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This paper belongs to first order dynamic logic and within this field
it belongs to the nonstandard-time schools A systematic exposition
is [9] , Sshort ones are [3] ,[4:] ’ [8:] , EM] « An explicit characterization
of the information.content of the Floyd programverification method
will be gilven here. Since the results might be of interest for re-
searchers outside the scope of dynamic logic e.g. researchers in non-
standard recursion theory, here we use continuous traces instead of
the more natural intensional semantics of Dﬂ, Eﬂ. For the same rea-
son here we assume that the theory T from which we prove partial
correctness of our programs contains Peano’s axioms. If we drop this
condition then the results will be different, see Eﬂ ,Bﬂ +« TFor more
introductery and historical material, examples, and motivations see
[9) . See also the end of the present paper.

We are interested in the behaviour of program schemes in first order
axiomatizable classes of models (i.e. Interpretations). We are una-

ble to understand why some people investigate properties of programs
either in a single fixed model or else in the similarity class of
all possible models.

1. Syntax

t ig a similarity type consisting of function and relation symbols.

w denotes the set of natural numbers.

vy 4 { yg ¢ lew } is called the set of variable symbols and is
disjoint from everything we use. Logical symbols: { A,=,3 } .
Other symbols: { - , TP, GOTO , {4, ), s } «» The set of "label

symbols” is ¢ 1itself.

Ly jdenotes the set of all first order formulas of type t possibly
with free variables (elements of Y of course), see e.g. [6]p.22 .
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We shell refer to "terms of type t " as defined in e.g. [6]p.22 .

Now we define the set Py of programs of type % .

The set Ut of commands of fype *t i1s defined by:
{(j: vy —€ T:)eUt if jew, yeY and 7T is a term of type t .

(j+ IF X GOTO v) €U, if Javew, X €L, is a formula without

quantifiers.
Thegse are the only elements of Ut .

If (is:u) € Ut then i is called the label of the command (i:u) .

By a program of type t we understand a finite sequence of commands
{elements of Ut ) in which no two members have the same label.
Pormelly, the set of programs is:

Py d {((io:uo)...(in:un)) : new, (VeSn)(ie:ue)EUt, (Ve<ksn)ik;éie z.

Por every p d <(io:u°),...,(in:un)> € P, we gshall use the notation

. d s .
ipeq = min(eo~N{i :m<n}) .

EXAMPLE: Let t contain the funetion symbols: "+,-,0,1" with

e ———b——

arities "2,2,0,0" regpectively. Now the sequence:
{o: y4—€0),(1: IF y =y, GOTO 4),(2: y, —«y,+1),(3: IF yy=y, GOTO 1)

is a program of type +t .

2 .Semantics

Let p EPt be a program and A be a structure or model of type +
see [6]p.20 + The unjverse of a model denoted by A will always
be denoted by 4 .

v denotes the variable symbols occurring in p .
Note that Vp is a finite subset of Y .

By a valuation (of the variables of p ) in 4 we understand a func-
tion q: V=>4 {cf. [5]De55)
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Let T be a term occurring in p . Now TBQA' denotes the value

of the term 7 in the model A at the valuation g of the varia-
ble symbols, cf. [6]ps27 Defe1s3.13. We shall often write Tlq]
i.e. we shall omit the subscript é .

From now on we work with the similarity type of arithmetic. T.e. 1
is fixed to consist of "+4,-,0,4" with arities "2,2,0,0" . We
shall omit the index t since it is fixed anyway.

N denoteg the standard model, that is

g <oJ sy + 4 *+ 4, 0,1 > where +,°¢,0,1 are the usual.

=

EXAMPLE: Let Vp = {y1vY2}5 q(y1 }=2 , Q(y2)=3 ’ T=((y1+y2)+y2) .
Then T[qJN =8 .

We shall only be concerned with models of the Peano-axioms.

PASL denotes the (recursive) set of the Peano-axioms {together with
the induction axioms), see Eﬂ;»42 Exeleds11.{axioms 1~7).

Next we define continuoug traces of programs in models of DPA .

Let é b= PA be an arbitrary model {of Peano~grithmetic). Let peP
be a program with set Vp of variables.

A frace of p in A is a sequence 8 d <sa>aeA indexed by the
elements of A such that (i) and {(ii) below are satisfied:

(1) s VpU{h} —> A is a valuation of the variables (of p )
into A , where A €Y\V_ is a variable not occurring in p .
A can be conceived of as the "control variable of p " .

{We could ecall s, & "gstgte"™ of p 1in the model é . )

(ii) To formulate this condition, let p = <(i°:u°),...,(in:un)> and

recall the notation in gmin(w\{ lm : m<n}). Now we demand:

+1
s,(A) =1/ and for any ae€l ,
if s, (A) ¢ {iy s msn} then s_ 4 =85,  else,

for gll m=n such that sa(h) =1 conditions a) and D)
below hold.
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a) if w, =" Yy —€ T " +then:
s, (A) =1

a+d and for any x eV

m+1
T [Sajj_& if x=y,

p ’

Sa+1 (z) =

sa(x) otherwise .

b) if u, = " IF x GOTC v " then:

v if 4 = x(s.]
sa+1(h) =

j&n+1 otherwise , and
sa+1(x) = sa(x) , for every x eVp .

By this we have defined traces of a program in A as sequences
<sa>aeA "respecting the structure" of the program.

It remains to define the coniinuous tracese.

The sequence <sa>aeA is continuous in 4 if <sa> satisfies

a€l
the induction axioms, that is if for any \p €L with free variables

in VPU{A} ,
s ((y[s,] AN Cpleg] = sy ] = E{E\Akp[sa]) ‘

By a continuous trace of p in A we understand a trace <Sa>aéA
of p which is continuous.

Note that in the standard model N every trace is continuous.

Intuitively, a trace <sa>aeA is continuous if whenever g first
order property €L changes during time (A}, then there exists a
point of time (a € A) when this change is just happening:
A= LP[SOJ and (Jaeh) A B cp[:sa] together imply that
(Ja e o) A= ‘P[sa] and A K= cp[sa_H] |

Let p = <(i°=u°),n-,(in:un)> € P and w &L be such that the

free variables of  are in V_ . Let é]= PA

The dynamic formula O(p,y) dis said to be valid in 4 Wwerst. con-
tinuous traces if (=) below holds.

(®) For any continuous trace <sa>aeA of

p in A and for any ac¢i,
s,(A) # {im :m<n }  implies Ayl -
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A e O(p,y) denotes that O(p,y) is valid in 4 w.r.t. con-
tinuous traces.

Intuitively the formula O(p,y) of dynamic logic means that the
program p is partially correct wer.t. the output condition q}.SeeEIO] .

3. Derivation system (rules of inference)

In the following definition we shall recall the so called Floyd-
Hoare derivation system. This system serves to derive statements
O(p,y) (where peP and y e L ) from theories T<L .

We shall denote Floyd-Hoare derivability by T I-F— O(p,y)

DEFINITION:

Let p = <(io:uo),...,(in:un)> €P, let welL and let T<L .
The set of labels of p 1is defined as follows:

lab(p) ¢ {i, : men1} | {v: (@m=n)w =" IF x GOTO v L S
Note that 1lab(p) is finite.

Now a Floyd-Hoare derivation of D(p,q}) from T consists of:
a mapping P : 1ablp) —> L together with
classical first-order derivations listed in (i)-(iv) below.
Notation: When =z e€lab(p) we write <PZ instead of Pz) .

(i) A derivation: T b— ?i .
o
{ii) To each command (im: yj -4 T ) occurring in p a derivation:

T (P, — Ix( x=TAIy( y=xAP; ) ))
in J J m+1
where x does not occur neither in CP:L nor in T .
m+1
(iii) To each command (i : IF x GOTO v) occurring in p derivations:

T (e AQy )= §) and Th= ((mxAd ) > & ) -
m m m+
(iv) To each 1z €/ lab(p)\{:im : msn} ) a derivation:

Th—( $,=>v ) .
Now the existence of a Floyd-Hoare derivation of O(p,y) from T
is denoted by T IE- Olp,y) .

REMARKS: If T is decidable then the set. of Floyd-Hoare derivations
(of statements O(p,y) where peP and ywelL , from T ) is also de-
cidable. If T is recursively enumerable then the Floyd-Hoare deri-
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vable formulas are also recursively enumerable that is
{D(p,\y) : T I-:E-‘— O(p,y) } is recursively enumerable.

4. Completeness

Hotation: PFor all TEL , peP , yelL we define
oy s MfaeT = L& o] .

THEOREM 1: Let T ©be such that L=2T=2PA. Let pe¢P and welL . Then

T l-F— O{p,y) if and only if
O(p,y) 1is valid in every model of T w.re.t. continuous traces.

In concise form:
- o(p,y) = T & olp,y) .
PROOF:
let T2PA, p & {ligaugdyeee, (imm))> €2 and V) = {y, .0 0,5}

(I) Assume T K& O(p,y) for some yeL + We show that T - O(p,y¥).

First we introduce an gbbreviation: Let x,b,i,r be variables. Then
{ T(x,b,i):r ) ¢d=> .'-_Iz[ (1+(i+1)b)z+r = x A r <i+{1i+1 )b] N

Intuitively: Y(x,b,i) = remainder(x,1+(i+1)b) . (Note that <

can be expressed in L , e.g» X<¥ é) Jz{ x+z=y A=x=y ). )

In models of PA this is a sound sbbreviation because

PA = (Vx,b,1i}(Vr,r?) [( y{x,b,i)=r A y(x,b,i)=r’) —> r=r’] .
Thus in the definition of the formulas CPZ (z elab(p)) needed for
a Floyd-Hoare derivation from T we can use the abbreviation X‘(x,b,i).

Let A k= T. Since vy = {7 00005y}, we let Cayyeeerapd denote the
valuation g : Vp —~—> A for which q(yj )=aj if 4<j<k .

We want to prove the existence of a Floyd-Hoare derivation
L O{p,y) « To this end first we define CPZeL for every
z €lab{p) « Intuitively, <PZ says that "there is a *partisl trace?
{e ?codeable omne? ) such that the state (z,<y1,...,yk>) occurs in it".
(Roughly, a partial trace <sa>ast of lenght te€A is "codeable" if
there is a "code" <x,b> such that <sa>ast = <x-(x,b,i )>:L$JE o)

Let rey . ‘Pi d w {(Vr) r=r » TRUE
o

e

Let RysesesXyyb yeeaby,r,t € (v \VP) be different varisble symbols.
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. . e d d
Notations, abbreviations: s(r)= <~((xj,bj,r)>jsk and 4£(r)= Y(xo,bo,r).
Let zel 1ab(p)\{i } )« Then

Bylygreeesyy) & 0 @6 @G, 000 sxy,byseesby)
[s(t)= (z,y1,...,yk) A PARTRAGE NECIED W)L

where s{t) = <z,y1,...,yk> abbrevmtes the formula
( y(x,eby,t)=z A /\ ¥(xs0D50t)=yy )
and PARTRACEP((s(rDrst) is deflned as follows:

To formulate the formula " PARTRACEP((s(r)> €L , first we

rst) "
define a formula m(:c') for every msn :

Remark: q) {r) will have other free variables too, not only r .
By writing xpm(r) instead of (pm(r,xo,...,xk, oseeesby) we devi-

ate from the notatlonal conVent:Lons of [6 .
Let um=' - - T " . Then
Ponl®) & " Ty eenuyy ) (/\ Y{E5ob557)=ys) = [Uret)=ip o A

A X'(Xw,bw,r+1 =T A J/;é\w Y(Xj’bj’r'*"l )=Yj]

3=1
Let w, =" IF x GOTO v " « Then

k
\PPm(I') g " (Vy1a'°°9yk)( (J/=\1 X.(xj’bj’r)=yj) ->

= [(x » Urr1)=v)Alax > Uret)=t,

k
) A g/—-.\1 X’(Xj’bjsr'*“‘ )=yj] ) "o

It can be checked that lppm(r) €L in both cases. Now
PARTRACE ({s{r >, ¢ ) g n ( go)= i, A Vr<t)[m/$\n(£(r)"l = @pnlT))A
AUCA e(r);él ) —> g(r+t)= s(r))] ).

msn

By this the definition of qu is completed for every =z elab(p) .
It is easy to check that <I>ZeL o

Having defined $. lab(p} —> L , we have to give some first-
order derivations from T . By completeness of classical first-order
logic, instead of giving a derivation T b~y , it is enough to show
Ty .
Notation: Let €L and T be a terme Let X be a variable not
occurring neither in @ mnor in T . Then we define w(y/T) to be
the formula 3Ix( x=T Adyly=x Ay) ) .
(L) T f= <Pio is triviel since 4’10 = "TRUE" .
(ii) Let u, = "V T for some m=n .,
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We have to show T = {Vy,l,.u,yk)( ‘P]m - ‘Pi 1(yW/'t)) .
m+

et AB=T and A= q?im [(a1,...,ak)] « This means the existence of
:E’;o""’ik"so"""sk € A such that <<X(Ej"53’r)>jsk>rs? is a
in 4 and (x('ij,‘Bj,'EDjsk = (ipslgseeesy) o
Let (no,...,nk> <im+1,c1,ooo,ck> where

. g T [(&1,‘o',ak>]é if  j=w

J a; 1f AW .
Congider the following formula W e L (we write it down by using the
abbreviation Y(x,b,i) )}
T = "(Vx,b,t,n){(3x%b*) [(Vist)y(x,b,1)=y(x?,b? 1) A {x?, 0?4414 )=n]" .

"partial trace" of

e o

A detailed rigorous proof of PA =T can be found in [7].Note that
the related results which can be found in the literature prove only
N =T . But ¢ N = T " 4is too weak to be of any use here.

Hence we do need the result of Csirmaz[7].

Now by A =T  there are xc’z”“’xl,:’ba”“’bl,{ € A such that in 4 :

=0 D) gy = <<<(§j’sj’r)>j5k r<T <im+1’°1""’°k>>’

which can easily be seen to be a paitial trace in 4.

Thus by the definition of &, ,
1

A’ﬂ ?- [C eseyC >] ie€oe A? ? (y T)[a cee,8 ] .
s & e R VLT AR
(iii) The case u, = "IF x GOTOv" can be treated similarly to the above (ii).

(iv) Let = *{lm :men} .
To show 7T = ( @Z - ), we use our assumption T e O(p,y) »

Let Al=T and A= P, [<a1,...,a,k)] « This means the existence of
a partial trace <<x'(5:'j,'5'j,r)>j )t Of D in A for which
<x'(xj,'5j,"5)>jsk = <Z’:1"”’ak> + TFor every aei we define:

s, = <X'(xj,'53,min(a,’c')>jsk .

It is easy to see that <sa>aeA is a trace of p in A Now we
show that <sa>aeA is continuous too. Let «p € L be arbitrary for
which A A ’F ]Lp[so] A a./e\A( w1l = LP[_-Sa+1] ) + We have to show

A .= S .

= aeALP a

Let veY Dbe a new varizble.

Now we define a formula TP(xo,...,xk,bo,...,bk,t,v) such that (Vaea)
(4= ¢pb,] iff 4= Plxgpeenst, VIKE ,000,F,8Y] ) holds.

(Recall that Eo""’—k"so"""sk’-‘s are fixed elements of A )
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P (X poeesXpsb seensbyytyV) g

k
I’l( (vst — (Vro,...,rk)[j/__\o \"(xj,bj,v)=rj e d \P(ro,ooo,rk)]) A

k
A(v%t — (Vro,...,rk)[jé\o X'(Xj,bj,t)=rj - kp(ro,...,rk)]) )"o

It is easy to see that this ¢ will do. Thus § €L and

Ak (B lxyeeertyOIATYIPIE g0ee,ty¥) 2 Py eeestyv41)))KE ye -0 TN
Since A = T=2PA , the induction axiom corresponding to f{;’ is truein
A and thus A = (W)@'(xo,...,t,v)[@o,...,‘F)], i AE a,;\Aso[sa].

We have shown that <Sa>aeA is a continuous trace of p in A .
Since z¢{im :m€n} and st = (z,a1,...,ak> by 4 = O(p,y) , we

have A k= W[<a1,...,ak>] » So far we have gshown T - O(p,y)

(II) Let T H- O(p,y) « We want to show that T & O(p,y) »
Let AR T and let <Sa>aeA be a continuous trace of p in A .

Let <<I>z>ze1ab(p) : lab(p) =—> L belong to a Floyd-Hoare derivation
of O(p,y) from T . Recall that Tyreees¥y are the variables oc-
curring in p = <(io:uo)""’(in’un)> + Therefore we may use y,  as
n"control variable" (i.e. for A ). We define

kp(yo’yﬂ""yk) g‘- " m/s\n( yozim._> cPim(y‘l"“’yk) ) A

A /\yo;éim )] = W(y1,...,yk) )"

msn
Now el and A k= 5] /\a/E\A( gk, = "PESaH] ) » (This is
true because <'1'> : lab(p) —> L belongs to a Floyd-Hoare derivation
of O(p,y) and <Sa>a.sA is a trace of p in A )
Xow, since <Sa>a.éA is, in addition, continuous, A= a/e\A LP[Sa] .
Let aeA be such that s (A)¢{iy : msn} . Then
AE= LP[sa] implies 4 k= y[s,] , by the definition of ¢ . This

meé.ns A |§= !‘J(p,q}) since <Sa>aeA was an arbitrary continuous
trace of p in A .

QED

In the definition of continuity of a trace, the induction did not have
paremeters. This was inessential, namely the above proof works for the
case with parameters too[d],[8] . As a contrast, let d be an expan~-
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gion of t with arbitrary new relation and function symbols. Then
Lg z Ly « Let PAcL, be the same as before. THEOREM 2: Let
LdQTEPA y PePy; and yel, . Then the conclusion of Thm.1 holds.

This result is due to Jeff B. Paris and L.Csirmaz. This Paris-Csirmaz
theorem solves a problem which was open for a long while e.g.[f],ﬂﬂ.
The present proof of Thme1 does not work for Thm.2 because

( (R(0)A¥x( R(x) => R(x+1) )) A3x-R(x) ) €T
is allowed for any new relation symbol R in d .

The present proof of Thme1 first appeared in Eﬂ in 1977 Later i%
was translated into English. The English translation is Preprint
No0.8/1978 of our institute. Its abstract is [2]. Since then a large
number of papers (e.z.[3,[4],[7-9], [ 1] , ones by Salwicki, Bird,
Csirmaz, Gergely, Ury) quote ite. Thus we decided to publish it in
the form of the present paper.

FPor propositional dynamic logic see Eﬂﬂ.
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