
A CHARACTERIZATION OF FLOYD-PROVABLE PROGRA~

H.Andr@ka, I.N6meti, and I.Sain

~athematical Institute of the Hungarian Academy of Sciences

Budapest, Re~ltanoda u. 13-15, H-IO53 Hungary

This paper belongs to first order dynamic logic and within this field

it belongs to the nonstandard-time school. A systematic exposition

is [9], short ones are [~,[4~,[83, D~" An explicit characterization

of the informationcontent of the Floyd programverification method

will be given here. Since the results might be of interest for re-

searchers outside the scope of dynamic logic e.g. researchers in non-

standard recursion theory, here we use continuous traces instead of

the more natural intensional semantics of L9J,L3J. For the same rea-

son here we assume that the theory T from which we prove partial

correctness of our programs contains Peano's axioms. If we drop this

condition then the results will be different, see [9],[8]. For more

introductery and historical material, examples, and motivations see

[9] • See also the end of the present paper.

We are interested in the behaviour of program schemes in first order

axiomatizable classes of models (i.e. interpretations). We are una-

ble to understand why some people investigate properties of programs

either in a single fixed model or else in the similarity class of

all possible models.

1. S.yntax

t is a similarity type consisting of function and relation symbols.

denotes the set of natural numbers.

Y ~ ~ Yi : i ~O) is called the set of variable s.ymbols and is

disjoint from everything we use. Logical symbols: { A , ~ , 3 ~ •

Other symbols: ~ -W- , IF , GOTO , (,) , : ~ . The set of "label

symbols" is co itself.

L t denotes the set of all first order formulas of type t possibly

with free variables (elements of Y of course), see e.g. [6]p.22 •

163

We shall refer to "terms of type t " as defined in e.g. [6]p.22 .

Now we define the set Pt of programs of type t •

The set U t of commands of type t is defined by:

(j: y-<- T) E U t if j~, yEY and T is a term of type t •

(j: IF X GOT0 v) ~ U t if J,v~co, ~EL t is a formula without

quantifiers.

These are the only elements of U t .

If (i:u) ~ U t then i is called the label of the command (i:u) .

By a program of type t we understand a finite sequence of commands

(elements of U t) in which no two members have the same label.

Formally, the set of programs is:

Pt ~ {~io:Uo)'''(in:Un~ : n~, (Ve~n)(ie:Ue)~Ut, {Ve~k~n)ikli e ~.

For every p ~ <(io:Uo),...~(in:Un) > m Pt we shall use the notation

• d min(~\{i m : m~n~) In+ ~ =

EXAMPLE: Let t contain the function symbols: "+,-,0,1" with

arities "2,2,0,0" respectively. Now the sequence:

~0: yi-,-0),(I: IF Y~=Y2 GO~O 4),(2: y~-~y~+1),(3: I~ y2=y2 GOTO I~

is a program of type t •

2. Semantics

Let P ~Pt be a program~ and ~ be a structure or model of type t

see [6]p.20 . The universe of a model denoted by ~ will always

be denoted by A •

Vp denotes the variable symbols occurring in p o

Note that V is a finite subset of Y •
P

By a valuation (of the variables of p) in ~ we understand a func-

tion q : Vp > A (cf. [~P.55) •

164

Let T be a term occurring in p . Now T~q~A denotes the value

of the term T in the model ~ at the valuation q of the varia-

ble symbols, cf. ~6~p.27 Def.1.3.13. We shall often write ~q~

i.e. we shall omit the subscript & •

From now on we work with the similarity type of arithmetic. I.e. t

is fixed to consist of "+,-,0,1" with arities "2,2,0,0" • We

shall omit the index t since it is fixed an~vay.

denotes the standard model, that is

~ ~co , + , • , 0 , 1 ~ where +,.,0,1 are the usual.

EXA3~LE: Let Vp = {yl,Y2} , q(yl)=2 , q(y2)=3 , T=((yl+Y2)+Y2) •

Then T[~ N = 8 •

We shall only be concerned with models of the Peano-axioms.

PA~L denotes the (recursive) set of the Peano-axioms (together with

the induction axioms), see ~6~p.42 Ex.1.4.11.(axioms 1-7).

Next we define continuous traces of programs in models of PA •

Let ~ ~== PA be an arbitrary model (of Peano-arithmetic). Let pep

be a program with set Vp of variables.

A trace o f p i n A= i s a sequence s d (Sa~a~ A indexed by the

elements of A such that (i) and (ii) below are satisfied:

(i) s a : VpU{~} > A is a valuation of the variables (of p)

into A , where ~ e Y \Vp is a variable not occurring in p •

can be conceived of as the "control variable of p " •

(We could call s a a "state" of p in the model A •)

(ii) To formulate this condition, let p = ((io:Uo),...,(in:Un)) and

recall the notation in+ ldmin(oo~i m : m~_n}). Now we demand:

so(~) = i o and for any a eA ,

if Sa(~) ~ ~i m : m~n} then Sa+ ~ = s a else,

for all mmn such that Sa(~) -- i m , conditions a) and b)

below hold.

165

a) if u m = " yw-<- T " then:

Sa+l(A) = im+ 1 and for any x ~Vp ,

(X) = ~ T[Sa] ~ if x=y w
Sa+l

[Sa(X) otherwise .

b) if u m = " IF X GOTO v " then:

I
v if A X a]

Sa+l(A) = =
~+I otherwise , and

Sa+1(x) = Sa(X) , for every x ~Vp •

By this we have defined traces of a program in ~ as sequences

<Sa>aE A "respecting the structure" of the program.

It remains to define the continuous traces.

The sequence <Sa>a~ A is continuous in ~ if ~Sa~a~ A satisfies

the induction axioms, that is if for any ~ ~ L with free variables

in Vp U {A} ,

~ ~= ((~o]AaCAC~a] --> ~[Sa+l])) --> A ~a]) "
aEA

By a continuous trace of p in ~ we understand a trace <Sa>a~ A

of p which is continuous.

Note that in the standard model N every trace is continuous.

Intuitively, a trace <Sa>a~ A is continuous if whenever a first

order property ~ ~ L changes during time (A), then there exists a

point of time (a ~A) when this change is just happening:

~== ~o] and (3a E A) ~ ~/= ~a] together imply that

(~a EA)(~ ~ ~a] and $ ~/= ~a+1]) .

Let P = <(io:Uo),...,(in:Un) ~ ~ P and ~ • L be such that the
free variables of ~ are in Vp . Let ~ PA •

The dynamic formula ~(p,~) is said to be valid in ~ w.r.t, con-

tinuous traces if (~) below holds.

(~) For any continuous trace ~Sa~a~ A of p in ~ and for any a~A,

Sa(A) ~ {im : m~n } implies ~ ~ W~a] "

166

~ D(p,~) denotes that D(p,w) is valid in ~ w.r.t, con-

tinuous traces.

Intuitively the formula D(p,~) of dynamic logic means that the

program p is partially correct w.r.t, the output condition v.See~ •

3. Derivation s2ste ~ (rules of inference)

In the following definition we shall recall the so called Floyd-

Hoare derivation system. This system serves to derive statements

~(p,~) (where p ~P and ~ (L) from theories T~L •

We shall denote ~loydJHoare derivability by T~D(p,~) .

DEFINITION:

Let p = <(io:uo),...,(in:Un)> (P , let ~ ~ L and let T~L •

The set of labels of p is defined as follows:

lab(p) ~ [im : m~n+1} U {v : (~m~n) u m = " IF ~6 GOTO v ") •

Note that lab(p) is finite.

Now a Floyd-Hoare derivation of [](p,~) from T consists of:

a mapping @ : lab(p)) L together with

classical first-order derivations listed in (i)-(iv) below.

Notation: When z E lab(p) we write @z instead of @(z) •

(i) A derivation: T ~-- ~i O •

(ii) To each command (im: yj -4- T) occurring in p a derivation:

T ~-- (@i m--* 3x(x=TA3yj(yj=x A@im+1)))

where x does not occur neither in @im+1 nor in T •

(iii) To each command (im: IF X GOTO v) occurring in p derivations:

~i m ~i m) • m i - - - ((z ^) ~ ~v) and m l - - - ((~ ^) ~ ~im+~
(iv) To each z((lab(p)\{i m : m~n}) a derivation:

roW-(~z-~W) •
Now the existence of a Floyd-Hoare derivation of D(p,~) from T

is denoted by T ~ D(p, W) •

RE~: If T is decidable then the set of Floyd-Hoare derivations

(of statements D(p,~) where p~P and ~L , from T) is also de-

cidable. If T is recursively enumerable then the Floyd-Hoare deri-

167

vable formulas are also recursively enumerable that is

I D(P,V) : T~ D(P,W)I is recursively enumerable.

4. Completeness

Notation: For all T~-L , p cP , w~L we define

THEOREM 1: Let T be such that L-~TmPA. Let pEP and ~L • Then

T ~ [](P,W) if and only if

ES(p,~) is valid in every model of T w.r.t, continuous traces.

In concise form:

T ~ D(p,~,) ." ; T g: O(p,~) .
PROOF:

Let T--~PA , p d <(io:Uo),...,(in.Un) > ~ p and Vp = {yl,...,ykl.

(I 1 Assume T ~ O(p,w) for some VEL • We show that T ~ ES(p,~).

First we introduce an abbreviation: Let x,b,i,r be variables. Then

(~(x,b,i)=r I <d> 3z EC1+Ci+1)b}z+r =x ^r~1+Ci+1)bJ .
Intuitively: ~'(x,b,i) = remainder(x,l+(i+l)b) . (Note that <

can be expressed in L , e.g. x<y ~d~ 3z(x+z=yA-~x=y) •)

In models of PA this is a sound abbreviation because

PA ~ (¥x,b,i)(Vr,r') [(~(x,b,i)=r A ~-(x,b,i)=r') --~ r--r'] .

Thus in the definition of the formulas ~z (z m lab(p)) needed for

a Floyd-Hoare derivation from T we can use the abbreviation ~'(x,b,i).

Let A ~ T. Since Vp = ~yl,...,yk} , we let (al,...,ak) denote the

valuation q : Vp ~ A for which q(yj)=aj if 1~j _~k •

We want to prove the existence of a Floyd-Hoare derivation

T ~ O(p,~) • To this end first we define ~z • L for every

z (lab(p) . Intuitively, ~z says that "there is a 'partial trace'

(a 'codeable one') such that the state (z,<yl,...,yky) occurs in it".

(Roughly, a partial trace <Sa>a~ t of lenght t ~ A is "codeable" if

there is a "code" <x,b> such that <Sa>ag t = <~(x,b,i)>im t o)

Let r~Y . ~i ° d " (Vr)r=r " __d TRUE .

Let Xo, o..,Xk,bo,...bk,r,t ~ (YXVp) be different variable symbols.

168

Notations, abbreviations: s(r)d <~(xj,bj,r))j~k and ~(r)d ~.(Xo,bo,r).

Let z~ (lab(p)k{io~) . Then

~z(yl,...,yk) d , (Bt)(Hxo,...,Xk,bo,...,bk)

[s(t)=(z,yl,...,yk> A PARTRACEp(<S(r)>r~t)~"

where s(t) = <z,yl,...,yk> abbreviates the formula
k

(~-(Xo,bo,t)=z A A ~-(xj,bj,t)--yj)
J=l

and PARTRACEp(<S(r)>rst) is defined as follows:

To formulate the formula " PARTRACEp(~S(r)>r~t) " G L , first we

define a formula ~pm(r) for every mmn :

Remark: ~pm(r) will have other free variables too, not only r •

By writing ~m(r)~ instead of ~m(r,Xc,.~ ,Xk,bo, ,bk) we devi-

ate from the notational conventions of [6].

Let Um= " Yw-<- ~ " . Then
k

~pm(r) =d " (VYl,...,Yk)((A ~(xj,bj,r)=yj) --~ [~(r+l)=ira+ 1 A
j=l

k

^ ^ wY(J'bJ 'r+S)=yj]) " '

j=l
Let u m = " IF X GOTO v " • Then

k
~pm(r) d ,, (Vyl,...,yk) ((j~--1 ~(xj,bj,r)=yj)--*

k
"-> [(X "~ ~(r+l)=v)A ('~)4 ~ ((r+l)=im+ 1) A /k ~(xj,bj,r+l)=yj]) " •

j=1
It can be checked that ~pm(r) ~L in both cases. Now

(col--io ^ (Crl=i m --- PARTRACEp (<s(r)>r_~ t }

A((~ e(r)~i m) --, s(r+l)=s(r))]) " •

n ~

m~n

By this the definition of ~z is completed for every z ~lab(p) •

It is easy to check that ~z ~ L •

Having defined ~ : lab(p) >L , we have to give some first-

order derivations from T • By completeness of classical first-order

logic, instead of giving a derivation T ~--~ , it is enough to show

T ~ •
Notation: Let ~o • L and • be a term. Let x be a variable not

occurring neither in ~ nor in T . Then we define ~(y/'~) to be

the formula 3x(x='~ A 3y(y=x A ~)) •

= "TRUE" • is trivial since ~io (i) T ~= @io

(ii) Let Um= "Yw'<- T " for some msn .

169

We have to show T ~ (Vyl,...,yk)(~ "-* ~im+iCy~)) .

=et __A ~ T and _A ~= @~ [<a~,...,ak>] . This means the existence of

~ ,~o , . . . , ~ ,~o , . . . ,S ~ ~ A such t ~ t <<~(~,~,rl>~_~}r_~T is a

'1partial trace" of p in ~ and {Y(~ '~ '~)>~(k =<im'a~ '""ak>"

Let { n~, • • • ,n k > __d { in+ 1 , c I , • • •, c k ~ where

{ T [<a~,. ,ak>]A = if ~=w
cj

(aj if j~w •

Consider the following formula ~ • L (we write it down by using the

abbreviation ~'(x,b,i)) :

= "(Vx,b, t,n)(3x" b') [(Vi~_t l~(x,b,i)=~(x' ,b' ,i)^ ~(x', b' ,t+1)=n]" .

A detailed rigorous proof of PA ~= ~ can be found in [7] • Note that

the related results which can be found in the literature prove only

N= ~ ~ . But " N ~== ~ " is too weak to be of any use here.

Hence we do need the result of Csirmaz [7].

= ' ' ' a A such that in A : Now by A ~=~ there are x~,.,.,Xk,bo,...,b k =

(~(x',b',r))jmk)r~+1 -- <<~(~j,~j,r)~j~k~r~ , (im+l,Cl,--.,c~),

which can easily be seen to be a partial trace in A •

Thus by the definition of ~+ ,
1

~im + [<01 k >] ~im + (y~ [<a k>] A ~.= ,...,C i.e. A F== T) 1,...,a •
1 = 1

(iii) The case ~m = "IF X GOTO v" can be treated similarly to the above (ii) •

(iv) Let z ~ [~ : m.~n~ .

To show T ~== (~z "~ ~u) , we use our assumption T ~ n(p,w) .

Let A ~= T and A ~ ~z [<al'''"ak>] " This means the existence of

a partial trace <<~(~j,~j,r)>j~k>r~ of p in A for which

~(~j'~j'~)>j_~k = (z'al'''"ak> " Por every aeA we define:

Sa __a <~(~j,~j,m~(a,~)>j~ k .

It is easy to see that <Sa>ae A is a trace of p in A • Now we

show that <Sa>ae A is continuous too. Let ~ e L be arbitrary for

which A ~ ~O~So] A A (~[s aS "-~ ~[Sa+ i]) • We have to show
A ~= A YDa] " a,A

aeA
Let v • Y be a new variable.

Now we define a formula ~ (x o,...,xk,bo,...,bk,t,v) such that (¥a~A)

(A ~ ~Da] i f f A__ ~= ~Cxo,...,t,v~[<~o,...,~,a>]) holds.

(Recall that ~o'''''~k'~o'''''~k '~ are fixed elements of A .)

170

(Xo, . . . , X k , b o , . . . , bk, t , v) _d
k

"((v~t --~ (Vro,...,rk)Ij=~ 0~(xj,bj,v)=rj --~

A(v~t --~ (Vro,...,rk)F~ - ~(xj,bj,t)=rj --~

It is easy to see that this ~ will do. Thus

A ~ (~ (Xo,...,t,O)A(Vv)(~(xo,...,t,v} -~ ~(Xo,...,t,v+l)))[~O,...,~].

Since A ~ T-~PA , the induction axiom corresponding to ~ is true in

A thus A i.e. aAj[sa].

We have shown that ~Sa>a~ A is a continuous trace of p in A= •

Since z~{i m : m<_n~ and ~ = <z,a~,...,ak> by A__ ~ D(p,%u) , we

have A__ ~ ~u[<a~, °..,ak>] • So far we have shown T ~ D(p,%u) .

~(r o, ...,rk) 1) A

~(r°' " " " ' rk)I))'"

~L and

(II) Let T~D(p,~) • We want to show that T ~ D(p,~) •

Let ~ ~ T and let <S~a~A be a continuous trace of p in ~ •

Let (~z>zelab(p) : lab(p) --@L belong to a ~loyd--Hoare derivation

of [](p,~) from T • Recall that yl,,..,y k are the variables oc-

curring in p = ~io:Uo),...,(in:Un~ . Therefore we may use Yo as

"control variable" (i.e. for A). We define

~(Y°'YI'''"Yk) ~ " m~nA(yo=im -* ~im(Y~,.--,y k)) A

A ((A yo~im) -* ~(y~,...,yk))" •
mKn

Now ~ ~ L and A ~== ~o] A A (T[Sa] -~ ~[Sa+1~) . (This is
= aeA

true because ~ : lab(p) > L belongs to a ~loyd-Hoare derivation

of D(p,~) and ~Sa>a~ A is a trace of p in ~ .)

Now, since <Sa>a~ A is, in addition, continuous, A ~ A ~[s a] •
= a~A

Let a~i be such that Ca(A)~(im : m~n~ • Then
~= ~Sa~ implies ~ ~= V~a] ' by the definition of ~ . This

means ~ ~ D(p,~) since <Sa>aE A was an arbitrary continuous

trace of p in ~ •

~ED

In the definition of continuit2 of a trace, the induction did not have

parameters. This was inessential, namely the above proof works for the

case with parameters too[9],[8]. As a contrast, let d be an expan-

171

sion of t with arbitrary new relation and function symbols. Then

L d ~ L t • Let PAgL t be the same as before. THEOREM 2: Let

Ld~T~PA , P~Pd and ~EL d . Then the conclusion of Thm.1 holds.

This result is due to Jeff B. Paris and L.Csirmaz. This Paris-Csirmaz

theorem solves a problem which was open for a long while e.g. ~],[3].

The present proof of Thm.1 does not work for Thm.2 because

((~(o)^vx(R(x) -, R(x+l))) ^~x~R(x)) ~T
is allowed for any new relation symbol R in d •

The present proof of Thm.1 first appeared in [1] in 1977. Later it

was translated into English. The English translation is Preprint

No.8/1978 of our institute. Its abstract is [~ • Since then a large

number of papers (e.g.[~,[~,[7-~,~, ones by Salwicki, Bir6,

Csirmaz, Gergely, Ury) quote it. Thus we decided to publish it in

the form of the present paper.

For ~ropqsitional dynamic logic see ~ .

R E P E R E N C E S

1o Andr6ka,H. N~meti,I., On the completeness problem of s~stems for
program verification. (In Hungarian) Math.Inst.Hung.Acad.Sci. -
SZKI Budapest, 1977.

2. Andr~ka,H. N~meti,I., Completeness of Floyd Logic. Bull.Section
of Logic (Wroclaw) Vol.7, No.3, 1978, pp.115-120.

3. Andr6ka, H. Ngmeti,I. Sain,I., Henkin-type semantics for program
schemes to turn negative results to positive. Fundamentals of Com-
putation Theor~ FCT'79 Berlin. Ed.: L. Budach. Akademie Verlag
1979, pp.18-24.

4. Andrgka,H. Ngmeti,I. Sain,I., Completeness problems in verifica-
tion of programs and program schemes. ~athematical Foundations of
Computer Science ~FCS'7~ Olomouc. Lecture Notes in Computer Sci-
ence 74, Springer Verlag 1979, pp.208-218.

5. Bell,J.L. Slomson,A.B., Models and Ultraproducts. North Holland,
1969.

6. Chang,C.C. Keisler,H.J., ~odel Theory. North Holland, 1973.

7. Csirmaz,L., On definability in Peano Arithmetic. BulloSection of
Losic (Wroclaw) Vol.8, No.3, 1979, pp.148-153.

8. Csirmaz,L., A survey of semantics of Floyd-Hoare derivability.
Comput. Linguist. Comput. Lang. CL&CL (Budapest) Vol.14, 1981.

9. Ngmeti,I., A complete first order d,ynamic losic. Preprint, Math.
Inst.Hung.Acad.Sci. 1980, pp.1-120.

10. 2ratt,V.R., Application of modal logic to programming. Studia
Logica Vol.39, No.2/3, 1980, pp.257-274.

11. Sain,I., There are general rules for specifying semantics: Obser-
vations on abstract model theory. Comput. Linguist. Comput. Lango
CL&CL (Budapest) Vol.13, 1979, pp.251-282.

