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The question is investigated: "exactly which programs are provable 

by the Floyd-Hoare inductive assertions method?" 

Theorem 1 of ~bis paper says that from any theory T containing the 

Peano axioms exactly those programs are Fioyd-Hoare provable which are 

partially correct in the models of T w.r.t, continuous traces. In- 

tuitively: the provable programs are the ones which are correct in 

every perhaps nonstandard machine functioning perhaps in a nonstandard 

time. Of course every nonstandard machine and time has to satisfy our 

axioms T. This result was first proved in Andr6ka-N6meti [13 in Hun- 

garian. It was announced in English in [23, [3~ and was quoted in 

Salwicki [233s Csirmaz El3], Richter-Szabo [20] etc. 

In section 5 concrete examples of simple nonstandard runs of pro- 

grams are constructively defined and illustrated on figures. The em- 

phasis in section 5 is on simplicity, with the aim to make nonstandard 

runs and nonstandard models less esoteric, less imaginary, easy to 

draw, easy to touch. In the proof of Proposition 3 it is demonstrated 

how ultraproducts can be used to test applicability of Floyd's method 

in concrete situations. 

We are specifically interested in the behaviour of programs (or 

"program schemes") in first order axiomatizable classes of models (or 

"interpretations"). 

The central notion of the present paper is that of continuous 

traces. Properties of continuous traces were investigated in Csirmaz 

[133. A simpler and much more natural notion was introduced in [53, 

[63, [21], [4], [7], [193. This improved approach was used in Csirmaz- 

Paris [15], Sain [223, Csirmaz [14]. The quoted works use the general 

methodology elaborated in Dahn [163 and Sain [21] for investigating 

new logics. 

The most readable introduction is [43 or if that is not available 

then [7]. Further important works in the present nonstandard direction 

are H~jek [17], Richter-Szabo [203. For more uses of ultraproducts 

(cf. Proposition 3 here) see [193, [43 and a little in [7]. Copies 

of all the above quoted papers of Andr6ka, csirmaz, N~meti or Sain 

are available from the present author except [23 and ~12]. 
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Let t be a similarity type assigning arities to function symbols 

and relation symbols. ~ denotes the set of natural numbers. 

Y ~ {Yi : ie~} is called the set of variable symbols and is dis- 

joint from everything we use. Logical symbols: {A,I,3}. Other sym- 

bols: {~, IF, THEN, (,), :}. The set of "label symbols" is ~ itself. 

L t denotes the set of all first order formulas of type t pos- 

sibly with free variables (elements of Y of course), see e.g. ~i03 

p.22. We shall refer to "terms of type t" as defined in e.g. [103 p. 

22. 

Now we define the set Pt of programs of type t. 

The set u t of commands of type t is defined by: 

(j : y ~ T) E U t if jE~, y6y and ~ is a term of type t. 

(j : IF ~ THEN v) E u t if j,vEe, leL t is a formula without 

quantifiers. 

These are the only elements of u . 
t 

If (i:u)eu t then i is called the label of the command (i:u). 

By a program of type t we understand a finite sequence of com- 

mands (elements of u ) in which no two members have the same label. 
t 

Formally, the set of programs is: 

Pt ~ {( (io:Uo~''"(in TMn )} : new, (¥e~n)(i e:Ue)EUt, (~e<k~n)ik@ie} . 

d 
io:U O) ... :u )) e Pt we shall use the notation For every P = (( ' '(in n 

d min(~\ {i : mSn}). in+l = m 

EXAMPLE: Let t contain the function symbols "+,-,O,i" with arities 

"2,2,0,0 " respectively. Now the sequence 

< (O: Yl ~ O),(i: IF yl=g2 THEN 4),(2: Yl ~ gl +I)'(3: IF y2=Y2 THEN i)> 

is a program of type t. See Figure i. 
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> 

I Yl - Yl +I ~ NO 

Yl " 0 1 

_ _ ~  .... YES 

FIGURE i 

2. SEY~NTICS 

Let pEP t be a program and 6~ be a structure or model of type 

t0 see EIO]p.20. The universe of a model denote~by ~][ will always 

be denoted by A. 

V denotes the variable symbols occurring in p. Note that v p P 
is a finite subset of Y. 

By a valuation (of the variables of p) in ~ we understand a 

function q : v ~ A (cf. E8]p.55}. P 
Let T be a term occurring in p. Now T[q3g~ denotes the value 

of the term • in the model {A at the valuation q of the vari- 

able symbols, cf. [iO3p.27 Def.l.3.13. We shall often write T[q3 

i.e. we shall omit the subscript ~ . 

From now on we work with the similarity type of arithmetic. I.e. 

t is fixed to consist of "+,.,O~i" with arities "2,2,O,O". We 

shall omit the index t since it is fixed anyway. 

denotes the standard model of arithmetic, that is 

"~ ~ < ~,+,',0,i) where +,',O,i are the usual. 
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EXAMPLE: Let Vp={yl,Y2} , q(gl)=2, q(g2)=3, T=((yl+g2)+Y2). Then 

TEq3~ =8. 

PACL denotes the (recursive) set of the Peano~axioms (together 

with the induction axioms), see [iO3p.42 Ex.l.4.11 (axioms 1-7). We 

shall only be concerned with models of the Peano-axioms. 

We are going to define the continuous traces of a program in a 

model of PA. 

DEFINITION 1 Let <~ ~ PA be an arbitrary model (of Peano arithmetic). 

Let pep be a program with set v of variables. 
P d 

A trace of p in ~ is a sequence s = (s a}aEA indexed by the 

elements of A such that (i) and (ii) below are satisfied. 

(i) s : v U{l} ~ A is a valuation of the variables (of p) into 
a p 
, where X E Y\V is a variable not Occurring in p. l can 

p 
be conceived of as the "control variable of p". (We could calls 

a 

a "state" of p in the model e)[ .) 

(ii) TO formulate this condition, let P = ((io:Uo)'''''(in:Un)) and 

• d min(~\{i : m~n}). NOW we demand recall the notation Xn+l = m 

So(l) = i O and for any aeA, 

if Sa (I) ~ {im : m~n} then Sa+ 1 = Sa else 

for all m~n such that s (I = i , 
a m 

h o l d .  

= " ~ ~" then a) if u m Yw 

Sa+l(X) = im+ 1 and for any xEv , 
P 

Sa+l(X) ~ iT[Sa3~ if x=y w 

s ( x )  o t h e r w i s e .  
a 

b) if u = "IF X THEN v" then 
m 

i 
v if ~ ~ X[S 3 a 

Sa+l(l) = 

~m+l  o t h e r w i s e ,  a n d  

Sa+l(X) = Sa(X), for every xEV . 
P 

By t h i s  we h a v e  d e f i n e d  t r a c e s  o f  a p r o g r a m  i n  

conditions a) and b) below 

0l as sequences 
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< Sa>aE A "respecting the structure" of the program. End of Def.1. 

DEFINITION 2 The sequence ( s > is continuous in ~ if 
a a~A 

(Sa)aEA s a t i s f i e s  t h e  i n d u c t i o n  a x i o m s  , t h a t  i s  i f  f o r  a n y  ~EL w i t h  

free variables in v we have 
P 

~][ ~ ((~Eso3A A (~ESa~ -~ ~ESa+13)) ~ A ~Es 3). a 
aEA aEA 

By a continuous trace of p in ~)[ we ~nderstand a trace < Sa>aE A 

of p which is continuous. End of Def.2. 

Note than in the standard model ~ every trace is continuous. 

Intuitively, a trace <Sa)aEA is continuous if whenever a first 

order property ~EL changes during time (A), then there exists a 

point of time (aEA) when this change is just happening: 

~ ~Es 3 and (~aEA) ~ ~ ~[s 3 together imply that 
o a 

(~aeA)( ~ ~ ~[Sa3 and ~ ~[Sa+13). 

DEFINITION 3 Let ~o = ((io:Uo),...~(in :un )) @ P and ~EL be such 

that the free variables of ~ are in v . Let ~ ~ PA. 
P 

The pair (p~) is said to be partially correct in ~ w.r.t. 

continuous traces if for any continuous trace < Sa>aeA of p in 

and for any aEA s (~) ~ {i : m~n} implies ~ ~ ~Es ~. 
a m a 

~J~ ~ (p,~) denotes that the pair (p,~) is partially correct 

in ~ w.r.t, continuous traces. End of Def.3. 

3. DERIVATION SYSTEM (rules of inference) 

In the following definition we recall the so called Floyd-Hoare 

derivation system. This system serves to derive pairs (p,~) (where 

pep and ~EL) from theories TCL. 

DEFINITION 4 Let P = ((io~Uo)' .... (in:Un)> E p, let ~EL and let 

TeL. T h e  s e t  o f  l a b e l s  o f  p i s  d e f i n e d  a s  

lab(p) d {i : m<_n+l} LJ (v : (3m<-n)u = "IF X THEN v"}. 
n9 m 
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Note that lab(p) is finite. 

A Floyd-Hoare derivation of (p,%) from T consists of a mapping 

: lab(p) ~ L together with classical first-order derivations listed 

in (i)-(iv) below. 

Notation: When zelab(p) we write ~ instead of ¢(z). 
z 

(i) A derivation T ~ ~. 
10 

(ii) TO each command (im : yj ~ T) occurring in p a derivation 

T ~ (¢. ~ ~. (yj/T)), where ~(g/T) denotes the formula 
i m im+ 1 

obtained from ~ by substituting T in place of y in the 

usual way, cf. [83p.61. 

(iii) To each command (i m : IF X THEN v) occurring in p derivations 

T ~ ((xA~ i ) ~ ~v ) and T ~ ((]xA~ i ) ~ ~ ). 
m m im+l 

(iv) TO each z e (lab(p)\{/ : m~n}) a derivation T ~ (~ -- ~). 
m z 

The existence of a Floyd-Hoare derivation of (p,#) from T is 

denoted by T ~ (p,~). End of Def.4. 

REMARKS: If T is decidable then the set of Floyd-Hoare derivations 

(of pairs (p,~) where p6p and ~eL, from T) is also decidable. If 

f is recursively enumerable then the Floyd-Hoare derivable pairs are 

also recursively enumerable, i.e. {(p,~) : T I FH (p,~)} is recursi- 

vely enumerable. 

4. COMPLETENESS 

Notation: MOd(T) ~ { ~ : ~ T} for any TCL. 

THEOREM 1 Let TDPA be arbitrary. Let further p6p and ~EL be 

also arbitrary. Then T ~ (p,~) if and only if (p,%) is par- 

tially correct in every model of T w.r.t, continuous traces. 

In concise form: 

T ~ (p,~) ~ (¥~6Mod(T))~ (p,~). 

Proof. The proof can be found in [33 which appeared in ~CS'81 pp. 

162-171. QE__~D 
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The condition TDPA can be eliminated from the above theorem. 

Moreover, the restriction that t is the similarity type of PA can 

be eliminated, too. This generalization of Thm. l above is Thm. 9 of 

E43 on p.56 there (see also Prop.12 there), and it is also stated in 

Part II of E7] which is available in the literature. A somewhat modi- 

fied version of this general theorem is Thm. 3.3 of [133. 

A drawback of our present approach is that the meanings of programs 

in ~ are continuous traces and that these continuous traces are not 

elements of 0[ , they are just functions s : A ~ A satisfying 

certain axioms formulated in the metalanguage (and not in L). This 

drawback is completely eliminated in the approach of E43, and of E7]. 

There the meanings of programs in a model qT[ are elements of ~% 

and all requirements are formulated in the subject language L, e.g. 

continuity of traces is formulated by a set IA q of formulas in L. 

The present approach is also extended to treat total correctness 

in the quoted paper~ see e.g. Thm. 7 on p.51 of E43. The generality of 

that approach enables one to investigate the lattice of logics of 

programs (or dynamic logics~ see the figure on p.lO9 of E4] r and for 

more results and detailed proofs in this direction see LI93. The proof 

methods in the quoted general works are similar to the model theoretic 

prQofs in the book Henkin-Monk-Tarski-Andr~ka-N~meti [18]. The alge- 

braization of our general dynamic logic (of programs) yields Crs -s 

defined in the quoted book. 

5. AN EXAMPLE FOR NONSTANDARD TRACES 

So far we restricted ourselves to models of Peano's arithmetic PA. 

Speciall~ our similarity type t was required to contain the symbols 

+,.,O,i with arities 2,2,0,0 respectively. However, all what we 

really used in our definitions, e.g. in the definition of continuous 

trace% was O and succ where succ is the successor function. 

Let the similarity type d consist of the symbols O,succ,pred 

of arities O,l,1 only. Here succ is the successor and pred is 
d 

the predecesso~ i.e. the standard model of type d is ! = 

<~,O,succ,pred) where (¥ne~)Esucc(n) = n+l and pred(n+l) = n] 

and pred(O) = O. Let pa ~ {~eL d : ~ ~ ~}. It is well known that 

Pa is decidable. Of course PA ~ Pa. 

In the present section we shall use Pa instead of PA and d 
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instead of t. Our aims with this change are simplicity and better 

understanding of the basic methods underlying the so called nonstandard 

time semantics approach. 

DEFINITION 5 The definition of continuous traces of programs pEP d 

in models of Pa should be clear, namely replace in Definitions 1,2 

the statements "Let ~ ~ PA" by "Let ~ Pa" and replace a+l 

everywhere by succ(a). End of Def.5. 

PROPOSITION 2 Let T~L d and assume T~Pa. Let peP d and ~6L d be 

arbitrary. Assume T ~ (p,~). Then (p,%) is partially correct in 

every model of T w.r.t, continuous traces. In concise form: 

Proof. Let TDPa,_ P = ((io:Uo)''''t(in :Un )> e Pd and Vp={Yl, .... yk }. 

Assume T ~ (p,~). We want to show partial correctness of (p,¢) 

w.r.t, continuous traces in models of T. 

Let ~ ~ T and let < Sa>ae A be a continuous trace of p in ~ . 

Let < Cz)z61ab(p) = ~ : lab(p) ~ L belong to a Floyd-Hoare derivation 

of (p,~) from T. Recall that yl,...,y k are the variables occurring 

in p. Therefore we may use YO as "control variable" (i.e. for i). 

Define 

~(YO "yl ..... Yk ) ~ m= I~ (YO-im-' ~ ~i (YI' .. .,yk )) A 
m 

n 

A (( A Yo#im ) ~ ~(yl,...,y~)). 
m=l 

NOW ~eL and 6~ ~[So3 A A (~[s ] ~ #[s 3). (This is 
aEA a SUCC(a) 

true because # : lab(p) ~ L belongs to a Floyd-Hoare derivation of 

(p,~) and ( s ) is a trace of p in ~/ ) a aEA 
Since < sa)aeA is, in addition, continuous, ~ ~ A ~[Sa3. Let 

a6A 
aeA be such that sa(1) ~ {i : m~n}. Then ~ ~ ~[s ] implies m a 

~ ~[Sa], by the definition of #. This means ~ ~ (p,%) since 

<Sa>a6 A was an arbitrary continuous trace of p in ~/ 

We did this proof for programs p satisfying v = {yl,...,yk}. 
p 

Note that this does not restrict generality. QED 

Proposition 2 above shows that it is useful to construct continuous 

traces of programs in models of Pa r too, since if the output of a 

continuous trace of the program P@Pd in a possibly nonstandard model 
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~ Pa does not satisfy the output condition % then Pa IFH/ (Pt~) 

i.e. then the partial correctness of (p,%) is not Floyd provable from 

Pa. 

EXAMPLE 

Let the similarity type d consist of the symbols O,succ,pred of 

arities 0,I~i. 

We define the program pEP d by the block-diagram on Figure 2. 

i yl ~ pred(y 
I 

i~ YO succ(O) 1 

r N° 

YO ~ succ(~o) I 

[ I 

YES 

FIGURE 2 

Clearly pEPd~ Let # be yO=Y2 . Then ~EL d and the free variables 

of ~ are in v o We shall call ~ the output conditionr because 
P 

we shall consider partial correctness of the statement (p,~). 
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2. 

Next we construct a nonstandard model ~ of our simplified number 

theory Pa. 

z denotes the set of integers, i.e. z ~ ~O{-n : O<ne~}. We 

define A ~ ({O}×~)U({1}×Z). See Figure 3. 

<1,3) 

< 1,0) 

<1,-3) 

<0,3) 

A 

FIGURE 3 

Now we define a model ~ of similarity type d such that the 

universe of ~ is A defined above, and the function symbols succ, 

pred,O are defined on A as follows: 

Let (a,b}6A. Then sucC((a,b)) ~ (a,b+l), pred(<a,b+l)) ~ (a,b), 

pred(CO,O)) ~ (O,0). We define 0 of {)~ to be <0,O). 

We shall call ( O,b )6A a standard number and ( l,b ) a nonstandard 

number. 

3o 

Next we construct a continuous trace f of p in {~ . 
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Recall from Definition I that a trace of p in ~ is a sequence 

s = <Sa )aEA of valuations Sa : {yO r yl,Y2, ~} ~ A of the variables 

where X is the control variable. We shall identify this sequence s 

with a 4-tuple < fo~fltf2,fl> of sequences fi : A ~ A such that 

fo ~ (Sa(YO) : aEA) ..... f~ ~ <s (~) : aeA>. Clearly f. : A ~ A a 1 
for iE{O,ir2,i}. 

Note that we can consider f. to be the history of the content of 
i 

the program variable Yi during execution of p i.e. during time. 

For aEA we can say that f.(a) is the content of the variable l Yi 
at time point a. 

Now let fo : A ~ A and fl : A ~ A be as indicated on Figure 4. 

See also Figure 5. 

That is: 

(< ao,a I if ao=O or al<O 

fo((aoJal>) ~ I 

<< !,0> otherwise, 

fl(< aoral> ) d= 

We define 

{!~-a 1 

< O,-a 1 

(0,0> 

if ao=O 

if ao=l and al<O 

if ao=l and al~O. 

f2(a) ~ < 1,O> for every a@AF and 

i < OrO> if ao=al=O 

fl(< ao,al>) ~ i< 0,i) if Co:O , el>O) or (ao=l , el<O] 

( O,2> if ao=l and al~O. 

Now it is easy to see that f ~ < fo,fl~f2,fl) is a trace of p in 

, continuity of which will be proved below. 

4. 

PROPOSITION 3 Let d~ pEPd~,f be as defined above. Then f is a 

continuous trace of p in f]L . 

Proof. For every aEA let s : V u{l} ~ A be the valuation of the a p 

variables of p into ~ be defined by s (yi) ~ f (a) for 
a i 

and s (~) ~ fx(a). According to our convention made iE{O,1,2} a 
earlier, we identify the sequence < s > with f and therefore we a aEA 
shall say that we want to prove that f is a continuous trace of p 
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<i,O) < 1,0) < 0,0> 

I 

i,O> 

< O,O) = < i,O> 

I 
I < 0,O> O,O> 

FIGURE 4 

We shall use the following notation: Let ~EL d with free vari- 

ables in v u{l} and let a~A. Therefore it is meaningful to write 
P 

that ~ b ~[s ~ because s : v u{i} ~ A. a a p 

~(a) denotes the sequence { fo(a),fl(a),f2(a),fl(a)>. We define 

6[ b ~[~(a)3 to mean that {i b ~[Sa3. 

In order to prove that f is a continuous trace of p in ~ , 

it is enough to prove for every ~(yo, Yl,Y2,1)EL d that 

~, b ( ( ~ [ 7 ( O ) 3 A  A ( ~ [ f ( a ) 3  ~ ~ [ ~ ( s u c e ( a ) ) 3 ) )  ~ A ~ [ 7 ( a ) ~ ) ,  
aCA aEA 
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We shall prove this indirectly: 

Assume that there is a ~(yo,Yl,Y2rk)EL d such that 

{)[ ~ (gE~(O)3A A ( ~ E f ( a ) 3  ~ ~ E ~ ( s u c c ( a ) ) 3 ) )  
aEA 

but ~ ~ A ~C~(a)3 i.e. there is an aEA such that 
a~A 

Recall that ~ : A ~ 4A 

O<nEw we have 

~(<O,n)) : <<O,n)r< l~-n>t< I~0>,(0,i)) , 

~(< l,-n)) = << l,-n),( O,n>,< 1,0),< 0,i)} 

~(<0,0>) = << O,O),<l,O>,( 1,0>,<0,0>> , 

~(< i,O}) = < < i,O),( O,O),< i,O),< O,2>> . 

Note that f2 is a constant function and fk 

By (I) we have ~. ~ 9E~(a)3 for every standard number 

have that (~nEw) {~ b ~E~((O,n>)3 i.e. 

~ ~[< Otn>~< i~-n}~( 1,0),< O,i)] for all O<nE~. 

(i) 

(2)  

is as represented on Figure 5, i.e.: for every 

is almost constant. 

aEA t i.e. we 

(3) 

(See Figure 5.) 

a zEZ such that 4J[ b q g[~(< l,z))3. (See Figure 6.) 

Thenr by (1), we have that (~w~z) ~)~ ~ 1~E~(( l,w>)]. 

is an mew such that (~n>m) ~J[b 1~[~(<l,-n>)], i.e. 

Then a is a nonstandard number in (2) i.e. there is 

Then there 

(~n>m) {)[b i~-~ 1,-n)~( O,n>,< 1,0>,< O,i>3. (4) 

(See Figure 5. ) 

Let F be a nonprincipal ultrafilter over 

ultrapower w~I/F° For ~5 see Figure 9. We define 

b d ( < O,n> : nE~)/F ., 
d 

c = ((l,-n) : neW)/p ! 

d d <<i,0> : nE~)/F , 
d 

e = ( (O,i) : new)/ 
F 

C l e a r l y  b r c , d , o E B .  Thenr  by  Lo~ lemma and  (3)  we h a v e  

~ ~ [ b l c t d l e ] .  

! 

By Los lemma and (4) we have 

~ i 9[clb~d,e3o 

We define succ n 

succ(succn(g)) 

for new 

w. ~ denotes the 

(5) 

for every 

(6) 

as: succO(g) d n+l(g d = g and succ ) = 

g@B. pred n is defined similarly to succ n. 
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A 

1,0 

\ 

\ 

\ 

\ 
\ 

0,2 

0,i 

9 • • 

\ / 

\ / /  
\ 

\ 

<O,i) < i,-i> (i,0) r A 

FIGURE 5 

Clearly r ~ contains the following 2 "chains" Y,W illustrated 

on Figure 7. See also Figure 8. 

More precisely, Y and w are the two subalgebras of < B,succ, 

pred> generated by the elements b and c respectively. Then bEY 

and cEw and Y is the smallest subset of B closed under succ 

and pred and containing b. Similarly for W and c. Then 

< Y,SUCc,pred) ~ (w,succ,pred). 

Let k : (Y,SUCc,pred) ~ (w, succ,pred) be an isomorphism such that 

k(b) = c. For any g6B we define 
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/ 
J 
! 
i 
l 

< l,z> 

FIGURE 6 

/k(g) if g@Y 

h(g) ~ ik-l(g) if g~W 

I g ot herwi se. 

Then h : B ~ B is a function. Moreover, h : ~ ~ ~ is 

an automorphism of ~ See Figure 9. 

Therefore by (5) we have ~ ~ ~Ch(b),h(c),h(d),h(e)], that is ~ b 

b ~[c,b,d,e]. But%his contradicts (6). 

We derived a contradiction fr~mthe assumption (2). This proves 

b A ~[~(a)]. This completes the proof. QED(Prop.~) 
aCA 

Clearly the "halting point" of the trace f of p in ~ is 

the time point ( 1,0>. fo(< 1,0>) = {1,O) and f2(< itO>) = { 1,0>. 

Therefore the output condition yo=Y2 of p is satisfied by trace 

f of p in ~ 

5. 

n Let fo : A ~ A differ from fo only on the nonstandard numbers and 

such that if aEA is nonstandard then f~(a) = succ(fo(a)). In more 
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FIGURE 7 

A 

<i,0)' 

< 0,O) 

- succ(c) 

i 

14 
J 

i 
i 

i 
i i 

I 

I 
I 

i 
i 

Oo 
J 

succ(b) 
.I- 

I " pred(b) 

~-pred 2 (b) 
/ 

FIGURE 8 

detail: 

(~n@~)Ef~((O,n)) = < O,n), f~((l,-n)) = < l,(-n)+l), f~(< l,n)) = ( l,n+l)3. 

Let f' < fo,fl,f2,fx). By the constructions in the proof of Propo- 

sition 3 it is very easy to see that f' is continuous e.g. by using 
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! 

o,, 

FIGURE 9 

the fact that if we define 

k(g) ~ [succ(g) if g6 w 

Ig otherwise 

for all gEB then k is an au~morphism of 

The trace f' of p terminates (at time point < 1,1)) with output 

YO = < i,i)~ Yl = < O,O), Y2 = ( i~O>. Then for this output YO # Y2 ! 

Then in the sense of Definition 3 we have 

~ ~pc/_ (p~yO=Y2) " 

6. 

By Proposition 2 we have 

{~L d : ~ ~} ~-~(Ps~) and also Pa IFH/ (p,~) 

since the continuous trace f~ of p in ~ terminates with an 

output not satisfying ~. 

7. 

Let d ~ be the similarity type d expanded with the relation symbol 

< with arity 2~ We interpret < in £[ the lexicographical way i.e.: 

for every (ao,al}, <bo,bl)EAr 

< ao,al ) < < bo~bl ) iff either ao<b O or (ao=b O and al<bl). 

Let ~r be the model ~ expanded with the relation < defined 
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above. Then /it' is a model of similarity type d'. Let f. : A 
1 

A, iE{O,I,2,1} be the functions defined in 3. above. Then 

f = (fo,fl,f2,fl} is a trace of p in ~'. But the trace f of 

p is not continuous in {)%'! 
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