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NONSTATDARD DYNAI,IIC LOGIC

I. N6meti

lllath. Inst. Hungar. Acad. Sci. Budapest
Re6ltanoda u. 17-15 t H-1O7V Hungary

There does exist a branch of Dynamic Logic which is called Nonstan-
d.ard Dynanic Logic . Works in this line are €. g. [+1 , J VJ , L22) ,l2r), h ] ,
h1l , 19),l',tlI, [rA], [5] , It+] ,L21J. A systematic introductory monograph
with motivation, examples, overview of the fieLd etc. is [4] which will
be sent to anybod.y on request. A published. introduction to Nonstandard
DI, with at least some of these features is LVl. Intuitive exanples,
illustrations are in ltalr[eOir[4]. The first results in this field
htere proved in [.1] in 1977 under the restriction that the data structure
satisfies Peano's axioms. This condition was later eliminated by the
above quoted rdorks.

In the present paper we give the basic definitions of Nonstandard
DL ($f-1;. lCe fornulate some fundanenta] results and indicate that this
Iogic is not so very nonstarxdaxd as one might think, see RDL in Def.17
and hop.2. Then we show how to use this logic to conpare nethods of
progran verification. Some well known prograrn verifieation nethods will
be characterized, see Fig.2. Some properties of the lattice of logice
of prograns with decidable proof concepts will be established. 55 con-
tains the detailed proof of Thm.6. This proof uses nodel theoretic tools
(e.g. ultraprod.ucts) to establish properties of program verification
nethods. The enphasis is on basie definitions and properties of Non-
stand.ard Dlr on Fig.2, and on the proof of Thn.6. For intuitive notiv-
ation see the very end of the present paper.

Connections with other branches of nonclassical logic and conputer
seienee are diseussed io SArg of I r]part II and in 56-8 of [4]. Motiv-
ation for Nonstand,ard. Dl is sogo in 122)r[4], [t].

NOIIATIONS

In the folLowing we shall recall some standard notations from terct-
books oa Logic (nainly fron l1?lt[8]).

denotes an arbitrary sinilarity type of classical one-sorted
noders. f.€. d comelates arities (naturar numbers) to func-
tion and. relation a;rmboIs. See Def.1(i) in this paper.



a) denotes the set of natural nwrbers such tbat O € trr.

Natural numbers are used j-n the von Neumann sense, i.e.
n = torlr...lo-1] and in particular
O is the enpty set.
X = [\ : we (r)J denotes a set of variables.
Fd is the set of classica] first order formulas of type d with

variables in X. Cf, e.g. [8Jp.22.
E denotes a term of type d in the usual sense of logic, see

lalp .22 or LIT]p.166rDef .1o.8(ii).
denotes the class of all cLassical one-sorted model-s of type
d, see €.g. i8l or [t?]net.11.1r or Def.s 1 and J here.

A elassical- one-so,rted model is deaoted by an underlined capital like
S or P and j-ts universe is denoted by the same capital with-
out underl-inin6. E.g. T is the universe of t , and D is
that of I .

Byarrvaluationofthe variabLes" inanodel p afunction g: a) +D
is understoodl se€ L,tZlp.19j.

"[qlp 
denotes the value of the tern r in the model B und.er theN valuation q of the variables, see [8Jp.27 rDet.1j.1J or 117)
Def.11.2. If T contains no variable then we write i in-
stead of ctAJn , if P is understood..

B F gtel denotes that dhe valuation q satisfies the formula g in
the model p.

!d. = (fa r Md. , F) is the classical first ord.er language of sinilarity
type d, see IZZI.An d.euotes the set of al-l functions from A into B, j..e.
A^'-B = {f : f naps A into BJ, see Ll7)p.?.

A function is considered to be a eet of pairs.
Don f d.enotes the d.omain of the function f, Don f I {" 3 (lb)(arb)ef}.
Rng f d.enotes the range of the functi.on f, Rng f I tu : (la)<arb;efl.
A sequence s of lenght n is a function with Dom s = rI.
(Us : seS) d.enotes the function i(srU") : s€S]. Moreover

for q.n e>qgression bcpr(x) and class S we d.efine
@pr(x) : xes) to be the functioa f : s + Rng f sueh that (vxes)

f (x) = Srpr(x).
Sb(X) *{t : y€X} is the powerser of x.
f d.enotes the set of all finite sequences of elements of X,

tr g Ut mX : m € o.lJ. We shatl id.entify tr with
lg r H €x and ll{l< coJ*, and also r+ith (;fr)*. hle think of
as the set of trwoxds over tbe alphabet Xr.

A-B9{".n: adB3.
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s1. SIIiITAX of program schemes

Recall d, X, X'd from the list of notations. Now we define the
set P, of progtran schemes of type d.o-

The set Lab of 'rlabel syrnbolsrr is defined to be an arbitrary but
fixed subset of the set Tm! of all constant terms of type d., i.e.
d-type terms which do not contain variable sylbols. (Lab is chosen
this way for technical reasons only. There are many other possible hrays

for hand.ling labels, see lZVl .) Iogical s;rorbols: In, 1 , f , =J.
Other s;rrnbols: [ -e , IF , GOTO , HI\I,T , ( , ) , :J.

The set Ud of commands of type d is defined as fol-lows:
(ir x --+ c) . Ud if iel,ab, x€X, and. T is a terrn of t34ge d and

with all, variables in X.
(i: fF 11 GOTO v) . Ud if irv€f.,sf, teF. is a formula without quan-

tifier.
(i: HAIT) . Ud if ieLab.
These are the only elenents of Ud..

By a progran scheme of tlpe d we understand a finj-te Bequence p
of commands (elernents of U6) endi.ng with a rrIL&[.,Tr', in whieh no two men-

bers have the same label, and in which the only 'THAlT-cornmandrr is the
last one. Further, if (i: IF 1 GOTO v). occurs in p then there is u
such that the cornmand (v:u) occurs in p, I.e. an element p of Pd

is of the forrn p = ( (io:ug) ,... , (irr_r :un_1) , (i';IIALT) ) where n€ k) r
(ir:q) e UU for m -4n etc.

Convention 1 ff a progran schene is denoted by p then its parta are
denoted as foll-ows:

p = ((iorug) 
'. .. ' 

(io-t :rh_r ) , (irr:IIALT) ) .

Throughout we shall use the definition

c * mintwecr-t : (Vve u:-w)[x' d.oes not occur in p]].

I.€. txw : w <c] contains all the variables occurring in the progran
scheme Pr and if c ) O then xc_1 really occurs in p. We shall use
xn as the control variable- of p.

An exanple for a program scheme pePd. is found in 55 in the
proof of Thn.6 on Fig.7.
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52. SEMANTICS of progran schenee

By a language with semantics rre understand a triple T, = (F r M, F)

of classes such that F q MxFxSets where Sets is the class of all
sets. Elere F is caIled the syntax of L,, M the class of mode1s or
possible interpretations of I,, and F the satisfaction relation of I,.
Tnstead of (arbrc) e F we write a C b[cJ, and we say 'rc gatisfies b

in att. See nzf .
Here we try to develop a natrrral semantic franework for prograns

and statements about programs. In trying to understand the nProgranning

Situation", its languages, thei-r neanings etc. the first question is how

an interpretation or nodel of a progran or program scheme pePd should
look 1ike. The classical approach says that an interpretation or model

of a progran scheme is a relational structure l.Ma consisting of a13-

the possible data values. The progra$ p contains variables, say trxtr.

The classical. approach says that x denotes elements of D just as
variables in classical first order logic do.. Now we argue that x does

not denote elements of D but rather x denotes some kind of nlocationsn

or ttaddressestr which may contain different data values (i.e. elenents of
D) at different points of tine. Thus there j.s a set I of locatione, a

set T of tine points, and a function errb : IxT + D wbich tells for
every location sel and time point b€T what the content of location
a is at time point b. Of eourse, this content ext(srb) is a data
valuel i.e. it is an elenent of D. Tj-me has a structure too (nlater
than'f etc. ) and data values have structure too, thus we have structures
g and p, over the sets T and D of time points and possible data
values respectively. Therefore rde shall define a model or interpreta-
tion for programs pePd. to be a four-tup1e IIL = (T, D, I, erct)
where E and P, are the tine structure and data structr:re resp., I
is the set of locations and ext : fxT + D is the rrcontent of ... at
tine..." funetion (see Def.4). We shall call the elenents of f i"-
tensions instead of locations. The reasons for this and for the name

'rextrrare explained in trl$gr[4]S8. For a detai]ed account of the above
considerations see also SBr9 ot LVJ and S7r8 of [4].

Of eourse when specifying senantics of a programming language Pd

tre nqy have ideas about how an interpretation m of Pd nay l.ook like
and how it nay not look. These ideas nay be expressed in the forn of
axioms about "[n. E.g. we may postulate that E of m has to satisfy
the Peano fu<ioms of arithnetic. For such a:cioms gee Def.s 17-17. These
a:cioms are easy to express since a closer investigation of XIL defined
above reveals that it is a nodel of classical J-sorted logic (tfre sorts

being iltimerr, ttdatatr ant
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above. By a mo4e1 of t,
that R isafunction
if r€H then R(r) ' (

Notation: ( D'R3)36 ;
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hd of Definition 1
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being "ti*nert, 'rdata'r and ttintensions"). Thus the axionns can be forned
in classical ]-sorted logic (pef.5) in a convenient nanner to e4press

all our id.eas or postulates about the semantics of the progranning lan-
guage Pd under consideratj.on.

Now we turn to work out these ideas in detail.

DEFINITION 1 (one-sorted models)

(i) By a (classical or one-sorted) sinilarity tme d we under-
standapair 6=(Hrd1) suchthat dt isafunction dt: f t6\)
for sone set :, H q Z and (Vre Z)d1(r) I O.

The elements of Z are called the symbols of d and the elements
of H are called the operation s]mbols or functi-on slmbols of d.. Let
3€f. Then we sha1l write d(r) instead of da(r).

(ii) Let d = (Hrdl) be a sinilarity type, let Z = Don dl as

above. By a model of t:rpe d we understand a pair ! = (DrR) such

I.€. P=(Dr\)"el is
lation over D and if
all r€I.

If reH and d(r)=f then there is a unique beD such that R'=

={(bX and we shall identify R" with b. If =eHr d(r)=f then r
is said to be a constant s.ymbol and \.aD is the constant element de-
noted by r in B.

The set D is called the universe of
(iii) 

"u 
9 {B : B is a nodel of type

hd of Definitioa 1

Notation:

The standard
(-r(, o , suc ,
N = (fOrR) wbere
Note that S.Mt.

(Dr(Rr : re f 7;
a model of type

r€H thea L is

DEFINITION 2 (tfre similarity type t of arithroetic and its standaxd
model [)

t denotes the similarity type of Peano's arithmetic. In more de-
tailr t = (lorscr+r.] ttl) where Don ta = [<rorscr+r'], t(1)=2,
t(0)-1 ' t(sc)=2 and t(+)=t(. )=].

nodel I of t will be sloppily denoted as
+ , . ) = S instead of the more precise notation

R(<) ={4nrm)e2rrl : n4nJ1...s R(se) =(n+1 : n€to).
&rd of Defiaition 2



Throughout the paper t is supposed to be disjoint froro

sirnilarity type, moreover if d is a similarity type then
non(da) O oom(t1)=o is assumed throughout the paper.

reH then R(r) is a

U" is said to be

(iii) *,o I {. rn
End of Definilipg_l

function R(r) t U"a* ...tU"o_1 * U"rr.

the universe of sort s of 'fft.

we understand a triple
: Z + Sx for some set

of no If r€ I then we

tJpe and let Z = Don m2

we understand a pair

the eI-
S=
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'Rr>renom(dt )

(r) Rext t ui*ut * ud
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true d with variable
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DEFfNITION , (many-sorted models, L17l)

(i) By a manJl-sorted sinilarity trpe m

m = (SrHrn2) such that ^Z is a function mz

Z ' HG: and (Vref)nr(r)/os.
The elements of S are calLed the sorts

shall write m(r) instead. of mr(r).
(ii) Let n be a many-sorted sj-milarity

as above. By a (many-sorted) model of type m

tfl= ((U" : seS)rR) such that R is a function roith Dorn R = Z and if
r€I and m(r)=(s11...lso) then R(r) a u"at...tUsn and if in addition

TfL is a many-sorted. mod el of tJfpe m ].

DM'INITION 4 (tne }-sorted. similarity tpe td)
(i) To any one-sorted simil"arity type d we associate a ]-sorted

similarity tlpe td as f olLows:
Let d = (Hrd1) be any one-sorted similarity type. RecalL that

t is a fixed simiLarity type introduced in Def.2 and by our convention
Dom(d,) n non(t1)=0.

Now we d.efine td. to be td g <srKrtd2) where
a) s g {trdri}, lsl=I. (s is the set of sorts of td.) Here

enents of s are used as symbols onry; we coul-d have chosen

= {or112} as well.
b) K g {extrOrscr*r-J U H. (K is the set of operation s;rmbols

c) tde : (oom(t,) unom(d1) u{ext}) - S* such that
td2(ext) = (i,t,d),
td;(r) € n{t} if t(r)=n and
tdr(r) e t{a} if d.(r)=n .

of td.)

E.g. td2( ( )=(trt)r tar(+)=(trtrt)r etc.
By these the ]-sorted similarity type td is defined.

(ii) Let ?Tt= ((Utrudrui),Rr )r.Z be a td-tlpe mod.et. Then
(1)-(7) below hold:
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called. tirne, data and intensions
the time-structure of tlt.

,uirR"*u)9

, r9u,
, D9uu r9ur.

by the letter Tn

TfL .
Dl.

t

and

Convention 2 Whenever an element of Mta is denoted

then the parts of fn are denoted as followsl

<g, !, r, ext) g < (uft, ur, ur), "n)".2 
g

Note that ffi.M*a iff lreuil PeMo, and ext : IxT +

For a more detailed introduction to many-sorted languagesr }ike
Itd = (FtAlMX.rF) defined below, the reader is referred e.g. to the
textbook U77. If understanding Def.s ]-6 here is bard for the reader
then consulting L1?1 should help since Lta is the most usual classicaL
many-sorted language of similarity type td.

DPFINITION q (tfre first order ]-sorted language ltd. = (Fta'Mtd.rF) of
tJrpe td, LtZl)

1,et d = (Hrdl) be any one-sorted similarity type. Recall from
Def.s 7 and4 that t is a fj.xed sinilarity type, and td is a 7-
sorted similarity type with sorts {trdri}.

(i) We define the set FtO of first order ]-sorted formulas of
tJpe td.:

I,et Xg{\:w€trl}r Ig{y!r:w€o} and z*Irw:wekr} be

three d.isjoint sets (and #*; if w/ie<o etc). We define Z, X' and Y

to be the sets of variables of sorts tt dr and i respectively.

F| denotes the set of all first ord.er formulas of tlpe t with
variables in Z, Fd denotes the set of all first order forrnuLas of
tJrpe d with variables in X, and ,*? denotes the set of all first
order terms of tlpe t with variables in Z.

The set htdrd of terns of type td and of sort d is defined



(6)

Q)
(8)

to be the smallest set satisfying conditions (t)-(l) below.

(1) x cT*t.rd .

(2) ext(yorrc) .ht.rd. for any aern! and w6(D.

O) t(fl 1. .. lto) a Trtd.rd. for any f€H if d(f ) =rt*1 and C. 1... lto€
u htd 

rd. '
The set Fta of first order formulas of type td is defined to be

the sma]lest set satisfying conditions (4)-(B) below.

(4) (rr=r2) . Fta for any T1fi2 . Trt.rd .

$) r(rr 1. . . lt,,) a Fta f or any T1r... rta a Tttd.rd. and for any r€H

(x"-l;) € Fta

E7 eFta.

if d(r) =n.

for any w, j € tD.

{rgr (gny)' (32"g)' (lxrg)' (3r*g) : weoS e Fta for any {r
rV eFi6'

By this the set Fta has been defined. Note that Fa e Ftd.

(ii) Now we define the 'rmeaningert of elenents of Ftd.
By a valuation (of the variables) into mL we understand a triple

y=(grkrr) such that I eaTr k €(dD and r edl. The statement "@
valuation v=(grkrr) satisfies .p in trft' is d.enoted by fn F g[vJ
or equivalently by fifl F 1g[BrkrrJ.

The truth of fn F g[srkrrl is defined the usual way (see LIZJ)
whish is completely analogous with the one-sorted case. E.g.
fi P (xg=x1)[grk'r] iff ro=rl 

'
Tn ts (*i=u*t (Y2rzo) ) [grkrrl -iff 

k1="*tffi (rr rsg) 'fiPglgrkrrl iff !Fgtsl for g€F;,
fn p g[srk'r1 iff B r gtkl for g eFa etc.

The foruula geFta is valid in f,ft, in s;rmbols Tf{ F gr iff
(vs etn)(Yr.tDo)(vr e\; Tn F f k,krrJ.

(iii) The (l-sorted) language LtO of type td is defined to be

the triple Lta = (FtdrMtr6rF) where F is the satisfaction relation
defined in (ii) above.

E:rd of Definition 5

DEFfNITION 6 (ttre class STMd of

I,et Tfi. = (Trlrf rext) . Mtd.

conditions (i)-(iii) below ho1d.
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(ii) r=tD.
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The class of all stanc

End of Deflnition 6
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models Tft eMru.

Notatio4: let ([rpr]
:-l-5 = (sgr... rsr). Let

e)rt(3rb) g (ext(sorl

DEFINITION 7 (traces r

Ilet P€Pd and 1

"Or... rs" € I be arbil

The sequence (sg'n..,
in m if the fotLow:

(i) exb(s" rO)=iO t

(ii) For every b€T

nents (1)-(]) ut

(1) rf rr- = ''

ext (s, ,b+1 ,

(2) If lm = ":

ext (s, ,b+1.

standard models)

?n is said to be standard iff

G) If un=t'l
End of Definltion 7

DEFINITION 8 (possiblr
I,et s = (sO1...lsg)
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rd

Lf

r (1)-(r) below.

rd € L).

d(f)=n+1 and C,; 1... lGo€

is defined to berf type td
(B) below.

1'
r e rttd.rd and for any r€H

werD] G Ftc for any $r
,V €Ftd'

be that Fa e Ftd..

elenents of Ftd.
'ttl, we understand a triple

;0I. The statement "@
is d.enoted by fn F glvl

d the usual way (eee LIZJ)
sorted ca99o E.g.

(i) !=N. (For $ seeDef.2.)

(ii) I=tDo
(iii) (VseI)(Vuet) ext(srb) = s(b).

The class of al} standard elenents of MtA is denoted by STMd.

End of Definition 6

In tbis paper we shall define several sets of axions
guage ltd., gee Def.s 17-17. Each of them wiLl be valid'
STMd of standard models.

in the lan-
in the class

in the ]-sorted

1{trrsg),

,
etc.

bols f,lI F gr iff

Now we define the ggi p€Pd

nodels 7It eMrU.

Notation: Let (f,rPrIrert) . Mtd, see Conventj.on 2. Let s6r... ls* e I1

-

s ts (s01...lsr). I.,et b€T. Then we define

exb(5rb) g (exb(sorb) 1... '€r(b(s*rb)).

DEFINITION 7 (traces of programs in time-nodels)

Let p€Pa and fieMr.. We shall use Conventions 1 and 2. Let
sor...'s" e I be arbitrary intensions in m. l,et S = (so'...rs"_1).
The sequence (sgr"..'s") of intensions is defined to be a trace of-g
in m if the following (i) and (ii) are satisfied.
(i) ext(s" ro)=io and exb(s" rb) e tiro : n ( n] for every b€T.

(ii) For every beT and for every jgc if ext(s"rb)=in then state-
nents (1)-(r) below hold.

(1) If rm = '\ * 
"". 

then
( im+r if i=c

exb(s'b+1) = Jct"ru(Erb)lp if i=w .
I ext(srrb) H 

otherwise

(2) If um = "IF T GgTo v' then

Io if J=c and Ppf[ext(Erb)l
eru(s,,b+1) = { ir*r if i=c and D F ?(terb(5rb)1 .

( ert(srrb) otherwise

(r) rf um = 'HAr,r' then ext (s, ,b+1 ) = e:rt (s, rb) .

End of Definition 7

DEFINITION 8 (possible output)
I,et s = (sOl...,sg) be a trace of p€Pd. in fieMr..

f tlpe td is defined to be

the satisfaction relation

models)

aid to be stand.ard iff
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(i) Let k e(,D. The trace s is said to be of input k iff
(Vj < c) k(j) = €xt(srrO).

(ii) Reca1l from Convention 1 that i' is the labe} of the HAIT-
comnand of p. T,et bcT. We say that s ter&i4atqs at time b in TI1

iff erb (s"rb)=in.
(iil) I,et krq uoD. We d.efine q to be a possible output of p

with input k in Tn iff (a)-(a) below hold for sone 6.
(a) s = (sgr...'s") is a trace of p in TfL.

(b) s is of input k.
(c) There is beT such that s terminates p at time b and

(Qgr. .. rec-t ) = ( ext(sOtb),.. . ,exb(s"_a ,b) ).
(d) (v;eu:)[i>,c ) 9j=kj].
If q is a possible output of
also say that (q.r,..rgc_,t)
(kgr...rkc_1).

p with input k in m then we shall
is a possible output of p with input

End of Definitioa 8

Sa. s[.e,TE]iEirtts abou

We introduce ou

other words the lang

DEFINITTON 9 (tne La:

I,et d bea(o:
(i) DFa is de.

(t)-(7) below.

(1) Fta e DFd.

(2) (vpePa) (v 
'yeonu

O) (VP'V e DFa)(Vx e

By this we have defi:

(ii) Now we de:

1-sorted models mel
valuation of the var:
g€9I, ke(5, and r
(4) If y.Fta then

(5) I,et pepd and

already been dei
Fta into IIt.
??r( F tr(p,y)[s,k,
q of p with inpr

(6) Let grp eDFU e

Tn F (V a V) [s,k,
way.
Let €rgr w€u).
such that (V; e

(iii) The rangr
is defined to be the
in (ii) above.

Notation: Let p€P:

-El(plry). In our lan
-rr A r =11 I D only.
ives Y, -, er V, TRU

(r.lVV) stands for th

By now we have defined a semantics of prograp schemes.

Remark: A trace (sgr...rs") of a progran pepd comelates to each
variable *" (w <c) occuming in the program p an intension or "gg-
EgY," s" such that the value ext(srrb) can be consid.ered. as the
rvalue contained in" or "extension oftr x," at tine point b€T. The
intension "rr.r represents a function e:rt(s,rr-) : T + D fron tine
points to d.ata values D. llhis function is the 'thj-story" of the variable
\ during an execution of the progran p in the rnodel fi . Def .Z
ensures that the sequence (e:ct(sgr-)1...e€xt(s"r-)) of functions can
be considered as a behaviour or nrun', or rrtrace'r of the prograrn p in
fi. Here s" is the inteasion of the 'control variable'.
Abgut using Th.: It might look counter-intuitive to execute prograns
in arbitrary eLenents of Mtd.. Howeverr w€ ean colrect all or_rr pojstu-
lates about time into a set Ax s Ftd of arions whieh this way would.
define the class Mod(Ax) € Mta of aLl intended. inter?retations of pd..
Then traces of programs in Moa(*) provid.e an intuitively acceptable
semantics of program schemes. Such a set $( of a:rioms will be propos-
ed in Def.1V. If one wants to d.efine semantics with unusual time struc-
ture €.g. parallelism, nondetermj.nisn, interactions etc. then one ca4
ehoose an Ax different from the one proposed. in this papero

320



I to be of input k iff

o ir the ]abel of the HALT-

berninates at tise b in T[1

be a possible output of p

old for some s.
IIl .

s p at tine b and

e-1 tb) ).

,rt k in TtL then we shall
output of p with input

End of Definitioa 8

)rograJn schenes.

pePd correlates to each
m p an intension or "Eig-
:an be considered as the

, "t time point b€T. The

isor-):T+D frontine
;he rrhistory" of the variable
Ln the nodel fi . Def .7
rt(s"1-)) of functions can
racett of the progran p in
;rol variablett.

;uitive to execute prograns
can collect a].l our pqstu-
xions which this way would
;ended interpretationg of pd..

I an intuitively acceptable
\x of anioms lrill be propos-
;ics with unusual tine struc-
:actions etc. then one can
red in this papero

S7. STATEtviElrlTS about prograns

We introduee our language DIa for reasoning about programs or in
other rvords the language DtrA of our first order dynamic logic.

DEFINITfON 9 (tne language DLO of first order d.ynamic logie)

Let d be a (one-sorted) similarity t;pe.
(i) DFa is defined to be the smallest set satisfying conditions

(t)-(l) below.

(r) Fta e DFd.

(2) (vpepa)(v 'yenru) [(prg) e DFd.

(r) (V?,V e DFa)(Vx exuYuz) { -g, (9ng),(3xgB q DFd.

By this we have defined the set DFa of dlmamic formulas of type d.

(ii) Now we define the meanings of the dlmamic formulas in the
]-sorted models fieMtd. Let Tn - <grDrf rext) eMrU. I,et v be a
valuation of the variables of Fta into ?I1, i.e. let v=(grkrr) where
g euh, k e c5, and re@I. We shall define t'Tt p g[vJ for a]I , geDFd.

(4) If y.Fta then m ts gtvl is already defined ia Def.5.

O) Let pePd. and. VeDFa be arbitrary. Assr:me that ?n F rytvl
al.ready been defined for every valuation v of the variables
Fta i.nto lIL. Let I edT, k €(dD, and r eol. Then

'fn F B(pry)[grkrr] iff tfi p glgrqrr] for every possib]e output
q of p rrith input k in Tn I . For'possible output'r see Def .8.

(6) Let grp eDFU and let x eXuIoZ. Then Tft p (-rg)[grkrrll
trl F (glg)lgrkrr] and ?n F (lxg)lgrkrr] are d.efined the usual
btay.
Let e.g. w € k). Tben TIt F (32.,V)[grkrrl iff (tnere is h € oT

such that (V; e to)( j/w ) bj=Bj) and Tn F ylhrkrrl).
(iii) The language Dla of,nfirst order dynamic logic of tlpe d.

is defined to be the triple DId E (DFA , Mtd. r F ) where ts is defined
ia (ii) above. Erd. of Definition 9

Notationl Let p€Pd and ryeDFU. Then 0(prV) abbreviates the fornula
-E(p1rg). In our language D% we introduced the logical connectives
rr A r =r J r E only. Howeverr w€ shalL use the derived logical connect-
ives V, *, e, V, TRUE, FALSE, 0 too in the stand.ard. sense. E.g.
(,1V V) stands for the forraula r(rgA r y).

,

has
of



;4: Standard concepts of progranming theory can be expressed in
DIrd. E.g. tr(prg) expresses that p is partially correct w.r.tr out-
put cond.ition V, and 0(prV) expresses that p is tota]ly comect
w.r.t. output condition V in the weaker sense.

Convention I We shal} use the mod.eI theoretj-c consequence relation F

in the usual way. I.e. let ThEDF4r geDF6 and KgMtd. Then

?n F g iff (Vs e 'r) (Vt . @D) (Vr e dl) ?n p 9[8rkrr1 r

Tn ts Th iff (vgt rn) fi F (.{)'

K ts Th iff (v fie r) iT[ F Thr

Mod(Th) 9 uoaru(nn) E t fiteMta : TrL F Th], and.

ThFg iff Mod(Th)tsV.

Note tirat Mod(Th) is a sloppy abbreviation of ltodr.(Th) r we shall
uae it when contexb helps the read.er !g-gg. which similarity type h

such that ThqFh is used in Mod(Th) = Modh(Th).

DEFINITION 10 (proof concept l17l)

1,et L = (FrMrF) be a language. By a proof concgpt on the set F

we und.erstand. a relation F € Sb(F)xp together with a set Pre F*

such that (VTh cF)(Vg.f)[Th F g iff ((Hrwrp)ePr for some finite
H ETh and for some wefx) l. Recall that we identify F* with
{ Hesb(F) : lH l. ,o 3 

*.

The proof concept ( frfrl is decidable iff the set Pr is a

d.ecid.able subset of F* in the usual sense of the theory of algoritbns
and. recursive functions (i.e. if Pr is recursive).

called derivability
End of Definition 10

Sonetines we shal-l sloppi-ly write " F is a decidable proof concepto'

instead of " ( FrPr) is a decidable proof conceptrr.
Note that the usual proof concept of classical first order logic is

a decidabLe one in the sense of the above definition. As a contrast we

note that the so ea]Ied effective crr-rule is not a decidable proof con-
cept.

THEOREM 1 (strong cornpleteness of DI,1)

There is a d.ecid.abJ.e proof concept ( Arprn) for
such that for every Th riDFU and 9.DFO we have [nfr

Proof: can be found in [- ], as well as in [4lThm.2 pp.7o-78.

Pr is called the pe!_-g!-p$, and I- is
relation.

the language ._DlaFf ifr rnSgl.
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DEFINITIoN 11 (the prc

BY Thn.1 above tI

(VTh s DFd) (VgeDrd) [ rt

The decision a1g<

Thm.2, and [41Thm.2rP1

From now on we sl

The onlY imPortant Prr

and its comPleteness '

By a logi-c we llo'

a language in the sen

the sense of Def.10.
(r-rPr) is a decidabl
have [f}rrq iff

We define First
(Dra, (S'Prn)> wbe

11. BY Theorem 1r tr

plete.
Given any logict

(i.e. theories Ax) gj

in Def.12 below.

DEFINITION 12 (new P:

Let Ax gDFd br

(i) I,et th c D'

(Ax S\-provaule fron
the proof concePt (

a nevt reeursivelY en

(ii) pr(Hr s)

Clearly I is (Ax i

clearly pr(.uc A) i
(iii) We have

where pr(.nx E) b u
always denote this r
(Ax A) we shall mee

erplicitlY.
(iv) We defint

to be or,u(rr) * <t



ry can be expressed in
ially correct w.r.t. out-
p is totaLly correct

€.

c consequence relation F

and K gMtd. fhen

r glsrkrrl,

and

ion of wiodru(Th) r we shall
which similarity type h

dh(Th).

rroof conceDt on the set F

;her with a set Pr e F*
rrg)ePr for some finite
,dentify F* with

iff the set Pr is a

I the theory of algorithmg
:sive).

is called derivability
End of Definition 10

I a decidable proof concepto'

)ncepttt.
tsical first order logic is
Lnition. As a contrast we

rst a decidable proof con-

DEFTNITTON 11 (trre proof eoncept ( Srpro) of Dr,4)

ByThm.1abovethereexistsa@setPrn9(DFd)*suchthat
(VThq Drd)(VgeDF6) t nn S g iff ( I rinite H€Th)(rw) (Ilrwrq) ePrn l-

The d.ecision algorithm for Prn is rigorously constructed in lV1

Tha.2, and [+]tnm.2rpp.1o-]8r and in [t9].
From now on we shall use Prn as defined in the quoted papers.

The only imPortant ProPerties
and its completeness for DIA

of Prn we shall use are its decidability
End of Definition 11

Byalogicweund'erstand'apair(lr(Frpr))wherer.,=(FtMtF)is
a language in the sense of 52 and (t-rpr) is a proof concept for L in
the sense of Def.1O. The logic <Lr(FrPr)> is said to be complete iff
(r-rPr) is a decid.able proof concept and for all Th €F and getr, vte

have [tn rq iff Th F gl.
We d.efine First ord.er Dvnanic l,ogj-c of tlpe d to be the logic

(Of,U , ( Arfrn); where the proof concept ( Srpt) is defined in Def.

11. By Theorem 1, First order Dynanic l,ogic (OlUr( Armtt)> is con-
plete.

Given any logic, say (DLd, ls), decidable sets &( €DFd of formulas
(i.e. theories Ax) give rise to new logics. We shall make this precise

in Def.12 below.

DEF,INITION 1.2 (new proof concepte (A)( E) from ota S, DLd(f:(), DlogU(Ax))

Let Ax GDFd be decidable but otherwise arbitraly.

-_(i) Let Th G DFd and g€DF6 be--arbitrary. We say that I is
(trc A\-provaute from Th iff ThiJ n* E g. That i-s g is provable by

the proof "orrl,nt 
(An A) from Tb iff Th u l:, A g. Thus (Ax E) is

a ne$r recursively enumerable ttprovabilitytr relation.
(ii) pf (ar( Sl I { (Hr(r,rw)rg)€(DFd)r : (HUr,rwrg)er}rn and L €ax}.

Clearty g is (m A)-provable from Th iff ( 3 (Hrwrg)ePrn) H sThu/Ax.

Clearly pt(oc A) is a d.ecid.able subset of (DFd)n.

(iii) we have d.efined a new proof concept <(At P) , pr(u A))
where pf(nx E) ls the decidable set of all (Ax E)-proofs. We shall
always d.enote this nerir proof concept by (A* A). So whenever we write
(Ax g) we shalt nean ((l,x A) rpr(u S)> but we shall not write it out

explicitly.
(iv) We define the new language Dld(Ax) associated to lx sDFa

to be Dtd(A:r) * <oru, uoaru(Ax) r F ).

?rn) for tbe language Dl,o

lave tTh F g iff rir A gi.

['hm.2 pp.l}-)8. @,
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(v) We define the new d;rnanic logic
to be D]-ogu(A:<; I 1lr,u(Ax) , (Ax A)>.

0n tr'igure 2, different proof concepts
be conpared with each other as well as with
as Floyd.'s g and. Rod. Burstal}'s FBgg .

Dloga($c) associated to Ax

End of Defiaition 12

(.a:(1 fl), (Ax2 g) etc. will
such classic proof concept$

54. ComparinF meth'

well known oner

DEFfNfTION 1, (Dax, Reasonable Dynamic Logic, F9 )
In Def.s 1+-17 below the axiom systems Ia,
be defined. We define the logical axions of
to be Doc g Ia U Tpa U Ex U [A:re] .

We define l?easonable Dynanic Logic to be

will
I,ogic

Tpa, Ex, {axe} . DFa

Reasonable Dynanic

We shaLl show l

methods of progran'
progran veri.fj.catio:
forn a lattice, see

find out about weU.

ated in this latticr
Three wel} ]rnol

Floyd's inductj-ve al

method. S tZ:r an(

BurstaLl's J9-9g is
lte]. These methodl
Def.1B for an(

riched with future 'l

tions of g, lggg i
nethods we shall fir
19763 'rIs sometime r

We have to fix
verification nethods

than another tsZ il
reet by ts1 than b;

prove partial eorre(
to eompare different
logic Dl6r nanely
programs. ft was pI

Park[t5] neeative re
D%.

We shaIl consid
proof concepts.

About generatir
way of dreaming up r
a decidable set Ax I

is a sound progran v

€.g. Dax introduce
we can be sure that
that is the proof ne

Below we sha1l
STMd F Ax. Later we

these axion systens
for dynanic }ogi.c.

Dlog.(Dax). See Def.12
(v) above.

Let fh c DFd and geDF6. Then we define I ttr $ g iff
(srmunMod(Th)) F g l. Ead. of pefinftion 1l

Note that STMd F parc is easy to prove.

rs our dvnamie fogic nihilistic or counterintuitive?:
We claim that the answer is no for our Reasonable Dlrnanic Logic
Dlog6(Oa:r), To execute prograns in arbitrary elements of Mta night
look counterintuiti-ve. However Dlog.(Dax) is a complete logic with
deeidable proof concept and there is pothing yrong with executing pro-
gra$s in elements of Uoaa.(Dax). See s.gr Prop.2 below, Thn./ of l7J,
Thn.6 of l9lp.r+ and. Fig.2.

PROPOSTTTON 2 Let TIt F Uax and pePd. Then (i)-(ii) below hold.
(i) To every input q there is exactlg one trace of p in m with

input e.
(ii) Assume that the trace seml of p in Tn terminates at tine bET.

Then (v aen)[ b ( a + (vi . n)erb(sg rb)=€xt(si ra) ] ana
(f aeT)(VkeT) [ (s terminates p at time k) <=+- a<k ]

Eloof : Detailed proofs can be found. in []JThm.s 1-4, [4]Thm.s 7-4tpp.
42-+5, except for the existence of traces in (i) which is proved. in [eO ],
but the idea of this proof is available in []lproot of rhm./.
QED(Proposition 2)

On Fig.2r different dJmamic logics Dloga(Ax) with various Ax qDFd
will be compared with each other and wj.th classical logics of prograns
like Floyd-Hoare logic, Burstar-r's nod.al-d.ynamic logic etc.
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foga(.Ax) associated to Ax
End of Defiaitian 12

(fi(1 g), (axz S) etc. wirl
such classic proof concept$

P' g)
I t", Tpa, tr)c, {axei . DFd

bns of Reasonable Dynamic
I

be Dlog.(Dax). See Def.12

I

[n" tnrrgg irr
r Bnd of Defini-tion 14

I

I

I

[tuitirr"t,
bnable Dynanic Logic
ly elements of Mta night

I is a coraplete logic with
I wrong with executing pro-
lfrop.e below, Thn./ of LrJ,
I

I

I

I

Fnen (i)-(ii) below hotd..

fe trace or p in m with
I

I

I Tlt terminates at tine b€T.
l=ext(si ra) I and,

lu) <=+ a=<kl.
I

F.r ,-U, [4]Thm.s 7-4tpg.
|l (i) which is proved. in [e01,
irlproor of Thm./.
I

I

I

luf*l with various Arr e DFd

iassical logics of prograns
lanic logic etc.

$4. Comparing methods for progan verification. the status of sone
we]-l known ones

We shall show how to use our logic Dtd to cornpare powers of
methods of program verification, as well as to generate new methods for
progran verification. We shall see that the program verification nethods
form a lattice, see Fig.2. It might be interesting and also useful to
find out about well- larown prograln verification methods how they are situ-
ated in this latti.ce.

Three well lcnown progra$ verification methods we shall look at are
Floyd's ind.uctive assertions method E, Burstall's tine mod.alitles
method. $99 [Z:, and Future-enriched time modalities method. Fgg 112].
BurstaLl's l@ j.s often called intermittent-assertion nethod., see srgr
[t6J. These method.s wil], be defined. rigorously, see Def.2O for E,
Def.1B for lryg, and Def. 19 for fun. The last one, g, is Iggg €D-
riched with future tense and past tease. By spotting the precise loca-
tions of P, lggg and lg in tbe lattj.ce of progran verification
methods we shal] find a precise answer to the question asked at SRf in
1976? [Is sometime sometimes better than always?" [15].

We have to fix the criteria to be used when we compare program
verification methods. We shall say that one method f1 i.s stronger
than another tsz iff more prograns can be proved to be partially cor-
rect by ts1 than by tsZ. So we sha1l consider the reasoning power to
prove partial correctness statenents g * tr(prV) to be the criterion
to eompare different methods. This choice has nothing to do with or:r
logic Dl4r nanely Dla is suitable for proving total correctness of
prograns. Jt was proved in [t][hn.? and in Thm.? of [4] tnat the Kfoury-
Park[t5] negative result on proving total comectness is not true for
DLd.

tde shal1 eonsider progran verification methods only vrith decid.able
proof concepts.

About generating neh, progran verification methods by f..: A safe
way of dreaning up neir sound progran verification methods is to d.efine
a d.ecj-d.able set Ar( g DFd of axions such that STMd F Ar(. Then (Ax A)
is a sound progran verification method.. A reasonable axion systen is
€.9. Dax introduced in Def.17. Clearly STMd p Dax. Thus by Thn.1
we can be sure that whenever Th Up"* S n(pryl then rea11y Th g tr(org)
that is the proof nethod 1la:< E) is sound.

Below we shall- introduce severaL such arcion systems .A:(, with
STMd F Ax. Later we shall compare then in Fig.2. One can aerrsider
these axiom systems as different candidates for being the logical arcions
for d;manic logic. Or if rrre want to irnitate what people d,o in nodal
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logic then we could say that every recursively enumerable A:( gDFd such
that Sffia F, Ar( is a dynanic logic and if STMd ts fit and STMd ts MZ
and Axl F lxZ then &t and Ax2 are two different dynanic logics
and if A:cz F Axl then AxZ is a dynamic logic stronger than Ar(1.

Usually, any axiom systernr s&J Axneme, introduced below wiU- con-
sist of two parts Tname and Inane such that Axnarne = Tname U Iname.
llname consists of postulates about the time structure E hence
Tnarne trf,, see Def.16. Iname consists of j.nd.uction ocioms about the
intensions, see Def.15. Typical examples are Vz(sc(z)/O) € Tname and
(x=ext(yrO) AYz[.x=ext(y tz) + x=ext(yrsc(z))] ) + Vz(x=ext (yrz)) e Iname.

DEFINIT]ON 14 (ind(grz), IA, Ia, lax)
Let d be a similarity type. Then td, Fta and z were defined

in Def.s 4 and 6 in 52. Let zeZ be arbitrary. let geFtd.. We define
the induction fo:mula ind(grz) as follows:

ind(g,z) g (tV(o) AVzQq + g(sc(z))l + vzf) ,

where g(O) and g(sc(z)) d.enote the formulas obtained. from g by
replacing every free occurence of z in g by o and sc(z) resp.

The induction axions are:

IA g { ina(grz) : g€Fta and. zeZ}.

I,ax E {(;*t> : j and k are two different
Ia g IAULax.

Clearly IAeFtd since if g.Fta and zeZ then g(O), g(ec(z))e
.Ftd because o and sc(z) are terms of sort t. ft is inportant to
stress here that I maJr contain other free variables of all sorts. All
the free variabres of g are arso free in ind(grz) except for zo
They are the "rylglg" of the ind.uction ind(gnz).

The theory rA says that if a nproperty" g changes d.uring time
T thea it nust change "some tinerr, i.e. there is a time point b€T wben
g is just changing.

Our strongest set of iaduction axioms is Ia. lde shall d.istinguish
various subsets of Ia.

DEEINITTON 15 (Iq, IZlr ITIlr If, T1' I" ICt' rrNd. ANd IfM)
If g lPtfn : g contaias no free variable of sort t or d.]Ur,oc.
11 g {Y.to : (Vie ul)[i > o ) z, d.oes not oecur in V neither free

nor boundl] U La:(.

'- ("f l4-.i 
"

r' g Iind(grzo)

rct I lind(3x'..,

],et (fo,tFtal I t

rq g {ina(grzo)

rr.r g {ind(32,..
t.; 'g { ind(vz, -.
rrnd.9 {moag: t

rfm$ {r"rg : (

On Fig.1 we

15 above. @!g
not rnodulo partia
That is, on Fi.g.1

and 12 < Il). Tb

known to be prope

discussion of Figelements of l,ab].

Ead of Definition 14

If
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enunerable A)( gDFd such

IA F Mr and STMd b ke
.fferent dynanic logics
.c stronger than Ax1.

;roduced below will- con-
; Axname = Tname U Iname.
;ructure ! hence
rtion a:cions about the
Vz(sc(z)/O) € Tname and
-) Vz(x=ext (y rr) ) e Iname.

ItA and Z were defined
tt Let geFtd.. We define

t

I obtained from I by
)y 0 and sc( z) Tesp.

lments of l,ab].

Ead of Definition 14

)z then g(o), g(sc( z))e
; t. It is important to
:iables of all sorts. All
l(grz) except for zo

t(g'z).
g changes during time

Ls a time point b€T when

Ia. I,le shall distinguish

tmd and lfm)

I sort t or d3 UT-,oc.

)ccur in V neither free

rct I Iind(3xo...xrf ('\*i="xt(yi ,ro))491 ,zo) I rn€tD and geFu] U Lax'

I,et (fOrtFtal I t geFtA : V contains no quantifier of sort t' that ie
(Vi e a)) [ u 1rr" d.oes not occu.r in g J ].

rq g {:.na(g,zo) t g.(ro,tFta)} u r,ax o

rlr g {ina(3za ...2^eszg) : ge(rgrtFta) and meo} u r.,a:c.

rtll g {ina{vza--.2*grzg) : 9€(rgrtFta) and meo} ur'arc'

rma I {noag : gelAmod}, 
Xlillu.-"u 

and tomod wil} be defined' in

Ifm I {f,-q : gelfrin }1 where fun and Ifr.un will be defined in
Def.19.

On Fig.1 we compare the sets of induction axiorns introduced in Def.

15 above. lgjgg: As opposed. to Fig.2, the comparison on Fig.1 is
not nod.ulo partial comectness of programs but instead it is absolute.

That is, on Fig.l , LIa>.T, iff 11 F Ie I and T1 = lz means (I1<fZ
and. IZ<T1). The sign * ind.icates that the inequality in question is
known to be proper, that is IZ f 11. We shall discuss Fig.1 after the

d.j-scussion of Fig.2 in $5.

/
rzt jnt

\/If
Iq

Ict

If O Ict

FIGURE 1



DEFINITION 16 (fs qTo GTpres e Tpa GF,Z and Tfm)

Notation, s"o(ro) I ,o and (Vne,^-r)scn+1(ro) I sc(scn(zo)).

Ts g I zo/o e 1l-1(zo.,sc (zl) , sc(29)-sc( u1) - zo=21, scn( zo)/26 :

: nek) , nlo].
To g {(uo<11Ar14uz) * zo .rz, (zo<l-1Az1",o) + zo=l.1,

,O. ,1V zr< zgr O ."O, (rO4 ,1A zy/zr) e sc(uO) 4 z1t

O-uOV3,zr(zo=sc(rl ) J.
Tpres i.s the decidable set of Presburger's axioms for N z

Tpres 9 fo U {z,+O=zgr zo+sc (zl=sc( zO+21) t ind(g ,^O) I geff and
rr . rr does not occur in g 3 .

Tpa is the set of @'s anciorns f ormulated in the language FZ, about
the similarity type t, see €.g. Example 1.4.11 in [8]p.42.:
Tpa 9 Tpres g {zO.O=Or zO.sc(zl=zO.zr*zgt ind.(g ,rA) z gef!3.
Tfm * { fung : v€Tfum}r where fr.r"n and. Tfrin will be d.efined. in

Def.19. Eld of Definition 16

Note tbat Ts C To is not literally true but To F Ts. He require
To €Tpa because we have the synbol
also note that To F Tfm, and, clearly, Sffi. F Tpa. f.o. Fact 16.1
below holds.

FACT 16.1 SWa F tba p Tpres F To F Tfm and To F Ts.

Tbe set h of a:cj.ons introduced below are useful to prove total
correctness, see thrn.7 of []JPart II, and. Thm.| of [4].

DE'FINITfON 17 (Dc, Axe)

br g { lvzo3xog -t Syovzo3xo(xo=ert(yorzo) g )] : geFtd and yO does
not occur in g 3 .

Fiore intuitivelXr the formulas in h are of the forn
vzv*v-y [vzo3xor{"o r*orz rir}) + !rgvzg(zore:rb(ls, zo) r?rir})]
where Zr?ri are arbitrary sequences of variables lot eontaining zorxgrXg.

A:re denotes the axion of extensionality, i.e. Axe is
(VyoVyr[ vro"*t(lgrzo)=ext (v1rzo) -> ]9=x1 J . Erd of Defiaition 1?

For the rest of this section, Let d = (Hrd,t) be an arbitrar;r but
fixed one-sorted similarity tJDe, see Def.1.

A direct KriPke s

found i-n 1251 . Moreol

given for the validit;

DIFINIIION 18 (modal t

(i) sYntax o{'

{ou is defined'

(1) {xn, Jr,} q*tou

(2) t(Tl 1...1fo).nto
ottou is define

(r) (r= E) t o{ou r

(4) n(Tf 1. .. lto) e 
\
I

(5) {A}wrpr Firstgr }

all n € tr-l and I

(ii) llranslati<
The definition goes 1

write modP instead

$rV € ottou and. P€P,

mod(yrr) g ert (Yo, zg)

moa(llwg) g Vzo(mody

moa(Firstg) = 3zo(zg

nod(Nextg) I SrtGf
mod(g(t1 ,. .. ,cn) ) g

d(

mod.(ra =Tz) 
g (mod.f,,=

nod(rg) 9 rroodgr ulc

By the abover the fr

(ij.i) Validitr

ret fi.Mta and '9€

(iv) Axioms :

,onod g t (tFirstg
(v) The langur



n)

g sc(scn( zo) ) .

. zA=21, scn( z})/zg :

l< ro) a> zg=z1t

1)*sc(zo)4zqt

ioros for N ,

ind(g rzo) : gerf and

n the language Ft about
in [8]p.42.:

a(g rzo) z jenz"3.

un will be defined in
Erd of Definition 16

but To F Ts. We require
e sinilarity type t. We

F Tpa. f.e. Sact 16.1

To F Ts.

useful to prove total
of [4].

P )l : g€Fta and yo does
not occur ia g 3 .

the form

(19'zo) 'z'i't)l
es gg! containing zOrxgrXg.

. .[xe is
&rd of Definition 17

:rdl) be an arbitrar;r but

re
,.7

(1)

(2)

G)
(4)

A d.irect l{ripke sty}e senantlcs for O"HoU defined. below can be

found. in 1257 . l'4oreover, in tzrJ a d.ireet Kripke style definition is
given for the valid"ity relation Pgg defined ind.irectly in Def.18.

DEF'INITION 18 (modal d.ynanic language O"toU of type d.)

(i) Syntax o{ou o 3

qod is d.efined to be the smallest set satisfying (1)-(2) below:

{xnr xrr} cnfiou for everY n€ u).

t(rlr...rtn)€Ttod for every feII if d(f)=n+1 and Ir1t...rtn] aSoU.

o"tou is d.efined to be the smallest set satisfying (r-(>) below:

(r= E) . o"tou for all- c, d e{od.

n(fl 1...rro) . O{oU for every- R eDom d1 if RlH, d(R)=n and.

1"\ r.. . 'Tn] 
a t[ou.

(r) { A}w sr Fi-rst g, Next sr Sxng , Syng ,

all n€tr.r and for al-l grV eOtSoU

(ii) llranslation functiog mod :

The defj"nition goes by recursion on the
write modg instead of mod(g). Let

9rV € ot3ou and PcPd.. Now

mod(yrr) I e*(xo, zg), mod(xo) I *o,

rnoa(.o,Iwg) g Vzo(rnodg) r

mod(Firstg) = 3zo("o=0,,r nodp) r

rrod(Nextg) Q trr(r1=r"("o)a 3zo( %o=z1n nodg) r

rnod (g(ra ;. .. 1t r); I g(no d'T1t .. llllod.f,o) if I € Dom d.a is such that
A(e)=r*l in case geH and. a(e)=n in case edH,

mod.(ta =Tz) g (nodf,a=modt2), rnod(3xrrg) 9 3*orodg, mod(lyog) * Syrr*oag,

mod(1g) 9 rmodg, mod(rpAV) g (modgAmodg)1 mod(tr(prV); I n(nrmodty).

By the above, the function mod , O{od + DFU is fully d.efined..

(iii) valid"itv relation S e Mtd'o{ou o !

Let fi.MtC and. g.Df[od. Then we d.efine tn SS .p iff ?It F nod g.

(iv) Axioms tumod .:
,onod g {(tr':-rstgnAlw(g+Nertrg)l - l,lwg) : V€D{od3uLa)c.

(v) The language otfiou .:

1g, (g n y) , tr(n r g)l e o{ou ror

and all p€Pd..

ot[ou + DF. o!
structr"re or PrTod. Someti:ne we

n € .)r T1r.. . ,cn: n[ou,
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o"Hou g <rdou, t',todr6(rltod) ,PSI , where forarSr Theot[ou

we d.efine Modru(Th) I { fi.Mta z ,1n499 rn3. Ler rb s Ddod and.

g.O{od. Then 15 P99 g is defined to hold iff
uoaau(lamodutn) Pg g , see convention J.

PROPOSITION t (completeness ot Of,fiod)

let [h s o*HoU and I .D{od. Then

Th P99g iff lmodg ! VeThUrAInodJflmoag .

The proof of Prop.V is irunediate by the definitions and by the
ness theoren of DlU, i.e. by Thm.1.

The nodality symbol Alwfu used below intuitively means

in the future". Similarly Alwpag intuitively meaas 'rAlways
pgst 9". In t12) 'rAlwfug" and "Nexbgrr are denoted by 'Fgn
"Xgu respectively.

&rd of Definition 18

I,et ffi.Mtd and g.:

(iv) Abbreviat:

(sonfug) g (rAlwfulg,
shorthands Vxor VI'
DLa and ottoo.

(v) Axioms. (

rfun g (tgnAt-wfu(

(v)2 Time-structure

Tfum g { rirst(Rrwl
(9 * sompt

(SomfuSoml

(ltwtug <+

: gelr[u
(vi) Future eru

o"i* g (orl* , Dl

*5t*glrneuru:'di
cordance with Convent

15 Esp g iff (Vfier

Remark: Note that (

plies Tn €g At"g r

Ifr.rnUTfun g t(tl
A.].v

PROPOSfTION 4 (conple

r,et rn e lrfw and

rh EgW irr {ru

Proof: By Thn.1 and

COROIJ,ARI 5 There a

that (ortou , Pgg >

cornplete-

@

"AE*ys
i-n the
and

DEFINfTION 19 (future enriched. modal d.lmanie language OOSt* of type d)

(i) 9U@. ! DFlun is defined, to be the smallest set satisfying
(1)-(2) betow:

(1) odou c DFIuIn.

(2) ialwlug, Alwpagr A1wg, Firstgr Nerbg, fxng, 3xogr -gr (gAg)r
U(prV)]e lr[* forall n€urr grV.o"5* andal] pepd.

(ii) Tra,psLation function fum : Ofjw + DF6 o !

The d.efinition of fun goes by recursion on the strueture of o"5*.
Sonetime we write f*g instead of fusr(g), i.e. fumg 9 fum(g).
r,et .f€D{otl. Then fun(g) * moa(V), see Def.18(ii).
Let n€t,:, g,V.Pf5* and p€Pd. Then

run(alwfug) g VzaL z, u- ,O -> 3zg(ze=z1n frlrrg) I,
fnn(Alwpag) g Vzrlzrr rO + lz'(z'=z,Afunf)1r
run(.LIwg) g Vzo(rung) , tun(Nexb p) I lzrL z1=sc(zo) ,tAzo(zo-2, A fung) J r

frrn(Firstg) I lro( ro-o^fung), fun(3\rg) 9 3*orl-g, f*(lyng) I jyorl-g
frrn(-g) I .r,*g1 fr:n(gAy) g ((rr:mg) a(rung)), rrrm(E(prV)) I n(prfung).
By the above the function fu.n : DFluIn * DFd is fully d.efined..

(iii) vatidity relation Fg € Htd." otf* . !
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rere for anJr rh g otfou

Let Tb e DFHod and.

I,et ffi.Mtd. and g.pl'Ufm. Then we d.efine nn P ,p iff 'fft p fr,urtf .
(iv) Abbrevi.ations or shorthand.s: (Somg) I (-Alw-lg) r

(sonfug) g (rA1wfu1g), sonpag I (.Ahvpa.g) r and we use the usual
shorthands Vxrrr VJrrr Vr +r 0, etc. introduced below the definitions of
Dta and. o"toO.

(v) Axioms. (v)1 Induction axioms:

Ifun g ( tg,t Alwfu(g -r Nexbg)l + llwfug) : georfl* J U r.,ax.

(v)2 Time-structure axioms:

Tfum g { rirst(.o,rwrug + AIwg), First(g * ttwpag) r
(g - SompagASomfug )r ([alwpagAAlwfugJ + Alwg)r

(SomfuSomfug + Somfug), (SonpaSompag + Sompag) r

(llwtug .+ lgaNextnfwfugJ), (NertAlwpag <+ LNextg ,,f nlwpagl)

: 9€nFl*J.
(vi) Future enriched nodal dynanic language is defined. to be

&rd of Definition 18

II modg .

.tions and by the

ttuitively means

ly neans 'rAlways
denoted by 'Fg"

conplete-
@

'rAlways
in the

and

Lansuage ool* of type d)

re smallest set satisfying

,9, 3IoVr rgr (9 A g) r

[* and all p€Pd..

-r DFU .:
bhe structr.rre of o"5*.
L.e. f*,g I r,:m(g).*

B.18(ii).

l,
t,
r(zs) Alzo?s=z1A tung) l,
qfr:ngr fun(3yng) I 3yor,*g

), fr:n(E(prV)) I n(prfung).

is ful1y defined.

!l .

A1w([Firstg AA1wpa(g + Nextg)l

: genr[*3.

(completeness of DLIlun)

andt.p.lf[*. Then

o"5* g

*5'* g

cordance

th Ess g

Remark: Note that g Eg Alwg for all g.D{* since

plies Tn €g A1"g by definition. Also note that

IfunUTfun g t (lrirstg1Alw(g + Nextcp)] + Alwtp)r

(or5* , oM[* , Fg> where

[tneuru : 'fJl P Ir,* Utfurn]. We use rn # g etc. in ac-

with Conventi-on ,1 i.e.

irr (Vrfleouj"')[m # rn

rn sgl.p in-

PROPOSTTION 4

T,et Th € ot5*
rh Eg W irr
Proof: By Thn.1

{ funy : V 
e[h U lfrrn UTfun }

and Def.19. @
A fumg .

COROLLARI 5 There are decidable proof concepts pg and. g such

that <o"tou , F4 > and. <o"5*



DEFINITION 20 (Floyd-Hoare logic (Hrua , ( P , Prf)) )

(i) The set HFa of Floyd-Eoa, e stat.ements of tlpe d is an in-
portant sublanguage of DFU.:

HFd g {(.t-[(pry)) : pePdand .PrV€FdJ. C]early HFdqDFd-

(ii) Floyd-Hoare language HFLd is defined to be:

Hffio g (Hr'uUru , Modtd(rq) r F).
(iii) The retation P e {Th : Th€Fd} tffid was defined in a

rigorous nenner in I rlDef.1? r [+]nef.1? #.55t [6lr t2]p.118. we shall
use this definiti-on of E without reformulating it, but we note that
in the quoted papers there ig * 9eg-i.@Lg set Prf € (HFaU Fd)n such

tbat (vrh qFa)(vg€ HFd)ttn€3 iff (l rinite H € Th)(:r)<Hrrrg) e Prf l.
Hence Prf is the set of F -proofs and Prf is d,ecidable. Cf. Def.

10. Accord.ing to Def.1O, ( Prprf ) is a decidable proof concept for
the Floyd-Hoare }anguage HFLd. End of Definition 20

The lattice of proof methods for partial comectness of proF----------------rams

Instead of frproof nethod for program verification' we shall sinply
say 'rproof method". By a proof nethod we understand a proof concept
(X E) in the sense of Def.12 or one in the sense of Def.1O. Thus s.go

F and (o"x A) are proof nethods. When we call (X A) a proof method.

for program verifj-cation then what we intr:i.ti@Z bave j-n mind i-s the
proof concept (X A) as a device ro" fio.ring properties of progr&osr
We shall concentrate on the powers of proof methods (X E) to prove
partial comectness of programso

We define a pre-ordering I on the proof methods as follows:
(x rf,) <(y P) is derined to hold. iff [(rhux lf, g) + (trrur F 9)1
for every similarity tlpe d, Th gFd and geHFU.

The relation
(x g) = (r F) irr t(x [) < (r r3) and (r E) <(x [f,)].

YP
A straight line 

X F/ 
on Fig.2 ind.icates the relation

-tP
(x E) < $ P). A line with / add.ed ]ike - 4 ind.icatee the

XE
strict relation

-t9
with =l ad.ded. like --4- indicates that (X F) < (f F) but we

XE
d.o not know whether (x E) >. G P) ho1d.s or not. Broken line
XP- \3 - with 4 indicates that (xE) *<y9> (uut we do not know

-Y13
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whether 1x F) >, Cr g) holds or not). rf 1x E) 16r f3) is not indicated.
(either by / or by + ) tnen we do not lsxow whether or not (X F) <
g1f fA). Hence tr-?tr is used only to stress that we d,o not know whether
equivalence holds. If two nodes are not connected then we do not hrow

whether they are related in any direction or not that is we do not lorow

whether they are comparable. For exanple we do not Isrow whether
(IquTpres P) < (raufo S) hold.s or not. Note that the fact Tq rI IqU[o
d.oes not imply (fq S) t' (fqWo $) si-rrce proof method.s here are compared

onlyw.P.t. Th€Fd and 9affid.

$5. Proofs and discussioas of FiFures 2.1

We shall prove that the inclusions (X E) < (I E) as well as tbe
inequalities (X P) $<y 9> ind.icated. on Fig.2__a1l- do hold.._ First, in
fhn.6 belowr w€ prove one inequality (raulo }g) *(rauls F) and. then
after proving Tbn.6 we shall proving the rest of Fig.2.

Tbn.6 below is in contrast with the resuLt (Iquto s) = (Iqurs s)
indicated on Fig.2.

TIIEOREM 6 There cre a finite d and U(nrg) .ff. sueh that

ra u ro S n(p ,V) but ra U r" * rt(p rV) .

roof. l,et A I ([su, zero], {(sur2) ,(zerorl>r(Rrl)r(Sr1>}), i.e. d
is a sinilarity type which has a unary function syrnbol eur a constant
slmbol zera and two relation symbols R and S.

r,et o'9 zero and (Vnerr.l)(n+1)'9su(n'). Let l,au I {n' : n€<D}.

T,e-t pePd be the progran represented on Fig.]. Note that in de-
fining p we use fewer ]abels than required in the formal definition
of P' but it is easy to see that this change j-s not essential- while(l.'

it considerably sinplifies the traces of p.

Let g(*orxa)eFu be the fornuLa (.s(xo) - xo=xa).

We shall sbow that IaUTs F E(prV) while IaUto A [(prg). To

this end, first we eonstruct a model TneMtd.

@.-%=<
I

I

I

r,et Ag (6xz)l)
Note that if a€A ti
auc:A+A bedefir

6.O.1. T,et TeMt b€

E I (lrq) where T r
Q(sc) = suc' Q(< ) =

We shall sloppil
At two places above u

but we hope that cont
Q(sc; 91t-n) Osuc.
future too.6.0. The definition of ??l[cMtd

Z denotes the set of all
nonnegative members of Z.

iot"S""" sueh that uJ A Z is the set of
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l) € ffia such that

l)r(Rr1)r(S'1X)' i.e. d

.on symbol sur a constant
rd $.

r. 1,et l,al I {n' : n€ct)}.

r Fig.]. Note that in de-
in the forual definition
5e is not essential while

,) + xo=x,,).

:tr 
lsUro fl u(p,V). ro

that 6 eZ is the set of

FTGURE t

r,et Ag (6xz)U({6r7l ,to). r*e

Note that if a6A then s=(irn) for
suc : A + A be defined by suc(irn)

often write (irn) instead of (irn).
sone ie8 and n€2. Iret

g (irn+1) ror ever:r (irn;e4.

6.O.1. tret T.eM+

E I <nrq> wbere

Q(sc) = suc' Q(<

be the foll.owine nodel of t:roe t. (see Fig. . )

T = ({5I 'ro) u (4xz) and a(o) = (610) I or ,
) = O and. Q(+) = Q(.) = fxT"toT]. See Def.s 1 and 2.

We shall sloppily identify g with the structure (Trsuerof).
At two places above we should have written (t'f) Osuc instead of suc
but we hope that contexb helps to understand that we meaat €.g.
Q(sc) I (l'f) A suc. We shall connit this kind. of sloppiness in the
future too.

xO+guO'

xo * su(xg)

*1 * su O'

xl -+ su(x1)
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FI.GURE q

be the followins model of tlpe d. (See Fig.5. )

,,r,h

:
I

(qoll-

FIGURE 4

6.O.2. L,et D€Md

B 9 lorC) where D = ({7} "ar) U(tar5J,z)
G(su) = suc, G(R) = t(+ro),(5,o)] , c(s)

Notation: let n€(r. We shall identify
is the value of the term n' in B.

9.d,1!. Let

TN g<T , B ,

and G(zero) = (7 rO) ,

= { (4rO)} .

n' with (7rn) since (7rn)
Tf

6.0.]. Ne:rb we define three functions f rhrg : ll + D ilLustrated on

Fig.s 6-8.

t g 
t <(erD) r.')r<(or-n) r(4r-n)), ((orn) r(4ro)), ((1 r-n) r(5r-n)),

((1 ,n) , (5,o)) 
' 
((i, z) , (5 ro)) : r€ t^) r ie12 Jl t zezJ.

h E { ((6rD)r0') r((o rz) ro')r((rr-n)ro')r((rrtr)rr')r((2r-n)r(4r-n)),
((2rn)r(aro)) r<(t,-n),(5r-n)>, ((rrn),(5ro)) : n€a), zez3.

g g 
{ <Ce ,o) ro'), <(6rn+1) ,1') r((or-n) ,1') r((orn+1 ) rj'), ((1r=n) ,,1'},
((1rn+1) r2') ,((zr-^) 12' ), ((2rn+1) r7') , ((Vr-n) rZ' ), ((, ,n+11j') 3

: ne rOL

rdI=

r
{f,hrg}, vatueof I (t(a) : (kra)erxT > and

, valueof). We have defined the model E-S64.

CI,AII{ 6.1. 1I1 F TaUTs.

Bg€. Clearly, Tn F Ts UL,ax. To prove fn F IA rde sha1l use an
ultraproduct construction. Let F be a nonprincipal ultrafilter on trr

and let Tn+ g (f,*rP*rl+rexb) 9 tfrulr be the usual ultrapower of Tft.
Let d z m + ?fL+ be the usual d.iagonal enbed.d.ing. For every i€ tr>

fr

...

A
I

A
(qo)+l R

A
I

i

ifrI

:
A

I4_
(+,0)+JR,s

A
I

:

(T,1)

(10)
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i
A
I
A

tqol*l n
A
I

:

:

A
I4_

t+,0$Jn,s
A
l

i,
+(l,t) *

(1ol r

tr,IGURE q

; e d. (See Fig.5.)

I G(zero) = (7ro)t
la,o)].
with (?rn) since (7rn)

:T+D illustratedon

> , ((t ,-n) , (5 r-n)) '
, i€ 1217\, z€Zl.

r) rtr') , ((2 r-n) , (4r-n)) I
ir0)> : n€ tD, zeZ3.

)rn+1) ,5'), ((1r=n) ,1') ,
(1r-n) ,2') , ((J rn'+1r7') 3

(kra)€I'T ) and

the nodel fi€l,l

F IA we shall use an

rincipal ultrafilter on q)

e usual ultrapower of Tn.
bedding. For every i€ tr>

d'

__i)

F,rcIrRES 6-7
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let (it) g ((i,n) I n€ w)/T and.

(iU) 9 11i,-"; : n€ a)/7. tet
M+ g [+u D+u r+. Hence M+ is the
universe of Tf,t*, more precJ.sely M+

is the disjoint union of all the uni-
verses of TI1+.

Notations: Id 9 <r : meM+). Then

Id. : M+ >-> M+ is the identity map-
ping. For any sets XrY and func-
tions kre we define:

X^,y91"ex : adyJ,
x1k g (xxRns k) Or and.

t"q I (k(q(x)) I xeDom(q) ana q(x)eDon(k)

tion k donain-restricted to the set X,
and e. lhen Xlfd ek means that k is

FIGURE B

koq is the conposition of k
identity on X.

CLAIM 6.2. There are automorphisns P : fi+ D Tff aaa a r mf > Tff
of Tn+ such tbat P o do Qod = d, P(5f)=(1{,) | P(1t)=(}0) and.

Q(6t)=(o0), Q(1t)=(2+).

Proof of Clain 6.2.: I,et B * t*U o*. Then d: I )+ B. Let

suc : B + B be the natural one, i.€. (Brsuc) I o<Ar"lr")/p. 
T.,et

(vne ct-r) (Vu en; 
"rr"o1u;9u and urr"o*1(u)*"rr""ocn(u) . t{e define (VbeB)

I,(b) g I sucn(u; : nc rd] U i aeB : (!ne t^:)sucn(a)=b J. Let

H6 g r(6t)ut(?t)ut(11)' H1 g T,(1U)uL(5t)ut(tt) and

Ho g r(o{) u 1,(4'1,) U L(2U). see Fig.9! crearly,

(x) there is an isomorphism p r (Hersuc) > <Illrsuc) such that
p(6t)=(1t) I p(Zt)=(5'}) and p(1t)=(rl).

r,et p I pu p-1u (M+- (H6uHl))1ra, where p-1 * 1<ur"> : (arb)ep] is
the usual inverse of p. We show that P is an automorphi.sm of ffL*.
For illustration of the proof see Fig.!.

Below we shall omit some straightforward detaile, but we shall be
glad to send t2ol, which contains all- the details of the present proof

:\
l( g'

'''o'lo 
:) 

(3'o)

3' lQ

,r, 
:) 

tn'o'f 
n,

ls3fl 
i
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?IGURE B

Ehat is, X1k is the firne-

I is the conposition of k
atity on X.

y-; ynr and a , Tff > fff
), P(1t)=(r0) and

d: .4, )+ B. I,et

> 
g o(Arsuc),/F. r.,et

ca(b) . ue define (vb€B)

ucn(a)=b J. r,et

L(5t) Ur(,t) and

Clearly,

] 
rt,rsuc) such that

,-1 g {(bra) : (arb)€p} is
r an autonorphism of Tf,tt.

I details, but we shall be

;ails of the present proof

T- lD

H4

il

utt6

Rng' d

{.,,N=

FIGURE 9
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to anybody asking

(let) H6 , Hl

for it. It is easy

tHo Rned

to check the following

are painrise disjoint.

Clearly P satisf:
of a is obtained fron
(4{) and (ot) into the
respectivelyr everYwher

We turn to the Pro
possibly with Parameter
and let 9(zO) be the

We asslune that g(zorn)

substituting p in Pla
the appropriate sortr e

Assume that g(z'rf) h

be arbitrary. Then tTl

vious meaningst gee e.8
vzog(uorP) are denoted

We want to Prove

(cr) TnFg(o,n) ani

Then (Vn e tr-l) Tn F g((0'

(c2) Trr* F q((6t), d'pl

L,et PrQ be the autom<

Since P is an automo:

hence rn* F tp((rt)r6ot
].emm& there is VeF sl

nonprincipalr V is it
Tn F g(<t r z),p). Then

Q(1t)=(20), I,os lenna r

and. fiF g((2rz\rp)1.
Then as abover by (C1)

proved (Vb€T)fiFg(u
m F ind(g(zorp) rzs).
?in FvZViviina(t{zo,Z ri
we proved. TIl F IA.

ctArljl 6.r. fi1 |( 0(pr

Egg3i. T,et " I <f ,n,
this fact observe that
pr see Fig.s 6-8. Iret

By (*x), P is a function on M+ and. nns51 p c Id.. By (x), it
is easy to check that P : T+ >> f and P : D+ >-+ D+ i.e. P is a

pernutation both of T+ and. D*. Since Ir fl and Sltrt are finite,
we have r*uRfrtusmt €, Rngd (see convention 2). ftrus P : r+ )') r+
is a permutation of I+ and P preserves R, S and the constants O

and. zero (since I ot*, """ofi*3 
a nnsd ). P preserves sc and. su

by (x) since B-Hi is closed under auc (and clearly P preserves
+r' and

P preserves the binary function ext.
The only really binary operation of ?ff is exb : I*tT* + Di. But

by T+ e Rrrgd we have f*1P Gfd, hence the first arguments of ext
are fixed points of P. Hence fron the point of view of P, ext .be-
haves like three unary functions. Irlore precisely, Iet (VkeI) E E
g (e:rt(6tra) : a€T+). Note that r+ = {dt, Jgr dn}. Then to see that
P preserves erb it is enough to check that (VkeI)[P preserves E]
Thus we reduced. Tn:t to a unary modeL W = (M+, F, E, E ) and we have

to show that P j.s an automorphisur of TIt. Now we are going to sholt
that P preserves T, E, and E.

SuTfll denotes the set of all subuniverses of Tf7', i.e. subsets
of M+ cl-osed und.er f, E, and E.

T,et *r. I HrU Rngd, for every iet6rlroJ. Now we clain statenents
(xi)-G1) below for every ie{Grl roJ:

(*7) Ni . su TIf o

(*a) p : (N6rTrErE ) > <NlrrrErE> is an isonorphism.

("5) qu+^, ltr) € suul' .

To check (*V)-(*5) abover we use Los lerpma and. the d.efj-nitions of f,
Brh r see Fig.9. The d.etai-Led proof is in [eO]. We ornit this proof be-
cause it is straigbtforward. By (ra) we have that P is identity on
Na e N,,, g (Non Nl) u (M*- (NoU N1)) i.e. @o " N1)1p e rd.. By (*5),
(Ns 

" Nl ) e suTl"L' . Thege faets together rith (*7)-(*5) iraply that
P z ^[t7' >-> lTL' is an automorphism.

So farr w€ have seen that P : 'lT[+ >+ Tn+ is an automorphism.
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51p Erd.
I4:D'>zD'

Rtm and. S'II1

the following

nrise disjoint.

By (x), it
i.€. P is a

are finite,
[ion 2). Ehus P r I+ )-> I+
I, S and the constants O

? preserves sc and su
rnd clearly P preserves
rt renains to show is that

is ext : I*t 1+ * D+. But
first argunents of e:rt
I of view of P, exb be-
lse1y, let (Vter; E E

Jgr 5n3. Then to see that
b (VkeI)[P preserves E]

.l

'(M-r Tt It E ) and we have
Now we are going to show

res of Tft', i.e. subsets

,0J. Now we claim staternents

rn isomorphism.

and the definitions of f,
l0l. l|e omit this proof be-
re that P is identity on
e u,)1P€rd. By (*5),
(*V)-(*5) imply thar

fff is an autonorphism.

C1early P satisfies the conditions of Clairn 6.2. The construction
of A is obtaj-ned from the above proof by substituting Q, HO, NO, (2t)t
(4t) and (ot) into the places of P' Hl, Nl, Ot)' (5t) and (rl;
respectively, everywhere. QED(CIain 6.2.)

We turn to the proof of Tn F IA. Let g(zg).Ftd be any formula
possibly with parameters fron M. More precisely, 1et m€u;, p€mM

and let g(20) be the fornula g(zorn) that is g("orPgr...rPp-1).

We assume that g(zorn) is obtained. from some g(ro rZrit3)€Fta by

substituting p in place of <Zr?r,?> such that everything belongs to
the appropriate sortl €.gr if pg is substituted for u1 then PgeT.
Assune that g(z'rn) has no free variable other than uO. Let beT

be arbitrary. Then tllt F Vzg(rorp) and Tft F, g(bro) have their ob-
vious meanings, see €rgr Def.1 .1.1+-15 of LBlp.2B where g(brn) and
Vz.g(zorn) are denoted by plbrpl and (V z'g)lt J respectively.

We want to prove ?n F ind(tp ,zn). Assume

(cl) Trt F g(o,n) and Tl1 P Vzs(g(zerp) rg(sc(uo)rp)).

Then (Vn e tr-l) fn F g((S rn) rp) since (6 rn)=ss"(O) in TIt . Then

(c2) Trt* F g((6t), dop) holds by tos lemma.

l,et PrQ be the automorphisms the existence of which is claj-ned in 6.2.
Since P is en automorphism, by (cz) we have m+ F tdr(ot)rP"6op),
hence rn* F q( (rt ) ,5.p) by P(6 t)=(1t) and by P'd= d By the l,os
lemma tbere is VeF euch that (VneV)fI1 F Ll(<1r-n)rp). Since F is
nonprincipal, V is infinite which inplies by (Cl) that (VzeZ\
TI1 F g(<rrz)rp). Then rn* F V((r t )rd"p). using craim 6.2) P(1f)=(].}),
Q(1f )=(2t), I'os lem'na and (c1) as above we obtain (Vzez)fc{fiF .l(<7#)rp)
and. fiF q((Zrz]>rp)1. By (c2) and. Q(61)=(o0) we have rrt+ p q((ot)rd"p).
Thea as above, by (C1) we conclude (Vzez) f,;1 F g((Orz)rp). l{e have
proved (VUet; fn F g(brn) which neans Tn F VrO{zgrp). Thus

tft F ind(g(zorp)rzo). Sinee the choice of p was arbitrary, this means

frn FVZViVtina(( zrr7rlri) rzg). Since g€rta was chosen arbitrarily,
we proved. Tft F IA. QED(Clain 6.1.t

CTJAIM 6.'. xn rt E(p,V).

Eg€. T.let " 
I <f ,hrg). Then s is a trace of p in '[n. To see

this faet observe that g=s2 is the history of the control varj.able of
pr see Fig.s 6-8. Let b I (ero). Then s terninates p in 'ln
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at tine b since st(b) = g(b) =

of p, fhe output (so(b) ,sa (u))
V in ?fL si-nce .rS((5,O)) and

- s1(b). Thus <(5,o) , (4 ro)) is
I hr v(xor*r ) [(5rO), (4,O) ].

t' is the label of the HAIT command

of p at time b does not satisfy
so(b) = f(b) = (5ro) / (4ro) = h(b) =

a possible output of p in TfL but
QED(Claim 6.7.)

Proof. Sroor of (i):
be the formula [s2(

Also fn F '[Gt) + f(s
Tn F (Yzt) u)X(2,) r by

Proof of (ii\: Let 1<

asg( z1)-s1(zo)J and

-> lzrK(4gtz1)1 . we ha

Let beT. Assune

obviously true. Assu!

Case 1 s.(b)/z'. The
C.

st(sc(b))=2' imPlies

Case 2 so(b) =2' . lbe
a-

Since 6 is a trace c

Ilence by J{(bra) we }

-su(sa (b) )=sr (sc(u) ).
Thus r(sc(u)rsc(a))

We proved 'ln F \

true, by IA we prov(

Now we trrrn to ti
possible output of p

eeT such that 3(e) 2

obvious. Assume thert
that first(E(sc(c))=i
Then E(c) I E(sc(c))
by sa(sc(c))-V' we l

sr(e)/'t' proving szl
6.8(ii) we have (gU

sr(sc(b) )elz' ,7'l an(

wehave d=s'(b).r
By the choices of e,
lhm.1 we have IaUlo

PROOF OF IHE RBST OF ]

By Thn.1' 6.1 artd 6.7 above vre have the folLowing

CoBoI{4BI-6,-tr 1a U Ts * E(p , V) .

CLAIM 6.5. raU ro A tl(p,V).

Vzrl(r11 uoAzr/zo) * gl. Similarly for "(Vz1>, zo)g" etc. For every

g(z')err. we define first(gr"O) to be the forrnula

l_(Yzt< zo)-g( zr) A g(zo)1.

CIAIM 6.6, Let g€Ftd. Then A:( F (lzo{zO) .r lz'first(grz')).

Proof. Let y(z) be the formula l(lzo <zr)g(uo) - (fzo <zr)tirt(grzg)1 .

Then To F q/(o) tVzrlty(z) + y(sc(z))J is easy to prove. By

ind(V(22)rzr) eJ'a we conclude A:c F Vz2{22). Then obviously

Ax F [ 3zog( zo) + lzofirst(grzo) J. QED(crai-m 6.6. \

For any g(z.) . Ftd l-et nyp(grz2) be the forsrula

(gG) A (Yzo>, z2)L@o) r g(se(zo))1 .

C AIll 6.7. I,et g(zo)errU. Then Ax F Vzr[np(Llrz.) -7 (Vzg >zz2)g(zo)1 .

Proof . To F t hyp(g ,zr) + -r3zofirst(t.td zo) A zo>. z27 rzg). By 6.6. then

Ar( F (nru(g ,22) + -1zg[-( zo) A zg>. z2J) . QED(clain 6.7.'\

Let ?f,l = (lrprlrexb) e Modtd(Ax) be arbitrary. I",et seVI be an

arbitrary trace of p in Tft.

Notations: Throughout, instead of the term ext(sr rrj) we shall write
sr(z;). r,et ber. Then E(b) I <sr(u) r :e1> and 6(b) 9<so(u) rsa(b)).

oLAIM 6.8. (i) tfIL p Is2(zo)el7' ,V'3> (Vzl>,zo)sg(za)=s9(r6)J.

(ii) Tn F ("e( zO)=2' + (1zl)lul1 ,ottsr(zr)=1' A s'(za)=s1(zo)1).

1) Proofs of the_iner

(1.1) sketchy p
( rqU ltBres Al 4 P ar



label of the HAIT command

time b does not satisfy
r) = (r,o) / (4ro) = h(b) =

output of p in TtL but
eED(Claim 6,].\

Proof. Froof of (i\: Let beT be such that s2(b)elz' ,V'3. Let 'trGl
be the formula ts2( ,l)r12' ,7'l A so(2,,' )=sg(b)l . Clearly, 'ffl F'J'(b).

Also 'dlft F 'tr(zl) + X(sc (rl ) because s is a trace of p. Ilence

'|lfI F (Vzt> b)T( z1), by 6.7. Thug m F (Vzt>. u)so(2,)=ss(b).

Prgof of (ii): I,et x(z'tz1) be the formula Lul .zoAs2(za)=1'A

aso( zr)-sr(uo)l and let q(zo) be the formula ls2(zo)-Z' +

-> lzrK(4grz1)7 . we have to prove fn F VroS zg).

r,et ber. Asswre ffL F g(b). rf s2(sc(b))/z' then g(sc(b)) is
obviously true. Assure therefore sr(sc(b))=2' .

Case J s2(b)/2'. Then, since s is a trace, s2(b)=1'. Then

sr(sc(b))=2' irnplies ((sc(b),sc(o)). r.e. Tft F g(sc(b)) holds.

Case 2 s2(b)=2'. Then by g(b), there exists aeT with rc(bra).
Since s is a trace of p and. e2(b)-s2(sc(u))=2' we have -R(sr(b)).
Hence by J<(bra) we have s2(sc(a))=1' and so(sc(a))=su(sg(a))=
=su(sa(b))="1(sc(u)). lrle have sc(a) < ec(u) since a (b by r(bra).
Thus ((sc(b)rsc(a)) proving tft F g(sc(b)).

We proved Tn F Vzg((zo) + {""(zo))). Since g(o) is obviousLy
true, by IA we proved Tn ts Vzgg(zo). eED(clain 6.8.)

Now we turn to the proof of ffi F tl(nr$). l,et (ara;e2p be a.ay

possible output of p in ?[1 . Then there are a trace tril of p and.

e€T such that 3(e) = (ald r7'). rf I p s(") tnen B F qrlardl is
obvious. Agsume therefore P F rS(a). By 6.6. there is c€T such
that first(E(sc(c))=E(e)rc) holds (since e/O). Let this c be fixed..
Tben E(c) / E(sc(c)), hence s2(c)/t'. Since s is a trace of Fr
by sr(sc(c))-7' we have F(c) - E(se(c)) = (ard.). Tben -S(a) funplies
sr(c)/'t' proving sr(c)=Z'. By sr(sc(c))=7' then we have R(d). By
5.8(ii) we have (3b <e)(3xeD) 3(b) = (drxr1'). By R(d) we have
st(sc(b) ) el2' ,t'l and sO(sc(b) )=so(b). Then by 6.8(i) and sc(u) -< c
wehave d=sg(b) -so(sc(b); =so(c) =a. lrleproved. pFVlardl.
By the choicee of e, p_r and m tre proved. raU To F E(nrg). Then by
[hm.1 we have IaUTo A U{nr,y). eED([heoren 6,\

PROOF OF THE RBST OF FTGURE 2 :

1\ proof,s of the inequalities (a11 these proofs use ultraprod.ucts):

(1.t) snetchy proofs of (rquTpres g) +(rq Uro S) and.

(IqUttpres S>+ E are Thn.9(iv * i) in Part II of L7J and La7p.9V

stand for the
'zr>, zg)g" etc.

te formula

formula
For every

ro) + lzofirst(grzq)).

p( uo) * ( ko < zr)tir t (g r zo)1 .

lasy to prove. By

). Then obviously

QED(Claim 6.6.\

lormula

ry"(q ,zr) + (vzo>z z2)g(zg)J .

zo>rz27rzg). By 6.6. then

QED(Claim 6.7.)

litrary. Iret seTT be F?'l

ext(s1rz;) we shall write

t> and. E(b) 9<so(u) ,s,, (b)).

>z zo)sg(2,')=sg(ug)J.

1)=1' 
A s,Ql)=sl (zo)J ) .
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together witb pp.6O-65 Clai-n 9.1 there. Detalled proof is avaj.lable
fron the author.

(1.2) (Iqufirres El # (faUr" A) is proved. in t2ol. The proof is
a nodj-fication of the above proof of Thn.6: it uses Corollary 5.4 un-
changed. and the only part that is changed is forroulation and proof of
C1aim 6.5. See also the lqU$res e tr(nr$) part of proof of (1.1) above,

(1.r) (ltnUTfn S>+ (raun" F) is proved in t2ol. The proof is a

rnodification of the above proof of Thn.6; it uses Corollary 6.4 unchanged,

(1.4) (rma F>+F is proved in detail in rbs.g(v t6 t) of [4]pp.
59-91, see also Thm.s 11/e - 11/g ot [4]pp.too-1o7, and L2r7.

(1.5) The proof of (raUno Sl+P is very easyl see Tbm.1o in
[]lPart fI. In the proof of Thn.g(v # i) in [ ] I a partial conectness
statenent 9.ffia and a finite 1th g 

"U ,*" 
selected and an easy ultra-

product proof is outlined. to show 15 lil g. It is very easy to show

thUIaulo fl g by using the proof nethod.s of Thm.s J4 Lrt tjl for that
Th and g.

(r.o) (raUro $) *(raUrs A) is Thm.6 proved. above in the present
paper.

(1.?) (rn. A> * P and (rrr ulo A)* {rz. l{l are proved in
[eO]. The proof of the [1,,,-fart is a nod.ification of the proof of Thm.9
(v # i) of [+]pp.59-9, where only Claim 9.4 (and. its proof ) is rnod.ified.
For the l1-nart, the proofs of Thn.s 14 in t]l and in [4)pp.42-4! are
aLso used. Actually using these proofs it is not very hard to nodify
the present proof of Thm.6 to prove (IZr Um S)+ (Irl g).

(1.8) A11 the other inequalities ind.icated by I or by + on
Fig.2 are imnediate consequencea of (1.1)-(1.7) above and of the in-
clusions rr 4 tr and equivalences rrstr indicated there (vlhieh we turn
to prove now).

2) proofs of equivalences (X E) = (f lU) :

(2.1) (Ict n If Al >F is proved. in proofs of prop.12 and TbE.9
(i ) ii) in Part rr of lV7, and a].so in t+1pp.17-58 and, p.111. The de-
tailed proof is given in proving Thn.g(i ) ij.) in both quoted papers.

(2.2) By X'ig.1, all the induction axiom systems Iname introd.uced.
in this paper a-re ) Ict n If . Hence (Inane A) >F follows fron (2.1)
with the only exception of rfm. rt is not hard to check that
(rrn Al7F.

(2.V) A simple proof of all the remaining equivalences = in

Fig.2 under the restri
in [6] which was first
und.er this strong rest
= (ta urpa S) remains

(2.4) 1rq Uno fl)
[+Jp.5e. Adetailedp
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ring equivalences = in

Fig.2 under the restriction that Th contains the Peano axioms is found
in [6] which was first published in 1977 in Hungariant see [1 ]. Even

und.er this strong restrictioa, the question whether (Dc Ufa Utpa S) =

= (ta urpa P) remains an open problen.

(2.4) (rq uno s>.P is Thn.9(iii > i) in Part rI of [7] ana in
[4]p.56. A d.etailed proof arises if one reads Prop./ of 19fp.121 to-
gether with [tO].

(2.r) Rtt tne statenents (x lX) < G P) implicit in Fig.2 are
easy consequences of (2.4) and (2.1) above. EIfO of proofs of fig.a

ON TEE INIUITIIrE MEANING OF FIGI]RE 2

One of the central themes of Nonclassical Logic is the study of
the lattice of the various nnodal logics. This activity turned out to
be a rather fruitful part of nodal- logic providing nuch insight into
the nature of modal reasoning. AnalogouslXr on Fig.2r wB investigate
the lattice of the various dynanic logics Dloga(Ax) for varioue
.Ax g Ftd.. We hope this might provj.de insight into the nature of reason-
ing about prograns (or more generally, reasoning about consequences of
actions).

For exampfer Thn.6 says that if the set of logical a:cions Ax

of our Dlog(Ax) contain full inducti.on Ia over tine then it does

natter whether or not time instances can be compared by the nlater thann
relation. In this case the dynarnic logic Dlog(Ia UTo) i-n which we

can say I'zO is later than 2,,," is stronger (nodulo mA) than the one

Dlog(faUTs) in which we carnot.
As a contrast, if the logical axioms contain only restricted i-n-

duction Iq over tine then the logic Dlog(Iq UTo) with 'tlater thanrt
is not stronger than the one plog(fq) without it. However, here the
logic Dlog(IqUTpres) in which we can perforn addition on time is
stronger than tbe one Dlog(IqUTo) in wbich we cannot. Intuitively
zO=zr+22 means that nzo is z, tilme afber ,1"-

Now we turn to the question tris sonetine sonetines better...o in
the title of [16J. The fornulas in (IOrt"ta) can be considered to be

tbe formulas without time modaliti.es ttSometimetr and ttAlwaystt. Eenee

Iq is tine induction over all tbe formulas without tj-ne nodalities
(time induction over the non-modal fornulas). The result
(rna Sl >(Iquno P) in Fig.Z can be interpreted to say that the logic
Dlog(Imd) in which nsometinerf is available ie indeed stronger tban the
one Dlog(Iq UTo) without "Sonetime". But this result implies only



that "Sonetime't is better if we allow arbitrarily complex tirne-nodality
prenexes "sometime3x.(x.=XO A Always3x l(xl=l1 ASonetime9) ) " see the

d.efinition of DI&od (Def.18). This was not mentioned j.n the title of
[fO]. So a finic]ry interpretation of tbe quoted question rnight lead us

to the trpu.re sometine logic" Dlog(IZl) in which we ean perform time-
ind.uction over Sonetimeg with Ve(ZOrtFta) but we cannot do time-
ind.uction over "rSornetimeg" or over ''rsometinelx'(x.=Jo A Alwqysg) ".
Thus the result (IZf Uno S) >(IqUto S) and. the problem wlrether or

not (I:1 S) = (fq F) both in Fig.2 are relevant to a more carefu] ana-

lysis of the quoted question.
By another part of Fig.2, future tense 'rsometime in the futuret/r

as used. €.g. in L12l ad.d.s to the reasoning power of dynanie logi-c

Dlog(IaUTs) with fulL time-induction. The rest of Fig.2 can be inter-
preted in this sp5.rit, to investigate what kinds of logical constructs
do increase the reasoning pohrer (-s of which versions) of dynanic logic.
Such logical constructs are 'rlater thantr, "at zO time after z, it is
the case that g", "Sometimegn etc. By passing we note tbat it clearly
shows on Fig.2 that the well known d.ynamic logics (HIf,4r F > ,

<o"Hou, t@), and <o"5*, P > are strictly increasing in this ord.er

in reasoning power rnodulo partial comectness of programst i.e. modulo

HFd. rhat is E . Fe{ . El'}g .

We believe that Fj-9.2 is much more important for computer science
than Fig.11 therefore we shall be sketchy in proving Fig.1.

otl fEE PROOFS OF FJ:GURE 1

The inelusions indicated on the figure are straghtforward, except
for I'F Tmd and Ind F I'. I' F Ind can be seen by observing that
nod(g) is senantically equivalent to an element of I', for every 9€
€Dtrsod. The id.ea of the proof of Ind. F T' is to translate l' into
Ind. Instead of giving here the definition, we show the idea on a+

exampre. r,et g* n(sorerb(xgrsc(o)) rext(xgrsc(zo)))). Then g' g

3x,3xr[FirstNexb(x,=lg)   Ne]rtNext(x2=]g) ,r n(x''x1rx2)J . Now the trans-

lation of ind.(grz') is defined to be [firstg' AAlw(g' -; NexEg')J .>
+ Alwg'.

On thg j.nequalities indicated on Fig.1.: T' / I1 can be checked

by showing I' # ind(R(
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computer science
Fig.1.

are straghtfonuard, except
be seen by observing that
lnent of f', for every 9€
i is to translate I' into
; w€ show the idea on an

,rsc(zo)))). then 9' g

(xorx1rx2)J. Now tbe trans-

estg' A Alw(g' + iverbg')1 .t

r i I' / Y can be checked

by showing I' # ind(R(ext(yo rzo+zg))t"o) or !' bd ind(sc(zQlorzg).
(Ttrese are proved in detail in t20l. In the proofs, models T[t are

conetructed such that tXt F f'. The proofs of ?Tt F I' are simplified
versions of the proof of Claim 6.2 in the present paper. ) By Fig.2 vte

have that (lnlq)tIrnd F U(nrg) but Iq UTo b/ O(p'V)]. Therefore
Iq, V I:rd, that is Ind*Iq and hence Itt'Iq. An easy argument shows

that 11 F Iq, i.e. 11 and Iq are not comparable. By Fig,2t
Iq p IIa and Iq rl In1. Iflt / T1 and I2l F I1 can be proved by t2O1

roughly by considering <Ergrlldi, valueof ) (but we did not check the
details carefully). The renaining inequalities on Fig.1 are not hard.
IIr V I\ and Iflt F IZ,t are in [2O]. End of proof of Fig.1.

Intuitive motivation for the second part of the present paper is a

section entitled "Intuitive ,o. of Fig.2" in 55 immediately below the
end of proof of Fig.2. To this we add that our Fig.2 is analogous with
Fj,g.1 of the monograph t6 bl on first order modal logic and iFipke models.
For the lattice of modal logics see s.g. [6 a] r we point out this because
the nain result proved in the present paper concerns the lattice of
dynanic logics.
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