
NONSTANDARD RUNS OF FLOYD-PROVABLE PROGRAMS

I. N6meti

Mathematical Institute of the Hungarian Academy of Sciences

Budapest, Re~itanoda uo 13-15, H-IO53 Hungary

The question is investigated: "exactly which programs are provable

by the Floyd-Hoare inductive assertions method?"

Theorem 1 of ~bis paper says that from any theory T containing the

Peano axioms exactly those programs are Fioyd-Hoare provable which are

partially correct in the models of T w.r.t, continuous traces. In-

tuitively: the provable programs are the ones which are correct in

every perhaps nonstandard machine functioning perhaps in a nonstandard

time. Of course every nonstandard machine and time has to satisfy our

axioms T. This result was first proved in Andr6ka-N6meti [13 in Hun-

garian. It was announced in English in [23, [3~ and was quoted in

Salwicki [233s Csirmaz El3], Richter-Szabo [20] etc.

In section 5 concrete examples of simple nonstandard runs of pro-

grams are constructively defined and illustrated on figures. The em-

phasis in section 5 is on simplicity, with the aim to make nonstandard

runs and nonstandard models less esoteric, less imaginary, easy to

draw, easy to touch. In the proof of Proposition 3 it is demonstrated

how ultraproducts can be used to test applicability of Floyd's method

in concrete situations.

We are specifically interested in the behaviour of programs (or

"program schemes") in first order axiomatizable classes of models (or

"interpretations").

The central notion of the present paper is that of continuous

traces. Properties of continuous traces were investigated in Csirmaz

[133. A simpler and much more natural notion was introduced in [53,

[63, [21], [4], [7], [193. This improved approach was used in Csirmaz-

Paris [15], Sain [223, Csirmaz [14]. The quoted works use the general

methodology elaborated in Dahn [163 and Sain [21] for investigating

new logics.

The most readable introduction is [43 or if that is not available

then [7]. Further important works in the present nonstandard direction

are H~jek [17], Richter-Szabo [203. For more uses of ultraproducts

(cf. Proposition 3 here) see [193, [43 and a little in [7]. Copies

of all the above quoted papers of Andr6ka, csirmaz, N~meti or Sain

are available from the present author except [23 and ~12].

i. SYNTAX

187

Let t be a similarity type assigning arities to function symbols

and relation symbols. ~ denotes the set of natural numbers.

Y ~ {Yi : ie~} is called the set of variable symbols and is dis-

joint from everything we use. Logical symbols: {A,I,3}. Other sym-

bols: {~, IF, THEN, (,), :}. The set of "label symbols" is ~ itself.

L t denotes the set of all first order formulas of type t pos-

sibly with free variables (elements of Y of course), see e.g. ~i03

p.22. We shall refer to "terms of type t" as defined in e.g. [103 p.

22.

Now we define the set Pt of programs of type t.

The set u t of commands of type t is defined by:

(j : y ~ T) E U t if jE~, y6y and ~ is a term of type t.

(j : IF ~ THEN v) E u t if j,vEe, leL t is a formula without

quantifiers.

These are the only elements of u .
t

If (i:u)eu t then i is called the label of the command (i:u).

By a program of type t we understand a finite sequence of com-

mands (elements of u) in which no two members have the same label.
t

Formally, the set of programs is:

Pt ~ {((io:Uo~''"(in TMn)} : new, (¥e~n)(i e:Ue)EUt, (~e<k~n)ik@ie} .

d
io:U O) ... :u)) e Pt we shall use the notation For every P = ((' '(in n

d min(~\ {i : mSn}). in+l = m

EXAMPLE: Let t contain the function symbols "+,-,O,i" with arities

"2,2,0,0 " respectively. Now the sequence

< (O: Yl ~ O),(i: IF yl=g2 THEN 4),(2: Yl ~ gl +I)'(3: IF y2=Y2 THEN i)>

is a program of type t. See Figure i.

188

>

I Yl - Yl +I ~ NO

Yl " 0 1

_ _ ~ YES

FIGURE i

2. SEY~NTICS

Let pEP t be a program and 6~ be a structure or model of type

t0 see EIO]p.20. The universe of a model denote~by ~][will always

be denoted by A.

V denotes the variable symbols occurring in p. Note that v p P
is a finite subset of Y.

By a valuation (of the variables of p) in ~ we understand a

function q : v ~ A (cf. E8]p.55}. P
Let T be a term occurring in p. Now T[q3g~ denotes the value

of the term • in the model {A at the valuation q of the vari-

able symbols, cf. [iO3p.27 Def.l.3.13. We shall often write T[q3

i.e. we shall omit the subscript ~ .

From now on we work with the similarity type of arithmetic. I.e.

t is fixed to consist of "+,.,O~i" with arities "2,2,O,O". We

shall omit the index t since it is fixed anyway.

denotes the standard model of arithmetic, that is

"~ ~ < ~,+,',0,i) where +,',O,i are the usual.

189

EXAMPLE: Let Vp={yl,Y2} , q(gl)=2, q(g2)=3, T=((yl+g2)+Y2). Then

TEq3~ =8.

PACL denotes the (recursive) set of the Peano~axioms (together

with the induction axioms), see [iO3p.42 Ex.l.4.11 (axioms 1-7). We

shall only be concerned with models of the Peano-axioms.

We are going to define the continuous traces of a program in a

model of PA.

DEFINITION 1 Let <~ ~ PA be an arbitrary model (of Peano arithmetic).

Let pep be a program with set v of variables.
P d

A trace of p in ~ is a sequence s = (s a}aEA indexed by the

elements of A such that (i) and (ii) below are satisfied.

(i) s : v U{l} ~ A is a valuation of the variables (of p) into
a p
, where X E Y\V is a variable not Occurring in p. l can

p
be conceived of as the "control variable of p". (We could calls

a

a "state" of p in the model e)[.)

(ii) TO formulate this condition, let P = ((io:Uo)'''''(in:Un)) and

• d min(~\{i : m~n}). NOW we demand recall the notation Xn+l = m

So(l) = i O and for any aeA,

if Sa (I) ~ {im : m~n} then Sa+ 1 = Sa else

for all m~n such that s (I = i ,
a m

h o l d .

= " ~ ~" then a) if u m Yw

Sa+l(X) = im+ 1 and for any xEv ,
P

Sa+l(X) ~ iT[Sa3~ if x=y w

s (x) o t h e r w i s e .
a

b) if u = "IF X THEN v" then
m

i
v if ~ ~ X[S 3 a

Sa+l(l) =

~m+l o t h e r w i s e , a n d

Sa+l(X) = Sa(X), for every xEV .
P

By t h i s we h a v e d e f i n e d t r a c e s o f a p r o g r a m i n

conditions a) and b) below

0l as sequences

I90

< Sa>aE A "respecting the structure" of the program. End of Def.1.

DEFINITION 2 The sequence (s > is continuous in ~ if
a a~A

(Sa)aEA s a t i s f i e s t h e i n d u c t i o n a x i o m s , t h a t i s i f f o r a n y ~EL w i t h

free variables in v we have
P

~][~ ((~Eso3A A (~ESa~ -~ ~ESa+13)) ~ A ~Es 3). a
aEA aEA

By a continuous trace of p in ~)[we ~nderstand a trace < Sa>aE A

of p which is continuous. End of Def.2.

Note than in the standard model ~ every trace is continuous.

Intuitively, a trace <Sa)aEA is continuous if whenever a first

order property ~EL changes during time (A), then there exists a

point of time (aEA) when this change is just happening:

~ ~Es 3 and (~aEA) ~ ~ ~[s 3 together imply that
o a

(~aeA)(~ ~ ~[Sa3 and ~ ~[Sa+13).

DEFINITION 3 Let ~o = ((io:Uo),...~(in :un)) @ P and ~EL be such

that the free variables of ~ are in v . Let ~ ~ PA.
P

The pair (p~) is said to be partially correct in ~ w.r.t.

continuous traces if for any continuous trace < Sa>aeA of p in

and for any aEA s (~) ~ {i : m~n} implies ~ ~ ~Es ~.
a m a

~J~ ~ (p,~) denotes that the pair (p,~) is partially correct

in ~ w.r.t, continuous traces. End of Def.3.

3. DERIVATION SYSTEM (rules of inference)

In the following definition we recall the so called Floyd-Hoare

derivation system. This system serves to derive pairs (p,~) (where

pep and ~EL) from theories TCL.

DEFINITION 4 Let P = ((io~Uo)' (in:Un)> E p, let ~EL and let

TeL. T h e s e t o f l a b e l s o f p i s d e f i n e d a s

lab(p) d {i : m<_n+l} LJ (v : (3m<-n)u = "IF X THEN v"}.
n9 m

191

Note that lab(p) is finite.

A Floyd-Hoare derivation of (p,%) from T consists of a mapping

: lab(p) ~ L together with classical first-order derivations listed

in (i)-(iv) below.

Notation: When zelab(p) we write ~ instead of ¢(z).
z

(i) A derivation T ~ ~.
10

(ii) TO each command (im : yj ~ T) occurring in p a derivation

T ~ (¢. ~ ~. (yj/T)), where ~(g/T) denotes the formula
i m im+ 1

obtained from ~ by substituting T in place of y in the

usual way, cf. [83p.61.

(iii) To each command (i m : IF X THEN v) occurring in p derivations

T ~ ((xA~ i) ~ ~v) and T ~ ((]xA~ i) ~ ~).
m m im+l

(iv) TO each z e (lab(p)\{/ : m~n}) a derivation T ~ (~ -- ~).
m z

The existence of a Floyd-Hoare derivation of (p,#) from T is

denoted by T ~ (p,~). End of Def.4.

REMARKS: If T is decidable then the set of Floyd-Hoare derivations

(of pairs (p,~) where p6p and ~eL, from T) is also decidable. If

f is recursively enumerable then the Floyd-Hoare derivable pairs are

also recursively enumerable, i.e. {(p,~) : T I FH (p,~)} is recursi-

vely enumerable.

4. COMPLETENESS

Notation: MOd(T) ~ { ~ : ~ T} for any TCL.

THEOREM 1 Let TDPA be arbitrary. Let further p6p and ~EL be

also arbitrary. Then T ~ (p,~) if and only if (p,%) is par-

tially correct in every model of T w.r.t, continuous traces.

In concise form:

T ~ (p,~) ~ (¥~6Mod(T))~ (p,~).

Proof. The proof can be found in [33 which appeared in ~CS'81 pp.

162-171. QE__~D

192

The condition TDPA can be eliminated from the above theorem.

Moreover, the restriction that t is the similarity type of PA can

be eliminated, too. This generalization of Thm. l above is Thm. 9 of

E43 on p.56 there (see also Prop.12 there), and it is also stated in

Part II of E7] which is available in the literature. A somewhat modi-

fied version of this general theorem is Thm. 3.3 of [133.

A drawback of our present approach is that the meanings of programs

in ~ are continuous traces and that these continuous traces are not

elements of 0[, they are just functions s : A ~ A satisfying

certain axioms formulated in the metalanguage (and not in L). This

drawback is completely eliminated in the approach of E43, and of E7].

There the meanings of programs in a model qT[are elements of ~%

and all requirements are formulated in the subject language L, e.g.

continuity of traces is formulated by a set IA q of formulas in L.

The present approach is also extended to treat total correctness

in the quoted paper~ see e.g. Thm. 7 on p.51 of E43. The generality of

that approach enables one to investigate the lattice of logics of

programs (or dynamic logics~ see the figure on p.lO9 of E4] r and for

more results and detailed proofs in this direction see LI93. The proof

methods in the quoted general works are similar to the model theoretic

prQofs in the book Henkin-Monk-Tarski-Andr~ka-N~meti [18]. The alge-

braization of our general dynamic logic (of programs) yields Crs -s

defined in the quoted book.

5. AN EXAMPLE FOR NONSTANDARD TRACES

So far we restricted ourselves to models of Peano's arithmetic PA.

Speciall~ our similarity type t was required to contain the symbols

+,.,O,i with arities 2,2,0,0 respectively. However, all what we

really used in our definitions, e.g. in the definition of continuous

trace% was O and succ where succ is the successor function.

Let the similarity type d consist of the symbols O,succ,pred

of arities O,l,1 only. Here succ is the successor and pred is
d

the predecesso~ i.e. the standard model of type d is ! =

<~,O,succ,pred) where (¥ne~)Esucc(n) = n+l and pred(n+l) = n]

and pred(O) = O. Let pa ~ {~eL d : ~ ~ ~}. It is well known that

Pa is decidable. Of course PA ~ Pa.

In the present section we shall use Pa instead of PA and d

193

instead of t. Our aims with this change are simplicity and better

understanding of the basic methods underlying the so called nonstandard

time semantics approach.

DEFINITION 5 The definition of continuous traces of programs pEP d

in models of Pa should be clear, namely replace in Definitions 1,2

the statements "Let ~ ~ PA" by "Let ~ Pa" and replace a+l

everywhere by succ(a). End of Def.5.

PROPOSITION 2 Let T~L d and assume T~Pa. Let peP d and ~6L d be

arbitrary. Assume T ~ (p,~). Then (p,%) is partially correct in

every model of T w.r.t, continuous traces. In concise form:

Proof. Let TDPa,_ P = ((io:Uo)''''t(in :Un)> e Pd and Vp={Yl, yk }.

Assume T ~ (p,~). We want to show partial correctness of (p,¢)

w.r.t, continuous traces in models of T.

Let ~ ~ T and let < Sa>ae A be a continuous trace of p in ~ .

Let < Cz)z61ab(p) = ~ : lab(p) ~ L belong to a Floyd-Hoare derivation

of (p,~) from T. Recall that yl,...,y k are the variables occurring

in p. Therefore we may use YO as "control variable" (i.e. for i).

Define

~(YO "yl Yk) ~ m= I~ (YO-im-' ~ ~i (YI' .. .,yk)) A
m

n

A ((A Yo#im) ~ ~(yl,...,y~)).
m=l

NOW ~eL and 6~ ~[So3 A A (~[s] ~ #[s 3). (This is
aEA a SUCC(a)

true because # : lab(p) ~ L belongs to a Floyd-Hoare derivation of

(p,~) and (s) is a trace of p in ~/) a aEA
Since < sa)aeA is, in addition, continuous, ~ ~ A ~[Sa3. Let

a6A
aeA be such that sa(1) ~ {i : m~n}. Then ~ ~ ~[s] implies m a

~ ~[Sa], by the definition of #. This means ~ ~ (p,%) since

<Sa>a6 A was an arbitrary continuous trace of p in ~/

We did this proof for programs p satisfying v = {yl,...,yk}.
p

Note that this does not restrict generality. QED

Proposition 2 above shows that it is useful to construct continuous

traces of programs in models of Pa r too, since if the output of a

continuous trace of the program P@Pd in a possibly nonstandard model

~94

~ Pa does not satisfy the output condition % then Pa IFH/ (Pt~)

i.e. then the partial correctness of (p,%) is not Floyd provable from

Pa.

EXAMPLE

Let the similarity type d consist of the symbols O,succ,pred of

arities 0,I~i.

We define the program pEP d by the block-diagram on Figure 2.

i yl ~ pred(y
I

i~ YO succ(O) 1

r N°

YO ~ succ(~o) I

[I

YES

FIGURE 2

Clearly pEPd~ Let # be yO=Y2 . Then ~EL d and the free variables

of ~ are in v o We shall call ~ the output conditionr because
P

we shall consider partial correctness of the statement (p,~).

195

2.

Next we construct a nonstandard model ~ of our simplified number

theory Pa.

z denotes the set of integers, i.e. z ~ ~O{-n : O<ne~}. We

define A ~ ({O}×~)U({1}×Z). See Figure 3.

<1,3)

< 1,0)

<1,-3)

<0,3)

A

FIGURE 3

Now we define a model ~ of similarity type d such that the

universe of ~ is A defined above, and the function symbols succ,

pred,O are defined on A as follows:

Let (a,b}6A. Then sucC((a,b)) ~ (a,b+l), pred(<a,b+l)) ~ (a,b),

pred(CO,O)) ~ (O,0). We define 0 of {)~ to be <0,O).

We shall call (O,b)6A a standard number and (l,b) a nonstandard

number.

3o

Next we construct a continuous trace f of p in {~ .

196

Recall from Definition I that a trace of p in ~ is a sequence

s = <Sa)aEA of valuations Sa : {yO r yl,Y2, ~} ~ A of the variables

where X is the control variable. We shall identify this sequence s

with a 4-tuple < fo~fltf2,fl> of sequences fi : A ~ A such that

fo ~ (Sa(YO) : aEA) f~ ~ <s (~) : aeA>. Clearly f. : A ~ A a 1
for iE{O,ir2,i}.

Note that we can consider f. to be the history of the content of
i

the program variable Yi during execution of p i.e. during time.

For aEA we can say that f.(a) is the content of the variable l Yi
at time point a.

Now let fo : A ~ A and fl : A ~ A be as indicated on Figure 4.

See also Figure 5.

That is:

(< ao,a I if ao=O or al<O

fo((aoJal>) ~ I

<< !,0> otherwise,

fl(< aoral>) d=

We define

{!~-a 1

< O,-a 1

(0,0>

if ao=O

if ao=l and al<O

if ao=l and al~O.

f2(a) ~ < 1,O> for every a@AF and

i < OrO> if ao=al=O

fl(< ao,al>) ~ i< 0,i) if Co:O , el>O) or (ao=l , el<O]

(O,2> if ao=l and al~O.

Now it is easy to see that f ~ < fo,fl~f2,fl) is a trace of p in

, continuity of which will be proved below.

4.

PROPOSITION 3 Let d~ pEPd~,f be as defined above. Then f is a

continuous trace of p in f]L .

Proof. For every aEA let s : V u{l} ~ A be the valuation of the a p

variables of p into ~ be defined by s (yi) ~ f (a) for
a i

and s (~) ~ fx(a). According to our convention made iE{O,1,2} a
earlier, we identify the sequence < s > with f and therefore we a aEA
shall say that we want to prove that f is a continuous trace of p

197

<i,O) < 1,0) < 0,0>

I

i,O>

< O,O) = < i,O>

I
I < 0,O> O,O>

FIGURE 4

We shall use the following notation: Let ~EL d with free vari-

ables in v u{l} and let a~A. Therefore it is meaningful to write
P

that ~ b ~[s ~ because s : v u{i} ~ A. a a p

~(a) denotes the sequence { fo(a),fl(a),f2(a),fl(a)>. We define

6[b ~[~(a)3 to mean that {i b ~[Sa3.

In order to prove that f is a continuous trace of p in ~ ,

it is enough to prove for every ~(yo, Yl,Y2,1)EL d that

~, b ((~ [7 (O) 3 A A (~ [f (a) 3 ~ ~ [~ (s u c e (a)) 3)) ~ A ~ [7 (a) ~) ,
aCA aEA

198

We shall prove this indirectly:

Assume that there is a ~(yo,Yl,Y2rk)EL d such that

{)[~ (gE~(O)3A A (~ E f (a) 3 ~ ~ E ~ (s u c c (a)) 3))
aEA

but ~ ~ A ~C~(a)3 i.e. there is an aEA such that
a~A

Recall that ~ : A ~ 4A

O<nEw we have

~(<O,n)) : <<O,n)r< l~-n>t< I~0>,(0,i)) ,

~(< l,-n)) = << l,-n),(O,n>,< 1,0),< 0,i)}

~(<0,0>) = << O,O),<l,O>,(1,0>,<0,0>> ,

~(< i,O}) = < < i,O),(O,O),< i,O),< O,2>> .

Note that f2 is a constant function and fk

By (I) we have ~. ~ 9E~(a)3 for every standard number

have that (~nEw) {~ b ~E~((O,n>)3 i.e.

~ ~[< Otn>~< i~-n}~(1,0),< O,i)] for all O<nE~.

(i)

(2)

is as represented on Figure 5, i.e.: for every

is almost constant.

aEA t i.e. we

(3)

(See Figure 5.)

a zEZ such that 4J[b q g[~(< l,z))3. (See Figure 6.)

Thenr by (1), we have that (~w~z) ~)~ ~ 1~E~((l,w>)].

is an mew such that (~n>m) ~J[b 1~[~(<l,-n>)], i.e.

Then a is a nonstandard number in (2) i.e. there is

Then there

(~n>m) {)[b i~-~ 1,-n)~(O,n>,< 1,0>,< O,i>3. (4)

(See Figure 5.)

Let F be a nonprincipal ultrafilter over

ultrapower w~I/F° For ~5 see Figure 9. We define

b d (< O,n> : nE~)/F .,
d

c = ((l,-n) : neW)/p !

d d <<i,0> : nE~)/F ,
d

e = ((O,i) : new)/
F

C l e a r l y b r c , d , o E B . Thenr by Lo~ lemma and (3) we h a v e

~ ~ [b l c t d l e] .

!

By Los lemma and (4) we have

~ i 9[clb~d,e3o

We define succ n

succ(succn(g))

for new

w. ~ denotes the

(5)

for every

(6)

as: succO(g) d n+l(g d = g and succ) =

g@B. pred n is defined similarly to succ n.

199

A

1,0

\

\

\

\
\

0,2

0,i

9 • •

\ /

\ / /
\

\

<O,i) < i,-i> (i,0) r A

FIGURE 5

Clearly r ~ contains the following 2 "chains" Y,W illustrated

on Figure 7. See also Figure 8.

More precisely, Y and w are the two subalgebras of < B,succ,

pred> generated by the elements b and c respectively. Then bEY

and cEw and Y is the smallest subset of B closed under succ

and pred and containing b. Similarly for W and c. Then

< Y,SUCc,pred) ~ (w,succ,pred).

Let k : (Y,SUCc,pred) ~ (w, succ,pred) be an isomorphism such that

k(b) = c. For any g6B we define

200

/
J
!
i
l

< l,z>

FIGURE 6

/k(g) if g@Y

h(g) ~ ik-l(g) if g~W

I g ot herwi se.

Then h : B ~ B is a function. Moreover, h : ~ ~ ~ is

an automorphism of ~ See Figure 9.

Therefore by (5) we have ~ ~ ~Ch(b),h(c),h(d),h(e)], that is ~ b

b ~[c,b,d,e]. But%his contradicts (6).

We derived a contradiction fr~mthe assumption (2). This proves

b A ~[~(a)]. This completes the proof. QED(Prop.~)
aCA

Clearly the "halting point" of the trace f of p in ~ is

the time point (1,0>. fo(< 1,0>) = {1,O) and f2(< itO>) = { 1,0>.

Therefore the output condition yo=Y2 of p is satisfied by trace

f of p in ~

5.

n Let fo : A ~ A differ from fo only on the nonstandard numbers and

such that if aEA is nonstandard then f~(a) = succ(fo(a)). In more

201

FIGURE 7

A

<i,0)'

< 0,O)

- succ(c)

i

14
J

i
i

i
i i

I

I
I

i
i

Oo
J

succ(b)
.I-

I " pred(b)

~-pred 2 (b)
/

FIGURE 8

detail:

(~n@~)Ef~((O,n)) = < O,n), f~((l,-n)) = < l,(-n)+l), f~(< l,n)) = (l,n+l)3.

Let f' < fo,fl,f2,fx). By the constructions in the proof of Propo-

sition 3 it is very easy to see that f' is continuous e.g. by using

202

!

o,,

FIGURE 9

the fact that if we define

k(g) ~ [succ(g) if g6 w

Ig otherwise

for all gEB then k is an au~morphism of

The trace f' of p terminates (at time point < 1,1)) with output

YO = < i,i)~ Yl = < O,O), Y2 = (i~O>. Then for this output YO # Y2 !

Then in the sense of Definition 3 we have

~ ~pc/_ (p~yO=Y2) "

6.

By Proposition 2 we have

{~L d : ~ ~} ~-~(Ps~) and also Pa IFH/ (p,~)

since the continuous trace f~ of p in ~ terminates with an

output not satisfying ~.

7.

Let d ~ be the similarity type d expanded with the relation symbol

< with arity 2~ We interpret < in £[the lexicographical way i.e.:

for every (ao,al}, <bo,bl)EAr

< ao,al) < < bo~bl) iff either ao<b O or (ao=b O and al<bl).

Let ~r be the model ~ expanded with the relation < defined

203

above. Then /it' is a model of similarity type d'. Let f. : A
1

A, iE{O,I,2,1} be the functions defined in 3. above. Then

f = (fo,fl,f2,fl} is a trace of p in ~'. But the trace f of

p is not continuous in {)%'!

REFE~NC~S
[i] Andr~ka,H. N~meti,I.: On the completeness problem of systems for

program verification. (In Hungarian.) Math. Inst.Hung.Acad. Sci.-
-SZKI, 1977.

[23 Andr~ka,H. N~meti I.: Completeness of Floyd Logic. Bull. Section
of Logic (Wrowlaw), Vol 7, No 3, (1978), pp. l15-120.

[33 Andr~ka,H. N6meti,I.: A characterization of Floyd provable pro-
g~ams. Preprint, Math. Inst.Hung.Acad. Sci. No 8/1978. In: Mathe-
matical Foundations of Computer Science'81 (Proc. Strbsk~ Pleso
Czechoslovakia) Ed.: J.Gruska, M.Chytil, Lecture Notes in Computer
Science 118, Springer, Berlin, 1981. pp.162-171.

[43 Andr~ka,H. N~meti I.: A complete first order dynamic logic.
Preprint, Math. Inst. Hung.Acad. Sci., No 810930,1980. pp.l-120.

[5] Andr~ka,H. N6meti,I. Sain,I.: Completeness problems in verifica~
tion of programs and program schemes. Mathematical Foundations of
Computer Science MFCS'79 (Proc. Olomouc, Czechoslovakia) Lecture
Notes in Computer Science 74, Springer, Berlin, 1979. pp.208-218.

[63 Andr~ka,H. N~meti,Ii Sain,I.: Henkin-type semantics for program
schemes to turn negative results to positive. In: Fundamentals of
Computation Theory FCT'79 (Proc. Berlin) Ed.: L.Budach, Akademie,
Berlin. 1979. pp.18-24.

[7]

[83

Andr~ka,H. N6meti,I. Sain,I.: A complete logic for reasoning about
programs via nonstandard model theory. Theoretical Computer
Science Vol 17 (1982) Part I in No 2, Part II in No 3. To appear.

BelI,J.L. Slomson,A.B.: Models and Ultraproducts. North-Holland,
1969.

[93 Bir6,B.: On the completeness of program verification methods.
Bull. Section of Logic, Wroclaw, Vol iO, No 2 (1981), pp.83-90.

[103 Chang,C.C. Keiser,H.J.: ~del Theory. North-Holland, 1973.
i

[113 Cook,S.A.: Soundness and completeness of an axiom system for
program verification. SIAM J. C~IPUT. Vol 7, No i, 1978, pp.70-90.

[123 Csirmaz,L.: On definability in Peano Arithmetic. Bull. Section of
Logic (Wroclaw), Vol 8, No 3, 1979. pp.148-153.

[133 Csirmaz,L.: Programs and program verifications in a general
setting. Theoretical Computer Science Vol 16 (1981), pp.199-211.

[143 Csirmaz,L.: On the completeness of proving partial correctness.
Acta Cybernetica, Tom 5, Fasc 2, Szeged, 1981. pp.181-190.

[153 Csirmaz,L. Paris,J.: A property of 2-sorted Peano models and

204

program verification. Preprint, Math. Inst. Hung.Acad. Sci., 1981.

[163 Dahn,B.I.: First order predicate logics for Kripke-~dels. Disser-
tation(B). Humboldt Univ., Berlin, 1979.

[17] H6jek,P.: Making dynamic logic first-order. In: Mathematical
Foundations of Computer Science }~CS'81 (Proc. Strbsk6 Pleso,
Czechoslovakia) Ed.: J.Gruska, M. Chytil, Lecture Notes in Computer
Science 118, Springer, Berlin, 1981. pp.287-295.

E183 Henkin,L. MonkrJ.D. Tarski,A. Andrdka,H. N6meti,I.: Cylindric
Set Algebras. Lecture Notes in Mathematics 883, Springer-Verlag,
Berlin, 1981. v+323p.

El9] N6meti~I.: Nonstandard dynamic logic. In: Proc. Workshop on
Logics of Programs (~y 1981, New York) Ed.: D.Kozen, Lecture
Notes in Computer Science, To appear.

[203 Richter,M.M. Szabo,M.E.: Towards a nonstandard analysis of pro-
grams. In: Proc. 2nd Victoria Symp. on Nonstandard Analysis (Vic-
toria, British Columbia, June 1980) Lecture Notes in Mathematics.
Ed. : A.Hurd, Springer Verlag, 1981.

E213 Sain,I. : There are general rules for specifying semantics: Obser-
vations on abstract model theory. CL & CL Budapest, Vol 13, 1979.
pp.251-282.

[223 Sain,L.: First order dynamic logic with decidable proofs and
workable model theory. In: Fundamentals of Computation Theory
FCT'81, (Proc. Szeged, 1981) Ed.: F.G6cseg, Lecture Notes in
Computer Science 117, Springer, Berlin, 1981. pp.334-340.

[23] Salwicki,A.: Axioms of Algorithmic Logic univocally determine
semantics of programs. In: Mathematical Foundations of Computer
Science MFCS'80 (Proc. Rydzyna, Poland) Lecture Notes in Computer
Science 88, Springer, Berlin, 1980. pp.552-561.

