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Abstract . We give a novel application of algebraic logic to first order logic.
A new, flexible construction is presented for representable but not completely rep-
resentable atomic relation and cylindric algebras of dimension n (for finite n > 2)
with the additional property that they are one-generated and the set of all n by n

atomic matrices forms a cylindric basis. We use this construction to show that the
classical Henkin-Orey omitting types theorem fails for the finite variable fragments
of first order logic as long as the number of variables available is > 2 and we have a
binary relation symbol in our language. We also prove a stronger result to the effect
that there is no finite upper bound for the extra variables needed in the witness
formulas. This result further emphasizes the ongoing interplay between algebraic
logic and first order logic.

1 Introduction

Daniele Mundici [41] initiated the following type of investigations in first or-
der logic (FOL). Concerning various positive results like Craig’s Interpolation
Theorem or Beth’s theorem, Mundici suggested to ask how resource sensitive
the positive result is. E.g. if Craig’s theorem says that to ϕ → ψ there exists
an interpolant θ with ϕ → θ and θ → ψ, how complicated (i.e. how “expen-
sive”) θ is relative to ϕ and ψ. Recent work measures expensiveness with the
number of variables needed for θ (or for whatever is being claimed to exist by
the “positive theorem” in question). An example for such an investigation is
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Monk’s result [39] saying that for any bound k ∈ ω there is a valid 3-variable
formula ϕ which cannot be proved by using only k variables. In this paper
we apply this “resource-oriented” kind of investigation to the Henkin-Orey
omitting type theorem [17], [43].

For a finite number n, Ln denotes the n-variable fragment of FOL. More
concretely, the formulas of Ln are those formulas of FOL which involve at
most n individual variables. A systematic study of the fragments Ln via cylin-
dric algebras was initiated by Leon Henkin [19]. The above outlined issue of
“resource-sensitivity” is often addressed in the following form. We ask our-
selves if certain distinguished positive properties of FOL are inherited by Ln.
Examples of such distinguished properties studied in the literature for Ln in-
clude interpolation, Beth definability, submodel preservation, and complete-
ness theorems, cf. [3], [5], [16], [28], [29], [39]. A general first impression might
be that, usually, positive properties turn out to be resource sensitive in such
a strong way that a goal formulatable in Ln cannot be solved in Ln+k for any
finite k. However, this is not true in such generality, e.g. by [20, Thm.1.5.14
and the discussions preceding and following it], some natural properties of sub-
stitutions in Ln which are not provable in Ln are provable in Ln+2, cf. also
[44]. A further “counterexample” is provided by the guarded fragment of FOL
introduced in [4]. The main point of the guarded fragment (and its variants
e.g. the packed fragment) is that if we work inside the guarded fragment then
we are kind of safe of the above quoted “complexity explosion” phenomenon
undermining the positive results of FOL. Cf. [15],[31],[32].

We say that a logic L has the Omitting Type Property (OTP) if the usual
formulation of the Omitting Type Theorem remains true after all occurrences
of Lωω are replaced with L in it. In brief, the OTP for L says that if T is a
complete theory, and Σ(x) is a type which is realized in each model of T , then
there is a “witness formula” for this, i.e. there is ψ(x) ∈ L that ensures Σ(x)
in T . For concrete detail see section 1.1 below.

In this paper we obtain the following new results. Let n > 2 be finite. Then
Ln strongly fails the OTP in the following sense: (i) one binary relation symbol
suffices in the language. (ii) There is no bound on the number of extra variables
needed for writing up the missing witness formula. (iii) The type in question
uses only one free variable. This result was conjectured (but not proved) in [49].
Algebraic results: A flexible, new kind of construction is given for relation and
cylindric algebras suitable e.g. to construct representable but not completely
representable atomic algebras. Such algebras were first constructed by Robin
Hirsch and Ian Hodkinson [23], [27], [30]. By the use of the new construction
we improve their result and construct one-generated representable but not
completely representable atomic algebras with the further property that the
relation algebras have n-dimensional cylindric bases and the cylindric algebras
are neat-reducts and are constructed from the n-dimensional cylindric bases.
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The desirability of such a construction is pointed out in [23, p.836, lines 11-22].
We need these extra properties in showing strong failure of the OTP for Ln.
Hodkinson proved that RCAn is not closed under completion. We refine this
result by showing that even RCAn∩NrnCAn+k is not closed under completion
for all finite n > 2 and k ≥ 0.

The layout of this paper is as follows: In section 1.1 we formulate our main
result in logical form, in section 1.2 we formulate our main result in algebraic
form and prove the logical result (strong failure of the OTP for Ln) modulo
the algebraic result. In section 2 we recall the necessary algebraic machinery
from the literature. In sections 3,4 we present the new construction for how to
construct representable but not completely representable relation and cylindric
algebras and state the necessary conditions for our desired properties. In
section 5 we give concrete algebras that fit our bill and with this we prove our
main result in algebraic form.

1.1 The main result in logical form

We work in usual first order logic. In the process, we use standard notation.
In particular, |= denotes the usual satisfiability relation. For a formula ϕ and
a first order structure M in the language of ϕ we write ϕM to denote the set
of all assignments that satisfy ϕ in M , i.e.

ϕM = {s ∈ ωM : M |= ϕ[s]}.

For example if M = (N, <) and ϕ is the formula x1 < x2 then a sequence
s ∈ ωN is in ϕM iff s1 < s2. Let Γ be a set of formulas (Γ may contain free
variables). We say that Γ is realized in M if

⋂
ϕ∈Γ ϕM 6= ∅. Let ϕ be a formula

and T be a theory. We say that ϕ ensures Γ in T if T |= ϕ → γ for all γ ∈ Γ.
The classical Henkin-Orey Omitting Types Theorem, OTT for short, [11,

Theorem 2.2.9], or rather the contrapositive thereof, states that if T is a com-
plete, consistent theory in a countable language L and Γ(x1, . . . , xn) ⊆ L is
realized in all models of T , then there is a formula ϕ ∈ L such that ϕ ensures
Γ in T and T |= (∃x1 . . . xn)ϕ. The formula ϕ is called a T -witness for Γ.

The question we address here is: Can we always guarantee that the witness
uses the same number of variables as T and Γ, or do we need extra variables?
If we do need extra variables, is there perhaps an upper bound on the number
of extra variables needed? In other words, let Ln denote the set of formulas of
L which are built up by using only n variables. The question is: if T ∪Γ ⊆ Ln,
can we guarantee that the witness stays in Ln, or do we occasionally have to
“step outside” Ln?

Assume that T ⊆ Ln. We say that T is n-complete iff for all sentences
ϕ ∈ Ln we have that either T |= ϕ or T |= ¬ϕ. We say that T is n-atomic iff
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for all ϕ ∈ Ln there is ψ ∈ Ln such that T |= ψ → ϕ and for all χ ∈ Ln either
T |= ψ → χ or T |= ψ → ¬χ.

Theorem 1.1 . Assume that L is a countable first order language containing
a binary relation symbol. For all n > 2 and k ≥ 0 there are a consistent n-
complete and n-atomic theory T using only n variables, and a set Γ(x1) using
only 3 variables (and one free variable x1) such that Γ is realized in all models
of T , but each T -witness for Γ uses more than n + k variables.

The proof of Theorem 1.1 uses methods from algebraic logic, and indeed,
Theorem 1.1 has an algebraic formulation (Theorem 1.2) which we are going
to state now. We note that the algebraic form is stronger than the logical one.

1.2 The main result in algebraic form

For undefined terminology in the coming theorem the reader is referred to [20],
[27], or [36]. All such notions, however, will be recalled below in section 2. The
novelty in the following Theorem 1.2 is (ii)-(iv) and (vi). Relation and cylindric
algebras satisfying (i) and (v) were given by Hirsch and Hodkinson in [23], and
by Hodkinson in [30]. See also [27, Chapter 17.2] and [26]. In the next section
we give an entirely new construction for Theorem 1.2 (i) and (v), too.

Theorem 1.2 . Let n > 2 and k ≥ 0 be finite. There is a countable
symmetric, simple, integral, atomic relation algebra R such that the following
hold:

(i) R is representable, but not completely representable.

(ii) R is generated by a single element.

(iii) The set Bn of all n by n basic matrices over R constitutes an n-dimensional
cylindric basis in the sense of Maddux [36, Def. 4]. Thus Bn is a cylindric
atom structure and the full complex algebra Cm(Bn) with universe the
power set of Bn is an n-dimensional cylindric algebra.

(iv) The subalgebra C of Cm(Bn) generated by the n by n basic matrices is
representable, but Cm(Bn) is not representable.

(v) Hence C is a simple, atomic, representable but not completely repre-
sentable CAn.

(vi) Further, C is generated by a single 2-dimensional element g, the relation
algebraic reduct of C does not have a complete representation and is also
generated by g (as a relation algebra), and C is a sub-neatreduct of some
simple representable D ∈ CAn+k such that the relation algebraic reducts
of C and D coincide with R.
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Proof of Theorem 1.1 modulo Theorem 1.2. We may assume that we
have one binary relation symbol in our language L. First we give T, Γ such that
Γ uses two free variables x, y, and not only one. Then we will “code” the two
variables x, y into one variable. Some preliminaries: Assume that M = 〈M,G〉
is a model. Then Cn(M) = {ϕM : ϕ ∈ Ln} denotes the algebra of all n-
place definable relations in M. The operations of Cn(M) are the Boolean set
operations together with the so-called cylindrifications Ci(ϕ

M) = (∃viϕ)M and
the diagonal constants Dij = (vi = vj)

M. Thus we have finitely many unary
operations (Ci) and constants (Dij) in addition to the Boolean operations
(i, j < n). For any term τ(x) in the algebraic language of Cn(M) with one free
variable x there is a formula ϕ ∈ Ln, and vice versa, such that τC(G) = ϕM

for any model M = 〈M,G〉 where C = Cn(M).
We are ready to define T, Γ. Let g, C,D be as in Thm.1.2(vi). Then g

generates C and g is 2-dimensional in C. We can write up a theory T ⊆ Ln

such that for any model M we have

M = 〈M,G〉 |= T iff (Cn(M) is isomorphic to C such that G corresponds
to g via this isomorphism).

For example, we can take T = {ϕ ∈ Ln : τϕ(g) = 1 in C}, where τϕ is the
cylindric algebraic term corresponding to the formula ϕ. Now, T ⊆ Ln, T is
consistent and n-complete, n-atomic because C is simple and atomic. We now
specify our Γ(x, y). For any atom a ∈ At+ let τa be a relation algebraic term
such that τa(g) = a in R, the relation algebra reduct of C. For each τa there
is a formula γa(x, y) ∈ L3 such that τa(g) = γM

a , see e.g. [59] or [8, Thm.9(ii),
p.151]. We define Γ(x, y) = {¬γa : a ∈ At+}. We now show that Γ is realized
in each model of T . Let M |= T be any model. Then Cn(M) ∼= C, hence
M gives a representation for R because R is the relation algebraic reduct of
Cn(M). But R does not have a complete representation, which means that
X =

⋃
{γM

a : a ∈ At+} ( M ×M , say (u, v) ∈ M ×M −X. This means that
Γ is realized at (u, v) in M. We have seen that Γ is realized in each model of
T . Assume now that ϕ ∈ Ln+k is such that T |= ∃xϕ. We may assume that ϕ
has only two free variables, say, x, y. Take the representable D ∈ CAn+k from
Theorem 1.2(vi). Recall that g ∈ C ⊆ D and D is simple. Let M = 〈M, g〉
where M is the base set of D. Then M |= T because C is a subreduct of
D generated by g. By T |= ∃xϕ then ϕM 6= ∅. Also, ϕM ∈ D and ϕM is
2-dimensional, hence ϕM ∈ R because R is the relation algebraic reduct of D,
too. But R is atomic, hence ϕM ∩ γa 6= ∅ for some a ∈ At+. This shows that
M 6|= ϕ → ¬γa where ¬γa ∈ Γ, thus ϕ is not a T -witness for Γ.

Now we modify T, Γ so that Γ uses only one free variable. We use the
technique of so-called partial pairing functions. Let g, C,D be as in Thm.1.2(vi)
with D ∈ CA2n+2k. We may assume that g is disjoint from the identity 1′

because 1′ is an atom in the relation algebraic reduct of C. Let U be the base
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set of C. We may assume that U and U×U are disjoint. Let M = U ∪(U×U),
let G = g ∪ {〈u, (u, v)〉 : u, v ∈ U} ∪ {〈(u, v), v〉 : u, v ∈ U} ∪ {〈(u, v), (u, v)〉 :
u, v ∈ U}, and let M = 〈M,G〉. From G we can define U ×U as {x : G(x, x)},
and from U×U and G we can define the projection functions between U×U and
U , and g. (This means that M is a definitional extension of 〈U, g〉 with a new
sort or “universe” U×U , in the sense of [34, sec. 4.3].) All these definitions use
only 3 variables. Thus for all t ≥ 3 and for all ϕ(x, y) ∈ Lt there is a ψ(x) ∈ Lt

such that ψM = {(u, v) ∈ U × U : ϕ〈U,g〉(u, v)}. For any a ∈ At+ let ψa(x)
be the formula corresponding to γa(x, y) this way. Conversely, for any ψ ∈ Lt

there is ϕ ∈ L2t such that “the projection of ψM to U” is ϕ(U,g). Let us define
now T as the Ln-theory of M, and let us define Γ(x) = {¬ψa(x) : a ∈ At+}.
These T, Γ will do.

2 Definitions

2.1 Algebras of relations, duality with relational struc-
tures

Algebras of relations arise naturally in logic, e.g. the algebra of n-place de-
finable relations of a model is very useful. Let ω denote the smallest infinite
ordinal. Let U be a set and n < ω. Then Reln(U) denotes the algebra whose
carrier-set (or universe) is the set of all n-place relations on U , i.e. the powerset
of nU , the set of all U -termed sequences of length n, and whose operations are
the Boolean set operations together with the so-called cylindrifications Ci and
diagonal elements Dij for i, j < n:

Dij = {s ∈ nU : si = sj}, and for x ⊆ nU

Cix = {s(i/u) : s ∈ x, u ∈ U}, where

s(i/u) denotes the sequence s modified at place i to u.

For a model M with base set U if x = ϕM, then Cix = (∃xiϕ)M and Dij =
(xi = xj)

M. For binary relations of U , we often use a natural expansion
Rel(U) of Rel2(U). We get Rel(U) from Rel2(U) by adding the operations
of forming converse and composition of binary relations x, y,

x` = {(u, v) : (v, u) ∈ x}, and

x; y = {(u, v) : (∃z)[(u, z) ∈ x and (z, v) ∈ y] }.

In Rel(U) we denote the constant D01 by 1′ and we call it the identity constant,
and we omit the cylindrifications C0, C1 because they can be defined from
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composition: C0x = 1; x, C1x = x; 1 where 1 denotes the unit of the algebra,
U × U .

These algebras are Boolean algebras with additional operations that are
additive w.r.t. the operation + of forming “union”. Such algebras are called
Boolean algebras with operators, in short BAO’s. We denote the operations of
a Boolean algebra as +, ·,−, 0, 1 (corresponding to forming “union”, “intersec-
tion”, “complement”, “empty set”, and “biggest set” respectively). A natural
duality between BAO’s and relational structures is worked out in Jónsson-
Tarski [33], as follows. Let M = 〈U,Ri〉i∈I be any relational structure. Then
its complex algebra, Cm(M) is defined as follows. The universe of Cm(M) is
the powerset of U . The operations of Cm(M) are the Boolean set operations
together with the operations fi that arise from the relations Ri as follows:

fi(X1, . . . , Xn) = {u ∈ U : (∃u1 ∈ X1, . . . , un ∈ Xn)Ri(u1, . . . , un, u)},

where X1, . . . , Xn ⊆ U and fi is an n-place operation if Ri is an n+1-place rela-
tion in M. The subsets Xi are often called “complexes” of U , hence the name
“complex algebra”. The complex algebras are atomic BAO’s. Conversely, as-
sume that C = 〈C, +,−, fi〉i∈I is an atomic BAO. Then At(C) denotes the set
of all atoms of C. The atom structure At(C) of C is defined as follows. The
universe of At(C) is At(C), and the relations of At(C) are

Ri(a1, . . . , an, a) iff a ≤ fi(a1, . . . , an) in C.

Viewed as operators, Cm and At are in some way dual to each other. If we
apply AtCm to an atom structure, we get back the original atom structure.
As for CmAt applied to a given atomic Boolean algebra with operators, we
may not get the original algebra but possibly a bigger one, in fact we get its
minimal completion in the sense of Monk [40]. We recall that the minimal
completion is the smallest algebra containing the original algebra and closed
under arbitrary suprema.

The class of n-dimensional cylindric algebras is denoted as CAn while that
of relation algebras is denoted as RA. CAn and RA are classes of algebras
defined by equations valid in all Reln(U) and in all Rel(U), respectively. In
this paper we will deal with simple algebras only, i.e. we will deal with algebras
that have no proper congruences. (We note that simple algebras correspond
to models while arbitrary algebras correspond to classes of models in algebraic
logic.) A cylindric algebra C ∈ CAn is simple iff x > 0 → C0 . . . Cn−1x = 1 is
valid in it, and a relation algebra R ∈ RA is simple iff x > 0 → 1; x; 1 = 1 is
valid in it. A relation algebra is called symmetric iff x = x` is valid in it, and
it is called integral iff 1′ is an atom in it.

All the algebras Reln(U),Rel(U) are simple. We call a simple algebra in
CAn or RA representable iff it is embeddable in Reln(U) or Rel(U) for some
U . A representation of an algebra C is an embedding rep into Reln(U) or
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Rel(U). A representation of C is called complete iff it takes all, even infinite,
suprema of elements of C to unions, i.e. if we have

rep(
∑

{xi : i ∈ S}) =
⋃
{rep(xi) : i ∈ S} whenever {xi : i ∈ S} ⊆ C.

An algebra is called completely representable if it has a complete representation.
It is proved in [23] that a Boolean algebra has a complete representation iff it
is atomic. A representation of a relation or cylindric algebra C is complete iff
the union of the representations of the atoms is the unit, i.e. the biggest set (of
Reln(U) or of Rel(U)). Complete representability of C implies representability
of CmAtC.

2.2 Connection between algebras of relations; neat reducts
and cylindric bases

In an algebra of n-ary relations we can recover the algebra of k-ary relations
for k ≤ n by identifying R ⊆ kU with R× n−kU . Abstractly, if C ∈ CAn,
then let

NrkC = {x ∈ C : x = CkCk+1 . . . Cn−1x},

and let RdkC denote the reduct of C where we “forget” the operations Ci and
Dij if i ≥ k or {i, j} * k resp. Then NrkC is closed under the operations of
RdkC, hence we define N rkC as the subalgebra of RdkC with universe NrkC.
Now, Relk(U) ∼= N rkReln(U) for any k ≤ n < ω. We can recover the
operations of conversion and composition on binary relations in Reln(U) for
n ≥ 3 as follows (cf. [20, Def.5.3.7]). Let C ∈ CAn and x, y ∈ Nr2C. Then we
define

x; y = C2(C1(D10 · x) · C0(D02 · y)),

x` = C2(D20 · C0(D01 · C1(D12 · x))).

These definitions imitate the first-order logic definitions of relation composition
and conversion, respectively. The relation algebra reduct RaC of C is defined as
the expansion of N r2C with the above ` and ; (and then forgetting C0, C1, D10).
We have Rel(U) ∼= RaReln(U) for any n ≥ 3. In general, RaC is a relation
algebra if C ∈ CAn and n > 3.

The algebra N rkC is called the neat k-reduct of C. NrkCAn denotes the
class of all neat k-reducts of CAn’s. Neat reducts were introduced by Leon
Henkin in [18, p.40]. A classical result of Henkin, the so called Neat Em-
bedding Theorem, or NET for short [20] says that the class of representable
cylindric algebras coincides with the class of algebras which embed into a neat-
reduct of a cylindric algebra with infinitely many extra dimensions. Variations
on the NET give results as to which representable algebras are completely
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representable [49]. Other variations on the NET give classes of representable
cylindric algebras that have the so called strong amalgamation property [35],
[53], [56]. Neat reducts proved immensely fruitful not only for representation
theory but also for such seemingly remote areas as positive solutions of the
finitization problem in algebraic logic, see [42], [45], [46]. Neat reducts is a
venerable old notion in cylindric algebras that is gaining some momentum
lately, see e.g. [37],[42],[1],[12],[45],[24],[25],[56],[47],[51],[57],[13].

We have seen that we can construct a relation algebra RaC from each
C ∈ CAn if n > 3. Conversely, we can build CAn’s from relation algebras
in special cases, via so-called cylindric bases. We recall the definitions from
Maddux [36]. Let R ∈ RA. Let n > 2. Bn = BnR is the set of all n by n
matrices of atoms of R which satisfy the following conditions for all i, j, k < n.

mii ≤ 1′, mij = m`

ji, and mij ≤ mik; mkj.

The matrices in Bn are called atom matrices or basic matrices. Two atom
matrices m and m′ in Bn are said to agree up to k if mij = m′

ij whenever
i, j ∈ n − {k}. For any i, j < n, let

Ti = {(m,m′) ∈ Bn × Bn : m and m′ agree up to i },

Eij = {m ∈ Bn : mij ≤ 1′}, and for every M ⊆ Bn we let

CaM = Cm〈M,Ti, Eij〉i,j<n.

We say that M ⊆ Bn is an n-dimensional cylindric basis for R, if the
following hold.

(1) If a, b, c ∈ AtR, and a ≤ b; c then there is a basic matrix m ∈ M such
that m01 = a, m02 = b and m21 = c.

(2) If m,m′ ∈ M , i, j < n, i 6= j and m agrees with m′ up to i, j then there is
some m′′ ∈ M such that m′′ agrees with m up to i and m′′ agrees with m
up to j, i.e (m,m′′) ∈ Ti and (m′′,m′) ∈ Ti, or simply (m,m′) ∈ Ti; Tj.

(3) If m ∈ M and i, j < n then m[i/j] ∈ M, where m[i/j] is the unique
element of Eij which agrees with m up to i.

We recall the following theorem from Maddux [36], which says how one obtains
cylindric algebras from relation algebras possessing cylindric bases.

Theorem ([36, Thm.10]) . Assume R is an atomic relation algebra, 2 < n
is finite and M is an n-dimensional cylindric basis for R. For all x ∈ R, let

h(x) = {m ∈ M : m01 ≤ x}.

Then CaM is a complete atomic CAn and h is an embedding of R into the
relation algebra reduct of CaM .
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3 Construction of relation algebras

In this paper we will deal with symmetric relation algebras only. We restrict
ourselves to symmetric relation algebras for convenience only, everything what
we do in this paper works for non-symmetric relation algebras, too. Working
with symmetric relation algebras simplifies the investigations because we do
not have to deal with the operation of conversion.

In a simple, symmetric relation algebra the identity 1′ is always an atom.
The reason is that (x; 1; y)` = y; 1; x 6= x; 1; y if x, y ≤ 1′ are disjoint nonzero
subidentity elements. Hence a simple, symmetric relation algebra is always
integral.

Let T ⊆ U × U × U be a ternary relation on U . We will write T (a, b, c)
for (a, b, c) ∈ T . We call T symmetric iff T (a, b, c) implies T (a′, b′, c′) for all
permuted versions (a′, b′, c′) of (a, b, c). Atomic, simple, symmetric RA’s arise
from atom structures of form

〈H,T, 1′〉, where 1′ ∈ H and T is a symmetric ternary relation on H such
that T (1′, a, b) iff a = b and (∀a, b, a′, b′, c ∈ H)(∃d ∈ H)[(T (a, b, c)∧
T (a′, b′, c)) → (T (a, a′, c) ∧ T (b, b′, d)].

If x is a set, then Cof(x) denotes the set of all finite and cofinite subsets of
x, and Cof∞(x) denotes the set of infinite elements of Cof(x), i.e.

Cof(x) = {y ⊆ x : |y| < ω or |x − y| < ω}.

General construction: “blow up and blur”

Assume that M is a simple, symmetric, atomic relation algebra. We will
replace each non-identity atom of M with an infinite set of new atoms, and
we will define the operations on the new atoms such that the structure of the
original M cannot be seen on the level of the new atoms, yet M will still be
there on the global level. By this we mean that M will be a subalgebra of the
completion of the new algebra, but in general M will not be a subalgebra of
the new algebra, see Theorem 3.2.

To “hide” the structure of M on the level of the new atoms, we will use
entities that we call “blur”s. The existence of such “blur”s will be shown in
section 5. Conditions (J1)-(J4)n and (E1)-(E4) in Def.3.1 below are tailored
for our specific purposes in the present paper. (For different purposes, different
conditions will suffice.)

Definition 3.1. (blur)

(i) Let I denote the set of all non-identity atoms of M. Let U, V,W be subsets
of I. We say that (U, V,W ) is safe, in symbol safe(U, V,W ), if a ≤ b; c
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in M for all a ∈ U, b ∈ V, c ∈ W . We say that (U, V,W ) is unsafe if it
is not safe.

(ii) Let J be a subset of the powerset of I, and let n ∈ ω. We say that J is
an n-complex-blur for M if conditions (J1)-(J4)n below are satisfied.

(J1) Each element of J is nonempty and finite.

(J2)
⋃

J = I, i.e. (∀a ∈ I)(∃W ∈ J)a ∈ W .

(J3) (∀P ∈ I)(∀W ∈ J)P ; W ⊇ I.

(J4)n (∀V2, . . . , Vn,W2, . . . ,Wn ∈ J)(∃T ∈ J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T ).

(iii) Let E be a ternary relation on ω. We say that E is an index-blur if
conditions (E1)-(E4) below are satisfied.

(E1) E is symmetric, i.e.
(∀i, j, k ∈ ω)(E(i, j, k) → [E(j, i, k) and (E(i, k, j) and E(k, j, i)]).

(E2) (∀i ∈ ω)(∃s ∈ ω)(∀j ≥ i + s)(∃k)E(i, j, k).

(E3) {k : E(i, j, k)} is finite for all i, j ∈ ω.

(E4) (∀i, n ∈ ω)(∃j ≥ n, k ≥ n)E(i, j, k).

(iv) We say that (J,E) is an n-blur for M iff J is an n-complex-blur for M and
E = 〈E(U, V,W ) : U, V,W ∈ J〉 such that E(U, V,W ) is an index-blur
for M, for all U, V,W ∈ J .

We will often use the following corollary of (J1),(J2) and (J4)n :

(J4c)n (∀P2, . . . , Pn, Q2, . . . , Qn ∈ I)(∃W ∈ J)W ∩ P2; Q2 ∩ · · · ∩ Pn; Qn 6= ∅.

Indeed, for each Pi, Qi (2 ≤ i ≤ n) let Vi,Wi ∈ J be such that Pi ∈ Vi and Qi ∈
Wi, such Vi,Wi exist by (J2). let T ∈ J be such that safe(Vi,Wi, T ) for all i.
Such a T exists by (J4)n. Then T 6= ∅ by (J1), and T ∩P2; Q2∩· · ·∩Pn; Qn 6= ∅
by the definition of a safe triple.

For simplicity, we shall often write E(i, j, k) in place of E(U, V,W )(i, j, k)
when U, V,W are clear from context. We will use the flexibility that E(U, V,W )
may be different for different U, V,W ’s only in achieving one-generation of our
algebras in section 5. (For all the other purposes in the present paper, we
could have assumed the E(U, V,W )’s equal with each other.)

We are ready to define the “blow-up-and-blur” relation algebra M
∗ =

Bb(M, J, E). Let M be a simple, symmetric, atomic relation algebra and
let (J,E) be a 3-blur for M. The non-identity atoms of M

∗ are defined as

At = {(i, P,W ) ∈ ω × I × J : P ∈ W}.
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Then the atoms of M
∗ will be At+ = At ∪ {1′}, see Figure 1. For any a =

(i, P,W ) ∈ At we define

ν(a) = i, I(a) = P , J(a) = W .

P Q R S

I

x{P,Q}

x{Q}

x{Q,R,S}

Figure 1: The non-identity atoms of the blow-and-blur relation algebra.

To define composition ; on the non-identity atoms of M
∗, we let T to be the

following ternary relation on At:

(TD) T (a, b, c) iff [safe(J(a), J(b), J(c)) or
(I(a) ≤ I(b); I(c) in M and E(J(a), J(b), J(c))(ν(a), ν(b), ν(c)))].

The ternary relation T+ on At+ is defined by (T+(a, b, c) iff [T (a, b, c) or one
of {a, b, c} is 1′ and the other two are equal]. We define composition ; on the
power-set of At+ by x; y = {c ∈ At+ : (∃a ∈ x)(∃b ∈ y)T+(a, b, c)}. For all
W ∈ J we define xW = {a ∈ At : J(a) = W}. We define

M∗ = {x ⊆ At+ : (∀W ∈ J)(x ∩ xW ) ∈ Cof(xW )}.

Theorem 3.2. Let M be a symmetric, atomic relation algebra and assume
that (J,E) is a 3-blur for M. Then the following (i)-(iii) hold.

(i) M
∗ is a simple, atomic, symmetric representable relation algebra. The

ultrafilter (or canonical) extension of M
∗ is completely representable if

M is finite.
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(ii) M is a subalgebra of the completion of M
∗.

(iii) The set Bn of all n by n basic matrices for M
∗ is a cylindric basis for

M
∗ if (J4)n holds.

Proof. First we show that M∗ is closed under the relation algebraic operations.
By definition, 〈xW : W ∈ J〉 is a partition of At. This, together with the
definition of M∗, implies that M∗ is closed under the Boolean operations.
Next we show that M∗ is closed under composition ;. We will prove this by
proving statements (1a)-(1c) below.

(1a) Assume that a, b ∈ At. Then |a; b∩xW | < ω if (J(a), J(b),W ) is unsafe,
and a; b ⊇ xW otherwise.

Proof of (1a). Assume that (J(a), J(b),W ) is unsafe. Then by (TD), a; b ∩
xW ⊆ {(k, P,W ) : E(ν(a), ν(b), k), I(a) ≤ I(b); P in M, P ∈ W}. This last
set is finite by (E3) and (J1).

(1b) Assume that a ∈ At, X ∈ Cof∞(xW ). Then (a; X ∩ xV ) ∈ Cof∞(xV ) for
all V ∈ J .

Proof of (1b). If safe(J(a),W, V ) then a; X ⊇ xV by (TD) and we are
done. Assume therefore that (J(a),W, V ) is unsafe. Let n ∈ ω be such that
(∀i ≥ n)(∀P ∈ W )(i, P,W ) ∈ X. Such an n exists because X is co-finite in
xW and W is finite by (J1). Let Q ∈ V be arbitrary, let i = ν(a), P = I(a),
i.e. a = (i, P, J(a)). Then Q ∈ P ; W by (J3), let S ∈ W be such that Q ≤ P ; S
in M. Let N = {k : (∃j ≤ n)E(i, j, k)}. Now N is finite by (E3), let m be
an upper bound for N . Let k > m + i + s be arbitrary, where i satisfies (E2)
with s. There is j such that E(i, j, k), by (E2),(E1). Now, this j is bigger
than n by k /∈ N and (E1). Hence (j, S,W ) ∈ X and so (k,Q, V ) ∈ a; X for
all k > m + i + s. Since V is finite, we are done.

(1c) Assume that X ∈ Cof∞(xV ), Y ∈ Cof∞(xW ). Then X; Y ⊇ At.

Proof of (1c). Let U ∈ J be arbitrary. If safe(V,W,U) then X; Y ⊇ xU .
Assume therefore that (V,W,U) is unsafe. Let P ∈ U and i ∈ ω be arbitrary.
Let n be a bound for X,Y , i.e. (∀k ≥ n)(∀P ∈ V )(k, P, V ) ∈ X and similarly
for Y . Let j, k ≥ n be such that E(i, j, k). Such j, k exist by (E4). Let
R ∈ X, S ∈ Y be such that P ≤ R; S in M. Such R,S exist by (J3). Now,
(i, P, U) ∈ (j, R, V ); (k, S,W ) by the definition of T , and since (j, R, V ) ∈
X, (i, S,W ) ∈ Y .

Statements (1a)-(1c) show that M∗ is closed under composition ;. Thus,
M

∗ is indeed an algebra. Associativity of ; is implied by (J4)3. Thus, M
∗ is
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an atomic, symmetric relation algebra. It is simple because 1;x; 1 = 1 is valid
in it by (J4)3.

Now we show that M is a subalgebra of the completion of M
∗. The com-

pletion of M
∗ is the complex algebra C of the atom structure of M

∗. The
universe of C is the powerset of At+. Let us define h : M → C by

h(x) = {a ∈ At : I(a) ≤ x} ∪ (x ∩ 1′).

We prove that h is an embedding. Let P ∈ I be arbitrary. Then h(P ) =
{a ∈ At : I(a) ≤ P} = {a ∈ At : I(a) = P} 6= ∅ by (J2). Clearly, 〈h(P ) :
P ∈ I〉 is a partition of At. By definition, h is completely additive. Since M is
atomic and I is the set of non-identity atoms of M, the above show that h is
indeed a Boolean embedding. It remains to show that h respects composition.
Since h is completely additive, it is enough to check this for the non-identity
atoms of M. Let P,Q ∈ I be arbitrary, P 6= Q. Now, h(P ); h(Q) = {a ∈ At :
I(a) ≤ P}; {a ∈ At : I(a) ≤ Q} ⊆ {a ∈ At : I(a) ≤ P ; Q} = h(P ; Q), by the
condition on I(a), I(b), I(c) in the definition of T (a, b, c). On the other hand,
let a ∈ At be arbitrary such that I(a) ≤ P ; Q, say, let a = (m,R,U). Let
V,W be arbitrary such that P ∈ V, Q ∈ W . Let i, j be such that E(i, j,m).
Such i, j exist by (E4). Now, T ((i, P, V ), (j,Q,W ), (m,R,U)) by (TD), and
(i, P, V ) ∈ h(P ), (j,Q,W ) ∈ h(Q), so a = (m,R,U) ∈ h(P ); h(Q). Since
a ∈ h(P ; Q) was chosen arbitrarily, this shows h(P ; Q) ⊆ h(P ); h(Q). We
have proved that M is isomorphic to a subalgebra of the completion of M

∗.
Next we show that M

∗ is representable. For any a ∈ At+ and W ∈ J we
set

Ua = {x ∈ M∗ : a ∈ x} and UW = {x ∈ M∗ : |x ∩ xW | ≥ ω}.

Then the principal ultrafilters of M
∗ are exactly Ua for a ∈ At+ and UW are

non-principal ultrafilters for W ∈ J . Let

Uf = {Ua : a ∈ At+} ∪ {UW : W ∈ J}.

We note that when M is finite, Uf is the set of all ultrafilters of M
∗, but if

M is infinite, M
∗ may have other ultrafilters, too. For F,G,K ∈ Uf we define

F ; G = {X; Y : X ∈ F, Y ∈ G}. The triple (F,G,K) is said to be consistent
iff F ; G ⊆ K, F ; K ⊆ G and G; K ⊆ F. We already proved as (1a)-(1c) the
following:

(i) (Ua, U b, UW ) is consistent whenever a, b ∈ At and safe(J(a), J(b),W ).

(ii) (F,G,K) is consistent whenever at least two of F,G,K are non-principal
and F,G,K ∈ Uf − {U Id}.

Definition 3.3. (consistent colored graph)
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(1) We call (G, l) a consistent colored graph if G is a set, and l : G×G → Uf

such that for all x, y, z ∈ G the following hold:
l(x, y) = U Id iff x = y, l(x, y) = l(y, x), and
the triple (l(x, y), l(x, z), l(y, z)) is consistent.

(2) We say that the consistent colored graph (G, l) is complete if for all x, y ∈
G, and F,K ∈ Uf, whenever (l(x, y), F,K) is consistent, there is a node
z such that l(z, x) = F and l(z, y) = K.

Consistent colored graphs can be used to build representations either in a
step by step manner or by games [27]. We will build a complete consistent
graph step-by-step. So assume (inductively) that (G, l) is a consistent colored
graph and (l(x, y), F,K) is a consistent triple. We shall extend (G, l) with a
new point z such that (l(x, y), l(z, x), l(z, y)) = (l(x, y), F,K). Let z /∈ G. We
define l(z, p) for p ∈ G as follows:

l(z, x) = F , l(z, y) = K, and

if p ∈ G − {x, y}, then l(z, p) = UW for some W ∈ J such that both
(UW , F, l(x, p)) and (UW , K, l(y, p)) are consistent. Such a W exists by
(J4c)3.

Condition (ii) above Def.3.3 guarantees that this extension is again a consistent
colored graph.

We now show that any non-empty complete colored graph (G, l) gives a
representation for M

∗. For any x ∈ M∗ define

rep(X) = {(u, v) ∈ G × G : X ∈ l(u, v)}.

We show that rep is a representation for M
∗. rep is a Boolean homomorphism

because all the labels l(u, v) are ultrafilters. rep(1′) = {(u, u) : u ∈ G}, and
rep(X)−1 = rep(X) for all X ∈ M∗. The latter follows from the second condi-
tion in the definition of a consistent colored graph. From the third condition
in the definition of a consistent colored graph we have:

rep(X); rep(Y ) ⊆ rep(X; Y ).

Indeed, let (u, v) ∈ rep(X), (v, w) ∈ rep(Y ). I.e. X ∈ l(u, v), Y ∈ l(v, w).
Since (l(u, v), l(v, w), l(u,w)) is consistent, then X; Y ∈ l(u,w), i.e. (u,w) ∈
rep(X; Y ). On the other hand, we have

rep(X; Y ) ⊆ rep(X); rep(Y ),

because (G, l) is complete and because (i) and (ii) hold. Indeed, let (u, v) ∈
rep(X; Y ). Then X; Y ∈ l(u, v). We show that there are F,K ∈ Uf such that
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X ∈ F, Y ∈ K and (l(u, v), F,K) is consistent. We distinguish between two
cases:

Case 1. l(u, v) = Ua for some a ∈ At. By X; Y ∈ Ua we have a ∈ X; Y.
Then there are b ∈ X, c ∈ Y with a ≤ b; c. Then (Ua, U b, U c) is consistent.

Case 2. l(u, v) = UW for some W ∈ J . Then |X; Y ∩ xW | ≥ ω by
X; Y ∈ UW . Now if both X and Y are finite, then there are a ∈ X, b ∈ Y
with |a; b∩xW | ≥ ω. Then (UW , Ua, U b) is consistent by (i). Assume that one
of X,Y , say X is infinite. Let S ∈ J be such that |X ∩ xS| ≥ ω and let a ∈ Y
be arbitrary. Then (UW , US, Ua) is consistent by (ii) and X ∈ US, Y ∈ Ua.

Finally, rep is one-to-one because rep(a) 6= ∅ for all a ∈ At. Indeed (u, u) ∈
rep(1′) for any u ∈ G. Let a ∈ At. Then (U1′ , Ua, Ua) is consistent, so there
is a v ∈ G with l(u, v) = Ua. Then (u, v) ∈ rep(a). This finishes the proof of
representability of M

∗.
When M is finite, Uf is the set of all ultrafilters of M

∗. Then Uf is the set of
atoms of the canonical (or ultrafilter) extension of M

∗, and in this algebra for
any F,K,U ∈ Uf we have that F ≤ K; U iff (F,K,U) is consistent. Hence the
above constructed representation is a complete representation for the canonical
extension because

⋃
{rep(F ) : F ∈ Uf} = G × G.

We show that Bn is a cylindric basis, if (J4)n holds. To show that condition
(1) in the definition of a cylindric basis holds, we show that each m′ ∈ B3 can be
extended to an m ∈ Bn. Indeed, let m ∈ Bn be defined as follows: mij = m′

ij

if i, j < 3, mij = m′
i2 if i < 3, j ≥ 3, mij = m′

2j if i ≥ 3, j < 3, and mij = 1′

if i, j ≥ 3. To show that condition (2) in the definition of a cylindric basis
holds, let m,m′ ∈ Bn and i, j < n, i 6= j be such that m agrees with m′ up to
i, j. Let a ∈ ∩{m′

il; mlj : l ∈ n − {i, j}} be arbitrary. There is such an a by
(J4c)n−1 if all the m′

iℓ,mℓj are non-identity atoms, otherwise, if say miℓ = 1′

then a = mℓj will do because of our hypotheses on m,m′. We now define
m′′ ∈ Bn by defining m′′

ij = m′′
ji = a. The other members of m′′ are defined as

necessary, as follows: m′′
kl = mkl = m′

kl if {k, l} ∩ {i, j} = ∅, m′′
il = m′′

li = m′
il,

m′′
jl = m′′

lj = m′
jl for l ∈ n− {i, j} and m′′

ii = 1′. Then m′′ ∈ Bn and it has the
desired properties. Condition (3) in the definition of a cylindric basis holds
because m[i/j] ∈ Bn always. We have shown that Bn is an n-dimensional
cylindric basis. QED(Theorem 3.2)

4 Going to higher dimensions, cylindric alge-

bras

In this section we show that the subalgebra of CmBn generated by the atoms
is representable, if we impose further conditions on M and E, J . Throughout
this section, M is a simple, symmetric (hence integral) atomic relation algebra
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and we denote M
∗ as R. Thus R = M∗ and R = M

∗ from now on. We also
fix a natural number n ∈ ω, n > 2 and we assume that (J,E) is an n-blur for
M.

Definition of the blow-up-and-blur cylindric algebra

We begin with giving a description of a subalgebra of CmBn which contains
all the atoms. We will assume that the relations E(U, V,W ) are defined by
formulas in the first order language L(ω,<) of the structure 〈ω,<〉. We recall
that there is a quantifier-elimination result for this theory, cf. [58, p.375]. In
this quantifier-elimination, a basic formula with free variables xi : i < k orders
0 and the free variables linearly, and states about the distance of neighboring
ones in this order either = k or > k for k ∈ ω. E.g. a basic formula in this
quantifier-elimination may state 3 = x1 = x2 < x2 + 1 < x3. (For example,
one can express x + 2 < y by ∃zw(x < z < w < y).) We say that the distance
between xi and xj is indefinite according to ϕ when ϕ 6→ (xi = xj + k or xj =
xi +k) for any k ∈ ω. In the previous example, the distance between x3 and x1

is indefinite, while the distances between 0, x2, x1 are definite. If ϕ ∈ L(ω,<),
then ϕ(xi : i < k) denotes that all the free variables of ϕ are among {xi : i < k}
and if a0, . . . , ak ∈ ω, then ϕ(xi/ai)i<k denotes that the formula ϕ holds in
〈ω,<〉 when the variables xi are evaluated to ai. We use von Neumann’s
convention that n = {0, 1, . . . n− 1}. We extend the notations ν(a), I(a) from
a ∈ At to all a ∈ At+ by defining ν(1′) = 0, I(1′) = 1′.

Definition 4.1. (diagram) Let K ⊆ n.

(i) By a K-diagram we understand a pair 〈ε, ϕ〉 where ε : K × K → R and
ϕ(xij : i, j ∈ K) ∈ L(ω,<). By a diagram we understand an n-diagram.

(ii) The K-diagram 〈ε, ϕ〉 denotes an element e(ε, ϕ) ∈ CmBn as follows
e(ε, ϕ) = en(ε, ϕ) = {m ∈ Bn : (∀i, j ∈ K)[mij ≤ εij and ϕ(xij/ν(mij))]}.

Let a, b, c ∈ At+ ∪ {xW : W ∈ J}. Then min(a, b, c) denotes that either
a, b, c ∈ At+ and a ≤ b; c, or else at least two of {a, b, c} are not atoms and
b = c if a = 1′. This is equivalent to (U(a), U(b), U(c)) being consistent where
U(a) = Ua if a ∈ At+ and U(xW ) = UW for W ∈ J .

We say that 〈ε, ϕ〉 is a normal K-diagram if it is a K-diagram and condi-
tions (D1)-(D5) below hold for all i, j, k ∈ K.

(D1) εij ∈ At+ ∪ {xW : W ∈ J}.

(D2) min(εij, εik, εkj), εij = εji, εii = 1′.
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(D3) ϕ → xij = ν(εij) whenever εij ∈ At+,
ϕ → xij = xik whenever εjk = 1′, and
ϕ → (xii = 0 ∧ xij = xji).

(D4) ϕ → E(U, V,W )(xij, xjk, xik) whenever εij ≤ xU , εjk ≤ xV , εik ≤ xW

and (U, V,W ) is unsafe. We say that i, j, k is ε-unsafe iff (U, V,W ) is
unsafe where U, V,W are as above.

(D5) ϕ is a basic formula according to the quantifier-elimination of the first-
order theory of 〈ω,<〉. Further, in the order induced by ϕ, variables
denoting atoms are all at the beginning, and between them and the
first non-atom variable there is an indefinite distance. We will call such
formulas ε-basic formulas, or just basic formulas.

NDK denotes the set of all normal K-diagrams, ND = NDn. We note that
each m ∈ Bn defines a normal diagram in a natural way, i.e. if εij = mij for
all i, j < n and ϕ is

∧
{xij = ν(mij) : i, j < n}, then e(ε, ϕ) = {m}. We will

identify m ∈ Bn with this normal diagram.

Lemma 4.2. Assume that M is finite, (J,E) is an n-blur for M, and each
E(U, V,W ) is definable in 〈ω,<〉. Let K ⊆ n. Then each K-diagram is a
finite sum of normal K-diagrams. I.e., for any K-diagram 〈e, ϕ〉 there are
d1, . . . , dt ∈ NDK such that e(ε, ϕ) = e(d1) ∪ · · · ∪ e(dt).

Proof. Since M is finite, I is finite, too. Hence each element of R is a finite
sum of atoms and elements of form xW,k = {(i, P,W ) : i ≥ k, P ∈ W}. Thus
a K-diagram d = 〈ε, ϕ〉 is a finite sum of K-diagrams of form 〈η, ψ〉 where
each ηij is an atom or of form xW , and ψ is a conjunction of ϕ with formulas
xij ≥ k if εij = xW,k for some k ∈ ω. Thus we may assume that condition (D1)
holds for d. We can replace each εii with 1′ ∩ εii and each εij with εij ∩ εji,
and get the same set of matrices. If 1′ ∩ εii 6= 1′ then e(ε, ϕ) = ∅, so we may
assume that εii = 1′ and εij = εji for all i, j ∈ K. If i, j, k is ε-unsafe, and
two of εij, εjk, εik are atoms, then we may assume that the third one is an
atom, too, by (E3) and (TD). If εjk = 1′ then e(ε, ϕ) = e(ε, ϕ ∧ xij = xjk)
for any i < n, so let us conjunct

∧
{xij = xik : i < n} to ϕ when εjk = 1′.

To satisfy (D4), let us conjunct formulas defining E(U, V,W ) to ϕ whenever
i, j, k is ε-unsafe and U, V,W are the elements of J “occurring on the sides of
i, j, k” (i.e. εij ≤ xU etc). Also, let us conjunct formulas xii = 0 ∧ xij = xji to
ϕ. Then the element denoted by the diagram does not change and (D4) will
be satisfied. Now, under these conditions, if either (D3) or min(εij, εik, εkj) for
some i, j, k ∈ K is not satisfied, then e(d) = ∅. Thus we may assume that
(D2),(D3) are satisfied. So far we may assume that (D1)-(D4) hold for d. By
the quantifier-elimination result for 〈ω,<〉, ϕ is a disjunction of basic formulas
for the quantifier-elimination, and by (D3),(D4) we may assume that all the
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atoms are at the beginning and there is an indefinite distance between them
and the non-atom εij’s. QED(Lemma 4.2)

In the following, we will use a further condition (J5)n. It is a stronger
version of (J4c)n where “(∃W ∈ J)” is replaced by “(∀W ∈ J)”. The existence
of blurs satisfying (J5)n will be shown in section 5.

(J5)n (∀P2, . . . , Pn, Q2, . . . , Qn ∈ I)(∀W ∈ J)W ∩ P2; Q2 ∩ · · · ∩ Pn; Qn 6= ∅.

Lemma 4.3. Assume that M is finite, (J,E) is an n-blur for M, (J5)n holds,
and each E(U, V,W ) is definable in 〈ω,<〉. Let

C = {e(d1) ∪ · · · ∪ e(dk) : d1, . . . , dk are diagrams }.

Then C is closed under the operations of Cm(Bn).

Proof. Let d = 〈ε, ϕ〉 be a diagram. For all i, j < n let ηij be defined as
ηij

ij = −εij and ηij
kl = 1 if kl 6= ij. Let uij = 1 for all i, j < n. Then

−e(ε, ϕ) =
∑

{e(ηij, ϕ) : i, j < n} ∪ e(u,¬ϕ).

Dij = e(ε, TRUE), where εij = 1′ and εkl = 1 if kl 6= ij.

Since C is clearly closed under finite union, all what remains to show is that
Cie(d) ∈ C when d is a diagram. By Lemma 4.2 we may assume that d = 〈ε, ϕ〉
is normal.

(2) Cie(ε, ϕ) = e(ε′, ϕ′) where ε′kl = 1 if i ∈ {k, l} and ε′kl = εkl otherwise,
and ϕ′ is (∃xi0 . . . xin−1)ϕ, whenever 〈ε, ϕ〉 is normal.

Proof of (2). First we show Cie(ε, ϕ) ⊆ e(ε′, ϕ′). Let m ∈ e(ε, ϕ) and m′ ∈ Bn

be such that m′ agrees with m up to i. We will show that m′ ∈ e(ε′, ϕ′). We
have m′

kl = mkl ∈ εkl = ε′kl if i /∈ {k, l}. Let k < n. Then m′
ik ∈ 1 = ε′ik.

Hence m′
kl ∈ ε′kl for all k, l < n. Since m agrees with m′ up to i, we have

ϕ′(xkl/ν(m′
kl))k,l 6=i. Thus m′ ∈ e(ε′, ϕ′) indeed. To show the other inclusion,

e(ε′, ϕ′) ⊆ Cie(ε, ϕ), we will use that 〈ε, ϕ〉 is normal. Let m′ ∈ e(ε′, ϕ′) be
arbitrary. We have to show the existence of an m ∈ e(ε, ϕ) such that m agrees
with m′ up to i. If εij = 1′ for some j 6= i then we define m as m[i/j], then
m ∈ e(ε, ϕ) by 〈ε, ϕ〉 ∈ ND. Assume therefore that εij 6= 1′ for all j 6= i. By the
definition of ϕ′, there are νik ∈ ω for all k < n such that ϕ(xik/νik, xkl/ν(mkl)).
Let k2, . . . , kn be a listing of n−{i} such that all the atoms are at the beginning
of this listing, i.e. there is ℓ such that (ε(i, kj) is an atom iff j < ℓ), for all
j < n. For j < ℓ define mikj

= mkji = ε(i, kj), and Pj = I(m(i, kj)). Then
νikj

= ν(mikj
) by (D3). If ℓ < n, then ε(i, kl) = xW for some W ∈ J . Let

Pℓ ∈ W be such that Pℓ ∈
⋂
{Pj; I(m(kj, kℓ)) : j < ℓ}. There is such a Pℓ

by (J5)n because Pj 6= 1′ and m(kj, kℓ) 6= 1′ for all j < ℓ by our assumptions
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made so far. If ℓ + 1 = q < n, then ε(i, kq) = xW for some W ∈ J . If
m(kj, kq) = 1′ for some j < q, then let Pq = Pj, otherwise let Pq ∈ W be such
that Pq ∈

⋂
{Pj; I(m(kj, kq)) : j < q}. And so on, till we reach n. For all

ℓ ≥ j < n define mikj
= mkji = (νikj

, Pj,Wj) where m(i, kj) = xWj . We have
defined m. We now show that m ∈ e(ε, ϕ). First, m ∈ Bn because we chose the
P ’s so that in a “triangle” they “commute”, and in an ε-critical triangle the
indices νkl satisfy E since they satisfy ϕ which satisfies (D4). Then m ∈ e(ε, ϕ)
because we defined m so that mkl ≤ εkl for all k, l < n and ϕ(xkl/ν(mkl))kl.

Lemma 4.3 has been proved. QED(Lemma 4.3)

Let Bbn(M, J, E) denote the subalgebra of Cm(Bn) with universe C, and
let us call it the blow-up-and-blur n-dimensional cylindric algebra.

Theorem 4.4. Assume that M is finite, (J,E) is a n-blur for M, (J5)n holds,
and E is definable in 〈ω,<〉. Then the neat t-reduct of Bbn(M, J, E) is iso-
morphic to Bbt(M, J, E) for all t ≤ n, and the relation algebraic reduct of
Bbn(M, J, E) is isomorphic to Bb(M, J, E).

Proof. First we prove a claim that will be useful later, too.

Claim 4.5. Assume 〈ε, ϕ〉 ∈ ND and ϕ(xij/sij)i,j<n. Assume further that
k ≤ n and there is a k-basic matrix m′ ∈ Bk over R such that ν(m′

ij) = sij

and m′
ij ≤ εij for all i, j < k. Then there is an extension m ∈ e(ε, ϕ) of m′

such that ν(mij) = sij for all i, j < n.

Proof. We define mt = 〈mij : i, j < t〉 by induction on k ≤ t ≤ n such that
mt is a t-dimensional basic matrix, mij ≤ εij and ν(mij) = sij for all i, j < t.
Assume now that we have our t-dimensional matrix. We want to define mtj for
j < t in an appropriate way. Assume that K ⊆ t is such that εtj are atoms for
j ∈ K, and they are not atoms for j /∈ K. Let us define mtj = εtj for j ∈ K.
Then the relevant necessary conditions are satisfied because 〈ε, ϕ〉 is normal.
If εtj = mtj = 1′ for some j ∈ K then we define mtℓ = mjℓ for all ℓ ∈ K. So
we may assume mtj 6= 1′ for all j ∈ K. Let ℓ < t, ℓ /∈ K be arbitrary. If
mjℓ = 1′ for some j ∈ K then we define mtℓ = mjℓ. Otherwise εtℓ = xW and
let P ∈ W be such that P ≤

⋂
{I(mtj); I(mjℓ) : j ∈ K}. There is such a P by

(J5)n. Define mtℓ = (stℓ, P,W ). Then the relevant necessary conditions hold;
and we can proceed till we exhaust n.

Now let 2 < t < n, we are going to prove

(3) Bbt(M, J, E) ∼= N rtBbt+1(M, J, E).

For m ∈ Bt+1 let m ↾ t denote the restriction of m to t. Then (m ↾ t) ∈ Bt.
Define for x ⊆ Bt+1

h(x) = {m ↾ t : m ∈ x}.
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Then h : RdtCm(Bt+1) → Cm(Bt) is an isomorphism, because we have seen
(when proving that Bn is a cylindric basis, or by Claim 4.5 above) that (∀m ∈
Bt)(∃m′ ∈ Bt+1)m = m′ ↾ t. Let x ⊆ Bbt+1(M, J, E), Ctx = x. Then
x = e(d1) ∪ · · · ∪ e(dk) for some d1, . . . , dk ∈ NDt+1, by Lemma 4.2. By (2) in
the proof of Theorem 4.3, there are d′

1, . . . , d
′
k ∈ NDt such that Cte(di) = e(d′

i),
then h(Cte(di)) = et(d

′
i), so h(x) ∈ Bbt(M, J, E). Conversely, for any d′ ∈ NDt

there is d ∈ NDt+1 such that h(Cte(d)) = et(d
′), so h maps the Ct-closed

elements of Bbt+1(M, J, E) onto Bbt(M, J, E), and we are done. For t = 2 we
have that the range of h is R by Claim 4.5, thus h is an isomorphism between
R and the relation algebraic reduct of Bb3(M, J, E) by the theorem of Maddux
quoted at the end of section 2. QED(Theorem 4.4)

Theorem 4.6. Assume that M is finite, let (J,E) be an n-blur for M such
that (J5)n holds, Assume further that there is an s ∈ ω such that x + s <
y = z implies E(U, V,W )(x, y, z) and E(U, V,W ) is definable in 〈ω,<〉 for all
x, y, z ∈ ω and U, V,W ∈ J . Then C is representable.

Proof. Let 〈ω+, <〉 be a nonprincipal ultrapower of 〈ω,<〉. We say that
(G, ℓ, σ) is a consistent colored edge-ordered graph (or simply: consistent graph)
if G is a set, ℓ : G × G → R, σ : G × G → ω+ such that (G1)-(G3) below
hold for all i, j, k ∈ G.

(G1) ℓij ∈ At+ ∪ {xW : W ∈ J}.

(G2) min(ℓij, ℓik, ℓkj), ℓij = ℓji, (ℓij = 1′ iff i = j).

(G3) ℓij ∈ At+ → σij = ν(ℓij), σij = σji, and σii = 0.

Let K ⊆ n, g : K → G, and 〈ε, ϕ〉 ∈ NDK . We say that 〈ε, ϕ〉 is of type g,
in symbols typeg(ε, ϕ), iff for all i, j, k, l ∈ K we have the following:

εij = ℓ(gi, gj) and for all s ∈ ω
ϕ → xij + s = xkl iff σ(gi, gj) + s = σ(gk, gl), and
ϕ → xij ≤ xkl iff σ(gi, gj) ≤ σ(gk, gl).

Intuitively, the latter means that the order of variables induced by ϕ agrees
with that of σ, if the distance between two variables is finite according to ϕ,
then it is finite and the same according to σ, and if the distance between two
variables is indefinite according to ϕ, then it is infinite according to σ. Assume
now g ∈ nG. Then we define

U g = {x ∈ C : (∃〈ε, ϕ〉 ∈ ND)(e(ε, ϕ) ⊆ x ∧ typeg(ε, ϕ))}.

g ° x iff x ∈ U g.
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We say that (G, ℓ, σ) is complete if g ° Ciy implies (∃u ∈ G)g(i/u) ° y, for
all g ∈ nG, i < n, y ∈ C.

Claim 4.7. U g is an ultrafilter whenever g ∈ nG and (G, ℓ, σ) is consistent.

Proof. ∅ /∈ U g because e(ε, ϕ) 6= ∅ for all (ε, ϕ) ∈ ND by Claim 4.5 with
taking k = 0. If typeg(ε, ϕ), typeg(ε

′, ϕ′), then ε = ε′ and typeg(ε, ϕ ∧ ϕ′).
Thus U g is closed under intersection. It is upward closed by its definition. It
remains to show that (∀x ∈ C)(x ∈ U g or − x ∈ U g). It is enough to show
this latter for x = 〈ε, ϕ〉 ∈ ND. We prove a more general statement because it
will be useful later.

(4) Let K ⊆ n, 〈ε, ϕ〉 ∈ NDK , and g : K → G. Then e(η, δ) ⊆ e(ε, ϕ) or
e(η, δ) ⊆ −e(ε, ϕ) for some (η, δ) ∈ NDK of type g.

To prove (4), first we introduce some notation. Let j ∈ K × K and s ∈ ω.
We define the formula shift(δ, j, s) the following way. Search for the infinite
gap immediately preceding xj (according to the ordering induced by δ). If
there is no such gap, then we define shift(δ, j, s) to be δ. Otherwise, assume
that this infinite gap is at xk, i.e. xk is the biggest variable below xj such that
the distance between xk and the next variable, say xl, is indefinite (of course,
everything is understood according to the ordering induced by δ). We then
define shift(δ, j, s) to be δ∧xk +s < xl. Then the type of 〈η, shift(δ, j, s)〉 is the
same as that of 〈η, δ〉, and shift(δ, j, s) → s < xj if the distance between xii

and xj is indefinite according to δ. Let ϕ be a basic formula and let s ∈ ω. We
say that distϕ(xj, xk) = s if ϕ → xj +s = xk, and we say that distϕ(xj, xk) = s>

iff (ϕ → xj < xk and s is the largest element in ω such that ϕ → xj + s < xk).
Let 〈η, δ〉 ∈ NDK be arbitrary such that typeg(η, δ). Let j, k ∈ K × K be

arbitrary. Assume that distϕ(xj, xk) = s ∈ ω. If distδ(xj, xk) = t ∈ ω and
t 6= s, then e(η, δ) ⊆ −e(ε, ϕ) and we are done. If distδ(xj, xk) = t>, then
e(η, shift(δ, k, s + 1)) ⊆ −e(ε, ϕ) and we are done. Thus we may assume

(4a) distϕ(xj, xk) = s implies distδ(xj, xk) = s, for all s ∈ ω.

Assume now that distϕ(xj, xk) = s>. If distδ(xj, xk) = t and t ≤ s, then
e(η, δ) ⊆ −e(ε, ϕ) and we are done. If distδ(xj, xk) = t>, then distδ′(xj, xk) =
r> with r ≥ s, for some shifted version δ′ of δ. Thus we may assume

(4b) distϕ(xj, xk) = s> implies (distδ(xj, xk) = t > s or distδ(xj, xk) = t> and
t > s).

From (4a),(4b) we get δ → ϕ. If ηj ∩ εj = ∅ for some j ∈ K × K, then
e(η, δ) ⊆ −e(ε, ϕ) and we are done. Assume therefore that

(4c) ηj ∩ εj 6= ∅ for all j ∈ K × K.
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If εj ∈ At+, then distϕ(xii, xj) = ν(εj), hence distδ(xii, xj) = ν(εj) by (4a), so
ηj = εj. Assume εj = xW for W ∈ J . Then ηj ≤ εj by ηj ∈ At+ ∪ {xW : W ∈
J} and ηj ∩ εj 6= ∅. Thus we have ηj ≤ εj for all j ∈ K × K. We also have
δ → ϕ, so e(η, δ) ⊆ e(ε, ϕ) and we are done. This proves (4), and thus finishes
the proof of Claim 4.7.

Claim 4.8. Let g ∈ nG and let 〈ε, ϕ〉 ∈ ND be of type g. Assume e(ε, ϕ) ⊆
Ciy. Let g′ be the restriction of g to n − {i}. Then there is d ∈ ND such that
e(d) ⊆ y and d is of type g′.

Proof. Let K = {(j, k) ∈ n × n : i /∈ {j, k}}. By (2) in the proof of
of Theorem 4.3 we have that for any d ∈ ND there is d′ ∈ NDK such that
Cie(d) = e(d′). By Lemma 4.2, y =

⋃
{e(d) : d ∈ H} for some finite H ⊆ ND.

Then Ciy =
⋃
{e(d′) : d ∈ H}. Let g′ ° x denote that there is d ∈ NDK of

type g′ such that e(d) ⊆ x. Then g′ °
⋃
{e(d′) : d ∈ H} and by (4) in the

proof of Claim 4.7 we have that either g′ ° e(d′) or g′ ° −e(d′) for all d ∈ H.
Since the intersection of finitely many elements of NDK of type g′ is again an
element of NDK of type g′, we have that g′ ° e(d′) for some d ∈ H. Now
d ∈ ND, e(d) ⊆ y, and typeg′(d), and so we are done.

We shall build a consistent, complete colored edge-ordered graph, and we
shall see that such graphs give rise to representations of C.

Claim 4.9. There is a consistent complete edge-ordered graph (G, ℓ, σ) such
that (∀m ∈ Bn)(∃g ∈ nG)g ° {m}.

Proof. The extension step: Assume that (G, ℓ, σ) is countable, consistent,
g ∈ nG, i < n, g ° Ciy. We shall extend the graph with an additional element
u such that the extended graph is consistent and g(i/u) ° y in it. By g ° Ciy,
there is 〈ε, ϕ〉 ∈ ND such that g ° e(ε, ϕ) and e(ε, ϕ) ⊆ Ciy. By Claim 4.8,
there is 〈ε′, ϕ′〉 ≤ y of type g′′, the restriction of g to n−{i}. We shall extend
the graph such that g(i/u) ° e(ε′, ϕ′). If ε′ij = 1′ for some j < n, j 6= i then
we let u = gj. Otherwise let u /∈ G. Let us define ℓ(u, gj) = ℓ(gj, u) = ε′(i, j)
if j 6= i, and ℓ(u, u) = 1′. Assume that v ∈ G − {gj : j < n, j 6= i}. Let
W ∈ J be such that (J(ε′ij), J(ℓ(gj, v)),W ) is safe for all j < n, j 6= i. Such
a W exists by (J4)n. Define ℓ(u, v) = ℓ(v, u) = xW . By this, we extended ℓ
to G ∪ {u} such that (∀i, j < n)ℓ(g′

i, g
′
j) = ε′ij where g′ = g(i/u). Further,

(∀j, k ∈ K, t ∈ ω)(ϕ′ → xj = xk + t iff σ(j) = σ(k) + t). We now define
σ(u, v) ∈ ω+ for all v ∈ G. By g ° e(ε, ϕ) ≤ Cie(ε

′, ϕ′) we can choose
σ(u, gj) ∈ ω+ such that ϕ′ holds. Let us define σ(u, gj) to be any such choice.
Let z ∈ ω+ be such that z is “infinitely high” above all σ(i, j), i, j ∈ G.
There is such a z because G is countable and ω+ is ω-saturated. Let us define
σ(u, v) = z for all v ∈ G − {gj : j < n, j 6= i}. It is not difficult to check that
this extension is consistent, and g(i/u) ° e(ε′, ϕ′) in it. Hence g ° y as was
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desired, by e(ε′, ϕ′) ⊆ y. Since there are countably many g, i, y, ε, ϕ, ε′, ϕ′, we
can continue with this kind of extension until we get a complete graph.

The first step: Let m ∈ Bn be arbitrary. Let G = n, ℓij = mij, σij =
ν(mij) for all i, j < n. Then (G, ℓ, σ) is consistent, and g = 〈i : i < n〉 ∈ nG
is such that g ° m. Let m′ ∈ Bn be arbitrary. Then m ≤ C0C1 . . . Cn−1m

′,
therefore in a complete extension of this graph there is g such that g ° m′.

Claim 4.10. Assume that (G, ℓ, σ) is a complete, consistent graph and (∀m ∈
Bn)(∃g ∈ nG)g ° m. Define for all x ∈ C

rep(x) = {g ∈ nG : g ° x}.

Then rep is a representation for C.

Proof. rep is a Boolean homomorphism by Claim 4.7, i.e. because U g is an
ultrafilter for all g ∈ nG. It is a Boolean isomorphism because rep(m) 6= ∅ for
all m ∈ Bn.

Let i, j < n. We are going to show rep(Dij) = {g ∈ nG : gi = gj}. By
definition, g ° Dij iff (∃〈ε, ϕ〉 ∈ ND)[ e(ε, ϕ) ≤ Dij ∧ typeg(ε, ϕ) ]. The latter
condition implies that εij ≤ 1′ and thus gi = gj. This proves one inclusion.
To show the other inclusion, assume that g ∈ nG is such that gi = gj. Let us
define 〈ε, ϕ〉 as follows. For all k, l < n define εkl = ℓ(gk, gl) and let ϕ be the
conjunction of the following formulas where j, k ∈ n×n: xj = σ(j) if σ(j) ∈ ω,
xj = xk + t if σj = σk + t, xj > xk if σj > σk and the distance between σj, σk

is infinite. Now, g ° e(ε, ϕ), typeg(ε, ϕ) and εij = 1′.
We are going to show rep(Ciy) = Cirep(y). Assume g ∈ rep(Ciy). Then

g ° Ciy, hence (∃u ∈ G)g(i/u) ° y, by completeness of the graph. This
shows g ∈ Cirep(y). To show the other inclusion, assume g ° y, we have
to show that g′ = g(i/u) ° Ciy for any u ∈ G. Let 〈ε, ϕ〉 ∈ ND be such
that e(ε, ϕ) ≤ y and typeg(ε, ϕ). Define 〈ε′, ϕ′〉 such that ε′ik = ℓ(u, gk) and
typeg′(ϕ

′), and “ϕ′ and ϕ agree on xkl : k, l < n, k, l 6= i”. Then g′ ° e(ε′, ϕ′)
and e(ε′, ϕ′) ⊆ Cie(ε, ϕ) ⊆ Ciy, hence g′ ° Ciy.

By this we have proved Theorem 4.6 QED(Theorem 4.6)

5 Concrete examples, generation with one el-

ement, and proof of Theorem 1.2

Let k be a finite or infinite cardinal, and let Ek = Ek(2, 3) denote the relation
algebra which has k non-identity atoms and in which ai ≤ aj; al iff |{i, j, l}| ∈
{2, 3} for all non-identity atoms ai, aj, al. (This means that all “triangles are
allowed” except the “monochromatic” ones.) These algebras were defined by
Maddux, e.g. in [36].
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Let k be finite, let I be the set of all non-identity atoms of Ek(2, 3) and
let P0, P1, . . . , Pk−1 be an enumeration (i.e. listing without repetition) of the
elements of I. Let ℓ ∈ ω, ℓ ≥ 2 and let Jℓ denote the set of all subsets of I
of cardinality ℓ. Let w0, w1, . . . , wN be an enumeration of J = Jℓ such that
neighboring members in this listing intersect (i.e. w : |J | → J is a bijection
and wi ∩ wi+1 6= ∅ for all i + 1 < |J |). Assume further that this listing begins
as follows: wj = {P0, P1 . . . , Pℓ−2, Pℓ+j−1} for j ≤ k − ℓ. There is such a
listing of J , e.g. consider each element of J as an ℓ-tuple of elements of I
with increasing indices (for example, identify {P1, P0, P3} with 〈P0, P1, P3〉)
and then order these ℓ-tuples according to the lexicographic order.

We are ready to define our E. For all U, V,W ∈ J let E(U, V,W ) be
the smallest (according to inclusion ⊆) symmetric ternary relation on ω that
satisfies the following:

(S1) E(W,W,W ) ⊇ {(i, i, i) : i ∈ ω}, for all W ∈ J .

(S2) E(W,W,W ) ⊇ {(i, i, i + 1) : i ∈ ω}, for all W ∈ J .

(S3) E(W,W, V ) ⊇ {(i, i, i) : i ∈ ω}, for all W,V ∈ J such that V is the
successor of W in the listing w.

(S4) E(U, V,W ) ⊇ {(i, i + t, i + t) : i ∈ ω}, for all t ≥ ℓ, U, V,W ∈ J .

Lemma 5.1. Assume that n > 2, ℓ ≥ 2n − 1, k ≥ (2n − 1)ℓ, k ∈ ω. Let
M = Ek(2, 3), let J = Jℓ be the set of all ℓ-element subsets of the set I of
non-identity atoms of M, and let E be as defined above by (S1)-(S4). Then
M, J, E satisfy all the conditions of Theorems 3.2,4.4,4.6 and Lemmas 4.2,4.3.
Further, R = Bb(M, J, E) is generated by a single element.

Proof. M = Ek(2, 3) is a simple, symmetric, finite, atomic relation algebra.
J = Jℓ satisfies (J1) because 0 6= ℓ < ω, and J satisfies (J2) by k ≥ ℓ. (J3)
is satisfied, by the definition of M and by ℓ ≥ 2: if P ∈ I,W ∈ J then let
Q ∈ W − {P}, now P ; Q = I in M. (J4)n is satisfied, by k ≥ (2n − l)ℓ: let
V2, . . . , Vn,W2, . . . ,Wn ∈ J be arbitrary. Then U =

⋃
{Vi∪Wi : 2 ≤ i ≤ n} has

cardinality at most (2n−2)ℓ, hence the cardinality of I −U is ≥ k− (2n−2)ℓ,
which is ≥ ℓ by k ≥ (2n − 1)ℓ. Hence there is T ⊆ I − U, |T | = ℓ. Now
T ∈ J and safe(Vi,Wi, T ) because Vi ∩ Wi ∩ T = ∅ for all 2 ≤ i ≤ n. J
satisfies (J5)n by ℓ ≥ 2n− 1: Let P2, . . . , Pn, Q2, . . . , Qn ∈ I be arbitrary, then
U = {P2, . . . , Qn} has cardinality ≤ 2n − 2, and so each W ∈ J contains an
S /∈ U by ℓ ≥ 2n − 1, now S ≤ Pq; Q2 ∩ · · · ∩ Pn; Qn by the definition of M.

Let us turn to E. By definition, E is symmetric. For any U, V,W ∈ J
we have that E(U, V,W ) is definable in 〈ω,<〉 because of the following. Let
ψ1, ψ2, ψ4 denote the following formulas, respectively: x = y = z, (x = y ∧ z =
y + 1) ∨ (y = z ∧ x = z + 1) ∨ (z = x ∧ y = x + 1), and (x = y ≥ z + ℓ) ∨ (y =
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z ≥ x + ℓ) ∨ (z = x ≥ y + ℓ). Now, E(W,W,W ) is defined by ψ1 ∨ ψ2 ∨ ψ4,
E(W,W, V ) is defined by ψ1 ∨ψ4 if V is the “successor” of W , and in all other
cases E(U, V,W ) is defined by ψ4. Since ψ1, ψ2, ψ4 are definable in 〈ω,<〉, we
are done with showing that the E(U, V,W )’s are definable in 〈ω,<〉. (E2) is
satisfied with s = ℓ by (S4), (E3) is satisfied because E(i, j, q) → q ∈ {i, j},
and (E4) is satisfied because of (S4). Also by (S4) we have x + ℓ < y = z →
E(U, V,W ) for all U, V,W ∈ J .

We now show that there is g ∈ R such that R is generated by g. Let
W = w0 and let

g = (0, P0,W ) + (1, P0,W ) + (2, P1,W ) + · · · + (ℓ − 1, Pℓ−2,W ).

For any U ∈ J and i ∈ ω let us define rU
i =

∑
{(i, P, U) : P ∈ U} and

cU =
∑

{eV : V ∩ U = ∅}. We call rU
i the “i-th row in the block U” and we

call cU the “safe complement of U”.
First we aim at generating the first row rW

0 and the safe complement cW

from g (where W = w0).

(1) (0, P0,W ) = g − g; g.

Proof. In computing g ∩ g; g, only (S1),(S2) can play a role, (S4) cannot
play a role, because the difference |ν(a) − ν(b)| between the indices of any
two atoms a, b below g is less than ℓ. Thus (0, P0,W ) £ g; g because only
(0, P0,W ); (0, P0,W ) or (0, P0,W ); (1, P0,W ) could “bring” it in, but P0 £
P0; P0 in M, so these products do not “produce” (0, P0,W ). On the other
hand, e.g. (1, P0,W ) ≤ (1, P0,W ); (2, P1,W ) ≤ g; g, and similarly for the
other atoms below g.

With similar arguments we get

(2) rW
0 + cW = (0, P0,W ); (g − (0, P0,W )) + (0, P0,W ).

(3) cW = (rW
0 + cW ) ∩ [(g − (0, P0,W )); (g − (0, P0,W ))].

(4) rW
0 = (rW

0 + cW ) − cW .

We now get all the atoms below g as follows:

(5) (1, P0,W ) = g ∩ (rW
0 ; rW

0 ),

(6) (2, P1,W ) = g ∩ (1, P0,W ); (1, P0,W ),

(7) (3, P2,W ) = g ∩ (2, P1,W ); (2, P1,W ), and so on.

Let V = w1. We now generate all the rows rW
i , rV

i in the blocks W and V . We
already have rW

0 .
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(8) rW
i + rW

i+1 + rV
i = rW

i ; rW
i − cW , for all i ∈ ω,

(9) rW
1 = (1, P0,W ) + [(1, P0,W ); (1, P0,W ) ∩ (rW

0 ; rW
0 ) − cW ].

We get the rows by repeated uses of (8),(9). For example,

rV
0 = (rW

0 ; rW
0 ) − rW

0 − rW
1 − cW ,

rW
2 = (rW

1 ; rW
1 ) − rW

1 − cW − (rV
0 ; rV

0 ),

rV
1 = (rW

1 ; rW
1 ) − rW

1 − rW
2 − cW , and so on.

Now that we have all the elements of g and all the rows rW
i , we generate all

the atoms in the ℓ’th row rW
ℓ . By using

(10) (i, P, U) = rU
i − (i − 1, P, U); (i − 1, P, U) for all U ∈ J, P ∈ U, i ≥ 1

we get

(11) (i, P0,W ) = rW
i − (i − 1, P0,W ); (i − 1, P0,W ) for i > 0, from (5),

(12) (i, P1,W ) = rW
i − (i− 1, P1,W ); (i− 1, P1,W ) for i ≥ 2, from (6), and

so on.

With this we get (ℓ, Pj,W ) for j < ℓ− 1, and we get the last element of rW
ℓ by

(ℓ, Pℓ−1,W ) = rW
ℓ −{(ℓ, Pj,W ) : J < ℓ−1}. Now we generate all the elements

of the first row rW
0 by using (S4):

(13) (0, P,W ) = rW
0 − (ℓ, P,W ); (ℓ, P,W ) for all P ∈ W ,

and we get all elements of xW from the elements of the first row by using (10)
repeatedly. We now have all the elements of xW , and we have cW and rV

i for
all i ∈ ω. Next we generate all the elements of the first k − ℓ blocks. Recall
that here neighboring elements of J intersect in exactly ℓ− 1 elements, by our
condition on w.

Assume that W = wq, V = wq+1, |V ∩ W | = ℓ − 1, and g generates all
atoms (i, P,W ) for i ∈ ω, P ∈ W , and all rows rV

i for i ∈ ω, and cW . We show
that g generates all elements (i, P, V ) for i ∈ ω, P ∈ V , and it also generates
cV and all rows rU

i for U = wq+2.

(14) (i, P, V ) = rV
i − (i, P,W ); (i, P,W ) for i ∈ ω, P ∈ V ∩ W ,

(15) (i, Q, V ) = rV
i − {(i, P, V 0 : P ∈ V ∩ W} for Q ∈ V − W ,

(16) cV = (rV
0 ; rV

0 ) ∩ (rV
2 ; rV

2 ),
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(17) rU
i = (rV

i ; rV
i ) − rV

i − rV
i+1 − cV .

Thus far we have showed that g generates all the elements of the first k − ℓ
blocks, and by our assumption on w this implies that for all P ∈ I there is
W ∈ J such that g generates (ℓ, P,W ). By

(18) (0, P, U) = rU
0 − (ℓ, P,W ); (ℓ, P,W ) if P ∈ U ∩ W

we get all elements in rU
0 , for any U ∈ J . Now, assuming by induction that g

generates rU
i for all i ∈ ω, we get all elements of xU by using (10), and we get

cU , rV
i for the “successor” V of U (i.e. V = wj+1 if U = wj) by using (16),(17).

Finally,

(19) xW =
⋂
{cV : V ∩ W = ∅},

and so we showed that g generates all elements of R. QED(Lemma 5.1)

Proof of Theorem 1.2. Let n > 2, k ≥ 0. Let N = n+k, ℓ ≥ 2N −1, K ≥
(2N − 1)ℓ, K < ω. Let M = EK(2, 3), J = Jℓ and let E be as in Lemma
5.1. Then M, J, E satisfy all the conditions of Theorems 3.2,4.4,4.6 and
Lemmas 4.2,4.3, by Lemma 5.1. Let R = Bb(M, J, E), let C be the subal-
gebra of Bbn(M, J, E) generated by its atoms, and let D = BbN(M, J, E).
Then R is countable, symmetric, simple, integral and atomic. (i): R is rep-
resentable by Thm.3.2(i). However, R+ = CmAtR is not representable by
the following. R+ is infinite, hence it can have a representation on an infinite
set only. By Thm.3.2(ii), any representation of R+ gives a representation for
M, too, on the same base set. However, by Ramsey’s theorem, M = EK(2, 3)
can have a representation on a finite set only if K is finite. This shows that
CmAtR is not representable, hence R does not have a complete representa-
tion. (ii): R is generated by a single element g by Lemma 5.1. (iii) follows
from Thm.3.2(iii), (iv) follows from Theorem 4.6. (v): By definition of C we
have C0C1 . . . Cn−1x = 1 if x 6= 0 in C, this implies that C is simple, and it
is atomic by its definition. (vi): By the definition of C, the relation algebra
reduct of C contains all atoms of R, hence it contains g (as defined in the
proof of Lemma 5.1), hence it contains R. On the other hand, RaC ⊆ R by
Thm. 4.4 because C ⊆ Bbn(M, J, E). Thus R is (isomorphic to) the relation
algebraic reduct of C. Each m ∈ Bn is generated from R by the cylindric
algebraic operations, hence each m ∈ Bn is generated in C by g ∈ R. Since
C is generated by the matrices, we have that C is generated by a single 2-
dimensional element. C is a sub-neatreduct of a representable CAn+k, because
C ⊆ Bbn(M, J, E) ∼= NrnD by Theorem 4.4 and D is representable by The-
orem 4.6. D is simple because its relation algebra reduct, R, is simple. We
have that Nr2C = Nr2D by Theorem 4.4, since the relation algebra reduct of
both is R. Theorem 1.2 has been proved. QED(Theorem 1.2)
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Theorem 5.2. RCAn ∩NrnCAn+k is not closed under completions, for each
n > 2 and k ≥ 0, where, RCAn denotes the class of all representable cylindric
algebras of dimension n.

Proof. This follows immediately from Thm.s 4.4,4.6, and Lemma 5.1. QED

Concluding remarks: The results in this paper concerning strong failure of
the omitting type property for Ln were announced in [9], relying on an unpub-
lished construction in [2]. Later, a weaker version of failure of the omitting
type property of Ln was proved in [49], that paper relied on constructions of
Hirsch and Hodkinson in [23]. The present paper contains an improved ver-
sion of the construction in [2] upon which strong failure of the omitting type
property of Ln is fully proved here. Contrasting positive results on omitting
types can be found in [48],[53]. We should point out that from the present
Theorem 1.1, one can easily prove that the omitting types property fails for
any first order definable expansion of Ln as defined in [10]. The result applies
also to richer extensions of first order logic, like the ones dealing with tran-
sitive closure due to Maddux [36]. In contrast, the Omitting Types Property
holds for L1, and more generally, for countable Ln theories, n ≤ ω, with only
unary relation symbols. Two-variable logic L2 does not have the Omitting
Type Property, this is proved in [7]. However, there is a difference between L2

and Ln for n ≥ 3 in this respect. Namely, L2 does have the OTP restricted to
atomic theories T , while in the present paper the theories constructed to show
failure of OTP for Ln (3 ≤ n < ω) are all atomic. It would be interesting to
know whether the guarded fragment of FOL has the omitting type property
(in some form). It remains an open problem to find a theorem analogous to
the solution of problem 2.12 in [20] for the present subject, i.e. for the number
of variables needed for a witness. Problem 2.12 of [20] asks whether for all
2 < n < ω there is a k < n such that SNrnCAn+k = SNrnCAn+k+1. (Here,
SK denotes the class of all subalgebras of elements of K.) Hirsch, Hodkinson,
and Maddux [29] proved that the answer to this problem is in the negative
in the strongest sense, i.e. for all 2 < n < ω and for all k < ω we have
SNrnCAn+k 6= SNrnCAn+k+1. The analogous result in the omitting types
context would be to find for all 2 < n < ω and k < ω an n-complete theory
T ⊆ Ln and a tye Σ(x) ⊆ Ln such that Σ is realized in each model of T , there
is a witness for this in Ln+k+1, but there is no such witness in Ln+k.

The proof of the omitting type theorem can be regarded as a strengthen-
ing of Henkin’s proof of the completeness theorem for FOL. Since the non-
finitizability results (e.g. in [39]) can be interpreted as signifying the failure of
completeness (e.g. for Ln), the present strong negative results on the omitting
type property can be regarded as improvements or strengthening of the non-
finitizability results of Monk, Jónsson and others. This view induces a kind of
parallel between the present work and the framework of Problem 2.12 in [20].
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[15] Grädel, E. On the restraining power of guards. Journal of Symbolic Logic
64,4 (1999), 1719-1742.
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[56] Sayed Ahmed, T., and Németi, I. On Neat Reducts of Algebras of Logic
Studia Logica 68 (2001), 229-262.

[57] Simon, A. Connections between quasi-projective relation algebras and
cylindric algebras. Algebra Universalis, in print.

[58] Tarski, A., Logic, Semantics, Metamathematics: Papers from 1923 to
1938. Translated by J. H. Woodger. Clarendon Press, Oxford, 1956.

[59] Tarski, A. and Givant, S. R. A formalization of set theory without vari-
ables. Colloquium Publications of Amer. Math. Soc. Vol. 41, Rhode Is-
land, 1987.

[60] Venema, Y. Atom structures and Sahlqvist equations. Algebra Universalis
38 (1997) pp.185-199.

34


