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In this paper we investigate the reasoning powers or proof theoretic powers of various 
established temporal logics used in Computer Science. In the first part we concentrate 
on provability of various program properties while in the second one we investigate prov- 
ability of temporal formulas in general. In the first part we consider both deterministic 
and nondeterministic programs. 

Our investigations are twofold: 
(1) compare the reasoning powers of the various logics, and 
(2) characterize their reasoning powers. 

The investigations in (2) are often called completeness issues, because a good char- 
acterization amounts to finding a nice and mathematically transparent semantics w.r.t. 
which our logic is complete, cf. ABADI [2] and [10]. In doing (2), we follow the method- 
ology called Correspondence Theory in philosophical logic (see Chap.II.4 of [10]) which 
was first elaborated for temporal logics of programs in the 1978 version of SAIN [23] 
(cf. also [5], both papers based on the Computer Science temporal logics in [4]), in the 
framework called time oriented Nonstandard Logics of Programs (NLP). Same is used 
in ABADI [1], [2]. In particular, the semantics denoted as "~-0 P ( . . .  )" by ABADI was 
first introduced as "(Ind÷Tord) ~" in the above quoted NLP literature, and will play 
a central r61e herein, too. Among others, we will obtain new strong (hereditarily in a 
sense) incompleteness results w.r.t, this semantics for proof systems of ABADI-MANNA 
[3] and MANNA-PNUELI [18] respectively. No number of new axioms, but a single new 
modality can eliminate this incompleteness. 

§1. T i m e  o r ien ted  N L P ,  and  the  first  cha rac t e r i za t ion  r e s u l t  
Time oriented NLP is a three-sorted classical first-order logic, the sorts of which are 

the time scale T, the data domain D, and a sort I consisting of some functions 
from T into D. We think of the elements of I as time sequences, i.e. sequences 
indexed by the elements of T. In more detail, a model of time oriented NLP is a 
triple ff~ = (T, D, I) where T = (T, O, sue, <, +, .) is called the time structure of 
ff)~, D is the data structure (or data domain) of ff)~, and I C TD (TD denotes the 
set of all functions from T into D.) The intuition comes from the standard model 
{(w,O,~ue,<,~-,.I,D,~D) of NLP, where w is the set of all natural numbers, and 
the elements of I are indeed w-sequences. For our purposes, however, the arbitrary 
models like ff)~ above are more important than the standard one. 

Let p be a (possibly nondeterministic) blockdiagram program using only one vari- 
able x. For y E I we say that y is an execution sequence of p if the sequence 
(y(O),y(suc(O)),...,y(t),...l~er is an execution of p in the usual sense. Now a par-  
tial correctness assertion, pca from now on, {~o(x)}p{¢(x)} is valid in ~ iff for 
every execution sequence y E I of p, whenever ~o(y(0)) holds in D and y(t) is 

1Thls work has been supported by the Hungarian National Foundation for Scientific Research Grant 
No 1810. 
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a terminating state (or possible output) of p, then we also have that ¢(y( t ) )  holds. 
The case when p uses more variables is similar. (Total correctness and other kinds of 
statements about programs are formalized in time oriented NLP similarly, cf. §5 way 
below.) 

The formulas of time oriented NLP are (basically) the usual three-sorted first-order 
formulas of the language of ~YL Let Ax be a set of such formulas of time oriented 
NLP. Then 

A x  ~ {~}p{¢} 

is defined to hold iff {~o}p{¢} is valid in every model 99I of Ax.  We say that 
{~}p{¢} follows from Ax  (in time oriented NLP) iff Ax ~- {~}p{¢} holds. 

A characterization of a fixed program verification method, say t - rH ,  consists of find- 
ing a set Ax  of (first-order) formulas of the many-sorted language of time oriented 
NLP, and proving that the correctness of a program is provable by F Fg  iff it follows 
from Ax  in time oriented NLP. An example for such a characterization of Floyd-Hoare 
method F f/¢ is the theorem saying that a pca is Floyd-Hoare provable iff it follows 
from the axiom system Indql of time oriented NLP (see [27], [9]). Indqy is a restricted 
T-induction. More precisely, let us recall that the time scale T has a distinguished 
element 0 E T and a nexttime function or successor sue : T ~ T. Now, for any 
formula ~(z) of time oriented NLP, the full induction schema Ind  postulates 

(~(0) A (Yz e T)[~(z) ~ ~(suc(z))]) ~ (Yz 6 T)p ( z ) .  

Note that in this Ind, ~ may speak about the whole of 97t and not only T, and 
may contain parameters from any sorts of 9)L So our Ind  is much stronger than 
the usual one in which ~ is allowed to talk about the structure T only. Now, 
Indqy C Ind postulates induction for exactly those formulas ~(z) of time oriented 
NLP which contain no quantifiers of sort T. The above mentioned characterization of 
the Floyd-Hoare method (~_FH) in the notational system of the present paper reads 
a s  

F FH = Indqy - - D  * 

This formula abbreviates the claim that for any pca {~}p{¢} we have: 

We will return to the nondeterministic and concurrent cases in §6 below. All the results 
herein carry over to the nondeterministic- and concurrent cases under the assumption 
of the existence of a clock in the sense of ABADI [1], [2] or PARIKH [21] or §6 here. 

~2. T e m p o r a l  logics of  p r o g r a m s ,  and  f u r t h e r  charac te r iza t ion8  
We will use a first-order multimodal (actually temporal) logic with five modalities 

Firs t ,  Nex t ,  Always,  "Always - i n -  the - fu ture" ,  and "Always - in - t h e -  past". 
We will abbreviate the last three as Alw, A f u ,  and Apa. The intuitive meaning of 
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First  to is that to is true at the first time instant. 2 Using our three-sorted models 
~ introduced for time oriented NLP in §1 above, First  to says that to is true at 
time 0. Similarly, for t E T, Next  ~o is true at t iff to is true at suc(t). Alw to is 
true at t i f f  for all t l E T ,  to is true at t l .  A f u t o  is true at t i f f  for all t I E T  
with tl >_t, to is true at tl .  Apato is true at t iff for all tl  ~ t ,  to is true at 
~1. Finally, P(y) with y E I  is true at t i f f  P(y(t)) holds in D. ! ) ~ t o  f o r a  
temporal formula to iff to is true at every t E T. 

A nonlogical symbol is called flexible (opposite of "rigid") if it is allowed to change 
in time. Unless otherwise specified, the only flexible symbols we allow are constants 
yo, y l , . . ,  yn, . . . .  However, in some of our results we will allow flexible predicates etc. 
too. Throughout, Yi and xi denote flexible constants and rigid variables respectively. 

A x i o m a t i z a t i o n  of  t e m p o r a l  logic: 
Consider axioms (A1,2) and rules ( A 3 -  5) below. 

(A1) For any propositional temporal schema ¢ valid in the standard models (w, . . .  }, 
all (first-order) instances of ¢ belong to (A1). 

R e m a r k :  It is known that (A1) is decidable, and many finite axiomatizations 
are available for (A1), Cf. [12], COLDBLATT [13]. 

(A2) For every temporal formula ~, if ~o is valid in every one of the models ff)t of 
time oriented NLP then ~ is in (A2). 

R e m a r k :  (A2) can be replaced with the HILBERT-style axioms: 
{(to +~ [] to) for every modality [] (i.e. [] C {First ,  Next ,  A t w , A f u ,  Apa}) 
if to contains no flexible symbols; (Vx [] to ~-~ [] Vx to) for every modality [] ; 

--+ to(x/r) for any term r such that the substitution x ~ r does not create 
new bound occurrences of variables or new occurrences of flexible symbols in the 
scope of modalities in to; all (temporal instances of all) axiom schemata of the 
axiomatization on p.157 of [16] of classical first-order logic (other axiomatizations 
work too, but one has to avoid possible substitution rules)} , 

(A3) (to, to-* ¢} k ¢ ,  
(A4) to F Vx Alw to , 
(AS) (Firs t  to, to-+ Next ,o}  k ~ . 

Derivability with (A1 - 5) is denoted by FSFp, derivability with (A1 - 5) in the 
fragment not containing Apa is ~sr ,  same in fragment not containing either Apa 
or A f u  is Fs,  and same in fragment containing First  and Next  only is F0. (Here 
the indices S, F, P refer to Sometime which is interdefinable with Alw, A f u ,  Apa 
being allowed in addition to Firs t  and Next  to occur in the formulas.) Note that 
F-s, FSF, FsFp are frequently used established temporal logics. 

For a pca {to}p{¢} we use its usual temporal representation temp({to}p(¢}) which 
is in the fragment of Fo (i.e. temporal formulas using First  and Next  only, cf. e.g. 

SOur modality Firs t  might look unorthodox. However, it is expressible in the temporal logics in 
PNUELI [22], MANNA-PNUELI [19] or LICHTENSTEIN--PNUELI-ZUCK [17], namely First~ 
is equivalent with (Future)(Past)(p A -~@TRUE) or equivalently (Future)(Past)(p ^ ~FALSE). 
Here "(Future)(  Past)  ~ expresses Sometime and Q is strong-while (~) is weak "previously ~. A similar 
remark applies to the temporal logic LinDisc  on p.64 of GOLDBLATT [13]. Similarly, in any 
temporal logic to which Exercise 6.7 (p.44) of [13] applies, the above used (Future) and G are 
expressible, hence Firs t  is so. 
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PNUELI [22]). We do not distinguish the original pea p from tamp(p), hence we write 
ks  {~}p{¢} for Fs temp({~a}p{¢}). 

P R O P O S I T I O N  1. F v g  - Fo This extends to nondeterministic programs, too. l ~0 " 

T H E O R E M  2. N o n e  of the extensions Fo ~-~ Fs ~-~ FsF ~-+ Fsvp is conservative; 
i.e. there are formulas ~Oo, ~ol, ~2 in the fragment of Fo such that JZo ~o but 
Fs ~ao, Jzs ~01 but FSF ~1 etc. ! 

Our first group of characterizations of program verifying powers is: 

T H E O R E M  3. FFH ~o Inday 
~_IAM ~o Ind 
FPNU =--o (Ind + Time is linearly ordered) ~a ~-SVP 

Here the time oriented NLP axiom Time  is linearly ordered" is equivalent with postulat- 
ing the full first-order theory Th((w,O, sue,<_)) of the standard structure 
(w, O, sue, ~_) for the time sort (or time scale) T of our models ~i~. II 

C O R O L L A R Y  4. FSF ~-o (~- SFP expanded with "Until" and "Since"). I.e. 
FSF --o "the strongest possible temporal logic based on linear discrete ordering of 
time". | 

Tord abbreviates "Time is linearly ordered", from now on. 

§3. C o m p a r i n g  p r o g r a m  ver i fy ing powers  
From the point of view of proving program properties, b s  and FsF are the same as 

the established program verification methods known as Intermittent Assertions Method 
(or Sometime Method) and PNUEIA's temporal method respectively. 

Already from the point of view of proving deterministic pen's only, Floyd-Hoare 
method is strictly weaker than Fs which is strictly weaker than F s r  =--o Fsvp which 
in turn is strictly weaker than some new methods to be introduced and discussed in §4 
below. In symbols 

T H E O R E M  5. kFH <u FS <o bSf  <D (certain new methods) 
where e.g. ~_VH <:~ FS means that strictly more deterministic pen's are provable by 
~-s than by ~_V~l. (I.e. if --o would have been defined as [ <_o and >-o ] then 

wo d be [ < o  and not > .  ] ) . m 

At this point we note that the symbols -D and <o are applicable between any 
formalisms F1 and b~ which are suitable for proving pen's. So HAREL's axiomatization 
of dynamic logic or any other logic of programs can take the place of Fi in F1 - o  F2 
or bl <o F2. 

In connection with the differences in proof theoretic (or program verifying) power 
discussed so far, the following question of practical relevance comes up: 

"What happens if the data domain D is rich enough to encode finite sequences 
with single elements?" More precisely, what we assume is that the data theory (or 
specification) forces the data domain to be such. Examples for such "rich" data theories 
are Peano's Arithmetic, the specification of LISP, finite (or arbitrary) set theory with 
or without urelements. The answer to this question is that if the data theory ensures 
codability of finite sequences then Floyd-Hoare method F FH becomes as strong as 
Pnueli's FSFP which in turn remains still strictly weaker than the new methods 
mentioned above. In symbols 
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T H E O R E M  6. 

. \  / /  moduloPeano's \ 

Thm.5.1.(iv) of SAIN [26] p.312 contains more information on the 
" <n (certain new methods)" part above and Whm.5.1(vi) [26] is the total correct- 
ness version of the above theorem. 

At this point a further characterization result can be presented. Namely let ~_HAREL 
be the inference system of (standard) Dynamic Logic as presented in HAREL [15] and 
also in Def.10 on p.493 of SAIN [24]. Then, 

T H E O R E M  ~'. 

( ~_HAREL =n-- (Ind + Peands arithmetic for Time) \arithmetic for data] " | 

This follows from Thin.5 on p.496 of [15] together with Thm.5.1(v) of SAIN [26] p.312. 
Actually Thm.5 of [26] gives a more general characterization of ~HAREL tOO, namely 
w.r.t, all statements of programs expressible in standard Dynamic Logic. Instead of 
recalling that characterization in full detail, we mention that it uses besides "(Ind + 
Time is linearly ordered)" a restricted form of Ex defined in §4 below together with 
three-sorted induction on data (i.e. the same as Ind but for D instead of T) which 
is sometimes called structural induction. We note that full Ex would be too strong. 
We will return to this in §4. 

Using NLP, it is easy to construct p~ggram verif icat ion m e t h o d s  s t r i c t ly  
s t ronge r  t h a n  P n u e l i ' s  t e m p o r a l  logics of  p rograms .  Some of these strong meth-  
ods have been defined in terms of (usual) temporal logics, too (see ANDRI~KA-N~METI- 
SAIN [6]). An example for a program the partial correctness of which is provable by 
such a strong method but not provable by Pnueti's method is: a program verifier for 
LISP programs. A more mundane example is a proof checker for theorems about LISP 
or about Peano's Arithmetic. Some of these new methods remain strictly stronger than 
Pnueti's one even if the data theory ensures eodability of finite sequences (e.g. if it 
contains Peano's Arithmetic). 

In more detail, (Ind + Tpa + Ex) is a set of axioms in the three-sorted first-order 
language of time oriented NLP.: Ex, "e__~xistence axioms", postulates the existence 
of those elements of I which are definable by first--order three-sorted formulas. In 
traditional logic Ex is usually called comprehension schema, see §D.4.5 (p.937) of [7]. 
More concretely, if fff~ = {T, D, I) and ~(z, x) is a formula (in the first-order language 
of ~ ) with ~)~ ~ (Vz E T)(3x E D)~(z,x) then Ex postulates the existence of 
a y E I with ff)I ~ (Vz E T)~(z,y(z)). Further, Tpa abbreviates "Peano's axioms 
for the time scale T expanded with + and • " (Note that "Peano's axioms for the 
data domain D ' ,  in short "Peano's arithmetic for data", is disjoint from Tpa since it 
speaks about a different sort of fff~. 
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T H E O R E M  8. 

(a) ~-SFP <~ (Ind+ Tpa) <a (Ind+ Tpa+ Ex) , and 

(b) (Ind + Tpa) <~ (Ind + Tpa + Ex) /~ithm~tic lot dataJ " 

One concludes that (Ind + Tpa + Ex) is strlctly stronger than the strongest proof 
system T2 studied in ABADI [1],[2] because theorems therein state that ~T2 <--c 
(Ind + Tpa)). R 

Out l ine  of  proof:  Let us consider a theorem prover program p deriving consequences 
from Peano's axioms. Now, our pea says that p will never derive the formula x ¢ x. 
If we wanted a Floyd-Hoare proof for this pea, we would be looking for an "inductive 
assertion" )6 For our present pea, a natural inductive assertion is the following: First 
we fix a model say N of Peano's arithmetic, and then X says that the formula derived 
by p in the actual (or "present") step is valid in our fixed model N. This X will be 
true in the zeroth step (since N ~ Peanor$ axioms) and if X is true at time t C T 
then it will be easily seen to be true at t + 1. Therefore by induction, this X would 
be suitable for proving our pea. 

However, this X is not expressible in the language of our data domain, moreover it 
is not even expressible even in (Ind + Tpa+"Peanol8 axioms for data"), because of 
TARSKI's theorem on the undefinability of truth. Intuitively, the reason for this is that 
expressing )/ assumes defining a model, say N, but N is an essentially infinite object 
while the elements of our data domain are essentially finite. Even the elements of the 
models of (Ind+Tpa+"Peanots axioms for data") are "internally" finite, i.e. logically 
they behave like finite objects. Since (Ind÷Tpa+ ~Peanots axiom8 for data") ensures 
the existence of these finite objects only, we cannot define (any element that would be 
big enough to code) N in the framework of this theory. TARSKI's theorem adds that 
this limitation cannot be sidestepped by some "clever trick". This inability of expressing 
X leads to unprovability of our pca in (Ind+Tpa+~Peano~s axioms for data~), hence 
it is also unprovable in ~'SFP. We will return to this unprovability a little bit later. 

Our main point here is that the above discussed X is expressible in (Ind+Tpa+Ex) 
because Ex ensures the availability of infinite objects, from which we can construct 
models. Namely, the functions y E I,  mapping T into D can be used as characteristic 
functions of subsets of T. These subsets can be infinite even "internally" (e.g. the set 
of odd elements of T is easily codable by a y : T ~ D and it is an infinite set 
from all possible points of view). Therefore, Ex enables us to construct (or "code") 
a model of Peano's arithmetic from elements of I,  to prove that this model indeed 
exists and satisfies Peano's axioms etc. In short, X is expressible in (Ind + Tpa + Ex) 
and therefore our pea is provable. The details are worked out both for provability from 
( Ind + Tpa + Ex) and for unprovability from ( Ind + Tpa+ " P eanot s axioms ]or data") 
in §V.1 of SAIN [25]. 

As promised above, concerning unprovability from (Ind+ Tpa+ "Peano~s axioms for 
data"): A proof of our pea from this theory would imply provability of the consistency 
of Peano's arithmetic from (Ind + Tpa+ "Peanola axiom~ for data"). However, this 
theory is equiconsistent with Peano's arithmetic (an easy exercise), hence the assump- 
tion (Ind + Tpa+"Peano's axioms for data") ~ (our pea) would imply provability of 
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the consistency of a theory from itself, contradicting GODEL's incompleteness theorem. 
See [25] for details. 

The second part of (a) follows from (b). In connection with the first part of (a), we 
note that a pca distinguishing ~-svP from (Ind-kTpa) expresses the partial correctness 
of a theorem prover which, while being nontrivial, is inherently simpler than one for 
LISP or Peano's arithmetic. See Bm6-SAIN [8] for the details. | 

More material on the subject of the present section is found in BIRS-SAIN [8], §5 of 
[26], [6], [25], [14]. 

.~5. Eventua l i t ies ,  to ta l  correc tness :  
One can treat provability of eventualities (like total correctness assertions) in NLP, as 

well as other kinds of statements about programs, see e.g. SAIN [26],[24]. The following 
result is an illustration for this: 

T H E O R E M  9. From the point of view of total correctness assertions, Intermittent 
Assertions Method is strictly weaker than Pnueli's method. But the difference between 
the powers of these two methods disappears if we assume that the data theory ensures 
codabitity of finite sequences (e.g. if it contains Peano's Arithmetic). | 

A characterization of Intermittent Assertions Method from the point of view of total 
correctness is given in Theorems 2.7 and 4.4 of [26] under the assumption that the data 
theory (or equivalently specification) contains Peano's axioms (postulated for the data 
sort, of course). Cf. also p.286 lines 16-17 of [26]. It seems likely that the condition that 
the data theory has to contain Peano's arithmetic can be eliminated from the quoted 
characterization in [26] if we change the frame of characterization slightly. Namely, 
the assertion "the program p terminates" was represented (in the formalism of time 
oriented NLP) in [26] by saying that p has an execution sequence which terminates. 
If instead, we use the statement saying "every execution sequence of p terminates", 
we get a slightly different representation of total correctness assertions. We conjecture 
that under this new representation the characterizations in [26] can be improved. 

.~6. Concu r r ency ,  n o n d e t e r m i n i s m ,  fairness,  and  clocks 
The characterization k F H  : -D Indqf in Theorem 1 carries over to concurrent and 

nondeterministic programs without any further assumptions (like clocks). 

T H E O R E M  10. 

(i) Fs <a Ind  for nondeterministic pca's. 
(ii) There is a nondeterministic pca p such that 

FsvP "p holds for fair  executions" but 
~ s v  "p holds for fair  executions". 

That is, fa i rness  separates F s r  and k s rP .  ] 

T H E O R E M  11. kSFP-- ( Ind+ Tord) for all propel'ties of deterministic programs. 
This is not  true for FSF in place of Fsvp .  | 

Recall from ABADI [1], [2], PARIKH [21] that a clock is a temporal formula 3(5) 
satisfying 

dej Alw(3 A Next Afu 
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So a clock ~/ never "shows the same time" in two different time instances t and tl.  
A weak clock, formalized as Cw('y), is permitted to show the same time in t and tl 
but then t and tl should not be distinguishable by atomic formulas or by Next "~(5). 
Assume ~,(5) is of form y - - x .  Then Cw(q) postulates 

{[(~ = 5A Yi = xi A Next ~ = x'--) --+ Next Afu(~ = -~ ~ [Yi = xi A Next ~ = x'--])] : 

i E  I and ~, x --/ and {xi} are disjoint) 

where {yi : i E I} is the set of all flexible symbols in our language. For our purposes 
we may assume that I is finite and then Cw(ff) becomes a single formula. If for some 
reason it would be important to keep I infinite then Cw(~) is a set of formulas and 
everything goes through still. 

Existence of weak clocks is a much weaker assumption than that of clocks, e.g. 
Cw(~ = 5) does not force the data domain to be infinite while C(~/) does. Also 
C(~ = ~) FSF Cw(~ = 5). The results below generalize to the case when ~ = 5 
is replaced with arbitrary ~, in Cw, but then Cw becomes longer to formulate 
(intuitive meaning remains the same). 

T H E O R E M  12.  ~sFP - o  (Ind + Tord) generalizes to nonde te rmin i s t i c  and 
concurrent programs under assuming existence of a weak clock (same for ordinary 
clocks). | 

§7. Tempora l  formulas  in genera l  

T H E O R E M  13. Even if we permit flexible predicate- and function symbols, the 
temporal logics FSF and FSFP are complete for the semantics (Ind + Tord) under 
assuming the existence of a clock. I.e. for any temporal formulas ~v and % (i) ~ (ii) 
below. 

The same holds with everything restricted to the language of FSF. | 

The above theorem generalizes the completeness result for ~TI" in ABADI [1], [2] to 
HILBERT-style proof systems. In particular, for the formula ~ constructed in §§3-4 
therein to show incompleteness w.r.t. (Ind + Tord) of the HILBERT-style To found 
therein, we have Fsv ~Ab~gi (while ]ZTo ~Ab~ai). The following improve the above 
result by weakening the clock assumption. 

T H E O R E M  14. ~'SFP is complete for (Ind + Tord) under assum]ng weak clocks. 
I.e. for any temporal ~, (i) ¢=~ (ii) below. 

(i) Ind + Tord + Cw(~ ='~) ~ 

Note that the choices of ~ and ~ are independent. | 

T H E O R E M  15. Theorem 14 fails for ~-SF in place of FSFP, i.e. ksv  is 
incomplete w.r.t. (Ind + Tord) under C w ( ~ = 5 )  (but notunder C('~) by Theorem 
13). ! 
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T H E O R E M  16.  ~o is comptete for the semantics Indqy ; i.e. for any temporal 
formula ~o in the language of ~-0, 

t-o iff Indqy ~ ~ . | 

In connection with the problems at the end of ABADI [1], [2] we obtain the following, 
even if we allow only constants as flexible symbols: 

(17 ) .  The inference system introduced hi MANNA-PNUELI  [18] for  temporal logic 
with N e x t  and A f u  is incomplete w.r.t, the semant ics  (Ind + Tord). Moreover, it 
remains incomplete af ter  adding all propositionatly valid formulas  (cf. (A1) herein) and 
a n y  tinite number of  n e w  a x i o m s  (valid in (Ind + Tord)). 

( 1 8 ) .  The inference systems To, :tq introduced in ABADI's  papers [1], [2] are incom- 
plete w.r.t. ( Ind+ Tord) / f u s e d  without "Until". This is so even under assuming weak 
clocks and despite of T1 's being reinforced with somewhat unusual rules permitt ing 
the use of auxiliary definitions in proofs. By  the r emark  at the end of § 7 of the full 
version of [1] discussing ~1  without Until", we concIude t h a t  docks do increase the  
power of this sys tem.  

P r o b l e m  19 .  Are  Theorems 12 or 14 t rue  without assuming  any kind of clocks? | 

P r o b l e m  20.  Is ~s  -D l n d l  t rue  for nondeterministic programs, where I n d l ( C  
Ind) is induction over NLP formutas  containing at most one variable of sor t  T ? | 
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