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In Part I of the present paper we defined the first order dynamic language DL,
(of type d). In Definition 13 «w= defined a decidable proof concept (—", Prn) for DL,
and in Theorem 2 we proved that (", Prn) is a strongly complete inference sys-
tem for DL,. That is, for every theory Th and formula ¢ of first order dynamic lan-
guage we have Th = ¢ iff Th " ¢. By Dynamic Logic of type d we understand
{DLg4, (—~, Prn)).

Here we investigate further properties of our Dynamic Logic, its expressive power,
how it can be used for various purposes, how it can be adapted to various situatioss.
Then we investigate Floyd’s method using the framework of DL. A complete
characterization of the amount of information implicitly contained in Floyd’s method
will be found but several questions remain open in this line. The proof method +" is
proved to be strictly stronger than Floyd’s method in Section 6. Different semantics
v. programming are compared in Section 7 within the framework of DL. Com-
parisons with several approaches related i1 several ways are given in Sections 7-9.

S. Properties of DL,

5.1. Methods of proving properties of progr..ns

The proof concept (", Prn) introduced :n Definition 13 is also a new method of
proving properties of programs. E.g. —" can be used to prove partial correctness,
total correctness, termination etc. of programs, see the example after Definition 9 in
Part I. The proof method " is complete by Theorem 2. In Andréka-Csirmaz-
Németi-Sain [1] the proof method " was compared with the Flryd--Hoare method
of proving partial correctness and it was found that " is strictly stronger, i.e. there
are correct programs provable by —" but a0t provable by the Floyd-Hoare method.
(See Theorem 10 here.) We shall return to this point later, in Section 6.

* For Part I see Theoretical Computer Science 17(2) (1982) 193-212.
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There is a second, Hilbert styie, definition of the proof concept +". Then " is
defined by a decidable set Lx< DF, of logical axioms and a decidable set R
(DF,)* xDF, of proof rules. Both I.x and R are defined by finite schemes of
formulas. Then an —"-proof is defined to be a finite string w of elements of DF, such
that if w=(@;: i <n) for some n € w, then for all i < n either ¢; € Lx or there is
(s, ¢;) € R such that s € {¢;: j <i}*. This definition of " is available from the authors.

5.2. About choosing axioms to express properties of time

To execute programs in arbitrary elements of M.y might look counter-intuitive.
However, we may replace M,q by Mod(Ax) for a certain fixed set Ax < Fq of axioms
expressing all the intuitive requirements about time and about processes ‘happening
in time’. After having done so, there is nothing wrong with executing programs in
models Me M4 of Ax since Ax does contain all our intuitive ideas about time,
processes etc. It is important, however, to keep Ax to be recursively enumerable.

To illustrate these here, we define a set Ax< Fyy of axioms of the above kind.
Roughly speaking, Ax will be nothing but the Peano Axioms for the sort ¢. However,
in our present syntax F.4 variabies of sort ¢ may occur in formulas which contain
symbols of sort d and i as well. The induction axioms will be stated for these formulas
‘of mixed sort’, too. The axiom system IA definecd below originates from B. Bird.

Definition 14 (the theories PA, OA, IA, Axq, AX., Ax). Let d be a similarity type.
Then td, F,y and Z were defined in Definitions 4 and 6 in Section 2. Let z € Z be
arbitrary. Let p € Fiq4.

We define ihe induction formula, ¢, as follows:

0! = (o) AVz(p ez +1)]>Vz o),

where ¢(0) and ¢ (z + 1) denote the formulas obtained from ¢ by replacing every free
occurrence of z in ¢ by 0 and z + 1 respectively. The induction axioms are:

df
IA ={p,:peFgandzeZ}.

Clearly 1A < F,4 since if ¢(z)e Fq and z € Z, then ¢(0), ¢(z + 1) € F,4 because 0
and z + 1 are terms of sort ¢.

It is important to stress here that ¢ (z) may contain other free variables of all sorts.
All the free variables of ¢(z) are also free in ¢, except for z. They are the
‘parameters’ of the induction ¢;.

The theory 1A says that if a ‘property’ ¢ (z) changes duiing time T, then it must
change ‘some time’, i.c. there is a time point b € T when ¢(z) is just changing.

We define

f
IA* S IAU{j#k:j, keLaband j #k}.
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Notations. We define the abbreviations <C and —< as follows:

20< 21 ©[z0=z1A20# 24)
and

Zo—<21 9 [z0<z1AVz2(20< 22> 21 S 25)].
The finite set OA < Fyq of order axioms is defined as follows:
OA = {Vzo(z0—<z0+1),Vzo(0s 2o A [0=2zovIz((z:+ 1 =20)]),
VzoVziVza(zo<ziv zi<zo]A[zo< 21 < 255 zo<z5])}.

Let PA denote the set of Peano Axioms for the sort ¢ (see e.g. Example 1.4.11
in [8]).

Now we define the theories Axg, AXe, AX:
df +
Axo=0AUlIA".
Ax. denotes Ax, together with the axiom of extensionality, i.e.

df
Ax. = Axou {VyoVy1(Vzolext(yo, z0) = ext(y1, zo}] = yo = y1)},

Ax < AxoUPA. O

Note that Axo, Axe, Ax S Fiq and OA < F,, PA c F,. Recall the similarity type d’
and the standard model N € M,y from Definition 6 in Part I. Let d =d'. Then
N = Ax. UPA.

Remark. The rzason for introducing Ax, is that all the results in this paper remain
true if we replace the type ¢ by a single binary relation symbol =, i.e. if we replace the
structure T by an ordering (T, <) and replace the relation z; = 2o+ 1 by zy —~< zyinall
the definitions and theorems. The modified OA is then a complete axiomatization of
Th({w, =)).

Theorem 3 (uniqueness of traces). Letp € P,and M e Mod(Ax.). Letk € “D. Then p
has at most one trace of input k in IN.

Proof. Let §=(so,...,s.) and F={(ro,...,r.) be two traces of p in I such that
(Vj <c) ext(s, 0) =ext(#;, 0). (I.e. § and F are of the same input.)
We define

df
@(z0) = (ext(so, zo) = ext(ro, Zo) A" * * AexXt(s,, Zo) =eXt(r,, Zo)).

(Here Sq, . . ., Se: To, - - - , I are the parameters of the induction ¢,.)

M = ¢(0) by our assumption. M = Vzo(e(z0) > ¢{zo+1)) because § and 7 are
traces of the same program p and since ! = (j # k) for every two distinct i, j € Lab
(by IA" < Ax.).
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By IA c Ax. and I = Ax. we have
M= [¢(0) A Vzolp(20) = @izo+1))]-> V2o ¢(20).

Therefore M k= Vzo @(20), i.e. (Vj<c)(VbeT)ext™ (s, b) =ext" (r, b). Then §=7
by the axiom of extensionality. [J

The following theorem says that if a trace terminates sometime in Mod(Axo) then
it cannot run again any later time. Moreover if the trace § stops sometime, then there
is an earliest time: m € T such that § stops at time m and from that time on § remains
unchanged.

‘Theorem 4 (uniqueness of termination and output), Let p € P; and It € Mod(Axo).
Let § be a trace of p in Yt and assume that 5 terminates p at a time.
Then there is m € T such that for every b € T conditions (1)-(iii) below are equivalent:
(1) 2=m,
(ii) % terminates p at time b in I,
(iii) ext(§, b) = ext(s, m).

Proof. Let p € P, M e Mod(Ax,), and let § =(so, ..., s.) be a trace of p in .
Suppose § terminates p in MM at time bo € T. Then p ={(io: Uo), - . . , (i,: halt)) and
ext™(s., bo) = ip.
Let H ={be T: ext™(s., b) = i,}. We have to show that

AmeTYH ={beT:b=m}and (Vb € H) ext(§, b) = ext(s, m)).

df df .
(1) Let ¢ = @(20, yo) = (ext(yo, zo0) # i»). Then ¢ (2o, yo) € Fiq since i, is a term of
sort d by definition. Now the induction formula ¢, is

[@(0, yo) AVzolep (20, Yo) = ¢(z0+ 1, y0))]> V2o ¢ (20, Yo).

By M = Ax, and IA < Axo we have M = Vyo(¢s, ).
W 1 Yzo @ (20, 5.) since ext™ (s., bo) = i,. Therefore

M b« [0(0, 5:) AV zol@ (20, Sc) > @(20+ 1, 5.))]

Hence either ext (s., 0) = i,, or ext(s., b) # i, and ext(s., b +1) =i, forsome be T.
Letm L 0orm £ b +1for the above b. Then m € H and either m =Gorm =b +1
for some b¢ H. Let this m be fixed for the rest of the proof.
(2) Next we prove (Vb e H)(Va = b) ext(s, a) =ext(s, b).
Lety=(yo,..., y.). Let

df |
Y20, 7) = Vzal(z1 S zonext(y., 1) = i) > A ext(y; zo) = ext(y;, z1)].
isc
*We shall show that I = Wz, (20, §). M E= ¢[0, 5] is obvious.
Assume I &= y[b, 5]. We show that I = ¢[d + 1, §].
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Case 1: (Va <b) ext(s., a) # i,. Then for every a <b +1 eithera =b +1 and then
ext(s,a)=ext(5,b+1) or a<b+1 and then a <b and hence ext(s., a) #i,. Thus
ME=ylb+1,5]

Case 2: (3a=sb)ext(s,a)=i, Then ext(s,b)=i, by our assumption
I &= Y[b, §]. Thus ext(s, b+ 1) =ext(5, b) by the definition of a trace and hence
M= ylb+1, 5]

Cases 1-2 prove that M= Vze(¥(zo,5)>¥(z0+1,5)). Then by Nk
V5 (¥ (zo, 7))5, and by DT = 5[0, §] we have IM = Vz, (2o, 5). Le. we have

M= VoVl (extis, z1) = in A 21 < 2g) > ext(§, 2o) = ext(§, z1)).

(3) Now we prove H ={be T: b=m} and (Vb € H) ext(5, b) = ext(s, m).

By (2) we have that (Va =m)ext(s, a) =ext(§, m) and therefore H2{beT:
b=m}.

Therefore it is enough to prove H = {b € T: b = m}. We shall use that I = OA by
OA < Axo.

Ifm=0,then{be T:b=m}=T by M= OA. Suppose m =b,+1 and b, ¢ H. Let
be H be arbitrary. Then b b, by (2) and b€ H. Then b>b, and therefore
b=b;+1=m by M= OA.

We have seen that there is an earliest time m when § stops and from that time on §
remains unchanged. [}

Corollary 5. Let p € P.. Then statements (i)—(iii) below hold:

(i) Let M= Axgand letk € “D. Then there is at most one output of p with input k in
MM, i.e. p is deterministic.

(i) Axo k= [O(p, ¢)>Ti(p, ¥)] for every ¥ € DF,.

(iii) AxoF (Vxo- - - xzc-l)[O(p, A x,-=xc+,~)—>D(p, A x; =xc+,~)].

i<c j<c

Proof. (iii) is a special case of (ii) and (ii) follows from (i) which is an immediate
corollary of Theorem 4. [

Note that the formula —(<O(p, ) » Tl p, ¢)) means that there is an input such that
to this fixed input there are two different outputs of p such that one output saiisfies ¢
while the other does not. See row 8 in Table 1 in Part 1.

Definition 15 (che sets Pe, IAY, and IA' of axioms).

df
Pe={0#20+1,20#0>3z1(z1 +1=20), z0+1=2,+1>20=12,

20 zo+ 1, zo# (zo+ D) +1, ..., z0# (- (zo+1) - - -+ 1),...}

df
IAf = {¢ e IA": ¢ contains no free variable of sort ¢ or d}.
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df )
Lax={j#k:j, kel.abandj#k}.

df
IAY={¢; :z € Z, ¢ € F,q and no variable of sort  is
quantified in ¢} U Lax.

That is

I1A%={¢;:z€Z, ¢cFuqand for all i € w the symbol ‘3z,
does not occurin p}uLax. O

Proposition 6 (Andréka-Csirmaz). Statements (i)~(iv) below hold:
(i) IA"UPe {O(p, ¢)»T(p, ¢): p € Py, & € F, has one free variable},
(i) (AN IA‘) U PAHE{O(p,v)>Tp, ¥): p € Py, o € Fyhas one free variable},
Gii) IATVOAE{C(p, ¢)->0(p, ¥): pe Py, Y € DF,},
(iv) IA'GOAFE{O(p, ¥)>0(p, ¥): pe Py Y€ DF.}.

Proof. To prove (iv) it is enough to observe that all the induction axio...s vscd in the
proof of Theorem 4 were ones without parameters, i.e. they were members of IA'.
(iii) was proved in [1]. (¥ and (ii) can be proved from the results in Section 5 of [14]
using the proof of Proposition 12 in the present paper. A direct proof of (i) can be
obtained by using ultraproducts. [

L. Csirmaz proved that

OA u{p € IA™: ¢ contains no free variable of sort ¢} i IA.

Thus Proposition 6(iv) is strictly stronger than Axo = O(p, ¢) - C(p, ¢).
In many situations, the following set Ex of axioms does belong to the intuitively
natural assun ptions about processes happening in time.

Definition 16 (the set Ex of axioms).

Notation. “3!x,” means that “there exists a unique x, such that”, i.e.

o ¢ €= Txo(th A Vi (Fxolte = o A ¥) = xe = Xo)),

where x; does not occur in .

df
Ex ={([Vzo3!x0 ¢]1-> 3y;VzoVxolext(y; zo) = xo> @]):
¢ € F,q and y; does not occur in ¢}.

Note that ¢ may contain free variables and therefore the formulas in Ex written out
in more detail are as follows:

Let z¢, xg, and y; not occur in Z, %, and §. Let ¢(zo, Z, xo, ¥, §) contain no other
variables than indicated. Then the ‘existence-formula’ belonging to ¢(zq, Z, xo, %, 7)
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is
VfoVf(Vlg?!xo (D(Zo, Z-, X0, .f, y)
= y;VzoVxo(ext(y;, zo) = xo© ¢(20, Z, X0, %, 7))). O

The set Ex of axioms is useful when proving formulas of kind <(p, ¢). Here w:
illustrate this by Theorem 7.

df
Let d = ({+” T 0” 1'}’ {(+'$ 3)a ('—'9 3)9 (O', ]l-)’ (1,9 1)})-
We shall use the following abbreviations: 2' abbreviates (1' +' 1') and 3’ abbre-
viates (2' +' 1),
Let p € P, be the following program:
df
p = ((0": if xo =0 goto 3'),
(1": xo<xo—1",
(2': if true goto 0'),
(3': halt)).

(Heren=3andc=1.)
" Next we define the set DIA of induction axioms for the data.
Let ¢ € Fiq. Then ¢{0') and ¢(xo +' 1’) denote the formulas obtained from ¢ Yy
replacing every free occurrence of xo in ¢ by 0’ and x, +' 1’ respectively.
We define the induction formula ¢* as follows:

de
¢* = ([¢(0") A Vxol@ > @ (xo +' 1] Vi @),
df
DIA = {¢*: p € Fi4}.
Theorem 7. Let p and DIA be as defined above. Let

di
Th = Ex UDIA U{Vxo((to + 1) —1' = xo) UOA.
Then
Th &= O(p, true).

Le. p terminates for every input in every model of Th.

Proof. Recall the function 6 from Definition 11 in Part L.

Consider the formula 8(<O(p, true)) € Fiq. Note that the only free variable of
6(O{p, true)) ic xo. Let Me M4 be such that I = Th. We shall use that fact that
M= 0(O(p, true))™.

First we show that I k= 6(<(p, true))(0). By Lemma 1 in the proof of Theorem: 2
and by the meaning of (p, true) we have to show that there is a trace (so, s1) of p in
IR which terminates and which is of input 0'.
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Let ¢, denote the formula xo=0'. Then ¢o€ Fq and ME=VzoI!xo0¢o. Then by
‘M= Ex we have M= yoVzoVxo (ext(yo, 2o) = Xo«> tho) i.e. JME=DyVzg extiyo, zo)=
0.

Let so€ I be such that (Vb € T) ext(so, b) =0'. Similarly, let ¢; denote the formula
(zo= 0-’X() = 0') A (Zo #0-> Xo= 3'). Then $1 € ng and M = VZQB!XO llll. Hence

M = Dyeglext(yo, 0) = 0" A (Vzo # 0) ext(yo, zo) = 3').

Let s;€1 be an intension such that ext(s;, 0)=0" and ext(s;, b) =3’ for every
beT,b#0.

Now it is easy to check that (so, s;) is a trace of p in M, with input 0' and which
trrminates (at time 1). Therefore I = 8(O( p, true))(0).

Let ¢ denote 8(O(p, true)). Next we show that I = (¢ > ¢(xe +' 17).

Leta e D and suppose I &= p[a], i.e. suppose that in IR there is a trace (s, s3) of p
which terminates and which is of input a. We have to show that there is a trace (s4, ss)
of p in M which terminates and which is of input a +' 1'.

Let ¢, be the formula

(Zosloaxo=a+' 1")A(zo=2-=x0=a)AVzi(zo=z:+ 3> xo=ext(s2, z1)).
Let ¢s be the formula
(20=0=>x0=0VA(zo=1>x0=1)A(20=2>x0=2")
AVzi(zo=2z1+ 3> x0=ext(s3, 21)).

Then by IR = PA we have I = (Vzo3!x0 s A Vzo3xo ¢15).

Then by I = Ex we have two intensions s, ss€ I such that (s4, s5) is a trace of p
since (s2, 53) is a trace of p (and by M = (xo +' 1') — 1" = xo), {54, §5) terminates since
(52, 53) terminates, and clearly (s4, ss5) is of input a +' 1'.

We have seen that I = ¢(0') A Vixo(@ = @(xo +' 17). Then M = Vxo @ by M= o~
Le. M= 6(O(p, true)). Then by Lemma 1 in the proof of Theorem 2 in Part I we have
M= (p, true). O

As a contrast we note that according to the standard semantics (see Definition 18),
the set {p € F. : Thi= ¢} of axioms does not imply termination of p, e.g. by [22].

6. Naur-Floyd-Hoare inductive asserticns proof method

The set HF, of Floyd-Hoare statemeats of type d is an important sublanguage
of DFd.
df
HF,; = {(¢ > 0(p, ¢)): pe P, and ¢, y € F,}.

Clearly HF; < DF.,.

Properties of the Floyd-Hoare languages (HF,;, My, =) and (HF,; U Fuq, Mg, =)
were investigated in several papers, e.g. in [1, 3-7, 10-14, 20, 21, 25].
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'

In Definition 17 below we recall the Naur-Floyd-Hoare proof concept (", Prf)
for the language HF,.

Note that F, cHF, is practically true since ¢ is semaitically equivalent to
(true -» J({(io: halt)), ¢)) under very mild hypotheses (namely if io€Lab and
AyVz(ext(y, z) = io)).

Recall the classical proof concept (i-, Prc) from Definition 12. We shall use

Definitions 10 and 12 of Part 1.

-~ T

Definition 17 (Floyd-Hoare proof concept (-, Prf)).

proofs of type d is defined as follows: |
D i oy = 5T » (n a1 » ’)))f ¥

W T XIL ML W T \Liy g\ TT LI\ W
tions (i) and (ii) below hold:
(i) H< F; and lH|<m

i) r={mo, ..., Tns1), (Do, ..., D,)) such that conditions (1)-(4) below hold for
every m < n. (Recall from Convention 1 that p = ((io: uo), . . . , (i»: halt)).)

1) D, = Fd and (H Tn+1, (@ > Do)y € Pre.

() If um =“x;j—17", then

(FI: Tm; (¢m -> ¢m-i-l(-xi/'r))) € Pl'c,

where @,,.1(x;/7) denotes the formula obtained from @,,.; by replacing x; every-
where by 7.
3) If u,, =“if xy goto v, then

<Ha s (P AT X\"') D) N({(DP A X)—) @d,))) e Prc.
(4) If u,, = *halt”, then
(H, Ty (¢m nd ‘l/)) € Prc.

By these we have defined the set Pric (HF,)*. Clearly Prf is a decidable subset
of (HFd)*.
Let Th< F,; and let p € HF ;. Then we define

Th+F p iff (3(H, w, p)e Prf}H < Th.

By -this we have defined the proof concept (+F, Prf) on the language HF, in
accordance with Definition 10 in Part I. O

Proposition 8. (+F, Prf) is a decidable proof concept on HF 4.

Proof. The proof is straightforward by usirg the fact that the set Prc of classical first
order proofs is a decidable subset of (F;)*. O

Recall OA and IA® from Definitions 14 and 15 respectively.



268 H. Andréka, I. Németi, I. Sain

Theorem 9 (semantic characterization of Floyd’s method). Let Pres< PA be Pres-
burger’s arithmetic, i.e. Pres is the theory of {,0, 1, +), and Pres¢: F.. Let Thg Fy
and p € HF, be arbitrary.
Consider statements (i)-(v) below:
(i) Th+"p,
(ii) ThuIA%=p,
(iii) ThuIATUOAKEp,
(iv) ThuIA%UPreskp,
(v) TholAFEp.
Then (i) © (ii) € (iii), (i) € (iv) and (i) €& (v). Moreover, (i)-(iii) are equivalent, but
there are d, a finite Th< F4 and p € HF 4 such that

ThulA%UPres=p and ThulAkEp but Thi-Fp.

Proof. Let The Fy and p = (¢ >0(p, ) € HF..

Proof of (1)=>(ii): Assume Th-Fp. Let M=ThuUIA®. We have to show
m: (‘P e d D(P» ‘/]))-

Let (g, k, r) be an arbitrary evaluation of the variables. Suppose M &= ¢[g, k, rl, i.e.
D & ¢[kl. We have to show I = Cl(p, ¥)lg, k, r).

Let 5 =(so, ..., s.)beatrace of p in IN with input k. We have to show D = ¢[q]for
every possible output g of 5. Th ~F p means that (H, r, p) € Prf for some H = Th and
for some r. o

Let r={mo, ..., Tns15{Do,..., DPu)). Let 7 =(yo,...,yc-1) and define the
formula y as

df df n
Y2 YZ0 Yoo o - s Vo) = [ A (€Xt(3er 20) = imm = B (eXL(5, zo»)].

m=0

Clearly y & F,4 und then y], € IA" since no quantifier of sort ¢ occurs in ¥.

By Definition 17(ii)(1) we have that (H, r, p)€ Prf and H = Th imply Th— (¢ >
@,), and then D = @ [k]by D = ¢[k]and MM = Th. Thus M = y(0, 5) (by M = {i,,, #
iy for m<lI=<n}).

By conditions (ii)(2)-(3) in Definiticn 17, by the soundness of the classical proof
concept, and by the facts that (I, r,p)ePrf, M= H and § is a trace of p in M
we obtain that M= Vzo(v(z0, 5)-> y(z0+1,5)). Then by ME= y;, we conclude
M= Vzo v(zo, §).

Let he T and assume that § terminates at time b with output g € “D. Then
DE @,[q] since M= y(b,5). By condition (ii)(4) in Definition 17 we have
(H, 7., {®D, > )y Prc and hence H = (€, » ¢). Thus D = (D, » ¢) and therefore
DF ¢lq]lby DF &,[q].

We have proved I = (¢ = 0(p, ¢¥)).

(ii) = (iii) is obvious.

Proof of (iii)=>(i): One can prove the present implication by using [13], see
Theorem 4 of [12]. In doing this the methods of [10] and [14] can be useful.

We have proved (i) € (ii) € (iii).
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Proof of (v)¥ (i): It can be proved that IAE=Yzdz,(zo=0v zg=2,+1).

Let d consist of the symbols 0', suc, <'. Let Th < F, be the theory of (w, 0, suc, <).
It is known that Th is finitely axiomatizable that is we may assume |Th| < and Th is
complete, see [8].

We have to find p € HF, such that ThuIAE=p but Thi+fp. Let

p < {(0: xo —suc xp), (1: x; = suc xy),
(2: if xo # x, goto 0), (3: halt)).
Let ¢(z0, yo, y1) be the formula
Vzi[ext(yo, zo) = ext(yo, z1) > ext(y1, zo) = ext(y1, z1)].

Then ¢(z0, yo, y1):, € IA. Hence from ThU IA it is }-N-provable thatif (yo, ..., ya)is
a trace of p and ext(yo, 0} =0', then Vzo ¢ (20, Vo, y1).

Let p € HF, consist of a program which executes the above p twice with the output
condition of p stating that the resuits of the two executions of p coincide. Let the
input condition of p be xo=0". With the kind of induction, used while prceving
Vzo ¢ (20, Yo, 1) above, one can prove Th UIAF"p. For a hint see the proof of
(iv) # (i) below. By Theorem 2 (our completeness theorem for ") then (v) holds for
Th and p.

The easiest way of proving Th “Fp goes by using ultraproducts. Assume Th ~F p.
Let @, be the inductive assertion in the first execution of p and @, be the one in the
second execution of p. Look at the relations which @, and @, are supposed to define
in the model {w, 0, suc, <). By an easy ultraproduct construction one can see that
these relations are not definable. Hence Th t£" p.

Froof of (iv) # (i): Let d, Thand p be as in the proof of ((v) & (i)). ThenTh HF pby
the same ultraproduct construction as above.

The idea of the proof of ThuIA%U Prest=p is the following:

If we have Pres postulated about time structure, then we can perform addition on
time. Then we can say that *“if ¢ is true at time zo < z; and y is true at time z,, then ¢
is true at time z, + 2o t00”, i.e. if e.g. we execute the same program twice and z, is the
time of the first termination, then we can say that ‘““if ¢ holds at time zo< zy, then it
will hold exactly z, time after z; again”. Ancther way of proving these is by using
Theorem 4 in [12]. O

Part ((i) € (iii)) of Theorem 9 implies that the language (DF4 Mod(Axo), =) is
reasonable enough, it contains no impossible models. I.e. the models of Ax, do not
contradict the Floyd-Hoare proof rules for programs.

Part ((i)  (ii)) of Theorem 9 is a kind of semantic characterization of the
information implicitly contained in the Floyd-method. It appears that this informa-
tion content of Floyd-method is IA®, Theorem 9 aiso says that if we can reason about
time as being ordered, i.e. use OA < F,, then our reasoning ability is not beyond the
power of Floyd’s method. But if we can perform addition on time (note that
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Presi=0A) or if we can quantify over time points (IA), then our reasoning ability is
definitely beyond the power of Floyd’s method. Note that quantifying over time is
roughly the same as using time-modalities.

It is interesting to compare the powers of different proof methods. The following
Theorem 10 says that the proof method (—", Prn) is strictly stronger than the
Floyd-Hoare method (¥, Prf).

Definition 18 (the standard dvnamic language (DFg, SThig4 =°)). Let M=
(T,D, I, ext) e M.

M is said to be srandard iff conditions (i)-(iii) below hold:

i T={w,=<,+,,0,1),

{ii) I="D.

(iii) (Vs "D)(Vb e T) ext(s, b) = s(b).

The class of all standard elements of M, is denoted by STM,.

Let Th = DF, and ¢ € DF,. Then we define

ThE* ¢ & (Ve Mod(Th)nSTM,)) ME . O

Note that STM, = Ax and .t € STM, where N and d’ were defined in Definition 6
in Part 1.

Theorem 16 (Bir6-Csirmaz). There are a similarity type d and a finite theory The F,
such that for some Floyd-Hoare statement (¢ - O(p, ¥)) € HF, conditions (i)—(iii)
below hold:
() Thu Axo =" (¢ > (p, ¥)),
i) Th" (¢ >0{p, ¥)),
(iii) Th=* (¢ »T(p, ¥)).

Proof. In the proof of past ((v)%(i)) of Theorem 9 a finite Th < F, and p € HF ; were
constructed such that Thi*p but ThUIAH" p. By TA < Ax, we proved (i) and (ii).
By STM, = Ax obviously (i) always implies (iii) but validity of (jii) can be checked
directly by looking at our concrete Th and p.

Note that we do not need the fuli power of the proof of Theorem 9 here since the
ultraproduct construction proving (ii) is clear, and to prove (i) we have the full power
of Axy=]A" UPA at our disposal. [J

Problem. Do there exist d, Th< F,; and p € HF, such that
AxUThi=p and AxouTh¥p?

Definiticn 19 (the sets PA’, PA , of axioms about data). Recall from Definition 6 that
the similarity type d’ consists of the binary relation symbol <’ and the operation
symbols +', ', 0, 1’ with arities 2, 2, 0, 0 respectively. Note that d' is disjoint from ¢,
actually 4’ is a disjoint copy of #. PA’' denotes the set of Peano axioms formulated
in Fd' .
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Note that 3t k= PA’ U PA where i was introduced in Definition 6. Also note that
PAc FZ while PA'c Fy.

Let d be an arbitrary similarity type containing d'. Then F; 2 F; but possibly
F; #Fy.

We define PA, as

PA, Z PA'L {(le(0) A Yx(e(x) > p(x +' 1))]>Vx o(x)):

@(x)e Fs}.
Clearlyd =d'if PA,=PA'. (1

Theorem 11 (Andréka-Csirmaz-Németi-Paris). Let the similarity type d contain d’.
Let Th = F; and p € HF 3. Assume PA' = Th. Then (i)—(iii) below hold:
(i) Th="p ©ThuAxe = p,
(ii) Th-" p © ThUAxEp,
(iii) PA'+F p & PA'UAxEp.

Proof. Proofs of (iii) can be found in [3, 7]. The picof of (i) can be found in [1] as
Theorem 6 there.

(ii) was proved in [1] as Theorem 6 there under the additional assumption that
Th 2 PA,. The condition Th 2 PA, was eliminated from the proof of (ii) by Jeff B.
Paris (Manchester) and L. Csirmaz recently. []

About (ii) of Theorem 11 above we would like tc emphasize that if PA' < Th, then
d may contain symbols for which the induction axioms are not postulated, moreover,
it is allowed that for some ¢(x) € F; we have

(e(0)AVYx[@(x)=>o(x +'1)]A3x —1p(x)) e Th.

Of course in this case ¢ (x) € F,; but ¢(x) € F,~. To be able to appreciate the difference
between the conditions PA; < Th and PA’< Th see the concrete example con-
structed in the proof of Proposition 13.

Note that by Theorem 10 the condition FA’' < Th is necessary in Theorem 11(i)
and (ii).

7. Connections with some other branches of explicit time semantics of programming

We use the names “Explicit Time Semantics”, ‘“Nonstandard Seraantics”,
“Nonstandard Time Semantics” as synonyms. For works in this field see [1, 3, 5-7,
10-14, 20, 21].

In Definition 20 below we recall the Continuous Traces Language CL, of type d
from [3, 4, 10-14].
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Definition 20 (the Continuous Traces Language CL, =(HF,, M, =°%)). Let ¢ € F,.
Letmewandlety ={yo,...,Yym)and ¥ =(xo, ..., xm). Let ¥ = ext(y, zo) denote the
formula A, ., xi = exi(y;, zo).

We define the formiula @, € Fq to be VX (X = ext(§, zo) = @).

Remark. ¢,. = ¢m(Zo, ¥) € Fiaand ¢, is equivaient with ¢ (ext(ye, zo), . . . , €Xt(Ypm, Zo),
Xmslseo-s X)) i @ =@ Xy .00y Xy).

We define
TAo = {(pm) L ¢ & Fs mew}U{(i #): i, je Laband i #j}.

Recall the set Pe < Fiq of ‘successor axioms’ from Definition 15. The Continuous

Traces Axioms are Ctax < 14 uUPe.
Let E= M, and ¢ € DF,. Then we define

EF ¢ & (Ve Mod(Ctax))[D=E=>IME ¢].

The Continuous Traces Language is

CL, = (HF,, My =%, O

Let Thc HF, and ¢ € HF ;. We shall use Th =° ¢ in the usual sense, i.e.
ThE @ iff (VEEeM)EE"Th=>EE ¢l

It is easy tc check that Th =° ¢ iff Thu Czax = .

The Continuous Traces Semantics (or Language) CL, = (HF;, My, =°) was intro-
duced in [4] and further refined and investigated in [3, 10-14]. In [3, 4] =° was
denoted by =",

Recall IA® from Definition 15.

Preposition 12 (semantic characterization of Continuous Traces Semantics). Let
Th < Fyand p € HF 4. Then statements (i)-(iii) below are equivalent:
(i) Th=p,
(ii) ThuIA%=p,
(iii) ThulApE=p.

Proof. Assume (i). Then by [10] Th " p. Then by the proof of part ((i) = (ii)) of
Theorem $ we have ThUIAo=p. To see this observe that in the proof of Theorem
9((i)=> (i1)! the only elements of IA we used were of the form ¢ (ext(y, zo))z, for
some ¢{¥)€e F,; ¢ containing no other free variables than x. This proves (i) = (iii).

(iii) => (ii) is obvious since IA, = IA%.

(iii) =% (i) holds by 1A, < Ctax.

Assume (ii). Then by Theorem 4 in [12] Th~" p. Then by the proof of Theorem
9((i) = (ii)) we have Th UlAyFp. Le. (iii) holds. O
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Remark. Let d 2d’, PA' and PA, be as in Definition 19. Then for every Thc F,
such that PA;<Th the Continuous Traces Semantics (HF, Mod(Th), =) is
equivalent with the Definable Traces Semantics of Gergely-Ury [20, 21] w.r.t. Th.

However, there are d 2d’ and a decidable Th< F; such that PA’'cTh and
(HF4 Mod(Th), =°) is not equivalent with the Definable Traces Semantics -
[20, 21] w.r.t. Th.

Proposition 13. Let d’ and PA’ be as in Definition 19. Then there are d 2d’ and a
decidable theory Th < F, and p € HF; such that PA' <Th and ThE=p and ThE"p
and Th+F p but Th does not imply p w.r.t. Definable Traces Semantics of [20, 21].

Proof. Let d consist of d’ together with a new unary relation symbol R and a new
constantsymbol c. Let Th £ PA' U{R(0'), [R(x)> R(x +' 11}, Let the program p be
((0": x0 <0, (1" if xo=c goto 4'), (2": xo~x,+'1"), (3": if true goto 1'), (4': halt)).
Then Th +" Cl(p, R(x,)) and clearly Th = Cl(p, R (xo)).

Let D be a model of Th such that ) = R(c). Such a D exists since if (D, +, -, 0, 1)
is any nonstandard model of PA' and R < D is the set of all standard numbers and
c € D is any nonstandard number, then D = Th and D = —1R(c).

Then CI(p, R(x)) is not true in D w.r.t. definable traces since there is a definable
trace of p in D which terminates with output ¢ (of course this definable trace is not
continuous). At the same time D E“J(p, R(x0)) and D = Cl(p, R(x,)) since no
continuous trace of p terminatesin D. [J

In this context see Section 10 at the end of this paper.

8. Connections with related approaches in programming theory

Let y be a variable in a program scheme. Sometimes such a y is called an ‘identifier’
instead of ‘variable’. We use the word ‘variable’. What we call an ‘intension’ of y is
called an ‘L-value’ of y in ‘Scott-Strachey semantics’ of programming languages (sce
[23, p. 202]), while an extension ext(y, timepoint) is called an ‘R -value’ of y there.
Intensions for y are often called ‘addresses or locations in a computer corresponding
to the identifier y’ and ext(y, timepoint) is often callzd the ‘content of the address’
(mentioned above) at the po°nt ‘timepoint’ of time. See the ‘“Temporal Noticns™ of
the Milne-Strachey book [23] on programming semantics.

In ‘operational semantics’, abstract machines with registers are often used. Then to
a variable (or identifier) y which occurs in a program, a register of the machine is
associated. During the ‘computation’ or ‘execution of the program’ the register
associated to y remains the same, it does not change. However, the content of the
register may change many times. The register associated to y is the intension of y
while the content of this regisier at time z is the extension of y at time z and the
present paper denotes it by ext(y, z). See e.g. Section 3 of Cook [9].
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In other approaches to programming semantics, e.g. in VDL, the concepts
‘environment’ and ‘state’ (or ‘store’ or ‘memory’) do correspond to our intensions and
extensions. See e.g. [23, p. 203]. Namely an environment maps the variables
{y.: wew} to ‘locations’ and a state maps the locations to data values, i.c. to
elements of D. Thus environments are like our traces, locations correspond to our
intensions and a state corresponds to the function ext(—, z):I»>D whereze T isa
parameter. Le. states are like elements of T, they correlate extensions to the intensions.

In short: our intension—extension duality corresponds to the usual locations-
values duality as described e.g. in [23, pp. 202-203]. During the execution of a
program, the intension associated to a variable y does not change. Analogously, the
location associated to v does not change. Le. the command “y=y+1” is a
meaningful statement about the location or intension associated to y but it is not so
meaningful if we fry to interpret it as a statement about the value or extension
associated to y.

9. Connections with relzted approaches in nonclassical model theory, philosophical
logic and semantics of natural languages

The above mentioned problem was raised and studied not only in ‘program
semantics theory’ but also in a broader theory of Semantics of Languages in general.
A frequently used and weli-developed branch of the latter is ‘Intensional Model
Theory’, see e.g. [24, 18]. Intensional Logic and Model Theory was elaborated by R.
Montague (a student of Tarski) and his followers, see [24, 18]. Our way of using these
notions ir: programming theory is explained in [25], [16, Section 2, pp. 3-4], and in
[15] with several nice drawings on pp. 33-34.

In Intensional Model Theory frequently used examples are the sentences “The
temperature rises”’, “The price of sugar rises” etc., see [24, p. 268], [19]. They
correspond to “‘y rises” where y is a variable standing for intensions. At a valuation k
of the variabics into 8 = (T, D, I, ext) such that k(v) = s € I, the statement “y rises”
is true in P iff ext(s, n) <ext(s, n + 1) holds in M. Le. **y rises” is meaningful only if y
denotes an ‘intension’, i.e. a function from some set T of time points to some set D of
possible values. This ‘motivating example’ sentence: ‘‘y rises” of intensional model
theory is quite similar to the ‘programming language sentence’ y = y + 1. The latter is
true if ext(s, n + 1) =ext(s, n) + 1 holds in I at the valuation k(y)=sel.

Another i.itensional logic example: “The president changes in every four years™.
Le. “y changes in every four years”. This is true at valuation k(y)=se I in I iff
W k= (ext(s, n) # ext(s, 1 +4)). Compare with “y changes during the execution of a
program’,

The model theoretic treatments of time in [17, p. 188 Definition 3.1] and [24, p.
2587 are simiiar iv ours 1n *he respect that a ‘generalized model or interpretation’ in
both cases contains a structure T=(T, <,...) called time structure, see [24, pp.
37-38, 98-101, 258]. In [24, p. 258] an ‘interpretation’ is a tuple (A, I, J, <, F)
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where {J, <) is the same as our T; A is our ‘D’ and ’A which is denoted there by S,azs
is our ‘I’. A is called there the ‘set of intensions’ exactly as we do here. Our
operation symbol ‘ext’ is denoted there by ‘ v’.

In[17, p. 188] our M is ‘W’ and our T is (T, <)’. However, there are no intensions
there thus the analogy stops here. It is true that the meaning of a constant symbol ‘c’
in % is an element of A where A is|_{A,: t € T} but there are no variables ranging
over "A in [17], while in [24] the variables of type (s, ¢) are just doing that.

An essential difference between intensional models (M4 of this paper or in [24])
and ‘Kripke-style’ models ([2] or [17]) is that in a Kripke modei (T, (D,: t€ T')) the
elements of "D do not form a separate universe or ‘sort’ to speak about while in an
intensional model M = (T, D, "D, ext) they definitely do so. See [2, p. 3].

For further considerations on the subject of Sections 8 and 9 see [26].

10. Recent developments and problems

To motivate the problems below, first we formulate some results. The notations d’
and PA’ c F; were introduced in Definition 19. N, =*, OA, §TM,, and IA® were
introduced in Definitions 6, 18, 14 and 15.

Theorem 14 (Plotkin-Németi). Let Thc F,; be recursiveily enumerable. Assume

Th 2 PA’ and that ZFC=“Th is consistent’. Then there is p € HF 4 such that
ZFC+“Th=“p” and ThiFp.

Theorem 15. There is a decidable set Tax < F 7 of time axioms such that N &= Tax and

for some p € HF;, we have

PA'UIA*UTaxFNp and PA'HFp.

We define

1A' € (o} 1 ¢ € Fqand(Vi >0)(z; does not occur in ¢
neither free nor bound)} U Lax.

Theorem 16. There is a finite Th< F; and p € HF; such that
ThulIA'UPerNp and Thy p

Cf. Theorems 9 and 10. Theorem 16 above says that any fragment of DL, in which
time modalities (always, sometime) are still available has a greater reasoning power
than that of Floyd-Hoare method.

Theorems 17, 18 below are not recent developments, they are included here to
motivate Problem 1 below and to show that the dynamic logic (DL, ") developed
in the present paper is complete in the sense of [9] and Harel w.r.t. standard time
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models. About these notions see thz introduction of Part I. Note that in the axiom
systems Numb and $:h(K') below no dynamic formulas occur, they contain only
classical formulas from Fy.

Theorem 17 (arithmetical completeness in the sense of Harel). Let K < M.

Sth(K) = {p € Fua: (N, D, “D, value of) = ¢ forall De K’}
Le.

Sth(K)={p € Fia: (VIR e STM)[De K =M= o]}
Let p € DF,. Then '

Sth(K) -~ p if K = p.

Corollary 18 (completeness w.r.t. oracles in the sense of [9]). Let

df
Numb = {p € Fig: N = ¢}.
Let ¢ =DF,. Then
Numb =N p if N = p.
Problem 1. Does there exist St < Fiy such that for every Thc F,; and p € HF,; we
have

ThEYp ©StuThEp?

Problem 2. Do there exist d, Th< F, and p € HF,; such that
AxuThEp and AxeuThEp?
Cf. Definitions 14 and 18, Theorem 10, and Proposition 6.

Problem 3. What is the answer to Problem 2 above under the additional restriction
that Th be recursively enumerable?

Problem 4. Let Presc F, be as in Theorem 9. By Theorem 9 there are a finite
Th< F,; and p € HF,; such that

ThuIA%UPresk=p but ThuIATUOAF)p.

Note that roughly speaking OA = Pres € PA and they are the theories of (suc, <),
(suc, <, +) and (suc, <, +, -) respectively.
Are there a decidable Th< F, and p € HF, for some d such that

ThUuIAY* L PAEp but ThulA*UPres#p?
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In other words: Theorem 9 says that the ability of performing addition on time
increases the reasoning power of dynamic logic. Does the ability of performing
multiplication on time affect the reasoning power in any similar way?

Problem 5. Let IA® and IA be as in Definition 15 and Proposition 6. Let The F,;
and p € HF, be arbitrary. Is it true that

Th+Fp iff Thu (AN IAY) UPAEp?
Cf. Theorems 9 and 10.

Problem 6. Let Thc F, and p € HF,;. Assume Th2PA' and Thu AxUEx = p. Is
then Th - p true?

Problem 7. Let d and DIA be as in Theorem 7. Let p € HF ;. Assume F; 2 Th 2 PA’
and Thu AxUExUDIA &= p.
Is then Th ¥ p true?

Problem 8. Continue the investigation started in Definition 16 and Theorem 7!
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