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Abstract

In this paper we investigate the logical decidability and undecid-
ability properties of relativity theories. To this end, we need to recall
versions of relativity theory which are built up in a logical framework
i.e. which are theories in the sense of mathematical logic (section 2).
In Part I (section 3) we investigate decidability properties of versions
of relativity. We will find that the answer whether decidable or not
depends on how rich version we study. We also study applicability
of Gödel’s incompleteness theorems to relativity. In Part I we study
applicability of the conclusion of Gödel’s first incompleteness theorem
to the theory in question. In Part II (section 4) we study whether
Gödel’s second incompleteness theorem applies to the theory of rela-
tivity in question (we mean whether the conclusion of Gödel’s theorem
applies). In Part III (section 5) we study unprovability of consistency.
The same investigation leads up to asking whether the theory is Π0

k

hard. This leads up to statements (possible predictions) in the lan-
guage of relativity which are independent of ZF set theory.
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Part I: Gödel First Incompleteness in relativity theories
Part II: Gödel’s Second Incompleteness in relativity
Part III: Π0

k-hardness and ZFC independence in relativity

1 Introduction

In this paper we investigate the logical decidability and undecidability prop-
erties of relativity theories. (Relativity comes in many stages, e.g., special,
general, or cosmological relativity.) To this end, we need to recall versions of
relativity theory which are built up in a logical framework i.e. which are the-
ories in the sense of mathematical logic. Such are available in the literature,
e.g., Specrel of [2] or [4] or [18], or Genrel of [18] or [3], to mention a few. We
start this paper by recalling such logical forms of relativity theory (section
2). In Part I (section 3) we investigate decidability properties of versions of
relativity. We will find that the answer whether decidable or not depends
on how rich version we study. Also in Part I we study applicability of the
conclusion of Gödel’s first incompleteness theorem to the theory in question.
In Part II (section 4) we study whether Gödel’s second incompleteness the-
orem applies to the theory of relativity in question (we mean whether the
conclusion of Gödel’s theorem applies). In Part III (section 5) we study un-
provability of consistency. In more detail, we discuss the property of a theory
T saying that consistency of T , Con(T ), is formalizable in T but not provable
from T . We look at the question which versions of relativity have this prop-
erty. The same investigation leads up to asking whether the theory is Π0

k

hard. (We could call this “third Gödel incompleteness” property.) Roughly
speaking, for all three questions we will find that the most sparing versions of
relativity have the property (e.g., are decidable) while the richer versions of
the same theory have the negative properties (e.g., undecidable). This leads
up to statements (possible predictions) in the language of relativity T which
are independent of ZF set theory. Independence of set theory motivates our
arguing that relativity theory should not aim for proving such statements.

2 Basic axiom system

2.1 The frame language

We introduce the first-order logic language, which we will use for formalizing
(first special) relativity, with an eye open for the subsequent generalization
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of the theory. We want to talk about motion of bodies.1 What is motion?
It is changing location in time. Therefore we will talk about bodies, time,
space, and about a location-function which tells us which body is where at
a given time. We want to talk about relativity theories; therefore these
location functions will depend on observers; different observers may see the
same motion differently. (The location function determined by an observer
m will be called the world-view function wm of observer m.) We will treat
observers as special bodies whose motion will be represented exactly the same
way as that of the rest of the bodies. These observers are often called, in the
literature, reference frames.2

It will be convenient for us to be flexible about the dimension of space:
we will not only treat 3-dimensional space, but 1 or 2, or higher-dimensional
spaces as well. We will treat time as a special dimension of space-time. n
will denote the dimension of our space-time.3 Thus, usually n = 4 (3 space-
dimensions and 1 time-dimension), but we will consider also n = 2, 3 or
n > 4. Our bodies will be idealized, pointlike.

The vocabulary of our language is the following: unary relations

B (bodies)

Obs (observers)

Ph (photons)

Q or F (quantities used for giving location and “measuring time”);

an n+ 2-ary relation, the location- or world-view relation

W (world-view relation, W (m, b, t, s1, . . . , sn−1) intends to mean that
according to observer (or reference-frame) m, the body b is present at
time t and location ⟨s1, . . . , sn−1⟩);

for dealing with quantities, we will have two binary functions, and a binary
relation:

+, ·, ≤.

1In this paper we concentrate only on kinematics; the same kind of investigations can
be carried out concerning mass, forces, energy etc., cf. [5]. However, if a theorem can be
proved without referring to these extra notions, we consider that a virtue.

2This difference is only a matter of linguistic convention.
3Recent generalizations of general relativity in the literature (e.g. M-theory) indicate

that it might be useful to leave n as a variable.
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In our theories, we will always assume the following:

• observers and photons are bodies,

• W (m, b, t, s1, . . . , sn−1) implies that m is an observer, b is a body, and
t, s1, . . . , sn−1 are quantities,

• ⟨Q,+, ·,≤⟩ is a Euclidean linearly ordered field4.

We found that the simplest way of treating these assumptions is to use a
2-sorted first-order language, where

B,F are sorts or universes,

Obs, Ph are unary relations of sort B,

W is an n+ 2-ary relation of sort B ×B × F × F × . . .× F ,

+, · and ≤ are operations and relation of sort F .

Let
M = ⟨BM, ObsM, PhM;FM,+M, ·M,≤M;WM⟩

be a model of our two-sorted language. This means thatBM and FM are sets,
they are called the universes of sort B and F respectively, ObsM, PhM ⊆
BM etc. We will omit the superscripts M. We call M a frame-model if
FM := ⟨F,+, ·,≤⟩ is a Euclidean linearly ordered field and W ⊆ Obs×B ×
F × . . .×F . |= denotes the usual semantical consequence relation induced by
frame-models, i.e. Th |= φ means that for every frame-model M, if M |= Th,
then M |= φ.

Next we introduce some terminology in connection with arbitrary frame-
models M = ⟨B,Obs, Ph;F,+, ·,≤;W ⟩.

The essence, the “heart” of a frame-model is the world-view relation W .
Since W ⊆ Obs×B × nF , for every observer m ∈ Obs it induces a function
wm : nF → {X : X ⊆ B} as follows: for every p ∈ nF

wm(p) := {b ∈ B : W (m, b, p)}.

Thus wm(p) is the set of bodies present at space-time location p for m. We
call a set of bodies an event, and wm is called the world-view function of m,

4This is why we denote quantities also with F . An ordered field is called Euclidean if
every positive element has a square root in it, i.e. if (∀x > 0)(∃y)x = y · y is valid in it.
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Figure 1: The world-view function wm.

which to each space-time location p tells us what event observer m observes
or “sees happening” at location p. “Seeing” has nothing to do with photons
here, it really means “coordinatizing” only.

The trace or world-line of a body b according to an observer m is the set
of space-time locations where m sees b, i.e.

trm(b) := {p ∈ nF : W (m, b, p)}.

The world-view function wm can be recovered from the family of traces of
all bodies (from ⟨trm(b) : b ∈ B⟩), and the world-view-relation W can be
recovered from all the world-view functions (from ⟨wm : m ∈ Obs⟩). Thus
we can “represent” the function wm by the world-view of m, which is just the
indexed family ⟨trm(b) : b ∈ B⟩, and which, in turn, we represent by drawing
the traces of bodies that we are interested in. See Figure 2.

trm(b3)

trm(b2)

trm(b1)

Figure 2: World-view of m.
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Since F = ⟨F,+, ·⟩ is a field, we can define n-dimensional straight lines
as follows (these will be the world-lines of “inertial bodies”). We will use the
vector-space structure of nF , i.e. if p, q ∈ nF and λ ∈ F then p+q, p−q, λp ∈
nF and 0 denotes the origin, i.e. 0 = ⟨0, . . . , 0⟩, where 0 is the zero-element of
the field. Let ℓ ⊆ nF . We say that ℓ is a straight line iff there are p, α ∈ nF
such that α ̸= 0 and

ℓ = {p+ r · α : r ∈ F}.

Lines denotes the set of all straight lines (of dimension n). t denotes the
time axis,

t := {⟨r, 0, . . . , 0⟩ : r ∈ F}.

t is a straight line. If ℓ ∈ Lines, then ang(ℓ), defined below, represents
the angle5 between ℓ and t (where α = ⟨α0, . . . , αn−1⟩ is associated to ℓ as
before):

ang(ℓ) :=
α2
1+...+α2

n−1

α2
0

if α0 ̸= 0, and

ang(ℓ) := ∞ if α0 = 0. Here ∞ is any element not in F .

ang(ℓ) = 1 means intuitively that the angle between ℓ and t is 45o. (See
Figure 3.) Assume that trm(k) = ℓ is a straight line. Then ang(ℓ) represents
the velocity6 of k as seen by m:

vm(k) := ang(trm(k)), if trm(k) ∈ Lines.

E.g., vm(k) = 0 means that trm(k) is parallel with t, i.e. k’s location does not
change with time, i.e. k is at rest w.r.t. m. The bigger vm(k) is, the bigger
distance k travels in a unit time (as seen by m).

2.2 Basic axioms of special relativity

A plurality of “competing” axiom systems (or “relativity theories”) is an
essential feature of a logical analysis of relativity as developed in e.g. [4]. In
this section we recall one of these axiom systems and will call it Specrel0.
It consists of five axioms. In the following axioms, m, k stand for arbitrary
observers, h for an arbitrary body, ℓ for an arbitrary straight line (i.e. element

5Actually, ang(ℓ) is the square of the tangent of the angle between ℓ and t.
6Instead of “velocity”, the precise expression would be “speed”, since vm(k) is a scalar

and not a vector.
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vm(h) < 1

t̄ h b

trm(b), vm(b) = 1

vm(h
′) > 1

h′
45o

Figure 3: Velocities.

of Lines), and ph for an arbitrary photon. We use the standard custom in
logic that free variables should be understood as universally quantified, e.g.,
the axiom trm(m) = t means (∀m ∈ Obs)trm(m) = t.

Our first axiom says that the traces of observers and photons, as seen by
any observer, are straight lines:

AxLine trm(h) ∈ Lines for h ∈ Obs ∪ Ph.

Since translating our intuitive statements to first-order formulas in the
language of our frame-models (M’s) will be straightforward, we will not give
these translations, we will only give the intuitive forms.

The second axiom says that any observer sees himself at rest in the origin:

AxSelf trm(m) = t.

The third axiom says that we have the tools for thought-experiments: on
any appropriate straight line we can assume there is a potential observer;
and the same for photons:7

AxPot ang(ℓ) < 1 ⇒ (∃k ∈ Obs)ℓ = trm(k), and
ang(ℓ) = 1 ⇒ (∃ph ∈ Ph)ℓ = trm(ph).

7This axiom can be “tamed” by using modal logic, such that space-time does not get
crowded with k’s and ph’s, cf. [4].
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The fourth axiom says that all observers “see” the same events (possibly
at different space-time locations):8 For a function f , its range is Rng(f) :=
{y : ∃x(f(x) = y)}.

AxEvents Rng(wm) = Rng(wk).

The last axiom says that the velocity of a photon is 1, for each observer:

AxPh vm(ph) = 1 (and trm(ph) ∈ Lines).

Our choice for a “first possible” axiom system for special relativity is:

Specrel0 := {AxLine, AxSelf, AxPot, AxEvents, AxPh}.

When we want to indicate explicitly the number of dimensions, we will
write Specrel0(n) in place of Specrel0. We note that AxPh together with
the photon part of AxPot is the relativistic part of Specrel0. (The rest are
true in Newtonian Mechanics.) In [4] we denoted Specrel0 with Basax (n)
for “basic axioms”.

Let n > 2. In [4],[2] we show that Specrel0(n) is consistent, it is not in-
dependent, and it forbids faster than light observers but permits faster than
light bodies.9 In this paper we show that Specrel0 generates an undecid-
able first-order theory but we can strengthen it so that it becomes decidable
(moreover categorical); and also we can strengthen it so that it becomes
hereditarily undecidable, further both of Gödel’s incompleteness properties
hold for this strengthened version. We will see that both kinds of extension
of Specrel0 are natural.

Now we are going to introduce seven extra natural axioms that will make
Specrel0 categorical over any field. The theory Specrel0 extended with these
seven axioms (and with any decidable theory of fields) is decidable. We will
see that if we leave out any one of six of these axioms, the theory will become
undecidable, and such that it can be extended to a hereditarily undecidable
theory where both Gödel’s incompleteness theorems hold.

8This will have to be considerably weakened, when preparing for a generalization of
our axiom systems like Specrel0 towards general relativity, cf. [4].

9The point in proving things like Specrel0 |= no FTL observer is in the small number
of axioms and concepts needed. Actually in [4] we show that a much weaker version of
Specrel0 is enough for proving this conclusion. A more refined version of the theorem says
that FTL observers “lose most of their meter rods”, cf. [4].
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2.3 A principle of relativity

The world-view transformation fmk between two observers m, k is defined as

fmk := {⟨p, q⟩ : wm(p) = wk(q) and wk(q) ̸= ∅} .

From our previous axioms it follows that fmk is a transformation of nF (and
not only an arbitrary binary relation) if m, k are observers.10 Therefore we
will use fmk as a function. Then fmk(p) is the “place” where k sees the same
event that m sees at p, i.e.

wm(p) = wk(fmk(p)) .

When p = ⟨p0, . . . , pn−1⟩ ∈ nF , we will denote p0 by pt in order to emphasize
that pt is the “time component” of p. Let p, q ∈ nF . Then pt − qt is the time
passed between the events wm(p) and wm(q) as seen by m and fmk(p)t −
fmk(q)t is the time passed between the same two events as seen by k. Hence
∥(fmk(p)t − fmk(q)t)/(pt − qt)∥ is the rate with which k’s clock runs slow or
fast as seen by m. Here, ∥a∥ denotes the absolute value of a when a ∈ F , i.e.
∥a∥ ∈ {a,−a} and ∥a∥ ≥ 0.

AxSym All observers see each other’s clocks run slow to the same extent,

∥fmk(p)t − fmk(q)t∥ = ∥fkm(p)t − fkm(q)t∥, when m, k ∈ Obs and p, q ∈ t.

AxSym states only that any two observers “see” each other’s clocks
“change” the same way. In principle, this allows the clocks run fast, be
right, or run slow. In the Newtonian world AxSym is true because there
each observer sees that the other’s clocks are right. In models of Specrel0,
AxSym can be true only in the way that any observer sees that the clock
of any other observer not at rest with respect to it runs slow. Figure 7 in
the proof of Thm.2.1 shows how it is possible in models of Specrel0 that both
observers “see” the clock of the other run slow.

On the choice of our symmetry axiom AxSym.: Under mild extra as-
sumptions, Specrel0 implies that AxSym is equivalent with an instance of
Einstein’s special principle of relativity SPR as it was formalized in [4],[2].
The principle SPR goes back to Galileo, intuitively it says that the “laws of
nature” are the same for all inertial observers. See also Friedman [8, p.153].
We note that in models of Specrel0, AxSym is equivalent to the potential

10This is a typical example of a property of special relativity which is relaxed in the
process of localization (towards general relativity).
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axiom requiring that, in space, in the direction orthogonal (in the Euclidean
sense) to the direction of the motion there is no relativistic distortion, i.e.
there is no length-contraction. Other equivalent formalizations of AxSym
can be found in [4, §3.9].

2.4 Axioms making Specrel0 categorical

Here we introduce six more axioms that will make Specrel0 categorical (over
any given field). As in section 2.2, in the following m, k stand for observers,
ℓ for a straight line, phi for photons; and free variables in the axioms should
be understood as universally quantified.

The first two axioms deal with the direction of flow of time. We define
for any two observers m, k

m ↑ k iff (fkm(1t)− fkm(0))t > 0.

Intuitively this means that time flows in the same direction for m and k, see
Figure 4.

m ↑ k m ↓ k

m mk k

fkm0̄ fkm1t

fkm1t fkm0̄

Figure 4: m ↑ k means that time flows in the same direction for m and k.

Our first axiom is a stronger version of part of AxPot, it says that ev-
ery appropriate straight line is the life-line of an observer whose time flows
“forwards”.

AxPot+ ang(ℓ) < 1 ⇒ (∃k ∈ Obs)[ℓ = trm(k) and m ↑ k].

The next axiom says that time flows in the same direction for any ob-
servers at rest in the origin.
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Ax↑ trm(k) = t ⇒ m ↑ k.

The next axiom says that every observer can “re-coordinatize” his world-
view with a so-called Galilean transformation. To formalize the next axiom,
first we single out special transformations, that we will call Galilean trans-
formations. A mapping f : nF → nF is called a Galilean transformation if
it preserves Euclidean distance and f(1t)− f(0) = 1t where 1t = ⟨1, 0, 0, . . .⟩
and 1 denotes the unit element of the field F . In other words, a Galilean
transformation is a congruence transformation which is the identity map on
t, composed with a translation. See Figure 5. It is known that a Galilean
transformation is a linear transformation composed with a translation, hence
the next axiom is a first-order logic one.

ȳ

x̄

t̄

g

1y 1x

1t
g(1x) g(1y)

g(1t)

Figure 5: A Galilean transformation takes the unit vectors into pairwise
orthogonal vectors of length 1, and does not change the direction of the
time-unit vector.

AxGal G(0) ∈ t ⇒ (∃k ∈ Obs)fmk = G, for every Galilean transformation
G.

The next two axioms say, intuitively, that of each kind of observers and
photons we have only one copy (or in other words, according to Leibniz’s
principle, if we cannot distinguish two observers or photons via some observ-
able properties, then we treat them as equal).11 In other words, these are
so-called extensionality axioms. Id denotes the identity mapping.

AxExt1 fmk = Id ⇒ m = k.

11We could have named these axioms after Occam, too.
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AxExt2 trm(ph1) = trm(ph2) ⇒ ph1 = ph2.

The last axiom says that every body is an observer or photon.

AxNoBody B = Obs ∪ Ph.

Compl :=
{AxSym, AxPot+, AxGal, AxExt1, AxExt2, AxNoBody},

Specrel := Specrel0 ∪ {AxSym},

Specrel+ := Specrel ∪ Compl ∪ {Ax↑}.

In the terminology of e.g. Malament and Hogarth, Specrel0, Specrel and
Specrel+ correspond to causal space-time (or metric-free space-time), space-
time, and time-oriented space-time. Specrel0 is also strongly connected to
the “conformal structure of space-time”. When we write “causal space-
time”, we have in mind the symmetrized version of the strict “causality rela-
tion” ≪. (Sometimes “metric-free space-time”, “space-time”, “time-oriented
space-time” are used.)12

We did not include Ax↑ into Compl because, as we will see, its effects
are different from those of the the elements of Compl.13

THEOREM 2.1 Let14 n > 2 and let F = ⟨F,+, ·,≤⟩ be any Euclidean
field.

(i) There are exactly two models of Specrel ∪ Compl with field-reduct F ,
up to isomorphism.

(ii) There is a unique model of Specrel+ with field-reduct F , up to isomor-
phism.

On the proof. We illustrate that in any model of Specrel, all the world-
view transformations are so-called Poincaré-transformations (i.e. Lorentz-
transformations composed with translations), and this is the most important
part of the proof of Theorem 2.1.

12The terminology varies with different authors, but what we wanted to point out is
that the levels of abstraction corresponding to Specrel0, Specrel and Specrel+ seem to be
generally distinguished levels of abstraction in the literature of relativity.

13Intuitively, Ax↑ excludes only one model of two choices, while the rest exclude an
infinite number of possibilities, cf. Thm.s 2.1-3.6.

14We exclude the case n = 2 for simplicity only.
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Let m, k be observers in a model of Specrel, we will investigate the world-
view transformation f := fmk. It is easy to see that f : nF → nF is a
bijection. It is a collineation by the Alexandrov-Zeeman theorem in case
n > 2, and by [2, Thm.2] in case n = 2. By AxPh, f takes light-lines onto
light-lines, and this implies that f takes the unit vectors into vectors of the
same length and Minkowski-orthogonal to each other. Figure 6 illustrates the
idea of the proof of this part.

f

ph2ph1 ph2ph1

t̄ t̄

x̄ x̄

⟨1, 0⟩

⟨0, 0⟩ ⟨0, 1⟩

⟨1, 1⟩

f(⟨0, 0⟩)
f(⟨0, 1⟩)

f(⟨1, 0⟩)

f(⟨1, 1⟩)

Figure 6: World-view transformations in models of Specrel0 take the unit
vectors to vectors Minkowski-orthogonal to each other and of the same length.

Finally, AxSym implies that the length of the unit vectors is fixed, as
follows. We write out this part of the proof in more detail, because e.g. it
shows how it is possible that both observers see each other’s clocks run slow.

Let 1t = ⟨1, 0, 0, . . .⟩, and let us see where e := fkm(1t) is on trm(k). Let
a, b and a′ be as in Figure 7; i.e. they are the points on trm(k) and on t such
that the straight line connecting 1t and a is parallel with x, and the straight
lines connecting 1t and b and connecting a and a′ are parallel with fkm[x].
See Figure 7. If e = a, then m sees that k’s clock shows 1 just when his
clock shows 1, because 1t and a are simultaneous for m. But k will see that
m’s clock shows a′ < 1 when his clock shows 1, because for k, e = a and a′

are simultaneous. So k will think that m’s clocks run slow, but m will think
that k’s clocks are right. Analogously, m thinks that k’s clocks are right (run
slow or fast, respectively) iff e = b (> b or < b respectively). And, k thinks
that m’s clocks are right (run slow or fast, respectively) iff e = a (< a or > a
respectively). Thus both think that the other’s clocks run slow iff b < e < a.
The rate of “slowness” is the same for them at a unique point in between
a and b, because the change of rate is a continuous and strictly monotonic
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function (of the “number” ∥e∥). Now, Minkowski-distance is defined so that
the Minkowski-distance is 1 between 0 and this unique point (where the rates
of “running slow” are the same form and k). Figure 8 shows the points whose
Minkowski-distance from 0 is 1, i.e. it shows Minkowski-circle with radius 1
and center 0.

m k

1t

a′

a

b
e := fkm(1t)

direction of simultaneities for k

direction of simultaneities for m

Figure 7: Both m and k think that the other’s clocks run slow iff fmk(1t) is
in between a and b. The rates of “running slow” will be equal at a unique
point.

Figure 8: Minkowski-distance 1.

It is known that any collineation is an affine transformation composed
with a field-automorphism-induced transformation. Using that the above line
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of thought is valid for any p ∈ t in place of 1t, one can show that the world-
view transformations are actually affine transformations. Summing up: in
models of Specrel, the world-view transformations take the unit vectors into
pairwise Minkowski-orthogonal vectors of Minkowski-length 1. These kinds of
affine transformations are called in the literature Poincaré-transformations.
QED

3 Decidability and undecidability, Gödel’s

First Incompleteness in relativity

We now turn to decidability questions. Let n > 0 be fixed. It is known that
the first-order logic theory of Euclidean geometries (of dimension n) over
real-closed fields is decidable (a result of Tarski), cf. e.g. Schwabhäuser et al.
[17]. Similarly, the first-order theory of Minkowski geometries (of some fixed
dimension n) over real-closed fields is also decidable (a result of Goldblatt), cf.
Goldblatt [9, Appendix A, pp.168-169]. This leads naturally to the question
whether our relativity theories Th ⊇ [Specrel + theory of real-closed fields]
are decidable. 15

We will see that the answer depends on what extra “simplifying assump-
tions” we make (in Th) on the logical sort “Bodies” (and does not depend
too much on what “typically relativity theoretic” assumptions we make on
observers, photons and world-view transformations such as Ax↑, AxGal,
etc. 16 )

We start by recalling the definition of real-closed fields and by recalling
some facts from the literature.

An ordered field F is real-closed if it is Euclidean (i.e. every positive
element has a square root), and if every polynomial of odd degree has zero
as a value. This last requirement can be expressed with the infinite set
{ϕ2n+1 : n ∈ ω} of first-order formulas, where for every n ∈ ω, ϕn denotes
the following sentence

∀x0 . . .∀xn∃y[xn ̸= 0 → (x0 + x1 · y + . . .+ xn · yn = 0)].

15The question remains interesting even if we do not insist on Th ⊇ Specrel, but we
will see that the assumption Th ⊇ [theory of real-closed fields] is needed (in some sense)
in order to keep the question interesting.

16E.g. Ax↑ says that if the traces of two observers coincide, then their time flows in
the same direction, or we can state in an axiom that if two observers are at rest relative
to each other, then there is no relativistic distortion between their world-views.
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By a theory we will understand an arbitrary set of first-order formulas (i.e.
we will not assume that it is closed under semantical consequence). We call
a theory Th decidable (or undecidable respectively) if the set of all first-order
semantical consequences of Th is decidable (or undecidable respectively). We
call Th complete if it implies either ϕ or ¬ϕ for each first-order formula ϕ
(of its language). Propositions 3.1,3.2 below are known in the literature.
Prop.3.1 is a corollary of Tarski’s famous elimination of quantifiers for real-
closed fields.

PROPOSITION 3.1 The theory of real-closed fields is decidable and com-
plete.

PROPOSITION 3.2 The theories of ordered fields and Euclidean fields
are undecidable. 17

CONJECTURE 3.3 Any finitely axiomatizable consistent theory of or-
dered fields is undecidable.

For more on this subject we refer to the book of van den Dries [7]. (Works
of Alexander Prestel [University Konstanz] and Martin Ziegler [University of
Freiburg] might also be relevant here.)

COROLLARY 3.4 Specrel0, Specrel and Specrel
+ are undecidable.

Proof. This is a corollary of Prop.3.2, and the theorem that for any Eu-
clidean field F there is a model of Specrel+ with F as the field reduct (The-
orem 2.1).: Let ϕ be any field-theoretic first-order formula written by using
variables of our quantity sort. Then ϕ is valid in a frame-model M with field
reduct F iff ϕ is valid in F . Thus ϕ is valid in the class of Euclidean fields
iff ϕ is true in all models of Specrel+. Since the first-order theory of the
Euclidean fields is undecidable by Prop.3.2, the first-order consequences of
Specrel+ is undecidable, too. Since this is a finite theory, then any subset of
it is undecidable, too. QED

The above suggests that if we want to obtain interesting decision-theoretic
results, we have to concentrate on real-closed fields; or at least include a
decidable theory of field-axioms into our theories. Let Φ denote the theory
of real-closed fields.

17Note that if a finitely (or more generally, recursively) axiomatizable theory is unde-
cidable, then it is not complete.
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THEOREM 3.5 Let n > 2.

(i) Specrel0 ∪ Compl ∪ Φ is decidable.

(ii) Specrel0 ∪ Compl ∪ {Ax↑} ∪ Φ is decidable and complete.

(iii) Specrel0 ∪ (Compl \ {Ax})∪{Ax↑}∪Φ is undecidable, for any axiom
Ax ∈ Compl.

Proof. We show that (i) and (ii) are corollaries of Theorem 2.1, we sketch
the proof of (ii). Let M and M′ be models of Specrel0∪Compl∪{Ax↑}∪Φ.
We cannot apply Theorem 2.1 yet, because the field-reducts F and F ′ of M
and M′ respectively may not be the same. But they are elementarily equiva-
lent, because Φ is complete, so by the Keisler-Shelah isomorphic ultrapowers
theorem they have isomorphic ultrapowers, say F1 and F ′

1. Let M1 and M′
1

be the ultrapowers of M and M′ respectively, taken by the same ultrafilter.
Then the field-reducts of these are F1 and F ′

1 respectively. Now we can apply
Theorem 2.1 to M1 and M′

1 because F1 and F ′
1 are isomorphic, getting that

M1 and M′
1 are isomorphic, so elementarily equivalent. But then M and M′

are elementarily equivalent, too, since the former two models are ultrapowers
of these. This finishes the proof of (ii). (iii) is a corollary of the next theorem;
we included it here because it nicely contrasts (i) and (ii). QED

We now turn to the analog of Gödel’s first incompleteness theorem.

THEOREM 3.6 Let n > 1 and let Ax be any member of Compl. There is
a formula ν (in our frame-language) such that

(i) ν is consistent with Specrel0 ∪ (Compl \ {Ax}) ∪ {Ax↑} ∪ Φ

and for any theory Th consistent with ν

(ii) Th is hereditarily undecidable in the sense that no consistent extension
of Th is decidable.

(iii) The conclusion of Gödel’s first incompleteness theorem applies to the
theory Th, i.e. no consistent recursively enumerable extension of Th
is complete; moreover there is an algorithm that to each consistent,
recursively enumerable extension Th′ of Th yields a formula ϕ such
that Th′ ̸|= ϕ and Th′ ̸|= ¬ϕ.
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Proof. The idea of the proof is to show that absence of any member of
Compl allows us to interpret Robinson’s Arithmetic into our theory. We
sketch this for the case Ax = AxNoBody. We will see that in this case
ν will be quite natural: it will state the existence of a periodically moving
body. Consider the following formulas (with free variables m, b and t):

I(t) := I(m, b, t) := W (m, b, t, 0), and

ν := I(0) ∧ (∀t, s)

([t < 1 ∧ t ̸= 0] → ¬I(t) ∧

t ≥ 0 → [I(t) ↔ I(t+ 1)] ∧

[I(t) ∧ I(s)] → [I(t+ s) ∧ I(t · s)]).

Add, for a moment, m and b as constants to our language. Then t re-
mains the only free variable of I which then specifies a subset of the field-
reduct in any frame-model: the set of time-points where the observer m
sees the body b at the origin. Now the formula ν requires that this subset
behaves like the set of integers: it is a discrete periodic subset containing
0, 1 and closed under +, ·. Since the field-reduct of a frame-model is a field,
then Robinson’s arithmetic will be true in the field-reduct restricted to the
subset defined by I. In other words, I is an interpretation of Robinson’s
Arithmetic in Th ∪ {ν}, whenever ν is consistent with Th. For definition
of Robinson’s Arithmetic and (semantical) interpretation see e.g. Monk [12,
Def.14.17, Def.11.43]. Thus, Robinson’s Arithmetic can be interpreted in
Th ∪ {ν}. Then Th ∪ {ν} is inseparable (which is a strong version of un-
decidability) by Thm.16.1 and Prop.15.6 in [12]; and thus (ii) and (iii) of
our Theorem hold by Monk [12, Thm.s 15.9 and 15.8]. Finally, if we omit
the constants m, b, then semantical consequence does not change, so (ii) and
(iii) will hold for the original language (set of formulas not containing the
constants m or b), too (in (iii) a further little argument is needed).

To show (i), we have to construct a model of Specrel0 ∪ {Ax↑} ∪ Φ ∪
{ν}∪ (Compl \{AxNoBody}). This is not difficult as ν basically states the
existence of a periodically moving body; see Figure 9.

Take a “standard” model with minimum set of observers and photons;
and add one periodically moving body. We omit the details of the definition
of this model.

The proofs for the other cases are analogous; we only give different in-
terpretations of Robinson’s arithmetic. This means that we give a different
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m

b

Figure 9: b is a periodically moving body in m’s world-view.

formula I, but ν will be the same (speaking about I), and then we only have
to show that Th∪ {ν} is consistent, where Th is the theory in (i). To give a
flavor, we give this new interpretation I for the case when Ax = AxPot+.

I(m, t) := (∀ℓ)[ang(ℓ) = 1
t

⇒ (∃k)(trm(k) = ℓ ∧m ↑ k)] or t = 0, 1.

This finishes the proofidea of Theorem 3.6. QED

Since Minkowski geometries over real-closed fields do have a decidable
theory (for any fixed n), Theorems 3.4-3.6 above seem to point in the direc-
tion that our relativity theories, such as Specrel, are essentially richer than
the theories of the corresponding Minkowski-style geometries.

REMARK If we add Compl, and especially AxNoBody to our relativity
theory (say Specrel0), then this can be interpreted by saying that we want to
abstract away from some aspects of relativity theory and want to concentrate
on some very basic aspects only (namely those involving inertial observers
and photons). At a certain stage of development, one might even say that
this aspect is the “heart” of the theory (from a certain point of view) and for
a while one might want to concentrate on the heart only. Some people might
even argue that this “heart” part is the one which contains the so called “laws
of nature” and therefore immunity of this part to Gödel’s incompleteness
arguments (cf. Theorem 3.5 above) might point in the direction that perhaps
TOE is, after all, possible despite of Gödel’s incompleteness proofs because
if we figure out carefully which formulas of our frame language count as
potential “laws of nature” and distinguish them from the rest of the formulas,
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then laws of nature conceived in this special way might eventually turn out
to admit a complete axiomatization.

We plan to come back to discussing such (and related) kinds of ideas
much later, after accelerated observers and other things (in the direction of
general relativity) will be incorporated in a variant of our first-order logic
approach.

Let us turn, for a second, to the possible “only the heart” approaches,
mentioned at the beginning of this remark. In this connection, we would
like to emphasize that herein we intend to include into our formalized (and
axiomatized) relativity theories not only the heart of the theory but rather
“the whole story” (in some sense). In this sense the purposes of this work are
different from the purposes of possible works which would want to provide an
axiomatic foundation for special relativity by axiomatizing (only) Minkowski
geometry in first-order logic.18 We would call such an approach an “only the
heart” approach. (With this we do not want to diminish the importance of
such possible approaches. They are legitimate and they are useful. But they
do not make our research superfluous, either.)
END OF REMARK

For current research directions in logic started by Gödel’s incompleteness
theorems we refer to Hájek and Pudlák [10]. In later work we plan to look
into the logical structure of general relativistic space-times permitting closed
time-like loops (which can be regarded as causing a kind of self-reference19).
In Lewis [11, pp.67-80, pp.212-3] it is pointed out that these causal loops do
not imply logical contradictions or even logical paradoxes. They simply have
more complex logical structures than “linear causation”. We plan to extend
the mathematical logic based approach to further analyzing these and related
possibilities thoroughly and carefully.

In the rest of the paper we will write Basax in place of Specrel0.

18E.g., such theories would be decidable while our typical theories such as Specrel are
not.

19such as the ones in Gödel’s incompleteness proof, Tarski’s proof of undefinability of
truth, or Barwise and Etchemendy’s book on the “Liar”.
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4 Gödel’s Second Incompleteness in relativ-

ity

In Theorem 3.6 above we established that the conclusions of Gödel’s
first incompleteness theorem apply, among others, to our relativity theory
Basax (n) + ν (where ν was a natural extra axiom which is valid e.g. in the
“standard” (or intended) models). In other words, we expanded our theory
Basax (n) with a natural extra axiom ν (whose truth has never been doubted
by anyone), and we saw that Gödel’s first incompleteness theorem became
applicable to the so expanded version of Basax (n).

Next, we will see that Basax (n) can be expanded with similarly natural
axioms Ax(ind) which are similarly true in the “standard models” such that
even Gödel’s famous second incompleteness theorem becomes applicable to
the so expanded version of Basax (n).

THEOREM 4.1 Let n > 1. Then the following hold.

(i) Basax (n) has a consistent extension Basax (n)+ which is obtained by
adding a finite schema Ax(sch) of axioms to Basax (n) such that in
Basax (n)+ its own consistency Con(Basax (n)+) can be formulated by
a single formula such that

Basax (n)+ ̸⊢ Con(Basax (n)+).

(ii) The above remains true for any consistent extension Th of Basax (n)+

if Th is obtained by adding a finite number of axioms (to Basax (n)+).

Proof. Let n > 1. Throughout, we “pretend” that an M ∈ Mod(Basax (n))
has been fixed. Let m ∈ Obs and b ∈ B. Then let Zm

b := t ∩ trm(b). We
identify Zm

b with {a ∈ F : ⟨a, 0⟩ ∈ Zm
b }. We call b m-periodic iff (i)-(v)

below hold.

(i) Zm
b ̸= ∅.

(ii) Zm
b is discrete in F , i.e.,

(∀x ∈ Zm
b )(∃z ∈ Zm

b )(∀y ∈ F )(x < z < y → z /∈ Zm
b ).

We denote this y by suc(x).

(iii) Zm
b has no greatest or smallest element.
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(iv) 0 ∈ Zm
b and 1 = suc(0).

(v) (∀x ∈ Zm
b )suc(x)− x = 1.

The axiom ν+ says the following.

(ν1) There are m, b such that b is m-periodic.

(ν2) (∀m, b,m′, b′)(b is m-periodic and b′ is m′-periodic ⇒ Zm
b = Zm′

b′ ).

(ν3) b is m-periodic ⇒ Zm
b is closed under + and ·, i.e., ⟨Zm

b , 0, 1,+, · ⟩ ⊆ F
is a subring of our field F .

ν+ := (ν1) + (ν2) + (ν3).

Clearly, Basax (n)+ν+ is consistent (we are in ZF set theory). From now
on we assume

M |= Basax (n) + ν+.(1)

By ν1 + ν2 we may define Z := Zm
b for some m-periodic body b. (Z is well

defined by ν+.) Moreover, Z is defined in the language of Basax (n) + ν+

without parameters in the style Z = {x ∈ F : φZ(x) holds } where the
formula φZ has no free variable other than x. This means that the structure
Z := ZM := ⟨Z, 0, 1,+, · ⟩ is definable in M without using parameters. It is
not hard to prove that

Robinson’s arithmetic Q is true in ZM;(2)

but anyway, since Q is finite, we could add Q to ν+ if Q was not automatically
true. (This would leave Basax (n) + ν+ + Q consistent.)

Now, we can comfortably interpret Robinson’s arithmetic Q in our the-
ory Basax (n) + ν+, and this way we can prove all those parts of Gödel’s
incompleteness theorems (together with the related theorems like Rosser’s)
which hold for Q. But now we want to do more: we want to establish those
stronger incompleteness results which hold for Peano’s Arithmetic PA (and
we want to prove these for [Basax (n)+“some natural assumptions”] in place
of PA). To this end we introduce an axiom schema Ax(ind) which postulates
a natural induction principle for our models M. For this, we can pretend
that Z is part of our language, since we defined Z explicitly by a formula
φZ .

(3) Let ψ(x, u) be a formula with free variables x and u = ⟨u0, ..., uk⟩
such that x is of sort F while ui are of arbitrary (but fixed) sort.
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Then the new formula ind(ψ, x) is defined as follows. (To understand the
formula ind(φ, x) we have to recall that suc(x) was defined in the first-order
language of M.) ind(ψ, x) is defined to be

∀u((ψ(0, u) ∧ (∀x ∈ Z)[ψ(x, u) → ψ(suc(x), u)]) ⇒ (∀x ∈ Z)ψ(x, u)).

Now,

Ax(ind) := {ind(ψ, x) : ψ(x, u) is a formula in our frame language
as specified in (3) above }.

We define Basax (n)⋆ as follows:

Basax (n)⋆ := Basax (n) + ν+ + Ax(ind).

Now

(4) Basax (n)⋆ is an extension of Basax (n) by a finite schema of axioms, it is
consistent and it is valid in the “standard” models (or intended mod-
els) of Basax (n). E.g., if FM is Archimedean and M |= (Basax (n) +
there are periodic bodies), then M |= Basax (n)⋆.

Let us recall that in Peano’s arithmetic PA the consistency of PA can be
formalized with a single formula Con(PA) such that PA ̸⊢ Con(PA). In the
following claim we state a completely analogous result about our relativity
theory Basax (n)⋆.

Claim 4.2 There is a formula Con(Basax (n)⋆) of our frame language which
in each model M |= Basax (n)⋆ expresses the consistency of Basax (n)⋆ the
same way as Con(PA) expresses consistency of PA in models of PA. (Cf. e.g.,
Hájek-Pudlák [10] or Monk [12].) Further,

Basax (n)⋆ ̸⊢ Con(Basax (n)⋆) and

Basax (n)⋆ ̸⊢ ¬Con(Basax (n)⋆).

To prove this claim we observe two things:
(i) PA can be interpreted in Basax (n)⋆ because Z is definable in Basax (n)⋆

and the axioms of PA are derivable (for Z) in Basax (n)⋆. This is very easy
to check because the axioms of Basax (n)⋆ were selected in such a way as to
make this true.

(ii) The axiom system Basax (n)⋆ is given by a finite schema, com-
pletely analogous with the axiom system of PA. Therefore, the axiom system
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Basax (n)⋆ can be formalized in PA exactly the same way as PA was formalized
in PA, e.g., in [10]. Therefore in PA there is a formula pr(x, y) expressing that
x is the Gödel number of a proof from Basax (n)⋆ of a formula φ of our frame
language whose Gödel number is y. Since PA is interpreted in Basax (n)⋆,
the same formula pr(x, y) is available in Basax (n)⋆, too. Now, ∃xpr(x, y) is
a provability formula π(y) which in Basax (n)⋆ expresses that y is the Gödel
number of a frame formula provable in Basax (n)⋆. Further, one can easily
check that the Löb conditions (as presented, e.g., in [10, Def.2.16, p.163]) are
satisfied by π(y) and by Basax (n)⋆. Now, we choose Con(Basax (n)⋆) to be
¬π(False).

The rest of the proof of the “̸⊢ Con(. . .)” part of Claim 4.2 goes exactly
the same way as the proof of Thm’s 2.21-2.22 (on p.164) in [10]. The “̸⊢
¬Con(. . .)” part is relatively easy to check since Basax (n)⋆ is consistent and
we defined pr(x, y) in an appropriate way. This completes the proof of the
theorem for the theory Basax (n)+.

The generalization for (consistent) extensions of Basax (n)+ with finitely
many new axioms goes the usual way, e.g., one can use (an appropriately
adapted version of) Thm.2.22 of [10]. (Hint: if we have a Σ1 definition of
the Gödel numbers of the axioms of Basax (n)⋆ then we can extend this Σ1-
definition to “Basax (n)+ + an extra (concrete) axiom, say φ”, since φ has a
concrete Gödel number ⌈φ⌉ etc.) QED

5 Π0
k-hardness and ZFC independence in rel-

ativity

In the above investigations we saw that Gödel’s incompleteness theorems ap-
ply to some versions, e.g., Basax (n)+ν, for n > 1 of our formalized relativity
theory. This implies, among others, that all extensions of Basax (n) + ν are
undecidable, moreover, if they are complete then their theorems are not even
recursively enumerable.

However, we will see soon that there are stronger (than non-recursively
enumerability) negative properties for theories (sets of formulas), and if we
are not careful enough then our relativity theories can be “infected” with
these very strong negative properties, too.

If a set of formulas is not recursively enumerable that makes life hard, but
not impossible. In the theory of computability (or rather non-computability)
there is a so called hierarchy of unsolvability which measures how impossi-
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ble it is to describe certain sets (of formulas or of natural numbers). This
hierarchy is also known as the “degree of unsolvability”. There is an infinite
sequence Π0

1,Π
0
2, ...,Π

0
k, ... of harder and harder non-computable sets. (The

idea is that Π0
k+1 is even less computable than Π0

k.)
As an illustration, let ω := ⟨ω,+, ·, 0, 1⟩ be the standard model of arith-

metic. Then it is known that the full first-order theory Th(ω) of ω is harder
than Π0

k, for any k ∈ ω.
We will see that if we are careless in defining our class Intmod ⊆

Mod(Basax (n)) of intended models of relativity, then Th(Intmod) can become
at least as hard as Th(ω), i.e., harder than Π0

k for any k. Roughly speaking,
this means that there is a computable function tr : Th(ω) → Th(Intmod)
mapping Th(ω) onto Th(Intmod) such that if some magic device (usually
called an “oracle”) could compute (e.g., enumerate) Th(Intmod), then via tr
this would also yield a computation (enumeration) of Th(ω). For the precise
definition of Π0

k-hardness and being “as hard as” (say, Th(ω)) the reader is
referred to Odifreddi [14].

Next we turn to preparing ourselves for stating this Π0
k-hardness theorem

(and also some statements about being independent from ZFC set theory).
Let us recall that the “potential axiom” ν in our frame language was intro-
duced around our extension of Gödel’s first incompleteness theorem to our
relativity theories, cf. theorem 3.6. Intuitively, ν says that there exists a peri-
odically moving body. Next we define a harmless looking class Mod(Arch, n)
of models which we will call Archimedean models of relativity. Recall that a
field F is called Archimedean if to each r ∈ F there is k ∈ F such that r < k
and k is a finite integer, i.e. k ∈ {1, 1 + 1, 1 + 1 + 1, ...}.

Definition 5.1 Let n > 1 be arbitrary.

Mod(Arch, n) := {M ∈ Mod(Basax (n)) : M |= ν and FM is Archimedean}.

THEOREM 5.2 Let n > 1. Then the following hold.

(i) The first-order theory Th(Mod(Arch, n)) is harder than Π0
k, for any k ∈ ω.

Further,

(ii) Th(Mod(Arch, n)) is at least as hard (i.e., as uncomputable or undefin-
able) as the full first-order theory Th(ω) of the standard model ω of
arithmetic.
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On the proof. Assume M |= Basax (n)+ν and assume FM is Archimedean.
Using the ideas of our earlier “Gödel-oriented” proofs, since ν is assumed,
we can define an isomorphic copy of some structure A similar to ω in our
model M. But since FM is Archimedean, A will be isomorphic with ω. This
way we obtained an interpretation tr of Th(ω) in the theory Th(M) of M.
A little checking reveals that this interpretation is the same for all choices
of M. This proves interpretability of Th(ω) in Th(Mod(Arch, n)). The rest
follows from this (since tr is clearly Turing-computable). QED

The above theorem can be interpreted as implying that we really should
not require FM to be Archimedean in our relativity theories because this
requirement would smuggle in very hard meta-mathematical issues into our
formalized relativity theory which issues are probably irrelevant to the origi-
nal subject matter of relativity. (Cf. in this connection van Benthem [6] and
Németi and Sain [13].)

THEOREM 5.3 Let n > 1. Then there is a formula φ in our frame lan-
guage for relativity theory such that truth of statement (i) below is indepen-
dent of ZFC Set Theory.

(i)
Mod(Arch, n) |= φ

On the proof. We saw in the proof of Thm.4.1 that the theory Th(ω) of full
first-order arithmetic can be interpreted (or reconstructed) in our “relativity
theory” Th(Mod(Arch, n)), if n > 1. But in Th(ω) there do exist formulas,
e.g., ψ, such that the statement ω |= ψ” is independent of ZFC (assuming
ZFC is consistent). Such a ψ is the Gödelian formula Con(ZF ). There-
fore, if tr is our translation function (from Th(ω) into our frame language)
then “tr(ψ) ∈ Th(Mod(Arch, n))” or equivalently “Mod(Arch, n) |= tr(ψ)” is
a statement about our (potential) relativity theory whose truth is indepen-
dent from ZFC. This implies, roughly speaking, that in some models of ZFC
Mod(Arch, n) |= tr(ψ) is true while in other models of ZFC the same is false.
QED

The tr(ψ) in the above proof is a formula in our language for relativity
theory whose truth in the potential relativity theory ThMod(Arch, n) is un-
knowable in some meta-mathematical sense. To our minds, this implies that
ThMod(Arch, n) would be a bad choice for being our relativity theory. Also,
Mod(Arch, n) would be a bad choice for being our intended class of models of
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relativity theory. For completeness, we note that besides Con(ZF ), there are
infinitely many different formulas ψ1, ψ2, . . . in the language of ω whose valid-
ity in ω is independent from ZFC. Such an example is Con(Con(ZF ) +ZF ),
but there are also formulas with the same independence property but of
different spirit.

The above theorem can be interpreted as saying that Mod(Arch, n) is
much less adequate for studying relativity theory than, e.g., Mod(Th) for
some of the purely first-order choices Th (such as e.g., Specrel for relativity
theory for the following reason. Unlike e.g. the situation with Specrel, the
theorems of Th(Mod(Arch, n)) do not depend so much on our choice of explicit
assumptions about relativity, but rather they depend on the properties of
the set theoretical universe in which “we are doing our mathematics”. This
may not sound so bad, but further considerations reveal that this can lead
to extremely misleading results, and roughly speaking it can contribute to
something which is usually called an “artifact”, cf. [13], Sain [15]. Because of
Thm.5.3, when we will want to have something like the Archimedean property
in our relativistic models M, then instead of simply assuming that FM is
Archimedean (which would produce undesirable side effects), we will follow
the non-standard analysis-like methodology elaborated in, e.g., Sain [16],
Andréka-Goranko-Mikulás-Németi-Sain [1] for temporal logics of actions and
for nonstandard dynamic logics. This nonstandard methodology is based
on adding extra sorts to M representing possibly nonstandard integers and
functions mapping these integers into F .
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