ON THE STRENGTH OF TEMPORAL PROOFS!

Hajnal Andréka, Istvdn Németi, and Ildikd Sain
Mathematical Institute of the Hungarian Academy of Sciences
Budapest, Pf.127, H-1364, Hungary

In this paper we investigate the reasoning powers or proof theoretic powers of various
established temporal logics used in Computer Science. In the first part we concentrate
on provability of various program properties while in the second one we investigate prov—
ability of temporal formulas in general. In the first part we consider both deterministic
and nondeterministic programs.

Our investigations are twofold:
(1) compare the reasoning powers of the various logics, and
(2) characterize their reasoning powers.

The investigations in (2) are often called completeness issues, because a good char-
acterization amounts to finding a nice and mathematically transparent semantics w.r.t.
which our logic is complete, cf. ABADI [2] and [10]. In doing (2), we follow the method—
ology called Correspondence Theory in philosophical logic (see Chap.IL.4 of [10]} which
was first elaborated for temporal logics of programs in the 1978 version of SAIN 23]
(cf. also [5], both papers based on the Computer Science temporal logics in [4]), in the
framework called time oriented Nonstandard Logics of Programs (NLP). Same is used
in ABADI [1], [2]. In particular, the semantics denoted as “Fo P(...)” by ABADI was
first introduced as “(Ind+Tord) =" in the above quoted NLP literature, and will play
a central role herein, too. Among others, we will obtain new strong (hereditarily in a
sense) incompleteness results w.r.t. this semantics for proof systems of ABADI-MANNA
[3] and MANNA-PNUELI [18] respectively. No number of new axioms, but a single new
modality can eliminate this incompleteness.

§1. Time oriented NLP, and the first characterization result

Time oriented NLP is a three-sorted classical first—order logic, the sorts of which are
the time scale T, the data domain D, and a sort I consisting of some functions
from T into D. We think of the elements of I as time sequences, i.e. sequences
indexed by the elements of T. In more detail, a model of time oriented NLP is a
triple 9 = (T,D,I) where T = (T,0,suc,<,+,-) is called the time structure of
M, D is the data structure {or data domain) of M, and I C 7D (TD denotes the
set of all functions from T into D.) The intuition comes from the standard model
{{w,0,suc,<,+,-),D,“D) of NLP, where w is the set of all natural numbers, and
the elements of I are indeed w-sequences. For our purposes, however, the arbitrary
models like 971 above are more important than the standard one.

Let p be a (possibly nondeterministic) blockdiagram program using only one vari-
able z. For y € I we say that y is an execution sequence of p if the sequence
(¥(0), y(suc(0)),...,y(t),...)ter is an execution of p in the usual sense. Now a par—
tial correctness assertion, pca from now on, {p(z)}p{¥(z)} is valid in 9 iff for
every execution sequence y € I of p, whenever (y(0)) holdsin D and y(t) is

“This work has been supported by the Hungarian National Foundation for Scientific Research Grant
No 1810.

136

a terminating state (or possible output) of p, then we also have that ¥(y(t)) holds.
The case when p uses more variables is similar. (Total correctness and other kinds of
statements about programs are formalized in time oriented NLP similarly, cf. §5 way
below.)

The formulas of time oriented NLP are (basically) the usual three-sorted first—order
formulas of the language of 9. Let Az be a set of such formulas of time oriented
NLP. Then

Az = {p}p{¥}

is defined to hold iff {w}p{¢} is valid in every model P of Az. We say that
{p}p{¢y} follows from Az (in time oriented NLP) iff Az |= {p}p{¢} holds.

A characterization of a fixed program verification method, say F¥#, consists of find—
ing a set Az of (first-order) formulas of the many-sorted language of time oriented
NLP, and proving that the correctness of a program is provable by +¥H iff it follows
from Az intime oriented NLP. An example for such a characterization of Floyd-Hoare
method FFH is the theorem saying that a pca is Floyd~Hoare provable iff it follows
from the axiom system Indgs of time oriented NLP (see [27], [9]). Indgy is a restricted
T-induction. More precisely, let us recall that the time scale T has a distinguished
element 0 € T and a nexttime function or successor suc : T — T, Now, for any
formula ¢(z) of time oriented NLP, the full induction schema Ind postulates

((0) A (V2 € T)[ip(2) — p(suc()))) = (V2 € T)o(2).

Note that in this Ind, ¢ may speak about the whole of 91 and not only T, and
may contain parameters from any sorts of P1. So our Ind is much sironger than
the usual one in which ¢ is allowed to talk about the structure T only. Now,
Indys C Ind postulates induction for exactly those formulas ¢(z) of time oriented
NLP which contain no quantifiers of sort T. The above mentioned characterization of
the Floyd-Hoare method (%) in the notational system of the present paper reads
as

FFH = Indgy .

This formula abbreviates the claim that for any pca {p}p{¥/} we have:
PR {oyp{y} = Indg B {e}p{¥}.

We will return to the nondeterministic and concurrent cases in §6 below. All the results
herein carry over to the nondeterministic— and concurrent cases under the assumption
of the existence of a clock in the sense of ABADI (1], [2] or PARIKH [21] or §6 here.

§2. Temporal logics of programs, and further characterizations

We will use a first-order multimodal (actually temporal) logic with five modalities
First, Next, Always, “Always—in—the— future”, and “Always—in—the—past”.
We will abbreviate the last three as Alw, Afu, and Apa. The intuitive meaning of

137

First ¢ is that ¢ is true at the first time instant.? Using our three-sorted models
SN introduced for time oriented NLP in §1 above, First ¢ says that ¢ is true at
time 0. Similarly, for t € T, Nezt @ istrueat t iff ¢ is true at suc(t). Alw ¢ is
trueat ¢ iff forall t; €T, ¢ istrueat ¢;. Afue istrueat ¢ iff forall t; €T
with ¢, >t, ¢ istrueat ;. Apa ¢ is trueat ¢t iff for all t; <t, ¢ is true at
t1. Finally, P(y) with y€ I istrueat ¢ iff P(y(t)) holdsin D. M= fora
temporal formula ¢ iff ¢ is true at every t € T.

A nonlogical symbol is called flexible (opposite of “rigid”) if it is allowed to change
in time. Unless otherwise specified, the only flexible symbols we allow are constants
Yo,Y1s---Yn,... . However, in some of our results we will allow flexible predicates etc.
too. Throughout, y; and z; denote flexible constants and rigid variables respectively.

Axiomatization of temporal logic:
Consider axioms (Al,2) and rules (A3 — 5) below.

(A1) For any propositional temporal schema 1 valid in the standard models {w,...},
all (first-order) instances of 1 belong to (Al).
Remark: It is known that (A1) is decidable, and many finite axiomatizations
are available for (A1), Cf. [12], GOLDBLATT [13].
(A2) For every temporal formula ¢, if ¢ is valid in every one of the models 90 of
time oriented NLP then ¢ is in (A2).
Remark: (A2) can be replaced with the HILBERT-style axioms:
{{ <) for every modality I (i.e. [e {First,Next, Alw, Afu,Apa})
if ¢ contains no flexible symbols; (V& ¢ <> [Vz @) for every modality [3;
@ — o(z/r) for any term 7 such that the substitution z+ 7 does not create
new bound occurrences of variables or new occurrences of flexible symbols in the
scope of modalities in ¢; all (temporal instances of all) axiom schemata of the
axiomatization on p.157 of [16] of classical first—order logic (other axiomatizations
work too, but one has to avoid possible substitution rules)} ,
(A3) {o,o—v} + ¢,
(A4) o + VzAlwop,
(A5) {Firstp, ¢ = Nextp} + ¢.

Derivability with (A1 — 5) is denoted by Fgpp, derivability with (A1 — 5) in the
fragment not containing Apa is Fgsp, same in fragment not containing either Apa
or Afu is g, and same in fragment containing First and Nezt only is Fo. {(Here
the indices S, F, P refer to Sometime which is interdefinable with Alw, Afu, Apa
being allowed in addition to First and Nezt to occur in the formulas.) Note that
g, Fsp, Fspp are frequently used established temporal logics.

For a pca {p}p{y} we use its usual temporal representation temp({©}p{1}) which
is in the fragment of Fq (i.e. temporal formulas using First and Nezt only, cf. e.g.

20ur modality First might look unorthodox. However, it is expressible in the temporal logics in
PNUELI [22], MANNA—-PNUELI [19] or LICHTENSTEIN--P NUELI- ZUCK [17], namely Firstp
is equivalent with {Future){Past){o A~@TRUE) or equivalently (Future){Past)(p A OFALSE).
Here “{Future)(Past)” expresses Sometime and © is strong— while © is weak “previously”. A similar
remark applies to the temporal logic LinDisc on p.64 of GOLDBLATT [13]. Similarly, in any
temporal logic to which Exercise 6.7 (p.44) of [13] applies, the above used (Fufure) and © are
expressible, hence First is so.

138

PNUELI [22]). We do not distinguish the original pca p from temp(p), hence we write
Fs {p}p{4} for ks temp({p}p{¥}).
PROPOSITION 1. HFH =, to . This extends to nondeterministic programs, too. Il

THEOREM 2. None of the extensions to++ g+ tFsp— Fgpp Isconservative;
i.e. there are formulas g, p1, @2 in the fragment of to such that Fo po but
Fs w0, ¥sp1 but Fsp p; etc. |

Our first group of characterizations of program verifying powers is:

THEOREM 3. FPH =_ Indgy
HIAM = Ind
FPNU = (Ind+ Time is linearly ordered) =, bFsrp .

Here the time oriented NLP aziom “Time is linearly ordered ” is equivalent with postulat-
ing the full first-order theory Th{{w,0,suc,<}} of the standard structure
{w,0,suc,<) for the time sort (or time scale) T of our models M. 1

COROLLARY 4. tsp =, (Fsrp ezpanded with “Until” and “Since”). Le.
tep =, “the strongest possible temporal logic based on linear discrete ordering of
time”. |}

Tord abbreviates “Time is linearly ordered”, from now on.

§3. Comparing program verifying powers

From the point of view of proving program properties, s and Fgp are the same as
the established program verification methods known as Intermittent Assertions Method
(or Sometime Method) and PNUELI’s temporal method respectively.

Already from the point of view of proving deterministic pea’s only, Floyd-Hoare
method is strictly weaker than rg which is strictly weaker than Fgp =, Fgpp which
in turn is strictly weaker than some new methods to be introduced and discussed in §4
below. In symbols

THEOREM 5. FFPH < +g <o bsr <y (certain new methods)

where e.g. FFH <, b5 means that strictly more deterministic pca’s are provable by
Fs than by FFH. (Le. if =, would have been defined as [<, and >, | then
<, wouldbe [<, andnot >,[).1

At this point we note that the symbols =, and <, are applicable between any
formalisms F; and F, which are suitable for proving pca’s. So HAREL’s axiomatization
of dynamic logic or any other logic of programs can take the place of +; in F; = k2
or by <, ba.

In connection with the differences in proof theoretic (or program verifying) power
discussed so far, the following question of practical relevance comes up:

“What happens if the data domain D is rich enough to encode finite sequences
with single elements?” More precisely, what we assume is that the data theory (or
specification) forces the data domain to be such. Examples for such “rich” data theories
are Peano’s Arithmetic, the specification of LISP, finite (or arbitrary) set theory with
or without urelements. The answer to this question is that if the data theory ensures
codability of finite sequences then Floyd-Hoare method FFH becomes as strong as
Pnueli’s Fspp which in turn remains still strictly weaker than the new methods
mentioned above. In symbols

139

THEOREM 6.

dulo P !
(FFH =, ks =, Fsrp <o (certain new methods))/(moauto feano's)

arithmetic for data

Thm.5.1.(iv) of SAIN [26] p.312 contains more information on the
“ <y (certain new methods)” part above and Thm.5.1{vi) [26] is the total correct-
ness version of the above theorem.

At this point a further characterization result can be presented. Namely let
be the inference system of (standard)} Dynamic Logic as presented in HAREL [15] and
also in Def.10 on p.493 of SAIN [24]. Then,

THEOREM 7.

}_HAREL

dulo P /
(F‘HAREL =, (Ind + Peano's arithmetic for Time))/(moauto Leano's)

arithmetic for data

This follows from Thm.5 on p.496 of [15] together with Thm.5.1(v) of SAIN [26] p.312.
Actually Thm.5 of [26] gives a more general characterization of FHAEEL o0, namely
w.r.t. all statements of programs expressible in standard Dynamic Logic. Instead of
recalling that characterization in full detail, we mention that it uses besides “{Ind +
Time is linearly ordered)” a restricted form of Ez defined in §4 below together with
three-sorted induction on data (i.e. the same as Ind but for D instead of T) which
is sometimes called structural induction. We note that full Ez would be too strong.
We will return to this in §4.

§4. Using NLP, it is easy to construct program verification methods strictly
stronger than Pnueli’s temporal logics of programs. Some of these strong meth—
ods have been defined in terms of (usual) temporal logics, too (see ANDREKA-NEMETI~
SAIN [6]). An example for a program the partial correctness of which is provable by
such a strong method but not provable by Pnueli’s method is: a program verifier for
LISP programs. A more mundane example is a proof checker for theorems about LISP
or about Peano’s Arithmetic. Some of these new methods remain strictly stronger than
Pnueli’s one even if the data theory ensures codability of finite sequences (e.g. if it
contains Peano’s Arithmetic).

In more detail, (Ind+ Tpa+ Ez) is a set of axioms in the three-sorted first—order
language of time oriented NLP.: E=z, “ezistence azioms”, postulates the existence
of those elements of I which are definable by first-order three-sorted formulas. In
traditional logic Ez is usually called comprehension schema, see §D.4.5 (p.937) of [7].
More concretely, if 9t = (T,D,I) and p(z,z) is a formula (in the first~order language
of M) with M |= (Vz € T)(Iz € D)p(z,z) then Ez postulates the existence of
a y€lI with M= (V2 € T)p(z,y(2)). Further, Tpa abbreviates “Peano’s axioms
for the time scale T expanded with + and - ”. (Note that “Peano’s axioms for the
data domain D”, in short “Peano’s arithmetic for data”, is disjoint from Tpa since it
speaks about a different sort of 7.

140

THEOREM 8.
(a) Fsrp <g (Ind+ Tpa) <5 (Ind+ Tpa+ Ez), and

(b) ((Ind+Tpa) <g (Ind+Tpa+Ex))/(modulo Peano's).

arithmetic for data

One concludes that (Ind + Tpa + Ez) is strictly stronger than the strongest proof
system T. studied in ABADI [1],]2] because theorems therein state that rr, <,
(Ind + Tpa)). 1

Outline of proof: Let us consider a theorem prover program p deriving consequences
from Peano’s axioms. Now, our pca says that p will never derive the formula z # z.
If we wanted a Floyd-Hoare proof for this pca, we would be looking for an “inductive
assertion” x. For our present pca, a natural inductive assertion is the following: First
we fix a model say N of Peano’s arithmetic, and then x says that the formula derived
by p in the actual (or “present”) step is valid in our fixed model N. This x will be
true in the zeroth step (since N |= Peano’s azioms) and if x is true at time ¢t €T
then it will be easily seen to be true at ¢+ 1. Therefore by induction, this x would
be suitable for proving our pca.

However, this x is not expressible in the language of our data domain, moreover it
is not even expressible even in (Ind + Tpa+“Peano’s azioms for data”), because of
TARSKI’s theorem on the undefinability of truth. Intuitively, the reason for this is that
expressing x assumes defining a model, say N, but N is an essentially infinite object
while the elements of our data domain are essentially finite. Even the elements of the
models of (Ind+Tpa+“Peano's azioms for data”) are “internally” finite, i.e. logically
they behave like finite objects. Since {Ind+Tpa+“Peano’s azioms for data”) ensures
the existence of these finite objects only, we cannot define (any element that would be
big enough to code) N in the framework of this theory. TARSKI’s theorem adds that
this limitation cannot be sidestepped by some “clever trick”. This inability of expressing
x leads to unprovability of our pca in (Ind+Tpa+“Peano’s azioms for data”), hence
it is also unprovable in Fsrp. We will return to this unprovability a little bit later.

Our main point here is that the above discussed x s expressible in (Ind+Tpa-+Ex)
because Ez ensures the availability of infinite objects, from which we can construct
models. Namely, the functions y € I, mapping T into D can be used as characteristic
functions of subsets of 7. These subsets can be infinite even “internally” (e.g. the set
of odd elements of T is easily codable by a y : T — D and it is an infinite set
from all possible points of view). Therefore, Ez enables us to construct (or “code”)
a model of Peano’s arithmetic from elements of I, to prove that this model indeed
exists and satisfies Peano’s axioms etc. In short, x is expressible in {Ind+Tpa+ Ex)
and therefore our pca is provable. The details are worked out both for provability from
(Ind+Tpa+ Ez) and for unprovability from (Ind+Tpa+“Peand’s azioms for data”)
in §V.1 of SAIN [25].

As promised above, concerning unprovability from {Ind+Tpa+“Peand’s azioms for
data”): A proof of our pca from this theory would imply provability of the consistency
of Peano’s arithmetic from {Ind + Tpa+“Peano's azioms for data”). However, this
theory is equiconsistent with Peano’s arithmetic (an easy exercise), hence the assump-
tion (Ind+ Tpa+“Peand's azioms for data”) b (our pca) would imply provability of

141

the consistency of a theory from itself, contradicting GODEL’s incompleteness theorem.
See [25] for details.

The second part of (a) follows from (b). In connection with the first part of (a), we
note that a pca distinguishing Fspp from (Ind+Tpa) expresses the partial correctness
of a theorem prover which, while being nontrivial, is inherently simpler than one for
LISP or Peano’s arithmetic. See BIRO—SAIN (8] for the details. B

More material on the subject of the present section is found in BIRO—-SAIN [8], §5 of
[26], [6], [25], HAIEK [14].

§5. Eventualities, total correctness:

One can treat provability of eventualities (like total correctness assertions) in NLP, as
well as other kinds of statements about programs, see e.g. SAIN [26],[24]. The following
result is an illustration for this:

THEOREM 9. From the point of view of total correctness assertions, Intermittent
Assertions Method is strictly weaker than Pnueli’s method. But the difference between
the powers of these two methods disappears if we assume that the data theory ensures
codability of finite sequences (e.g. if it contains Peano’s Arithmetic). 1

A characterization of Intermittent Assertions Method from the point of view of total
correctness is given in Theorems 2.7 and 4.4 of [26] under the assumption that the data
theory (or equivalently specification) contains Peano’s axioms (postulated for the data
sort, of course). Cf. also p.286 lines 16-17 of [26]. It seems likely that the condition that
the data theory has to contain Peano’s arithmetic can be eliminated from the quoted
characterization in [26] if we change the frame of characterization slightly. Namely,
the assertion “the program p terminates” was represented (in the formalism of time
oriented NLP) in [26] by saying that p has an erecution sequence which terminates.
If instead, we use the statement saying “every erecution sequence of p terminates”,
we get a slightly different representation of total correctness assertions. We conjecture
that under this new representation the characterizations in [26] can be improved.

§6. Concurrency, nondeterminism, fairness, and clocks
The characterization F¥H =_ Ind,s in Theorem 1 carries over to concurrent and
nondeterministic programs without any further assumptions (like clocks).

THEOREM 10.

(i) s <g Ind for nondeterministic pca’s.

(ii) There is a nondeterministic pca p such that
Fsrp “p holds for fair executions” but
Fsr “p holds for fair executions”.

That is, fairness separates Fgp and Fgpp. |

THEOREM 11. Fgpp= (Ind+Tord) for all properties of deterministic programs.
This is not true for Fgp in place of Fgpp. |

Recall from ABADI [1], [2], PARIKH [21] that a clock is a temporal formula ~(Z)
satisfying

def

C(7) = Alw(3z4(Z) A [y(Z) — Next Afu —~(T))).

142

So a clock v never “shows the same time” in two different time instances ¢ and t;.
A weak clock, formalized as Cw(v), is permitted to show the same time in ¢ and ¢4
but then ¢ and t; should not be distinguishable by atomic formulas or by Nexzt ¥(%).
Assume (%) is of form ¥ =Z. Then Cw(y) postulates

{{T=ZTAyi=ziANext§=1) — Next Afu(§ =% — [yi = z; A Nezt § = 7))} :
i€l and %, z' and {z;} are disjoint}

where {y; : ¢ € I} is the set of all flexible symbols in our language. For our purposes
we may assume that I is finite and then Cw(y) becomes a single formula. If for some
reason it would be important to keep I infinite then Cw(7) is a set of formulas and
everything goes through still.

Existence of weak clocks is a much weaker assumption than that of clocks, e.g.
Cw(§ = %) does not force the data domain to be infinite while C(y) does. Also
C(y = %) bsr Cw(y = Z). The results below generalize to the case when ¥ =12
is replaced with arbitrary v in Cw, but then Cw becomes longer to formulate
(intuitive meaning remains the same).

THEOREM 12. tgrp =, (Ind+ Tord) generalizes to nondeterministic and
concurrent programs under assuming existence of a weak clock (same for ordinary

clocks). &

§7. Temporal formulas in general

THEOREM 13. Even if we permit flexible predicate— and function symbols, the
temporal logics Fgr and tgpp are complete for the semantics (Ind+ Tord) under
assuming the existence of a clock. Le. for any temporal formulas ¢ and ~, (1) <= (i1)

below.)
(1) Ind+Tord+C(v) F P
(41) C(y) tsrp ®.

The same holds with everything restricted to the language of tbsp. |

The above theorem generalizes the completeness result for “Ty” in ABADI [1], [2] to
HILBERT-style proof systems. In particular, for the formula ¢ constructed in §§3-4
therein to show incompleteness w.r.t. (Ind+ Tord) of the HILBERT-style Ty found
therein, we have Fsp ©abadi (While ¥z, ©asadi). The following improve the above
result by weakening the clock assumption.

THEOREM 14. Fgspp is complete for (Ind+Tord) under assuming weak clocks.
Le. for any temporal ¢, (i) <=> (it) below.

() Ind+Tord+Cuw(=%) F P
(13) Cw(§=‘1':) Fsrp @

Note that the choices of w and § are independent. ¥

THEOREM 15. Theorem 14 fails for t+sr in place of tgspp, ie. tgp is
incomplete w.r.t. (Ind+Tord) under Cw(y =71) (but not under C(y) by Theorem
13). 1

143

THEOREM 16. ¢ is complete for the semantics Indgs ; i.e. for any temporal
formula @ in the language of o,

Fo if Indyy '=90 .]

In connection with the problems at the end of ABADI (1], [2] we obtain the following,
even if we allow only constants as flexible symbols:

(17). The inference system introduced in MANNA—-PNUELI [18] for temporal logic
with Next and Afu is incomplete w.r.t. the semantics (Ind+ Tord). Moreover, it
remains incomplete after adding all propositionally valid formulas (cf. (A1) herein) and
any finite number of new axioms (valid in (Ind + Tord)).

(18). The inference systems To, T1 introduced in ABADI’s papers [1], (2] are incom-
plete w.r.t. (Ind+Tord) if used without “Until”. This is so even under assuming weak
clocks and despite of Ty’s being reinforced with somewhat unusual rules permitting
the use of auxiliary definitions in proofs. By the remark at the end of §7 of the full
version of {1] discussing “Ty without Until”, we conclude that clocks do increase the
power of this system.

Problem 19. Are Theorems 12 or 14 true without assuming any kind of clocks? §

Problem 20. Is +g =, Ind;, true for nondeterministic programs, where Ind(C
Ind) is induction over NLP formulas containing at most one variable of sort T 7 &

REFERENCES

1. M.Abadi, The power of temporal proofs, Proceedings of the Second Annual IEEE Symposium on
Logic in Computer Science, Ithaca, NY, USA; (1987), 123-130, Full version of this is: The power
of temporal proofs, preprint of Digital Systems Research Center, 1988.
2. M.Abadi, Temporal logic was incomplete only temporarily, Preprint (1989).
3. M.Abadi and Z.Manna, A timely resolution, First Annual Symposium on Logic in Computer Science
(1986), 176-189.
4. H.Andréka, K.Balogh, K.Libadi, 1. Németi, P.Téth, Plans to improve our program verifier program (in
Hungarian), Working Paper, NIM IGUSZI, Dept. of Software Techniques, Budapest (1974).
5. H.Andréka, I.Németi, and L.Sain, A complete logic for reasoning about programs via nonstandard model
theory, Parts I-1l, Theoretical Computer Science Vol 17 Nos 2, 3 (1982}, 193-212 and 259-278.
6. H.Andréka, L.Németi, and 1.Sain, Temporal logics of programs with “binary” modalities, Extended ab-
stract (1989).
7. J.Barwise (ed), Handbook of Mathematical Logic, North-Holland (1977).
8. B.Biré and 1L.Sain, Peano Arithmetic for the Time Scale of Nonstandard Models for Logics of Programs,
Annals of Pure and Applied Logic, to appear.
9. L.Csirmaz, Programs and program verification in a general setting, Theoretical Computer Science Vol
16 (1981}, 199-210.
10. D.Gabbay and F.Guenther (eds), Handbook of philosophical logic, D.Reidel Publ. Co. Vol IT (1984).
11. T.Gergely and L.Ury, First order programsming theories, SZAMALK Technical Report Budapest
(1989), 232pp.
12. D.Gabbay, A.Pnueli, S.Shelah, J.Stavi, On the temporal analysis of fasrness, Preprint Weizman Insti-
tute of Science, Dept. of Applied Math. {1981).
13. R.Goldblatt, Logics of time and computation, Center for the Study of Language and Information,
Lecture Notes Number 7 (1987).

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

144

P.Hédjek, Some conservativeness results for nonstandard dynamic logic, In: Algebra, combinatorics,
and logic in computer science, Proc. Conf. Gy6r Hungary 1983 (eds: J.Demetrovics, G.Katona,
A.Salomaa), Collog. Math. Soc. J. Bolyai Vol 42, North-Holland (1986}, 443-449.

D.Harel, First order dynamic logic, Springer Lecture Notes in Computer Science Vol 88 (1979).
L.Henkin, J.D.Monk, and A.Tarski, Cylindric Algebras Part II, North-Holland (1985).
O.Lichtenstein, A.Pnueli, and L.Zuck, The glory of the past, Proc. Coll. Logics of Programs, Brook-
lyn, USA, Springer Lecture Notes in Comp. Sci. {ed: R. Parikh} Vol 193 {1985), 196-218.
Z.Manna and A.Pnueli, The modal logic of programs, International Colloquium on Automata, Lan-
guages and Programming’79, Graz, Springer Lecture Notes in Computer Science Vol 71 (1979),
385-409.

Z.Manna and A. Pnueli, 4 hierarchy of temporal properties, preprint {1986).

Z.Manna and R.Waldinger, Is “sometime” sometimes beiter than “always”?, Comm. ACM Vol 21
(1978}, 159-172.

R.Parikh, A decidabslity result for second order process logic, IEEE Symposium on Foundation of Com-
puter Science (1978), 177-183.

A.Pnueli, Specification and development of reactive systems, Information Processing (IFIP’86}, H.-J.
Kugler {ed.) North-Holland Vol 86 {1986}, 845-858.

1.8ain, There are general rules for specifying semantics: Observations on Abstract Model Theory, CL and
CL (Computational Linguistics and Computer Languages) Vol XIIT {1979), 195-250.

1.Sain, Structured Nonstandard Dynamic Logic, Zeitschrift fiir Math. Logic u. Grundlagen der Math.
Heft 3, Band 30 (1984), 481-497.

1.8ain, Nonstandard Logics of Programs, Dissertation, Hungarian Academy od Sciences, Budapest {in
Hungarian) (1986).

1.Sain, Total correctness in nonstandard logics of programs, Theoretical Computer Science Vol 50 (1987),
285-321.

1.Sain, Elementary proof for some semantic characterizations of nondeterministic Floyd-Hoare logic, Notre
Dame Journal of Formal Logic, to appear {1989).

