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This paper belongs to first order dynamic logic and within this field 

it belongs to the nonstandard-time school. A systematic exposition 

is [9], short ones are [~,[4~,[83, D~" An explicit characterization 

of the informationcontent of the Floyd programverification method 

will be given here. Since the results might be of interest for re- 

searchers outside the scope of dynamic logic e.g. researchers in non- 

standard recursion theory, here we use continuous traces instead of 

the more natural intensional semantics of L9J,L3J. For the same rea- 

son here we assume that the theory T from which we prove partial 

correctness of our programs contains Peano's axioms. If we drop this 

condition then the results will be different, see [9],[8]. For more 

introductery and historical material, examples, and motivations see 

[9] • See also the end of the present paper. 

We are interested in the behaviour of program schemes in first order 

axiomatizable classes of models (i.e. interpretations). We are una- 

ble to understand why some people investigate properties of programs 

either in a single fixed model or else in the similarity class of 

all possible models. 

1. S.yntax 

t is a similarity type consisting of function and relation symbols. 

denotes the set of natural numbers. 

Y ~ ~ Yi : i ~O ) is called the set of variable s.ymbols and is 

disjoint from everything we use. Logical symbols: { A , ~ , 3 ~ • 

Other symbols: ~ -W- , IF , GOTO , ( , ) , : ~ . The set of "label 

symbols" is co itself. 

L t denotes the set of all first order formulas of type t possibly 

with free variables (elements of Y of course), see e.g. [6]p.22 • 
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We shall refer to "terms of type t " as defined in e.g. [6]p.22 . 

Now we define the set Pt of programs of type t • 

The set U t of commands of type t is defined by: 

(j: y-<- T) E U t if j~, yEY and T is a term of type t • 

(j: IF X GOT0 v) ~ U t if J,v~co, ~EL t is a formula without 

quantifiers. 

These are the only elements of U t . 

If (i:u) ~ U t then i is called the label of the command (i:u) . 

By a program of type t we understand a finite sequence of commands 

(elements of U t ) in which no two members have the same label. 

Formally, the set of programs is: 

Pt ~ {~io:Uo)'''(in:Un~ : n~, (Ve~n)(ie:Ue)~Ut, {Ve~k~n)ikli e ~. 

For every p ~ <(io:Uo),...~(in:Un) > m Pt we shall use the notation 

• d min(~\{i m : m~n~ ) In+ ~ = 

EXAMPLE: Let t contain the function symbols: "+,-,0,1" with 

arities "2,2,0,0" respectively. Now the sequence: 

~0: yi-,-0),(I: IF Y~=Y2 GO~O 4),(2: y~-~y~+1),(3: I~ y2=y2 GOTO I~ 

is a program of type t • 

2. Semantics 

Let P ~Pt be a program~ and ~ be a structure or model of type t 

see [6]p.20 . The universe of a model denoted by ~ will always 

be denoted by A • 

Vp denotes the variable symbols occurring in p o 

Note that V is a finite subset of Y • 
P 

By a valuation (of the variables of p ) in ~ we understand a func- 

tion q : Vp > A (cf. [~P.55) • 
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Let T be a term occurring in p . Now T~q~A denotes the value 

of the term T in the model ~ at the valuation q of the varia- 

ble symbols, cf. ~6~p.27 Def.1.3.13. We shall often write ~q~ 

i.e. we shall omit the subscript & • 

From now on we work with the similarity type of arithmetic. I.e. t 

is fixed to consist of "+,-,0,1" with arities "2,2,0,0" • We 

shall omit the index t since it is fixed an~vay. 

denotes the standard model, that is 

~ ~co , + , • , 0 , 1 ~ where +,.,0,1 are the usual. 

EXA3~LE: Let Vp = {yl,Y2} , q(yl)=2 , q(y2)=3 , T=((yl+Y2)+Y2) • 

Then T[~ N = 8 • 

We shall only be concerned with models of the Peano-axioms. 

PA~L denotes the (recursive) set of the Peano-axioms (together with 

the induction axioms), see ~6~p.42 Ex.1.4.11.(axioms 1-7). 

Next we define continuous traces of programs in models of PA • 

Let ~ ~== PA be an arbitrary model (of Peano-arithmetic). Let pep 

be a program with set Vp of variables. 

A trace o f  p i n  A= i s  a sequence s d (Sa~a~ A indexed by the 

elements of A such that (i) and (ii) below are satisfied: 

(i) s a : VpU{~} > A is a valuation of the variables (of p ) 

into A , where ~ e Y \Vp is a variable not occurring in p • 

can be conceived of as the "control variable of p " • 

(We could call s a a "state" of p in the model A • ) 

(ii) To formulate this condition, let p = ((io:Uo),...,(in:Un)) and 

recall the notation in+ ldmin(oo~i m : m~_n}). Now we demand: 

so(~) = i o and for any a eA , 

if Sa(~) ~ ~i m : m~n} then Sa+ ~ = s a else, 

for all mmn such that Sa(~ ) -- i m , conditions a) and b) 

below hold. 
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a) if u m = " yw-<- T " then: 

Sa+l(A ) = im+ 1 and for any x ~Vp , 

(X) = ~ T[Sa] ~ if x=y w 
Sa+l 

[ Sa(X) otherwise . 

b) if u m = " IF X GOTO v " then: 

I 
v if A X a] 

Sa+l(A) = = 
~+I otherwise , and 

Sa+1(x) = Sa(X) , for every x ~Vp • 

By this we have defined traces of a program in ~ as sequences 

<Sa>aE A "respecting the structure" of the program. 

It remains to define the continuous traces. 

The sequence <Sa>a~ A is continuous in ~ if ~Sa~a~ A satisfies 

the induction axioms, that is if for any ~ ~ L with free variables 

in Vp U {A} , 

~ ~= ( (~o]AaCAC~a ] --> ~[Sa+l])) --> A ~a] ) " 
aEA 

By a continuous trace of p in ~ we understand a trace <Sa>a~ A 

of p which is continuous. 

Note that in the standard model N every trace is continuous. 

Intuitively, a trace <Sa>a~ A is continuous if whenever a first 

order property ~ ~ L changes during time (A), then there exists a 

point of time (a ~A) when this change is just happening: 

~== ~o] and (3a E A) ~ ~/= ~a] together imply that 

(~a EA)( ~ ~ ~a] and $ ~/= ~a+1] ) . 

Let P = <(io:Uo),...,(in:Un) ~ ~ P and ~ • L be such that the 
free variables of ~ are in Vp . Let ~ PA • 

The dynamic formula ~(p,~) is said to be valid in ~ w.r.t, con- 

tinuous traces if (~) below holds. 

(~) For any continuous trace ~Sa~a~ A of p in ~ and for any a~A, 

Sa(A) ~ {im : m~n } implies ~ ~ W~a] " 
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~ D(p,~) denotes that D(p,w) is valid in ~ w.r.t, con- 

tinuous traces. 

Intuitively the formula D(p,~) of dynamic logic means that the 

program p is partially correct w.r.t, the output condition v.See~ • 

3. Derivation s2ste ~ (rules of inference) 

In the following definition we shall recall the so called Floyd- 

Hoare derivation system. This system serves to derive statements 

~(p,~) (where p ~P and ~ ( L ) from theories T~L • 

We shall denote ~loydJHoare derivability by T~D(p,~) . 

DEFINITION: 

Let p = <(io:uo),...,(in:Un)> ( P , let ~ ~ L and let T~L • 

The set of labels of p is defined as follows: 

lab(p) ~ [im : m~n+1} U {v : (~m~n) u m = " IF ~6 GOTO v " ) • 

Note that lab(p) is finite. 

Now a Floyd-Hoare derivation of [](p,~) from T consists of: 

a mapping @ : lab(p) ) L together with 

classical first-order derivations listed in (i)-(iv) below. 

Notation: When z E lab(p) we write @z instead of @(z) • 

(i) A derivation: T ~-- ~i O • 

(ii) To each command (im: yj -4- T ) occurring in p a derivation: 

T ~-- ( @i m--* 3x( x=TA3yj( yj=x A@im+1 ) ) ) 

where x does not occur neither in @im+1 nor in T • 

(iii) To each command (im: IF X GOTO v) occurring in p derivations: 

~i m ~i m ) • m i - - - ( ( z ^  ) ~  ~v ) and m l - - - ( ( ~ ^  ) ~  ~im+~ 
(iv) To each z(( lab(p)\{i m : m~n} ) a derivation: 

roW-( ~z-~W ) • 
Now the existence of a Floyd-Hoare derivation of D(p,~) from T 

is denoted by T ~ D(p, W) • 

RE~: If T is decidable then the set of Floyd-Hoare derivations 

(of statements D(p,~) where p~P and ~L , from T ) is also de- 

cidable. If T is recursively enumerable then the Floyd-Hoare deri- 
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vable formulas are also recursively enumerable that is 

I D(P,V) : T~ D(P,W)I is recursively enumerable. 

4. Completeness 

Notation: For all T~-L , p cP , w~L we define 

THEOREM 1: Let T be such that L-~TmPA. Let pEP and ~L • Then 

T ~ [](P,W) if and only if 

ES(p,~) is valid in every model of T w.r.t, continuous traces. 

In concise form: 

T ~ D(p,~,) ." ; T g: O(p,~) . 
PROOF: 

Let T--~PA , p d <(io:Uo),...,(in.Un) > ~ p and Vp = {yl,...,ykl. 

(I 1 Assume T ~ O(p,w) for some VEL • We show that T ~ ES(p,~). 

First we introduce an abbreviation: Let x,b,i,r be variables. Then 

( ~(x,b,i)=r I <d> 3z EC1+Ci+1)b}z+r =x ^r~1+Ci+1)bJ . 
Intuitively: ~'(x,b,i) = remainder(x,l+(i+l )b) . (Note that < 

can be expressed in L , e.g. x<y ~d~ 3z( x+z=yA-~x=y ) • ) 

In models of PA this is a sound abbreviation because 

PA ~ (¥x,b,i)(Vr,r') [( ~(x,b,i)=r A ~-(x,b,i)=r' ) --~ r--r'] . 

Thus in the definition of the formulas ~z (z m lab(p)) needed for 

a Floyd-Hoare derivation from T we can use the abbreviation ~'(x,b,i). 

Let A ~ T. Since Vp = ~yl,...,yk} , we let (al,...,ak) denote the 

valuation q : Vp ~ A for which q(yj)=aj if 1~j _~k • 

We want to prove the existence of a Floyd-Hoare derivation 

T ~ O(p,~) • To this end first we define ~z • L for every 

z (lab(p) . Intuitively, ~z says that "there is a 'partial trace' 

(a 'codeable one') such that the state (z,<yl,...,yky) occurs in it". 

(Roughly, a partial trace <Sa>a~ t of lenght t ~ A is "codeable" if 

there is a "code" <x,b> such that <Sa>ag t = <~(x,b,i)>im t o) 

Let r~Y . ~i ° d " (Vr)r=r " __d TRUE . 

Let Xo, o..,Xk,bo,...bk,r,t ~ (YXVp) be different variable symbols. 
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Notations, abbreviations: s(r)d <~(xj,bj,r))j~k and ~(r)d ~.(Xo,bo,r). 

Let z~ ( lab(p)k{io~ ) . Then 

~z(yl,...,yk) d , (Bt)(Hxo,...,Xk,bo,...,bk) 

[s(t)=(z,yl,...,yk> A PARTRACEp(<S(r)>r~t)~" 

where s(t) = <z,yl,...,yk> abbreviates the formula 
k 

( ~-(Xo,bo,t)=z A A ~-(xj,bj,t)--yj ) 
J=l 

and PARTRACEp(<S(r)>rst) is defined as follows: 

To formulate the formula " PARTRACEp(~S(r)>r~t) " G L , first we 

define a formula ~pm(r) for every mmn : 

Remark: ~pm(r) will have other free variables too, not only r • 

By writing ~m(r)~ instead of ~m(r,Xc,.~ . . . . .  ,Xk,bo, ,bk) we devi- 

ate from the notational conventions of [6]. 

Let Um= " Yw-<- ~ " . Then 
k 

~pm(r) =d " (VYl,...,Yk)( ( A ~(xj,bj,r)=yj) --~ [~(r+l )=ira+ 1 A 
j=l 

k 

^ ^   wY( J'bJ 'r+S)=yj] ) " ' 

j=l 
Let u m = " IF X GOTO v " • Then 

k 
~pm(r) d ,, (Vyl,...,yk) ( (j~--1 ~(xj,bj,r)=yj)--* 

k 
"-> [(X "~ ~(r+l )=v)A ('~)4 ~ ((r+l)=im+ 1 ) A /k ~(xj,bj,r+l )=yj] ) " • 

j=1 
It can be checked that ~pm(r) ~L in both cases. Now 

(  col--io ^ ( Crl=i m --- PARTRACEp (<s(r)>r_~ t } 

A((~ e(r)~i m) --, s(r+l)=s(r))] ) " • 

n ~  

m~n 

By this the definition of ~z is completed for every z ~lab(p) • 

It is easy to check that ~z ~ L • 

Having defined ~ : lab(p) >L , we have to give some first- 

order derivations from T • By completeness of classical first-order 

logic, instead of giving a derivation T ~--~ , it is enough to show 

T ~  • 
Notation: Let ~o • L and • be a term. Let x be a variable not 

occurring neither in ~ nor in T . Then we define ~(y/'~) to be 

the formula 3x( x='~ A 3y(y=x A ~) ) • 

= "TRUE" • is trivial since ~io (i) T ~= @io 

(ii) Let Um= "Yw'<- T " for some msn . 
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We have to show T ~ (Vyl,...,yk)( ~ "-* ~im+iCy~) ) . 

=et __A ~ T and _A ~= @~ [<a~,...,ak> ] . This means the existence of 

~ ,~o , . . . , ~ ,~o , . . . ,S  ~ ~ A such t ~ t  <<~(~,~,rl>~_~}r_~T is a 

'1partial trace" of p in ~ and {Y(~ '~ '~ )>~(k  =<im'a~ '""ak>" 

Let { n~, • • • ,n k > __d { in+ 1 , c I , • • •, c k ~ where 

{ T [<a~,. ,ak>]A = if ~=w 
cj 

( aj if j~w • 

Consider the following formula ~ • L (we write it down by using the 

abbreviation ~'(x,b,i) ) : 

= "(Vx,b, t,n)(3x" b') [(Vi~_t l~(x,b,i )=~(x' ,b' ,i)^ ~(x', b' ,t+1 )=n]" . 

A detailed rigorous proof of PA ~= ~ can be found in [7] • Note that 

the related results which can be found in the literature prove only 

N= ~ ~ . But " N ~== ~ " is too weak to be of any use here. 

Hence we do need the result of Csirmaz [7]. 

= ' ' ' a A such that in A : Now by A ~=~ there are x~,.,.,Xk,bo,...,b k = 

(~(x',b',r))jmk)r~+1 -- <<~(~j,~j,r)~j~k~r~ , (im+l,Cl,--.,c~), 

which can easily be seen to be a partial trace in A • 

Thus by the definition of ~+ , 
1 

~im + [<01 k >] ~im + (y~ [<a k>] A ~.= ,...,C i.e. A F== T) 1,...,a • 
1 = 1 

( iii ) The case ~m = "IF X GOTO v" can be treated similarly to the above (ii) • 

(iv) Let z ~ [~ : m.~n~ . 

To show T ~== ( ~z "~ ~u) , we use our assumption T ~ n(p,w ) . 

Let A ~= T and A ~ ~z [<al'''"ak>] " This means the existence of 

a partial trace <<~(~j,~j,r)>j~k>r~ of p in A for which 

~(~j'~j'~)>j_~k = (z'al'''"ak> " Por every aeA we define: 

Sa __a <~(~j,~j,m~(a,~)>j~ k . 

It is easy to see that <Sa>ae A is a trace of p in A • Now we 

show that <Sa>ae A is continuous too. Let ~ e L be arbitrary for 

which A ~ ~O~So] A A ( ~[s aS "-~ ~[Sa+ i ]  ) • We have to show 
A ~= A YDa] " a,A 

aeA 
Let v • Y be a new variable. 

Now we define a formula ~ (x o,...,xk,bo,...,bk,t,v ) such that (¥a~A) 

( A ~ ~Da] i f f  A__ ~= ~Cxo,...,t,v~[<~o,...,~,a>] ) holds. 

(Recall that ~o'''''~k'~o'''''~k '~ are fixed elements of A .) 
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(Xo, . . . , X k , b o , . . . ,  bk, t , v  ) _d 
k 

"( (v~t --~ (Vro,...,rk)Ij=~ 0~(xj,bj,v)=rj --~ 

A(v~t --~ (Vro,...,rk)F~ - ~(xj,bj,t)=rj --~ 

It is easy to see that this ~ will do. Thus 

A ~ (~ (Xo,...,t,O)A(Vv)(~(xo,...,t,v} -~ ~(Xo,...,t,v+l)))[~O,...,~ ]. 

Since A ~ T-~PA , the induction axiom corresponding to ~ is true in 

A thus A i.e. aAj[sa]. 

We have shown that ~Sa>a~ A is a continuous trace of p in A= • 

Since z~{i m : m<_n~ and ~ = <z,a~,...,ak> by A__ ~ D(p,%u) , we 

have A__ ~ ~u[<a~, °..,ak> ] • So far we have shown T ~ D(p,%u) . 

~(r o, ...,rk) 1 ) A 

~(r°' " " " ' rk )I ) )'" 

~L and 

(II) Let T~D(p,~) • We want to show that T ~ D(p,~) • 

Let ~ ~ T and let <S~a~A be a continuous trace of p in ~ • 

Let (~z>zelab(p) : lab(p) --@L belong to a ~loyd--Hoare derivation 

of [](p,~) from T • Recall that yl,,..,y k are the variables oc- 

curring in p = ~io:Uo),...,(in:Un~ . Therefore we may use Yo as 

"control variable" (i.e. for A ). We define 

~(Y°'YI'''"Yk) ~ " m~nA( yo=im -* ~im(Y~,.--,y k) ) A 

A ( ( A yo~im ) -* ~(y~,...,yk ) )" • 
mKn 

Now ~ ~ L and A ~== ~o] A A ( T[Sa ] -~ ~[Sa+1~ ) . (This is 
= aeA 

true because ~ : lab(p) > L belongs to a ~loyd-Hoare derivation 

of D(p,~) and ~Sa>a~ A is a trace of p in ~ .) 

Now, since <Sa>a~ A is, in addition, continuous, A ~ A ~[s a] • 
= a~A 

Let a~i be such that Ca(A)~(im : m~n~ • Then 
~= ~Sa~ implies ~ ~= V~a] ' by the definition of ~ . This 

means ~ ~ D(p,~) since <Sa>aE A was an arbitrary continuous 

trace of p in ~ • 

~ED 

In the definition of continuit2 of a trace, the induction did not have 

parameters. This was inessential, namely the above proof works for the 

case with parameters too[9],[8]. As a contrast, let d be an expan- 
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sion of t with arbitrary new relation and function symbols. Then 

L d ~ L t • Let PAgL t be the same as before. THEOREM 2: Let 

Ld~T~PA , P~Pd and ~EL d . Then the conclusion of Thm.1 holds. 

This result is due to Jeff B. Paris and L.Csirmaz. This Paris-Csirmaz 

theorem solves a problem which was open for a long while e.g. ~],[3]. 

The present proof of Thm.1 does not work for Thm.2 because 

( (~(o)^vx(R(x) -, R(x+l) )) ^~x~R(x) ) ~T 
is allowed for any new relation symbol R in d • 

The present proof of Thm.1 first appeared in [1] in 1977. Later it 

was translated into English. The English translation is Preprint 

No.8/1978 of our institute. Its abstract is [~ • Since then a large 

number of papers (e.g.[~,[~,[7-~,~, ones by Salwicki, Bir6, 

Csirmaz, Gergely, Ury) quote it. Thus we decided to publish it in 

the form of the present paper. 

For ~ropqsitional dynamic logic see ~ . 

R E P E R E N C E S 

1o Andr6ka,H. N~meti,I., On the completeness problem of s~stems for 
program verification. (In Hungarian) Math.Inst.Hung.Acad.Sci. - 
SZKI Budapest, 1977. 

2. Andr~ka,H. N~meti,I., Completeness of Floyd Logic. Bull.Section 
of Logic (Wroclaw) Vol.7, No.3, 1978, pp.115-120. 

3. Andr6ka, H. Ngmeti,I. Sain,I., Henkin-type semantics for program 
schemes to turn negative results to positive. Fundamentals of Com- 
putation Theor~ FCT'79 Berlin. Ed.: L. Budach. Akademie Verlag 
1979, pp.18-24. 

4. Andrgka,H. Ngmeti,I. Sain,I., Completeness problems in verifica- 
tion of programs and program schemes. ~athematical Foundations of 
Computer Science ~FCS'7~ Olomouc. Lecture Notes in Computer Sci- 
ence 74, Springer Verlag 1979, pp.208-218. 

5. Bell,J.L. Slomson,A.B., Models and Ultraproducts. North Holland, 
1969. 

6. Chang,C.C. Keisler,H.J., ~odel Theory. North Holland, 1973. 

7. Csirmaz,L., On definability in Peano Arithmetic. BulloSection of 
Losic (Wroclaw) Vol.8, No.3, 1979, pp.148-153. 

8. Csirmaz,L., A survey of semantics of Floyd-Hoare derivability. 
Comput. Linguist. Comput. Lang. CL&CL (Budapest) Vol.14, 1981. 

9. Ngmeti,I., A complete first order d,ynamic losic. Preprint, Math. 
Inst.Hung.Acad.Sci. 1980, pp.1-120. 

10. 2ratt,V.R., Application of modal logic to programming. Studia 
Logica Vol.39, No.2/3, 1980, pp.257-274. 

11. Sain,I., There are general rules for specifying semantics: Obser- 
vations on abstract model theory. Comput. Linguist. Comput. Lango 
CL&CL (Budapest) Vol.13, 1979, pp.251-282. 


