NONSTANDARD DYNAMIC LOGIC

I. Németi

Math. Inst. Hungar. Acad. Sci. Budapest
Refltanoda u. 13-15, H-1053 Hungary

There does exist a branch of Dynamic Logic which is called Nonstan-
dard Dynamic Logic. Works in this line are e.g. [#1,[3],[22]1,[23]3,[1],
[111,091,[131,11481,[51,[141,[21]. A systematic introductory monograph
with motivation, examples, overview of the field etc., is [4] which will
be sent to anybody on request. A published introduction to Nonstandard
DL with at least some of these features is [3]. Intuitive examples,
illustrations are in [18],[20]1,[4]. The first results in this field
were proved in [1] in 4977 under the restriction that the data structure
satisfies Peano’s axioms. This condition was later eliminated by the
above quoted works.

In the present paper we give the basic definitions of Nonstandard
DL (§1-3). We formulate some fundamental results and indicate that this
logic is not so very nonstandard as one might think, see RDL in Def.13
and Prop.2. Then we show how to use this logic to compare methods of
program verification. Some well known program verification methods will
be characterized, see Fig.2. Some properties of the lattice of logics
of programs with decidable proof concepts will be established. §5 con-
tains the detailed proof of Thm.6. This proof uses model theoretic tools
(e.g. ultraproducts) to establish properties of program verification
methods. The emphasis is on basic definitions and properties of Non-
standard DL, on Fig.2, and on the proof of Thm.6. For intuitive motiv-
ation see the very end of the present paper.

Connections with other branches of nonclassical logic and computer
science are discussed in §8,9 of [3]Part II and in §6-8 of [4]. Motiv-
ation for Nonstandard DL is e.g. in [22],[4],[3].

NOTATIONS

In the following we shall recall some standard notations from text-
books on logic (mainly from [171,(81).

d denotes an arbitrary similarity type of classical one-sorted

models. I.e. d correlates arities (natural numbers) to func-
tion and relation symbols. See Def.1(i) in this paper.

311

w denotes the set of natural numbers such that O0O€w,
Natural numbers are used in the von Neumann sense, i.e.

n ={0,1y...y0-1} and in particular

0 is the empty set.

X =1x,6 : wew} denotes a set of variables.

Fd is the set of classical first order formulas of type d with
variables in X. Cf. e.g. [8]p.22.

T denotes a term of type d in the usual sense of logic, see
[81p.22 or [171p.166,Def.10.8(ii).

Md denotes the class of all classical one-sorted models of type

d, see e.g. [8] or [17]1Def.11.1, or Def.s 1 and 3 here,.

4 classical one-sorted model is denoted by an underlined capital like
I or D and its universe is denoted by the same capital with-
out underlining. E.g. T is the universe of T , and D is
that of D .

By a "valuation of the variables" in a model D a function g : w =D
is understood, see [17]p.195.

TTq]D denotes the value of the term 7T in the model D under the

~ valuation q of the variables, see [8]p.27,Def.13.13 or [17]

Def.11.2. If T contains no variable then we write T in-
stead of Tlqly , if D is understood.

DE q[q] denotes that the valuation q satisfies the formula ¢ in
the model D.

Ly = (Fd » Mg » B) 1is the classical first order language of similarity
type d, see [22].

B denotes the set of all functions from A into B, i.e.
Ap - {f : £ maps A into B}, see [17]p.7.

A function is considered to be a set of pairs.

Dom £ denotes the domain of the function f, Dom f

Rng f denotes the range of the function f, Rng f

A sequence 8 of lenght n is a function with Dom s = n.

<Us : 8€S) denotes the function {(s,Us) : s€S). Moreover
for an expression Expr(x) and class S we define

{Expr(x) : x€8) to be the function f : S - Rng f such that (Vxes)
£(x) = Expr(x).

sb(x) ${Y : YCX} is the powerset of X.

(3b)<¢a,bretl,

LIsT}=N

{a
{p

x* denotes the set of all finite sequences of elements of X, i.e.
x* ¢ U{®X : mew}. We shall identify X® with
{H : HSX and |H|< w}¥*, and also with (X*)*. We think of X%
as the set of "words over the alphabet X".
d

A~B = {a€s : a¢Bl.

312

§1. SYNTAX of program schemes

Recall d, X, F, from the list of notations. Now we define the

d
set Pd of program schemes of type d.

The set Lab of "label symbols" is defined to be an arbitrary but
fixed subset of the set ng of all constant terms of type 4, i.e.

d-type terms which do not contain variable symbols. (Lab is chosen

this way for technical reasons only. There are many other possible ways
for handling labels, see [23].) ZLogical symbols: { Ay = 5 3, =1le
Other symbols: { — , IF , GOTO , HALT , (,) , :J.

The set Ud of commands of type d is defined as follows:

(i: x — 1) € Uy if d€lab, x€X, and v is a term of type d and

with all variables in X,

(i: IF ¢ GOTO v) € Uy if i,velab, 7Y€Fy; is a formula without quan-
tifier.

(i: HALT) € Uy if ielab.

These are the only elements of Ud'

By a program scheme of type d we understand a finite sequence p
of commands (elements of Ud) ending with a "HALT", in which no two mem-
bers have the same label, and in which the only "HALT-command" is the
last one. Further, if (i: IF 7 GOTO v) occurs in p then there is u
such that the command (v:u) occurs in p. I.e. an element p of Py
is of the form p = <(ioz O)""’(in—ﬂ: n_,'),(in:HALT» where néw,
(im"‘\n)eUd for m<n etc.

Convention 1 If a program scheme is denoted by p +then its parts are
denoted as follows:

P = ((iozuo),...,(in_1:un_1),(in:HALT)) .

Throughout we shall use the definition

c minfwew : (Vve uhvw)[xv does not occur in pll.

I.e. {xw : w<c} contains all the variables occurring in the program
scheme p, and if ¢ >0 then Xoq really occurs in p. We shall use

x, as the control variable of p.

An example for a program scheme pePd is found in §5 in the
proof of Thm.6 on Fig.3.

313

§2. SEMANTICS of program schemes

By a language with semantics we understand a triple L = (F , M, F)
of classes such that E Cc MxFxSets where Sets is the class of all
sets. Here F 1is called the syntax of L, M the class of models or
possible interpretations of L, and k the satisfaction relation of 1I.
Instead of <a,b,c) ek we write a k blc], and we say "c satisfies b
in a". See [22].

Here we try to develop a natural semantic framework for programs
and statements about programs. In trying to understand the "Programming
Situation", its languages, their meanings etc. the first question is how
an interpretation or model of a program or program scheme pePd should
look like. The classical approach says that an interpretation or model
of a program scheme is a relational structure g&Md consisting of all
the possible data values. The program p contains variables, say "x".
The classical approach says that x denotes elements of D Just as
variables in classical first order logic do. Now we argue that x does
not denote elements of D but rather x denotes some kind of "locations'
or "addresses" which may contain different data values (i.e. elements of
D) at different points of time. Thus there is a set I of locations, a
set T of time points, and a function ext : IXT » D which tells for
every location se€I and time point beT what the content of location
s is at time point b. Of course, this content ext(s,b) is a data
value, i.e. it is an element of D. Time has a structure too ("later
than" etc.) and data values have structure too, thus we have structures
T and D over the sets T and D of time points and possible data
values respectively. Therefore we shall define a model or interpreta—
tion for programs p€P; to be a four-tuple M =(T , D, I , exty
where T and] are the time structure and data structure resp., I
is the set of locations and ext : IXT -» D 1is the "content of ... at
time ..." function (see Def.4). We shall call the elements of I in-
tensions instead of locations. The reasons for this and for the name
"ext" are explained in [3]§9,[4]1§8. For a detailed account of the above
considerations see also §8,9 of [3] and §7,8 of [4].

Of course when specifying semantics of a programming language Pd
we may have ideas about how an interpretation 1M of Py may look like
and how it may not look. These ideas may be expressed in the form of
axioms about Wl. E.g. we may postulate that T of Tl has to satisfy
the Peano Axioms of arithmetic., For such axioms see Def.s 13-17., These
axioms are easy to express since a closer investigation of Ml defined
above reveals that it is a model of classical 3-sorted logic (the sorts

314

being "time", "data" and "intensions"). Thus the axioms can be formed
in classical 3-sorted logic (Def.5) in a convenient manner to express
all our ideas or postulates about the semantics of the programming lan-
guage Py under consideration.

Now we turn to work out these ideas in detail.

DEFINITION 1 (one-sorted models)

(i) By a (classical or one-sorted) similarity type d we under-
stand a pair d = (H,d,]> such that d,] is a function d,I : 2 > W
for some set X, HS Z and (Yre Z)d,l(r) # O.

The elements of 2 are called the symbols of d and the elements
of H are called the operation symbols or function symbols of d. Let
r €2, Then we shall write d(r) instead of d,‘(r).

(ii) Let d = (H,d,> be a similarity type, let I = Dom d,; as
above. By a model of type d we understand a pair J = (D,R)> such

=

that R is a function with Dom R = ¥ and (vre Z)R(r) € 4(T)p and
if re€H then R(z) : (3(@)-Np ., p .,
Notation: <D,R)..y & <(D,(R, : reid) € (1,R).

I.e. D =<D,R),..y 1is a model of type d iff R, is a d(r)=-ary re-
lation over D and if réH then R, is a (d(r)=1)-ary function, for
all rex.

If reH and d4(r)=1 then there is a unique bED such that R.=
={{b)} and we shall identify R, with b. If reH, d(r)=1 then r
is said to be a constant symbol and RrGD is the constant element de-~
noted by r in D.

The set D is called the universe of D .

(iii) My d{p : D is a model of type dl.
End of Definition 1

DEFINITION 2 (the similarity type t of arithmetic and its standard
model N)

t denotes the similarity type of Peano’s arithmetic. In more de-
tail, t = ({0,8C,+,'} yt,> where Dom t; = {<,0,5C,+,'}, t(¢)=2,
t(0)=1, t(sc)=2 and t(+)=t(+)=3.

The standard model N of t will be sloppily denoted as
<oo,s »y O y8u¢ , + ,+> =N instead of the more precise notation
N = (w,R> where R(<) = {(n,m)eza) : N€m}ye.ey R(8¢) = (n+1 : néw?.
Note that NeM,. End of Definition 2

315

Throughout the paper t 1is supposed to be disjoint from any other
similarity type, moreover if d 1is a similarity type then
Dom(dq)f)Dom(t1)=O is assumed throughout the paper.

DEFINITION 3 (many-sorted models, [171)

(i) By a many-sorted similarity type m we understand a triple
m = (S,H,ma) such that m, is a function ms 3 zZ > s¥ for some set

I, HexX and (VreI)my(r)¢Os.
The elements of S are called the sorts of me. If Tr€X then we
shall write m(r) instead of me(r).

(ii) Let m be a many-sorted similarity type and let Z = Dom m,
as above. By a (many-sorted) model of type m we understand a pair
W = ((Us s+ s€S),R) such that R is a function with Dom R = X and if

r€3 and m(r)=<s1,...,s Y then R(r) € U_ X «eeXxU and if in addition
n s, Sy
ré€H then R(r) is a function R(r) : U_ X ...xU > U, .
s, 8p1 s,

US is said to be the universe of sort s of .

(iii) My d {7 : M is a many-sorted model of type m}.
End of Definition 3

DEFINITION 4 (the 3-sorted similarity type td)

(i) To any one-sorted similarity type d we associate a 3-sorted
similarity type td as follows:
Let d = (H,d1> be any one-sorted similarity type. Recall that
t 1is a fixed similarity type introduced in Def.2 and by our convention
Dom(d1)r\Dom(t1)=O.
Now we define td to be td & <S,K,td2> where
a) 8 g {t,d,i}, I8l=3. (S 1is the set of sorts of td.) Here the el-
ements of S are used as symbols only; we could have chosen S =
= {0,1,2} as well.
b) K d {ext,0,sc,+,3 UH. (K 1is the set of operation symbols of td.)
c) td, : (Dom(tq)LJDom(d1)lJ{ext}) > ¥ such that
tdy(ext) = (i,t,d),
td,(z) € Pft} if t(r)=n and
tdy(r) €P{a} if d(r)=n .
E.g. tdy(<)=<t,t), tdy(+)=<t,t,t), etc.
By these the 3-sorted similarity type td is defined.

(ii) ILet M= ((Ut,Ud,Ui),Rr>rez be a td-type model. Then
(1)-(3) below hold:

316

“n <Ut’Rr>r6Dom(t1) € Mt *

@ <Ud’Rr>r€Dom(d,|) eEMy

(3) Rgyp ® Ug*Up > Uy .

Notation: <WysRpdrepom(s,) * YarRr redom(a,) * Ui 7 Fext y ¢
<, ,04,0> » RO -

T

We define: U

+ ,

<Ut’Rr>r€Dom(t1) ’
and I d Ui .

e
e ue

z
R = WgsRr’repom(a,) 0 P Ug
The sorts t,d, and i are called time, data and intensions

respectively. T 1is said to be the time-structure of L.

BEnd of Definition 4

Convention 2 Whenever an element of Mtd is denoted by the letter ML
then the parts of Ul are denoted as follows:

oy d

w mw mw
(T ,D,I,ext) $Cuy,uy,0, res S ML .

Note that WM , iff [QEMt, DeMy, and ext : IXT > D 1.

For a more detailed introduction to many-sorted languages, like
Ltd = <Ftd’Mtd’F> defined below, the reader is referred e.g. to the
textbook [71. If understanding Def.s 3-6 here is hard for the reader
then consulting [17] should help since L., is the most usual classical
many-sorted language of similarity type td.

DEFINITION 5 (the first order 3-sorted language Ltd = <Ftd’Mtd’P> of
type td, [17])

Let d = <H,d1> be any one-sorted similarity type. Recall from
Def.s % and 4 that t is a fixed similarity type, and td is a 3-
sorted similarity type with sorts {t,d,il.

(1) We define the set F., of first order 3-sorted formulas of
type td.:

Let ngxw:wéw}, Yg{yw:wew} and Zg{zw:wew} be
three disjoint sets (and xwij if wgjew etc). We define 2, X, and Y
to be the sets of variables of sorts t, d, and i vrespectively.

F% denotes the set of all first order formulas of type t with
variables in 2, Fd denotes the set of all first order formulas of
type d with variables in X, and Tm% denotes the set of all first
order terms of type t with variables in Z.

The set Tmtd d of terms of type td and of sort d is defined
9

317

to be the smallest set satisfying conditions (1)-(3) below.

() X STy 4 -]

2 ext(yw,'r) eTmtd,d for any teMmy and wéw.
(3) f('t,l,...,'tn) € Tmtd,d feor any fe€H if d(f)=n+1 and TyreeerTyE
Tmeg,a °
The set Ftd of first order formulas of type td is defined to be
the smallest set satisfying conditions (4)-(8) below.

() (Tq=Tp) € Fpq for any TaaTp € Mhyg 4 »

(5) T(TjreeerTy) € Fyy fOr any Tpse.esTy € Tmpy 4 and for any réH
if d4d(r)=n.

(€) (y,=y3) € Fyq for any w,jew.

(7) FZeFE .

(8) 1agy (pAY), Gz,)y (X9, Qy,p : WEWICFy for any ¢,
W eFt‘d‘
By this the set Fig has been defined. Note that s c Fige

(ii) ©Now we define the "meanings" of elements of Ftd‘

By a valuation (of the variables) into Ml we understand a triple
v={g,k,r> such that ge“T", k%D and r €¥I, The statement "the
valuation v=(g,k,r) sgatisfies ¢ in MW" is denoted by M k lv]
or equivalently by Wl E L?[g,k,r].

The truth of W k ylg,k,r] is defined the usual way (see [17])
which is completely analogous with the one-sorted case. E.g.

Me (3p=34)[8sk,r] iff xrgp=r, , .

ME (x1=ext(y2,zo))[g,k,r] iff k,laexfz: (rz,go) ,

W ke Ylgk,r] iff Ik glgl for YEFL

WE ¢lgyk,r] iff Dk ¢lkl for @ EFy ete.

The formula ¢€F., is valid in N, in symbols M ko, iff
(Vg €¥1) (Yk €“D)(Vr €“I) W k lg,k,rl.

(iii) The (3-sorted) language Lig ©of type td is defined to be
the triple L., = <Ftd’Mtd"=> where F 1is the satisfaction relation
defined in (ii) above.

End of Definition 5

DEFINITION 6 (the class STM; of standard models)
Let Wl ={(T,D,I,ext) € Mige M is said to be standard iff

conditions (i)-(iii) below hold.

318

(i) T=N. (For N see Def.2.)

(ii) T =“.

(iii) (Vs€I)(VYbeT) ext(s,b) = s(b).

The class of all standard elements of Mtd is denoted by STMd.
End of Definition 6

In this paper we shall define several sets of axioms in the lan-
guage L., see Def.s 13-17. Each of them will be valid in the class

STMd of standard models.

Now we define the meanings of program schemes p€Pd in the 3-sorted

models ﬂﬂGMtd.

Notation: Let (Q,Q,I,ext>€5Mtd, see Convention 2., Let so,...,smEII,
B § {8gseeesSy>. Let beT. Then we define

ex’t(gab) g <ex{7(soﬁb) e QeXt(sm’b)>-

DEFINITION 7 (traces of programs in time-models)

Let pePd and 7HEMtd. We shall use Conventions 1 and 2. Let
Syse+s48, €I be arbitrary intensions in m, Let 8 = (8GreeerS,_q7e

The sequence (so,...,sc> of intensions is defined to be a trace of p
in M if the following (i) and (ii) are satisfied.

(1) ext(s,,0)=i; and ext(s,,b) €{iy : m<n} for every bel.

(ii) PFor every beT and for every Jj<c 1if ext(sc,b)=im then state-
ments (1)=-(3) below hold.

(1) 1Ir u, = "x, <" then

i if J=c
ext(s;,b41) = {fc[ext(E,b)]D if jew .
ext(sj,b) ~ otherwise

2) 1Ir u, = "IF y GOTO v" then
v if J=¢ and D k y[ext(S,b)]
ext(sj,b+1) = {'im+1 if j=c and D ¥ y[ext(s,b)].
ext(sj,b) otherwise
(3) 1r u, = "HALT" then ext(sj,b+1) = ext(sj,b).

End of Definition 7

DEFINITION 8 (possible output)
Let s = {8se..y8.) be a trace of pePy in ﬂTGMtd.

319

(i) Let Xx€®D. The trace s is said to be of input k iff
(Vi<e) k(3) = ext(sj,O).

(ii) Recall from Convention 1 that i, is the label of the HALT-
command of p. Let DbET, We say that s terminates at time b in M
iff ext (s ,b)=i,.

(iii) Let k,q €“D. We define gq to be a possible output of p
with input k in MW iff (a)-(d) below hold for some s.

(a) s = {8g1+++98,> 1is a trace of p in M.

(b) s is of input k.

(¢) There is DbeT such that s terminates p at time b and
{Qgrecesoq> = <ext(spyb)ye.e,ext(s,_,,b)).

() (vjew)dre » qy=kjl.

If q is a possible output of p with input kX in Ml then we shall
also say that <qo,...,qc_1> is a possible output of p with input
<k0,...,kc_q>. End of Definition 8

By now we have defined a semantics of program schemes.

Remark: A trace (so,...,sc> of a program pePd correlates to each
variable X, (w<c¢) occurring in the program p an intension or "his-
tory" s, such that the value ext(s, ,b) can be considered as the
"value contained in" or "extension of™" Xy at time point DbeT, The
intension s, €I represents a function ext(sw,-) : T>D from time
points to data values D. This function is the "history" of the variable
X, during an execution of the program p in the model MWl . Def,?7
ensures that the sequence (ext(so,-),...,ext(sc,—)) of functions can
be considered as a behaviour or "run" or “trace" of the program p in

M. Here S¢ is the intension of the "control variable".

About_using Th.: It might look counter-intuitive to execute programs
in arbitrary elements of Mtd‘ However, we can collect all our postu~
lates about time into a set AxEEFtd of axioms which this way would
define the class Mod(Ax)G;Mtd of all intended interpretations of Pye
Then traces of programs in Mod(Ax) provide an intuitively acceptable
semantics of program schemes. Such a set Ax of axioms will be propos-
ed in Def.13. If one wants to define semantics with unusual time struc-
ture e.g. parallelism, nondeterminism, interactions etc. then one can
choose an Ax different from the one proposed in this paper.

320

§3. STATEMENTS about programs

We introduce our language DLd for reasoning about programs or in
other words the language DLd of our first order dynamic logic.,.

DEFINITION 9 (the language DLd of first order dynamic logic)
Let d be a (one-sorted) similarity type.

(1) DFy4 is defined to be the smallest set satisfying conditions
(1)=(3) below.

&D) Ftd ¢ DFy.

1)) (VpEPd)(VgPeDFd) Olp,y) € DFj.

(3) (VLP,('J € DFd)(VX € XUYUZ) { =y, Ay ,(3xy)k ¢ DFy.

By this we have defined the set DFd of dynamic formulas of type d.

(ii) Now we define the meanings of the dynamic formulas in the
2-sorted models 7H6Mtd. Let M = <E,Q,I,ext)<EMtd. et v be a
valuation of the variables of Fig into Wi, i.e. let v=<(g,k,r> where
g€, ke“D, and re“I. We shall define Wl k @lv] for all @ €DFg4.

4) I1r $eF,y then WM k ¢lv]l 1is already defined in Def.5. ’

(5) Let PEPy and yeDF; be arbitrary. Assume that Wl k ylv] has
already been defined for every valuation v of the variables of

Fq into M. Let ge“r, ke“D, and re®I. Then

W FDO(p,p)[g,k,r] iff [W E ¢[8yq,r] for every possible output
q of p with input k in WM 1. For 'possible output" see Def.8.

(6) Let ¢,p€DF; and let x €XUYUZ. Then Wl k (ay)lg,k,rl,
W E (pAYIg,k,r] and MM E (Ix9)[g,k,r] are defined the usual
way.
Let e.g. weéw. Then M g (3z ¢)lg.k,r] iff (there is he®r
such that WJjew)(jw » h.=gj) and M k ¢lh,k,rl).

(iii) The language DLd of first order dynamic logic of type d
is defined to be the triple DLd d (DFd N Mtd s B> where k is defined
in (ii) above. End of Definition 9

Notation: Let pe€P; and yeDF;. Then O(p,y) abbreviates the formula
qD(p,qu. In our language DFd we introduced the logical connectives
a3 Ay =3, 0 only., However, we shall use the derived logical connect-
ives VY, », &, V, TRUE, FALSE, ¢ too in the standard sense. E.g.
(yVy) stands for the formula 1(m{>A 9.

321

Remark: Standard concepts of programming theory can be expressed in
DLy E.g8. O(p,y) expresses that p is partially correct w.r.t. out-
put condition ¢, and {(p,p) expresses that p is totally correct
Wer.t. output condition ¢ in the weaker sense.

Convention 3 We shall use the model theoretic consequence relation k
in the usual way. I.e. let Th QDFd, “PEDFd and KeM Then

MEy iff (Vg e“T)(Vk e®D) (VT € “I) M k ylg,k,r],
W e Th iff (Y@ETh) M k@,

Kk Th iff (VWEK) 7l E Th,

Mod(Th) & Mod,,(Th) ¢ {memM,, : Mr T}, and

Th k¢ iff Mod(Th) k ¢ .

td*

Note that Mod(Th) is a sloppy abbreviation of Modtd(Th), we shall
use it when context helps the reader to guess which similarity type h
such that ThEF, is used in Mod(Th) = Modh(Th).

DEFINITION 10 (proof concept [171])

Let L = {(F,M,r) be a language. By a proof concept on the set F
we understand a relation f < Sb(F)*F together with a set Pr crF®
such that (YVTheF)(Y@eF)[Th -y iff ({H,w,p>€Pr for some finite
HCTh and for some we€F)]. Recall that we identify F® with
{HESL(F) : IHI<w}¥,

The proof concept (,Pr) is decidable iff +the set Pr is a
decidable subset of F® in the usual sense of the theory of algorithms
and recursive functions (i.e. if Pr is recursive).

Pr is called the set of proofs, and |} 1is called derivability

relation. End of Definition 10
Sometimes we shall sloppily write " bk is a decidable proof concept"
instead of " (+,Pr) is a decidable proof concept“.

Note that the usuwal proof concept of classical first order logic is
a decidable one in the sense of the above definition. As a contrast we
note that the so called effective w-rule is not a decidable proof con-
Cep‘b.

THEOREM 1 (strong completeness of DLd)

There is a decidable proof concept (PH,Prn) for the language DLd
such that for every Th =DF; and eDF; we have [Th k¢ iff Th N ¢l

Proof: can be found in [I'], as well as in [41Thm.2 pp.30-38. QED

322

DEFINITION 11 (the proof concept (F,Prn) of DLy)
By Thm.1 above there exists a decidable set Prn Q(DFd)x such that
(VTh ¢ DFd)(VkpﬁDFd) [Th ,l\l Y iff (3 finite Hc Th)(3w) {(H,w,p> €Prn 1.

The decision algorithm for Prn is rigorously constructed in [3]
Thm.2, and [41Thm.2,pp.30-38, and in [191].

From now on we shall use Prn as defined in the quoted papers.
The only important properties of Prn we shall use are its decidability

and its completeness for DLd. End of Definition 11

By a logic we understand a pair <L,(k,Pr)> where L = (F,M,k> is
a language in the sense of §2 and (~,Pr) is a proof concept for I in
the sense of Def.10. The logic <L,(—,Pr)> is said to be complete iff
(—~,Pr) is a decidable proof concept and for all Th&F and @€eF we
have [Th kg iff Threl.

We def:.ne First order Dynamic Logic of type d to be the logic
<DLd s (l-,Prn)) where the proof concept (I—,Prn) 19 defined in Def,
11. By Theorem 1, First order Dynamic Logic <DLd,(ul ,Prn)) is com-
plete.

Given any logic, say <DLd, I-b—1>, decidable sets Ax ¢DF; of formulas
(i.e. theories Ax) give rise to new logics. We shall make this precise
in Def,.12 below.

DEFINITION 12 (new proof concepts (Ax lE) from old ry-, DLd(Ax), Dlogd(Ax))
Let Ax CDF 4 be decidable but otherwise arbitrary.

(i) Let Th CDFd and k?GDF be arbitrary. We say that ¢ is
(Ax Iu)—provable from Th iff Th UAx Ili Y. That 1s ¢ is provable by
the proof concept (Ax l-—) from Th iff ThUAx N 9. Thus (&x l—) is
& new recursively enumerable "provability" relation.

(1) peCax M) &1 CH,(Lw>,¢)e(DE)® : CHUL,w,prePrn and L <Ax}.

Clearly ¢ is (Ax B)-provable from Th iff (3(H,w,p¥ePrn) H SThUAX.
Clearly pf(Ax B) is a decidable subset of (DF,)¥.

(iii) We have defined a new proof concept <(Ax !H) , Pf(Ax IE-»
where pf(Ax lli) is the decidable set of all (Ax IH)-proofs. We shall
always denote this new proof concept by (Ax lli). S0 whenever we write
(Ax l-l-\l-) we shall mean <{{(Ax Iy-),pf(Ax }E)> but we shall not write it out
explicitly.

(iv) Ve dei‘lne the new language DLd(Ax) associated to Ax SDFy
to be DLd(Ax) = (DFd N MOdtd(Ax) s EDe

323

(v) Ve deflne the new dynamlc logic Dlogd(Ax) associated to Ax
to be Dlogd(Ax) = <DLd(Ax) , (Ax hO). End of Definition 12

On Figure 2, different proof concepts (Ax1 ﬁ), (szlﬂ) etc. will
be compared with each other as well as with such classic proof concepts

as Floyd’s £ and Rod Burstall’s F22d |

DEFINITION 13 (Dax, Reasonable Dynamic Logic, K2)

In Def.s 14-17 below the axiom systems Ia, Tpa, Ex, {Axe}GEDFd
will be defined. We define the logical axioms of Reasonable Dynamic
Logic to be Dax d Ia UTpa UEx UiAxel.

We define Reasonable Dynamic Logic to be Dlogd(Dax). See Def.12
(v) above.

Let ThCDFy; and (eDFy. Then we define [Th Ko iffe
(8TM3 N Mod(Th)) & ¢l End of Definition 13

Note that STMd e Dax is easy to prove.

Is our dynamic logic nihilistic or counterintuitive?:

We claim that the answer is no for our Reasonable Dynamic Logic
Dlogd(Dax). To execute programs in arbitrary elements of Mtd might
look counterintuitive. However Dlogd(Dax) is a complete logic with
decidable proof concept and there is nothing wrong with executing pro-
grams in elements of Modtd(Dax). See e.g. Prop.2 below, Thm.7 of [3],
Thm.6 of [9]p.34 and Fig.2.

PROPOSITION 2 Let W E Dax and P€Pj+ Then (i)-(ii) below hold.

(i) To every input q there is exactly one trace of p in Wl with
input q.

(ii) Assume that the trace s€®™ of p in Ml terminates at time beT,
Then (vYaeT)[b<a » (V1<m)ext(sl,b)-ext(s ,8)] and
(Fa€T)(VkeT) [(s terminates p at time k) <« a<k J.

Proof: Detailed proofs can be found in [31Thm.s 3-4, [41Thm.s 3-4 ,ppe
42-45, except for the existence of traces in (i) which is proved in [201,
but the idea of this proof is available in [3]proof of Thm.7.
QED(Proposition 2)

On Fig.2, different dynamic logics Dlogd(Ax) with various Ax:QDFd
will be compared with each other and with classical logics of programs
like Floyd-Hoare Logic, Burstall’s modal-dynamic logic etc,

324

S§4. Comparing methods for program verification, the status of some
well known ones

We shall show how to use our logic DLd to compare powers of
methods of program verification, as well as to generate new methods for
program verification. We shall see that the program verification methods
form a lattice, see Fig.2. It might be interesting and also useful to
find out about well known program verification methods how they are situ-
ated in this lattice.

Three well known program verification methods we shall look at are
Floyd’s inductive assertions method DE, Burstall’s time modalities
method P [7], and Future-enriched time modalities method HMB [42].
Burstall’s ﬂ!&i is often called intermittent-assertion method, see e.g.
[16]. These methods will be defined rigorously, see Def.20 for IE,
Def.18 for mod’ and Def.19 for ﬁEE. The last one, ﬁgg, is 1292 en-
riched with future tense and past tense. By spotting the precise loca-
tions of IE, ,EQQ and ﬁg& in the lattice of program verification
methods we shall find a precise answer to the question asked at SRI in
1976: "Is sometime sometimes better than always?" [16].

We have to fix the criteria to be used when we compare program
verification methods. We shall say that one method FW is stronger
than another Pé iff more programs can be proved to be partially cor-
rect by 4 than by F>. 5o we shall consider the reasoning power to
prove partial correctness statements ¢ - O(p,y) to be the criterion
to compare different methods. This choice has nothing to do with our
logic DLd, namely DLd is suitable for proving total correctness of
programs. Jt was proved in [31Thm.?7 and in Thm.7 of [4] that the Kfoury-
Park[15] negative result on proving total correctness is not true for
DLj;.

We shall consider program verification methods only with decidable
proof concepts.

About generating new program verification methods by DLd.: A safe
way of dreaming up new sound program verification methods is to define
a decidable set AX CDF; of axioms such that STy & Ax. Then (Axlg)
is a sound program verification method. A reasonable axiom system is
€.g. Dax introduced in Def.13. Clearly STMd k Dax. Thus by Thm.1
we can be sure that whenever Th UDax B 0(p,y) then really Th K2 OCp 5.
that is the proof method (Dax ﬁ) is sound.

Below we shall introduce several such axiom systems Ax, with
S’I‘Md E Ax., Later we shall compare them in Fig.2. One can consider
these axiom systems as different candidates for being the logical axioms
for dynamic logic. Or if we want to imitate what people do in modal

325

logic then we could say that every recursively enumerable Ax QDFd such
that STMy k Ax is a dynamic logic and if STMy F Ax, and STM; k Ax,
and Ax, ¥ Ax, then Ax, and Ax, are two different dynamic logics
and if Ax2 = qu then Ax2 is a dynamic logic stronger than Ax1.
Usually, any axiom system, say Axname, introduced below will con-
sist of two parts Tname and Iname such that Axname = Tname U Iname,.
Tname consists of postulates about the time structure T hence
Tname QF%, see Def.16. Iname consists of induction axioms about the
intensions, see Def.15. Typical examples are VYz(sc(z)#0) € Tname and
(x=ext(y,0) AVzlx=ext(y,z) = x=ext(y,sc(z))]) - Vz(x=ext(y,z)) €Iname.

DEFINITION 14 (ind(y,2z), IA, Ia, Lax)

Let d be a similarity type. Then td, Fiq @nd Z were defined
in Def.s # and 6 in §2. Let 2z€Z be arbitrary. ILet p€F 4. We define
the induction formula ind(y,z) as follows:

ind(g,z) & ([9(0)AVa(p » @(se(z))] > Vzp) ,

where @(0) and @(sc(z)) denote the formulas obtained from ¢ by
replacing every free occurrence of z in ¢ by O and sc(z) resp.
The induction axioms are:

¢ {ind(g,2) : yeF,, and zezl.
Lax & {(3#k) : J and k are two different elements of Labl.
4 IAULax. End of Definition 14

Clearly IAQEFtd since if PEF,y and z€Z then ¢(0), w(sc(z))e
€F,4 because O and sc(z) are terms of sort t. It is important to
stress here that ¢ may contain other free variables of all sorts. All
the free variables of ¢ are also free in ind(¢,z) except for z.
They are the "parameters" of the induction ind(p,z).

The theory IA says that if a "property" ¢ changes during time
T then it must change "some time", i.e. there is a time point beT when
Y is Jjust changing.

Our strongest set of induction axioms is Ia. We shall distinguish
various subsets of Ia.

DEFINITION 15 (Iq, Iz,, IN,, If, I1, I, Ict, Imd and Ifm)
If
11

{@EIA ¢ contains no free variable of sort t or d}ULax.

e uQ.

{WGIA : (View)[i>0 » 25 does not occur in ¢ neither free
nor bound]J} U Lax,

326

v ¢ {1nd(¢,zo) eI1 : @€F 4 is such that "+" and "-" do not occur
in ¢ and there is no subformula weFt of p} U Lax «
Ict ¢ {ind @x;. . X [(A x;=ext(34,2 NAPl,zg) ¢ mEw and PR 3L Lax.
ism
Let (20 tFtd) d {@EFtd : contains no quantifier of sort t, that is
3
(Vi€ w)["3z " does not occur in ¢l13.
Iq ¢ {ind(g,zy) @ (g FygdtULax .
d .
1%, = {1nd(3z1...zm¢,zo) : We(zo,tFtd) and méwl U Lax.
Iﬂ1 N find(Vz1...zm¢,zo) : QE(ZO Frq) and méwl Ulax.
nd & fmody : ¢era™d}, where mod and IA"? will be defined in
Def.18.
Itm ¢ {fump : geIfum}, where fum and Ifum will be defined in

Def.19. End of Definition 15

On Fig.1 we compare the sets of induction axioms introduced in Def,
15 above., Warning: As opposed to Fig.2, the comparison on Fige.1 1is
not modulo partial correctness of programs but instead it is absolute.
That is, on Fig.1, [I,l >I, iff I,k I, 1 and I, = I, means (1,1,
and IaasI)e The sign # 1ndlcates that the inequality in question is
known to be proper, that is 12 # I We shall discuss Fig.1 after the
discussion of Fig.2 in §5.

1N Ict I‘

it

FIGURE 1

327

DEFINITION 16 (Ts STo STpres <Tpa CFZ and Tfm)

Notation: sco(zO) d zy and (Vne oo)scn""](zo) d sc(scn(zo)).

s ¢ {zo;éoei-lz,](zousc(z,])), sc(zo)=sc(z1) = 20=2,., scn(zo);ézo :
: new, ngojl.

e

To {(zosz,l/\z,]éza) > 2y <2y, (zg< z,]/\zqszo) > 252,
2o< 2,V 2,< 25, 0<z4, (zos zy A zo;éz,‘) o sc(zo) <24,
O=zOV3z1(zo=sc(z,])) 1.
Tpres 1is the decidable set of Presburger’s axioms for [} :
. Z
Tpres d 1o U {zo+0=zo, zo+sc(z1)=sc(zo+z,'), 1nd(up,zo) : PEF, and
"." does not occur in \P} .
Tpa is the set of Peano’s axioms formulated in the language F1Z; about
the similarity type t, see e.g. Example 1.4.11 in [8]p.42.:
d . Z
Tpa = Tpres U {z,-0=0, 2o 8¢(2,)=2q" 2,42, indlp,z5) : $EFL 3.

on $ {funp : peTfun}, where fum and Tfum will be defined in

Def.19. End of Definition 16

Note that Ts&To is not literally true but To k Ts. We require
To =Tpa because we have the symbol < in the similarity type t. We
also note that To k Tfm, and, clearly, S‘I'Md E Tpa. I.e. Fact 16.1
below holds.

FACT 16.1 S’l‘Md Tpa E Tpres E To E Tfm and To k Ts.

The set Ex of axioms introduced below are useful to prove total
correctness, see Thm.?7 of [3]Part II, and Thm.7 of [4].

DEFINITION 17 (Ex, Axe)

d
Ex = { [Vzo_:lxoup - ByOVzOEle(xO=ext(yo,zo)A&p)] : EF,, and y, does
not occur in ¢ .
More intuitively, the formulas in Ex are of the form
VEViVﬁ[VzOEle(P(zO,xO,E,i,ﬁ) > 33oV20¥ 200Xt (75920) 124,57]
where z,X,j are arbitrary sequences of variables not containing Zga XY ge
Axe denotes the axiom of extensionality, i.e. Axe is

(Vyov;y,'[Vzoext(yo,zo)zext(y,l,zo) > Jg=v41. End of Definition 17

For the rest of this section, let d = (H,d,l> be an arbitrary but
fixed one-sorted similarity type, see Def.1.

328

A direct Kripke style semantics for DL:;Od defined below can be

found in [23]1. Moreover, in [23] a direct Kripke style definition is
given for the validity relation &1 defined indirectly in Def.18.

DEFINITION 18 (modal dynamic language DLG°? of type d)

. od
(i) Syntax DF;°" .:
Tgod is defined to be the smallest set satisfying (1)-(2) below:
(1) ixg,, Jpb Q’I"dmd for every né€w.,
(2) £(T;peee,T)eT5°% for every feH if d(£)=n+1 and {Tyreenatyy €T30
D}?‘god is defined to be the smallest set satisfying (3)-(5) below:
(3) (1=6) € DF’(’{Od for all 'U,GGTQOd.
(#) R(TqpeensTy) € pF2°¢ for every Re€Dom d, if RfH, d(R)=n and
it v }coiod
,‘,.o" n d -
. d
(5) {Alwy, Firsty, Nexty, 3x @y 3¥,Ps =19 (“PA‘V)’ O(p,)3 QDF?O for
all néw and for all ¢,y €DFI® and all pePy.
(ii) Translation function mod : DFI°Y = DR, .:
The definition goes by recursion on the structure of DFQOd. Sometime we

write mod¢ instead of mod(p). Let né€w, T yees,Tp€ T?Od,
tP,LPGDFISOd and peP;. Now

mod(yn) d ext(yn,zo), mod(xn) d Xy
mod (Alw) d Vzo(mode),

mod(Firsty) = 320(25=0 A mod @) ,

mod (Next) d 3z,,(z,]=sc(zo)A 320(20=z,‘/\modkp),

mod(g(’r,},...,'r:n)) d g(modrq,...,mod’tn) if g€Dom d; 1is such that
d(g)=n+1 in case g€H and d(g)=n in case g¢H,

mod(’t,]='C2) d (mod'E,I=mod’C'2), mod(3xnlp) d 3xnmodtp, mod(aynq)) d Ay modip,
mod (=) d —mody, mod(pAy) d (mody Amody), mod(D(p,y)) d O(p,mody).
By the above, the function mod : DFISOd = DFy is fully defined.

(iii) Validity relation 24 cm xpF2%¢ ..

Let THEM,; and 9eDFI°L. Then we define M 2 ¢ iff W k mod y.

(iv) Axioms 1A% 5 modal dynamic logic .:
pamod d { ([Firstp AAIw(y > Nextyp)] - Alwy) : q?GDFQOd} U Lax.
(v) The language DLE(>d of modal dynamic logic .:

329

Dfr..gOd d <DF§°d ’ Modtd(IAmOd) ’ jod > 4 where for any Th QDFEOd

we define MOdtd(Th) d {’meMtd : rmbm_Lﬂ Th}. TLet TthFI(rilod and
gepri°%, Then Th B s defined to hold iff

Modtd(IAmOdUTh) jmod ¢ » see Convention 3. End of Definition 18

PROPOSITION 3 (completeness of DLIOY)
Let Th<DF® and ¢epr®®. Then
th 29, ifr {mody : yeThUIA™} N podg .

The proof of Prop.3 is immediate by the definitions and by the complete-
ness theorem of DLd, i.e. by Thm.1. QED

The modality symbol Alwfu used below intuitively means "Always
in the future". Similarly Alwpay intuitively means "Always in the
past ¢". In [12] "Alwfuy" and "Nexty" are denoted by "F¢" and
"X¢" respectively.

DEFINITION 19 (future enriched modal dynamic language DLd of type d)
] . nefum
(i) Syntax.: DFd
(1)=(2) below:

(1) oF3°% ¢ privm,

(2) {Alwfup, Alwpay, Alwy, Firsty, Nexty, 3x 9y 37,9 9y @AY,

is defined to be the smallest set satisfying

O(p,y)} € DEEY™ for all nfw, @,y €pFi™ and all pep

(ii) Translation function fum : DFgum

q°
-> DFd o

The definition of fum goes by recursion on the struc‘bu.re of DE'd
Sometime we write fumy instead of fum(y), i.e. fumg d fum(y).

Let q:eDF’c'lwd. Then fum(p) ¢ mod(p), see Def.18(ii).

fum

Let n€w, L.P,kpeDFd and pé€P Then

do

fum(Alwfug) VZ’I[24225 > 3zy(z4= /\fumLp)]

/[T 'fo ¥

fum(Alwpay) Vz,][z,]- o = 320(20=z,]/\fumxp)],

fum(Alwe) d Vzo(fumtp), fum(Next y) d 3z,'[z :sc(zo)/\ Bzo(zozz,l/\fumq))],
fum(Firsty) d HZO(Z =0 Afumq)), i‘um(Elanp) 3xnfumtp, fum(HynLP) 3y, fump
tun(+) € ~fumgp, fun@@Ay) € ((fung) A(funy)), rum(Olp,y)) ¢ O(p,tumy).

By the above the function fum : DFgum = DFy 1is fully defined.

(iii) Velidity relation (LD SM *DFI L

330

fum . fum .
Let WM., and peDF 4 . Then we define Wl k¢ iff Wl ¢ fumy.
(iv) Abbreviations or shorthands: (Somy) d (=Alw=y),

(Somfuy) d (+Alwfu-y), Sompay d (~Alwpa-y), and we use the usual
shorthands Vxn, Y¥ns Vs > ¢, etc. introduced below the definitions of

DL, and DLRY,

d d
(v) Axioms. (v)1 Induction axioms:
Ifum ¢ ([(P/\Alwfu(kp - Nextyp)] = Alwfuy) : LP&DFgum} U Lax.
(v)2 Time-structure axioms:
Trum ¢ {First(Alwfup > Alwp), First(@ « Alwpay),

(p - Sompayp ASomfuyp), ([Alwpap A Alwfugl - Alwy),
(SomfuSomfuy - Somfuy), (SompaSompay - Sompay),
(Alwfuy & [LP/\NextAlwfuxp]), (NextAlwpayp « [Nexty A Alwpay])
: tpEDFgum}.
(vi) Puture enriched modal dynamic language is defined to be
prgt® ¢ (o™, pvIU™ , E¥RY where
Dl‘dgum d tmeM,, = M E¥ Teum UTfuml. We use Th ﬁg_&lq, etc. in ac-

cordance with Convention 3, i.e.

thE2 G ire (vaenmiU™)[W EEE th s WOEEGL End of Definition 19

Remark: Note that @2 Alwg for all @eDF:"® since W HEEy im-
plies T fum Alwgp by definition. Also note that
Ifum U Tfum b__f_’g;:m { ([FirstpAAlw(p - Nexty)] = Alwy),

Alw([Firstp AAlwpa(p - Nexty)] - NextAlwpay) :

: LPEDFgum}.

PROPOSITION 4 (completeness of DLLU®)

Let ThCDFL™ and @eDF"", Then

th £¥2 o irf {fumy : @eThUIfumUTtun} B fumgp .
Proof: By Thm.1 and Def.19. QED

COROLIARY There are decidable proof concepts }M and }t;u_m_ such
that <Dernod . Eod y and <DL§um . M) are complete logics,

331

DEFINITION 20 (Floyd-Hoare logic (HFL , (£ , Pr)>)

(i) The set HF 4 of Floyd-Hoare statements of type d is an im-
portant sublanguage of DFd.:

HF ¢ ((p>0O(pyy) : DpEP; and ¢,y €F,t. Clearly HFyCDF4.

(ii) Floyd-Hoare language HFL, 1is defined to be:

d
HFL; = <HFdUFd R Modtd(Iq) s EVe

(iii) The relation E ¢ {Th : ThQFd} XHFy was defined in a
rigorous manner in [3)Def.17, [41Def.17,p.55, [61,121p.118. We shall
use this definition of DE without reformulating it, but we note that
in the quoted papers there is a decidable set Prf & (HFdU Fd)x such
that (VIhCF)(VoeHF)[Th Fo iff (3 finite HcTh)(@Aw)<H,w,g) €Prrl.
Hence Prf is the set of I-F- -proofs and Prf is decidable. Cf. Def.
10. According to Def.10, (I-E,Prf) is a decidable proof concept for
the Floyd~Hoare language HFL;. End of Definition 20

The lattice of proof methods for partial correctness of programs

Instead of "proof method for program verification" we shall simply
say "proof method". By a proof method we understand a proof concept
(X)) in the sense of Def.12 or one in the sense of Def.10. Thus e.g.
E and (Dax I-IS) are proof methods. When we call (X IE) a proof method
for program verification then what we intuitively have in mind is the
proof concept (X ly-) as a device for proving properties of programs,.
We shall concentrate on the powers of proof methods (XK) to prove
partial correctness of programs.

We define a pre-ordering < on the proof methods as follows:

(x) €<(YB) is defined to hold iff [(ThUXH ¢) 3 (ThUYE)]
for every similarity type 4, Th QFd and QEHF .
The relation < induces an equivalence relation = defined as:

EE) = (xR iff [(XxE) <@ A and (YHB) <],

YE
A straight line I-Y-/ on Fig.2 indicates the relation
a X Y E
(XE) < (Y B). A line with # added like Il/# indicates the
X
strict relation < that is [(X) QY) and (X E)< (Y B)]. & line
YR
with =7 added like lzz, indicates that (X)< (Y EB) but we
X

do not know whether (X K)>(Y#) holds or not. Broken line

x &

‘\4\ . with ¢ indicates that (X)£ (Y B) (but we do not know

T

332

=¢
JaUTpa
/ =a
IquTpa I'Ii
TIaUTpres l-l‘l
/ =g\
IqUTpres I-N- IMUTpres }IS -Fum
~ TauTo B —
o \\ n
N # — IfmuTem A
N ' —
Talts 8 — 7

'/

Imdurs B
MR
Iz,0m0 K d
;\ (Imd 'E) = l—mo
N
1z, R n, K

£ 3
2 #
IqUTo i-li

Iqlll F

U]

]
N
H
le]
<+
T
A
]

= (InItnIg B) = (ImdnIq

1fnIct &

FIGURE 2

333

whether (X H)> (Y #) holds or not). If (X) £ (Y) is not indicated
(either by # or by <£) then we do not know whether or not (X i) <
<(Y ié). Hence "=?" 1is used only to stress that we do not know whether
equivalence holds. If two nodes are not connected then we do not know
whether they are related in any direction or not that is we do not know
whether they are comparable. For example we do not know whether

(IqU TPres)Ii) < (IaUTo \;I\l) holds or not. Note that the fact Iq ¥ IqUTo
does not imply (Iq Iy-) £ (IqUTo l-]l) since proof methods here are compared
only w.r.t. Th SFd and 9€HE‘d.

§5. Proofs and discussions of Figures 2,1

We shall prove that the inclusions (X K)<(Y#) as well as the
inequalities (X K) 4(Y) indicated on Fig.2 all do hold. First, in
Thm.6 below, we prove one inequality (IaVUTo by-) 4 (IaUTs ;E) and then
after proving Thm.6 we shall proving the rest of Fig.Z2.

Thm.6 below is in contrast with the result (IqUTo iy-) 2 (IqUTs }E-)
indicated on Fig.Z2.

THEOREM 6 There are a finite d and 0O(p,p) €HF;, such that

d
TaUTo & 0O(p,y) but 1aUTs Pt O(p,y)-

Proof. ZILet d g({su, 2ero}, §481,2) ,{2eT0,17,{Ry17,{S,10}V, i.e. d
is a similarity type which has a unary function symbol su, a constant
symbol zero and two relation symbols R and S.

d

Let O°= zero and (Vnew)(n+1)'gsu(n’). Let Labgin' : nfwj,

Let pEPd be the program represented on Fig.3. Note that in de-
fining p we use fewer labels than required in the formal definition
of Pd’ but it is easy to see that this change is not essential while
it considerably simplifies the traces of p.

Let q)(xo,x,])éFd be the formula (-S(xo) -> xo=x,').

We shall show that IaUTs ¥ O(p,y) while IaUTo B O(p,y). To
this end, first we construct a model memtd.
6.0. The definition of memtd ot

Z denotes the set of all integers such that W £Z is the set of
nonnegative members of Z.

334

x,l—<-0' Xg —€ su 0’

Xy — su(xo)

e Y55 NO x, —< su o’

NO

R(x,) x, — su(x,)

FIGURE

Let A d (6x2) U({6,7} *w). We often write (i,n) instead of {(i,n).
Note that if a€A then a=(i,n) for some i€8 and neZ, Let
suc : A > A be defined by suc(i,n) d (i,n+1) for every (i,n)€A.

6.,0.,1. Let Q.‘,EMt be the following model of type t. (See Fig.4.)

T $¢7,Q> where T = ({6}*Xw)U (4x2) and Q(0) = (6,0) & 0T ,

~A

Q(sc) = suc, Q(<) = 0 and Q(+) = Q(+) = Tx1*{07}. See Def.s 1 and 2.
We shall sloppily identify T with the structure <T,suc,OT>.

At two places above we should have written (TxT)N\suc instead of suc
but we hope that context helps to understand that we meant e.g.
Q(se) c=1('.1‘><T) Nsuc. We shall commit this kind of sloppiness in the

future too.

335

00 4+ “0x QO% (B0 “O+._JRS (BOF_]R

ool

FIGURE &4 FIGURE 5

6.0.2. et DpeM; _be the following model of type d. (See Fig.5.)
D ¢ <D,6> where D = ({7}*w)U({#,5}x2Z) and G(zero) = (7,0),
G(su) = suc, G(R) = {(4ao)v(5’0)} Iy G(8) = {(490)}°

Notation: Iet néw. We shall identify n” with (7,n) since (7,n)
is the value of the term n’ in D.

6.,0.3, Next we define three functions f,h,g : T > D illustrated on
Fig.s 6-8.

t g-" {<(69n)’n‘>’<(0'_n)’(4’_n)>i<(O’n)9(q"0)>’<(1!—n)1(5’-n)>i

{1,n),(5,0),4(i,2),(5,0)> : new, iei2,3}, z€zl.

h = {<(69n) »07>,4(0,2) 9O'>,<(1 »=0),077,4(1,0),0">,4(2,-n),(4,~n)>,
((2,n),(4,0)),<(5,—n),(5,—n)>, {(3,n),(5,0)> : néw, z€Z 3‘
g g {<(6,0)10'>,<(61n+1)9’|'>9 {0,-n),1"7,<(0,n+1),3">,<(1,-n) ,1" 7,

(1 ,n+'l) 1277, ((2,-11) »27)) <(29n"'1) »377, «3,—1'1) 277, <(3'n+1 g3'> :
newl,

6.0.4. Let I g{f,h,g}, valueofr & {k(a) : (k,aYEI*T > and
wt 2(2 s D, I, valueof). We have defined the model NI EM

td°
CLAIM 6.1. Nl E IaUTs.

Proof. Clearly, Tl k TsULax. To prove Wl IA we shall use an
ultraproduct construction. Let F be a nonprincipal ultrafilter on w

and let W ¢ (0t pt 1t ext) $ “Ul/F be the usual ultrapower of L.
Let d : M > W be the usual diagonal embedding. For every i€w

336

(30) i i (50

(2,0) (4,0)

L (7,0)

h ¢ T —> D

FIGURES 6~

337

let (it) d {(i,n) : new)/F and
iV ¢ ((4,-n) : new)/F. Iet

mt ¢ ptUD*UI*. Hence M is the
universe of Mi*, more precisely Mt
is the disjoint union of all the uni-
verses of m™*,

Notations: Id &<m : meM*>. Then

I1d : M* >» MY is the identity map-
ping. For any sets X,Y and func-
tions k,q we define:

x~vY ${aex ¢ agvl,

Xk ¢ (XxRng K)Nk and FIGURE &
keq & (k(q(x)) : x€Dom(q) and q(x)€Dom(k)). That is, X]k is the func-

tion k domain-restricted to the set X, k°q is the composition of k
and g. Then X{Id Sk means that k is identity on X.

CLAIM 6.2. There are automorphisms P : ’m+ > 'm+ and Q :'m" » ’m,"'
of M%* such that P°d=Qed =g, P(6EMN=(1V), P(11)=(3V) and
Q(et)=(0¥), Q(1M)=(2¥).

Proof of Claim 6.,2.: Let B % TYUD*. Then d&:A > B. Let

suc : B> B be the natural one, i.e. <{(B,suc) d W(A,sucd/F. Let
(Yn€ w)(VbeEB) suco(b)gb and sucn+1(b)gsucsucn(b) . We define (VbeEB)
Lb) ¢ {suc®(b) : nfw} U {aeB : (Ine€ w)suel(a)=b 1, Let

He € LEHULEZH UL, H, ¢ LD ULGGHULGY and

Hy LOV) VL(EV) v L(2Y). See Fig.9! Clearly,

(=T =R

(%) there is an isomorphism p : (H6,suc> > <H1,suc> such that
p(6M)=(1¥), p(71)=(5¢) and p(11)=(3V).

Tet P ¢ pUpT U ('~ (B UH,))Id, where p' ¢ {<b,ad : <a,byep} is

the usual inverse of p. We show that P is an automorphism of .,
For illustration of the proof see Fig.9.

Below we shall omit some straightforward details, but we shall be
glad to send [20], which contains all the details of the present proof

338

to anybody asking for it. It is easy to check the following
(ex) Hg » Hy » Hy and Rngd are pairwise disjoint.

By (#x), P is a functionon M' and Rngé]P cId. By (%), it
is easy to check that P : ™ y» T and P : D* »%» D* i.e. P is a
permutation both of ™ and D*. Since I, R™ and s™ are finite,

+ +
we have TTURMUS™ ¢ Rng § (see Convention 2). Thus P : It »» 1*
is a permutation of I* and P preserves R, S and the constants O

and zero (since §0m+, zero®™'} ¢ Rngd). P preserves sc and su
by (%) since B~H; is closed under suc (and clearly P preserves
+,* and < by their definitions). All what remains to show is that
P preserves the binary function ext.

The only really binary operation of Wt is ext : It 5> dp*, But
by 1t c Bngd we have I+1P CId, hence the first arguments of ext
are fixed points of P. Hence from the point of view of P, ext be-

haves like three unary functions. More precisely, let (YkeI) k d

4 (ext(8k,a) : a€T*>. Note that I* = {df, Sg, Shl. Then to see that

P preserves ext it is enough to check that (Vke€I)[P preserves kL
Thus we reduced MU' to a unary model MU =<M*, ¥, &, B) and we have
to show that P is an automorphism of Ml’. Now we are going to show
that P preserves f, g, and h.

SuT’ denotes the set of all subuniverses of M, i.e. subsets
of M* closed under T, g, and H.

Let N, d H; U Rngd , for every i€{6,1,0}. Now we claim statements

(;:5)-(!:5) below for every i€{6,1,0}:

(53) Ny € suql .
(xu) P: <N6,T,E,H) » (N,],T,E,H) is an isomorphism.

(%) (M*~H) € sum .

To check (xs)-(35) above, we use Los lemma and the definitions of f,

g,h , see Fig.9. The detailed proof is in [20]. We omit this proof be-

cause itdis straightforward. By (=) we have that P is identity on
+ .

Ng o N, & (NgNN UM '~ (NgUN,)) ice. (g @ N)IPSId. By (w),

(N6 @ N’l) € SuMl’. These facts together with (;:3)-(355) imply that

P: W >» N is an automorphism.

So far, we have seen that P : W' »» N is an automorphism.

340

Clearly P satisfies the conditions of Claim 6.2. The construction
of Q is obtained from the above proof by substituting Q, HO, NO, @V,
(44) and (OV) into the places of P, Hjy N,y (34), (5¢) and (1)
respectively, everywhere. QED(Claim 6.2.)

We turn to the proof of Ml k IA. Let \p(zO)EFtd be any formula
possibly with parameters from M. More precisely, let mfw, pEmM
and let Lp(zo) be the formula Lp(zo,p) that is kp(zo,po,...,pm_,]).

We assume that Lp(zo,p) is obtained from some Lp(zo,2,§,§)€Ftd by

substituting p in place of <Z,X,y> such that everything belongs to
the appropriate sort, e.g. if Po is substituted for 2, then pOGT.
Assume that &P(zo,p) has no free variable other than Zge Let DbeT
be arbitrary. Then Wl E Vzol.p(zo,p) and W k (b,p) have their ob-
vious meanings, see €.g. Def.1.3.14=15 of [81p.28 where ¢(b,p) and
Vzotp(zo,p) are denoted by @[b,pl and (Vzo(.p)[p] respectively.

We want to prove Wl ind(y,zy). Assume
(1) Wl k (0,p) and W k Yz,(9(z5,p) > Ysc(zg),p)).
Then (Yn€w) Mk (<6,n),p) since <6,n)=sc’(0) in NWl. Then
(c2) M* k @((61),d°p) holds by Los lemma.

Let P,Q be the automorphisms the existence of which is claimed in 6.2,
Since P is an automorphism, by (C2) we have M* k @(P(61),P°S°p),
hence M E @((1¥),8p) by P(6M1)=(1V) and by P°J=d. By the Los
lemma there is VeF such that (VneV)Wl |k @({1,-n%,p). Since F is
nonprincipal, V is infinite which implies by (C1) that (VzeZ)

WM k ¢(<1,2>,p)« Then mt e @((11),8°p). Using Claim 6.2, P(14)=(3V),
Q(1t)=(2V), Los lemma and (C1) as above we obtain (Vz€Z)[Mk @(<3,2),p)
and WE (K2,2>,p)]. By (C2) and Q(61)=(0¥) we have t e @((0¥),dep).
Then as above, by (C1) we conclude (Yz€Z) Mk @(<0,2>,p). We have
proved (VDET) W1k (b,p) which means Ml k Vzoq)(zo,p). Thus

Mk ind(tp(zo,p),zo). Since the choice of p was arbitrary, this means
’m isVEViV?ind(q)(zo,E,i,i),zo). Since (EF,; was chosen arbitrarily,

we proved N k IA. QED(Claim 6.1.)

CLAIM 6.3. Ml ¥ p,yy).

Proof. ILet s g {f,hyg% Then s is a trace of p in M. To see
this fact observe that g=8, is the history of the control variable of
P, see Fig.s 6-8. Let b ¢ {2,0>. Then s terminates p in T

341

at time b since 32(b) = g(b) = 3 is the label of the HALT command
of p. The output (so(b),s,](b» of p at time b does not satisfy
¢ in MW since aS8({5,0%) and so(b) = £(b) = (5,0) # (4,0) = h(b) =
= s,](b). Thus <(5,0),(4,0)> is a possible output of p in Ml but
D ¥ \P(XO’X»])[(%O),(‘*'O)L QED(Claim 6.3.)

By Thm.1, 6.1 and 6.3 above we have the following
COROLLARY 6.4. IaUTs Py O(p,y).

CLAIM 6.5. TaUTo B O(pyy) e

Proof. Let Ax d TaUTo. TIet "(Vz,l < zo)«.p" stand for the formula
Vz,lf(z,lé 2o A2,420) > ¢l. Similarly for "(Vz,> zg)" etc. For every
kp(zo)éFtd we define first(xp,zo) to be the formula

[(VZ/’ < zo)‘ﬂ({)(z,‘)/\ l'P(Zo)] Y

CLAIM 6.6. Let (€F 4. Then Ax k (3zotp(zo) - HZOi‘irst(Lp,zo)).

Proof. Let kp(zz) be the formula [(3zoézz)\p(zo) - (Bzoéza)first(np,zo)] .
Then To k q;(O)/\VzZ[q)(z2) -> up(sc(ze))] is easy to prove. By
ind(ty(za),z2) €Ja we conclude Ax E szq)(zz). Then obviously

Ax [ﬂzoq)(zo) > ﬂzofirst(tp,zo)]. QED(Claim 6.6.)

For any q)(zo) €F y let hyp(Lp,za) be the formula
(kp(zz) A (Vzo>/ zz)[Lp(zo) > kp(sc(zo))] .
CLATM 6.7. Let @(2,)€F 4. Then Ax k Yz ,[hyp(y,2,) > (Vzo>/22)t{7(zo)].

Proof. To k [hyp(p,z,) > -.3z0first([-up(zo)Azozze],zo). By 6.6. then
Ax F (hyp(9,25) > ~3z5l-@z5) Az > 251). QED(Claim 6.7.)

Let m=<%,Q,I,ext>eModtd(Ax) be arbitrary. Let s€3I be an
arbitrary trace of p in .

Notations: Throughout, instead of the term ext(si,zj) we shall write

s;(25). Let DbET. Then 5(b) 2 (s;(b) : i€3> and B(b) Hlsy(b),s,(B)).

CLAIM 6.8. (i) Wl E [sg(zO)e{z',5'3-> (Vz, >/zo)so(z1)=so(zo)].
i)y m k (s5(zg)=2" > (Elz,')[z,lézOAsz(z,l)ﬂ'/\so(z,‘)=sq(zo)]).

342

Proof. Proof of (i): Let beT be such that sa(b)G{Z’,B’}. Let 1(21)
be the formula [82(21)€i2' 23T A so(z,')=so(b)]. Clearly, Mlk4(b).

Also WLk 7(z,) > f(sc(z,)) because s is a trace of p. Hence
Me (Vz1>-b)x(zq), by 6.7. Thus 1 E (Vz4> b)so(zq)=so(b).
Proof of (ii): Let x(zo,z1) be the formula]:z,l ézolﬁsa(z1)=1'A
aAso(z1)=sq(zo)] and let @(zy) be the formula [sz(zo)sa' ->
a»321x(zo,z1)]. We have to prove Wl k Vz p(z;).

Let beT. Assume Wl g w(b). If s2(sc(b))#2’ then (sc(b)) is
obviously true. Assume therefore s2(sc(b))=2'.

Case 1 se(b)#Z'. Then, since s 1is a trace, sz(b)=1'. Then
s2(sc(b))=2' implies #(sc(b),sc(0)). I.e. WMl k (sc(b)) holds.

Case 2 sz(b)=2'. Then by ¢(b), there exists aeT with x(b,a).

Since s is a trace of p and se(b)asz(sc(b))=2' we have qR(sq(b)).
Hence by #x(b,a) we have s2(sc(a))=1' and so(sc(a))=su(so(a))=
=su(sq(b))=s1(sc(b)). We have sc(a)<sc(b) since a<b by x(b,a).
Thus %(sc(b),sc(a)) proving Wl k Y(sc(b)).

We proved 1Ml E Vzo(q(zo) arq(sc(zo))). Since ¢(0) is obviously
true, by IA we proved 1 k Vzquzo). QED(Claim 6.8,)

Now we turn to the proof of Ml k O(p,y). Let <{(a,d)€°D be any
possible output of p in MWl . Then there are a trace se’I of p and
eeT such that 5(e) = <a,d,3">. If Dk S(a) then Dk yla,d] is
obvious. Assume therefore D k -S(a). By 6.6, there is c¢€T such
that first(8(sc(c))=8(e),c) holds (since efO). ILet this ¢ be fixed.
Then 8(c) # 8(sc(c)), hence se(c)#B'. Since 8 is a trace of p,
by sy(sc(c))=3" we have 5(c) = 8(sc(e)) = <a,dd. Then =S(a) implies
sz(c)#1’ proving se(c)=2’. By sa(sc(c))=5' then we have R(d). By
6.8(ii) we have (Ib<c)(Ixed) 8(b) = {d,x,1°>. By R(d) we have
sa(sc(b))€{2’,5'} and so(sc(b))-so(b). Then by 6.8(i) and sc(b)<ec
we have d = so(b) = so(sc(b)) = so(c) = a, We proved D k y[a,dl.

By the choices of e, s, and M we proved IalUTo E 0(psy). Then by
Thm.1 we have IaUTo O(p,y). QED(Theorem 6.)

PROOF OF THE REST OF FIGURE 2 :

1) Proofs of the inequalities (all these proofs use ultraproducts):

(1.1) Sketchy proofs of (IgqUTpres B) £(IqUTo &) and
(IqUTpres B)4E are Thmn.9(iv # i) in Part II of [3] and [4]p.93

343

together with pp.60-65 Claim 9.1 there. Detailed proof is available
from the author.

(1.2) (IqU Tpres ﬁ) £(IaUTs I-Il) is proved in [20]. The proof is
a modification of the above proof of Thm.6: it uses Corollary 6.4 un-~
changed and the only part that is changed is formulation and proof of
Claim 6.5. See also the IqUTpres & D(p,ty) part of proof of (1.1) above

(1.3) (ItmUTEm) 4 (TaUTs B) is proved in [20]. The proof is a
modification of the above proof of Thm.6; it uses Corollary 6.4 unchanged

(1.4) (Imd \y-)ﬁ#}E is proved in detail in Thm.9(v # i) of [4]pp.
59-9%, see also Thm.s 11/e - 11/g of [41pp.100-107, and [23].

(1.5) The proof of (IaUTo }IE)QE is very easy! See Thm.10 in
[3]Part II. In the proof of Thm.9(v # i) in [3] a partial correctness
statement geHFd and a finite Th QFd are selected and an easy ultra-
product proof is outlined to show Th kgf Qe It is very easy to show
ThUIaUTo I-I\l Q by using the proof methods of Thm.s 3-4 in [3] for that
Th and Qe

(1.6) (IaUTo IE) 4 (IaUTs \H) is Thm.6 proved above in the present
paper.

(1.7) (Iﬂ,‘ IE) £ E and (IZ,I UTo IE)¢ (IZ,l IE) are proved in
[20]. The proof of the M,-part is a modification of the proof of Thm.9
(v # i) of [41pp.59-93 where only Claim 9.4 (and its proof) is modified.
For the Z,-part, the proofs of Thm.s 3-4 in [3] and in [4]1pp.42-45 are
also used. Actually using these proofs it is not very hard to modify
the present proof of Thm.6 to prove (IZ,] U To I-Ii)$ (IZ,] I-Il).

(1.8) All the other inequalities indicated by #Z or by 4 on
Fig.2 are immediate consequences of (1.1)=(1.7) above and of the in-
clusions " <" and equivalences "=" indicated there (which we turn
to prove now).

2) Proofs of equivalences (XK) = (Y 1B)

.

(2.1) (TetNIf lE) >E is proved in proofs of Prop.12 and Thm.9
(i » ii) in Part II of [3], and also in [4lpp.57-58 and p.111. The de-
tailed proof is given in proving Thm.9(i % ii) in both quoted papers.

(2.2) By Fig.1, all the induction axiom systems Iname introduced
in this paper are 2> IectNIf. Hence (Iname lli) >E follows from (2.1)
with the only exception of Ifm. It is not hard to check that
(Ifm }I}-) %FE.

(2.3) A simple proof of all the remaining equivalences = in

344

Fig.2 under the restriction that Th contains the Peano axioms is found
in [6] which was first published in 1977 in Hungarian, see [1]. Even
under this strong restriction, the question whether (BEx UIalJTpa\E) =

= (IaUTpa ﬁ) remains an open problem.

(2.4) (IqUTo B)<E is Thm.9(ifi i) in Part II of [3] and in
{41p.56. A detailed proof arises if one reads Prop.7 of [91p.121 to-
gether with [101.

(2.5) All the statements (XK)< (Y #) implicit in Fig.2 are
easy consequences of (2.4) and (2.1) above. END of proofs of Fig.2.

ON THE INTUITIVE MEANING OF FIGURE 2

One of the central themes of Nonclassical Logic is the study of
the lattice of the various modal logics. This activity turned out to
be a rather fruitful part of modal logic providing much insight into
the nature of modal reasoning. Analogously, on Fig.2, we investigate
the lattice of the various dynamic logics Dlogd(Ax) for various
Ax:gF¥d. We hope this might provide insight into the nature of reason-
ing about programs (or more generally, reasoning about consequences of
actions).

For example, Thm.6 says that if the set of logical axioms Ax
of our Dlog(Ax) contain full induction Ia over time then it does
matter whether or not time instances can be compared by the "later than"
relation. In this case the dynamic logic Dlog(IaUTo) in which we
can say "z is later than zq" is stronger (modulo HFd) than the one
Dlog(IaUTs) in which we cannot.

As a contrast, if the logical axioms contain only restricted in-
duction Iq over time then the logic Dlog(Iq UTo) with "later than"
is not stronger than the one Dlog(Iq) without it. However, here the
logic Dlog(IqU Tpres) in which we can perform addition on time is
stronger than the one Dlog(IqUTo) in which we cannot. Intuitively
Zo=2,+Z, means that “zo is 25 time after z,".

Now we turn to the question "is sometime sometimes better..." in
the title of [16]. The formulas in (ZO,tFtd) can be considered to be
the formulas without time modalities "Sometime" and "Always". Hence
Iq is time induction over all the formulas without time modalities
(time induction over the non-modal formulas). The result
(ImdlE)I>(Iq\)TolE) in Fig.2 can be interpreted to say that the logic
Dlog(Imd) in which "Sometime™ is availsble is indeed stronger than the
one Dlog(IqUTo) without "Sometime". But this result implies only

345

that "Sometime" is better if we allow arbitrarily complex time-modality
prenexes "Sometimeon(xo=yo/«Alwaysﬂxq(x1=yq/«Sometimer)“ see the

definition of DFmOd (Def.18). This was not mentioned in the title of
[16]1. So a finicky interpretation of the quoted question might lead us
to the "pure sometime logic® Dlog(IZ) in which we can perform time-
induction over Sometimeyp with qe(ZO + td) but we cannot do time-
induction over "SSometimep" or over "Sometlmeﬁxo(x =¥o Alwaysqﬁ"

Thus the result (IZ1()T0 ﬁ) >(IqUTo PO and the problem whether or

not (IZ1iE) = (Iq ﬁ) both in Fig.2 are relevant to a more careful ana-
lysis of the quoted question.

By another part of Fig.2, future tense "Sometime in the futurey"
as used e.g. in [12] adds to the reasoning power of dynamic logic
Dlog(IaUTs) with full time-induction. The rest of Fig.2 can be inter-
preted in this spirit, to investigate what kinds of logical constructs
do increase the reasoning power (-s of which versions) of dynamic logic.
Such logical constructs are "later than", "at zj, time after 24 it is
the case that ¢", "Sometimey" etc. By passing we note that it clearly
shows on Fig.2 that the well known dynamic logics <HFLd, E:>,

<DL mod, ﬂ551>’ and <Dqum um f=— > are strictly increasing in this order

in reasoning power modulo partial correctness of programs, i.e. modulo
HFy. That is ¢ PO < U8

We believe that Fig.2 is much more important for computer science
than Fig.1, therefore we shall be sketchy in proving Fig.1.

ON THE PROOFS OF FIGURE 1

The inclusions indicated on the figure are straghtforward, except
for I Imd and Imd I’e I’ Imd can be seen by observing that
mod(p) is semantically equivalent to an element of I’, for every ¥¢
€DFm°d. The idea of the proof of Imd I’ is to translate I’ into
Imd, Instead of giving here the definition, we show the idea on an
example. Let (PQ R(so,ext(yo,sc(o)),ext(yo,sc(zo)))). Then ¢° d

3x13x2[FirstNext(x1=y0)/\NextNext(x2=yo),AR(xo,xq,x2)]. Now the trans-

lation of ind(w,zo) is defined to be [Firsty’ AAlu(y” - Nexty’)] -
-> Alwqf.

On the inequalities indicated on Fig.1.: I° ¥ I1 can be checked

346

by showing I’ ¥ ind(R(ext(yO,zo+zO)),zo) or I ¥ ind(sc(zo)#o,zo).
(These are proved in detail in [20]. In the proofs, models Wl are
constructed such that Ml I’. The proofs of %Wl k I’ are simplified
versions of the proof of Claim 6.2 in the present paper.) By Fig.2 we
have that (3p3y)[Imd k O(p,y) but IqUTo ¥ O(p,y)l. Therefore

Iq ¥ Imd, that is Imd £Iq and hence I1¢Iq. An easy argument shows
that I1 ¥ Iq, i.e. I1 and Iq are not comparable. By Fig.2,

Iq ¥ Iz,| and Iq ¥ Iﬂq. Iﬂ1 ¥ I1 and 1z, ¥ I1 can be proved by [20]
roughly by considering <{I,I,{Id}, valueof) (but we did not check the
details carefully). The remaining inequalities on Fig.1 are not hards.
17, ¥ In, and IM, ¥ Iz, are in [201. End of proof of Fig.1.

Intuitive motivation for the second part of the present paper is a
section entitled “"Intuitive ... of Fig.2" in §5 immediately below the
end of proof of Fig.2. To this we add that our Fig.2 is analogous with
Fig.1 of the monograph [6 bl on first order modal logic and Kripke models.
For the lattice of modal logics see e.g. [6 al, we point out this because

the main result proved in the present paper concerns the lattice of
dynamic logicse.

REFERENCES

[4] Andréka,H. and Németi,I., Completeness of Floyd’s program verifi-
cation method w.r.t. nonstandard time models, Seminar Notes, Math.
Inst.H.A.Sci.-SZKI 1977 (in Hungarian). This was abstracted in [21.

[2] Andréka,H. and Németi,I., Completeness of Floyd Logic, Bull., Sec-
tion of lLogic Wroclaw Vol 7, No 3, 1978, pp.115-121.

[3] Andréka,H. Németi,I. and Sain,I., A complete logic for reasoning
about programs via nonstandard model theory. Part I, Part II,
Theoret.Comput.Sci. 17(1982) no.2 and no.3.

[4] Andréka,H. Németi,I. and Sain,I., A complete first order dynamic
logic, Preprint No. 810318, Math.Inst.H.A.S., Budapest, 1980,

[5] Andréka,H. Németi,I. and Sain,I., Henkin-type semantics for pro-
gram schemes to turn negative results to positive., In: Fundamentals
of Computation Theory’?79 (Proc.Conf. Berlin 1979), Ed.: L. Budach,
Akademie Verlag Berlin 1979. Band 2. pp.18-24,

[6] Andréka,H. Németi,I. and Sain,I., A characterization of Floyd prov-
able programs. In: Mathematical Foundations of Computer Science’81
(Proc.Conf. Strbské Pleso Czechoslovakia 1981)Lecture Notes in
Computer Science, Springer Verlag, 1981.

[6 a]Blok,W.J., The lattice of modal logics. J. Symbolic Logic. To
appear.

347

[6 blBowen,K.A., Model theory for modal logic. D.Reidel Publ.Co.,

(71

(81
[91]

[101
M11

[12]

(3]

4]

[151]

[161

[17]
[18]
[19]

[201

[21]

[22]

[23]

Boston 1979, x+127 pp.

‘Burstall,R.M., Program proving as hand simulation with a little

induction. IFIP Congress, Stockholm, August 3-10, 1974.
Chang,C.C. and Keisler,H.J., Model Theory. North-Holland, 1973.

Csirmaz,L., A survey of semantics of Floyd-Hoare derivabil;ty.

CI&CL ~ Comput.Linguist.Comput.Lang. 14(1980)pp.21-42. :

Csirmaz,La., On the completeness of proving partial correctness.
Acta Cybernet. To appear.

Csirmaz,L. and Paris,J.B., A property of 2-sorted Peano models and
program verification. Preprint Math.Inst.H.A.S. Budapest, 1981.

Gabbay,D. Pnuely,A. Shelah,S. and Stavi,J., On the temporal ana-
lysis of fairness. Preprint, Weizmann Inst. of Science, Dept. of
Applied Math., May 1981.

Gergely,T. and OUry,L., Time models for programs. In: Mathematical
Logic in Computer Science (Proc.Coll.Salgbtarjhn 1978)Collog.Math.
Soc.J.Bolyai 26 Ed.s: Gergely,T. Domdlki,B. North-~Holland, 1981.
pp . 359_4270

HAjek,P., Making dynamic logic first-order. In: Math-
ematical Foundations of Computer Science’81 (Proc.Conf, Strbské
Pleso Czechoslovakia 1981) Lecture Notes in Computer Science,
Springer Verlag, 1981.

Kfoury,D.J. and Park,D.M.R., On the termination of program schemas.
Information & Control 29(1975),pp.243-251.

Manna,Z. and Waldinger,R., Is "Sometime" sometimes better than
"Always"? Intermittent assertions in proving program correctness,
Preprint No. Z173, Stanford Research Inst., Menlo Park, June 1976.

Monk,J.D., Mathematical Logic. Springer Verlag, 1976.

Németi,I., Nonstandard runs of Floyd provable programs. Preprint,
Math.Inst.H.A.S., Budapest, 1980,

Németi,I., Hilbert style axiomatization of nonstandard dynamic
logic. Preprint, Math.Inst.H.A.S., Budapest, 1980,

Németi,I., Results on the lattice of dynamic logics. Preprint,
Math.Inst.H.A.S., Budapest, 1981.

Richter,M.M. and Szabo,M.E., Towards a nonstandard analysis of pro-
grams. In: Proc. 2nd Victoria Symp. on Nonstandard Analysis (Vic-
toria, British Columbia, June 1980) Lecture Notes in Mathematics,
Ed.: A. Hurd, Springer Verlag, 1981.

Sain,I., There are general rules for specifying semantics: Observ-
ations on abstract model theory. CIL&CL - Comput.Linguist.Comput.
Lang. 13(1979),pp.251-282.

Sain,I., First order dynamic logic with decidable proofs and work-
eable model theory. In: Fundamentals of Computation Theory’81 (Proc
gonf. ggeged 1981)Lecture Notes in Computer Science, Springer Ver-
ag, 1981.

348 .

