An estimation for the evaporation time of a galactic black hole, i.e. one of mass

1010m⊙ is between 10100 and 10150 years.
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of our universe continues to accelerate forever, or (II) the acceleration
of expansion slows down eventually, though the expansion itself may
go on. In case (II) it seems possible, according to the calculations of
the present authors, to feed the black hole forever. Hence our thought
experiment with the relativistic computer can be carried through. In
case (I) this might not be possible (unless there is some extra effect
compensating for the eternal acceleration of expansion).

We would like to mention that even in the unlucky case if our con-
crete universe would be of the type described by case (I), in theory a
positive solution is consistent with spacetime theory of today (which
permits case (II) as a possible spacetime). As described in [39, Chap.11
(escaping the universe), p.304 –] even in case (I), mankind could ex-
periment with finding a solution for beyond-Turing computation, but
for lack of space we do not discuss this here.

For case (II), it will be outlined below how the present arrangement
seems to lead to a new kind of solution for (i) the blueshift problem,
(ii) the infinite noise problem, and (iii) for ensuring the programmer
at the MH-event that nothing went wrong with the computer (while
checking consistency of ZFC).20 This idea seems to work if our universe
corresponds to case (II) outlined above. (For case (I) it remains an open
problem to see whether all these problems can be solved satisfactorily.)
So, assume case (II). In accordance with item (2) above, the computer
γ “directs” (or oversees) the maintenance or feeding of the Kerr hole
such that it does not evaporate. Now, we make a new convention for
sending messages from γ to γp. If and when γ finds an inconsistency
in ZFC set theory, γ orders all its robots to stop feeding the black
hole. This will cause the black hole to evaporate. Assume at first
approximation that γp can survive such an evaporation. So, γp will
notice that the black hole evaporated. On the other hand, if there
is no inconsistency in ZFC, then γp will cross the inner event horizon
and therefore will know that ZFC is consistent. So, it seems that after
the time comes for γp to reach the MH-event, γp will know whether
ZFC is consistent or not. This arrangement seems to rely only on the
assumption that γp is capable of deciding whether the black hole he
is falling into has evaporated or not, and that γp can survive such an
evaporation. (Such aspects of black hole evaporation are discussed in
[20, section 3.6, “black hole evaporation”], according to which it is
consistent that γp might survive such.) Actually, making the black
hole evaporate may be a too drastic tool for communication between
γ and γp. A more refined version of this is if γ makes pre-agreed upon
changes on the feeding process of the black hole making the black hole’s
behavior change in such a way which can be noticed by γp. (E.g. γ could
cause the black hole shrink to, say, 3/4 of its original size and then stop

20Idea due to Attila Gohér [29].
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shrinking, or change the angular momentum or electric charge of the
black hole.)

We should note that for making the ideas about feeding the black
hole (against evaporation) realizable, future research is needed into
asking how the geometry of a Kerr hole changes if matter/energy is
sent into the black hole. Actually, this research might tell us how
(from what direction, in what form etc) we should feed the black hole
in order to render our relativistic computer workable.

At this point the reader might be puzzled about how the programmer
γp will notice that he will have crossed the inner event horizon or how
he will notice that the black hole will have started to evaporate. In
other words, so far we have spoken in the manner as if there were
some “road signs” at the inner event horizon informing γp that “you
have reached the inner event horizon”. In this connection, roughly,
we claim that a sufficiently advanced civilization, with sufficient data
about the black hole they plan to use, can design measurements for
γp by which he can decide the above questions (so instead of watching
out for a road sign, γp can measure/observe “this and that effect”). In
more detail, before starting the experiment, γp can calculate how much
time it will take for him for reaching the event horizon assuming that
the black hole will be fed according to plans. They can also calculate
margins of error for this measurement, taking into account that feeding
the black hole might go a bit “unevenly” for some unexpected reason.
Assume ZFC is consistent. So γ will not stop feeding the black hole.
Then by looking at his wristwatch and making some extra astronomical
observations, γp will be able to conclude that he will have crossed the
inner event horizon. More concretely, to conclude that he has indeed
crossed the inner horizon, γp might check whether the outside universe
in which γ lives disappeared completely from γp’s view, cf. Figure 5.
By this we mean that the Penrose diagram on p.19 reveals that after
γp crossed the inner event horizon, no light signal comes to γp from the
universe inhabited by γ. Informally, we will refer to this by saying that
γ entirely disappeared from the sky of γp (but this is only a picturesque
mannerism to refer to the above mentioned observations/experiments).
So, roughly, if γp’s wristwatch shows the pre-calculated time and γ
disappeared completely from the sky of γp, then γp concludes that
ZFC is consistent.

It needs some extra research in the theory of rotating black holes
to nail down the criteria after observing which γp can conclude that
ZFC is inconsistent, but finding these criteria should be, theoretically,
possible. To avoid digression, we keep discussion of these criteria very
sketchy: We note that e.g. if γp sees the pre-calculated time on his
wristwatch and he still sees traces of γ in its sky, i.e. the universe
inhabited by γ still did not disappear completely from γp’s view, then he
may conclude that ZFC is inconsistent. The details for the conditions
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under which γp will conclude that ZFC is inconsistent depend on pre-
arranged conventions between γ and γp involving e.g. how γ continues
influencing (e.g. feeding, not feeding, half-feeding) the black hole after
discovering an inconsistency in ZFC. These pre-arranged conventions
will depend in turn on future theoretical results concerning how exactly
a “controlled” evaporation of a Kerr black hole proceeds, e.g. on what
effects an observer “trapped” in between the two event horizons will
experience. The details of this plan of action might also depend on
what possible influences of γ can be noticed by γp without killing γp.
Such an action might be e.g. changing the feeding pattern of the black
hole as outlined above. Another theoretical possibility is that, after
having found an inconsistency in ZFC, γ speeds up (or slows down)
the spin of the black hole the consequences of which might again be
observable for γp. Also, γ might change the electric charge of the black
hole which will certainly be noticeable for γp assuming he is prepared
for measuring this effect. Though the electric charge will probably be
gradually lost in time (in physically realistic situations), γ might be
able to maintain a noticeable nonzero charge.

We refer to the internet movie “falling into a black hole” (http://
casa.colorado.edu/∼ajsh/schw.shtml by Andrew Hamilton, Univ. Col-
orado, Boulder, Dept. APS) for visual effects which might reveal for
an infalling observer whether she has passed through an event horizon.
Notice however that for the time being, this movie is elaborated only
for the Schwarzschild case and we would need it for the Kerr case with
an emphasis on the inner event horizon. Cf. [71].21

A crucial part of our above plan was the assumption that at a particu-
lar given wristwatch-time (proper time) point, γp can decide by making
appropriate observations/measurements whether he has crossed the in-
ner event horizon or not. The measurement we suggested was based on
the complete “disappearance” of the whole universe in which γ lives.
We note that the theory of Kerr black holes (e.g. [53]) provides γp and
γ with further possible experiments for deciding this issue (i.e. for γ’s
communicating to γp that an inconsistency was found). Since there are
many such theoretical possibilities (for γ’s communicating to γp with-
out the latter’s destruction), and since it is a future research task to
find out which work and which do not, we do not go into more detail
about this subject here.

We note that a safe alternative solution to the blueshift problem was
described in section 5.4.1.

5.4.2. Decay of protons. A worry similar to the one discussed in item
5.4.1 above (evaporation of black holes) is that according to present day

21Actually, if we were interested in noticing the outer horizon, we could try to
use the Schwarzschild movie with appropriate modifications, but the inner horizon
of a Kerr black hole shows fewer analogies with the Schwarzschild horizon.
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Grand Unified Theories (GUT’s) of particle physics, matter in the form
we know it today might decay by the time huge black holes evaporate
(roughly after, say, 1035 years or so), cf. e.g. Kaku [39, pp.298-299].22

This means that protons from which the computer γ is built may de-
cay eventually and the “repair-servants” of γ may not be able to find
enough protons in the vicinity of γ for re-building γ. Again, for the pure
GR version, this problem disappears. So let us look at item (2) of 5.4.1.
As stated there, the future expansion of the universe corresponds either
to case (I) or case (II) outlined there. For case (I) this issue remains an
open problem23. For case (II), we proceed analogously to 5.4.1, namely
as outlined in item 5.4.1(2), γ sends a fleet of self-reproducing robots
to distant parts of our universe to send in energy in the form of pho-
tons to γ as raw material for recreating γ. Now, the maintainers of γ
first focus (“compress”) the energy sent in by the distant sub-robots in
order to obtain high energy photons. (The reason for this is that high
enough energy photons are needed for creating proton-antiproton pairs,
and this late stage of the expanding universe might not contain such
high energy photons in sufficient number.) Next, the maintainers of γ
use the so obtained high energy photons for creating proton-antiproton
pairs. (This is part of matter-antimatter pair creation by high energy
photons. Some of the so obtained matter will be protons. These are
enough for our purposes.) Next, they send the antiprotons to feed the
black hole as described in subsection 5.4.1 above and use the protons
for rebuilding γ.

5.4.3. Infinite amount of energy or matter. Costa and Mycka [51, p.4]
and [16, p.4] bring up the doubt that perhaps relativistic beyond-Turing
computers might need an unbounded amount of energy and may there-
fore be not implementable. We will analyze this doubt more rigorously
in the second part of the present subsection starting with “let us turn
to the infinite time and space problem” (p.31). But first we note the

22In more detail, GUT’s are unified theories of particle physics intended to unify
the theory of electroweak interactions (electromagnetic and weak nuclear forces)
and strong nuclear forces described by quantum chronodynamics QCD. So, GUT’s
are designed to unify the theories of all forces in nature with the exception of
gravitation. In contrast with the so-called Standard Model, GUT’s predict that
protons eventually decay but this has not been confirmed by experiment yet. All
the same, the theoretical motivation is strong. Details can be found on the Internet
Wikipedia. Cf. also e.g. Penrose [62], Barrow and Tipler [8, pp.647-653] where
the authors are pursuing goals analogous with relativistic computers. The ideas
suggested there to overcome the problem of proton decay (and similar problems in
our section 5) present a viable alternative to our suggestions. (The halflife 1035

years of protons is only an estimated number, its real value is unknown yet.)
23One might try to rebuild γ by using the remaining kind of matter, probably

electrons, positrons, neutrinos, photons but this seems extremely hard, not neces-
sarily impossible, though.
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following. Fortunately, the presently discussed doubt (about realiz-
ability) had been voiced by Pitowsky in 1990. The rather careful book
Earman [20, p.119] addresses this doubt and explains in detail why
and how this difficulty can be avoided without impairing realizability
of the relativistic beyond-Turing machines. Also, Hogarth [37, p.120]
explains how to solve this kind of doubt. Later Earman reformulates
the above doubt in the following strictly milder form. If the computer γ
works for an indefinite amount of time producing an indefinite amount
of auxiliary information to be (temporarily) stored, then the so ac-
cumulated mass (read “information”) around the location of γ might
perhaps form something like a new black hole destabilizing the origi-
nal Kerr hole into which the programmer γp is falling. What Earman
writes subsequently indicates that he is not taking this destabilization
problem very seriously. Anyway, let us answer this destabilizing doubt.
The solution is the following. The “space” available for the operation
of the computer γ is the entire universe (except for the interior of the
Kerr black hole). Now, let us implement γ as a fleet of self-replicating
robots which (i) move away from the Kerr hole (in order not to dis-
turb it) and (ii) spreads itself very thinly over the universe (external
to the Kerr hole) avoiding formation of clumps of matter or energy. In
particular, γ does not store auxiliary information locally at some fixed
place, but γ sends the pieces of material encoding parts of its auxiliary
data far away from γ by its sub-robots, e.g. to distant “stars or even
galaxies” and when they are needed then they are carried back to the
location where γ needs them. This is like a real computer of today
which writes partial results on, say, disks, then sends these disks to
distant locations and asks for bringing these disks back when needed.
The point is that the information needed for carrying out the compu-
tations of γ need not be stored locally at a single space, but it might
be spread out evenly in the universe as thinly as we want. So, a careful
enough “distributed” organization of the system of robots performing
the task of γ can be spread out so thinly that we avoid formation of
matter-energy densities which could seriously interfere with the task
assigned to the Kerr hole.

Let us turn to the “infinite time and space” problem. The results
of current astrophysics and astronomy predict that the expansion of
the universe will never stop, in particular, that Einstein’s cosmological
constant Λ is positive. The discovery of this started in 1998 when in-
dependent teams of astronomers (one headed by S. Perlmutter) found
that the expansion of the universe is accelerating (instead of slow-
ing). These findings of modern physics and cosmology are based on
hard experimental data (taken together with classical theory). The ex-
perimental data come from 3 radically different experimental research
directions. These are (i) observing many supernovae at various dis-
tances, their redshifts, apparent luminosities etc. (e.g. S. Pearlmutter),
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(ii) precisional studies of anisotropies in the cosmic background radia-
tion (by COBE, and WMAP [89], e.g. D. Spergel), and (iii) the study
of the large-scale distribution of galaxies in the universe (e.g. by Sándor
Szalay, cf. Sloan Digital Sky Survey [73]). Any two of these different
kinds of experimental research directions select the same cosmological
model from the many theoretically possible ones, with great precision.
In the weight of all this evidence, this model has been accepted as the
(new) standard model of cosmology. This model predicts with great
experimental confidence that the universe is infinite in time, is also in-
finite in space, and contains an infinite amount of matter [60]. All the
above is described in detail in e.g. Dodelson [19] and reinforced in the
Scientific American papers [76], [79].

The above model exists both in a Case II and a Case I version dis-
cussed in section 5.4.1(2). It is generally conjectured, see e.g. [11], that
Case II is more likely. The reasons for this are as follows. After evi-
dence became available for Λ > 0 in 1998, theoretical physicists started
to search for understanding the “cause” for Λ, i.e. they wanted to find
the substance or something that causes Λ 6= 0. Such an enterprise was
already successful for the explanation of the inflation of the early uni-
verse. In that case, using results from particle physics, a scalar field
was found responsible for Λ > 0. Nowadays it is conjectured that a
similar scalar field is behind the present value of Λ. If so, as the uni-
verse expands, this scalar field gets diluted, and hence Λ will decrease
and tend towards 0. This leads to the situation outlined in section
5.4.1(2) as Case II when the acceleration of the expansion of the uni-
verse slows down in the future but the expansion itself does not stop.24

In the literature, the new role of a changing Λ has been reformulated in
terms of “dark energy”, “inflatons”, “quintessence”, to mention only a
few. On the Internet, more technical papers on the above can be found
under the just mentioned keywords. Cf. Dodelson [19], [11], Kaku [39,
pp.102-105], Penrose [61, pp.772-774], Sir Martin Rees [67], Melia [48],
Veneziano [84].

Let us return to relativistic computers, in the Case II version of this
model. In section 5.4.1(2) we explained how feeding the black hole with
matter for an infinity of time can be organized via subrobots of the com-
puter γ, but then part of the matter collected by these subrobots of γ
can be used for creating extra tape for γ to write on (while the remain-
ing part is used for feeding the hole). So, if we are in a Case II universe,
then infinity of time and space (together with the predicted evolution
of matter density) permits us to collect enough matter/energy to write
on. Hence relativistic computers are realizable. For Case I universes,
it remains an open problem to elaborate how a relativistic computer

24Roughly, as Λ tends to zero (in the distant future), the geometry of our universe
may approximate what is called Einstein - de Sitter spacetime in the textbook [18,
p.335].
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can be realized, but we referred to promising research initiatives in this
direction in section 5.4.1(2) and the beginning of section 5.4.

This takes care of the doubt of Costa-Mycka-Pitowsky. Before going
on, we would like to mention a further consideration undermining this
doubt: it is not clear that to store a certain amount of information how
much matter/energy is really needed. Actually, one of the main direc-
tions in quantum computing can be interpreted as undermining the
belief that for storing one bit of information a certain fixed minimum
amount of matter/energy is needed.

In passing, about the unbounded energy need doubt discussed above
we would also mention a certain aspect of our perspective on rela-
tivistic computers: In agreement with Leeuwen and Wiedermann [43]
we regard relativistic computers as “open systems”. This means that
analogously to a human intelligence (forming the model for an Arti-
ficial Intelligence) who uses his unbounded environment as a kind of
resource, the relativistic computer 〈γp, γ, q〉 uses the entire universe
(or even universes or multiverse) in which it is situated as a potential
background resource into which e.g. γ can spread if desired.

5.5. Instability of the inner horizon. Because of the exotic prop-
erties of MH-spacetimes, the problem came up whether the overall
geometric properties of the Kerr black hole might get lost if we add to
the Kerr spacetime the world-line of some particle of a very small mass.
Since the inner horizon (IH in the following) is the most interesting part
of this spacetime, this problem became known as the (perturbational)
instability problem of IH.25

In our case there are two world-lines, γ and γp, added to the Kerr
spacetime. Of these, γ seems to be the more dangerous one since this
is the one which is connected to the MH property. The present worry
is based on the assumption that γ remains in the vicinity of the black
hole while carrying out its task. If ZFC is consistent, γ will carry out
an infinite number of “steps” in the vicinity of the black hole whose
effect on the IH might build up in an analogous fashion as described
in connection with the blueshift problem in [20, pp.111-112]. However,
this problem admits a simple solution: the computer γ does not remain
close to the black hole while carrying out its task, γ could move away
farther and farther from the black hole such that its gravitational effects
on the black hole become negligible. This does not interfere with our
thought experiment. So, it seems that the destabilizing effect of γ can
be avoided, and it is only the effect of γp which we need to think about.

Partial results about so-called RN black holes (these are electrically
charged, non-rotating ones) pointed in the direction that a perturbation
e.g. caused by γp crossing the inner horizon might cause the IH unstable

25The literature sometimes calls this “perturbation problem”, or “instability of
Cauchy horizon problem”.
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(in the RN case). It was conjectured that this instability will eventu-
ally lead to a spacelike singularity blocking the way of γp, making the
originally traversable black hole non-traversable.26 Cf. e.g. Wald [85,
p.318, lower half of the page]. (Roughly, a singularity is spacelike iff
it is not avoidable for a traveler, cf. [33].) Then it was conjectured
that because of certain similarities between RN black holes and slow
Kerr black holes, Kerr black holes (especially physically realistic rotat-
ing black holes) might inherit the same negative property leading to
a spacelike singularity ([85, p.318, last 5 lines]). Later, it was proved
in Ori [59] and also in related works that this is not necessarily the
case. Namely, it might be true that the inner horizon IH gets unstable
(because of the perturbation caused by γp) but the resulting singularity
is not spacelike but null (i.e. photonlike), and weak in Tipler’s sense
which means that a small enough observer might approach the singu-
larity unharmed. Ori [59] concludes that the IH singularities predicted
for RN-holes in earlier works and IH singularities of rotating black
holes are essentially different because the latter are null (not space-
like), weak, and of a rather simple asymptotic form. Ori’s optimism
is reinforced e.g. by Berger [6, sec.2.3.1] in 2002. So, Ori [59], Yurt-
sever [83], Berger [6] and related work quoted in [59] leave us with a
hope that our relativistic computer can be realized by somehow circum-
navigating this perturbation-caused instability of IH. It is emphasized
in the quoted works that more research is needed for settling the issue
satisfactorily either positively or negatively.

Independently of Ori [59], Kaku also suggests research plans for pos-
itive solutions to this perturbation caused instability of IH problem.
Namely Kaku [39, p.322] recalls this perturbation problem caused by
γp, under the subtitle “Are wormholes stable?”. (He is discussing a
project somewhat analogous to ours here.) Then Kaku goes on to
outline a general plan for our future generations for overcoming this
problem (for the case the research initiated in [59] would yield negative
results for all possible directions, which seems not very likely). So both
Ori [59] and [39, pp.322-327] leave us with an exciting research plan
which might help us to obtain deeper understanding into the nature of
both computation and cosmology.27

5.6. Formation of supermassive black holes. In the case of the-
oretic possibility (in general relativity) of relativistic beyond-Turing
machines, the present issue causes no problem. So our “first issue”

26The idea of this perturbation-caused instability of IH originates with Penrose,
who wanted to use this for reinforcing variants of his cosmic censor hypothesis.

27For the case the final outcome of the above research plan would yield only neg-
ative results (somewhat unlikely) we note that we can base our relativistic beyond-
Turing computer on one of the many MH-spacetimes not involving black holes.
These range from Gödel’s rotating universes, through anti de Sitter spacetimes, to
wormholes kept open by negative energy, or variants of M-theory.
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is settled positively about this subject. However, if we study the for-
mation of supermassive black holes in our given particular universe,
then it is extremely difficult to compute in detail how infalling matter
(probably pre-galactic cloud) forms eventually a Kerr type spacetime
complete with its two event horizons, ring singularity and connections
with other universes or other regions of our universe. Therefore it is
safer to base our thought experiment (i.e. relativistic computer) on so-
called primordial Kerr black holes which were created at the Big Bang
(or earlier if there was no Big Bang). Though the existence of such pri-
mordial Kerr holes is theoretical only, it is a real possibility that such
exist. Then this problem admits a (perhaps theoretical) solution. For
primordial supermassive black holes cf. e.g. [66], for primordial black
holes cf. e.g. Wald [85, p.306], and for recent developments about such
black holes cf. Carr [12], [47].

5.7. Relativistic computers based on other spacetimes. Todd A.
Brun [10] uses general relativity (GR) for “breaking complexity bar-
riers” by designing computers which solve hard problems (like what
are called NP complete problems) very fast. Let us call this kind
of computers complexity-reducing computers. E.g. Brun [10] bases
such a complexity-reducing computer on assuming the existence of a
CTC (closed timelike curve). The question comes up naturally whether
Brun’s elegant method can be used also for designing beyond-Turing
computers. In this connection we note that Brun’s method is strictly
different from ours, it is based roughly on the recent solutions for the
grandmother paradox (related to CTC’s) by Thorne, Novikov, Yurt-
sever, Morris, Gott, and others, cf. e.g. Earman [20, Chap.6] and/or
Earman et al [23] or Gott [30, p.269]. We note that the research di-
rection represented e.g. by Brun [10] using spacetimes with CTC’s for
complexity-reducing computers is active, cf. e.g. Dave Bacon [3]. It
would be interesting to see whether these two approaches, i.e. the MH
approach in section 4 of the present paper and the quantumgravita-
tional CTC approach (Brun, Bacon) can be combined or connected.

5.8. Further observational evidence for existence of real rotat-

ing black holes. Below we include two kinds of Internet links:
(1) Observations based on the spinning rate (or rotational frequency)

of infalling matter. This spinning rate they found was 450 times per
second which when compared with the mass of the BH (hence the
radius of the event horizon) [roughly 7 solar masses] implies a contra-
diction for nonrotating BH. From this it is inferred that the BH in
question must be a rotating one. The astronomical name of this BH
is GRO J1655-40. These findings were presented at an Amer. Phys.
Soc. Meeting on April 30, 2001 Washington D.C. by Tod Strohmayer
of NASA’s Goddard S. F. Centrum in Maryland. The full paper is
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available at the Los Alamos archives at the following code: arXiv:astro-
ph/0104487 v1. It also appeared in the Astrophysical Journal Letters:
Strohmayer, Tod E., Discovery of a 450 HZ Quasi-periodic Oscillation
from the Microquasar GRO J1655-40 with the Rossi X-Ray Timing Ex-
plorer. The Astrophysical Journal, Volume 553, Issue 1, pp.L49-L53.
May 2001. See also the Internet link http://adsabs.harvard.edu/cgi-
bin/nph-bib query?bibcode=2001ApJ...552L..49S&db key=AST&high
=3be05460e222702 . The homepage of Tod Strohmayer can be found
at http://lheawww.gsfc.nasa.gov/users/stroh/ .

(2) A different kind of observational evidence for larger rotating BH’s
from Oct. 2003 (by Reinhard Genzel of Max Planck Institute et al) is
summarized in the following link at Physics Web: http://physicsweb.org/
articles/news/7/10/15/1 . The following seem to be also quite rel-
evant to this: Last part of the page in Max Planck Institute, see
http://www.mpe.mpg.de/ir/GC/index.php, and Black Hole Spin in
AGN and GBHCs, by C. S. Reynolds, L. W. Brenneman, and D. Garo-
falo. ArXiv: astro-ph/0410116v1, Oct 5, 2004. http://arxiv.org/abs/
astro-ph/0410116 .

5.9. Shagrir and Pitowsky [72] nicely and usefully complement the
present paper in that they discuss and settle philosophical kinds of wor-
ries about relativistic computers which are not emphasized/addressed
herein. Cooper’s works, e.g. [14],[15] are also instructive in this con-
nection.

6. Conclusion

In the introduction we wrote that this paper is written on two levels
of abstraction, “pure GR level”, and “level of physical realizability”,
roughly.

On the pure GR level, the investigations in the present paper and the
quoted ones point in the direction that it is probably consistent with
GR that relativistic beyond-Turing computers might, in principle, be
constructed by future technology. (Even on this level we tried to avoid
non-realistic assumptions like infinitely small test-bodies.) On the pure
GR level, subsection 5.5 already seems to motivate interesting further
reseach in central areas of spacetime theory.

On the level of studying physical realizability, the discussions in sec-
tion 5 (and in the quoted works, e.g. in [37]) show that trying to put
the PhCT into a new perspective in view of latest results of physics and
cosmology leads to interesting and instructive questions about basic is-
sues of spacetime theory. There are also connections to the foundation
of mathematics and logic. These discovered interconnections between
seemingly distant areas create a cross-fertilization which appear to us
as mutually beneficial. This quest for a deeper understanding of our
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reality (both physical and logico-mathematical) is our main motivation
for pursuing the present topic.
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[26] Etesi, G. and Németi, I., Turing computability and Malament-Hogarth space-
times. International Journal of Theoretical Physics 41,2 (2002), 342-370.

[27] Ferrarese, L. and Merritt, D., Supermassive black holes. In: Physics World
June 2002. http://physicsweb.org/articles/world/15/6/9/1.

[28] Galton, A., The Church-Turing thesis: still valid after all these years? This
volume.

[29] Gohér, A., Personal comunication, April 2005.
[30] Gott, J. R., Time Travel in Einstein’s Universe. Houghton Mifflin Company,
Boston New York 2001.
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