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In Part I of the present paper W~Z defined the first order dynamic language DLd 
(of type d). In Definition 13 ~3 defined a decidable proof concept (I-~, Prn) for DLd, 
and in Theorem 2 we proved that (kN, Pm) is a strongly complete inferenr:e sys- 

tem for DLd. That is, for every theory Th and formula qj of first order dynamic lan- 
guage we have Th + q iff Th I--~ cc). By j!?ynamic Logic of type d we understand 

(DLd, (bN, Pm)). 
Here we investigate further properties of our Dynamic Logic, its expressive power, 

how it can be used for various purposes, how it can be adapted to various situations. 
Then we investigate Floyd’s method using the framework of DL. A complete 
characterization of the amount of information implicitly contained in Floyd’s method 
will be found but several questions remain open in this line. The proof method I--.~ is 
proved to be strictly stronger than Floyd’s method in Section 6. Different semantics 
? programming are compared in Section 7 within the framework of DL. Com- 

krisons with several approaches related ill several ways are given in Sections 7-9. 

5. Properties of IlEd 

5. I. Methods of proving properties of progrwm 

The proof concept (I_~, Pm) introduced In Definition 13 is also a new method of 
proving properties of programs. E.g. t-N can be used to prove partial correctness, 
total correctness, termination etc. of progra,ms, see the example after Definition 9 in 
Part I. The proof method I--~ is complete by Theorem 2. In Andreka-Csirmaz- 
N&meti-Sain [l] the proof method I-~ was compared with the Flnyd---Hoare method 

of proving partial correctness and it was found that t--N is strictly stronger, i.e. there 
are correct programs provable by t-N but not provable by the Flloyd-Hoare method. 

(See Theorem 10 here.) We shall return to this point later, in Section 6a 

* For Part I see Theoretical Compter Science 17(2) (1982’) 193-212!. 
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There is a second, Hlilbert style, definition of the proof concept kN. Then I--~ is 

defined by a decidable set Lx c DFd of logical axioms and a decidable set R c: 
(DFJ* x: DFd of proof rules. B.oth Lx and R are defined by finite schemes of 
formulas. Then an i--N-proof is defined to be a finite string w of elements of DFd such 

that if H! = (cpi: i < n) for some n E w, then for all i <: n either Q~ E Lx or there is 

(s, Q~) E 19 such, that s E { cpi : j < i}*. This definition of tN is available from the authors. 

5.2. About choosirrg axioms to express properties of time 

To execute programs in arbitrakry elements of & might look counter-intuitive. 

However, we may replace A& by ,Mod(Ax) for a certain fixed set Ax c Ftd of axioms 
expressing all the intuitive requirements about time and about processes ‘happening 
in time’. After having (done so, there is nothing wrong with executing programs in 
models ‘%!E A4td of 3.~ since Ax does contain all our intuitive ideas about time, 
processes etc. It is important, however, to keep Ax to be recursively enumerable. 

To illustrate these here, we define a set Ax z Ftd of axioms of the above kind. 

Roughly speaking, Ax jwill be nothing but the Peano Axioms for the sort t. However, 
in our present syntax jFta variables of sort t may occur in formulas which contain 

symbols of sort d and i as well. The induction axioms will be stated for these formulas 
‘of mixed sort’, too. The axiom system IA defined below originates from B. Biro. 

DefiniilbEon 14 (the theories PA, OA, IA, Axe, Axe, Ax). Let d be a similarity type. 
Then td, Fld and 2 were defined in Definitions 4 and 6 in Section 2. Let z E 2 be 
arbitrary. Let p E Ftd,, 

vve define the induction formula, Q f as follows: 

+ fE ([Q(~)A~~z(Q~Q(z+~))]-*~~zQ), Qz 

where Q(O) and Q(Z + 1) denote the formulas obtained from Q by replacing every free 
occurrence of z in Q by 0 and z + 1 respectively. The induction axioms are: 

IA %.(Q:: Q E Ftd and z E Z}. 

Clearly IA G Ftd since if Q(Z) E Ftd and z E 2, then Q(O), Q (z + 1) E Ftd because 0 
and z f 1 are terms of sort t. 

It is important to stress here that (p(z) may contain ofherfree variables of all sorts. 
All the free variables of Q(Z) are also free in Q: except for z, They are the 
‘parameters’ of the induction Qz. 

The theory IA says that if a ‘property’ q(z) changes during time T, then it must 
change ‘some time’, i.e. there is a time point b E T when Q(Z) is just changing. 

We define 
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Notations. We define the abbreviations <: and -X as follows: 

The finite set OA c Ftd of order axioms is defined as follows: 

OA 2 {Vz,(z, -< zo+ l), VzoKK ZQ A [0 = zo v Eizl(zl+ 1 = to)]), 

Let PA denote the set of Peano Axioms for the sort t (see e.g. Example 1.4.11 

in [8]). 
Now we define the theories Axe, Axe, Ax: 

Ax0 = df OA u IA’. 

Ax, denotes Ax0 together with the axiom of extensionality, i.e. 

Ax, df = AXO u WyoVydVzdext(yo, ZO) = ext(yl, Al + YO = Y I )I, 

Ax g AxouPA. Cl 

Note that Axe, Axe, Ax c Ftd and OA c Fr, PA c Ft. Recall the similarity type a” 
and the standard model %! E A&p from Definition 6 in Part I. Let d = d’. Then 

(31 I= Ax, v PA.. 

Remark. The reason for introducing Ax0 is that all the results in this paper remain 
true if we replace the type t by a single binary relation symbol 6, i.e. if we replace the 
structure T by an ordering (T, S> and replace the relation z 1 = z. + 1 by z. --( z 1 in all 

the definitions and theorems. The modified OA is then a complete axiomatization of 

ThG, 9). 

Theorem 3 (uniqueness of traces). Let p E Pd and %?I E Mod(Ax,). Let k E “D. Then p 
has at most one trace of input k in Y%. 

Proof. Let S = (so, . . . , s,) and J = (ro, . . . , rJ be two traces of p in ‘2R such that 

(Vj < c) ext(s,, 0) = ext(rj, 0). (I.e. S and J are of the s8me input.1 I 
We define 

df 
lp(zo) = (ext(so, zo) = ext(ri), 20) A ' * ' A ext(s,, zo) = ext(r,, zo)). 

(Here so, . . . , scr ro, . m . , r, are the parameters of the induction &,.) 

2X t= rp(0) by our assumption. !%R I= Vz&(zo) + &o + 1)) because S and 7 are 
traces of the same program p and since 92 /= (i # k) for every two distinct i, J’ E Lab 

(by IA+ c AX,). 
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By IA c_ Ax, and ‘82 k= Ax, we have 

m k= MO) A V2G&P(Zo)-,(4~M- ~>)I-,~~0 dZO)@ 

‘Therefore IDZ k= Vro q(to), i.e. (Vj c ~)(Vdb E T) extm(sj, b) = exdm(ri, 6). Then S = ? 
by the axiom of extensionality. Cl 

The following theorem says that if a trace terminates sometime in Mod(Axo) then 

it cannot run again any later time. Moreover if the trace S stops sometime, then there 
is an earliest timt: m E T such that S stops at time m and from that time on B remains 

unchanged. 

Theorem 4 (uniqueness of termination and output). Let p E Pd and m E Mod(Axo). 
L,et B be a trace of p in $2 and assume that 3 terminates p at a time. 

Then there is m E Tsuch that for every b E Tconditions (i)-(iii) below are equivalent: 
(i) b am, 

(ii) 3 terminates p at time b in %J2, 
(iii) extjs’, b) = ext@, m). 

. 

Proof. Let p E Pd, m E Mod&to), and let S = (SO, . . . , s,) be a trace of p in !kJ’k 
Suppose s’ terminates p in %@ at time bo E T. Then p = ((io: uo), . . . 9 (in : halt)) and 

ex?(s,, bo) = in. 
Let H = {b E T: extm(,sC, b) = i,}. We have to show that 

(3m E T)(H = (b E T: b 3 m} and (Vb E H) ext(S, b) = ext(F, m)). 

(1) Let cp g ~(20, yo) z (ext(yo, 20) # i,). Then q(to, yo) E &d since i, is a term of 

sort d by definition. Now the induction formula ‘pl,, is 

[dO,Yo)~~’ ( ( &O,cp yo)‘cp(zo+ 1, Yo))l-*mJ da* Yo)* 

By %R k Ax0 and IA c Ax0 we have %R I== tly& z’,). 
i!Jt w Vzo cp(zo, s,) since extlR(sC, bo) = in. Therefore 

Hence either ext (sC, 0) == in OI- ext(s,, b) ?t in and ext(s,, b + 1) = in for some b E T. 
Letm SOorm ~b+lfortheaboveb.Themm~Handeitherm=Oorm=b+1 

for solme b&H. Let this m be fixed for the rest of the proof. 
(2) Next we prove (Vb E H)(Va 3 b) ext(S, a) = ext(3, b). 
t& $j = (~0, . . . , yc). Let 

qi(ro, p) 2 VzJ(z 1 s 20 A ext(y c, tl) = in) -* A eXt(yj, to) = WYj3 tl)l* 
jsc 

We shall show that !!I? k: Vzo (I;r(zo, S). 9J2 I== @CO, g] is obvious. 

Assume 9X f= $[b, s]. We show that 83’1 k= @[b + 1, s]. 
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Case I : (Wa s 6) ex&-, a) # in. Then for every a s b + 2 either a = b + 2 and then 
ext(S, a) = ext(S, b + 1) CY a <= b + 1 and then a s b and hence ext(s,, a) # i,. Thus 
!lX! I= $[b + 1, S-J. 

Case 2 : (3a s bl ext(s,, a) = i,,. Then ext(s,, 6) = i, by our assumption 
%R I= #[b, ~‘1. Thus ext(& & + 1) = ext(s’, b) by the definition of a trace and hence 
V2 I= #[b + 1, s]. 

Cases l-2 prove that % k Vz&+(zo, S)+ Il/(z~+ 1,s)). Then by 9’1 I= 
Vj@(ro, jQ)zO and bv $2 k-- .5[0, S] we have 9.X I= t/z0 $(zo, 5). I.e. we have 

(3) Now we prove H = {b E T: 6 a m} and (Vb E H) ext(s’, b) = ext(S, m). 
By (2) we have iiirrat (Va 2 m) ext(s’, a) = ext(Z, m) and therefore H 2{r7 E T: 

barn}. 
Therefore it is enough to prove H E {b E T: b 3 m}. We shall use that g1 k OA by 

OA E AxO. 
Ifrrr=O,then(bE’~:b~m}=Tby~~OA.Supposem=6~+land6~~1%‘Zet 

b E H be arbitrary. Then b 6 61 by (2) and b 1 k H. Then b > b 1 and therefore 
bBbr+l=rn by?IlU=OA. 

We have seen that there is an earliest time m when S stops and from that time on S 
remains unchanged. 13 

Corollary 5. Let p E PC!. Then statements (i)-(iii) below hold : 
(i) Let 9.X I= Ax0 and let k E V. Then there is at most one output ofp with ilnpwt k in 

?Dz, i.e. p is deterministic. 
(ii) Ax0 I= [<>( p, ~9) -, lX( p, +)I for every $ E DFd. 

(iii) Ax0 k= (Hxo l p, 

Proof. (iii) is a special case of (ii) and (ii) follows from (i) which is an immediate 
corollary of Theorem 4. q 

Note that the formula l(O( p, i(l) + EI(p, q )) J means that there is an input such that 
to this fixed input there are two different outputs of p such that one output satisfies $ 
while the other does not. See row 8 in Table 1 in Part I. 

Definition 15 (:he se:ts Pe, IA’, and IA’ of axioms). 

IAf 2 {q E IA’: q contains no free variable of sort t or d}. 
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LaxE{j#k:j,kELabandj#k}. 

L4’ 9 {(at : z E Z, (9 E Ftd and no variable of sort t is 
qluantified in cp} u Lax. 

That is 

IA4 = {qz : z E 2, cp E Ftd and for all i E w the symbol ‘3Zi’ 
does not occur in cp} u Lax. 0 

prcbposltion 6 (Andrika-Csirmaz). Statements (i)-(iv) below hold: 
(i) IA’ u Pe rf {o( p, $) + q ( p, $): p E Pd, # E Fd has one free variable), 

(ii) (IA” n IA’) u PA # {O(p, 4) --) q (p9 #): p E Pd, + E Ei has one free variable), 
(iii) IA”UOA~{O(p,~)-*O(p,J/):pEPd,~E~Fd), 

(iv) IAf u OA I== (O( ps @) -+ n( p, #): p E Pd, # E D&}. 

Proof. To prove (iv) it is enough to observe that all the induction axio,,::;i used in the 

proof of Theorem 4 were ones without parameters, i.e. they were members of IAf. 
(iii) was proved in [l]. (i) and (ii) can be proved from the results in Section 5 of [14] 
using the proof of Proposition 12 in the present paper. A direct proof of (i) can be 

obtained by using ultraproducts. q 

L. Csirmaz proved that 

OA u (cp E: IA’: q contains no free variable of sort t} I# IA. 

Thus Proposition 6(iv) is strictly stronger than Ax0 i= O(p, #) + q l( p, I,>). 
In many situations, the following set Ex of axioms does belong to the intuitiveiy 

natural assun. gtions about processes happening in time. 

Definition 146 (the set Ex of axioms),, 

Notation. “3!x$’ means that “there exists a unique x0 such that”, i.e. 

where xk does not occur in qk 

EX ” {([VZO~!XO Q]-* 3yiVZoVXo[eXt(y~, ~0) = x0@ Q]): 

Q E Ftd and yj does not occur in Q}. 

Note that Q may contain free variables and therefore the formulas in Ex written out 

in more detail are als follows: 
Let ZQ, x0, and y; not occur in Z, 2, and 9. Let ~(20, Z, x0,2, y’) contain no other 

variables than indicated. Then the ‘existence-formula’ belonging to ~(20, 5, XO, i, y’) 
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iS 

+ 3yiWz0Wx0(ext(yj, zo) = x0- Q(z~, 2, x0,2, y’))). Cl 

The set Ex of axioms is useful when proving formulas of kind O( p, $). Here wig: 
illustrate this by Theorem 7. 

Let d 2 ({+‘, -9 0’9 1’1, {(+‘, 3), (-9 3), (0’9 1), (1’9 1))). 
We shall use the following abbreviations: 2’ abbreviates (1’ +’ 1’) and 3’ abbre- 

viates (2’ +’ 1’). 
Let p E Pd be the following program: 

p g ((0’: if XC/ = 0’ got0 3’), 

(1’: x0 -+ x() - l’), 

(2’: if true got0 0’), 

(3’: halt)). 

(Here yt = 3 and c = 1.) 
’ Next we define the set DIA of induction axioms for the data. 

Let Q E Ftd. Then ~(0') and Q(X o t' 1’) denote the formulas obtained from Q by 

replacing every free occurrence of x0 in Q by 0’ and x0 +’ 1’ respectively. 
We define the indulction formula cpx as follows: 

Qx - ” ([Q (0’) I\ ifXo(Q + Q (X0 +’ I’)] + +dXo Q), 

DIA z {Q": Q E Ftd}. 

Theorem 7. Let p and DIA be as defined above. Let 

Th 2 Ex u DIA u {Vxo((.rco +’ 1’) - 1’ = x0)) u 0A. 

Then 

Th I= O(p, true). 

I.e. p terminates for every input in every model of Th. 

Proof, Recall the function 8 fl-om Definition 11 in Part I. 

Consider the formula e(O(p, true)) E Ftd. Note that the only free variable off 

8(O(p, true)) iz x0. Let %@E A& be such that llTl I= Th. We shall1 use that fact that 

m I= e(O( p, true))“. 
First we show that 9X I= B(O(p, true))(O’). By Lemma 1 in the proof of Theorem 2 

and by the meaning of O(p, true) we ha.ve to show that there is a trace (SO, sl)l of p in 
%! which terminates and which is of input 0’. 
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Let & denote the formula ~0 = 0’. Then &z Ftd and %%=Vz03!.x01(/~. Then by 

Ex we have 9Ri= 3y&~toVxo (ext(yo, zO) = xOc-,&) i.e. !Nt= 3y0Vz0 ext(yo, to)= 

6)‘. 

Let ss E I be such thnt (Vb E T) ext(so,, b) = 0’. Similarly, let 1(/l denote the formula 

(t~=O~X~=o’)h(Z~#O-~X~= 3’). Then $1 E Ftd and $352 t= V’tJ!xo $1. Hence 

%R != 3yo(exe(yo, 0) = 0’ A (Vz0 Z 0) ext(y0,zo) = 3’). 

Let s1 E I be an intenGon such that ext(s1, 0) = 0” and ext(sl, b) = 3’ for every 

hET,b#O. 
Now it is easy to check that (so, ~1) is a trace of p in 9R, with input 0’ and which 

terminates (at time 1). Therefore %2 b 0(0( p, truiz))(O’). 
Let cp denote O(O(p, true)). Next we show that 8R b (q + cp(xo +’ 1’)). 
Let a E D and scppose %R k ~[a], i.e. suppose that in XR there is a trace (~2, sg) of p 

which terminates and which is of input a. We have to show that there is a trace (s4, ss) 
of p in w which terminates and which is of input a +’ 1’. 

Let q!& be the formula 

Let $5 be the formula 

(2*=0+x() =O’)A(Zo=l’,X~= 1’)A(fO=2+Xo=2’) 

A VZdZo = fl + 3 +x0 = ext(s3, zl)). 

Then by %8 l= PA we have m != (VzJ!xo $4 A VzJ!xo $5). 
Then by irm f= Ex we have two intensions s4, ss E I such that (~4, sg) is a trace of p 

since ($2, SJ is a trace of p {and by Y9R b (XC, +’ 1’) - 1’ = x0), (~4, sg) terminates since 
(~2, ~3) terminates, and clearly (~4, sg) is of input a +’ 1’. 

We have seen that 82 + ~(0’) nVxo(~ + Q(X~ +’ 1’)). Then %R + Vxo cp by Y%R + cpX. 
Le. m != 6(0( p, true)). Then by Lemma 17tn the proof of Theorem 2 in Part I we have 

!I%! i= O( p, true). q 

As a contrast we note that according to the standard semantics (see Definition 18), 
_ f r= the set tq c -fd : Th != a} of axioms does rn& imply termination of p, e.g. by [22]. 

6. Naur-Floyd-Hoare inductive assertions proof method 

The set HF$ of FIoyd-Hoare statements of type d is an important sublanguage 
of DFd. 

HFd z {(Q +a(& $)): p E Pd arrd Q, ((/ EFd}. 

Clearly HfFd c DFd: 
Properties of the Floyd-Hoare languages (HFd, AC&, C=) and (HFd u Ftd, &, k) 

were investigated in several papers, e.g. in [l, 3-7, ‘10-13, 20, 2 1, 251. 
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In Definition 17 below we recall the ‘Naur-Floydl-Hoare proof concept (t-“, Prf) 
for the language HFd. 

Note that Fd c HFd is practically true since gj is semailtically equivalent to 
&rue+ q (((io: halt)), cp)) under very mild hypotheses (namely if io E Lab and 
3yVz(ext(y, 2) = io)). 

Recall the classical proof concept (t-, Prc) from Definition 12. We shall use 
Definitions i0 and 12 of Part I. 1 

Definition 17 (Floyd-Hoare proof concept (kF, Prf)). The set Prf of all Floyd-Hoare 
proofs of type d is defined as follows: i 

w E Prf iff w = (H, r, (q +O(p, $))) for some (cc +El(p, ~5)) E EZFd such that condi- 
tions (i) and (ii) below hold: 

(i) H C= Fd and IHI 6 w. 
(ii) r = ((no, l . . , n+d, (@+I, . . . , @,J) such that conditions (l)-(4) below hold for 

every m s n. (Recall from Convention 1 that p = ((io: ~09, . . . ) (in: halt)).) 
(5) a,,, E Fd and (H, 7~,,+1, (cp + &))E Prc. 
(2) If urn = “xi -CT”, then 

,where @m+1(xi/7) denotes the formula obtained from @,,,+I by replacing Xi every- 
where by ‘P. 

(3) If um = “if x goto v”, then 

(4) If Um = “halt”, then 

By these we have defined the set Prf c (HFd)*. Clearly Prf is a decidable subset 
of (HFd)*, 

Let Th c Fd and let p E HFd. Then we define 

Th I-~ p iff (3(H, ws p) E Prf)H C_ Th. 

By this we have defined the proof concept (I-“, Prf) on the language HFd in 
accordance with Definition 10 in Part I. 0 

Proposition 8. (I--~, Prf) is a decidable proof cwzcept on HFd. 

Proof, The proof is straightforward by using the fact that the set Prc of classical first 

order proofs is a decidable subset of (I.&)*. C! 

Recall OA and IA’ from Definitions 14 and 15 respectively. 
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Theorem 9 (semantic characterization of Floyd’s method). Let Pres c PA be Pres - 
burger’s arithmetic, i.e. Pres is the theory of (w, 0, 1, +>, and Pres G Ft. Let Th c Fd 
and p E HFd be arbitrary. 

Consider statements (i)-(v) below : 
(ii Th bF p, 

(ii) Th u IA’b p, 
(iii) Th a, IAq u OA b= p, 
@v) Th u IA’ u Pres l= p, 
(v) ThuIAi=p. 

Then (i) e (ii) e (iii), (i) Qt (iv) and (i) 44 (v). Moreover, (i)-(iii) acre equivalent, but 
there are d, a fitsite Th E Fd and p E HFd such that 

ThuIA’uPreskp and ThuIAkp but ThtfFp. 

Proof. Let Th s: Fd and p - “f ‘rp + U( p, t/Q)) E HFd. 

Proof of (i) + (ii): Assume Th CF p. Let ml= Th u IAq. We have to show 

rmi=(cp-,[Tl(p,~)). 
Let (g, k, r) be an arbitrary evaluati.on of the variables. Sappose n t= cp[g, k, r], i.e. 

D != rp[kl. We have to show ‘$.X t= El@, #)[g, k, r]. 
LetJ=(so,. . . , s,) be a trace of iu in !%! with input k. We have to show D k (L[q] for 

every possible output q or’ S. Th I-~ p means that (k& r, p)’ E Prf for some H c Th and 

for some r. 
Let r = ((7r0,. . . , 7r,+l), (@o, . . . , @J). Let jj g (yo, . . . , y& and define the 

formula y as 
df 

Clearly y E & and then yz+o E IA’;’ since no quantifier of sort t occurs in y. 

By DefiniGon 17(S)(l) we have that (H, r, p) E Prf and H c Th imply Th + (9 + 

Go), an0 then D I= ao[k] $y D I= p[k] and YX k= Th. Thus !?8 I= ~(0, S) (by %R I== {i, Z 
il for in <: I G n)). 

By conditions (ii)(2)--(3) in Definition 17, by the soundness of the classical proof 

concept, and by the fa.cts t.hat (15, r, p) E Prf, %R I= H and S is a trace of p in ~ 
we obtain that %R l= Vzo(y(zo, s)+ y(zo+ 1,s)). Then by %R k= y& we conclude 

rm k= Vzo y(z0, S). 
Let tl E T and a:.sume that s’ terminates at time b with output q E ?3. Then 

D I= @,Jq] since %?2 t= y(b, s’). By condition (E)(4) in Definition 17 we have 
(p-i, rr,, +& + f/1)} E Prc and hence H t= (a::, + q). Thus D I= (an + 4) and therefore 

D k #Edz] by D I= @Jq]* 
We have pr<yved %R k (cp + Cl( p, +)). 
(ii) =+ (iii) is obvious. 
Proof of (iii) * (i): One can prove the present implication by using [ 131, see 

Theorem 4 of [12]. In doing this the methods of [lo] and [ 141 can be useful. 
We have proved (i) rCq (ii) e (iii). 



Proof of (v)F(i): It can be proved that IA/=Vz&~(zo = 0 v ZQ = zl+ 1). 
Let d consist of the symbols 0’, sue, =s’. Let Th c 1Fd be the theory of (w, 0, sue, s). 

It is known that Th is finitely axiomatizable that is we may assume IThI C o and Th is 

complete, see [8]. 

We have to find p E HFd such that Th u IAl=p but Th bL%. Let 

p z ((0: x0 + sue x0), (1: X1 --c sue Xl), 

(2: it wo f x2 goto 0): (3: halt)). 

Let cp(zo, yo, ~1) be the formula 

Vzl[ext(yO, zo) = ext(y0, 21) + ext(yl, z0) = ext(yl, zl)]. 

Then q(zo, yo, y& E IA. Hence from Thu IA it is l-N-provable that if (~0, . . . , ~3) is 
a trace of p and e::t(yo, 0) = 0’, then Vzo qj(zo, yo, yl). 

Let p E HFd consist of a program which executes the above p twice with the output 
condition of p stating that the results of tlhe two executions of p coincide. Let the 
input condition of p be x0 = 0’. With the kind of induction, used while proving 

Vzo rp(zo, yo, yl) above, one can prove Thu IAENp. For a hint see the proof of 
(iv) + (i) below. By Theorem 2 (our completeness theorem for t-N) then (v) holds for 

Th and p. 
The easiest way of proving Th bLF p goes by using ultraproducts. Assume Th I-’ p. 

Let @I be the inductive assertion in the first execution of p and @2 be the one in the 

second execution of p. Look at the relations which @I and @z are supposed to define 
in the model (ir), 0, sue, s). By an easy ultraproduct construction one can see that 

these relations are not definable. Hence Th tf’ p. 
Proof of (iv) + (ii: Let d, Th and p be as in the proof of ((v) + (i)). Then Th tfF p by 

the same ultraproduct construction as above. 

The idea of the proof of Th u IA’ u Pres f= p is the following: 
If we have Pres postulated about time structure, then we can perform addition on 

time. Then we can sa.y that “if ~rp is true at time 20 < t 1 and x is true at time ZI, then q 

is true at time zl + zc, too”, i.e. if e.g. we execute the same program twice and z1 is ‘the 
time of the first termination, then we can say that “if rp holds at time zo < zl, then it 

will hold exactly zo time after z1 again”. Ancther w;ay of proving these is by using 

Theorem 4 in [12]. 0 

Part ((i) e (iii)) of Theorem 9 implies tha?. the language (DFd, Mod(Axo), /==) is 
reasonable enough, it contains no impossibk~ Imodels. I.e. the models of Ax0 do not 
contradict the Floyd-Hoare proof rules for programs. 

Part ((i) e (ii)) of Theorem 9 is a kind of c;cemantic characterization of the 
information implicitly contained in the Floyd-method. It appears that this informa- 

tion content of Floyd-method is IAq. Theorem 9 also says that if we can reason about 
time as being ordered, i.e. use OA c Ft, then our reasonin!; ability is not beyond the 
power of Floyd’s method. But if we can perform addition on time (note that 



Presl== CM) or if we can quantify over time points (IA), then our reasoning ability is 
definitely beyond the power of Floyd’s method. Note that qua-ntifying over time is 
roughly the same as using time-modalities. 

It is interesting to compare the powers of different proof methods. ‘I’hc following 
Theorem 10 says that the proof method (fiN, Pm) is strictly stronger than the 
Floyd-Hoare method (kF, Prf). 

Definition 18 (the standard dynamic language (DFd, STD&, I=“)). Let %R = 
(T, D, I, ext} E 1M*& 

!2R is said to be standard iff conditions (i)-(iii) below hold: 
(i$ T=(o,~,+,+l,l), 

(ii) I = To. 
(iii) (Vs E ?D)(Vb E T) ext(s, b) = s(b). 
The class of all standard elements of A& is denoted by STMd. 
Let Th G DFd and q E DFd. Then we define 

Note that STMd I= Ax and ‘3 E STMd, where YI and d’ were defined in Definition 6 
in Part I, 

Theorem l(i, (Bir6-Csirmaz). ‘fiere are a similarity type d and a finite theory Th G Fd 
such that for some Floyd-Hoare statement (Q + Cl( p, +)) E HFd conditions (i)-(iii) 
befgw hold: 

(0 Th u Ax0 t-N (rp =+ a( P, 4/l), 

(8 Th fF (cp +CKp, $41, 

(iii) Th I=” (cp + cJ( p, *)). 

Proof. In the proof of pavt ((v)+(i)) of Theorem 9 a finite Th c Fd and p E I-IFd were 
constructed such that Th&L “p but Th u IAkNp. By IA E Ax0 we proved (i) and (ii). 
By STMd l= Ax obviously (i) always implies (iii) but validity of (iii) can be checked 
directly by looking at our concrete Th and p. 

Note th.at we do not need the full power of the proof of Theorem 9 here since the 
ultraproduct construction proving (ii) is clear, and to prove (i) we have the full power 
of & = IA’ u PA at our disposal, Cl 

Problem. Do there exist d, Th c Fd and p E HFd such that 

ARuThkp and Ax&‘I’h2itp? 

Definition 19 (the sets PA’, PAd of axioms about data). Recall from Definition 6 that 
the similarity type d’ consists of the binary relation symbol G’ and ihe operation 
symbols +‘, l ’ , Or, 2’ with arities Z&2,0,0 respectively. Note that u” is disjoint from t, 

actually ‘tf’ is a disjoint copy of t. PA’ denotes the set of Peano axioms formulated 
in Fdl. 
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Note that % I== PA’ u PA where $8 was introduced in Definition 6. Also ne:jte that 

PA c Ff while PA” c Fdl. 
Lelt d be an arbitrary similarity type containing d’. Then Fd 2 F’l but possibly 

Fd # Fd’e 
We define PAd as’ 

PAd - ’ PA’u{([cp(O’) r(Vx(cp(x)+ q(x +’ l”))]-*Vx q(x)): 

Clearly d = d’ iff PAd = PA’. Cl 

Theorem 11 (Andreka-Csirmaz-Nemeti-Paris). Let the similarity type d conkGn d’. 
Let Th ,c Fd and p E HFd. Assume PA’ c Th. Then (i)-(iii) below hold: 

(i) Th&CSThuAxJ==p, 

(ii) Th kFP eTh,uAx I= p, 
(iii) PA’ I-” p * PA’ v Ax I= p. 

Ratof. Proofs of (iii:1 can be found in [3,7]. The proof c;f (i) can be found in [l] as 
Theorem 6 there. 

(ii) was proved in [l] as Theorem 6 there under the additional assumption that 
Th 2 PAd. The condition Th 2 PAd was eliminated from the proof of (ii) bly Jeff B. 

Paris (Manchester) and L. Csirmaz recently. El 

About (ii) of Theorem 11 above we would like to emphasize that if PA’ c Th, then 
d may contain symbols for which the induction axioms are not postulated, moreover, 
it is allowed that for some q(x) E Fd we have 

(q(o) A vx[,q(x)+ cp(x +’ I’)] A 3x --I&)) E Th. 

0f course in this case q(x) E Fd but q(x) ti Fd’f. To be able to appreciate the difference 

between the conditions PAd E Th and PA’ c_ Th see the concrete example con- 
structed in the proof of Proposition 13. 

Note that by Theorem 10 the condition FDA’ c Th is necessary in Theorem 11 (i) 

and (ii). 

7. Connections with some other branches of explicit time semantics of programming 

We use the names “Explicit Time Semantics”, “Nonstandard Semantics”, 
“Nonstandard Time: Semantics” as synonyms. For works in this field see [I, 3,5-T, 
IO-14,20,21]. 

In Definition 20 below we recall the Continuous Traces Language CLd of type d 
from [3,4, 10-141. 
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De&&ion 20 (the Continuous Traces Language CLd = (HFd, A&, kc)). Let q E F& 
Let m E u and let y = (yO,. . . , y,,,) and x’ = (x0, . . . , x,). Let x’ = ext(y, 20) denote the 

formula jjiGim XJ = ex%(yi, 20): 
We define the formula qrn E Ftd to be VZ(Z = ext( ji, 20) + q). 

Remark, Q,,, = Q~(ZG, 9) E 1’ td and Qwl is equivalent with q(ext(y0, ZO), . l . , extoh Zci), 

&+l, . . . , X,,) if Q = Q(Xc, . . . , &v). 

We define 

Recall the set Pe c F&r of ‘successor axioms’ from Definition 15. The Continuous 

Traces Axioms are Ctax g I& u Pe. 
Let Et: A& and Q E DFd. Then we define 

E: I==’ Q e (‘tllD7~ Mod(Ctax))[D = E =+ $%! b Q]. 

The Continuous Traces Language is 

CLd z (HFdq &, I=‘). q 

Let Th E HFd and 4p E HFd. We shall use Th t=’ Q in the usual sense, i.e. 

Th kc Q iff (VE E Md)[E I=” Th + E kc Q]. 

It is easy to check that Th kc Q iff Th u Crax /= rp. 
The Continuous Traces Semantics (or Language) CLd = (HFd, Md, t=‘) was intro- 

duced in [4] and forther refined and investigated in [3,lO+J]. In [3,4] t==’ was 

denoted by l=“. 
Recall IA’ from Definition 15. 

Prqosition 1.2 (semantic characterization of Continuous Traces Semantics). Let 
Th G; Fd and pj E I-IFd. Then statemeizts (i)-(iii) below are equivalent: 

F\i) Th I== p, 

(ii) Th u IA’ tz p, 

(iii) Th u I& I= p_ 

Proof. Assume (i). Then by [lo] Th tF pL Then by the proof of part ((i) + (ii)) of 
Theorem 9 we have Th u IA0 t= p. To see this observe that in the proof of Theorem 
9((i)+(i# the only elements of IA we used were of the form Q (ext(j$ z&, for 
some q(Z) E Fd, q containing no other free variables than 2. This proves (i) * (iii). 

(iii) =j (ii) is obvious since IA0 c IA’. 

(iii) =3 (i) holds by IA0 c Ctax. 
Assume (ii). Then by Theorem 4 in [12] Tht-Fp. Then by the proof of Theorem 

9((i) 3 (ii)) we have Th u IA&p. I.e. (iii) holds. q 
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Remark. Let d 2 d’, PA’ and PAd be as in Definition 19. Then for every Th s I;h 
such that PAd E Th the Continuous Traces Semantics (HFd, Mad(Th), I=‘) is 
equivalent with the Dejbable Traces Semantics of Gergely-cry [ZO, 211 w.r.t. Th, 

However, there are d 2 d’ and a decidable Th c Fd such that PA’cTh and 
(H&, Mod(Th), I=‘) is not equivalent with the Definable Traces Semantics 2 

[20, 211 w.r.t. Th. 

Proposition 13. Let d” and PA’ be as in Definition 19. Then there are d 2 d’ and a 
d&d&e theory “Th CI Fd and p E HFd such thtitt PA’ ETA and Th t= p arid 7% I=’ p 
and Th I--~ p but Th does not imply p wxt. De,finable Traces Semantics of [Xl, 2 I]. 

Proof. Let d consist of d’ together with a new unary relation symbol R and a new 

constant symbol c. Let Th g PA’ u {R (O’), [R (x ) + R (x +’ l’)]}. Let the program in be 
((0’: X0 * O’), (1’: if x0 = c got0 49, (2”: x 0 +.lclJ +’ l’), (3’: if true goto l’), (4’: halt)). 
Then Th I-~ El(p, R(x& and clearly Th t==’ lIl(~~, R (x0)). 

Let D be a model of Th such that D I= IR (c). Such a D exists since if (D, +, l , 0, 1 j 
is any nonstandard model of PA’ and R c D is the set of all standard numbers and 
c ED is any nonstandard number, then D I= Th and D I= -IR(c). 

Then Cl( p, R(xo)) is not true in D w.r.t. definable traces since there is a definable 
trace of p in D which terminates with output (* (of course this definable trace is not 

continuous). At the same time D bC O( p, R (x0)) and D l= Cl(p, R (x0)) since no 
continuous trace of p terminates in D. U 

In this context see Section 10 at the end of ‘Ihis paraca. 

8. Connections with related approaches in programming theory 

Let y be a variable in a program scheme. Sometimes such a y is called an ‘identifier’ 
instead of ‘variable’. We use the word ‘variable’. What we call an ‘intension’ of y is 

called an ‘L-value’ of y in ‘Scott-Strachey semantics’ of programmimg languages (sc:e 
[23, p. 202]), while an extension ext(y, timepoint) is called an ‘R-value of y there. 
Intensions for y are often called ‘addresses or locations in a computer corresponding 
to the identifier y’ and ext( y, timepoint) is often called the ‘content of the address’ 
(mentioned above) at the po%t ‘timepoint’ of time. See the “Temporal Notions” of 

the Milne-Strachey book 1231 on programming semantics. 
In ‘operational semantics’, abstract machines with registers arc often used. ‘Then to 

a variable (or identifier) 1~ which occurs in a program, a register of the machine is 
associated. During the ‘computation or ‘execution of the progrem’ the register 

associated to y remains the same, it does not change. However, the content of the 
register may cha)sge many times. The registe; associated to y is the intension of y 
while the conten!: of this register at time z is the extension of y at time z and the 

present paper denotes it by ext(y, z). See e.g. Section 3 of Cook [9]. 
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where (J, s) is the same as our T; A is our ‘1)’ and ‘A which is Idenoted there by Searj 
is our ‘I’. JA is called there the ‘set of intensions’ exactly as we do here. Our 
opleration symbol ‘ext’ is denoted there by ‘ v ‘. 

n [17, p. 1881 our m is ‘%’ and our T is ‘{ 7; C)‘. However, there are no inte~lsi~ns 
there thus the analogy stops here. It is true that the meaning of a constant symbol ‘c’ 
in % is an element of TA where k:t is IJ{Al: t E T} but there arc no variables ranging 
over TA in [17], whiIe in [24] the variables of type (s, e) are just doing that. 

An essential difference between intensional models (A& of this paper or in [24]) 
and ‘Kripke-style’ models ([2] or [ 171) is that in a Kripke model (T, (DI: t E -r)) the 
elements of TB do not form a separate universe or “sort’ to speab about while in an 
intensional model m = (T, D, TD, ext} they definitely do so. See [2, p. 33. 

For further considerations on the subject of Sections 8 and 9 see [26]. 

10. Recent developments and problems 

To motivate the problems below, first we formulate some results. The notations d’ 
and PA’c_H;“dl were introduced in Definition 19. N, c-“, O&4, STM,l and IA’ were 
introduced in Definitions 6, 18,14 and 15. 

Theorem 14 (Plotkin-Nemeti), Let Th E Fd be recursively enumerable. Assume 
Th 2 PA’ and that ZFCC= “Th is consistent”. Then there is p E HFd such thut 

ZFC t- “Th !==Op” and Th fFp. 

Thesrem 1% There is a decidable set Tax c FF of time axioms such that N I= Tax and 
fur some p E IFIF*, we ~~~e 

PA’uIA+~T~~I-~~ and PA’v’p. 

We define 

IA’ 2 (& : q e Ftd and(V’i > O)(ri does not occur in cp 
neither free nor bounds} u Lax. 

Theorem 16. There is a jinite Th E Fd and p E I-IFd such that 

ThulA’uPet-Np and Th fFp. 

Cf. Theorems 9 and 10. Theorem 116 above says that any fragment of DLd in which 
time modalities (always, someti~~e) are still av,ailable has a greater reasoning power 
than that of Floyd-Hoare method. 

Theorems 17, I8 below are not recent developments, thiey are included here to 
motivate Problem 1 below and ts show that the dynamic logic (DLd, t--N) developed 
in the present paper is complete in the sense of [9] and Hare1 w.r.t. standard time 
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models, A.bout these notions see the introduction of Part I. Note that in the axiom 

systems Numb and &h(K) below no dynamic formulas occur, they contain only 

classical formulas from Ftd+ 

Thearem 17 (arithmetical completeness in the sense of Harel). Let K C_ M& 

I.e. 

Sth(K) 2 {q E I;;d: (N, D, @D, value of) t= q for uN DE K}. 

Sth(K) = {Q E &: (!+a E ST&)I[D E K --s, tm I== Q]}. 

Let p E DFd. Then 

CoroIIsq 18 (completeness w.r.t. oracles in the sense of [93). Let v 

Problem 1. Does there exist St c Ftd such that for every Th E Fd and p E HFd we 

have 

Thr=“peStuThf-,J? 

Problem 2. Do there exist d, Th c Fd and p E HFd such that 

AxuThl=p and Ax&Ihl#p? 

Cf. Definitions 14 and 18, Theorem 10, and Proposition 6. 

Problem 3. What is the answer to Problem 2 above under the additional restriction 

that Th be recursi\rcly enumeraible? 

Problem 4. Let Pres c Ft be a.s in Theorem 9. By Theorem 9 there are a finite 
Th G Fd and p E HFd such that 

ThuIA%Frest==p but ThuIAquOAVp. 

Note that roughly speaking OA c Pres c PA and they are the theories of (sue, s), 

(sue, G, +) and (sue, s, +, l ) respectively. 
Are there a decklable Th s &I and p E HFd for some d such that 

Th u IAq (.J PA + p biut Th u IA’ u Pres Vp ‘? 
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In other words: Theorem 9 says that the ability of performing addition on time 
increases the reasoning power of dynamic logic. Does the ability of performing 

multiplication on time affect the reasoning power in any similar way? 

Problem 5. Let IAq and IAf be as in Definition 15 and Proposition 6. Let Th c F’ 

and p G HFB be arbitrary. Is it true that 

Tht-Fp iff Thu(IAqnIAf)uPAkp? 

Cf. Theorems 9 and 10. 

Probiem 6. Let Th cF~ and p E HFd. Assume Th 2 PA’ and Th u AX~J Ex b= p. Is 
then Th I-~ p true? 

Problem 7. Let d and DIA be as in Theorem 7. Let p E HFd. Assume Fh 1 Th 2 PA’ 
andThuAxuExuDIA!+p. 

Is then Th ~--~p true? 

Problem 8. Continue the investigation started in Definition 16 and Theorem 7! 
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