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Abstract

We give two theories, Th1 and Th2, which are explicitly definable
over each other (i.e. the relation symbols of one theory are explic-
itly definable in the other, and vice versa), but are not definitionally
equivalent. The languages of the two theories are disjoint.

1 Motivation

Intuitively, two theories (of first-order logic) are definitionally equivalent if
they are (two presentations of) the same theory; i.e. if they differ only in the
choices of their basic vocabularies. Definitional equivalence of theories is an
important concept of logic, hence it is worthwhile to analyse it. Cf. [3], [4], [5],
[7]. The question naturally comes up whether it is sufficient for definitional
equivalence if the two theories are definable over each other. Definability of
theories is stronger than interpretability of theories in that in definability
the universes of the models remain the same, while in interpretability the
universe of a model can get restricted to a definable subset.

∗Research supported by Hungarian National Foundation for Scientific Research grants
No’s T43242, T35192 and COST grant 274.
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2 Recalling the notions of definability we use

We recall the basic notions of definability we use from [4] and [3]. Let R be a
relation symbol, and let L be a first-order language. An explicit definition of
R in terms of L is a sentence of the form ∀x1 . . . xn[R(x1, . . . , xn) ↔ ϕ] where
ϕ is a formula of L with all its free variables among x1, . . . , xn ([4, p.59]). Let
Th1 and Th2 be theories maybe on different first-order languages. An explicit
definition of Th1 over Th2 is a conjunction ∆ of explicit definitions of the
relation symbols of Th1 in terms of the language of Th2 such that the models
of Th1 are exactly the reducts of the models of Th2 ∪ ∆ (to the language of
Th1). Thus, we get the models of Th1 from those of Th2 by first defining the
relations of Th1 via using ∆, and then forgetting the relations not present in
the language of Th2.

The explicit definition ∆ of Th1 over Th2 induces a function f mapping
the class Mod(Th2) of all models of Th2 onto the class Mod(Th1) of all models
of Th1 such that for all models M of Th2 the universes of M and f(M)
coincide; and further ∆ is a uniform definition of the relations of f(M) from
those of M.

We now turn to definitional equivalence. Two theories Th1 and Th2 are
said to be definitionally equivalent if they have a common definitional exten-
sion; here a definitional extension of a theory Th is a theory Th ∪ ∆ where
∆ is a conjunction of explicit definitions of relation symbols not occurring in
Th, and two theories on the same language are considered to be the same if
they have the same models ([4, pp.60, 61]). Thus Th1 and Th2 are definition-
ally equivalent if there are explicit definitions ∆1 and ∆2 such that Th1 ∪∆1

and Th2 ∪ ∆2 are on the same language and have the same models on this
common language.

It can be seen that Th1 and Th2 are definitionally equivalent iff there is
a bijection f between Mod(Th1) and Mod(Th2) such that for all models M

of Th1, the universes of M and f(M) coincide and there are two uniform
definitions, one of the relations of f(M) from those of M, and the other one
of the relations of M from those of f(M). Indeed, this is how definitional
equivalence is defined in [3, p.56].

Definability theory gets used in an essential way in our work of formalizing
and analyzing relativity theory in first-order logic (cf. e.g. [2], [6]). In that
work, we needed to extend definability theory in such a way that we allow to
define new elements also, not only define new relations on already existing
elements. I.e., using the above notation, we do not require the models M
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and f(M) to have the same universe. For details see [6, §4.3] and [1].

3 The example

The language of Th1 consists of two binary relation symbols R,≡, while that
of Th2 consists of two binary relation symbols S and ∼. Th1 states that R

is an arbitrary binary relation and ≡ an equivalence relation such that each
block (i.e. equivalence class) of ≡ contains infinitely many points, but at most
one point in the field of R (the field of R is the union of the domain and the
range of R). Th2 states the same of S and ∼, but it states in addition that
S is a symmetric relation. In more detail:

Th1 = Th1(R,≡) =

{∀xyz[(x ≡ y → y ≡ x) ∧ (x ≡ y ∧ y ≡ z → x ≡ z)]}∪

{∀y∃x1 . . . xn(y ≡ x1 ∧ · · · ∧ y ≡ xn ∧ x1 6= x2 ∧ · · · ∧ xn−1 6= xn) : n ∈ ω}∪

{¬∃xy[(∃zR(x, z)∨∃zR(z, x))∧ (∃zR(y, z)∨∃zR(z, y))∧ x ≡ y ∧ x 6= y } .

Th2 = Th1(S,∼) ∪ {∀xy(S(x, y) → S(y, x))}.

Having defined our two theories, now we give the two explicit definitions
of one over the other. The definition of S,∼ over R,≡ is very simple: for S

we just take the symmetric closure of R and for ∼ we take ≡.

∆(S,∼) = {∀xy[S(x, y) ↔ (R(x, y) ∨ R(y, x)] ∧ ∀xy[x ∼ y ↔ x ≡ y]}.

Claim 1. ∆(S,∼) is an explicit definition of Th2 over Th1, i.e. the models
of Th2 are exactly the appropriate reducts of the models of Th1 ∪ ∆(S,∼).

Proof. To prove Claim 1 we have to prove that if we take any model of Th1

and define S and ∼ in it the given way (and then forget R,≡) then we obtain
a model of Th2, and conversely, every model of Th2 can be obtained from a
model of Th1 the above way.

Indeed, let M be any model of Th1 and define S,∼ according to ∆(S,∼).
Then S will be a symmetric relation with the same field as that of R. Since
we took ∼ to be ≡ and each block of ≡ contained at most one point from
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the field of R, then each block of ∼ will contain at most one point from the
field of S. Also, each block of ∼ is infinite, since this was true for ≡ (since
M is a model of Th1).

Conversely, let M be any model of Th2 and define M
′ to be the same

model except the names of S,∼ are R,≡ respectively. Then clearly M
′ is a

model of Th1 and when defining S,∼ in it according to ∆(S,∼) we get back
M.

The definition of Th1 over Th2 is a little more involved, as could be
expected. See Figures 1,2. We begin with some auxiliary definitions. In
the following, “∃!” denotes “there is a unique”, i.e. the formula ∃!xϕ(x)
abbreviates ∃x[ϕ(x) ∧ ∀y(ϕ(y) → y = x)].

End(x) denotes the formula ∃!zS(x, z) ∧ ¬S(x, x).

Next(x) denotes the formula ∃z(S(x, z) ∧ End(z)).

Old(x) denotes the formula ¬End(x) ∧ ¬Next(x).

Middle(x) denotes the formula Next(x) ∧ ∃!z(Old(z) ∧ S(x, z)).

root(x, y) denotes the formula x = y ∨ [Middle(x) ∧ S(x, y) ∧ Old(y)] ∨
[End(x) ∧ ∃z(S(x, z) ∧ Middle(z) ∧ S(z, y)) ∧ Old(y))].

Σ(R,≡) =

{ ∀xy[R(x, y) ↔ Old(x) ∧ Old(y) ∧ ∃uvv′v′′

(Next(u) ∧ End(v′) ∧ End(v′′) ∧ v′ 6= v′′ ∧
S(x, y) ∧ S(x, u) ∧ S(y, v) ∧ S(u, v) ∧ S(v, v′) ∧ S(v, v′′))],

∀xy[x ≡ y ↔ ∃x′zy′(x ∼ x′ ∧ root(x′, z) ∧ root(y′, z) ∧ y′ ∼ y)]}.

Claim 2. Σ(R,≡) is an explicit definition of Th1 over Th2, i.e. the models
of Th1 are exactly the appropriate reducts of the models of Th2 ∪ Σ(R,≡).

Proof. Let M = 〈M,S,∼〉 be any model of Th2 and define R,≡ according
to Σ(R,≡). I.e. 〈M,S,∼, R,≡〉 |= Th2 ∪ Σ(R,≡). We want to show that
〈M,R,≡〉 |= Th1.
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Figure 1: Illustration of the definition of R in terms of S. Notice that the
existence of u′ follows from Next(u), and Next(v) follows e.g. from S(v, v′) ∧
End(v′).
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Figure 2: Illustration of the definition of ≡ in terms of ∼ and S. See also
Figure 4 on p.8.
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First we show that ≡ is an equivalence relation. Clearly, ≡ is reflex-
ive and symmetric. To show that it is transitive, assume that x ≡ y and
y ≡ u, we want to show that x ≡ u. Now, x ≡ y and y ≡ u mean that
there are x′, z, y′, y′′, v, u′ such that x ∼ x′, root(x′, z), root(y′, z), y′ ∼ y, y ∼
y′′, root(y′′, v), root(u′, v) and u′ ∼ u. If x′ = y′ or y′′ = u′ or z = v then we
are done. So assume that x′ 6= y′∧y′′ 6= u′∧z 6= v. We will derive a contradic-
tion. In deriving the contradiction we will use the following three properties
of root which we do not prove, since their verification is not difficult.

(1) root(x, y) ∧ x 6= y ⇒ x, y are in the field of S.

(2) root(x, y) ∧ root(x, z) ∧ x 6= y ∧ x 6= z ⇒ y = z.

(3) root(x, y) ∧ root(y, z) ⇒ x = y ∨ y = z.

By y′ 6= x′ we have that either y′ 6= z or y′ = z ∧ z 6= x′. Then y′ is in the
field of S in both cases, by (1). We get similarly that y′′ is in the field of S.
By y′ ∼ y′′ and M |= Th2 then y′ = y′′, since each block of ∼ contains at most
one element from the field of S. By root(y′, z)∧ root(y′, v)∧ z 6= v and (2) we
get that either y′ = z or y′ = v. By symmetry we may assume that y′ = z.
By root(x′, z)∧root(z, v)∧z 6= v and (3) then we get x′ = z. This contradicts
our hypothesis x′ 6= y′ and z = y′. We have derived a contradiction, which
proves that ≡ is an equivalence relation.

Each block of ≡ is infinite since ∼⊆≡ and each block of ∼ is infinite.

Finally we show that each block of ≡ contains at most one element from
the field of R. Assume therefore that x ≡ y and both x and y are in the
field of R. We have to show that x = y. Now, x ≡ y means that there are
x′, z, y′ such that x ∼ x′, root(x′, z), root(y′, z) and y′ ∼ y. By R ⊆ S (which
follows from Σ(R,≡)) we have that x, y are in the field of S, too. Thus if
x′ = y′ then we are done since then x ∼ y′ and each block of S contains at
most one point from the field of S. Assume therefore that x′ 6= y′, we will
derive a contradiction. By x′ 6= y′ we have that either x′ 6= z or y′ 6= z. By
symmetry we may assume that x′ 6= z. By root(x′, z) and (1) then we have
that x′ is in the field of S. By x ∼ x′ then we have x = x′ since each block
of ∼ contains at most one element from the field of S. Now we have Old(x)
because x is in the field of R. But then Old(x′) by x = x′. This contradicts
root(x′, z) ∧ x′ 6= z since the following can be checked:

(4) root(x, y) ∧ x 6= y ⇒ ¬Old(x).
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By now we have shown that 〈M,R,≡〉 is a model of Th1.

Conversely, let M = 〈M,R,≡〉 be any model of Th1. We want to find
a model M

′ of Th2 such that if we define R,≡ in M
′ according to Σ(R,≡)

(and forget S,∼), then we get our original M. In other words, we want to
find S,∼ such that 〈M,S,∼, R,≡〉 |= Th2 ∪ Σ(R,≡). This is where we will
use the equivalence relations ≡,∼.

We now “construct” the relations S and ∼ on M . For each x ∈ M such
that x is in the field of R let ux, u

′

x
, vx, v

′

x
and v′′

x
be distinct (distinct from

x, too) elements in the ≡-block of x. There are such elements because each
block of ≡ is infinite. We define S as follows (see Figure 3):

S ′ =
⋃
{{(x, ux), (ux, u

′

x
), (x, vx), (vx, v

′

x
), (vx, v

′′

x
)} : x is in the field of R}∪

{(ux, vy) : (x, y) ∈ R} ∪ R.

S = S ′ ∪ S ′−1.

We define the equivalence relation ∼ such that it is a refinement of ≡.
More specifically, let ∼ be an equivalence relation with the following proper-
ties:

Assume that x is in the field of R. Then the ≡-block of x is partitioned
to six ∼ -blocks, each of them infinite, and each of them containing
exactly one element from {x, ux, u

′

x
, vx, v

′

x
, v′′

x
}. Note that in this case

x is the only element of the ≡-block of x which is in the field of R. See
Figure 4.

A ≡-block which does not contain an element from the field of R is also a
∼-block.

Having defined S,∼ we have to show that 〈M,S,∼, R,≡〉 |= Th2 ∪Σ(R,≡).

Clearly, S is symmetric and each block of ∼ is infinite. It is easy to check
that each block of ∼ contains at most one element from the field of S. Thus
Th2 holds. To check that Σ(R,≡) also holds, first we check some auxiliary
statements. Let Field(S),Field(R) denote the fields of S and R, respectively.
We will use the following statements (5)-(9).

(5) Field(S) =
⋃
{{x, ux, u

′

x
, vx, v

′

x
, v′′

x
} : x ∈ Field(R)}.
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Figure 3: Illustration of the construction of S.
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Figure 4: Illustration of the construction of ∼. A ≡-block which contains an
element from the field of R is partitioned into 6 infinite ∼-blocks.

(6) End(x) if and only if x ∈
⋃
{{u′

y
, v′

y
, v′′

y
} : y ∈ Field(R)}.

(7) Next(x) iff Middle(x) iff x ∈
⋃
{{uy, vy} : y ∈ Field(R)}.

(8) (Old(x) ∧ x ∈ Field(S)) iff x ∈ Field(R).
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(9) root(x, y) ∧ x 6= y ⇒ x ∈ {uy, u
′

y
, vy, v

′

y
, v′′

y
}.

Statement (5) follows immediately from the definition of S. To prove (6),
assume that End(x). Then x ∈ Field(S) and it can be checked by inspecting
the definition of S that all elements from

⋃
{{y, uy, vy} : y ∈ Field(R)} are in

S-relation with at least two other elements. This shows implication ⇒ in (6).
The other direction follows by checking that all elements of form u′

y
, v′

y
, v′′

y
are

indeed in S-relation with a unique, distinct element. The proofs of (7)-(9)
are similar, we omit them.

To prove that Σ(R,≡) holds, let R′,≡′ be the unique relations for which
Σ(R′,≡′) holds, we want to prove that R = R′ and ≡=≡′.

R ⊆ R′ follows from (6)-(8) and the construction of S, as follows. As-
sume R(x, y), we have to show R′(x, y). The latter means Old(x)∧Old(y)∧
∃uvv′v′′(. . . ). Now, Old(x),Old(y) follow from (8), and for u, v, v′, v′′ take
ux, vy, v

′

y
, v′′

y
. The rest follows from the construction of S and (7),(6).

To show R′ ⊆ R, assume R′(x, y). This implies that Old(x),Old(y)
and there are u, v, v′, v′′ such that Next(u),End(v′),End(v′′), v′ 6= v′′ and
S(x, y), . . . . By Old(y), S(y, v),End(v′),End(v′′), S(v, v′), S(v, v′′), v′ 6= v′′,
(6)-(8) and the definition of S we get that v = vy, v

′ = v′

y
and v′′ = v′′

y
.

Similarly we get that u ∈ {ux, vx}. By S(u, v) then we must have u = ux

because S does not contain pairs of form (vx, vy). But then S(ux, vy) and the
definition of S show that R(x, y). We have seen that R = R′.

Assume x ≡ y. If the ≡-block of x does not contain an element from
Field(R), then x ∼ y by the definition of ∼ and so x ≡′ y by the definition
of ≡′. Assume that x ≡ z ∈ Field(R). Then by the definition of ∼ we
have that x, y are in the ∼-block of one of {z, uz, . . . , v

′′

z
}. I.e. there are

x′, y′ ∈ {z, uz, . . . , v
′′

z
} such that x ∼ x′ and y ∼ y′. By (9) we then have

root(x′, z) and root(y′, z). Hence x ≡′ y by the definition of ≡′. We have seen
that ≡⊆≡′. To show the other inclusion, notice first that ∼⊆≡ because
∼ is a refinement of ≡. Also, root(x, y) ⇒ x ≡ y by (9) since we chose
uy, . . . , v

′′

y
from the ≡-block of y. Now, x ≡′ y implies the existence of

x′, z, y′ such that x ∼ x′, root(x′, z), root(y′, z), y′ ∼ y. By the above then
x ≡ x′ ≡ z ≡ y′ ≡ y, and thus x ≡ y since ≡ is an equivalence relation. We
have seen that ≡=≡′.

Claim 3. Th1 and Th2 are not definitionally equivalent. I.e. Th1 and Th2

do not have a common definitional extension.
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Proof. Assume that Th1 and Th2 are definitionally equivalent, say Th3 is a
common definitional extension of both Th1 and Th2. This means that there
are definitions ∆′(S,∼) and Σ′(R,≡) such that Th1∪∆′(S,∼) is equivalent to
Th2∪Σ′(R,≡). Then there is a bijection f between Mod(Th1) and Mod(Th2)
such that M and f(M) have the same universes, and moreover, they have the
same automorphisms. E.g., for any M ∈ Mod(Th1) we can take the unique
expansion M

′ |= Th3, and let f(M) be the reduct of M
′ to the language of

Th2.

Let X,Y be two disjoint infinite sets of the same cardinality, a ∈ X, b ∈
Y,M = X ∪ Y, S = {(a, a), (a, b), (b, a)},∼= (X × X) ∪ (Y × Y ) and
M = 〈M,S,∼〉. Then M |= Th2 and the automorphisms of M are ex-
actly the bijections of M that leave a, b fixed and map X to X and Y to Y.
There is exactly one other model M

′ of Th2 with universe M and the same
automorphisms, namely M = 〈M, {(a, b), (b, a), (b, b)},∼〉. On the other
hand, there are more than two models of Th1 with the same properties. E.g.
M1 = 〈M, {(a, b)},∼〉, M2 = 〈M, {(b, a)},∼〉, M3 = 〈M, {(a, b), (b, b)},∼〉
are three different models of Th1 with universe and automorphisms the same
as those of M. Hence there cannot be a bijection f as we described between
the models of Th1 and of Th2.
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useful suggestions.
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