I. Németi

Math. Inst. Hungar. Acad. Sci. Budapest
Reáltanoda u. 13-15, H-1053 Hungary

There does exist a branch of Dynamic Logic which is called Nonstandard Dynamic Logic. Works in this line are e.g. [4],[3],[22],[23], [1], [11], [9],[13],[18],[5],[14],[21]. A systematic introductory monograph with motivation, examples, overview of the field etc. is [4] which will be sent to anybody on request. A published introduction to Nonstandard DL with at least some of these features is [3]. Intuitive examples, illustrations are in [18],[20],[4]. The first results in this field were proved in [1] in 1977 under the restriction that the data structure satisfies Peano's axioms. This condition was later eliminated by the above quoted works.

In the present paper we give the basic definitions of Nonstandard DL (§1-3). We formulate some fundamental results and indicate that this logic is not so very nonstandard as one might think, see RDL in Def. 13 and Prop.2. Then we show how to use this logic to compare methods of program verification. Some well known program verification methods will be characterized, see Fig.2. Some properties of the lattice of logics of programs with decidable proof concepts will be established. §5 contains the detailed proof of Thm.6. This proof uses model theoretic tools (e.g. ultraproducts) to establish properties of program verification methods. The emphasis is on basic definitions and properties of Nonstandard DL , on Fig.2, and on the proof of Thm.6. For intuitive motivation see the very end of the present paper.

Connections with other branches of nonclassical logic and computer science are discussed in §8,9 of [3]Part II and in §6-8 of [4]. Motivation for Nonstandard DL is e.g. in [22], [4], [3].

NOTATIONS

In the following we shall recall some standard notations from textbooks on logic (mainly from [17],[8]).
d
denotes an arbitrary similarity type of classical one-sorted models. I.e. d correlates arities (natural numbers) to function and relation symbols. See Def.1(i) in this paper.
$\omega \quad$ denotes the set of natural numbers such that $O \in \omega_{0}$
Natural numbers are used in the von Neumann sense, i.e.
$n=\{0,1, \ldots, n-1\}$ and in particular
0 is the empty set.
$X=\left\{X_{W}: w \in \omega\right\}$ denotes a set of variables.
$F_{d} \quad$ is the set of classical first order formulas of type d with variables in X. Cf.e.g. [8]p.22.
$\tau \quad$ denotes a term of type d in the usual sense of logic, see
[8]p. 22 or [17]p.166,Def.10.8(ii).
$M_{d} \quad$ denotes the class of all classical one-sorted models of type
d, see e.g. [8] or [17]Def.11.1, or Def.s 1 and 3 here.
A classical one-sorted model is denoted by an underlined capital like
$\underset{\sim}{T}$ or $\underset{\sim}{D}$ and its universe is denoted by the same capital without underlining. E.g. T is the universe of $\underset{\sim}{T}$, and D is that of $\underset{\sim}{D}$.
By a "valuation of the variables" in a model $\underset{\sim}{D}$ a function $g: \omega \rightarrow D$ is understood, see [17]p. 195.
$\tau[q]_{\underset{\sim}{D}}$ denotes the value of the term τ in the model $\underset{\sim}{D}$ under the valuation q of the variables, see [8]p.27,Def.13.13 or [17] Def.11.2. If τ contains no variable then we write τ instead of $\tau[q]_{D}$, if $\underset{\sim}{D}$ is understood.
$\underset{\sim}{D} \vDash \varphi[q]$ denotes that the valuation q satisfies the formula φ in the model $\underset{\sim}{D}$.
$\mathrm{I}_{\mathrm{d}}=\left\langle\mathrm{F}_{\mathrm{d}}, \mathrm{M}_{\mathrm{d}}, \equiv\right\rangle$ is the classical first order language of similarity type d, see [22].
A_{B} denotes the set of all functions from A into B, i.e. $A_{B}=\{f: f$ maps A into $B\}$, see [17]p.7.
A function is considered to be a set of pairs.
Dom f denotes the domain of the function f, $\operatorname{Dom} f \stackrel{d}{=}\{a:(\exists b)\langle a, b\rangle \in f\}$.
Rng f denotes the range of the function $f, \operatorname{Rng} f(\underset{m}{d}\{(\exists a)\langle a, b\rangle \in f\}$.
A sequence s of lenght n is a function with $\operatorname{Dom} s=n$.
$\left\langle U_{s}: s \in S\right\rangle$ denotes the function $\left\{\left\langle s, U_{s}\right\rangle: s \in S\right\}$. Moreover
for an expression $\operatorname{Expr}(x)$ and class S we define
$\langle\operatorname{Expr}(x): x \in S\rangle$ to be the function $f: S \rightarrow R n g f$ such that $(\forall x \in S)$
$f(x)=\operatorname{Expr}(x)$.
$\mathrm{Sb}(\mathrm{X}) \stackrel{\mathrm{d}}{\equiv}\{\mathrm{Y}: Y \subseteq X\}$ is the powerset of X.
$X^{\text {™ }} \quad$ denotes the set of all finite sequences of elements of X, i.e. $X^{\text {\#F }} \stackrel{d}{=} U\left\{{ }^{m} X: m \in \omega\right\}$. We shall identify $X^{\text {H }}$ with $\{H: H \subseteq X \text { and }|H|<\omega\}^{\# \#}$, and also with $\left(X^{3 \pi}\right)^{\#}$. We think of $X^{\#}$ as the set of "words over the alphabet X ".
$A \sim B \stackrel{d}{\equiv}\left\{a \in_{A}: a \notin B\right\}$.

Recall d, X, F_{d} from the list of notations. Now we define the set P_{d} of program schemes of type d.

The set Lab of "label symbols" is defined to be an arbitrary but fixed subset of the set $\mathrm{Tm}_{\mathrm{d}}^{0}$ of all constant terms of type d, i.e. d-type terms which do not contain variable symbols. (Lab is chosen this way for technical reasons only. There are many other possible ways for handling labels, see [23].) Logical symbols: $\{\wedge, 7, \exists,=\}$.
Other symbols: $\{\leftarrow, I F, G O T O, H A L T,(),,:\}$
The set U_{d} of commands of type d is defined as follows:
(i: $x \nleftarrow \tau) \in U_{d}$ if $i \in L a b, x \in X$, and τ is a term of type d and
with all variables in X.
(i: IF χ GOTO v) $\in U_{d}$ if $i, v \in \operatorname{Lab}, \chi \in F_{d}$ is a formula without quantifier.
(i: HALT) $\boldsymbol{\epsilon} U_{d}$ if $i \in L a b$.
These are the only elements of U_{d}.
By a program scheme of type d we understand a finite sequence p of commands (elements of U_{d}) ending with a "HALT", in which no two members have the same label, and in which the only "HALT-command" is the last one. Further, if (i: IF χ GOTO v), occurs in p then there is u such that the command ($v: u$) occurs in p. I.e. an element p of P_{d} is of the form $p=\left\langle\left(i_{0}: u_{0}\right), \ldots,\left(i_{n-1}: u_{n-1}\right),\left(i_{n}: \operatorname{HALT}\right)\right\rangle$ where $n \in \omega$, $\left(i_{m}: u_{m}\right) \in U_{d}$ for $m \leqslant n$ etc.

Convention 1 If a program scheme is denoted by p then its parts are denoted as follows:
$p=\left\langle\left(i_{0}: u_{0}\right), \ldots,\left(i_{n-1}: u_{n-1}\right),\left(i_{n}: \operatorname{HALT}\right)\right\rangle$.
Throughout we shall use the definition
$c \stackrel{d}{=} \min \left\{w \in \omega:(\forall v \in \omega \sim w)\left[x_{v}\right.\right.$ does not occur in $\left.\left.p\right]\right\}$.
I.e. $\left\{x_{w}: w<c\right\}$ contains all the variables occurring in the program scheme p, and if $c>0$ then x_{c-1} really occurs in p. We shall use x_{c} as the control variable of p.

An example for a program scheme $p \in P_{d}$ is found in $\$ 5$ in the proof of Thm. 6 on Fig. 3.

By a language with semantics we understand a triple $L=\langle F, M, F\rangle$ of classes such that $k \subseteq M \times F \times S e t s$ where S ets is the class of all sets. Here F is called the syntax of L, M the class of models or possible interpretations of L, and k the satisfaction relation of L. Instead of $\langle a, b, c\rangle \in k$ we write $a \neq b[c]$, and we say "c satisfies b in a". See [22].

Here we try to develop a natural semantic framework for programs and statements about programs. In trying to understand the "Programming Situation", its languages, their meanings etc. the first question is how an interpretation or model of a program or program scheme $p \in P_{d}$ should look like. The classical approach says that an interpretation or model of a program scheme is a relational structure $\underset{\sim}{D} \in M_{d}$ consisting of all the possible data values. The program p contains variables, say "x". The classical approach says that x denotes elements of D just as variables in classical first order logic do. Now we argue that \mathbf{x} does not denote elements of D but rather x denotes some kind of "locations" or "addresses" which may contain different data values (i.e. elements of D) at different points of time. Thus there is a set I of locations, a set T of time points, and a function ext : I×T $\rightarrow D$ which tells for every location $s \in I$ and time point $b \in T$ what the content of location s is at time point b. Of course, this content ext(s,b) is a data value, i.e. it is an element of D. Time has a structure too ("later than" etc.) and data values have structure too, thus we have structures $\underset{\sim}{T}$ and $\underset{\sim}{D}$ over the sets T and D of time points and possible data values respectively. Therefore we shall define a model or interpretation for programs $p \in P_{d}$ to be a four-tuple $\mu=\langle\underset{\sim}{T}, \underset{\sim}{D}, I$, ext〉 where $\underset{\sim}{T}$ and $\underset{\sim}{D}$ are the time structure and data structure resp., I is the set of locations and ext : $\mathrm{I} \times T \rightarrow D$ is the "content of ... at time ..." function (see Def.4). We shall call the elements of I intensions instead of locations. The reasons for this and for the name "ext" are explained in [3]§9, [4]§8. For a detailed account of the above considerations see also $\S 8,9$ of [3] and $\S 7,8$ of [4].

Of course when specifying semantics of a programming language P_{d} we may have ideas about how an interpretation π of P_{d} may look like and how it may not look. These ideas may be expressed in the form of axioms about m. E.g. we may postulate that $\underset{\sim}{T}$ of m has to satisfy the Peano Axioms of arithmetic. For such axioms see Def.s 13-17. These axioms are easy to express since a closer investigation of μ defined above reveals that it is a model of classical 3-sorted logic (the sorts
being "time", "data" and "intensions"). Thus the axioms can be formed in classical 3-sorted logic (Def.5) in a convenient manner to express all our ideas or postulates about the semantics of the programming language P_{d} under consideration.

Now we turn to work out these ideas in detail.

DEFINITION 1 (one-sorted models)
(i) By a (classical or one-sorted) similarity type d we understand a pair $d=\left\langle H, d_{1}\right\rangle$ such that d_{1} is a function $d_{1}: \Sigma \rightarrow \omega$ for some set $\Sigma, H \subseteq \Sigma$ and $(\forall r \in \Sigma) d_{1}(r) \neq 0$.

The elements of Σ are called the symbols of d and the elements of H are called the operation symbols or function symbols of d. Let $r \in \Sigma$. Then we shall write $d(r)$ instead of $d_{1}(r)$.
(ii) Let $d=\left\langle H, d_{1}\right\rangle$ be a similarity type, let $\Sigma=\operatorname{Dom} d_{1}$ as above. By a model of type d we understand a pair $\underset{\sim}{D}=\langle D, R\rangle$ such that R is a function with $D o m R=\Sigma$ and $(\forall r \in \Sigma) R(r) \subseteq d^{d(r)} D$ and if $r \in H$ then $R(r):(d(r)-1)_{D} \rightarrow D$.
Notation: $\left\langle D, R_{r}\right\rangle_{r \in \Sigma} \stackrel{d}{=}\left\langle D,\left\langle R_{r}: r \in \Sigma\right\rangle\right\rangle \stackrel{d}{=}\langle D, R\rangle$.
I.e. $\underset{\sim}{D}=\left\langle D, R_{r}\right\rangle_{r} \in \Sigma$ is a model of type d iff R_{r} is a $d(r)$-ary relation over D and if $r \in H$ then R_{r} is a $(d(r)-1)$-ary function, for all $r \in \Sigma$.

If $r \in H$ and $d(r)=1$ then there is a unique $b \in D$ such that $R_{r}=$ $=\{\langle b\rangle\}$ and we shall identify R_{r} with b. If $r \in H, d(r)=1$ then r is said to be a constant symbol and $R_{r} \in D$ is the constant element denoted by r in $\underset{\sim}{D}$.

The set D is called the universe of $\underset{\sim}{D}$ -
(iii) $M_{d} \stackrel{d}{=}\{\underset{\sim}{D}: \underset{\sim}{D}$ is a model of type $d\}$.

End of Definition 1
DEFINITION 2 (the similarity type t of arithmetic and its standard model $\underset{\sim}{N}$)
t denotes the similarity type of Peano's arithmetic. In more detail, $t=\left\langle\{0, s c,+, \cdot\}, t_{1}\right\rangle$ where $\operatorname{Dom} t_{1}=\{\leqslant, 0, s c,+, \cdot\}, t(\leqslant)=2$, $t(0)=1, t(s c)=2$ and $t(+)=t(\cdot)=3$.

The standard model $\underset{\sim}{N}$ of t will be sloppily denoted as $\langle\omega, \leqslant, 0$, suc,,$+ \cdot\rangle \stackrel{N}{\sim}$ instead of the more precise notation $\underset{\sim}{\mathbb{N}}=\langle\omega, R\rangle$ where $R(\leqslant)=\left\{\langle n, m\rangle \epsilon^{2} \omega: n \leqslant m\right\}, \ldots, R(s c)=\langle n+1: n \in \omega\rangle$. Note that $N_{N} \in M_{t}$. End of Definition 2

Throughout the paper t is supposed to be disjoint from any other similarity type, moreover if d is a similarity type then $\operatorname{Dom}\left(d_{1}\right) \cap \operatorname{Dom}\left(t_{1}\right)=0$ is assumed throughout the paper.

DEFINITION 3 (many-sorted models, [17])
(i) By a many-sorted similarity type m we understand a triple $m=\left\langle S, H, m_{2}\right\rangle$ such that m_{2} is a function $m_{2}: \Sigma \rightarrow S^{*}$ for some set $\Sigma, H \subseteq \Sigma$ and $(\forall r \in \Sigma) m_{2}(r) \notin{ }^{0}$ S.

The elements of S are called the sorts of m. If $r \in \Sigma$ then we shall write $m(r)$ instead of $m_{2}(r)$.
(ii) Let m be a many-sorted similarity type and let $\Sigma=$ Dom m_{2} as above. By a (many-sorted) model of type m we understand a pair $m=\left\langle\left\langle U_{S}: s \in S\right\rangle, R\right\rangle$ such that R is a function with $\operatorname{Dom} R=\Sigma$ and if $r \in \Sigma$ and $m(r)=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ then $R(r) \subseteq U_{S_{1}} \times \ldots \times U_{S_{n}}$ and if in addition
$r \in H$ then $R(r)$ is a function $R(r): U_{S_{1}}{ }^{x} \ldots \times U_{s_{n-1}} \rightarrow U_{S_{n}}$.
U_{s} is said to be the universe of sort s of \boldsymbol{m}.
(iii) $M_{m} \stackrel{d}{=}\{\gamma M: M$ is a many-sorted model of type $m\}$.

End of Definition 3

DEFINITION 4 (the 3-sorted similarity type td)
(i) To any one-sorted similarity type d we associate a 3-sorted similarity type td as follows:

Let $d=\left\langle H, d_{1}\right\rangle$ be any one-sorted similarity type. Recall that t is a fixed similarity type introduced in Def. 2 and by our convention $\operatorname{Dom}\left(d_{1}\right) \cap \operatorname{Dom}\left(t_{1}\right)=0$.

Now we define td to be $t d \stackrel{d}{=}\left\langle S, K, t d_{2}\right\rangle$ where
a) $S \stackrel{d}{=}\{t, d, i\},|S|=3$. (S is the set of sorts of $t d$.) Here the elements of S are used as symbols only; we could have chosen $S=$ $=\{0,1,2\}$ as well.
b) $K \stackrel{d}{=}\{\operatorname{ext}, 0, s c,+, \cdot\} \cup H$. (K is the set of operation symbols of $t d$.)
c) ${t d_{2}}:\left(\operatorname{Dom}\left(t_{1}\right) \cup \operatorname{Dom}\left(d_{1}\right) \cup\{e x t\}\right) \rightarrow S^{*}$ such that
$t d_{2}(e x t)=\langle i, t, d\rangle$,
$\operatorname{td}_{2}(r) \epsilon^{n}\{t\}$ if $t(r)=n$ and
$\operatorname{td}_{2}(r) \in{ }^{n}\{d\}$ if $d(r)=n \quad$.
E.g. $\quad t d_{2}(\leqslant)=\langle t, t\rangle, \quad t d_{2}(+)=\langle t, t, t\rangle$, etc. By these the 3 -sorted similarity type td is defined.
(ii) Let $\mu l=\left\langle\left\langle U_{t}, U_{d}, U_{i}\right\rangle, R_{r}\right\rangle_{r \in \Sigma}$ be a td-type model. Then (1)-(3) below hold:
$\left\langle U_{t}, R_{r}\right\rangle_{r \in \operatorname{Dom}\left(t_{1}\right)} \in M_{t} \quad$.
(2) $\left\langle U_{d}, R_{r}\right\rangle_{r \in \operatorname{Dom}\left(d_{1}\right)} \in M_{d} \quad \cdot$
(3) $R_{\text {ext }}: U_{i} \times U_{t} \rightarrow U_{d}$

Notation: $\left\langle\left\langle U_{t}, R_{r}\right\rangle_{r \in \operatorname{Dom}\left(t_{1}\right)},\left\langle U_{d}, R_{r}\right\rangle_{r \in \operatorname{Dom}\left(d_{1}\right)}, U_{i}, R_{e x t}\right\rangle \stackrel{d}{=}$

$$
d\left\langle\left\langle U_{t}, U_{d}, U_{i}\right\rangle, R_{r}\right\rangle_{r \in \Sigma} .
$$

We define: $\underset{\sim}{T} \stackrel{d}{=}\left\langle U_{t}, R_{r}\right\rangle_{r} \in \operatorname{Dom}\left(t_{1}\right) \quad, \quad T \stackrel{d}{=} U_{t}$,
$\underset{\sim}{D} \stackrel{d}{=}\left\langle U_{d}, R_{r}\right\rangle_{r \in \operatorname{Dom}\left(d_{1}\right)} \quad, \quad D \stackrel{d}{=} U_{d} \quad$ and $\quad I \stackrel{d}{=} U_{i}$.
The sorts t, d, and i are called time, data and intensions respectively. $\underset{\sim}{T}$ is said to be the time-structure of m. End of Definition 4

Convention 2 Whenever an element of $M_{t d}$ is denoted by the letter 3π then the parts of M are denoted as follows:
$\langle\underset{\sim}{T}, ~ D, ~ I, ~ e x t\rangle \stackrel{d}{=}\left\langle\left\langle U_{t}^{m}, U_{d}^{m}, U_{i}^{m}\right\rangle, r^{m l}\right\rangle_{r \in \Sigma} \stackrel{d}{=} m$.
Note that $M_{t d}$ iff $\left[\underset{\sim}{T} \in \mathbb{M}_{t}, \underset{\sim}{D} \in M_{d}\right.$, and ext : I×T $\left.\rightarrow D\right]$.
For a more detailed introduction to many-sorted languages, like $L_{t d}=\left\langle F_{t d}, M_{t d}, \vDash\right\rangle$ defined below, the reader is referred e.g. to the textbook [17]. If understanding Def.s $3-6$ here is hard for the reader then consulting [17] should help since $I_{\text {td }}$ is the most usual classical many-sorted language of similarity type td.

DEFINITION 5 (the first order 3-sorted language $L_{t d}=\left\langle F_{t d}, M_{t d}, F\right\rangle$ of type td, [17])
Let $d=\left\langle H, d_{1}\right\rangle$ be any one-sorted similarity type. Recall from Def.s 3 and 4 that t is a fixed similarity type, and $t d$ is a 3sorted similarity type with sorts $\{t, d, i\}$.
(i) We define the set $F_{t d}$ of first order 3-sorted formulas of type td.:

Let $X \stackrel{d}{=}\left\{x_{w}: w \in \omega\right\}, Y \stackrel{d}{=}\left\{y_{w}: w \in \omega\right\}$ and $Z \stackrel{d}{=}\left\{z_{w}: w \in \omega\right\}$ be three disjoint sets (and $x_{W} \not \neq x_{j}$ if $w \neq j \in \omega$ etc). We define Z, X, and Y to be the sets of variables of sorts t, d, and i respectively.
F_{t}^{Z} denotes the set of all first order formulas of type t with variables in Z, F_{d} denotes the set of all first order formulas of type d with variables in X, and $T m_{t}^{Z}$ denotes the set of all first order terms of type t with variables in Z.

The set $T m_{t d, d}$ of terms of type $t d$ and of sort d is defined
to be the smallest set satisfying conditions（1）－（3）below．
（1）$X \subseteq T m_{t d, d}$－
（2） $\operatorname{ext}\left(\bar{y}_{\mathrm{w}}, \tau\right) \in \mathbb{T m}_{t d, d}$ for any $\tau \in \mathbb{T} \mathrm{m}_{t}^{Z}$ and $w \in \omega_{\text {．}}$
（3）$f\left(\tau_{1}, \ldots, \tau_{n}\right) \in \operatorname{Tm}_{t d, d}$ for any $f \in H$ if $d(f)=n+1$ and $\tau_{1}, \ldots, \tau_{n} \epsilon$ $\epsilon^{T m_{t d, ~}}$－
The set $F_{t d}$ of first order formulas of type td is defined to be the smallest set satisfying conditions（4）－（8）below．
（4）$\left(\tau_{1}=\tau_{2}\right) \in \mathrm{F}_{\mathrm{td}}$ for any $\tau_{1}, \tau_{2} \in \mathrm{Tm}_{\mathrm{td}, \mathrm{d}}$ ．
（5）$r\left(\tau_{1}, \ldots, \tau_{n}\right) \in F_{t d}$ for any $\tau_{1}, \ldots, \tau_{n} \in \operatorname{Tm}_{t d, d}$ and for any $r \in H$ if $d(r)=n$ ．
（6）$\left(y_{w}=y_{j}\right) \in F_{t d}$ for any $w, j \in \omega$ ．
（7）$F_{\mathrm{t}}^{\mathrm{Z}} \subseteq \mathrm{F}_{\mathrm{td}}$－
（8）$\left\{\neg \varphi,(\varphi \wedge \psi),\left(\exists z_{w} \varphi\right),\left(\exists x_{w} \varphi\right),\left(\exists y_{w} \varphi\right): w \in \omega\right\} \subseteq F_{\text {td }}$ for any φ ， ,$\psi \in F_{t d}$ ．
By this the set $F_{t d}$ has been defined．Note that $F_{d} \subseteq F_{t d}$ ．
（ii）Now we define the＂meanings＂of elements of $F_{t d}$ •
By a valuation（of the variables）into $み$ we understand a triple $v=\langle g, k, r\rangle$ such that $g \in \omega_{T}, k \in \omega_{D}$ and $r \in \omega_{I}$ ．The statement＂the valuation $v=\langle g, k, r\rangle$ satisfies φ in $m l^{\prime \prime}$ is denoted by m $\mu \varphi[v]$ or equivalently by $m \vDash \varphi[g, k, r]$ ．

The truth of $\quad\{\nmid \vDash \varphi[g, k, r]$ is defined the usual way（see［17］） which is completely analogous with the one－sorted case．E．g．
m $=\left(y_{0}=y_{1}\right)[g, k, r]$ iff $r_{0}=r_{1}$ ，
$m \vDash\left(x_{1}=\operatorname{ext}\left(y_{2}, z_{0}\right)\right)[g, k, r] \quad$ iff $k_{1}=\operatorname{ext}^{m}\left(r_{2}, g_{0}\right)$ ，
m\＆$\varphi[\mathrm{g}, \mathrm{k}, \mathrm{r}]$ iff $\underset{\sim}{\mathrm{T}} \vDash \varphi[\mathrm{g}]$ for $\varphi \in \mathrm{F}_{\mathrm{t}}^{\mathrm{Z}}$ ，
m\＆$\varphi[g, k, r]$ iff $\underset{\sim}{D} \vDash \varphi[k]$ for $\varphi \in F_{d}$ etc．
The formula $\varphi \in F_{t d}$ is valid in $み$ ，in symbols $み \neq \varphi$ ，iff $\left(\forall g \in \omega_{T}\right)\left(\forall k \in \omega_{D}\right)\left(\forall r \in \omega_{I}\right) \nexists \mu k[g, k, r]$ 。
（iii）The（3－sorted）language $L_{t d}$ of type $t d$ is defined to be the triple $L_{t d}=\left\langle F_{t d}, M_{t d}, F\right\rangle$ where F is the satisfaction relation defined in（ii）above．

End of Definition 5

DEFINITION 6 （the class $S^{2} M_{d}$ of standard models）
Let $M(\underset{\sim}{T}, D, I, e x t\rangle \in M_{t d} \cdot \quad M$ is said to be standard iff conditions（i）－（iii）below hold．
(i) $\quad \underset{\sim}{T}=\underset{\sim}{\mathbb{N}} \cdot($ For $\underset{\sim}{\mathbb{N}}$ see Def.2.)
(ii) $I=\omega_{D}$.
(iii) $(\forall s \in I)(\forall b \in \mathbb{P}) \operatorname{ext}(s, b)=s(b)$.

The class of all standard elements of $M_{t d}$ is denoted by $S T M_{d}$. End of Definition 6

In this paper we shall define several sets of axioms in the language I_{td}, see Def.s 13-17. Each of them will be valid in the class $\mathrm{STM}_{\mathrm{d}}$ of standard models.

Now we define the meanings of program schemes $p \in P_{d}$ in the 3-sorted models $\mathrm{ml}_{\mathrm{M}}^{\mathrm{td}}$.

Notation: Let $\left\langle\underset{\sim}{T}, D_{\sim}, I, e x t\right\rangle \in M_{t d}$, see Convention 2. Let $s_{0}, \ldots, s_{m} \in I$, $\overline{\bar{s}} \overline{=}\left\langle s_{0}, \ldots, s_{m}\right\rangle$. Let $b \in T$. Then we define
$\operatorname{ext}(\bar{s}, b) \stackrel{d}{=}\left\langle\operatorname{ext}\left(s_{0}, b\right), \ldots, \operatorname{ext}\left(s_{m}, b\right)\right\rangle$.
DEFINITION 2 (traces of programs in time-models)
Let $p \in P_{d}$ and $m \in M_{t d}$. We shall use Conventions 1 and 2. Let $s_{0}, \ldots, s_{c} \in I$ be arbitrary intensions in M. Let $\bar{s}=\left\langle s_{0}, \ldots, s_{c-1}\right\rangle$. The sequence $\left\langle s_{0}, \ldots, s_{c}\right\rangle$ of intensions is defined to be a trace of p in m if the following (i) and (ii) are satisfied.
(i) $\operatorname{ext}\left(s_{c}, 0\right)=i_{0}$ and $\operatorname{ext}\left(s_{c}, b\right) \in\left\{i_{m}: m \leqslant n\right\}$ for every $b \in T$. (ii) For every $b \in T$ and for every $j \leqslant c$ if $\operatorname{ext}\left(s_{c}, b\right)=i_{m}$ then statements (1)-(3) below hold.
(1) If $u_{m}=" x_{w} \leftarrow \tau "$ then

$$
\operatorname{ext}\left(s_{j}, b+1\right)= \begin{cases}i_{m+1} & \text { if } j=c \\ \tau[\operatorname{ext}(\bar{s}, b)]_{D} & \text { if } j=w \\ \operatorname{ext}\left(s_{j}, b\right) & \text { otherwise }\end{cases}
$$

(2) If $u_{m}=$ "IF χ GOTO v " then

$$
\operatorname{ext}\left(s_{j}, b+1\right)= \begin{cases}v & \text { if } j=c \text { and } \quad \underset{\sim}{D} \neq x[\operatorname{ext}(\bar{s}, b)] \\ i_{m+1} & \text { if } j=c \text { and } D \notin \chi[\operatorname{ext}(\bar{s}, b)] . \\ \operatorname{ext}\left(s_{j}, b\right) & \text { otherwise }\end{cases}
$$

(3) If $u_{m}=$ "HALT" then $\operatorname{ext}\left(s_{j}, b+1\right)=\operatorname{ext}\left(s_{j}, b\right)$.

End of Definition 7
DEFINITION 8 (possible output)
Let $s=\left\langle s_{0}, \ldots, s_{c}\right\rangle$ be a trace of $p \in P_{d}$ in $m \in M_{t d}$.
(i) Let $k \in \omega_{D}$. The trace s is said to be of input k iff $(\forall j<c) k(j)=\operatorname{ext}\left(s_{j}, 0\right)$.
(ii) Recall from Convention 1 that i_{n} is the label of the HALTcommand of p. Let $b \in T$. We say that s terminates at time b in π iff ext $\left(s_{c}, b\right)=i_{n}$.
(iii) Let $k, q \in \omega_{D}$. We define q to be a possible output of p with input k in m iff (a)-(d) below hold for some s.
(a) $s=\left\langle s_{0}, \ldots, s_{c}\right\rangle$ is a trace of p in m.
(b) s is of input k.
(c) There is $b \in T$ such that s terminates p at time b and
$\left\langle q_{0}, \ldots, q_{c-1}\right\rangle=\left\langle\operatorname{ext}\left(s_{0}, b\right), \ldots, \operatorname{ext}\left(s_{c-1}, b\right)\right\rangle$.
(d) $(\forall j \in \omega)\left[j \geqslant c \Rightarrow q_{j}=k_{j}\right]$.

If q is a possible output of p with input k in m then we shall also say that $\left\langle q_{0}, \ldots, q_{c-1}\right\rangle$ is a possible output of p with input $\left\langle\mathrm{k}_{0}, \ldots, \mathrm{k}_{\mathrm{c}-1}\right\rangle$. End of Definition 8

By now we have defined a semantics of program schemes.

Remark: A trace $\left\langle s_{0}, \ldots, s_{c}\right\rangle$ of a program $p \in P_{d}$ correlates to each variable $x_{W}(w \leqslant c)$ occurring in the program p an intension or "history" s_{w} such that the value $\operatorname{ext}\left(s_{w}, b\right)$ can be considered as the "value contained in" or "extension of" x_{w} at time point $b \in T$. The intension $s_{w} \in I$ represents a function $\operatorname{ext}\left(s_{w},-\right): T \rightarrow D$ from time points to data values D. This function is the "history" of the variable x_{w} during an execution of the program p in the model m. Def. 7 ensures that the sequence $\left\langle\operatorname{ext}\left(s_{0},-\right), \ldots, \operatorname{ext}\left(s_{c},-\right)\right\rangle$ of functions can be considered as a behaviour or "run" or "trace" of the program p in m. Here s_{c} is the intension of the "control variable".

About using Th.: It might look counter-intuitive to execute programs in arbitrary elements of $M_{t d}$. However, we can collect all our postulates about time into a set $A x \subseteq F_{t d}$ of axioms which this way would define the class $\operatorname{Mod}(A x) \subseteq M_{t d}$ of all intended interpretations of P_{d}. Then traces of programs in Mod(Ax) provide an intuitively acceptable semantics of program schemes. Such a set $A x$ of axioms will be proposed in Def.13. If one wants to define semantics with unusual time structure e.g. parallelism, nondeterminism, interactions etc. then one can choose an $A x$ different from the one proposed in this paper.

We introduce our language DL_{d} for reasoning about programs or in other words the language DL_{d} of our first order dynamic logic.

DEFINITION 9 (the language DL_{d} of first order dynamic logic)
Let d be a (one-sorted) similarity type.
(i) DF_{d} is defined to be the smallest set satisfying conditions (1)-(3) below.
(1) $F_{t d} \subseteq D F_{d}$.
(2) $\left(\forall \mathrm{p} \in \mathrm{P}_{\mathrm{d}}\right)\left(\forall \psi \in \mathrm{DF}_{\mathrm{d}}\right) \square(\mathrm{p}, \psi) \in \mathrm{DF}_{\mathrm{d}}$.
(3) $\left(\forall \varphi, \psi \in D F_{d}\right)(\forall x \in X \cup Y \cup Z)\{\neg \varphi,(\varphi \wedge \psi),(\exists x \varphi)\} \subseteq D F_{d}$.

By this we have defined the set $D F_{d}$ of dynamic formulas of type d.
(ii) Now we define the meanings of the dynamic formulas in the 3-sorted models $m \in M_{t d}$. Let $m=\langle\underset{\sim}{T}, D, I$, ext $\rangle \in M_{t d}$. Let v be a valuation of the variables of $F_{t d}$ into m, i.e. let $v=\langle g, k, r\rangle$ where $g \in \omega_{T}, k \in \omega_{D}$, and $r \epsilon^{\omega_{I}}$. We shall define $m \vDash \varphi[v]$ for all, $\varphi \in \operatorname{DF}_{d}$.
(4) If $\varphi \in \mathrm{F}_{\mathrm{td}}$ then $m \neq \varphi[\mathrm{v}]$ is already defined in Def.5.
(5) Let $p \in P_{d}$ and $\psi \in D F_{d}$ be arbitrary. Assume that $m \vDash \psi[v]$ has already been defined for every valuation v of the variables of $F_{t d}$ into M. Let $g \in \omega_{T}, k \in \omega_{D}$, and $r \in \omega_{I}$. Then
M $\vDash \square(p, \psi)[g, k, r]$ iff $[m \vDash \psi[g, q, r]$ for every possible output q of p with input k in m]. For "possible output" see Def. 8 .
(6) Let $\varphi, \psi \in \mathrm{DF}_{\mathrm{d}}$ and let $\mathrm{x} \in \mathrm{X} \cup Y \cup Z$. Then $m \vDash(\neg \varphi)[g, k, r]$,
$m \vDash(\varphi \wedge \psi)[g, k, r]$ and $m \vDash(\exists x \varphi)[g, k, r]$ are defined the usual way.
Let e.g. $w \in \omega_{\text {. Then }} m_{k}\left(\exists z_{w} \varphi\right)[g, k, r]$ iff (there is $h \in \omega_{T}$ such that $(\forall j \in \omega)\left(j \neq w \Rightarrow h_{j}=E_{j}\right)$ and $\left.m \vDash \varphi[h, k, r]\right)$.
(iii) The language DL_{d} of first order dynamic logic of type d is defined to be the triple $D L_{d}=\left\langle D F_{d}, M_{t d}, k\right\rangle$ where k is defined in (ii) above.

Find of Definition 9

Notation: Let $p \in P_{d}$ and $\psi \in D F_{d}$. Then $\forall(p, \psi)$ abbreviates the formula $\neg \square(p, \neg \psi)$. In our language $D F_{d}$ we introduced the logical connectives $\neg, \wedge,=, \exists$, \square only. However, we shall use the derived logical connectives $\forall, \rightarrow, \leftrightarrow, V$, TRUE, FALSE, \diamond too in the standard sense. E.g. $(\varphi \vee \psi)$ stands for the formula $\neg(\neg \varphi \wedge \neg \psi)$.

Remark: Standard concepts of programming theory can be expressed in $D L_{d}$. E.g. $\square(p, \psi)$ expresses that p is partially correct w.r.t. output condition ψ, and $\diamond(p, \psi)$ expresses that p is totally correct w.r.t. output condition ψ in the weaker sense.

Convention 3 We shall use the model theoretic consequence relation k in the usual way. I.e. let $T h \subseteq D F_{d}, \quad \varphi \in D F_{d}$ and $K \subseteq M_{t d}$. Then
$m \vDash \varphi$ iff $\quad\left(\forall g \in \omega_{\mathrm{T}}\right)\left(\forall \mathrm{k} \in \omega_{\mathrm{D}}\right)\left(\forall r \in \omega_{\mathrm{I}}\right) \quad m \vDash \varphi[g, k, r]$,
$m \equiv T h \quad$ iff $\quad(\forall \varphi \in T h) \quad m \vDash \varphi$,
$K \vDash T h \quad$ iff $\quad(\forall M \in K) \quad M \vDash T h$,
$\operatorname{Mod}(T h) \stackrel{d}{=} \operatorname{Mod}_{t d}(T h) \stackrel{d}{=}\left\{m \in M_{t d}: m \neq T h\right\}$, and $\operatorname{Th} \vDash \varphi \quad$ iff $\quad \operatorname{Mod}(T h) \vDash \varphi$.

Note that $\operatorname{Mod}(T h)$ is a sloppy abbreviation of $\operatorname{Mod}_{t d}(T h)$, we shall use it when context helps the reader to guess which similarity type h such that $T h \subseteq F_{h}$ is used in $\operatorname{Mod}(T h)=\operatorname{Mod}_{h}(T h)$.

DEFINITION 10 (proof concept [17])
Let $L=\langle F, M, F\rangle$ be a language. By a proof concept on the set F we understand a relation $\vdash \subseteq \operatorname{Sb}(F) \times F$ together with a set $\operatorname{Pr} \subseteq F^{*}$ such that $(\forall T h \subseteq F)(\forall \varphi \in F)[T h \vdash \varphi$ iff $\quad(\langle H, w, \varphi\rangle \in \operatorname{Pr}$ for some finite $H \subseteq T h$ and for some $\left.\left.w \in F^{F F}\right)\right]$. Recall that we identify F^{F} with $\{\mathrm{H} \in \mathrm{Sb}(\mathrm{F}):|\mathrm{H}|<\omega\}^{*}$.

The proof concept (\vdash, Pr) is decidable iff the set Pr is a decidable subset of F^{*} in the usual sense of the theory of algorithms and recursive functions (i.e. if Pr is recursive).
Pr is called the set of proofs, and \vdash is called derivability relation. End of Definition 10

Sometimes we shall sloppily write $" \vdash$ is a decidable proof concept" instead of " ($\vdash, \operatorname{Pr})$ is a decidable proof concept".

Note that the usual proof concept of classical first order logic is a decidable one in the sense of the above definition. As a contrast we note that the so called effective ω-rule is not a decidable proof concept.

THEOREM 1 (strong completeness of DL_{d})
There is a decidable proof concept (N, Prn) for the language $~ D L_{d}$ such that for every $T h: D F_{d}$ and $\varphi \in D F_{d}$ we have $[T h \vDash \varphi$ iff $T h N \varphi]$. Proof: can be found in [:], as well as in [4]Thm.2 pp.30-38. QED

DEFINITION 11 (the proof concept (N, Prn) of DL_{d})
By Thm. 1 above there exists a decidable set $\operatorname{Prn} \subseteq\left(D F_{d}\right)^{*}$ such that $\left(\forall \mathrm{Th} \subseteq \mathrm{DF}_{\mathrm{d}}\right)\left(\forall \varphi \in \mathrm{DF}_{\mathrm{d}}\right)[\operatorname{Th} \stackrel{N}{N} \varphi \quad$ iff $\quad(\exists$ finite $\mathrm{H} \subseteq \operatorname{Th})(\exists \mathrm{w})\langle\mathrm{H}, \mathrm{w}, \varphi\rangle \in \operatorname{Prn}]$. The decision algorithm for Prn is rigorously constructed in [3] Thm.2, and [4]Thm.2,pp.30-38, and in [19].

From now on we shall use Prn as defined in the quoted papers. The only important properties of Prn we shall use are its decidability and its completeness for DL_{d}.

End of Definition 11

By a logic we understand a pair $\langle L,(\vdash, \operatorname{Pr})\rangle$ where $I=\langle F, M, F\rangle$ is a language in the sense of $\S 2$ and $(\vdash, P r)$ is a proof concept for L in the sense of Def.10. The logic $\langle\mathrm{L},(\vdash, \mathrm{Pr})\rangle$ is said to be complete iff $(-, \mathrm{Pr})$ is a decidable proof concept and for all $\mathrm{Th} \subseteq \mathrm{F}$ and $\varphi \in \mathrm{F}$ we have $[T h \vDash \varphi$ iff $T h \vdash \varphi$].

We define First order Dynamic Logic of type d to be the logic $\left\langle L_{d}\right.$, ($\left.\left.N, \operatorname{Prn}\right)\right\rangle$ where the proof concept (N, Prn) is defined in Def. 11. By Theorem 1, First order Dynamic Logic $\left\langle D L_{d},(N, \operatorname{Prn})\right\rangle$ is complete.

Given any logic, say $\left\langle\mathrm{DL}_{d},{ }^{N}\right\rangle$, decidable sets $\mathrm{Ax} \subseteq \mathrm{DF}_{\mathrm{d}}$ of formulas (i.e. theories $A x$) give rise to new logics. We shall make this precise in Def. 12 below.

DEFINITION 12 (new proof concepts (Ax $\mathbb{N}^{\mathbb{N}}$) from old ${ }^{\mathbb{N}}, ~ D L_{d}(A x), \operatorname{Dlog}_{d}(A x)$)
Let $A x \subseteq D F_{d}$ be decidable but otherwise arbitrary.
(i) Let $T h \subseteq D F_{d}$ and $\varphi \in D F_{d}$ be arbitrary. We say that φ is ($A x \stackrel{N}{N}$)-provable from $T h$ iff $T h \cup A x N(\mathbb{N} \varphi$. That is φ is provable by the proof concept ($A x \stackrel{N}{N}$) from Th iff $\operatorname{Th} \cup A x N^{N} \varphi$. Thus ($A x N^{N}$) is a new recursively enumerable "provability" relation.
(ii) $\operatorname{pf}\left(A x N^{N}\right) \stackrel{d}{=}\left\{\langle H,\langle L, w\rangle, \varphi\rangle \in\left(D F_{d}\right)^{*}:\langle H \cup L, w, \varphi\rangle \in \operatorname{Prn}\right.$ and $\left.L \subseteq A x\right\}$. Clearly φ is (Ax N^{N})-provable from Th iff $(\exists\langle H, W, \varphi\rangle \in \operatorname{Prn}) H \subseteq T h U A x$. Clearly $p f\left(A x N^{N}\right)$ is a decidable subset of $\left(D F_{d}\right)^{H}$.
(iii) We have defined a new proof concept $\left\langle\left(A x N^{N}\right), p f\left(A x N^{N}\right)\right\rangle$ where $\operatorname{pf}(A x \stackrel{N}{N}$) is the decidable set of all (Ax $\stackrel{N}{\wedge})$-proofs. We shall always denote this new proof concept by $\left(A x N^{N}\right)$. So whenever we write (Ax $\mathbb{N}^{\mathbb{N}}$) we shall mean $\left\langle\left(A x \|^{N}\right), p f\left(A x N^{N}\right)\right\rangle$ but we shall not write it out explicitly.
(iv) We define the new language $\mathrm{DL}_{\mathrm{d}}(\mathrm{Ax})$ associated to $\mathrm{Ax} \subseteq \mathrm{DF}_{\mathrm{d}}$ to be $D L_{d}(A x) \stackrel{d}{=}\left\langle D F_{d}, \operatorname{Mod}_{t d}(A x), k\right\rangle$.
(v) We define the new dynamic $\operatorname{logic}^{\operatorname{Dlog}} \log _{d}(\mathrm{Ax})$ associated to $A x$ to be $D \log _{d}(A x) \stackrel{d}{=}\left\langle D L_{d}(A x),\left(A x \|^{N}\right)\right\rangle$.

End of Definition 12
On Figure 2, different proof concepts $\left(\mathrm{Ax}_{1} \mathbb{N}^{N}\right),\left(\mathrm{Ax}_{2} \mathbb{N}^{N}\right)$ etc. will be compared with each other as well as with such classic proof concepts as Floyd's F and Rod Burstall's mod .

DEFINITION 13 (Dax, Reasonable Dynamic Logic, ${ }_{\omega}$)
In Def.s $14-17$ below the axiom systems Ia, Tpa, Ex, $\{A x \in\} \subseteq F_{d}$ will be defined. We define the logical axioms of Reasonable Dynamic Logic to be Dax $\stackrel{\text { d }}{=}$ Ia UTpaUEx U\{Axe\}.

We define Reasonable Dynamic Logic to be Dlog_{d} (Dax). See Def. 12 (v) above.

Let $T h \subseteq \mathrm{DF}_{\mathrm{d}}$ and $\varphi \in \mathrm{DF}_{\mathrm{d}}$. Then we define $[\mathrm{Th} \xlongequal{\omega} \varphi$ iff $\left.\left(S T M_{d} \cap \operatorname{Mod}(T h)\right) \vDash \varphi\right]$. End of Definition 13

Note that $S T M_{d} \vDash$ Dax is easy to prove.
Is our dynamic logic nihilistic or counterintuitive?:
We claim that the answer is no for our Reasonable Dynamic Logic Dlog_{d} (Dax). To execute programs in arbitrary elements of $\mathrm{M}_{\text {td }}$ might look counterintuitive. However $D \log _{d}(\mathrm{Dax})$ is a complete logic with decidable proof concept and there is nothing wrong with executing programs in elements of $\operatorname{Mod}_{t d}$ (Dax). See e.g. Prop. 2 below, Thm.7 of [3], Thm. 6 of $[9]_{p .} 34$ and Fig. 2.

PROPOSITION 2 Let $M \vDash \operatorname{Dax}$ and $p \in P_{d}$. Then (i)-(ii) below hold.
(i) To every input q there is exactly one trace of p in m with input q.
(ii) Assume that the trace $s \epsilon^{m} I$ of p in m terminates at time $b \in T$. Then $(\forall a \in T)\left[b \leqslant a \Rightarrow(\forall i<m) \operatorname{ext}\left(s_{i}, b\right)=\operatorname{ext}\left(s_{i}, a\right)\right]$ and $(\exists a \in T)(\forall k \in T)[(s$ terminates p at time $k) \Leftrightarrow a \leqslant k]$.

Proof: Detailed proofs can be found in [3]Thm.s 3-4, [4]Thm.s 3-4,pp. $42-45$, except for the existence of traces in (i) which is proved in [20], but the idea of this proof is available in [3]proof of Thm.7. QED(Proposition 2)

On Fig. 2 , different dynamic $\operatorname{logics} \operatorname{Dlog}_{d}(A x)$ with various $A x \subseteq D F_{d}$ will be compared with each other and with classical logics of programs like Floyd-Hoare Logic, Burstall's modal-dynamic logic etc.
§4. Comparing methods for program verification, the status of some well known ones

We shall show how to use our logic DL_{d} to compare powers of methods of program verification, as well as to generate new methods for program verification. We shall see that the program verification methods form a lattice, see Fig.2. It might be interesting and also useful to find out about well known program verification methods how they are situated in this lattice.

Three well known program verification methods we shall look at are Floyd's inductive assertions method F, Burstall's time modalities method ${ }^{\text {mod }}$ [7], and Future-enriched time modalities method fum [12]. Burstall's lmod is often called intermittent-assertion method, see e.g. [16]. These methods will be defined rigorously, see Def. 20 for \mathbb{F}, Def. 18 for ${ }^{\text {mod }}$, and Def. 19 for fum. The last one, fum, is ${ }^{l}{ }^{\text {mod }}$ enriched with future tense and past tense. By spotting the precise locations of F, mod and fum in the lattice of program verification methods we shall find a precise answer to the question asked at SRI in 1976: "Is sometime sometimes better than always?" [16].

We have to fix the criteria to be used when we compare program verification methods. We shall say that one method \vdash_{1} is stronger than another \vdash_{2} iff more programs can be proved to be partially correct by \vdash_{1} than by \vdash_{2}. So we shall consider the reasoning power to prove partial correctness statements $\varphi \rightarrow \square(p, \psi)$ to be the criterion to compare different methods. This choice has nothing to do with our logic DL_{d}, namely DL_{d} is suitable for proving total correctness of programs. It was proved in [3]Thm.7 and in Thm. 7 of [4] that the KfouryPark[15] negative result on proving total correctness is not true for DL_{d} •

We shall consider program verification methods only with decidable proof concepts.

About generating new program verification methods by DL_{d} : : A safe way of dreaming up new sound program verification methods is to define a decidable set $A x \subseteq D F_{d}$ of axioms such that $S T M_{d} \vDash A x$. Then ($A x \mathcal{N}^{N}$) is a sound program verification method. A reasonable axiom system is e.g. Dax introduced in Def.13. Clearly $S T M_{d} k$ Dax. Thus by Thm. 1 we can be sure that whenever $T h \cup D a x \vDash^{N} \square(p, \psi)$ then really $\operatorname{Th}{ }_{N}^{\omega} \square(p, \psi)$ that is the proof method ($\operatorname{Dax} \stackrel{N}{N}$) is sound.

Below we shall introduce several such axiom systems Ax, with $S T M_{d} \vDash$ Ax. Later we shall compare them in Fig. 2 . One can consider these axiom systems as different candidates for being the logical axioms for dynamic logic. Or if we want to imitate what people do in modal
logic then we could say that every recursively enumerable $A x \subseteq D F_{d}$ such that $S T M_{d} \neq A x$ is a dynamic logic and if $S T M_{d} \vDash A x_{1}$ and $S T M_{d} \neq A x_{2}$ and $A x_{1} \not \equiv \mathrm{Ax}_{2}$ then $A x_{1}$ and $A x_{2}$ are two different dynamic logics and if $A x_{2} \vDash A x_{1}$ then $A x_{2}$ is a dynamic logic stronger than $A x_{1}$.

Usually, any axiom system, say Axname, introduced below will consist of two parts Tname and Iname such that Axname = Tname U Iname. Tname consists of postulates about the time structure $\underset{\sim}{\sim}$ hence Tname $\subseteq F_{t}^{Z}$, see Def.16. Iname consists of induction axioms about the intensions, see Def.15. Typical examples are $\forall z(\operatorname{sc}(z) \neq 0) \in$ Thame and $(x=\operatorname{ext}(y, 0) \wedge \forall z[x=\operatorname{ext}(y, z) \rightarrow x=\operatorname{ext}(y, s c(z))]) \rightarrow \forall z(x=\operatorname{ext}(y, z)) \in$ Iname.

DEFINITION 14 (ind (φ, z), IA, Ia, Lax)
Let d be a similarity type. Then $t d, F_{t d}$ and Z were defined in Def.s 4 and 6 in §2. Let $z \in Z$ be arbitrary. Let $\varphi \in F_{t d}$. We define the induction formula ind (φ, z) as follows:
ind $(\varphi, z) \stackrel{d}{=}([\varphi(0) \wedge \forall z(\varphi \rightarrow \varphi(\operatorname{sc}(z))] \rightarrow \forall z \varphi)$,
where $\varphi(0)$ and $\varphi(s c(z))$ denote the formulas obtained from φ by replacing every free occurrence of z in φ by 0 and $s c(z)$ resp. The induction axioms are:
IA $\stackrel{d}{\equiv}\left\{\operatorname{ind}(\varphi, z): \varphi \in F_{\text {td }}\right.$ and $\left.z \in Z\right\}$.
Lax $\underset{=}{d}\{(j \neq k): j$ and k are two different elements of Lab\}.
Ia $\stackrel{\mathrm{d}}{=} \mathrm{IA} \cup \operatorname{Lax}$.
End of Definition 14
Clearly $I A \subseteq F_{t d}$ since if $\varphi \in F_{t d}$ and $z \in Z$ then $\varphi(0), \varphi(\operatorname{sc}(z)) \epsilon$ $\in F_{t d}$ because 0 and $s c(z)$ are terms of sort t. It is important to stress here that φ may contain other free variables of all sorts. All the free variables of φ are also free in ind (φ, z) except for z. They are the "parameters" of the induction ind (φ, z).

The theory IA says that if a "property" φ changes during time T then it must change "some time", i.e. there is a time point $b \in T$ when φ is just changing.

Our strongest set of induction axioms is Ia. We shall distinguish various subsets of Ia.

DEFINITION 15 ($\mathrm{Iq}, \mathrm{I} \Sigma_{1}, I \Pi_{1}$, If, I1, I^{\prime}, Ict, Imd and Ifm) If $\xlongequal[=]{d}\{\varphi \in I A: \varphi$ contains no free variable of sort t or $d\}$ ULax. I1 $\xlongequal{d}\left\{\varphi \in I A:(\forall i \in \omega)\left[i>0 \Rightarrow z_{i}\right.\right.$ does not occur in φ neither free nor bound $]\} \cup$ Lax.

I' $\underset{I}{d}\left\{\operatorname{ind}\left(\varphi, z_{0}\right) \in I 1: \varphi \in F_{t d}\right.$ is such that "+" and "." do not occur in φ and there is no subformula $\psi \in F_{t}^{Z}$ of $\left.\varphi\right\} \cup$ Lax .
Ict $\stackrel{d}{=}\left\{\operatorname{ind}\left(\exists x_{0} \ldots x_{m}\left[\left(\wedge_{i \leqslant m} x_{i}=\operatorname{ext}\left(y_{i}, z_{0}\right)\right) \wedge \varphi\right], z_{0}\right): m \in \omega\right.$ and $\left.\varphi \in F_{d}\right\} \cup$ Lax. Let $\left(\Sigma_{0, t} \mathrm{~F}_{\mathrm{td}}\right) \stackrel{d}{=}\left\{\varphi \in \mathrm{F}_{\mathrm{td}}: \varphi\right.$ contains no quantifier of sort t, that is $(\forall i \in \omega)\left[" \exists z_{1} "\right.$ does not occur in $\left.\left.\varphi\right]\right\}$.

Iq $\stackrel{d}{=}\left\{\operatorname{ind}\left(\varphi, z_{0}\right): \varphi \in\left(\Sigma_{0, t^{\prime}}{ }_{t d}\right)\right\} \cup \operatorname{Lax}$.
$I \Sigma_{1} \stackrel{d}{=}\left\{\operatorname{ind}\left(\exists z_{1} \ldots z_{m} \varphi, z_{0}\right): \varphi \in\left(\Sigma_{0, t} F_{t d}\right)\right.$ and $\left.m \in \omega\right\} \cup \operatorname{Lax}$. $I \|_{1} \stackrel{d}{\equiv} \operatorname{ind}\left(\forall z_{1} \ldots z_{m} \varphi, z_{0}\right): \varphi^{\in}\left(\Sigma_{0, t^{F}}{ }_{t d}\right)$ and $\left.m^{\in} \omega\right\} \cup \operatorname{Lax}$.
Imd $\stackrel{d}{\equiv}\left\{\bmod \varphi: \varphi \in I A^{\bmod }\right\}$, where \bmod and $I A^{\bmod }$ will be defined in Def. 18.

Ifm $\xlongequal[=]{d}\{\operatorname{fum} \varphi: \varphi \in \operatorname{If} u m\}$, where fum and Ifum will be defined in Def.19.

End of Definition 15

On Fig. 1 we compare the sets of induction axioms introduced in Def. 15 above. Warning: As opposed to Fig.2, the comparison on Fig. 1 is not modulo partial correctness of programs but instead it is absolute. That is, on Fig.1, $\left[I_{1} \geqslant I_{2}\right.$ iff $\left.I_{1} \vDash I_{2}\right]$ and $I_{1} \equiv I_{2}$ means $\left(I_{1} \leqslant I_{2}\right.$ and $I_{2} \leqslant I_{1}$). The sign $\not \equiv$ indicates that the inequality in question is known to be proper, that is $I_{2} \not \equiv I_{1}$. We shall discuss Fig. 1 after the discussion of Fig. 2 in $\$ 5$.

FIGURE 1

DEFINLTION 16 (Ts $\subseteq T 0 \subseteq T p r e s \subseteq T p a \subseteq F_{t}^{Z}$ and $T f m$)
Notation: $\operatorname{sc}^{0}\left(z_{0}\right) \stackrel{d}{\equiv} z_{0}$ and $(\forall n \in \omega) \operatorname{sc}^{n+1}\left(z_{0}\right) \stackrel{d}{=} \operatorname{sc}\left(s^{n}\left(z_{0}\right)\right)$.
Ts $\stackrel{d}{=}\left\{z_{0} \neq 0 \leftrightarrow \exists z_{1}\left(z_{0}=\operatorname{sc}\left(z_{1}\right)\right), \quad \operatorname{sc}\left(z_{0}\right)=\operatorname{sc}\left(z_{1}\right) \rightarrow z_{0}=z_{1}, \quad \operatorname{sc}^{n}\left(z_{0}\right) \neq z_{0} \quad:\right.$: $n \in \omega, n \neq 0\}$.
To $\stackrel{d}{=}\left\{\left(z_{0} \leqslant z_{1} \wedge z_{1} \leqslant z_{2}\right) \rightarrow z_{0} \leqslant z_{2}, \quad\left(z_{0} \leqslant z_{1} \wedge z_{1} \leqslant z_{0}\right) \rightarrow z_{0}=z_{1}\right.$, $z_{0} \leqslant z_{1} \vee z_{1} \leqslant z_{0}, \quad 0 \leqslant z_{0}, \quad\left(z_{0} \leqslant z_{1} \wedge z_{0} \neq z_{1}\right) \leftrightarrow \operatorname{sc}\left(z_{0}\right) \leqslant z_{1}$, $\left.0=z_{0} \vee \exists z_{1}\left(z_{0}=\operatorname{sc}\left(z_{1}\right)\right)\right\}$.
Tpres is the decidable set of Presburger's axioms for $\underset{\sim}{\mathbb{N}}$:

Tpa is the set of Peano's axioms formulated in the language F_{t}^{Z} about the similarity type t, see e.g. Example 1.4.11 in [8]p.42.:
Tpa $\stackrel{d}{=}$ Tpres $U\left\{z_{0} \cdot 0=0, \quad z_{0} \cdot \operatorname{sc}\left(z_{1}\right)=z_{0} \cdot z_{1}+z_{0}\right.$, ind $\left.\left(\varphi, z_{0}\right): \varphi \in F_{t}^{Z}\right\}$. $\operatorname{Tfm} \stackrel{d}{=}\left\{\operatorname{fum}^{\mathrm{C}}: \varphi \in \mathrm{Tfum}\right\}$, where fum and Tfum will be defined in Def.19.

Find of Definition 16

Note that $T s \subseteq T o$ is not literally true but $T o k T s$. We require $T 0 \subseteq T p a$ because we have the symbol \leq in the similarity type t. We also note that $T O \vDash T f m$, and, clearly, $S^{\prime} M_{d} \vDash$ Tpa. I.e. Fact 16.1 below holds.

FACT 16.1 $\quad S_{d} \neq T p a \vDash T p r e s \vDash T O \vDash T f m \quad$ and $\quad T o \vDash T s$.
The set Ex of axioms introduced below are useful to prove total correctness, see Thm. 7 of [3]Part II, and Thm. 7 of [4].

DEFINITION 17 (Ex, Axe)

$\operatorname{Ex} \stackrel{\mathrm{d}}{=}\left\{\left[\forall z_{0} \exists \mathrm{x}_{0} \varphi \rightarrow \exists \mathrm{y}_{0} \forall \mathrm{z}_{0} \exists \mathrm{x}_{0}\left(\mathrm{x}_{0}=\operatorname{ext}\left(\mathrm{y}_{0}, \mathrm{z}_{0}\right) \wedge \varphi\right)\right]: \varphi \in \mathrm{F}_{\mathrm{td}}\right.$ and y_{0} does not occur in $\varphi\}$.
More intuitively, the formulas in Ex are of the form $\forall \bar{z} \forall \bar{x} \forall \bar{y}\left[\forall z_{0} \exists x_{0} \varphi\left(z_{0}, x_{0}, \bar{z}, \bar{x}, \bar{y}\right) \rightarrow \exists y_{0} \forall z_{0} \varphi\left(z_{0}, \operatorname{ext}\left(y_{0}, z_{0}\right), \bar{z}, \bar{x}, \bar{y}\right)\right]$ where $\bar{z}, \bar{x}, \bar{y}$ are arbitrary sequences of variables not containing $z_{0}, x_{0}, \bar{y}_{0}$. Axe denotes the axiom of extensionality, i.e. Axe is $\left(\forall y_{0} \forall y_{1}\left[\forall z_{0} \operatorname{ext}\left(y_{0}, z_{0}\right)=\operatorname{ext}\left(y_{1}, z_{0}\right) \rightarrow y_{0}=y_{1}\right]\right.$. End of Definition 17

For the rest of this section, let $d=\left\langle H, d_{1}\right\rangle$ be an arbitrary but fixed one-sorted similarity type, see Def.1.

A direct Kripke style semantics for $D L_{d}^{\text {mod }}$ defined below can be found in [23]. Moreover, in [23] a direct Kripke style definition is given for the validity relation mod defined indirectly in Def. 18 .

DEFINITION 18 (modal dynamic language $\mathrm{DI}_{\mathrm{d}}^{\bmod }$ of type d)
(i) Syntax $\mathrm{DF}_{\mathrm{d}}^{\text {mod }}$.:
$\mathrm{T}_{\mathrm{d}}^{\bmod }$ is defined to be the smallest set satisfying (1)-(2) below:
(1) $\left\{x_{n}, y_{n}\right\} \subseteq T_{d}^{\bmod }$ for every $n \in \omega$.
(2) $f\left(\tau_{1}, \ldots, \tau_{n}\right) \in T_{d}^{m o d}$ for every $f \in H$ if $d(f)=n+1$ and $\left\{\tau_{1}, \ldots, \tau_{n}\right\} \subseteq T_{d}^{\bmod }$. $\mathrm{DF}_{\mathrm{d}}^{\bmod }$ is defined to be the smallest set satisfying (3)-(5) below:
(3) $(\tau=6) \in \mathrm{F}_{\mathrm{d}}^{\bmod }$ for all $\tau, \sigma \in \mathbb{T}_{\mathrm{d}}^{\mathrm{mod}}$.
(4) $R\left(\tau_{1}, \ldots, \tau_{n}\right) \in \underset{\left\{F_{1}^{m o d}\right.}{\bmod }$ for every $R \in \tau_{n} \leqslant T_{d}^{\bmod }$. d_{1} if $R \notin H, d(R)=n$ and
(5) $\left\{\right.$ Al φ, First φ, Next $\left.\varphi, \exists x_{n} \varphi, \exists y_{n} \varphi, \neg \varphi,(\varphi \wedge \psi), \square(p, \varphi)\right\} \subseteq D F_{d}^{\bmod }$ for all $n \in \omega$ and for all $\varphi, \psi \in D F_{d}^{m o d}$ and all $p \in P_{d}$.
(ii) Translation function $\bmod : \mathrm{DF}_{\mathrm{d}}^{\mathrm{mod}} \rightarrow \mathrm{DF}_{\mathrm{d}} \cdot$:

The definition goes by recursion on the structure of $D F_{d}^{m o d}$. Sometime we write $\bmod \varphi$ instead of $\bmod (\varphi)$. Let $n \in \omega, \tau_{1}, \ldots, \tau_{n} \in \mathbb{T}_{d}^{\bmod }$, $\varphi, \psi \in \mathrm{DF}_{\mathrm{d}}^{\mathrm{mod}}$ and $\mathrm{p} \in \mathrm{P}_{\mathrm{d}}$. Now $\bmod \left(y_{n}\right) \stackrel{d}{=} \operatorname{ext}\left(y_{n}, z_{0}\right), \quad \bmod \left(x_{n}\right) \stackrel{d}{=} x_{n}$, $\bmod (A l w \varphi) \stackrel{\mathrm{d}}{=} \forall z_{0}(\bmod \varphi)$,
$\bmod ($ First $\varphi)=\exists z_{0}\left(z_{0}=0 \wedge \bmod \varphi\right)$,
$\bmod (\operatorname{Next} \varphi) \stackrel{d}{=} \exists z_{1}\left(z_{1}=\operatorname{sc}\left(z_{0}\right) \wedge \exists z_{0}\left(z_{0}=z_{1} \wedge \bmod \varphi\right)\right.$,
$\bmod \left(g\left(\tau_{1}, \ldots, \tau_{n}\right)\right) \stackrel{d}{=} g\left(\bmod \tau_{1}, \ldots, \bmod \tau_{n}\right)$ if $g \in \operatorname{Dom} d_{1}$ is such that $d(g)=n+1$ in case $g \in H$ and $d(g)=n$ in case $g \notin H$,
$\bmod \left(\tau_{1}=\tau_{2}\right) \stackrel{d}{=}\left(\bmod \tau_{1}=\bmod \tau_{2}\right), \quad \bmod \left(\exists x_{n} \varphi\right) \stackrel{d}{=} \exists x_{n} \bmod \varphi, \quad \bmod \left(\exists y_{n} \varphi\right) \stackrel{d}{=} \exists y_{n} \bmod \varphi$, $\bmod (\neg \varphi) \stackrel{d}{=} \neg \bmod \varphi, \quad \bmod (\varphi \wedge \psi) \stackrel{d}{=}(\bmod \varphi \wedge \bmod \psi), \bmod (\square(p, \psi)) \stackrel{d}{=} \square(p, \bmod \psi)$. By the above, the function $\bmod : \mathrm{DF}_{\mathrm{d}}^{\text {mod }} \rightarrow \mathrm{DF}_{\mathrm{d}}$ is fully defined. (iii) Validity relation $\xlongequal{\text { mod }} \subseteq \mathrm{M}_{\mathrm{td}} \times \mathrm{DF}_{\mathrm{d}}^{\mathrm{mod}}$.:

Let $m \in M_{t d}$ and $\varphi \in D_{d}^{m o d}$. Then we define $m \stackrel{\bmod }{=} \varphi$ inf $m \vDash \bmod \varphi$.
(iv) Axioms $I A^{m o d}$ of modal dynamic logic .:
$\operatorname{IA}^{\bmod } \stackrel{d}{\equiv}\left\{([\operatorname{First} \varphi \wedge \operatorname{Alw}(\varphi \rightarrow \operatorname{Next} \varphi)] \rightarrow \operatorname{Alw} \varphi): \quad \varphi \in \mathrm{DF}_{\mathrm{d}}^{\bmod }\right\} \cup \operatorname{Lax}$.
(v) The language $D L_{d}^{\bmod }$ of modal dynamic logic .:
$D L_{d}^{\bmod } \stackrel{d}{=}\left\langle D F_{d}^{\bmod }, \operatorname{Mod}_{t d}\left(I A^{\bmod }\right), \stackrel{\bmod }{\Longrightarrow}\right\rangle$, where for any $T h \subseteq D F_{d}^{\bmod }$ we define $\operatorname{Mod}_{t d}(T h) \stackrel{d}{\equiv}\left\{M_{M} \in M_{t d}: m \stackrel{m o d}{=} T h\right\}$. Let $T h \subseteq D F_{d}^{m o d}$ and $\varphi \in \mathrm{DF}_{\mathrm{d}}^{\mathrm{mod}}$. Then $\mathrm{Th} \xlongequal{\bmod } \varphi$ is defined to hold iff
$\operatorname{Mod}_{t d}\left(I A^{\text {mod }} U_{T h}\right) \stackrel{\bmod }{=} \varphi$, see Convention 3. End of Definition 18
PROPOSITION 3 (completeness of $D L_{d}^{\text {mod }}$)
Let $T h \subseteq D F_{d}^{\bmod }$ and $\varphi \in D F_{d}^{\bmod }$. Then
$\operatorname{Th} \xlongequal{\bmod } \varphi \quad$ iff $\left\{\bmod \psi: \psi \in \operatorname{Th} \cup I A^{\bmod }\right\} \mathbb{N} \bmod \varphi$.
The proof of Prop. 3 is immediate by the definitions and by the completeness theorem of DL_{d}, i.e. by Thm.1.

QED

The modality symbol Alwfu used below intuitively means "Always in the future". Similarly Alwpay intuitively means "Always in the past φ ". In [12] "Alwfu φ " and "Next φ " are denoted by " $F \varphi$ " and "X φ " respectively.

DEFINITION 19 (future enriched modal dynamic language $D I_{d}^{\text {fum }}$ of type d)
(i) Syntax.: $\mathrm{DF}_{\mathrm{d}}^{\text {fum }}$ is defined to be the smallest set satisfying (1)-(2) below:
(1) $D F_{d}^{m o d} \subseteq D F_{d}^{f u m}$.
(2) \{Alwfu, Alwpa, Alw φ, First φ, Next $\varphi, \exists x_{n} \varphi, \exists y_{n} \varphi, \neg \varphi,(\varphi \wedge \psi)$,
$\square(p, \psi)\} \subseteq D_{d}^{\text {fum }}$ for all $n \in \omega, \varphi, \psi \in \mathrm{DF}_{\mathrm{d}}^{\text {fum }}$ and all $\mathrm{p} \in \mathrm{P}_{\mathrm{d}}$.
(ii) Translation function fum : $\mathrm{DF}_{\mathrm{d}}^{\text {fum }} \rightarrow \mathrm{DF}_{\mathrm{d}}$. :

The definition of fum goes by recursion on the structure of $\mathrm{DF}_{\mathrm{d}}^{\text {fum }}$. Sometime we write fum φ instead of fum (φ), i.e. fum $\varphi \stackrel{d}{\exists}$ fum (φ). Let $\varphi \in \operatorname{DF}_{d}^{\bmod }$. Then $f u m(\varphi) \stackrel{d}{=} \bmod (\varphi)$, see Def.18(ii).
Let $n \in \omega, \quad \varphi, \psi \in D F_{d}^{f u m}$ and $p \in P_{d}$. Then fum(Alwfu $) \stackrel{d}{=} \forall z_{1}\left[z_{1} \geqslant z_{0} \rightarrow \exists z_{0}\left(z_{0}=z_{1} \wedge\right.\right.$ fum $\left.\left.\varphi\right)\right]$, fum(Alwра $) \stackrel{d}{=} \forall z_{1}\left[z_{1} \leqslant z_{0} \rightarrow \exists z_{0}\left(z_{0}=z_{1} \wedge\right.\right.$ fum φ) $]$, fum $(A l w \varphi) \stackrel{d}{\equiv} \forall z_{0}(f u m \varphi)$, fum (Next $\left.\varphi\right) \stackrel{d}{=} \exists z_{1}\left[z_{1}=\operatorname{sc}\left(z_{0}\right) \wedge \exists z_{0}\left(z_{0}=z_{1} \wedge\right.\right.$ fum $\left.\left.\varphi\right)\right]$, fum (First φ) $\stackrel{d}{=} \exists z_{0}\left(z_{0}=0 \wedge\right.$ fum $\left.\varphi\right)$, fum $\left(\exists x_{n} \varphi\right) \stackrel{d}{=} \exists x_{n}$ fum φ, fum $\left(\exists y_{n} \varphi\right) \stackrel{d}{\exists} \exists y_{n}$ fum φ $\operatorname{fum}(\neg \varphi) \stackrel{d}{=} \neg \operatorname{fum} \varphi, \quad f u m(\varphi \wedge \psi) \stackrel{d}{=}((\operatorname{fum} \varphi) \wedge(f u m \psi)), \quad \operatorname{fum}(\square(p, \psi)) \stackrel{d}{=} \square(p, f u m \psi)$. By the above the function fum $: D F_{d}^{\text {fum }} \rightarrow D F_{d}$ is fully defined.
(iii) Validity relation $\xlongequal{\text { fum }} \subseteq M_{t d} \times F_{d}^{\text {fum }}$.:
 (iv) Abbreviations or shorthands: $(\operatorname{Som} \varphi) \stackrel{\mathrm{d}}{=}(\neg A l w \neg \varphi)$, (Somfu $) \stackrel{d}{=}\left(\neg A l w f u_{\neg} \varphi\right)$, Sompa $\varphi \stackrel{d}{=}(\neg A l w p a \neg \varphi)$, and we use the usual shorthands $\forall x_{n}, \forall y_{n}, \vee, \rightarrow, \diamond$, etc. introduced below the definitions of $D L_{d}$ and $D I_{\alpha}^{\bmod }$.
(v) Axioms. (v)1 Induction axioms:

Ifum $\stackrel{d}{=}([\varphi \wedge \operatorname{Alwfu}(\varphi \rightarrow \operatorname{Next} \varphi)] \rightarrow$ Alwfu $\left.\varphi): \varphi \in \mathrm{DF}_{\mathrm{d}}^{\text {fum }}\right\} \cup \operatorname{Lax}$.
(v)2 Time-structure axioms:

Tfum $\stackrel{\text { d }}{=}$ \{First(Alwfu $\rightarrow \operatorname{Alw} \varphi$), $\quad \operatorname{First}(\varphi \leftrightarrow \operatorname{Alwpa\varphi })$,
$(\varphi \rightarrow$ Sompa $\wedge \wedge$ Somfue $),([$ Alwpa \wedge Alwfu $\varphi] \rightarrow$ Alw φ),
(SomfuSomfuب \rightarrow Somfu), (SompaSompa \rightarrow Sompa φ),
(Alwfu $\varphi \leftrightarrow[\varphi \wedge$ NextAlwfu φ]), (NextAlwpa $\varphi \leftrightarrow[\operatorname{Next} \varphi \wedge$ Alwpa $\varphi]$)
: $\left.\varphi \in \mathrm{DF}_{\mathrm{d}}^{\text {fum }}\right\}$.
(vi) Future enriched modal dynamic language is defined to be $D L_{d}^{\text {fum }} \stackrel{d}{\equiv}\left\langle\mathrm{DF}_{\mathrm{d}}^{\text {fum }}, ~ \mathrm{DM}_{\mathrm{d}}^{\text {fum }}\right.$, fum \rangle where
 cordance with Convention 3, i.e.

Remark: Note that $\varphi \xlongequal{\text { fum }}$ Alw φ for all $\varphi \in \mathrm{FF}_{\mathrm{d}}^{\text {fum }}$ since $み \underset{\text { fum }}{\Longrightarrow} \varphi$ implies $\boldsymbol{m l}$ fum Alw φ by definition. Also note that
Ifum UTfum fum $\{([$ First $\varphi \wedge \operatorname{Alw}(\varphi \rightarrow \operatorname{Next} \varphi)] \rightarrow \operatorname{Alw} \varphi)$,

$$
\begin{aligned}
& \text { Alw }([\text { First } \varphi \wedge \operatorname{Alwpa}(\varphi \rightarrow \text { Next } \varphi)] \rightarrow \text { NextAlwpa } \varphi): \\
& \left.: \varphi \in \mathrm{DF}_{\mathrm{d}}^{\text {fum }}\right\} \text {. }
\end{aligned}
$$

PROPOSITION 4 (completeness of $D I_{d}^{f u m}$)
Let $T h \subseteq D F_{d}^{f u m}$ and $\varphi \in D F_{d}^{f u m}$. Then
$T h$ fum φ iff $\{f u m \psi: \psi \in T h \cup \operatorname{Ifum} U T f u m\} \quad N$ fum φ.
Proof: By Thm. 1 and Def.19. QED
COROLLARY 5 There are decidable proof concepts mod and fum such that $\left\langle\mathrm{DI}_{\mathrm{d}}^{\mathrm{mod}}, \underline{m o d}\right\rangle$ and $\left\langle\mathrm{DI}_{\mathrm{d}}^{\mathrm{fum}}, f\right.$ fum \rangle are complete logics.

DEFINITION 20 （Floyd－Hoare logic 〈 $\mathrm{HFL}_{\mathrm{d}}$ ，（ $\mathrm{F}, \operatorname{Prf}$ ）〉）
（i）The set HF_{d} of Floyd－Hoare statements of type d is an am－ portent sublanguage of DF_{d} ：
$H F_{d} \stackrel{d}{=}\left\{(\varphi \rightarrow \square(p, \psi)): p \in P_{d}\right.$ and $\left.\varphi, \psi \in F_{d}\right\}$ ．Clearly $H F_{d} \subseteq D F_{d}$ ．
（ii）Floyd－Hoare language $\mathrm{HFL}_{\mathrm{d}}$ is defined to be：
$H F L_{d} \stackrel{d}{=}\left\langle H F_{d} \cup F_{d}, \operatorname{Mod}_{t d}(I q), k\right\rangle$ 。
（iii）The relation $F \subseteq\left\{T h: T h \subseteq F_{d}\right\} \times H F_{d}$ was defined in a rigorous manner in［3］Def．17，［4］Def．17，p．55，［6］，［2］p．118．We shall use this definition of \mathbb{F} without reformulating it，but we note that in the quoted papers there is a decidable set $\operatorname{Prf} \subseteq\left(H F_{d} \cup F_{d}\right)^{*}$ such that $\left(\forall T h \subseteq F_{d}\right)\left(\forall \rho \in H F_{d}\right)[T h F \rho$ inf（ \exists finite $\left.H \subseteq T h)(\exists w)\langle H, w, \rho\rangle \in \operatorname{Prf}\right]$ ． Hence Pry is the set of F－proofs and Pref is decidable．Cf．Def． 10．According to Def． 10 ，（ $\mathbb{F}, \operatorname{Prf}$ ）is a decidable proof concept for the Floyd－Hoare language $\mathrm{HFL}_{\mathrm{d}}$ ．End of Definition 20

The lattice of proof methods for partial correctness of programs
Instead of＂proof method for program verification＂we shall simply say＂proof method＂．By a proof method we understand a proof concept $\left(X{ }^{\mathrm{I}}\right.$ ）in the sense of Def． 12 or one in the sense of Def．10．Thus eeg． F and（ $\operatorname{Dax} \mathbb{N}^{N}$ ）are proof methods．When we call（ $X \mathbb{N}$ ）a proof method for program verification then what we intuitively have in mind is the proof concept（X \mathbb{N}^{N} ）as a device for proving properties of programs． We shall concentrate on the powers of proof methods（ $X \mathbb{Z}$ ）to prove partial correctness of programs．

We define a pre－ordering \leq on the proof methods as follows：
 for every similarity type $d, T h \subseteq F_{d}$ and $\rho \in H F_{d}$ ．

The relation \leqslant induces an equivalence relation \equiv defined as：

A straight line

on Fig． 2 indicates the relation
$X \mathrm{Y}^{\mathrm{Y}} \quad \mathrm{F}^{\boldsymbol{Z}}$ $(X \mid \mathbb{Y}) \leqslant(Y \mid \underset{Y}{\mid})$ ．A line with \neq added like
 with $=$ ？added like $\left.X \mathbb{Z}^{\prime=?}\right|^{Z}$ indicates that $(X \mathbb{Y}) \leq(Y \mathbb{F})$ but we do not know whether $(X \mid \mathbb{Y}) \geqslant(Y \mid \underset{F}{Z})$ holds or not．Broken line $X \mathbb{Z}$

FIGURE 2
 (either by \neq or by \notin) then we do not know whether or not (X $\mu^{\bar{Z}}$) \leqslant $\leqslant(\mathbf{Y} \underset{\sim}{Z})$. Hence "=?" is used only to stress that we do not know whether equivalence holds. If two nodes are not connected then we do not know whether they are related in any direction or not that is we do not know whether they are comparable. For example we do not know whether (IqUTPres \mathbb{N}) $\leqslant($ Ia UTo \mathbb{N}) holds or not. Note that the fact $\operatorname{Iq} \neq$ Iquro does not imply $\left(\right.$ Iq N) $\neq\left(\right.$ Iquro $\mathbb{N}^{\mathbb{N}}$) since proof methods here are compared only w.r.t. $T h \subseteq F_{d}$ and $\rho \in \mathrm{HF}_{\mathrm{d}}$.
§5. Proofs and discussions of Figures 2,1

We shall prove that the inclusions $\left(X^{\underline{Y}}\right) \leqslant(\mathbb{Y})$ as well as the inequalities $(X \mid Y) \neq(Y \mid \underset{Y}{Z})$ indicated on Fig. 2 all do hold. First, in Thm. 6 below, we prove one inequality $(\operatorname{Ia} \cup T \circ \mathbb{N}) \not \subset(\mathrm{Ia} \cup T s \mathbb{N})$ and then after proving Thm. 6 we shall proving the rest of Fig.2.

Thm. 6 below is in contrast with the result (IqUTo \mathbb{N}) \equiv (IqUTs \mathbb{N}) indicated on Fig.2.

THEOREM 6 There are a finite d and $\square(p, \psi) \in H_{d}$ such that IaUToN $\quad \square(p, \psi) \quad$ but \quad Ia UTs $N \neq \square(p, \psi)$.

Proof. Let $d \stackrel{d}{=}\langle\{$ su, zero\}, $\{\langle$ su, 2\rangle,\langle zero, 1$\rangle,\langle\mathrm{R}, 1\rangle,\langle\mathrm{S}, 1\rangle\}\rangle$, i.e. d is a similarity type which has a unary function symbol su, a constant symbol zero and two relation symbols R and S.

Let $0^{\prime} \stackrel{d}{=}$ zero and $(\forall n \in \omega)(n+1)^{\prime} \stackrel{d}{=} \operatorname{su}\left(n^{\prime}\right)$. Let Lab $\xlongequal[=]{d}\left\{n^{\prime}: n \in \omega\right\}$.
Let $p^{\in} P_{d}$ be the program represented on Fig.3. Note that in defining p we use fewer labels than required in the formal definition of P_{d}, but it is easy to see that this change is not essential while it considerably simplifies the traces of p.

Let $\psi\left(x_{0}, x_{1}\right) \in F_{d}$ be the formula $\left(\neg S\left(x_{0}\right) \rightarrow x_{0}=x_{1}\right)$.
We shall show that IaUTs $\notin \square(p, \psi)$ while IaUTo $\mathbb{N} \square(p, \psi)$. To this end, first we construct a model $\nexists l \in M_{t d}$.
6.0. The definition of me $M_{t d}$: :
Z denotes the set of all integers such that $\omega \subseteq z$ is the set of nonnegative members of Z.

FIGURE 3

Let $A \stackrel{d}{=}(6 \times Z) \cup(\{6,7\} \times \omega)$. We often write (in) instead of $\langle i, n\rangle$. Note that if $a \in A$ then $a=(i, n)$ for some $i \in 8$ and $n \in Z$. Let sue $: A \rightarrow A$ be defined by $\operatorname{suc}(i, n) \stackrel{d}{=}(i, n+1)$ for every ($i, n) \in A$.
6.0.1. Let $T \in M_{t}$ be the following model of type t. (See Fig.4.) $\underset{\sim}{T} \equiv\langle T, Q\rangle$ where $T=(\{6\} \times \omega) \cup(4 \times Z)$ and $Q(0)=(6,0)=0^{T}$, $Q(s c)=$ sue, $Q(\leqslant)=0$ and $Q(+)=Q(\cdot)=T \times T \times\left\{0^{T}\right\}$. See Def.s 1 and 2 .

We shall sloppily identify $\underset{\sim}{T}$ with the structure $\left\langle T\right.$, sue, $\left.0^{T}\right\rangle$. At two places above we should have written ($T \times T$) \cap sue instead of sue but we hope that context helps to understand that we meant egg. $Q(s c) \stackrel{d}{=}(T \times T) \cap$ sue. We shall commit this kind of sloppiness in the future too.

FIGURE 4

FIGURE 5
6.0.2. Let $R \in M_{d}$ be the following model of type d. (See Fig.5.)
$\underset{\sim}{D} \underset{=}{d}\langle D, G\rangle$ where $D=(\{7\} \times \omega) \cup(\{4,5\} \times Z)$ and $G($ zero $)=(7,0)$, $G(s u)=$ suc, $G(R)=\{(4,0),(5,0)\}, G(S)=\{(4,0)\}$.

Notation: Let $n \in \omega$. We shall identify $n^{\prime \prime}$ with ($7, n$) since ($7, n$) is the value of the term n^{\prime} in $\underset{\sim}{D}$.
6.0.3. Next we define three functions $f, h, g: T \rightarrow D$ illustrated on Fig.s 6-8.
$f \stackrel{d}{\equiv}\left\{\left\langle(6, n), n^{\prime}\right\rangle,\langle(0,-n),(4,-n)\rangle,\langle(0, n),(4,0)\rangle,\langle(1,-n),(5,-n)\rangle\right.$,

$$
\langle(1, n),(5,0)\rangle,\langle(i, z),(5,0)\rangle \quad: \quad n \in \omega, \quad i \in\{2,3\}, \quad z \in Z\}
$$

$\mathrm{h} \underset{\mathrm{d}}{\mathrm{m}}\left\{\left\langle(6, n), 0^{\circ}\right\rangle,\left\langle(0,2), 0^{\circ}\right\rangle,\left\langle(1,-n), 0^{\circ}\right\rangle,\left\langle(1, n), n^{\prime}\right\rangle,\langle(2,-n),(4,-n)\rangle\right.$, $\langle(2, n),(4,0)\rangle,\langle(3,-n),(5,-n)\rangle,\langle(3, n),(5,0)\rangle: n \in \omega, \quad z \in Z\}$.
$g \underset{m}{d}\left\{\left\langle(6,0), 0^{\circ}\right\rangle,\left\langle(6, n+1), 1^{\circ}\right\rangle,\left\langle(0,-n), 1^{\circ}\right\rangle,\left\langle(0, n+1), 3^{\circ}\right\rangle,\left\langle(1,-n), 1^{\prime}\right\rangle\right.$, $\left\langle(1, n+1), 2^{\prime}\right\rangle,\left\langle(2,-n), 2^{\prime}\right\rangle,\left\langle(2, n+1), 3^{\prime}\right\rangle,\left\langle(3,-n), 2^{\prime}\right\rangle,\left\langle\left(3, n+1,3^{\prime}\right\rangle:\right.$: $n \in \omega\}$.
6.0.4. Let $I \stackrel{d}{=}\{f, h, g\}$, valueof $\xlongequal[=]{=}\langle k(a):\langle k, a\rangle \in I \times T\rangle$ and $m \underset{\sim}{d}\langle\underset{\sim}{T}, \underset{\sim}{D}, I$, valueof \rangle. We have defined the model $M \in M_{t d}$.

CLAIM 6.1. \quad Mk IaUTs.

Proof. Clearly, $\quad m \neq T s U L a x$. To prove $m \vDash I A$ we shall use an ultraproduct construction. Let F be a nonprincipal ultrafilter on ω and let $m^{+} \stackrel{d}{\equiv}\left\langle{\underset{\sim}{T}}^{+}, D_{\sim}^{+}, I^{+}\right.$, ext $\rangle \stackrel{d}{\equiv} \omega_{m / F}$ be the usual ultrapower of m. Let $\delta: \mu \rightarrow \mu^{+}$be the usual diagonal embedding. For every $i \in \omega$

let $(i \uparrow) \stackrel{d}{=}\langle(i, n): n \in \omega\rangle / F$ and (iv) $\stackrel{d}{=}\langle(i,-n): n \in \omega\rangle / F$. Let $\mathrm{M}^{+} \stackrel{\mathrm{d}}{=} \mathrm{T}^{+} \cup \mathrm{D}^{+} \cup \mathrm{I}^{+}$. Hence M^{+}is the universe of m^{+}, more precisely M^{+} is the disjoint union of all the universes of m^{+}.

Notations: $I d \stackrel{d}{\underline{d}}\left\langle\mathrm{~m}: \mathrm{m} \in \mathrm{M}^{+}\right\rangle$. Then Id : $\mathrm{M}^{+} \longrightarrow \mathrm{M}^{+}$is the identity mapping. For any sets X, Y and functions k, q we define:
$X \sim Y \underset{=}{\underline{d}}\{a \in X: \quad a \notin Y\}$,
$\mathrm{X} \nmid \mathrm{k} \stackrel{\mathrm{d}}{\equiv}(\mathrm{X} \times$ Rng k$) \cap \mathrm{k} \quad$ and

FIGURE 8
$k \circ q \stackrel{d}{=}\langle k(q(x)): x \in \operatorname{Dom}(q)$ and $q(x) \in \operatorname{Dom}(k)\rangle$. That is, $x \nmid k$ is the function k domain-restricted to the set $X, k^{\circ} q$ is the composition of k and q. Then $X\{I d \subseteq k$ means that k is identity on X.

CLAIM 6.2. There are automorphisms $P: m^{+} \longrightarrow m^{+}$and $Q: \mathrm{m}^{+}>\mathrm{ml}^{+}$ of m^{+}such that $P \circ \delta=Q \circ \delta=\delta, P(6 \uparrow)=(1 \downarrow), P(1 \uparrow)=(3 \downarrow)$ and $Q(6 \uparrow)=(0 \downarrow), \quad Q(1 \uparrow)=(2 \downarrow)$.

Proof of Claim 6.2.: Let $B \stackrel{d}{=} T^{+} U D^{+}$. Then $\delta: A>B$. Let suc : $B \rightarrow B$ be the natural one, i.e. $\langle B$, suc $\rangle=\omega_{\langle A, s u c\rangle / F \text {. Let }}$ $(\forall n \in \omega)(\forall b \in B) \operatorname{suc}^{0}(b)={ }^{d}{ }_{b}$ and $\left.\operatorname{suc}^{n+1}(b)\right)_{\operatorname{sucsuc}^{n}}{ }^{n}(b)$. We define $(\forall b \in B)$ $L(b) \stackrel{d}{\equiv}\left\{\operatorname{suc}^{n}(b): n \in \omega\right\} \cup\left\{a \in B:(\exists n \in \omega) \operatorname{suc}^{n}(a)=b\right\}$. Let $H_{6} \stackrel{d}{=} L(6 \uparrow) \cup L(7 \uparrow) \cup L(1 \uparrow), \quad H_{1} \xlongequal{d} L(1 \downarrow) \cup I(5 \downarrow) \cup I(3 \downarrow) \quad$ and $H_{0} \stackrel{\text { d }}{\equiv}(0 \downarrow) \cup L(4 \downarrow) \cup I(2 \downarrow)$. See Fig. $9!$ Clearly,
(\#) there is an isomorphism $\mathrm{p}:\left\langle\mathrm{H}_{6}\right.$,suc $\rangle>\left\langle\mathrm{H}_{1}\right.$,suc \rangle such that $p(6 \uparrow)=(1 \downarrow), p(7 \uparrow)=(5 \downarrow)$ and $p(1 \uparrow)=(3 \downarrow)$.

Let $P \stackrel{d}{\equiv} \mathrm{p} \cup \mathrm{p}^{-1} \cup\left(\mathrm{M}^{+} \sim\left(\mathrm{H}_{6} \cup \mathrm{H}_{1}\right)\right) \mid$ Id, where $\mathrm{p}^{-1} \underset{\equiv}{\mathrm{~d}}\{\langle\mathrm{~b}, \mathrm{a}\rangle:\langle a, b\rangle \in \mathrm{p}\}$ is the usual inverse of p. We show that p is an automorphism of m^{+}. For illustration of the proof see Fig.9.

Below we shall omit some straightforward details, but we shall be glad to send [20], which contains all the details of the present proof

FIGURE 9
to anybody asking for it. It is easy to check the following
(\#) $\mathrm{H}_{6}, \mathrm{H}_{1}, \mathrm{H}_{0}$ and Rang δ are pairwise disjoint.
By (\#), P is a function on M^{+}and $\operatorname{Rng} \delta 1 \mathrm{P} \subseteq I d$. By (\because), it is easy to check that $P: T^{+} \longrightarrow T$ and $P: D^{+} \longrightarrow D^{+}$i.e. P is a permutation both of T^{+}and D^{+}. Since I, R^{m} and S^{m} are finite, we have $I^{+} \cup R^{m^{+}} \cup S^{m^{+}} \subseteq \operatorname{Rng} \delta$ (see Convention 2). Thus $P: I^{+} \longrightarrow I^{+}$ is a permutation of I^{+}and P preserves R, S and the constants O and zero (since $\left\{0^{\mathfrak{M}^{+}}\right.$, zero $\left.\mathfrak{m}^{+}\right\} \subseteq$ Rang δ). P preserves sc and sur by (\#) since $B \sim H_{i}$ is closed under such (and clearly P preserves + , and \leq by their definitions). All what remains to show is that P preserves the binary function ext.

The only really binary operation of m^{+}is ext : $\mathrm{I}^{+} \times \mathrm{T}^{+} \rightarrow \mathrm{D}^{+}$. But by $\mathrm{I}^{+} \subseteq \operatorname{Rng} \delta \delta^{\text {w }}$ have $\mathrm{I}^{+} \upharpoonleft \mathrm{P} \subseteq I d$, hence the first arguments of ext are fixed points of P. Hence from the point of view of P, ext behaves like three unary functions. More precisely, let ($\forall \mathrm{k} \in \mathrm{I}$) $\overline{\mathrm{E}} \mathrm{d}$ $\left.\stackrel{\mathrm{d}}{\underline{\mathrm{d}}\langle\operatorname{ext}(\delta k, a): ~} \mathbf{a} \in \mathbb{T}^{+}\right\rangle$. Note that $\mathrm{I}^{+}=\{\delta \mathrm{f}, \delta \mathrm{g}, \delta \mathrm{h}\}$. Then to see that P preserves ext it is enough to check that ($\forall k \in I$)[P preserves \bar{K}]. Thus we reduced m^{+}to a unary model $m^{\prime}=\left\langle M^{+}, \overline{\mathrm{I}}, \overline{\mathrm{g}}, \overline{\mathrm{h}}\right\rangle$ and we have to show that P is an automorphism of m°. Now we are going to show that P preserves $\overline{\mathrm{f}}, \overline{\mathrm{g}}$, and $\overline{\mathrm{h}}$.

Sum mi denotes the set of all subuniverses of \boldsymbol{m}^{\prime}, i.e. subsets of M^{+}closed under \bar{f}, \bar{g}, and \bar{h}.

Let $N_{i} \stackrel{d}{=} H_{i} \cup \operatorname{Rng} \delta$, for every $i \in\{6,1,0\}$. Now we claim statements $\left(\#^{3}\right)-\left(\#^{5}\right)$ below for every $i \in\{6,1,0\}$:
(*3) $N_{i} \in S u \not x^{\circ}$.
$\left.\left(\mathrm{m}^{4}\right) \mathrm{P}:\left\langle\mathrm{N}_{6}, \overline{\mathrm{f}}, \overline{\mathrm{B}}, \overline{\mathrm{h}}\right\rangle\right\rangle\left\langle\mathrm{N}_{1}, \overline{\mathrm{~F}}, \overline{\mathrm{~B}}, \overline{\mathrm{~h}}\right\rangle$ is an isomorphism. $\left(\mathrm{K}^{5}\right)\left(\mathrm{M}^{+} \sim \mathrm{H}_{\mathrm{i}}\right) \in \operatorname{Su} \mathrm{m}^{-}$.

To check $\left(\pi^{3}\right)-\left(\pi^{5}\right)$ above, we use Los lemma and the definitions of f, g,h , see Fig.9. The detailed proof is in [20]. We omit this proof because it is straightforward. By (*w) we have that P is identity on $N_{6} \ominus N_{1} \stackrel{d}{\equiv}\left(N_{6} \cap N_{1}\right) \cup\left(M^{+} \sim\left(N_{6} \cup N_{1}\right)\right)$ i.e. $\left(N_{6} \ominus N_{1}\right) \mid P \subseteq I d$. By (${ }^{5}$), $\left(N_{6} \oplus N_{1}\right) \in$ Sum f. These facts together with (μ^{3})-(x^{5}) imply that $P: m^{\prime}>m^{\prime}$ is an automorphism.

So far, we have seen that $P: \mathrm{HI}^{+} \longrightarrow \mathrm{Hl}^{+}$is an automorphism.

Clearly P satisfies the conditions of Claim 6.2. The construction of Q is obtained from the above proof by substituting $Q, H_{O}, N_{O},(2 \downarrow)$, $(4 \downarrow)$ and $(O \downarrow)$ into the places of $P, H_{1}, N_{1},(3 \downarrow),(5 \downarrow)$ and ($1 \downarrow$) respectively, everywhere.

QED(Claim 6.2.)

We turn to the proof of $m \vDash$ IA. Let $\varphi\left(z_{0}\right) \in F_{\text {td }}$ be any formula possibly with parameters from M. More precisely, let $m \in \omega, p \epsilon^{m} M$ and let $\varphi\left(z_{0}\right)$ be the formula $\varphi\left(z_{0}, p\right)$ that is $\varphi\left(z_{0}, p_{0}, \ldots, p_{m-1}\right)$. We assume that $\varphi\left(z_{O}, p\right)$ is obtained from some $\varphi\left(z_{O}, \bar{z}, \bar{x}, \bar{y}\right) \in F_{\text {td }}$ by substituting p in place of $\langle\bar{z}, \bar{x}, \bar{y}\rangle$ such that everything belongs to the appropriate sort, e.g. if p_{0} is substituted for z_{1} then $p_{0} \in T$. Assume that $\varphi\left(z_{0}, p\right)$ has no free variable other than z_{0}. Let $b \in T$ be arbitrary. Then $M \vDash \forall z_{0} \varphi\left(z_{0}, p\right)$ and $m \vDash \varphi(b, p)$ have their obvious meanings, see e.g. Def.1.3.14-15 of $[8] p .28$ where $\varphi(b, p)$ and $\forall z_{0} \varphi\left(z_{0}, p\right)$ are denoted by $\varphi[b, p]$ and $\left(\forall z_{0} \varphi\right)[p]$ respectively.

We want to prove $m \vDash$ ind $\left(\varphi, z_{0}\right)$. Assume
(C1) $M \vDash \varphi(0, p)$ and $m \vDash \forall z_{0}\left(\varphi\left(z_{0}, p\right) \rightarrow \varphi\left(s c\left(z_{0}\right), p\right)\right)$.
Then $(\forall n \in \omega) \quad \eta \neq \varphi(\langle\sigma, n\rangle, p)$ since $\langle\sigma, n\rangle=\operatorname{sc}^{n}(0)$ in M. Then
(c2) $m^{+} \vDash \varphi((6 \uparrow)$, $\delta \circ p)$ holds by Los lemma.
Let P, Q be the automorphisms the existence of which is claimed in 6.2. Since P is an automorphism, by (C2) we have $m^{+} \vDash \varphi\left(P(6 \uparrow), P \circ \delta^{\circ} p\right)$, hence ${\pi 1^{+}}^{=\varphi} \varphi((1 \downarrow), \delta \circ p)$ by $P(6 \uparrow)=(1 \downarrow)$ and by $P \circ \delta=\delta$. By the Los lemma there is $V \in F$ such that $(\forall n \in V) \nVdash \nmid \vDash \varphi(\langle 1,-n\rangle, p)$. Since F is nonprincipal, V is infinite which implies by (C1) that ($\forall z \in Z$) $m \vDash \varphi(\langle 1, z\rangle, p)$. Then $m^{+} \vDash \varphi\left((1 \uparrow), \delta^{\circ} p\right)$. Using Claim $6.2, P(1 \uparrow)=(3 \downarrow)$, $Q(1 \uparrow)=(2 \downarrow)$, Los lemma and (C1) as above we obtain ($\forall z \in Z)[M \vDash \varphi(\langle 3, z\rangle, p)$ and $m \vDash \varphi(\langle 2, z\rangle, p)]$. By (C2) and $Q(6 \uparrow)=(0 \downarrow)$ we have $m^{+} \vDash \varphi((0 \downarrow), \delta \circ p)$. Then as above, by (C1) we conclude ($\forall z \in Z) m \| \varphi(\langle 0, z\rangle, p)$. We have proved $(\forall b \in T)$ M $\mathcal{F} \varphi(b, p)$ which means $m \notin \forall z_{O} \varphi\left(z_{O}, p\right)$. Thus M F ind $\left(\varphi\left(z_{0}, p\right), z_{0}\right)$. Since the choice of p was arbitrary, this means M $k \forall \bar{z} \forall \bar{x} \forall \bar{y}$ ind $\left(\varphi\left(z_{0}, \bar{z}, \bar{x}, \bar{y}\right), z_{0}\right)$. Since $\varphi \in F_{t d}$ was chosen arbitrarily, we proved $m \mathfrak{F I A}$.

QED(Claim 6.1.)

CLATM 6.3. $ク \Vdash \square(p, \psi)$.
Proof. Let $s \stackrel{d}{=}\langle f, h, g\rangle$. Then s is a trace of p in $\gamma \%$. To see this fact observe that $g=s_{2}$ is the history of the control variable of p , see Fig.s 6-8. Let $\mathrm{b} \stackrel{\mathrm{d}}{=}\langle 2,0\rangle$. Then s terminates p in m
at time b since $s_{2}(b)=g(b)=3^{\circ}$ is the label of the HALT command of p. The output $\left\langle s_{0}(b), s_{1}(b)\right\rangle$ of p at time b does not satisfy ψ in M since $T S(\langle 5,0\rangle)$ and $s_{0}(b)=f(b)=(5,0) \neq(4,0)=h(b)=$ $=s_{1}(b)$. Thus $\langle(5,0),(4,0)\rangle$ is a possible output of p in M but $\underset{\sim}{D} \neq \psi\left(x_{0}, x_{1}\right)[(5,0),(4,0)]$.

By Thm.1, 6.1 and 6.3 above we have the following COROLIARY 6.4. IaUTs ${ }^{N}+\square(p, \psi)$.

CLAIM 6.5. IaUTo ${ }^{N} \quad \square(p, \psi)$.
Proof. Let $A x \stackrel{d}{=}$ IaUTo. Let $"\left(\forall z_{1}<z_{0}\right) \varphi$ " stand for the formula $\forall z_{1}\left[\left(z_{1} \leqslant z_{0} \wedge z_{1} \neq z_{0}\right) \rightarrow \varphi\right]$. Similarly for $"\left(\forall z_{1} \geqslant z_{0}\right) \varphi$ " etc. For every $\varphi\left(z_{0}\right) \in F_{t d}$ we define first $\left(\varphi, z_{0}\right)$ to be the formula $\left[\left(\forall z_{1}<z_{0}\right) \neg \varphi\left(z_{1}\right) \wedge \varphi\left(z_{0}\right)\right]$.

CLAIM 6.6. Let $\varphi \in \mathrm{F}_{\mathrm{td}}$. Then $\mathrm{Ax} \vDash\left(\exists \mathrm{z}_{0} \varphi\left(\mathrm{z}_{0}\right) \rightarrow \exists \mathrm{z}_{0}\right.$ first $\left.\left(\varphi, z_{0}\right)\right)$.
Proof. Let $\psi\left(z_{2}\right)$ be the formula $\left[\left(\exists z_{0} \leq z_{2}\right) \varphi\left(z_{0}\right) \rightarrow\left(\exists z_{0} \leq z_{2}\right)\right.$ first $\left.\left(\varphi, z_{0}\right)\right]$. Then To $\vDash \psi(0) \wedge \forall z_{2}\left[\psi\left(z_{2}\right) \rightarrow \psi\left(\operatorname{sc}\left(z_{2}\right)\right)\right]$ is easy to prove. By ind $\left(\psi\left(z_{2}\right), z_{2}\right) \in$ Ia we conclude $A x \neq \forall z_{2} \psi\left(z_{2}\right)$. Then obviously $A x \vDash\left[\exists z_{0} \varphi\left(z_{0}\right) \rightarrow \exists z_{0}\right.$ first $\left.\left(\varphi, z_{0}\right)\right]$.

QED(Claim 6.6.)
For any $\varphi\left(z_{0}\right) \in F_{\text {td }}$ let $\operatorname{hyp}\left(\varphi, z_{2}\right)$ be the formula $\left(\varphi\left(z_{2}\right) \wedge\left(\forall z_{0} \geqslant z_{2}\right)\left[\varphi\left(z_{0}\right) \rightarrow \varphi\left(s c\left(z_{0}\right)\right)\right]\right.$.

CLATM 6.7. Let $\varphi\left(z_{0}\right) \in F_{t d}$. Then $A x \neq \forall z_{2}\left[\operatorname{hyp}\left(\varphi, z_{2}\right) \rightarrow\left(\forall z_{0} \geqslant z_{2}\right) \varphi\left(z_{0}\right)\right]$. Proof. To $k\left[\operatorname{hyp}\left(\varphi, z_{2}\right) \rightarrow \neg \exists z_{0} \operatorname{first}\left(\left[\neg \varphi\left(z_{0}\right) \wedge z_{0} \geqslant z_{2}\right], z_{0}\right)\right.$. By 6.6. then $A x \vDash\left(h y p\left(\varphi, z_{2}\right) \rightarrow \neg \exists z_{0}\left[\neg \varphi\left(z_{0}\right) \wedge z_{0} \geqslant z_{2}\right]\right)$.

QED(Claim 6.7.)
Let $m=\langle\underset{\sim}{T}, \underset{\sim}{D}, I, e x t\rangle \in \operatorname{Mod}_{t d}(A x)$ be arbitrary. Let $s \in{ }^{3} I$ be an arbitrary trace of p in $\%$.

Notations: Throughout, instead of the term $\operatorname{ext}\left(s_{i}, z_{j}\right)$ we shall write $s_{i}\left(z_{j}\right)$. Let $b \in T$. Then $\bar{s}(b) \stackrel{d}{=}\left\langle s_{i}(b): i \in 3\right\rangle$ and $\overline{\bar{s}}(b) \stackrel{d}{=}\left\langle s_{0}(b), s_{1}(b)\right\rangle$.

CLATM 6.8. (i) \quad. $k\left[s_{2}\left(z_{0}\right) \in\left\{2^{\prime}, 3^{\prime}\right\} \rightarrow\left(\forall z_{1} \geqslant z_{0}\right) s_{0}\left(z_{1}\right)=s_{0}\left(z_{0}\right)\right]$.
(ii) $m \vDash\left(s_{2}\left(z_{0}\right)=2^{\prime} \rightarrow\left(\exists z_{1}\right)\left[z_{1} \leqslant z_{0} \wedge s_{2}\left(z_{1}\right)=1^{\prime} \wedge s_{0}\left(z_{1}\right)=s_{1}\left(z_{0}\right)\right]\right.$.

Proof．Proof of（i）：Let $b \in T$ be such that $s_{2}(b) \in\left\{2^{\prime}, 3^{\prime}\right\}$ ．Let $\mathcal{T}\left(z_{1}\right)$ be the formula $\left[s_{2}\left(z_{1}\right) \in\left\{2^{\prime}, 3^{\prime}\right\} \wedge s_{0}\left(z_{1}\right)=s_{0}(b)\right]$ ．Clearly，，\quad 仆 $\gamma(b)$ ． Also $\nVdash \vDash f\left(z_{1}\right) \rightarrow f\left(\operatorname{sc}\left(z_{1}\right)\right)$ because s is a trace of p ．Hence OKF $\left(\forall z_{1} \geqslant b\right) \gamma\left(z_{1}\right)$ ，by 6．7．Thus $み M \vDash\left(\forall z_{1} \geqslant b\right) s_{0}\left(z_{1}\right)=s_{0}(b)$ ．
Proof of（ii）：Let $K\left(z_{0}, z_{1}\right)$ be the formula $\left[z_{1} \leqslant z_{0} \wedge s_{2}\left(z_{1}\right)=1^{\prime} \wedge\right.$ $\left.\wedge s_{0}\left(z_{1}\right)=s_{1}\left(z_{0}\right)\right]$ and let $\varphi\left(z_{0}\right)$ be the formula $\left[s_{2}\left(z_{0}\right)=2^{\prime} \rightarrow\right.$ $\left.\rightarrow \exists z_{1} \notin\left(z_{0}, z_{1}\right)\right]$ ．We have to prove $M \vDash \forall z_{O} \varphi\left(z_{0}\right)$ ．

Let $b \in T$ ．Assume $\mu \neq \varphi(b)$ ．If $s_{2}(s c(b)) \neq 2^{\prime}$ then $\varphi(\operatorname{sc}(b))$ is obviously true．Assume therefore $s_{2}(s c(b))=2^{\prime}$ 。
Case $1 s_{2}(b) \neq 2^{\prime}$ ．Then，since s is a trace，$s_{2}(b)=1^{\prime}$ ．Then $s_{2}(\operatorname{sc}(b))=2^{\prime}$ implies $K(s c(b), s c(0))$ ．I．e．$\quad \mu \neq \varphi(s c(b))$ holds． Case $2 s_{2}(b)=2^{\prime}$ ．Then by $\varphi(b)$ ，there exists $a \in T$ with $\mathcal{K}(b, a)$ ． Since s is a trace of p and $s_{2}(b)=s_{2}(s c(b))=2^{\prime}$ we have $\neg R\left(s_{1}(b)\right)$ ． Hence by $\mathcal{K}(b, a)$ we have $s_{2}(s c(a))=1^{\prime}$ and $s_{0}(\operatorname{sc}(a))=s u\left(s_{0}(a)\right)=$ $=\operatorname{su}\left(s_{1}(b)\right)=s_{1}(\operatorname{sc}(b))$ ．We have $s c(a) \leqslant s c(b)$ since $a \leqslant b$ by $x(b, a)$ ． Thus $K(\operatorname{sc}(b), s c(a))$ proving $M k \varphi(s c(b))$ ．

We proved $M \vDash \forall z_{0}\left(\varphi\left(z_{0}\right) \rightarrow \varphi\left(\operatorname{sc}\left(z_{0}\right)\right)\right)$ ．Since $\varphi(0)$ is obviously true，by $I A$ we proved $m \vDash \forall z_{0} \varphi\left(z_{0}\right)$ ．

QED（Claim 6．8．）
Now we turn to the proof of $\gamma \pi / \vDash \square(p, \psi)$ ．Let $\langle a, d\rangle \epsilon^{2} D$ be any possible output of p in M ．Then there are a trace $s \epsilon^{3} I$ of p and $e \in T$ such that $\bar{s}(e)=\left\langle a, d, 3^{\prime}\right\rangle$ ．If $\underset{\sim}{D} \vDash S(a)$ then $\underset{\sim}{D} \vDash \psi[a, d]$ is obvious．Assume therefore $\underset{\sim}{D} \vDash \neg \operatorname{S}(a)$ ．By 6．6．there is $c \in T$ such that first $(\bar{s}(\operatorname{sc}(c))=\bar{s}(e), c)$ holds（since $e \neq 0)$ ．Let this c be fixed． Then $\bar{s}(c) \neq \bar{s}(s c(c))$ ，hence $s_{2}(c) \neq 3^{\circ}$ ．Since s is a trace of p ， by $s_{2}(\operatorname{sc}(c))=3^{\circ}$ we have $\overline{\bar{s}}(c)=\overline{\bar{s}}(\operatorname{sc}(c))=\langle a, d\rangle$ ．Then $7 S(a)$ implies $s_{2}(c) \neq 1^{\prime}$ proving $s_{2}(c)=2^{\prime}$ ．By $s_{2}(s c(c))=3^{\prime}$ then we have $R(d)$ ．By 6.8 （ii）we have $(\exists b<c)(\exists x \in D) \bar{s}(b)=\left\langle d, x, 1^{\circ}\right\rangle$ ．By $R(d)$ we have $s_{2}(\operatorname{sc}(b)) \in\left\{2^{\prime}, 3^{\prime}\right\}$ and $s_{0}(s c(b))=s_{0}(b)$ ．Then by $6.8(i)$ and $s c(b) \leqslant c$ we have $d=s_{0}(b)=s_{0}(s c(b))=s_{0}(c)=a$ ．We proved $\underset{\sim}{D} \vDash \psi[a, d]$ ． By the choices of e, s ，and m we proved IaUTo $\vDash \square(p, \psi)$ ．Then by Thm． 1 we have $\operatorname{Ia} \cup T O \mathbb{N}^{\mathbb{N}} \square(p, \psi)$ ．

PROOF OF THE REST OF FIGURE 2 ：

1）Proofs of the inequalities（all these proofs use ultraproducts）：
（1．1）Sketchy proofs of（Iq \cup Tpres $\left.{ }^{N}\right) \neq($ Iq UTo N ）and $(I q \cup$ Tpres $N) \neq F$ are $T h m .9(i v \neq i)$ in Part II of［3］and［4］p．93
together with pp.60-65 Claim 9.1 there. Detailed proof is available from the author.
(1.2) $($ Iq \cup Tpres N N $) \neq\left(\operatorname{Ia\cup Ts} \mathbb{N}^{N}\right)$ is proved in [20]. The proof is a modification of the above proof of Thm.6: it uses Corollary 6.4 unchanged and the only part that is changed is formulation and proof of Claim 6.5. See also the $I q \cup T p r e s ~ \vDash \square(p, \psi)$ part of proof of (1.1) above
(1.3) $\left(\operatorname{Ifm} \cup \operatorname{Tfm} \mathbb{N}^{N}\right) \not \ddagger\left(\operatorname{IaUTs} \mathbb{N}^{N}\right)$ is proved in [20]. The proof is a modification of the above proof of Thm. 6 ; it uses Corollary 6.4 unchanged
(1.4) (Imd $\stackrel{N}{N}) \notin F$ is proved in detail in $T h m .9(v \neq i)$ of [4]pp. 59-93, see also Thm.s 11/e - 11/g of [4]pp.100-107, and [23].
(1.5) The proof of (IaUTo $\left.\mathbb{N}^{N}\right) \notin \mathbb{F}$ is very easy! See Thm. 10 in [3]Part II. In the proof of Thm.9(v i) in [3] a partial correctness statement $\rho \in \mathrm{HF}_{\mathrm{d}}$ and a finite $T h \subseteq F_{d}$ are selected and an easy ultraproduct proof is outlined to show ThFo. It is very easy to show ThUIaUToN ρ by using the proof methods of Thm.s 3-4 in [3] for that $T h$ and ρ.
(1.6) $\left(\operatorname{Ia} \cup T \circ \mathbb{N}^{N}\right) \neq\left(\operatorname{Ia\cup Ts} \mathbb{N}^{N}\right)$ is Thm. 6 proved above in the present paper.
(1.7) $\quad\left(I \Pi_{1} N^{N}\right) \notin \mathbb{F}^{F}$ and $\left(I \Sigma_{1} \cup T o N^{N}\right) \neq\left(I \Sigma_{1} N^{N}\right)$ are proved in [20]. The proof of the Π_{1}-part is a modification of the proof of Thm. 9 (\mathbf{v} * i) of [4]pp.59-93 where only Claim 9.4 (and its proof) is modified. For the Σ_{1}-part, the proofs of Thm.s 3-4 in [3] and in [4]pp.42-45 are also used. Actually using these proofs it is not very hard to modify the present proof of Thm .6 to prove $\left(I \Sigma_{1} \cup T o \mathbb{N}^{\mathbb{N}}\right) \neq\left(I \Sigma_{1} \mathbb{N}^{\mathbb{N}}\right)$.
(1.8) All the other inequalities indicated by \neq or by \neq on Fig. 2 are immediate consequences of (1.1)-(1.7) above and of the inclusions " \leqslant " and equivalences "झ" indicated there (which we turn to prove now).
2) Proofs of equivalences $\left(X Y^{\sharp}\right) \equiv\left(Y^{Z}\right)$:
(2.1) (Ict $\left.\cap \operatorname{If} \mathbb{N}^{N}\right) \geqslant \mathbb{F}$ is proved in proofs of Prop. 12 and Thm. 9 ($i \Rightarrow$ ii) in Part II of [3], and also in [4]pp.57-58 and p.111. The detailed proof is given in proving Thm .9 ($\mathrm{i} \Rightarrow \mathrm{ii}$) in both quoted papers.
(2.2) By Fig.1, all the induction axiom systems Iname introduced in this paper are \geqslant Ict \cap If. Hence (Iname N) $\geqslant \mathbb{F}$ follows from (2.1) with the only exception of Ifm. It is not hard to check that $\left(\operatorname{Ifm}{ }^{N}\right) \neq F 。$
(2.3) A simple proof of all the remaining equivalences \equiv in

Fig. 2 under the restriction that $T h$ contains the Peano axioms is found in [6] which was first published in 1977 in Hungarian, see [1]. Even under this strong restriction, the question whether (Ex UIa UTpa \mathbb{N}) \equiv \equiv (Ia UTpa \mathbb{N}) remains an open problem.
(2.4) (Iq UTO \mathbb{N}) $\leq \mathbb{F}$ is Thm.9 (iii \Rightarrow i) in Part II of [3] and in [4]p.56. A detailed proof arises if one reads Prop. 7 of [9]p. 121 together with [10].
(2.5) All the statements $\left(X \mu^{\underline{Y}}\right) \leqslant\left(Y \vdash^{Z}\right)$ implicit in Fig. 2 are easy consequences of (2.4) and (2.1) above. END of proofs of Fig.2.

ON THE INTUITIVE MEANING OF FIGURE 2

One of the central themes of Nonclassical Logic is the study of the lattice of the various modal logics. This activity turned out to be a rather fruitful part of modal logic providing much insight into the nature of modal reasoning. Analogously, on Fig.2, we investigate the lattice of the various dynamic logics $D \log _{d}(A x)$ for various $A x \subseteq F_{t d}$. We hope this might provide insight into the nature of reasoning about programs (or more generally, reasoning about consequences of actions).

For example, Thm. 6 says that if the set of logical axioms Ax of our $\operatorname{Dlog}(A x)$ contain full induction $I a$ over time then it does matter whether or not time instances can be compared by the "later than" relation. In this case the dynamic logic $\operatorname{Dlog}(I a U T o)$ in which we can say " z_{0} is later than z_{1} " is stronger (modulo $H F_{d}$) than the one Dlog(IaUTs) in which we cannot.

As a contrast, if the logical axioms contain only restricted induction Iq over time then the logic $\operatorname{Dlog}(I q U T O)$ with "later than" is not stronger than the one $\operatorname{Dlog}(I q)$ without it. However, here the logic $\operatorname{Dlog}(I q U T p r e s)$ in which we can perform addition on time is stronger than the one $\operatorname{Dlog}(I q \cup T O$) in which we cannot. Intuitively $z_{0}=z_{1}+z_{2}$ means that ${ }^{n} z_{0}$ is z_{2} time after z_{1} ".

Now we turn to the question "is sometime sometimes better..." in the title of [16]. The formulas in $\left(\Sigma_{0, t^{F}} t_{d}\right)$ can be considered to be the formulas without time modalities "Sometime" and "Always". Hence Iq is time induction over all the formulas without time modalities (time induction over the non-modal formulas). The result (Imd $\mathbb{N})>(\operatorname{Iq} \cup T o \mathbb{N})$ in Fig. 2 can be interpreted to say that the logic Dlog(Imd) in which "Sometime" is available is indeed stronger than the one $D \log (I q \cup T o)$ without "Sometime". But this result implies only
that "Sometime" is better if we allow arbitrarily complex time-modality prenexes "Sometime $\exists \mathrm{x}_{0}\left(\mathrm{x}_{0}=\mathrm{y}_{0} \wedge\right.$ Always $\exists \mathrm{x}_{1}\left(\mathrm{x}_{1}=\mathrm{y}_{1} \wedge\right.$ Sometime $\left.\varphi\right)$)" see the definition of $\mathrm{DF}^{\text {mod }}$ (Def.18). This was not mentioned in the title of [16]. So a finicky interpretation of the quoted question might lead us to the "pure sometime logic" $\operatorname{Dlog}\left(I \Sigma_{1}\right)$ in which we can perform timeinduction over Sometimey with $\varphi \in\left(\Sigma_{0, t^{F}} t_{d}\right)$ but we cannot do timeinduction over "ᄀSometime φ " or over "Sometime $\exists x_{0}\left(x_{0}=y_{0} \wedge\right.$ Always φ)". Thus the result $\left(I \Sigma_{\uparrow} \cup T \circ N\right)>\left(I q \cup T o \mathbb{N}^{N}\right)$ and the problem whether or not $\left(I \Sigma_{1} \stackrel{N}{N}\right) \equiv(I q \mathbb{N})$ both in Fig. 2 are relevant to a more careful analysis of the quoted question.

By another part of Fig.2, future tense "Sometime in the future $\varphi^{\text {" }}$ as used e.g. in [12] adds to the reasoning power of dynamic logic Dlog(IaUTs) with full time-induction. The rest of Fig. 2 can be interpreted in this spirit, to investigate what kinds of logical constructs do increase the reasoning power (-s of which versions) of dynamic logic. Such logical constructs are "later than", "at z_{0} time after z_{1} it is the case that φ ", "Sometime $\varphi^{\prime \prime}$ etc. By passing we note that it clearly shows on Fig. 2 that the well known dynamic logics 〈HFI ${ }_{d}, F$, $\left\langle D L_{d}^{m o d},{ }^{m o d}\right\rangle$, and $\left\langle D L_{d}^{f u m}, f u m\right\rangle$ are strictly increasing in this order in reasoning power modulo partial correctness of programs, i.e. modulo $\mathrm{HF} \mathrm{d}_{\mathrm{d}}$. That is $\mathrm{F}<$ mod $<$ fum .

We believe that Fig. 2 is much more important for computer science than Fig.1, therefore we shall be sketchy in proving Fig.1.

ON THE PROOFS OF FIGURE 1

The inclusions indicated on the figure are straghtforward, except for $I^{\prime} k \operatorname{Imd}$ and $\operatorname{Imd} \vDash I^{\prime}$. $I^{\prime} \vDash$ Imd can be seen by observing that $\bmod (\varphi)$ is semantically equivalent to an element of I^{\prime}, for every φ^{ϵ} $\in D F^{\text {mod }}$. The idea of the proof of $I m d \vDash I^{\prime}$ is to translate I^{\prime} into Imd. Instead of giving here the definition, we show the idea on an example. Let $\varphi \stackrel{\text { d }}{=} R\left(s_{0}, \operatorname{ext}\left(y_{0}, s c(0)\right)\right.$, ext $\left.\left(y_{O}, \operatorname{sc}\left(z_{0}\right)\right)\right)$. Then $\varphi^{\prime} \stackrel{d}{=}$ $\exists x_{1} \exists x_{2}\left[\right.$ FirstNext $\left(x_{1}=y_{0}\right) \wedge$ NextNext $\left.\left(x_{2}=y_{0}\right) \wedge R\left(x_{0}, x_{1}, x_{2}\right)\right]$. Now the translation of ind $\left(\varphi, z_{0}\right)$ is defined to be $\left[\right.$ First $\left.\varphi^{\prime} \wedge \operatorname{Alw}\left(\varphi^{\prime} \rightarrow \operatorname{Next} \varphi^{\prime}\right)\right] \rightarrow$ \rightarrow Alw φ^{\prime}.

On the inequalities indicated on Fig.1.: I' \neq I1 can be checked
by showing $I^{\prime} \not \forall \operatorname{ind}\left(R\left(\operatorname{ext}\left(y_{0}, z_{0}+z_{0}\right)\right), z_{0}\right)$ or $I^{\prime} \notin \operatorname{ind}\left(\operatorname{sc}\left(z_{0}\right) \neq 0, z_{0}\right)$. (These are proved in detail in [20]. In the proofs, models m are constructed such that $\pi \vDash I^{\prime}$. The proofs of $m \vDash I^{\prime}$ are simplified versions of the proof of Claim 6.2 in the present paper.) By Fig. 2 we have that $(\exists \mathrm{p} \exists \psi)[\operatorname{Imd} \vDash \square(p, \psi)$ but $\operatorname{Iq} \cup T o \notin \square(p, \psi)]$. Therefore Iq $\not \equiv \operatorname{Imd}$, that is $\operatorname{Im} \not \equiv I q$ and hence $I \uparrow \notin I q$. An easy argument shows that $I 1 \nLeftarrow I q$, i.e. I1 and $I q$ are not comparable. By Fig.2, Iq $\nLeftarrow I \Sigma_{1}$ and $I q \nLeftarrow I \Pi_{1}$. $I \Pi_{1} \nLeftarrow I 1$ and $I \Sigma_{1} \nLeftarrow I 1$ can be proved by [20] roughly by considering $\langle\underset{\sim}{T}, \underset{\sim}{T},\{I d\}$, valueof \rangle (but we did not check the details carefully). The remaining inequalities on Fig. 1 are not hard. $I \Sigma_{1} \not \vDash I \Pi_{1}$ and $I \Pi_{1} \nLeftarrow I \Sigma_{1}$ are in [20]. End of proof of Fig.1.

Intuitive motivation for the second part of the present paper is a section entitled "Intuitive ... of Fig.2" in §5 immediately below the end of proof of Fig.2. To this we add that our Fig. 2 is analogous with Fig. 1 of the monograph [6 b] on first order modal logic and Kripke models. For the lattice of modal logics see e.g. [6 a], we point out this because the main result proved in the present paper concerns the lattice of dynamic logics.

REFERENCES

[1] Andréka,H. and Németi,I., Completeness of Floyd's program verification method w.r.t. nonstandard time models, Seminar Notes, Math. Inst.H.A.Sci.-SZKI 1977 (in Hungarian). This was abstracted in [2].
[2] Andreka,H. and Németi,I., Completeness of Floyd Logic, Bull. Section of Logic Wroclaw Vol 7, No 3, 1978, pp.115-121.
[3] Andréka,H. Németi,I. and Sain,I., A complete logic for reasoning about programs via nonstendard model theory. Part I, Part II. Theoret.Comput.Sci. 17(1982) no. 2 and no.3.
[4] Andréka,H. Németi,I. and Sain,I., A complete first order dynamic logic. Preprint No. 810318, Math.Inst.H.A.S., Budapest, 1980.
[5] Andréka,H. Németi,I. and Sain,I., Henkin-type semantics for program schemes to turn negative results to positive. In: Fundamentals of Computation Theory' 79 (Proc.Conf. Berlin 1979), Ed.: L. Budach, Akademie Verlag Berlin 1979. Band 2. pp.18-24.
[6] Andreka,H. Németi,I. and Sain,I., A characterization of Floyd provable programs. In: Mathematical Foundations of Computer Science' 81 (Proc.Conf. Strbské Pleso Czechoslovakia 1981)Lecture Notes in Computer Science, Springer Verlag, 1981.
[6 a]Blok,W.J., The lattice of modal logics. J. Symbolic Logic. To appear.
[6 b] Bowen,K.A., Model theory for modal logic. D.Reidel Publ.Co., Boston 1979, $\mathrm{x}+127 \mathrm{pp}$.
[7] Burstall,R.M., Program proving as hand simulation with a little induction. IFIP Congress, Stockholm, August 3-10, 1974.
[8] Chang,C.C. and Keisler,H.J., Model Theory. North-Holland, 1973.
[9] Csirmaz,L., A survey of semantics of Floyd-Hoare derivability. CL\&CL - Comput.Linguist.Comput.Lang. 14(1980)pp.21-42.
[10] Csirmaz,L., On the completeness of proving partial correctness. Acta Cybernet. To appear.
[11] Csirmaz,I. and Paris,J.B., A property of 2-sorted Peano models and program verification. Preprint Math.Inst.H.A.S. Budapest, 1981.
[12] Gabbay,D. Pnuely,A. Shelah,S. and Stavi,J., On the temporal analysis of fairness. Preprint, Weizmann Inst. of Science, Dept. of Applied Math., May 1981.
[13] Gergely,T. and Ury,L., Time models for programs. In: Mathematical Logic in Computer Science (Proc.Coll.Salg6tarján 1978)Colloq.Math. Soc.J.Bolyai 26 Ed.s: Gergely,T. Dömölki,B. North-Holland, 1981. pp.359-427.
[14] Hájek,P., Making dynamic logic first-order. In: Mathematical Foundations of Computer Science' 81 (Proc.Conf. Strbske Pleso Czechoslovakia 1981) Lecture Notes in Computer Science, Springer Verlag, 1981.
[15] Kfoury,D.J. and Park,D.M.R., On the termination of program schemas. Information \& Control 29(1975),pp.243-251.
[16] Manna,Z. and Waldinger,R., Is "Sometime" sometimes better than "Always"? Intermittent assertions in proving program correctness. Preprint No. Z173, Stanford Research Inst., Menlo Park, June 1976.
[17] Monk,J.D., Mathematical Logic. Springer Verlag, 1976.
[18] Németi,I., Nonstandard runs of Floyd provable programs. Preprint, Math.Inst.H.A.S., Budapest, 1980.
[19] Németi,I., Hilbert style axiomatization of nonstandard dynamic logic. Preprint, Math.Inst.H.A.S., Budapest, 1980.
[20] Nemeti,I., Results on the lattice of dynamic logics. Preprint, Math.Inst.H.A.S., Budapest, 1981.
[21] Richter,M.M. and Szabo,M.E., Towards a nonstandard analysis of programs. In: Proc. 2nd Victoria Symp. on Nonstandard Analysis (Victoria, British Columbia, June 1980) Lecture Notes in Mathematics, Ed.: A. Hurd, Springer Verlag, 1981.
[22] Sain, I., There are general rules for specifying semantics: Observations on abstract model theory. CL\&CL - Comput.Iinguist.Comput. Lang. 13(1979),pp.251-282.
[23] Sain,I., First order dynamic logic with decidable proofs and workeable model theory. In: Fundamentals of Computation Theory' 81 (Proc. Conf. Szeged 1981)Lecture Notes in Computer Science, Springer Verlag, 1981.

