
O N T H E S T R E N G T H O F T E M P O R A L P R O O F S 1

Hajnal Andr~ka, Istv£n N~meti, and Ildik6 Sain
Mathematical Institute of the Hungarian Academy of Sciences

Budapest~ Pf.127, H-1364, Hungary

In this paper we investigate the reasoning powers or proof theoretic powers of various
established temporal logics used in Computer Science. In the first part we concentrate
on provability of various program properties while in the second one we investigate prov-
ability of temporal formulas in general. In the first part we consider both deterministic
and nondeterministic programs.

Our investigations are twofold:
(1) compare the reasoning powers of the various logics, and
(2) characterize their reasoning powers.

The investigations in (2) are often called completeness issues, because a good char-
acterization amounts to finding a nice and mathematically transparent semantics w.r.t.
which our logic is complete, cf. ABADI [2] and [10]. In doing (2), we follow the method-
ology called Correspondence Theory in philosophical logic (see Chap.II.4 of [10]) which
was first elaborated for temporal logics of programs in the 1978 version of SAIN [23]
(cf. also [5], both papers based on the Computer Science temporal logics in [4]), in the
framework called time oriented Nonstandard Logics of Programs (NLP). Same is used
in ABADI [1], [2]. In particular, the semantics denoted as "~-0 P (. . .)" by ABADI was
first introduced as "(Ind÷Tord) ~" in the above quoted NLP literature, and will play
a central r61e herein, too. Among others, we will obtain new strong (hereditarily in a
sense) incompleteness results w.r.t, this semantics for proof systems of ABADI-MANNA
[3] and MANNA-PNUELI [18] respectively. No number of new axioms, but a single new
modality can eliminate this incompleteness.

§1. T i m e o r ien ted N L P , and the first cha rac t e r i za t ion r e s u l t
Time oriented NLP is a three-sorted classical first-order logic, the sorts of which are

the time scale T, the data domain D, and a sort I consisting of some functions
from T into D. We think of the elements of I as time sequences, i.e. sequences
indexed by the elements of T. In more detail, a model of time oriented NLP is a
triple ff~ = (T, D, I) where T = (T, O, sue, <, +, .) is called the time structure of
ff)~, D is the data structure (or data domain) of ff)~, and I C TD (TD denotes the
set of all functions from T into D.) The intuition comes from the standard model
{(w,O,~ue,<,~-,.I,D,~D) of NLP, where w is the set of all natural numbers, and
the elements of I are indeed w-sequences. For our purposes, however, the arbitrary
models like ff)~ above are more important than the standard one.

Let p be a (possibly nondeterministic) blockdiagram program using only one vari-
able x. For y E I we say that y is an execution sequence of p if the sequence
(y(O),y(suc(O)),...,y(t),...l~er is an execution of p in the usual sense. Now a par-
tial correctness assertion, pca from now on, {~o(x)}p{¢(x)} is valid in ~ iff for
every execution sequence y E I of p, whenever ~o(y(0)) holds in D and y(t) is

1Thls work has been supported by the Hungarian National Foundation for Scientific Research Grant
No 1810.

136

a terminating state (or possible output) of p, then we also have that ¢(y(t)) holds.
The case when p uses more variables is similar. (Total correctness and other kinds of
statements about programs are formalized in time oriented NLP similarly, cf. §5 way
below.)

The formulas of time oriented NLP are (basically) the usual three-sorted first-order
formulas of the language of ~YL Let Ax be a set of such formulas of time oriented
NLP. Then

A x ~ {~}p{¢}

is defined to hold iff {~o}p{¢} is valid in every model 99I of Ax. We say that
{~}p{¢} follows from Ax (in time oriented NLP) iff Ax ~- {~}p{¢} holds.

A characterization of a fixed program verification method, say t - rH , consists of find-
ing a set Ax of (first-order) formulas of the many-sorted language of time oriented
NLP, and proving that the correctness of a program is provable by F Fg iff it follows
from Ax in time oriented NLP. An example for such a characterization of Floyd-Hoare
method F f/¢ is the theorem saying that a pca is Floyd-Hoare provable iff it follows
from the axiom system Indql of time oriented NLP (see [27], [9]). Indqy is a restricted
T-induction. More precisely, let us recall that the time scale T has a distinguished
element 0 E T and a nexttime function or successor sue : T ~ T. Now, for any
formula ~(z) of time oriented NLP, the full induction schema Ind postulates

(~(0) A (Yz e T)[~(z) ~ ~(suc(z))]) ~ (Yz 6 T)p (z) .

Note that in this Ind, ~ may speak about the whole of 97t and not only T, and
may contain parameters from any sorts of 9)L So our Ind is much stronger than
the usual one in which ~ is allowed to talk about the structure T only. Now,
Indqy C Ind postulates induction for exactly those formulas ~(z) of time oriented
NLP which contain no quantifiers of sort T. The above mentioned characterization of
the Floyd-Hoare method (~_FH) in the notational system of the present paper reads
a s

F FH = Indqy - - D *

This formula abbreviates the claim that for any pca {~}p{¢} we have:

We will return to the nondeterministic and concurrent cases in §6 below. All the results
herein carry over to the nondeterministic- and concurrent cases under the assumption
of the existence of a clock in the sense of ABADI [1], [2] or PARIKH [21] or §6 here.

~2. T e m p o r a l logics of p r o g r a m s , and f u r t h e r charac te r iza t ion8
We will use a first-order multimodal (actually temporal) logic with five modalities

Firs t , Nex t , Always, "Always - i n - the - fu ture" , and "Always - in - t h e - past".
We will abbreviate the last three as Alw, A f u , and Apa. The intuitive meaning of

137

First to is that to is true at the first time instant. 2 Using our three-sorted models
~ introduced for time oriented NLP in §1 above, First to says that to is true at
time 0. Similarly, for t E T, Next ~o is true at t iff to is true at suc(t). Alw to is
true at t i f f for all t l E T , to is true at t l . A f u t o is true at t i f f for all t I E T
with tl >_t, to is true at tl . Apato is true at t iff for all tl ~ t , to is true at
~1. Finally, P(y) with y E I is true at t i f f P(y(t)) holds in D. !) ~ t o f o r a
temporal formula to iff to is true at every t E T.

A nonlogical symbol is called flexible (opposite of "rigid") if it is allowed to change
in time. Unless otherwise specified, the only flexible symbols we allow are constants
yo, y l , . . , yn, However, in some of our results we will allow flexible predicates etc.
too. Throughout, Yi and xi denote flexible constants and rigid variables respectively.

A x i o m a t i z a t i o n of t e m p o r a l logic:
Consider axioms (A1,2) and rules (A 3 - 5) below.

(A1) For any propositional temporal schema ¢ valid in the standard models (w, . . . },
all (first-order) instances of ¢ belong to (A1).

R e m a r k : It is known that (A1) is decidable, and many finite axiomatizations
are available for (A1), Cf. [12], COLDBLATT [13].

(A2) For every temporal formula ~, if ~o is valid in every one of the models ff)t of
time oriented NLP then ~ is in (A2).

R e m a r k : (A2) can be replaced with the HILBERT-style axioms:
{(to +~ [] to) for every modality [] (i.e. [] C {First , Next , A t w , A f u , Apa})
if to contains no flexible symbols; (Vx [] to ~-~ [] Vx to) for every modality [] ;

--+ to(x/r) for any term r such that the substitution x ~ r does not create
new bound occurrences of variables or new occurrences of flexible symbols in the
scope of modalities in to; all (temporal instances of all) axiom schemata of the
axiomatization on p.157 of [16] of classical first-order logic (other axiomatizations
work too, but one has to avoid possible substitution rules)} ,

(A3) (to, to-* ¢} k ¢ ,
(A4) to F Vx Alw to ,
(AS) (Firs t to, to-+ Next ,o} k ~ .

Derivability with (A1 - 5) is denoted by FSFp, derivability with (A1 - 5) in the
fragment not containing Apa is ~sr , same in fragment not containing either Apa
or A f u is Fs, and same in fragment containing First and Next only is F0. (Here
the indices S, F, P refer to Sometime which is interdefinable with Alw, A f u , Apa
being allowed in addition to Firs t and Next to occur in the formulas.) Note that
F-s, FSF, FsFp are frequently used established temporal logics.

For a pca {to}p{¢} we use its usual temporal representation temp({to}p(¢}) which
is in the fragment of Fo (i.e. temporal formulas using First and Next only, cf. e.g.

SOur modality Firs t might look unorthodox. However, it is expressible in the temporal logics in
PNUELI [22], MANNA-PNUELI [19] or LICHTENSTEIN--PNUELI-ZUCK [17], namely First~
is equivalent with (Future)(Past)(p A -~@TRUE) or equivalently (Future)(Past)(p ^ ~FALSE).
Here "(Future)(Past) ~ expresses Sometime and Q is strong-while (~) is weak "previously ~. A similar
remark applies to the temporal logic LinDisc on p.64 of GOLDBLATT [13]. Similarly, in any
temporal logic to which Exercise 6.7 (p.44) of [13] applies, the above used (Future) and G are
expressible, hence Firs t is so.

138

PNUELI [22]). We do not distinguish the original pea p from tamp(p), hence we write
ks {~}p{¢} for Fs temp({~a}p{¢}).

P R O P O S I T I O N 1. F v g - Fo This extends to nondeterministic programs, too. l ~0 "

T H E O R E M 2. N o n e of the extensions Fo ~-~ Fs ~-~ FsF ~-+ Fsvp is conservative;
i.e. there are formulas ~Oo, ~ol, ~2 in the fragment of Fo such that JZo ~o but
Fs ~ao, Jzs ~01 but FSF ~1 etc. !

Our first group of characterizations of program verifying powers is:

T H E O R E M 3. FFH ~o Inday
~_IAM ~o Ind
FPNU =--o (Ind + Time is linearly ordered) ~a ~-SVP

Here the time oriented NLP axiom Time is linearly ordered" is equivalent with postulat-
ing the full first-order theory Th((w,O, sue,<_)) of the standard structure
(w, O, sue, ~_) for the time sort (or time scale) T of our models ~i~. II

C O R O L L A R Y 4. FSF ~-o (~- SFP expanded with "Until" and "Since"). I.e.
FSF --o "the strongest possible temporal logic based on linear discrete ordering of
time". |

Tord abbreviates "Time is linearly ordered", from now on.

§3. C o m p a r i n g p r o g r a m ver i fy ing powers
From the point of view of proving program properties, b s and FsF are the same as

the established program verification methods known as Intermittent Assertions Method
(or Sometime Method) and PNUEIA's temporal method respectively.

Already from the point of view of proving deterministic pen's only, Floyd-Hoare
method is strictly weaker than Fs which is strictly weaker than F s r =--o Fsvp which
in turn is strictly weaker than some new methods to be introduced and discussed in §4
below. In symbols

T H E O R E M 5. kFH <u FS <o bSf <D (certain new methods)
where e.g. ~_VH <:~ FS means that strictly more deterministic pen's are provable by
~-s than by ~_V~l. (I.e. if --o would have been defined as [<_o and >-o] then

wo d be [< o and not > .]) . m

At this point we note that the symbols -D and <o are applicable between any
formalisms F1 and b~ which are suitable for proving pen's. So HAREL's axiomatization
of dynamic logic or any other logic of programs can take the place of Fi in F1 - o F2
or bl <o F2.

In connection with the differences in proof theoretic (or program verifying) power
discussed so far, the following question of practical relevance comes up:

"What happens if the data domain D is rich enough to encode finite sequences
with single elements?" More precisely, what we assume is that the data theory (or
specification) forces the data domain to be such. Examples for such "rich" data theories
are Peano's Arithmetic, the specification of LISP, finite (or arbitrary) set theory with
or without urelements. The answer to this question is that if the data theory ensures
codability of finite sequences then Floyd-Hoare method F FH becomes as strong as
Pnueli's FSFP which in turn remains still strictly weaker than the new methods
mentioned above. In symbols

139

T H E O R E M 6.

. \ / / moduloPeano's \

Thm.5.1.(iv) of SAIN [26] p.312 contains more information on the
" <n (certain new methods)" part above and Whm.5.1(vi) [26] is the total correct-
ness version of the above theorem.

At this point a further characterization result can be presented. Namely let ~_HAREL
be the inference system of (standard) Dynamic Logic as presented in HAREL [15] and
also in Def.10 on p.493 of SAIN [24]. Then,

T H E O R E M ~'.

(~_HAREL =n-- (Ind + Peands arithmetic for Time) \arithmetic for data] " |

This follows from Thin.5 on p.496 of [15] together with Thm.5.1(v) of SAIN [26] p.312.
Actually Thm.5 of [26] gives a more general characterization of ~HAREL tOO, namely
w.r.t, all statements of programs expressible in standard Dynamic Logic. Instead of
recalling that characterization in full detail, we mention that it uses besides "(Ind +
Time is linearly ordered)" a restricted form of Ex defined in §4 below together with
three-sorted induction on data (i.e. the same as Ind but for D instead of T) which
is sometimes called structural induction. We note that full Ex would be too strong.
We will return to this in §4.

Using NLP, it is easy to construct p~ggram verif icat ion m e t h o d s s t r i c t ly
s t ronge r t h a n P n u e l i ' s t e m p o r a l logics of p rograms . Some of these strong meth-
ods have been defined in terms of (usual) temporal logics, too (see ANDRI~KA-N~METI-
SAIN [6]). An example for a program the partial correctness of which is provable by
such a strong method but not provable by Pnueti's method is: a program verifier for
LISP programs. A more mundane example is a proof checker for theorems about LISP
or about Peano's Arithmetic. Some of these new methods remain strictly stronger than
Pnueti's one even if the data theory ensures eodability of finite sequences (e.g. if it
contains Peano's Arithmetic).

In more detail, (Ind + Tpa + Ex) is a set of axioms in the three-sorted first-order
language of time oriented NLP.: Ex, "e__~xistence axioms", postulates the existence
of those elements of I which are definable by first--order three-sorted formulas. In
traditional logic Ex is usually called comprehension schema, see §D.4.5 (p.937) of [7].
More concretely, if fff~ = {T, D, I) and ~(z, x) is a formula (in the first-order language
of ~) with ~)~ ~ (Vz E T)(3x E D)~(z,x) then Ex postulates the existence of
a y E I with ff)I ~ (Vz E T)~(z,y(z)). Further, Tpa abbreviates "Peano's axioms
for the time scale T expanded with + and • " (Note that "Peano's axioms for the
data domain D ' , in short "Peano's arithmetic for data", is disjoint from Tpa since it
speaks about a different sort of fff~.

140

T H E O R E M 8.

(a) ~-SFP <~ (Ind+ Tpa) <a (Ind+ Tpa+ Ex) , and

(b) (Ind + Tpa) <~ (Ind + Tpa + Ex) /~ithm~tic lot dataJ "

One concludes that (Ind + Tpa + Ex) is strlctly stronger than the strongest proof
system T2 studied in ABADI [1],[2] because theorems therein state that ~T2 <--c
(Ind + Tpa)). R

Out l ine of proof: Let us consider a theorem prover program p deriving consequences
from Peano's axioms. Now, our pea says that p will never derive the formula x ¢ x.
If we wanted a Floyd-Hoare proof for this pea, we would be looking for an "inductive
assertion")6 For our present pea, a natural inductive assertion is the following: First
we fix a model say N of Peano's arithmetic, and then X says that the formula derived
by p in the actual (or "present") step is valid in our fixed model N. This X will be
true in the zeroth step (since N ~ Peanor$ axioms) and if X is true at time t C T
then it will be easily seen to be true at t + 1. Therefore by induction, this X would
be suitable for proving our pea.

However, this X is not expressible in the language of our data domain, moreover it
is not even expressible even in (Ind + Tpa+"Peanol8 axioms for data"), because of
TARSKI's theorem on the undefinability of truth. Intuitively, the reason for this is that
expressing)/ assumes defining a model, say N, but N is an essentially infinite object
while the elements of our data domain are essentially finite. Even the elements of the
models of (Ind+Tpa+"Peanots axioms for data") are "internally" finite, i.e. logically
they behave like finite objects. Since (Ind÷Tpa+ ~Peanots axiom8 for data") ensures
the existence of these finite objects only, we cannot define (any element that would be
big enough to code) N in the framework of this theory. TARSKI's theorem adds that
this limitation cannot be sidestepped by some "clever trick". This inability of expressing
X leads to unprovability of our pca in (Ind+Tpa+~Peano~s axioms for data~), hence
it is also unprovable in ~'SFP. We will return to this unprovability a little bit later.

Our main point here is that the above discussed X is expressible in (Ind+Tpa+Ex)
because Ex ensures the availability of infinite objects, from which we can construct
models. Namely, the functions y E I, mapping T into D can be used as characteristic
functions of subsets of T. These subsets can be infinite even "internally" (e.g. the set
of odd elements of T is easily codable by a y : T ~ D and it is an infinite set
from all possible points of view). Therefore, Ex enables us to construct (or "code")
a model of Peano's arithmetic from elements of I, to prove that this model indeed
exists and satisfies Peano's axioms etc. In short, X is expressible in (Ind + Tpa + Ex)
and therefore our pea is provable. The details are worked out both for provability from
(Ind + Tpa + Ex) and for unprovability from (Ind + Tpa+ " P eanot s axioms]or data")
in §V.1 of SAIN [25].

As promised above, concerning unprovability from (Ind+ Tpa+ "Peano~s axioms for
data"): A proof of our pea from this theory would imply provability of the consistency
of Peano's arithmetic from (Ind + Tpa+ "Peanola axiom~ for data"). However, this
theory is equiconsistent with Peano's arithmetic (an easy exercise), hence the assump-
tion (Ind + Tpa+"Peano's axioms for data") ~ (our pea) would imply provability of

141

the consistency of a theory from itself, contradicting GODEL's incompleteness theorem.
See [25] for details.

The second part of (a) follows from (b). In connection with the first part of (a), we
note that a pca distinguishing ~-svP from (Ind-kTpa) expresses the partial correctness
of a theorem prover which, while being nontrivial, is inherently simpler than one for
LISP or Peano's arithmetic. See Bm6-SAIN [8] for the details. |

More material on the subject of the present section is found in BIRS-SAIN [8], §5 of
[26], [6], [25], [14].

.~5. Eventua l i t ies , to ta l correc tness :
One can treat provability of eventualities (like total correctness assertions) in NLP, as

well as other kinds of statements about programs, see e.g. SAIN [26],[24]. The following
result is an illustration for this:

T H E O R E M 9. From the point of view of total correctness assertions, Intermittent
Assertions Method is strictly weaker than Pnueli's method. But the difference between
the powers of these two methods disappears if we assume that the data theory ensures
codabitity of finite sequences (e.g. if it contains Peano's Arithmetic). |

A characterization of Intermittent Assertions Method from the point of view of total
correctness is given in Theorems 2.7 and 4.4 of [26] under the assumption that the data
theory (or equivalently specification) contains Peano's axioms (postulated for the data
sort, of course). Cf. also p.286 lines 16-17 of [26]. It seems likely that the condition that
the data theory has to contain Peano's arithmetic can be eliminated from the quoted
characterization in [26] if we change the frame of characterization slightly. Namely,
the assertion "the program p terminates" was represented (in the formalism of time
oriented NLP) in [26] by saying that p has an execution sequence which terminates.
If instead, we use the statement saying "every execution sequence of p terminates",
we get a slightly different representation of total correctness assertions. We conjecture
that under this new representation the characterizations in [26] can be improved.

.~6. Concu r r ency , n o n d e t e r m i n i s m , fairness, and clocks
The characterization k F H : -D Indqf in Theorem 1 carries over to concurrent and

nondeterministic programs without any further assumptions (like clocks).

T H E O R E M 10.

(i) Fs <a Ind for nondeterministic pca's.
(ii) There is a nondeterministic pca p such that

FsvP "p holds for fair executions" but
~ s v "p holds for fair executions".

That is, fa i rness separates F s r and k s rP .]

T H E O R E M 11. kSFP-- (Ind+ Tord) for all propel'ties of deterministic programs.
This is not true for FSF in place of Fsvp . |

Recall from ABADI [1], [2], PARIKH [21] that a clock is a temporal formula 3(5)
satisfying

dej Alw(3 A Next Afu

142

So a clock ~/ never "shows the same time" in two different time instances t and tl.
A weak clock, formalized as Cw('y), is permitted to show the same time in t and tl
but then t and tl should not be distinguishable by atomic formulas or by Next "~(5).
Assume ~,(5) is of form y - - x . Then Cw(q) postulates

{[(~ = 5A Yi = xi A Next ~ = x'--) --+ Next Afu(~ = -~ ~ [Yi = xi A Next ~ = x'--])] :

i E I and ~, x --/ and {xi} are disjoint)

where {yi : i E I} is the set of all flexible symbols in our language. For our purposes
we may assume that I is finite and then Cw(ff) becomes a single formula. If for some
reason it would be important to keep I infinite then Cw(~) is a set of formulas and
everything goes through still.

Existence of weak clocks is a much weaker assumption than that of clocks, e.g.
Cw(~ = 5) does not force the data domain to be infinite while C(~/) does. Also
C(~ = ~) FSF Cw(~ = 5). The results below generalize to the case when ~ = 5
is replaced with arbitrary ~, in Cw, but then Cw becomes longer to formulate
(intuitive meaning remains the same).

T H E O R E M 12. ~sFP - o (Ind + Tord) generalizes to nonde te rmin i s t i c and
concurrent programs under assuming existence of a weak clock (same for ordinary
clocks). |

§7. Tempora l formulas in genera l

T H E O R E M 13. Even if we permit flexible predicate- and function symbols, the
temporal logics FSF and FSFP are complete for the semantics (Ind + Tord) under
assuming the existence of a clock. I.e. for any temporal formulas ~v and % (i) ~ (ii)
below.

The same holds with everything restricted to the language of FSF. |

The above theorem generalizes the completeness result for ~TI" in ABADI [1], [2] to
HILBERT-style proof systems. In particular, for the formula ~ constructed in §§3-4
therein to show incompleteness w.r.t. (Ind + Tord) of the HILBERT-style To found
therein, we have Fsv ~Ab~gi (while]ZTo ~Ab~ai). The following improve the above
result by weakening the clock assumption.

T H E O R E M 14. ~'SFP is complete for (Ind + Tord) under assum]ng weak clocks.
I.e. for any temporal ~, (i) ¢=~ (ii) below.

(i) Ind + Tord + Cw(~ ='~) ~

Note that the choices of ~ and ~ are independent. |

T H E O R E M 15. Theorem 14 fails for ~-SF in place of FSFP, i.e. ksv is
incomplete w.r.t. (Ind + Tord) under C w (~ = 5) (but notunder C('~) by Theorem
13). !

143

T H E O R E M 16. ~o is comptete for the semantics Indqy ; i.e. for any temporal
formula ~o in the language of ~-0,

t-o iff Indqy ~ ~ . |

In connection with the problems at the end of ABADI [1], [2] we obtain the following,
even if we allow only constants as flexible symbols:

(17) . The inference system introduced hi MANNA-PNUELI [18] for temporal logic
with N e x t and A f u is incomplete w.r.t, the semant ics (Ind + Tord). Moreover, it
remains incomplete af ter adding all propositionatly valid formulas (cf. (A1) herein) and
a n y tinite number of n e w a x i o m s (valid in (Ind + Tord)).

(1 8) . The inference systems To, :tq introduced in ABADI's papers [1], [2] are incom-
plete w.r.t. (Ind+ Tord) / f u s e d without "Until". This is so even under assuming weak
clocks and despite of T1 's being reinforced with somewhat unusual rules permitt ing
the use of auxiliary definitions in proofs. By the r emark at the end of § 7 of the full
version of [1] discussing ~1 without Until", we concIude t h a t docks do increase the
power of this sys tem.

P r o b l e m 19 . Are Theorems 12 or 14 t rue without assuming any kind of clocks? |

P r o b l e m 20. Is ~s -D l n d l t rue for nondeterministic programs, where I n d l (C
Ind) is induction over NLP formutas containing at most one variable of sor t T ? |

REFERENCES

1. M.Abadi, The power of temporal proofs, Proceedings of the Second Annual IEEE Symposium on
Logic in Computer Science, Ithaca, NY, USA; (1987), 123-130, Full version of this is: The power
of temporal proofs, preprint of Digital Systems Research Center, 1988.

2. M.Abadi, Temporal logic was i ~ p l e t e only temporarily, Preprint (1989).
3. M.Abadi and Z.Manna, A timely resolution, First Annual Symposium on Logic in Computer Science

(1986), 176-189.
4. H.Andr~ka, K.Balogh, K.L£badi, I.N~meti, P.T6th, Plans to improve our program verier program (in

Hungarian), Working Paper, NIM IGI~ISZI, Dept. of Software Techniques, Budapest (1974).
5. H.Andr~ka, I.N~me~i, and I.Sain~ A complete locfic for reasoning about programs via nonstandard model

theory, Parts I-II, Theoretical Computer Science Vol 17 Nos 2, 3 (1982), 193-212 and 259-278.
6. H.Andr~ka, I.N~meti, and I.Sain, Temporal logics ofprograrns with abinary" modalities, Extended ab-

stract (1989).
7. J.Barwise (ed), Handbook o] MathematicaI Logic , North-Holland (1977).
8. B.Bir6 and I.Sain, Peano Arithmetic for the Time Scale of Nonstandard Models for Logics of Pragrara~,

Annals of Pure and Applied Logic, to appear.
9. L.Csirmaz, Programs and program verificall'on in a general setting, Theoretical Computer Science Vol

16 (1981), 199-210.
10. D.Gabbay and F.Guenther (eds), Handbook o/ptu'lo$ophical logic, D.Reidel Publ. Co. Vol I I (1984).
11. T.Gergely and L.Ury~ First order programming theories, SZAMALK Technical Report Budapes~

(1989), 232pp.
12. D.Gabbay, A.Pnueli, S.Shelah, J.Stavi, On the temporulanalysis o/fairness, Preprint Weizman Insti-

tute of Science, Dept. of Applied Math. (1981).
13. R.Goldblatt, Logics o] time and computatior h Center for the Study of Language and Information,

Lecture Notes Number 7 (1987).

144

14. P.H~jek, Some conaervativeness reatdta for nonstandard dynamic logic, In: Algebra, combinatorics,
and logic in computer science, Proc. Conf. Gy6r Hungary 1983 (eds: J.Demetrovics, G.Katona,
A.Salomaa), Colloq. Math. Soc. J. Bolyai Vol 42, North-Holland (1986), 443-449.

15. D.Harel, First order d~mic lo~c, Springer Lecture Notes in Computer Science Vol 68 (1979).
16. L.Henkin, J.D.Monk, and A.Tarski, Cflindric Al~bras Part If, North-Holland (1985).
17. O.Lichtenstein, A.Pnueli, and L.Zuck, The glow of the past, Proc. Coll. Logics of Programs, Brook-

lyn, USA, Springer Lecture Notes in Comp. Sci. (ed: R. Parikh) Vol 193 (1985), 196-218.
18. Z.Manna and A.Pnueli, The moda/Io~c of~ma, International Colloquium on Automata, Lan-

guages and Programming'79, Graz, Springer Lecture Notes in Computer Science Vol 71 (1979),
385-409.

19. Z.Manna and A. Pnueli, A hierarchy of temporal properties, preprint (1986).
20. Z.Manna and R.Waldinger, Is ~sometime ~ sometimes better than '~always"~.~ Comm. ACM Vol 21

(1978), 159-172.
21. R.Parikh, A decidability result for second order process logic, IEEE Symposium on Foundation of Com-

puter Science (1978), 177-183.
22. A.Pnueli, Specification and development of reactive systems, Information Processing (IFIP'86), H.-J.

Kugler (ed.) North-Holland Vol 86 (1986), 845-858.
23. I.Sain, There are general rules for specifying semantics: Observations on Abstract Model Theory, CL and

CL (Computational Linguistics and Computer Languages) Vol X I I I (1979), 195-250.
24. I.Sain, Structured Nonstandard Dynamic L~'c, Zeitschrift fiir Math. Logic u. Grundlagen der Math.

Heft 3, Band 80 (1984), 481-497.
25. I.Sain, NonstandardLooics of Programs, Dissertation, Hungarian Academy od Sciences, Budapest (in

Hungarian) (1986).
26. I.Sain, Totalcorrectness in nonstandardloyics o/programs, Theoretical Computer Science Vol 50 (1987),

285-321.
27. I.Sain, Elementary proof for some semantic characterizations of nondeterministic FIoyd-Hoare lo~c, Notre

Dame Journal of Formal Logic, to appear (1989).

