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Abstract. - Can general relativistic computers break the Turing bar-
rier? - Are there final limits to human knowledge? - Limitative results
versus human creativity (paradigm shifts). - Gödel’s logical results in
comparison/combination with Gödel’s relativistic results. - Can Hilbert’s
programme be carried through after all?

1 Aims, perspective

The Physical Church-Turing Thesis, PhCT, is the conjecture that whatever phys-
ical computing device (in the broader sense) or physical thought experiment will
be designed by any future civilization, it will always be simulatable by a Turing
machine. The PhCT was formulated and generally accepted in the 1930’s. At
that time a general consensus was reached declaring PhCT valid, and indeed in
the succeeding decades the PhCT was an extremely useful and valuable maxim in
elaborating the foundations of theoretical computer science, logic, foundation of
mathematics and related areas. But since PhCT is partly a physical conjecture,
we emphasize that this consensus of the 1930’s was based on the physical world-
view of the 1930’s. Moreover, many thinkers considered PhCT as being based on
mathematics + common sense. But “common sense of today” means “physics of
100 years ago”. Therefore we claim that the consensus accepting PhCT in the
1930’s was based on the world-view deriving from Newtonian mechanics. Ein-
stein’s equations became known to a narrow circle of specialists around 1920, but
around that time the consequences of these equations were not even guessed at.
The world-view of modern black hole physics was very far from being generally
known until much later, until after 1980.

Our main point is that in the last few decades (well after 1980) there has
been a major paradigm shift in our physical world-view. This started in 1970
by Hawking’s and Penrose’s singularity theorem firmly establishing black hole
physics and putting general relativity into a new perspective. After that, discov-
eries and new results have been accelerating. About 10 years ago astronomers
obtained firmer and firmer evidence for the existence of larger and larger more
exotic black holes [18],[17] not to mention evidence supporting the assumption
that the universe is not finite after all [20]. Nowadays the whole field is in a state
of constant revolution. If the background foundation on which PhCT was based



2 István Németi et al.

has changed so fundamentally, then it is desirable to re-examine the status and
scope of applicability of PhCT in view of the change of our general world-picture.
Cf. also [5] for a related perspective.

A special feature of the Newtonian world-view is the assumption of an abso-
lute time scale. Indeed, this absolute time has its mark on the Turing machine
as a model for computer. As a contrast, in general relativity there is no absolute
time. Kurt Gödel was particularly interested in the exotic behavior of time in
general relativity (GR). Gödel [8] was the first to prove that there are models of
GR to which one cannot add a partial order satisfying some natural properties
of a “global time”. In particular, in GR various observers at various points of
spacetime in different states of motion might experience time radically differ-
ently. Therefore we might be able to speed up the time of one observer, say C
(for “computer”), relatively to the other observer, say P (for “programmer”).
Thus P may observe C computing very fast. The difference between general rel-
ativity and special relativity is (roughly) that in general relativity this speed-up
effect can reach, in some sense, infinity assuming certain conditions are satisfied.
Of course, it is not easy to ensure that this speed-up effect happens in such a
way that we could utilize it for implementing some non-computable functions.

In [7], [15] we prove that it is consistent with Einstein’s equations, i.e. with
general relativity, that by certain kinds of relativistic experiments, future gen-
erations might find the answers to non-computable questions like the halting
problem of Turing machines or the consistency of Zermelo Fraenkel set theory
(the foundation of mathematics, abbreviated as ZFC set theory from now on).
For brevity, we call such thought experiments relativistic computers. Moreover,
the spacetime structure we assume to exist in these experiments is based in
[7],[15] on huge slowly rotating black holes the existence of which is made more
and more likely (almost certain) by recent astronomical observations [18],[17].

We are careful to avoid basing the beyond-Turing power of our computer
on “side-effects” of the idealizations in our mathematical model/theory of the
physical world. For example, we avoid relying on infinitely small objects (e.g.
pointlike test particles, or pointlike bodies), infinitely elastic balls, infinitely (or
arbitrarily) precise measurements, or anything like these. In other words, we
make efforts to avoid taking advantage of the idealizations which were made
when GR was set up. Discussing physical realizability and realism of our design
for a computer is one of the main issues in [15].

The diagram in Figure 1 summarizes the ideas said so far.

2 An intuitive idea for how relativistic computers work

In this section we would like to illuminate the ideas of how relativistic computers
work, without going into the mathematical details. The mathematical details are
elaborated, among others, in [7], [9], [15]. To make our narrative more tangible,
here we use the example of huge slowly rotating black holes for our construction
of relativistic computers. But we emphasize that there are many more kinds of
spacetimes suitable for carrying out essentially the same construction (these are
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Fig. 1. Summary.

called Malament-Hogarth spacetimes in the physics literature). So, relativistic
computers are not tied to rotating black holes, there are other general relativistic
phenomena on which they can be based. An example is anti-de Sitter spacetime
which attracts more and more attention in explaining recent discoveries in cos-
mology. We chose rotating black holes because they provide a tangible example
for illustrating the kind of reasoning underlying general relativistic approaches to
breaking the “Turing barrier”. Astronomical evidence for their existence makes
them an even more attractive choice for our didactic purposes.

Let us start out from the so-called Gravitational Time Dilation effect (GTD).
The GTD is a theorem of relativity which says that gravity makes time run slow.
More sloppily: gravity slows time down. Clocks that are deep within gravitational



4 István Németi et al.

fields run slower than ones that are farther out. We will have to explain what this
means, but before explaining it we would like to mention that GTD is not only a
theorem of general relativity. This theorem, GTD, can be already proved in (an
easily understandable logic-based version of) special relativity in such a way that
we simulate gravity by acceleration [11], [13]. So one advantage of GTD is that
actually why it is true can be traced down by using only the simple methods of
special relativity. Another advantage of GTD is that it has been tested several
times, and these experiments are well known. Roughly, GTD can be interpreted
by the following thought experiment. Choose a high enough tower on the Earth,
put precise enough (say, atomic) clocks at the bottom of the tower and the top of
the tower, then wait enough time, and compare the readings of the two clocks.
Then the clock on the top will run faster (show more elapsed time) than the
one in the basement, at each time one carries out this experiment. Figure 2
represents how GTD can be proved in special relativity using an accelerated
spaceship for creating artificial gravity and checking its effects on clocks at the
two ends of the spaceship. Detailed purely logical formulation and proofidea is
found in [12]. The next picture, Figure 3, represents the same GTD effect as

accelerates

Slow time Fast time

artificial
GRAVITY
experienced

Fig. 2. GTD is a theorem of Special Relativity (SR) (easily proved in first-order logic
version of SR).

before, but now using a tall tower on the Earth experiencing the same kind of
gravity as in the spaceship. Gravity causes the clock on the top ticking faster.
Therefore computers there also compute faster. Assume the programmer in the
basement would like to use this GTD effect to speed up his computer. So he
sends the computer to the top of the tower. Then he gets some speed-up effect,
but this is too little. The next two pictures, Figure 4 and Figure 5, are about
the theoretical possibility of increasing this speed-up effect.

How could we use GTD for designing computers that compute more than
Turing Machines can? In the above outlined situation, by using the gravity of
the Earth, it is difficult to make practical use of GTD. However, instead of
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Fig. 3. TIME WARP (Tower Paradox, effects of gravity on time). Clocks higher in a
gravitational well tick faster.

the Earth, we could choose a huge black hole, cf. Figure 6. A black hole is
a region of spacetime with so big “gravitational pull” that even light cannot
escape from this region. There are several types of black holes, an excellent
source is Taylor and Wheeler [19]. For our demonstration of the main ideas
here, we will use huge, slowly rotating black holes. (These are called slow-Kerr
in the physics literature.) These black holes have two so-called event horizons,
these are bubble-like surfaces one inside the other, from which even light cannot
escape (because of the gravitational pull of the black hole). See Figures 7–9. As
we approach the outer event horizon from far away outside the black hole, the
gravitational “pull” of the black hole approaches infinity as we get closer and
closer to the event horizon. This is rather different from the Newtonian case,
where the gravitational pull also increases but remains finite even on the event
horizon.1 For a while from now on “event horizon” means “outer event horizon”.

1 The event horizon also exists in the Newtonian case, namely, in the Newtonian case,
too, the event horizon is the “place” where the escape velocity is the speed of light
(hence even light cannot escape to infinity from inside this event horizon “bubble”).
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Fig. 4. Thought experiment for fast computation: The programmer “throws” his slave-
computer to a high orbit. Communicates via radio.

Let us study observers suspended over the event horizon. Here, suspended
means that the distance between the observer and the event horizon does not
change. Equivalently, instead of suspended observers, we could speak about ob-
servers whose spaceship is hovering over the event horizon, using their rockets
for maintaining altitude. Assume one suspended observer H is higher up and
another one, L, is suspended lower down. So, H sees L below him while L sees
H above him. Now the gravitational time dilation (GTD) will cause the clocks
of H run faster than the clocks of L. Moreover, they both agree on this if they
are watching each other e.g. via photons. Let us keep the height of H fixed. Now,
if we gently lower L towards the event horizon, this ratio between the speeds of
their clocks increases. Moreover, as L approaches the event horizon, this ratio
approaches infinity. This means that for any integer n, if we want H’s clocks to
run n times as fast as L’s clocks, then this can be achieved by lowering L to the
right position.

Let us see what this means for computational complexity. If the programmer
wants to speed up his computer with an arbitrarily large ratio, say n, then he
can achieve this by putting the programmer to the position of L and putting
the computer to the position of H. Already at this point we could use this ar-
rangement with the black hole for making computers faster. The programmer
goes very close to the black hole, leaving his computer far away. Then the pro-
grammer has to wait a few days and the computer does a few million year’s job
of computing and then the programmer knows a lot about the consequences of,
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Fig. 5. By using a neutron star we still get only a finite speed-up.

say, ZFC set theory or whatever mathematical problem he is investigating. So
we could use GTD for just speeding up computation which means dealing with
complexity issues. However, we do not want to stop at complexity issues. Instead,
we would like to see whether we can attack somehow the “Turing barrier”.

The above arrangement for speeding the computer up raises the question of
how the programmer avoids consequences of the fact that the whole manoeuver
will slow down the programmer’s own time relative to the time on his home
planet, e.g. on the Earth. We will deal with this problem later. Let us turn now
to the question of how we can use this effect of finite (but unbounded) speed-up
for achieving an infinite speed-up, i.e. for breaking the Turing barrier.

If we could suspend the lower observer L on the event horizon itself then
from the point of view of H, L’s clocks would freeze, therefore from the point of
view of L, H’s clocks (and computers!) would run infinitely fast, hence we would
have the desired infinite speed-up upon which we could then start our plan for
breaking the Turing barrier. The problem with this plan is that it is impossible
to suspend an observer on the event horizon. As a consolation for this, we can
suspend observers arbitrarily close to the event horizon. To achieve an “infinite
speed-up” we could do the following. We could lower and lower again L towards
the event horizon such that L’s clocks slow down (more and more, beyond limit)
in such a way that there is a certain finite time-bound, say b, such that, roughly,
throughout the whole history of the universe L’s clocks show a time smaller than
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Fig. 6. Getting “infinite” speed-up.

b. More precisely, by this we mean that whenever H decides to send a photon
to L, then L will receive this photon before time b according to L’s clocks. This
is possible. See Figure 9.

Are we done, then? Not yet, there is a remaining task to solve. As L gets
closer and closer to the event horizon, the gravitational pull or gravitational
acceleration tends to infinity. If L falls into the black hole without using rockets
to slow his fall, then he does not have to withstand the gravitational pull of
the black hole. He would only feel the so-called tidal forces which can be made
negligibly small by choosing a large enough black hole. However, his falling
through the event horizon would be so fast that some photons sent after him by
H would not reach him outside the event horizon. Thus L has to approach the
event horizon relatively slowly in order that he be able to receive all possible
photons sent to him by H. In theory he could use rockets for this purpose, i.e.
to slow his fall (assuming he has unlimited access to fuel somehow). Because L
approaches the event horizon slowly, he has to withstand this enormous gravity
(or equivalently acceleration). The problem is that this increasing gravitational
force (or acceleration) will kill L before his clock shows time b, i.e. before the
planned task is completed.

At the outer event horizon of our black hole we cannot compromise between
these two requirements by choosing a well-balanced route for L: no matter how
he will choose his route, either L will be crashed by the gravitational pull, or
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Fig. 7. Rotating Black Hole has two event horizons. Programmer can survive forever.
(Ring singularity can be avoided.)

some photons sent by H would not reach him. (This is the reason why we can
not base our relativistic computer on the simplest kind of black holes, called
Schwarzschild ones, which have only one event horizon and that behaves as we
described as above.)

To solve this problem, we would like to achieve slowing down the “fall” of L
not by brute force (e.g. rockets), but by an effect coming from the structure of
spacetime itself. In our slowly rotating black hole, besides the gravitational pull of
the black hole (needed to achieve the time dilation effect) there is a counteractive
repelling effect coming from the revolving of the black hole. This repelling effect
is analogous to “centrifugal force” in Newtonian mechanics and will cause L to
slow down in the required rate. So the idea is that instead of the rockets of L,
we would like to use for slowing the fall of L this second effect coming from
the rotation of the black hole. In some black holes with such a repelling force,
and this is the case with our slowly rotating one, two event horizons form, see
Figures 7–9. The outer one is the result of the gravitational pull and behaves
basically like the event horizon of the simplest, so-called Schwarzschild hole, i.e.
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as described above. The inner event horizon marks the point where the repelling
force overcomes the gravitational force. So inside the inner horizon, it is possible
again to “suspend” an observer, say L, i.e. it becomes possible for L to stay at
a constant distance from the center of the black hole (or equivalently from the
event horizons).

e z

x

y

Ring singularity

b

P

Inner event
horizon

Outer event horizon

Axis of rotation(θ = 0)

Fig. 8. A slowly rotating (Kerr) black hole has two event horizons and a ring-shape
singularity (the latter can be approximated/visualized as a ring of extremely dense and
thin “wire”). The ring singularity is inside the inner event horizon in the “equatorial”
plane of axes x, y. Time coordinate is suppressed. Figure 9 is a spacetime diagram
with x, y suppressed. Rotation of ring is indicated by an arrow. Orbit of in-falling
programmer P is indicated, it enters outer event horizon at point e, and meets inner
event horizon at point b.

Let us turn to describing how a slowly rotating black hole implements the
above outlined ideas, and how it makes possible to realize our plan for “infinite
speed-up”. Figure 8 represents a slowly rotating huge Kerr black hole and Fig-
ure 9 represents its spacetime structure. As we said, there are two event horizons,
the inner one surrounded by the outer one. The source of gravity of the black
hole is a ring shaped singularity situated inside the inner horizon. The path of
the in-falling observer L can be planned in such a way that the event when L
reaches the inner horizon corresponds to the time-bound b (on the wristwatch of
L) mentioned above before which L receives all the possible messages sent out
by H. In Figures 8,9 the world-lines of L and H are denoted as P and C because
we think of L as the programmer and we think of H as L’s computer.

By this we achieved the infinite speed-up we were aiming for. This infinite
speed-up is represented in Figure 9 where P measures a finite proper time be-
tween its separation from the computer C (which is not represented in the figure)
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and its touching the inner horizon at proper time b (which point also is not rep-
resented in Figure 9). It can be seen in the figure that whenever C decides to
send a photon towards P , that photon will reach P before P meets the inner
horizon. The above outlined intuitive plan for creating an infinite speed-up effect
is elaborated in more concrete mathematical detail in [7], [15].

Let us see how we can use all this to create a computer that can compute
tasks which are beyond the Turing limit. Let us choose the task, for an example,
to decide whether ZFC set theory is consistent. I.e. we want to learn whether
from the axioms of set theory one can derive the formula FALSE. (This formula
FALSE can be taken to be ∃x(x 6= x).) The programmer P and his computer
C are together (on Earth), not moving relative to each other, and P uses a
finite time-period for transferring input data to the computer C as well as for
programming C. After this, P boards a huge spaceship, taking all his mathe-
matical friends with him, and chooses an appropriate route towards our huge
slowly rotating black hole, entering the inner event horizon when his wrist-watch
shows time b. While he is on his journey towards the black hole, the computer
checks one by one the theorems of set theory, and as soon as the computer finds
a contradiction in set theory, i.e. a proof of the formula FALSE, from the axioms
of set theory, the computer sends a signal to the programmer indicating that set
theory is inconsistent. (This is a special example only. The general idea is that
the computer enumerates a recursively enumerable set and, before starting the
computer, the programmer puts on the tape of the computer the name of the
element which he wants to be checked for belonging to the set. The computer
will search and as soon as it finds the element in question inside the set, the
computer sends a signal.) If it does not find the thing in the set, the computer
does nothing.

What happens to the programmer P from the point of view of the computer
C? This is represented in Figure 9. Let C’s coordinate system be the one rep-
resented in Figure 9. By saying “from the point of view of C” we mean “in
this particular coordinate system (adjusted to C) in Fig.9”. In this coordinate
system when the programmer goes closer and closer to the inner horizon of the
black hole, the programmer’s clock will run slower and slower and slower, and
eventually on the inner event horizon of the black hole the time of the program-
mer stops. Subjectively, the programmer does not experience it this way, this
is how the computer will coordinatize it in the distance, or more precisely, how
the coordinate system shown in Figure 9 represents it. If the computer thinks
of the programmer, it will see in its mind’s eye that the programmer’s clocks
stop and the programmer is frozen motionless at the event horizon of the black
hole. Since the programmer is frozen motionless at the event horizon of the black
hole, the computer has enough time to do the computation, and as soon as the
computer has found, say, the inconsistency in set theory, the computer can send
a signal and the computer can trust that the programmer—still with his clock
frozen—will receive this signal before it enters the inner event horizon.

What will the programmer experience? This is represented in Figure 8. The
programmer will see that as he is approaching the inner event horizon, his com-
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puter in the distance is running faster and faster and faster. Then the program-
mer falls through the inner event horizon of the black hole. If the black hole is
enormous, the programmer will feel nothing when he passes either event horizon
of the black hole—one can check that in case of a huge black hole the so-called
tidal forces on the event horizons of the black hole are negligibly small [16]. So
the programmer falls into the inner event horizon of the black hole and either
the programmer will experience that a light signal arrives from the direction of
the computer, of an agreed color and agreed pattern, or the programmer will
observe that he falls in through the inner event horizon and the light signal does
not arrive. After the programmer has crossed the inner event horizon, the pro-
grammer can evaluate the situation. If a signal arrives from the computer, this
means that the computer found an inconsistency in ZFC set theory, therefore
the programmer will know that set theory is inconsistent. If the light signal does
not arrive, and the programmer is already inside the inner event horizon, then
he will know that the computer did not find an inconsistency in set theory, did
not send the signal, therefore the programmer can conclude that set theory is
consistent. So he can build the rest of his mathematics on the secure knowledge
of the consistency of set theory.

The next question which comes up naturally is whether the programmer
can use this new information, namely that set theory is consistent, or whatever
he wanted to compute, for his purposes. A pessimist could say that OK they
are inside a black hole, so—now we are using common sense, we are not using
relativity theory—common sense says that the black hole is a small unfriendly
area and the programmer will sooner or later fall into the middle of the black
hole where there is a singularity and the singularity will kill the programmer.
The reason why we chose our black hole to be a huge slowly rotating one, say of
mass 1010m⊙, is the following. If the programmer falls into a black hole which
is as big as this and it rotates slowly, then the programmer will have quite a lot
of time inside the black hole because the center of the black hole is relatively far
from the event horizon. But this is not the key point. If it rotates, the “matter
content”, the so-called singularity, which is the source of the gravitational field
of the black hole so-to-speak, is not a point but a ring. So if the programmer
chooses his route in falling into the black hole in a clever way, say, relatively
close to the north pole instead of the equatorial plane, then the programmer
can comfortably pass through the middle of the ring, never get close to the
singularity and happily live on forever. We mean, the rules of relativity will not
prevent him from happily living forever. He may have descendants, he can found
society, he can use the so obtained mathematical knowledge.

Technical details of realizability of this general plan are checked in [15], [7].
The above outlined train of thought can be pushed through to show that any
recursively enumerable set can be decided by a relativistic computer [7]. Actually,
more than that can be done by relativistic computers, but it is not the purpose
of the present paper to check these limits. These limits are addressed in [9], [10],
[21].
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Fig. 9. The “tz-slice” of spacetime of slowly rotating black hole in coordinates where
z is the axis of rotation of black hole. The pattern of light cones between the two event
horizons r− and r+ illustrates that P can decelerate so much in this region that he will
receive outside of r− all messages sent by C. r+ is the outer event horizon, r− is the
inner event horizon, z = 0 is the “center” of the black hole as in Figure 8. The tilting
of the light cones indicates that not even light can escape through these horizons. That
there is an outward push counteracting gravity can be seen by the shape of the light-
cones in region III (central region of the black hole). The time measured by P is finite
(measured between the beginning of the experiment and the event when P meets the
inner event horizon at b) while the time measured by C is infinite.

For the nonspecialist of general relativity, we include here the mathematical
description of a double black hole with 2 event horizons suitable for the above
outlined thought experiment. Instead of rotation, here we use an electric charge
for “cushioning”. The spacetime geometry of our black hole is described by the
metric

ds2 = A(r)dt2 − 1

A(r)
dr2 − r2dϕ2 (1)

where ϕ is the space angle coordinate. Here A(r) = (1 − 1

r
+ e

r
2 ) for some

0 ≤ e < 1/2. (The event horizons form at r = 1

2
±

√

1

4
− e. In our choice

of A(r), the “− 1

r
” part is responsible for gravitational attraction, while the

“ e

r
2 ” part for the cushioning caused by charge

√
e.) The tr-slice of the space-

time determined by the simple metric (1) above is basically the same as the
one represented in Figure 9. (What was denoted as z coordinate should be de-
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noted as r, now.) For completeness, in (1) above, r is the radial coordinate,
r = distance from the center of black hole.

3 Conclusion

A virtue of the present research direction is that it establishes connections
between central questions of logic, foundation of mathematics, foundation of
physics, relativity theory, cosmology, philosophy, particle physics, observational
astronomy, computer science and AI [21]. E.g. it gives new kinds of motivation
to investigating central questions of these fields like “is the universe finite or in-
finite (both in space and time) and in what sense”, “exactly how do Kerr black
holes evaporate” (quantum gravity), “how much matter is needed for coding
one bit of information (is there such a lower bound at all)”, questions concern-
ing the statuses of the various cosmic censor hypotheses, questions concerning
the geometry of rotating black holes [4], to mention only a few. The interdisci-
plinary character of this direction was reflected already in the 1987 course given
by the present authors [14] during which the idea of relativistic hypercomputers
emerged and which was devoted to connections between the above mentioned ar-
eas. Tangible data underlying the above interconnections and also more history,
references are available in [15]. The book Earman [6, p.119, section 4.9] regards
the same interdisciplinary perspective as described above to be one of the main
virtues of the present research direction. It is the unifying power of logic which
makes it viable to do serious work on such a diverse collection of topics. One of
the main aims of the research direction represented by [3], [2], [1], [11]–[13] is to
make relativity theory accessible for anyone familiar with logic.
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Sain, I., Sági, G., Tőke, Cs. and Vályi, S., On the logical structure of relativity
theories. Internet book, Budapest, 2000. http://www.math-inst.hu/pub/algebraic-
logic/olsort.html



Relativistic computers 15
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