NONSTANDARD RUNS OF FLOYD-PROVABLE PROGRAMS

I. Németi

Mathematical Institute of the Hungarian Academy of Sciences Budapest, Reáltanoda u. 13-15, H-1053 Hungary

The question is investigated: "exactly which programs are provable by the Floyd-Hoare inductive assertions method?".

Theorem 1 of this paper says that from any theory τ containing the Peano axioms exactly those programs are Floyd-Hoare provable which are partially correct in the models of τ w.r.t. continuous traces. Intuitively: the provable programs are the ones which are correct in every perhaps nonstandard machine functioning perhaps in a nonstandard time. Of course every nonstandard machine and time has to satisfy our axioms τ . This result was first proved in Andréka-Németi [1] in Hungarian. It was announced in English in [2], [3] and was quoted in Salwicki [23], Csirmaz [13], Richter-Szabo [20] etc.

In section 5 concrete examples of simple nonstandard runs of programs are constructively defined and illustrated on figures. The emphasis in section 5 is on simplicity, with the aim to make nonstandard runs and nonstandard models less esoteric, less imaginary, easy to draw, easy to touch. In the proof of Proposition 3 it is demonstrated how ultraproducts can be used to test applicability of Floyd's method in concrete situations.

We are specifically interested in the behaviour of programs (or "program schemes") in first order *axiomatizable classes* of models (or "interpretations").

The central notion of the present paper is that of continuous traces. Properties of continuous traces were investigated in Csirmaz [13]. A simpler and much more natural notion was introduced in [5], [6], [21], [4], [7], [19]. This improved approach was used in Csirmaz-Paris [15], Sain [22], Csirmaz [14]. The quoted works use the general methodology elaborated in Dahn [16] and Sain [21] for investigating new logics.

The most readable introduction is [4] or if that is not available then [7]. Further important works in the present nonstandard direction are Hájek [17], Richter-Szabo [20]. For more uses of ultraproducts (cf. Proposition 3 here) see [19], [4] and a little in [7]. Copies of all the above quoted papers of Andréka, Csirmaz, Németi or Sain *are available* from the present author except [2] and [12].

1. SYNTAX

Let t be a similarity type assigning arities to function symbols and relation symbols. ω denotes the set of *natural numbers*.

 $Y \stackrel{d}{=} \{y_i : i \in \omega\}$ is called the set of variable symbols and is disjoint from everything we use. Logical symbols: $\{\Lambda, ,, \exists\}$. Other symbols: $\{+, \text{ IF, THEN, } (,), :\}$. The set of "label symbols" is ω itself. L_t denotes the set of all first order formulas of type t possibly with free variables (elements of Y of course), see e.g. [10] p.22. We shall refer to "terms of type t" as defined in e.g. [10] p. 22.

Now we define the set P_{t} of programs of type t.

The set U_t of commands of type t is defined by: $(j : y + \tau) \in U_t$ if $j \in \omega$, $y \in Y$ and τ is a term of type t. $(j : \text{IF } \lambda \text{ THEN } \forall) \in U_t$ if $j, v \in \omega$, $\lambda \in L_t$ is a formula without quantifiers.

These are the only elements of U_{t} .

If $(i:u) \in U_{+}$ then i is called the *label* of the command (i:u).

By a program of type t we understand a finite sequence of commands (elements of u_t) in which no two members have the same label. Formally, the set of programs is:

$$\begin{split} & \mathbb{P}_t \stackrel{d}{=} \{ ((i_0:u_0), \dots, (i_n:u_n)) : n \in \omega, \quad (\forall e \leq n) (i_e:u_e) \in u_t, \quad (\forall e < k \leq n) i_k \neq i_e \} . \\ & \text{For every } p \stackrel{d}{=} \langle (i_0:u_0), \dots, (i_n:u_n) \rangle \in \mathbb{P}_t \text{ we shall use the notation} \\ & i_{n+1} \stackrel{d}{=} \min(\omega \setminus \{i_m : m \leq n\}) . \end{split}$$

EXAMPLE: Let t contain the function symbols "+,.,0,1" with arities "2,2,0,0" respectively. Now the sequence $((0: y_1 + 0), (1: \text{ IF } y_1 = y_2 \text{ THEN } 4), (2: y_1 + y_1 + 1), (3: \text{ IF } y_2 = y_2 \text{ THEN } 1))$ is a program of type t. See Figure 1.

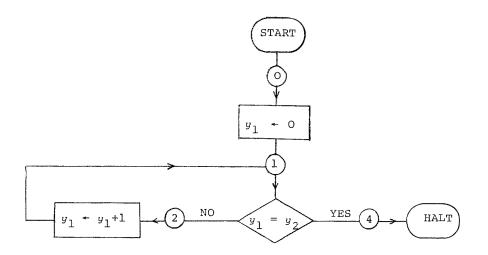


FIGURE 1

2. SEMANTICS

Let $p \in P_t$ be a program and \mathcal{O} be a structure or model of type t, see [10]p.20. The universe of a model denoted by \mathcal{O} will always be denoted by A.

 v_p denotes the variable symbols occurring in ${}_p.$ Note that v_p is a finite subset of ${}_{\rm Y}.$

By a valuation (of the variables of p) in \mathcal{O} we understand a function $q: v_p \rightarrow A$ (cf. [8]p.55).

Let τ be a term occurring in p. Now $\tau[q]_{\mathcal{U}}$ denotes the value of the term τ in the model \mathcal{U} at the valuation q of the variable symbols, cf. [10]p.27 Def.1.3.13. We shall often write $\tau[q]$ i.e. we shall omit the subscript \mathcal{U} .

From now on we work with the similarity type of arithmetic. I.e. t is fixed to consist of "+,.,0,1" with arities "2,2,0,0". We shall omit the index t since it is fixed anyway.

 \mathcal{H} denotes the standard model of arithmetic, that is $\mathcal{H} \stackrel{\underline{d}}{=} \langle \omega, +, \cdot, 0, 1 \rangle$ where $+, \cdot, 0, 1$ are the usual.

EXAMPLE: Let $v_p = \{y_1, y_2\}, q(y_1) = 2, q(y_2) = 3, \tau = ((y_1 + y_2) + y_2)$. Then $\tau [q]_{\eta \eta} = 8.$

 $PA \subset L$ denotes the (recursive) set of the Peano-axioms (together with the induction axioms), see [10]p.42 Ex.1.4.11 (axioms 1-7). We shall only be concerned with models of the Peano-axioms.

We are going to define the continuous traces of a program in a model of PA.

DEFINITION 1 Let $U \models PA$ be an arbitrary model (of Peano arithmetic). Let $p \in p$ be a program with set v_p of variables. A trace of p in \mathcal{O} is a sequence $s \stackrel{d}{=} \langle s_a \rangle_{a \in A}$ indexed by the

elements of A such that (i) and (ii) below are satisfied.

- (i) $s_{a} : v \cup \{\lambda\} \rightarrow A$ is a valuation of the variables (of p) into \mathcal{O} , where $\lambda \in \mathbb{N} \setminus \mathbb{V}_p$ is a variable not occurring in p. λ can be conceived of as the "control variable of p". (We could calls a "state" of p in the model \mathcal{O} .)
- (ii) To formulate this condition, let $p = \langle (i_0:u_0), \dots, (i_n:u_n) \rangle$ and recall the notation $i_{n+1} \stackrel{d}{=} \min(\omega \setminus \{i_m : m \le n\})$. Now we demand $s_0(\lambda) = i_0$ and for any $a \in A$, if $s_a(\lambda) \notin \{i_m : m \le n\}$ then $s_{a+1} = s_a$ else for all $m \le n$ such that $s_a(\lambda) = i_m$, conditions a) and b) below hold. a) if $u_m = "y_w \leftarrow \tau$ " then $s_{a+1}(\lambda) = i_{m+1}$ and for any $x \in v_p$,

b) if $u_m = "IF \chi$ THEN v" then

 $s_{a+1}(x) = s_a(x)$, for every $x \in V_n$.

By this we have defined traces of a program in \mathcal{O} as sequences

 $\langle s_a \rangle_{a \in A}$ "respecting the structure" of the program. End of Def.1. DEFINITION 2 The sequence $\langle s_a \rangle_{a \in A}$ is continuous in \mathcal{U} if $\langle s_a \rangle_{a \in A}$ satisfies the induction axioms, that is if for any $\varphi \in L$ with free variables in v_p we have $\mathcal{U} \models ((\varphi [s_0] \land \land (\varphi [s_a] \rightarrow \varphi [s_{a+1}])) \rightarrow \land \varphi [s_a]).$

 $a \in A \qquad a^{+1} \qquad a \in A \qquad a$ By a continuous trace of p in *CL* we understand a trace $\langle s_{a} \rangle_{a \in A}$ of p which is continuous. End of Def.2.

Note that in the standard model \mathcal{R} every trace is continuous. Intuitively, a trace $\langle s_a \rangle_{a \in A}$ is continuous if whenever a first order property $\varphi \in L$ changes during time (A), then there exists a point of time (a \in A) when this change is just happening:

 $\begin{aligned} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$

<u>DEFINITION 3</u> Let $p = \langle (i_0:u_0), \dots, (i_n:u_n) \rangle \in p$ and $\psi \in L$ be such that the free variables of ψ are in V_p . Let $\mathcal{O}l \models PA$.

The pair (p, ψ) is said to be *partially correct* in \mathcal{U} w.r.t. continuous traces if for any continuous trace $\langle s_a \rangle_{a \in A}$ of p in \mathcal{U} and for any $a \in A$ $s_a(\lambda) \notin \{i_m : m \le n\}$ implies $\mathcal{U} \models \psi [s_a]$.

 $\mathcal{U} \models (p, \psi)$ denotes that the pair (p, ψ) is partially correct in \mathcal{U} w.r.t. continuous traces. End of Def.3.

3. DERIVATION SYSTEM (rules of inference)

In the following definition we recall the so called Floyd-Hoare derivation system. This system serves to derive pairs (p, ϕ) (where $p \in P$ and $\phi \in L$) from theories $T \subseteq L$.

<u>DEFINITION 4</u> Let $p = \langle (i_0, u_0), \dots, \langle i_n : u_n \rangle \rangle \in p$, let $\psi \in L$ and let $T \subseteq L$. The set of labels of p is defined as

 $lab(p) \stackrel{d}{=} \{i_m : m \le n+1\} \cup \{v : (\exists m \le n)u_m = "IF \chi THEN v"\}.$

Note that lab(p) is finite.

A Floyd-Hoare derivation of (p, ψ) from T consists of a mapping ϕ : lab $(p) \rightarrow L$ together with classical first-order derivations listed in (i)-(iv) below.

Notation: When $z \in lab(p)$ we write Φ_{-} instead of $\Phi(z)$.

- (i) A derivation $T \vdash \Phi_i$
- (ii) To each command $(i_m : y_j \leftarrow \tau)$ occurring in p a derivation $T \vdash (\Phi_{i_m} \rightarrow \Phi_{i_{m+1}}(y_j/\tau))$, where $\varphi(y/\tau)$ denotes the formula obtained from φ by substituting τ in place of y in the usual way, cf. [8]p.61.
- (iii) To each command $(i_m : \text{IF } \chi \text{ THEN } v)$ occurring in p derivations $T \vdash ((\chi \land \phi_i) \rightarrow \phi_v)$ and $T \vdash ((\chi \land \phi_i) \rightarrow \phi_i)$.

(iv) To each $z \in (lab(p) \setminus \{i_m : m \le n\})$ a derivation $T \vdash (\Phi_z \rightarrow \psi)$. The existence of a Floyd-Hoare derivation of (p,ψ) from T is denoted by $T \vdash \frac{FH}{p}(p,\psi)$. End of Def.4.

<u>REMARKS</u>: If *T* is decidable then the set of Floyd-Hoare derivations (of pairs (p,ψ) where $p \in p$ and $\psi \in L$, from *T*) is also decidable. If *T* is recursively enumerable then the Floyd-Hoare derivable pairs are also recursively enumerable, i.e. $\{(p,\psi) : T \mid FH(p,\psi)\}$ is recursively enumerable.

4. COMPLETENESS

Notation: $Mod(T) \stackrel{d}{=} \{ \mathcal{U} : \mathcal{U} \models T \}$ for any $T \subseteq L$.

<u>THEOREM 1</u> Let $T \supseteq PA$ be arbitrary. Let further $p \in P$ and $\psi \in L$ be also arbitrary. Then $T \models^{FH} (p, \psi)$ if and only if (p, ψ) is partially correct in every model of T w.r.t. continuous traces. In concise form:

 $T \models \frac{FH}{P} (p, \psi) \iff (\forall Ol \in Mod(T)) Ol \models \frac{p_C}{P} (p, \psi).$

Proof. The proof can be found in [3] which appeared in MFCS'81 pp. 162-171. QED The condition $T \supseteq PA$ can be eliminated from the above theorem. Moreover, the restriction that t is the similarity type of PA can be eliminated, too. This generalization of Thm.1 above is Thm.9 of [4] on p.56 there (see also Prop.12 there), and it is also stated in Part II of [7] which is available in the literature. A somewhat modified version of this general theorem is Thm.3.3 of [13].

A drawback of our present approach is that the meanings of programs in \mathcal{O} are continuous traces and that these continuous traces are not elements of \mathcal{O} , they are just functions $s : A \rightarrow A$ satisfying certain axioms formulated in the metalanguage (and not in *L*). This drawback is completely eliminated in the approach of [4], and of [7]. There the meanings of programs in a model \mathfrak{M} are elements of \mathfrak{M} and all requirements are formulated in the subject language *L*, e.g. continuity of traces is formulated by a set IA^q of formulas in *L*.

The present approach is also extended to treat total correctness in the quoted papers, see e.g. Thm.7 on p.51 of [4]. The generality of that approach enables one to investigate the lattice of logics of programs (or dynamic logics), see the figure on p.109 of [4], and for more results and detailed proofs in this direction see [19]. The proof methods in the quoted general works are similar to the model theoretic proofs in the book Henkin-Monk-Tarski-Andréka-Németi [18]. The algebraization of our general dynamic logic (of programs) yields Crs_{α} -s defined in the quoted book.

5. AN EXAMPLE FOR NONSTANDARD TRACES

So far we restricted ourselves to models of Peano's arithmetic PA. Specially, our similarity type t was required to contain the symbols +,.,O,1 with arities 2,2,0,0 respectively. However, all what we really used in our definitions, e.g. in the definition of continuous traces, was 0 and succ where succ is the successor function.

Let the similarity type d consist of the symbols O,succ,pred of arities O,1,1 only. Here succ is the successor and pred is the predecessor, i.e. the standard model of type d is $\omega \stackrel{d}{=} \frac{d}{=} \langle \omega, O, \text{succ,pred} \rangle$ where $(\forall n \in \omega) [\operatorname{succ}(n) = n+1]$ and $\operatorname{pred}(n+1) = n]$ and $\operatorname{pred}(O) = O$. Let $Pa \stackrel{d}{=} \{\varphi \in L_d : \omega \models \varphi\}$. It is well known that Pa is decidable. Of course $PA \models Pa$.

In the present section we shall use Pa instead of PA and d

instead of t. Our aims with this change are simplicity and better understanding of the basic methods underlying the so called nonstandard time semantics approach.

<u>PROPOSITION 2</u> Let $T \subseteq L_d$ and assume $T \supseteq Pa$. Let $p \in P_d$ and $\psi \in L_d$ be arbitrary. Assume $T \models FH (p, \psi)$. Then (p, ψ) is partially correct in every model of T w.r.t. continuous traces. In concise form: $T \models FH (p, \psi) \Rightarrow (\forall 0 \in Mod(T)) \in 0 \models DC (p, \psi).$

<u>Proof.</u> Let $T \supseteq Pa$, $p = \langle (i_0: u_0), \dots, (i_n: u_n) \rangle \in P_d$ and $V_p = \{y_1, \dots, y_k\}$. Assume $T \models FH (p, \psi)$. We want to show partial correctness of (p, ψ) w.r.t. continuous traces in models of T.

Let $\mathcal{U} \models T$ and let $\langle s_a \rangle_{a \in A}$ be a continuous trace of p in \mathcal{U} . Let $\langle \phi_z \rangle_{z \in \text{lab}(p)} = \phi$: lab $(p) \rightarrow L$ belong to a Floyd-Hoare derivation of $\langle p, \psi \rangle$ from T. Recall that y_1, \ldots, y_k are the variables occurring in p. Therefore we may use y_0 as "control variable" (i.e. for λ). Define

$$\begin{array}{c} (y_0, y_1, \dots, y_k) \stackrel{d}{=} & \bigwedge \\ & (y_0 \stackrel{=i_m}{\longrightarrow} \phi_{i_m}(y_1, \dots, y_k)) \land \\ & & ((\bigwedge \\ m=1 \\ y_0 \stackrel{\neq i_m}{\longrightarrow}) \stackrel{\neq}{\rightarrow} \psi(y_1, \dots, y_k)). \end{array}$$

Now $\phi \in L$ and $\mathcal{U} \models \Phi[s_0] \land \land (\Phi[s_a] \to \Phi[s_{\operatorname{succ}(a)}])$. (This is true because ϕ : $\operatorname{lab}(p) \to L$ belongs to a Floyd-Hoare derivation of (p, ϕ) and $\langle s_a \rangle_{a \in A}$ is a trace of p in \mathcal{U} .) Since $\langle s_a \rangle_{a \in A}$ is, in addition, continuous, $\mathcal{U} \models \land \Phi[s_a]$. Let

Since $\langle s_a \rangle_{a \in A}$ is, in addition, continuous, $\mathcal{U} \models \land \ \ \varphi[s_a]$. Let $a \in A$ be such that $s_a(\lambda) \notin \{i_m : m \le n\}$. Then $\mathcal{U} \models \varphi[s_a]$ implies $\mathcal{U} \models \varphi[s_a]$, by the definition of φ . This means $\mathcal{U} \models \overset{pc}{=} (p, \varphi)$ since $\langle s_a \rangle_{a \in A}$ was an arbitrary continuous trace of p in \mathcal{U} .

We did this proof for programs p satisfying $v_p = \{y_1, \dots, y_k\}$. Note that this does not restrict generality. <u>QED</u>

Proposition 2 above shows that it is useful to construct continuous traces of programs in models of $Pa_{,}$ too, since if the output of a continuous trace of the program $p \in P_{,d}$ in a possibly nonstandard model

 $Q_{L} \models Pa$ does not satisfy the output condition ψ then $Pa \models \frac{FH}{f} (p, \psi)$ i.e. then the partial correctness of (p, ψ) is not Floyd provable from Pa.

EXAMPLE

Let the similarity type d consist of the symbols 0,succ,pred of arities 0,1,1.

<u>l.</u>

We define the program $p \in P_d$ by the block-diagram on Figure 2.

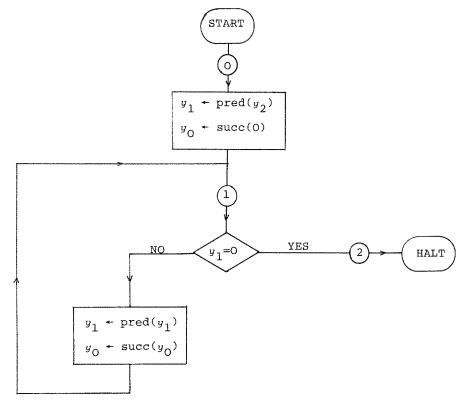


FIGURE 2

Clearly $p \in P_d$. Let ϕ be $y_0 = y_2$. Then $\phi \in L_d$ and the free variables of ϕ are in V_p . We shall call ϕ the *output condition*, because we shall consider partial correctness of the statement (p, ϕ) .

Next we construct a nonstandard model \mathcal{U} of our simplified number theory Pa.

z denotes the set of integers, i.e. $z \stackrel{d}{=} \omega \cup \{-n : 0 \le n \le \omega\}$. We define $A \stackrel{d}{=} (\{0\} \le \omega) \cup (\{1\} \le z)$. See Figure 3.

2.

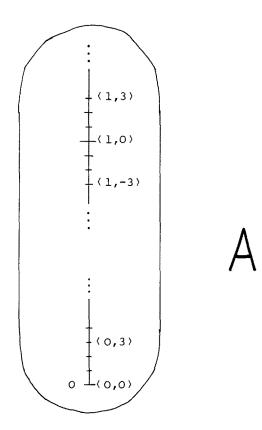


FIGURE 3

Now we define a model ℓl of similarity type d such that the universe of ℓl is A defined above, and the function symbols succ, pred,O are defined on A as follows:

Let $(a,b)\in A$. Then $\operatorname{succ}((a,b)) \stackrel{d}{=} (a,b+1)$, $\operatorname{pred}((a,b+1)) \stackrel{d}{=} (a,b)$, $\operatorname{pred}((0,0)) \stackrel{d}{=} (0,0)$. We define 0 of \mathcal{O} to be (0,0).

We shall call $(0,b) \in A$ a standard number and (1,b) a nonstandard number.

3. Next we construct a continuous trace f of p in $\mathcal{O}l$.

Recall from Definition 1 that a trace of p in ℓl is a sequence $s = \langle s_a \rangle_{a \in A}$ of valuations $s_a : \{y_0, y_1, y_2, \lambda\} \rightarrow A$ of the variables where λ is the control variable. We shall identify this sequence s with a 4-tuple $\langle f_0, f_1, f_2, f_\lambda \rangle$ of sequences $f_i : A \rightarrow A$ such that $f_0 \stackrel{d}{=} \langle s_a(y_0) : a \in A \rangle, \ldots, f_\lambda \stackrel{d}{=} \langle s_a(\lambda) : a \in A \rangle$. Clearly $f_i : A \rightarrow A$ for $i \in \{0, 1, 2, \lambda\}$.

Note that we can consider f_i to be the history of the content of the program variable y_i during execution of p i.e. during time. For $a \in A$ we can say that $f_i(a)$ is the content of the variable y_i at time point a.

Now let $f_0 : A \rightarrow A$ and $f_1 : A \rightarrow A$ be as indicated on Figure 4. See also Figure 5. That is:

 $f_{O}(\langle a_{O}, a_{1} \rangle) \stackrel{d}{=} \begin{cases} \langle a_{O}, a_{1} \rangle & \text{if } a_{O}=0 \text{ or } a_{1}<0 \\ \\ \langle 1, O \rangle & \text{otherwise,} \end{cases}$

$$f_1(\langle a_0, a_1 \rangle) \stackrel{d}{=} \begin{cases} \langle 1, -a_1 \rangle & \text{if } a_0 = 0 \\ \langle 0, -a_1 \rangle & \text{if } a_0 = 1 \text{ and } a_1 < 0 \\ \langle 0, 0 \rangle & \text{if } a_0 = 1 \text{ and } a_1 \ge 0. \end{cases}$$

We define

4.

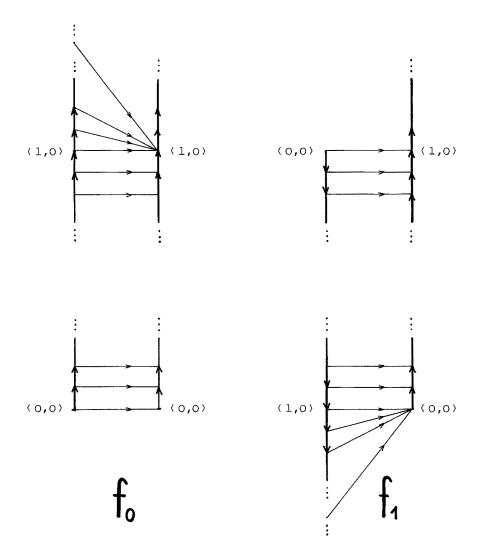
 $f_2(a) \stackrel{d}{=} (1,0)$ for every $a \in A$, and

$$f_{\lambda}(\langle a_{0},a_{1}\rangle) \stackrel{d}{=} \begin{cases} \langle 0,0\rangle & \text{if } a_{0}=a_{1}=0\\ \langle 0,1\rangle & \text{if } \langle a_{0}=0, a_{1}\rangle 0 \rangle \text{ or } \langle a_{0}=1, a_{1}\langle 0\rangle\\ \langle 0,2\rangle & \text{if } a_{0}=1 \text{ and } a_{1}\geq 0. \end{cases}$$

Now it is easy to see that $f \stackrel{d}{=} \langle f_0, f_1, f_2, f_{\lambda} \rangle$ is a trace of p in ℓl , continuity of which will be proved below.

PROPOSITION 3 Let d, $p \in P_d$, $\mathcal{O}L$, f be as defined above. Then f is a continuous trace of p in $\mathcal{O}L$.

Proof. For every $a \in A$ let $s_a : v_p \cup \{\lambda\} \to A$ be the valuation of the variables of p into \mathcal{O} be defined by $s_a(y_i) \stackrel{d}{=} f_i(a)$ for $i \in \{0, 1, 2\}$ and $s_a(\lambda) \stackrel{d}{=} f_{\lambda}(a)$. According to our convention made earlier, we identify the sequence $\langle s_a \rangle_{a \in A}$ with f and therefore we shall say that we want to prove that f is a continuous trace of p in \mathcal{O} .



We shall use the following notation: Let $\varphi \in L_d$ with free variables in $v_p \cup \{\lambda\}$ and let $a \in A$. Therefore it is meaningful to write that $\mathfrak{A} \models \varphi [s_a]$ because $s_a : v_p \cup \{\lambda\} \rightarrow A$.

 $\tilde{f}(a)$ denotes the sequence $\langle f_0(a), f_1(a), f_2(a), f_{\lambda}(a) \rangle$. We define $\mathcal{O} \models \varphi[\tilde{f}(a)]$ to mean that $\mathcal{O} \models \varphi[s_a]$.

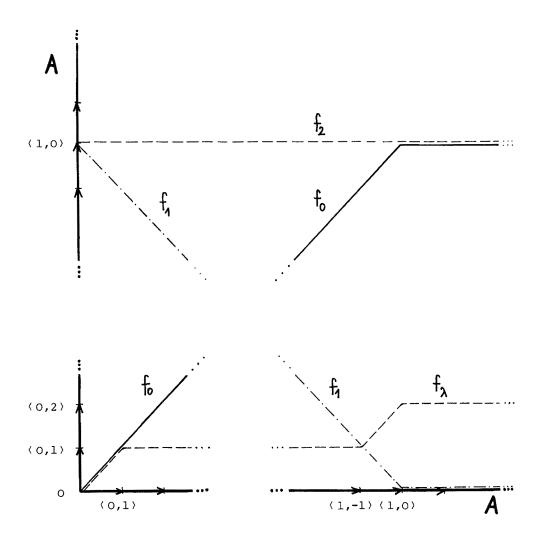
In order to prove that f is a continuous trace of p in \mathfrak{A} , it is enough to prove for every $\varphi(y_0, y_1, y_2, \lambda) \in L_d$ that

$$\mathcal{U} \models ((\varphi \llbracket \tilde{f}(O) \rrbracket \land \land (\varphi \llbracket \tilde{f}(a) \rrbracket \rightarrow \varphi \llbracket \tilde{f}(\operatorname{succ}(a)) \rrbracket)) \rightarrow \land \varphi \llbracket \tilde{f}(a) \rrbracket),$$

$$a \in A \qquad a \in A$$

We shall prove this indirectly: Assume that there is a $\varphi(y_0, y_1, y_2, \lambda) \in L_d$ such that $\mathcal{U} \models (\varphi[\overline{f}(0)] \land \land (\varphi[\overline{f}(a)] \rightarrow \varphi[\overline{f}(succ(a))]))$ (1)a∈A \mathfrak{O} $\models \land \mathfrak{p}[\overline{f}(a)]$ i.e. there is an $a \in A$ such that but \mathcal{O} $\models 1 \oplus \overline{f}(a)$]. (2)Recall that $\overline{f} : A \rightarrow A$ is as represented on Figure 5, i.e.: for every $0 < n \in \omega$ we have $\vec{f}(\langle 0,n \rangle) = \langle \langle 0,n \rangle, \langle 1,-n \rangle, \langle 1,0 \rangle, \langle 0,1 \rangle \rangle,$ $\overline{f}(\langle 1, -n \rangle) = \langle \langle 1, -n \rangle, \langle 0, n \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \rangle,$ $\overline{f}(\langle 0,0\rangle) = \langle \langle 0,0\rangle, \langle 1,0\rangle, \langle 1,0\rangle, \langle 0,0\rangle\rangle,$ $\overline{f}(\langle 1,0\rangle) = \langle \langle 1,0\rangle, \langle 0,0\rangle, \langle 1,0\rangle, \langle 0,2\rangle \rangle.$ Note that f_2 is a constant function and f_{λ} is almost constant. By (1) we have $\emptyset \models \varphi[\bar{f}(a)]$ for every standard number $a \in A$, i.e. we have that $(\forall n \in \omega)$ $\emptyset \models \varphi [\overline{f}(\langle 0, n \rangle)]$ i.e. $(I \models \varphi[(0,n),(1,-n),(1,0),(0,1)] \text{ for all } 0 \le n \le \omega.$ (3)(See Figure 5.) Then a is a nonstandard number in (2) i.e. there is a $z \in \mathbb{Z}$ such that $\mathcal{U} \models_{\exists \varphi}[\overline{f}(\langle 1, z \rangle)]$. (See Figure 6.) Then, by (1), we have that $(\forall_{w \leq z}) \ \mathcal{U} \models_{1} \varphi[\overline{f}(\langle 1, w \rangle)]$. Then there is an $m \in \omega$ such that $(\forall n > m)$ $\mathcal{O}[\models \neg \varphi[\overline{f}(\langle 1, -n \rangle)],$ i.e. $(\forall n > m)$ $\mathcal{O} \models \neg \varphi [\langle 1, -n \rangle, \langle 0, n \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle].$ (4)(See Figure 5.) Let F be a nonprincipal ultrafilter over ω . ${\boldsymbol{\mathcal{S}}}$ denotes the ultrapower ${}^{\omega} \mathcal{O} (\mathcal{I} / \mathcal{F})$. For & see Figure 9. We define $b \stackrel{d}{=} \langle \langle O, n \rangle : n \in \omega \rangle / p$, $c \stackrel{d}{=} \langle \langle 1, -n \rangle : n \in \omega \rangle / m$, $d \stackrel{d}{=} \langle \langle 1, 0 \rangle : n \in \omega \rangle /_{F}$, $e \stackrel{d}{=} \langle \langle 0, 1 \rangle : n \in \omega \rangle /_{F}$. Clearly $b, c, d, e \in B$. Then, by Los' lemma and (3) we have (5) $\mathcal{L} \models \varphi[b, c, d, e].$ By Los lemma and (4) we have $\mathcal{L} \models 10[c, b, d, e].$ (6)We define succ^n for $n \in \omega$ as: $\operatorname{succ}^{\mathsf{O}}(g) \stackrel{d}{=} g$ and $\operatorname{succ}^{n+1}(g) \stackrel{d}{=}$

we define succ for $n \in \omega$ as: succ (g) = g and succ $(g) = \frac{d}{d} = \operatorname{succ}(\operatorname{succ}^n(g))$ for every $g \in B$. predⁿ is defined similarly to succⁿ.



Clearly, \mathcal{K} contains the following 2 "chains" y,w illustrated on Figure 7. See also Figure 8.

More precisely, Y and W are the two subalgebras of $\langle B, \text{succ}, pred \rangle$ generated by the elements b and c respectively. Then $b \in Y$ and $c \in W$ and Y is the smallest subset of B closed under succ and pred and containing b. Similarly for W and c. Then

 $\langle Y, succ, pred \rangle \cong \langle W, succ, pred \rangle.$

Let $k : \langle Y, \text{succ, pred} \rangle \rightarrow \langle W, \text{succ, pred} \rangle$ be an isomorphism such that k(b) = c. For any $g \in B$ we define

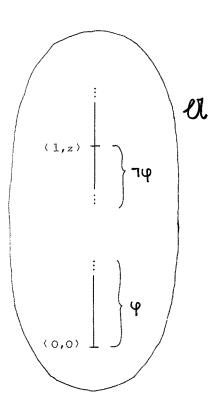


FIGURE 6

 $h(g) \stackrel{d}{=} \begin{cases} k(g) & \text{if } g \in Y \\ k^{-1}(g) & \text{if } g \in W \\ g & \text{otherwise.} \end{cases}$

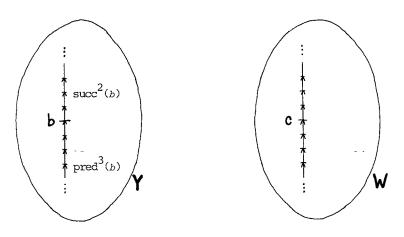
Then $h : B \to B$ is a function. Moreover, $h : \mathscr{L} \to \mathscr{L}$ is an automorphism of \mathscr{L} . See Figure 9. Therefore by (5) we have $\mathscr{L} \models \varphi[h(b), h(c), h(d), h(e)]$, that is $\mathscr{L} \models \varphi[c, b, d, e]$. But this contradicts (6).

We derived a contradiction from the assumption (2). This proves $\mathcal{O} \models \land \varphi [\tilde{f}(a)]$. This completes the proof. <u>QED(Prop.3)</u> $a \in A$

Clearly the "halting point" of the trace f of p in $\mathcal{O}l$ is the time point (1,0). $f_0((1,0)) = (1,0)$ and $f_2((1,0)) = (1,0)$. Therefore the output condition $y_0 = y_2$ of p is satisfied by trace f of p in $\mathcal{O}l$.

5. Let $f'_{O}: A \rightarrow A$ differ from f_{O} only on the nonstandard numbers and such that if $a \in A$ is nonstandard then $f'_{O}(a) = \operatorname{succ}(f_{O}(a))$. In more

200



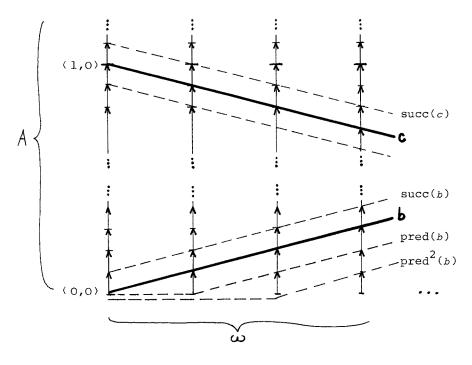


FIGURE 8

detail:

 $(\Psi_n \in \omega) [f'_O(\langle 0, n \rangle) = \langle 0, n \rangle, f'_O(\langle 1, -n \rangle) = \langle 1, (-n) + 1 \rangle, f'_O(\langle 1, n \rangle) = \langle 1, n + 1 \rangle].$ Let $f' \stackrel{d}{=} \langle f'_O, f_1, f_2, f_\lambda \rangle$. By the constructions in the proof of Proposition 3 it is very easy to see that f' is continuous e.g. by using

201

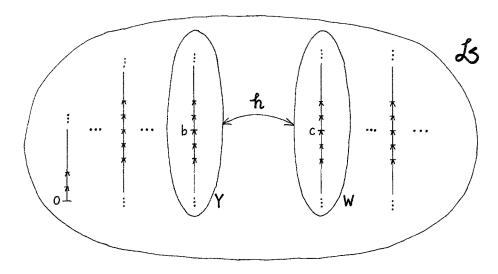


FIGURE 9

the fact that if we define $k(g) \stackrel{d}{=} \begin{cases} \operatorname{succ}(g) & \text{if } g \in W \\ \\ g & \text{otherwise} \end{cases}$ for all $g \in B$ then k is an automorphism of \mathcal{L} . The trace f' of p terminates (at time point (1,1)) with output $y_0 = \langle 1, 1 \rangle, y_1 = \langle 0, 0 \rangle, y_2 = \langle 1, 0 \rangle$. Then for this output $y_0 \neq y_2!$ Then in the sense of Definition 3 we have \mathbb{O} $\models \frac{pc}{p} (p, y_0 = y_2).$ 6. By Proposition 2 we have $\{\varphi \in L_{\mathcal{A}} : \mathcal{O} \models \varphi\} \models FH (p, \psi) \text{ and also } Pa \models FH (p, \psi)$ since the continuous trace f' of p in Ol terminates with an output not satisfying ψ . 7. Let d' be the similarity type d expanded with the relation symbol < with arity 2. We interpret < in U the lexicographical way i.e.: for every $\langle a_0, a_1 \rangle$, $\langle b_0, b_1 \rangle \in A$, $(a_0,a_1) < (b_0,b_1)$ iff either $a_0 < b_0$ or $(a_0=b_0$ and $a_1 < b_1)$. Let $\mathcal{O}l'$ be the model $\mathcal{O}l$ expanded with the relation < defined

203

above. Then \mathfrak{A}' is a model of similarity type d'. Let $f_i : A \rightarrow A$, $i \in \{0, 1, 2, \lambda\}$ be the functions defined in <u>3</u>. above. Then $f = \langle f_0, f_1, f_2, f_\lambda \rangle$ is a trace of p in \mathfrak{A}' . But the trace f of p is not continuous in \mathfrak{A}' !

REFERENCES

- [1] Andréka, H. Németi, I.: On the completeness problem of systems for program verification. (In Hungarian.) Math.Inst.Hung.Acad.Sci.--SZKI, 1977.
- [2] Andréka, H. Németi I.: Completeness of Floyd Logic. Bull.Section of Logic (Wrowlaw), Vol 7, No 3, (1978), pp.115-120.
- [3] Andréka, H. Németi, I.: A characterization of Floyd provable programs. Preprint, Math.Inst.Hung.Acad.Sci. No 8/1978. In: Mathematical Foundations of Computer Science'81 (Proc. Strbské Pleso Czechoslovakia) Ed.: J.Gruska, M.Chytil, Lecture Notes in Computer Science 118, Springer, Berlin, 1981. pp.162-171.
- [4] Andréka, H. Németi I.: A complete first order dynamic logic. Preprint, Math.Inst.Hung.Acad.Sci., No 810930,1980. pp.1-120.
- [5] Andréka, H. Németi, I. Sain, I.: Completeness problems in verification of programs and program schemes. Mathematical Foundations of Computer Science MFCS'79 (Proc. Olomouc, Czechoslovakia) Lecture Notes in Computer Science 74, Springer, Berlin, 1979. pp.208-218.
- [6] Andréka, H. Németi, I. Sain, I.: Henkin-type semantics for program schemes to turn negative results to positive. In: Fundamentals of Computation Theory FCT'79 (Proc. Berlin) Ed.: L.Budach, Akademie, Berlin. 1979. pp.18-24.
- [7] Andréka, H. Németi, I. Sain, I.: A complete logic for reasoning about programs via nonstandard model theory. Theoretical Computer Science Vol 17 (1982) Part I in No 2, Part II in No 3. To appear.
- [8] Bell,J.L. Slomson,A.B.: Models and Ultraproducts. North-Holland, 1969.
- [9] Biró,B.: On the completeness of program verification methods. Bull. Section of Logic, Wroclaw, Vol 10, No 2 (1981), pp.83-90.
- [10] Chang, C.C. Keiser, H.J.: Model Theory. North-Holland, 1973.
- [11] Cook,S.A.: Soundness and completeness of an axiom system for program verification. SIAM J. COMPUT. Vol 7, No 1, 1978, pp.70-90.
- [12] Csirmaz,L.: On definability in Peano Arithmetic. Bull.Section of Logic (Wroclaw), Vol 8, No 3, 1979. pp.148-153.
- [13] Csirmaz,L.: Programs and program verifications in a general setting. Theoretical Computer Science Vol 16 (1981), pp.199-211.
- [14] Csirmaz,L.: On the completeness of proving partial correctness. Acta Cybernetica, Tom 5, Fasc 2, Szeged, 1981. pp.181-190.
- [15] Csirmaz, L. Paris, J.: A property of 2-sorted Peano models and

program verification. Preprint, Math.Inst.Hung.Acad.Sci., 1981.

- [16] Dahn,B.I.: First order predicate logics for Kripke-Models. Dissertation(B). Humboldt Univ., Berlin, 1979.
- [17] Hájek,P.: Making dynamic logic first-order. In: Mathematical Foundations of Computer Science MFCS'81 (Proc.Strbské Pleso, Czechoslovakia) Ed.: J.Gruska, M.Chytil, Lecture Notes in Computer Science 118, Springer, Berlin, 1981. pp.287-295.
- [18] Henkin,L. Monk,J.D. Tarski,A. Andréka,H. Németi,I.: Cylindric Set Algebras. Lecture Notes in Mathematics 883, Springer-Verlag, Berlin, 1981. v+323p.
- [19] Németi,I.: Nonstandard dynamic logic. In: Proc. Workshop on Logics of Programs (May 1981, New York) Ed.: D.Kozen, Lecture Notes in Computer Science, To appear.
- [20] Richter, M.M. Szabo, M.E.: Towards a nonstandard analysis of programs. In: Proc. 2nd Victoria Symp. on Nonstandard Analysis (Victoria, British Columbia, June 1980) Lecture Notes in Mathematics. Ed.: A.Hurd, Springer Verlag, 1981.
- [21] Sain, I.: There are general rules for specifying semantics: Observations on abstract model theory. CL & CL Budapest, Vol 13, 1979. pp.251-282.
- [22] Sain,L.: First order dynamic logic with decidable proofs and workable model theory. In: Fundamentals of Computation Theory FCT'81, (Proc.Szeged, 1981) Ed.: F.Gécseg, Lecture Notes in Computer Science 117, Springer, Berlin, 1981. pp.334-340.
- [23] Salwicki, A.: Axioms of Algorithmic Logic univocally determine semantics of programs. In: Mathematical Foundations of Computer Science MFCS'80 (Proc. Rydzyna, Poland) Lecture Notes in Computer Science 88, Springer, Berlin, 1980. pp.552-561.