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Abstract: Thm 1 states a negative result about the classical se- 

manZics ~ of program schemes. Yam 2 investigates the reason for 

this. We conclude that Thm 2 justifies the Senkin-type semantics 

for which the opposite of the present Thm 1 was proved in Andr4ka- 

-N~meti[~ ,[2],[3] and also in a different fo~m in part III of Gergely- 

-ury[8]. The strongest positive result on ~ is Corollary 6 in 

Andr~ka-N4meti[3]. 

B~sic concepts 

First we recall some basic notions and notations from textbooks on 

Logic Monk[lO] , Chang-Keisler[~] and from Program Schemes Theory ~ e.g. 

Karma[9], Andr~ka-N~meti[l],[2],[3] , Gergely-Ury[8]. 

denotes the set of natural numbers. 

d denotes an arbitrary similarity type. I.e.: d correlates arities 

~o some fixed function symbols and relation symbols. See Sacks[12], 

p.ll. 

Y = { Yz : z E co ~ denotes the set of variable symbols. 
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F d is the set of all classical first order formulas of type d with 

variables in Y . See Chang-Keisler[5], p.22. 

Hd is the class of all classical first order models of t~pe d . See 

5Vnang-Keisler[5] or Monk[lO],Def.ll.l. or Sacks[12], p. ll. 

~= G FdXM d is the usual validity relation. See Chang-Keisler[5] or 

Sacks[12S, p.21. 

denotes a term of type d in the usual sense of first order logic, 

see Chang-Keisler[SS, p.22 or Monk[10],p.166.Def.10.8.(i~ . 

and E denote elements of M d , the universes of which are D and 

E respectively. 

Pd ~enotes the set of program schemes of type d . Pd is defined as 

in lanna[9~, Andr4ka-N4meti[l],[2], Gergely-Ury[8],p.72. E.g., let 

t be the similarity type of arithmetic. Then the following se- 

quence 

< (o: 
(i: 
¢2: 
(5: 

(4: 

is in Pt' i.e. it is a program scheme of type 

yo -~- 0 ) 

IF yo=Yl THEN 4) , 

Yo -<- Yo +I) 

IF yl=Yl THEN i] , 

HALT ) > . 

t : 

Pd ~ F d is the set of output statements about programs. An output state- 

ment (~,~) ~ PdXFd means intuitively that the program scheme p 

is partially correct w.r.t, output condition ~ . 

~ (p,v/) is meaningful if D Ds M d and (p,~) 6 Pd~Fd . Now 

~ (p,~) holds if %he program scheme p is partially correct 

w.r.t. %u in the model N . l.e. : If p is started in ~ with 

any fnput q:co ---*D then whenever p halts with some output 

k:co---~I~ , the formula ~ will be true in ~ under the valu- 

ation k of its free variables~ i.e. D ~ T[k] . See Manna 

[9],Chapter 4 • ~[ote that a precise definition of ~ would 

strongly use the structure <o~,~> of natural numbers. See[4$], 

Gergely-[[ry[8],p.78, Andr4ka-N~meti[l],p.ll6,[2],[3]. The letter 

co above the sign ~ serves to remind us of this fact. 

For any set Th~ F d of formulas, " Th ~ (p,~) " is defined in the 
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PROPOSITION 0 : 

Let the type d 

<~,s,o>. ~t 
contain the similarity type of successor arithmetic 

Th~F d be such that 

Th ~- { szo # sro r_ z<r6oO] =d Th' 

where sO0 =d 0 and sr+?0 d ssr0 for r ~ '~ . 

Let Eel[ d be an arbitrary but fixed model of Th' 

= <oo,s,O, ... >. 

Suppose H is an arbitrary set such that 

such that E = 

[(p,y) : Th ~ (p,~) and p terminates in ~ for every input 

and ~ is quantifier-free 3 • 

~en H is no__! recursively enumerable. 

Proof: The present proposition is a special case of 

mulated later. 

Thm I to be for- 

Now we turn to relax the conditions made on d and Th in the 

above proposition. I.e. we are going to generalize Proposition 0 . 

From now on c and ~ denote arbitrar 2 terms of type d such that 

c contains no variable and T contains one variable Yo " To make 

this explicit, we write ~(yo ) • 

and Tz+[ ~ ~(z) for every od 
Notation: ~ = c , zeoo . 

Note the% the terms 

able. 

1 z , ~ , ... , ~ , ... contain no vari- 
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DEFINITION I : 

Th ----- F d is said to be ~ood if there exist terms c and "~(yo ) 

such that 

Th ~_ { z~ ~r : z<r~ -~ Th' . 

Let E6M d be an arbitrary model of Th' such that 

(Vb~E) (SZ600) [ ~z denotes b in EL ] . Then we define 

May(Th) ~ [ (p,~) £ Pd×Fd : Th ~ (p,~) ~ . 

Kust(Th) ~ [ (p,~> E ~[sy(Th) : p terminates in E for every input; 

and ~ is an atomic formula or the 

negation of an atomic formula such 

that Th ~- ~Yo ~ ~ " 

Remark: To a fixed Th , lust(Th) is not unique since it may de- 

pend on the choice of c , ~(y~ , and E . This makes the following 

theorem even stronger since it will hold for any choice of c , Z , 

and E . Observe that Must(Th) is a reasonably small set of output 

statements since ~ contains no quantifiers, no "V " or "A " and 

at the same time p is such that it terminates in E for every input. 

Thus Must(Th) contains no tricky statement about the "halting prob- 

lem" (since p has to terminate) and no "strange sentence" since 

has to be simple~ moreover, 3y 0 ~ is provable from Th . 

THEOREM i : 

Let d be arbitrary 

and consistent. Let 

May(Th~ ~ H ~ Must(Th) . 

Then H is not recursively enumerable. 

and let Th~ F d be good (in sense of Def.l.) 

H be an arbitrary set such that 

Proof: we shall treat the constant-term "c" as zero and T(yo~ as 

the successor function. E.g. ~z will be considered to be the name of 

the natural number z6oO . By using successor ~ and zero c we 

can write programs "add"6 Pd and "mult" e Pd for addition and mul- 
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tiplication~ By using these programs, for an arbitrary Diophantine equa- 

tion e(Y2,..,ym ) we can write a program ~ ePd such that after 

having executed ~ we Shall have yo=Yl iff e(Y2,...,y m) was true be- 

fore starting ~ . 

Let p be an m-variable version of the program scheme given as an 

example at the beginning of this paper. Namely, p starts with 

[0: Ym+l -~- c) , (~: IF y2=Ym+l THEN 4 ), (2: Ym+l --<-- Ym+l ) ' 

(3: IF TRUE THEN ~) , (4: Ym+l < c) , (5: IF y3=Ym+l THEN 8), .... 

This program p terminates iff all the initial values of y2,...,y m 

can be reached from "c" by finitely many applications of ~ . Now, by 

writing ~ after p we obtain a program p~ ePd which first checks 

whether y2~...,y m can be reached from "c" by applications of T and 

if yes then results yo=Yl if e(Y2,..,ym~ was true, yo#Yl if 

e(Y2,..,ym ) was false for the initial values. Now to each Diophantine 

equation e(~) correlate ~ = [p~, yo#Yl ) • 

Clearly ~ e PdXFd . Also Th~ ~ iff e has no solution in 

the standard model <oo,+,.,0,I > of arithmetic. If there were a re- 

cursively enumerable H as in the statement of the present theorem then 

Eq ~ { e ~"Diophantine equations" : Th ~ ~ } 

would be recursively enumereble since the construction of ~ from e 

was "constructive" . But, since Hilbert's tenthproblem is unsolvable 

(Davis[6] or Monk[lO]), this is impossible. 

The following theorem says that if one "avoids Logic" and proves 

properties of programs by using "Mathematics in general" then this will 

not help one to avoid the "shortcoming" formulated in Thm 1 . 

THEOREM 2 : 

Let the reel world <V,E> ~ ZFC of Set Theory (see Devlin[7], p. 3, 

line 4 from below or Chang-Keisler[5]~ P.476) be fixed. I.e.: V is 

the class of all sets and e is the "element of" relation between 

them. 

Then the following is true: 
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There exist 

- a similarity type d , and 

- a model <W,E> ~ ZFC of Set Theory 

<W,E > is an element of V and <W,E> 

of <V,&} , see Devlin[7], p.14, line 6) 

such that (i) and (ii) below hold. 

(i) There a~ a finite set Th~ F d of axioms 

(p,~) such that 

Th ~ (p,~) is true, but inside of 

Th ~ (p,~) . 

More precisely: 

inside of <V,e> (i.e. 

ZFC is true inside 

and an output statement 

<W,E> we have 

<v,~> ~ "~h ~(p,~) - but 

<%V,E > ~ " Th ~ (p,~) " 

(Observe that " Th ~ (p,~)) 

of ZFC .) 

(ii~ There is an output statement (p,%u) such that 

<V,6 > ~ " M d ~ (p,q)) " while 

<W,E> ~ " M d ~ (p,%U) " . 

" is a statement of the language 

As a contrast we note that: 

For all ~EF d and for every model <W,E> E V of ZFC , 

<V,£ > ~ " M d ~ q " implies <W,E> ~ " M d 

Proof: 

(i) 

Let d d { <0,0>, <s,~> } • 

Let Th consist of the following two axioms: 

¥y ( sy~O ) 
Vy I Vy 2 ( Syl=sy 2 -- yl=Y2) . 

We know that Hilbert's tenth problem is unsolvable. This implies the 

existence of a Diophantine equation e[y) such that the set theoretic 

formula 

is false in <V,~> but is true in <W,E> for some model 

<W,E> e V of Z~FC . 
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Now let the output statement ~ = (p~ , yo#Yl ) be the one defined 

in the proof of Thm I . There it was observed that 

Th ~ ~ iff 4co,+,.,o,I> ~ 3y e(~ . 

(Note that the present Th satisfies the conditions of Thm i .) 

Thus <V,E) ~ " Th ~ ~ " and <W,E> ~ " Th ~-~ " 

The proof of (ii~ is an easy modification of the proof of (i) above. 

Namely, let us choose the above e , < W,E >, and ~ = (p~, yoCy~ 

Let ~ be the conjunction of all elements of Th . (Note that Th 

finite and therefore ~eF d .) Let ~ ~ (~ --->yo#Yl ) . Now, 

<V,e > ~ " M d ~ (p~,~) " while 

<W,E ~ ~ " M d ~ (P~,~) " • 

QED Thm 2 < For a more detailed proof cf. Andr~ka-N~meti-Sain[4].) 

is 

The above Thm 2 says that something is wrong with the classical 

semantics (or model theory) ~ of program schemes. Namely: There 

exists a good program (p,~) which is not provable by mathematics, i.e. 

the goodness of (p,~) is not "a mathematical truth" i.e. it is not 

implied by ZFC despite of the fact that i% happens to be the case that 

(p,~] is good. See N4meti-Sain[ll]Def.2 and Andr4ka-N4meti-Sain[4] 

about " Th ~ (p,~) " -s being a formula of Set Theory. This way 

Thm 2 supports the Henkln-type semantics introduced in Andr4ka-N~meti 

[1]-[~], the consequence concept ( Th ~ (p,~)) of which does not 

have the above shortcoming. 

By T~hm 2 above there exists an output statement (p,~) which is 

valid, i.e. " ~ (p,~)"~ but the validity of which is not a math- 

ematical truth~ i.e. ZFC ~ " ~ (p,~) " • A semantics with this 

paradoxical property was called instable in Andr4ka-N4meti-Sain[4]. 

I% was proved in [4] that any "reasonable" semantics has to be stable. 

Indeed, the Henkin-Zype semantics introduced in Andr4ka-N4meti[1]-[5] 

was proved to be stable there. 

On basis of Thm 21 above an effective inference system for program 

correctness was given in Andr4ka-N4meti-Sain[4] such that if (p,~) 

cannot be proved then there exists a model of ZFC Set Theory in which 
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the program p i s actually not correct w.r.t. ~ . 

too. 

Cf. Andr4ka-N4meti 

A HENKIN TYPE SEMANTICS FOR PROGRAM SCHEMES 

Now to every classical (one-sorted) similarity type d we define 

an associated 3-sorted similarity type td . About many-sorted logic 

and its model theory see Monk[lO], p.4~3. 

As before, d is an arbitrary type. Let t denote the similarity 

type of Pean0 Arithmetic and let t be disjoint from d . The type 

td is defined as follows: 

There are ~ sorts of td : ~ , S , [ called "time , "data ~ , and 

"intensions" respectively. 

The operation s.vmbols of td are the following: The operation symbols 

of t , the operation symbols of d , and an additional operation sym- 

bol "ext" . 

The sorts (or "arities") of the operation s.Tmbols of td : The oper- 

ation symbols of t go from sort ~ to sort ~ . The operation symbols 

of d go from sort ~ to sort ~ . The operation symbol "ext" goes 

from sort ([,~) %0 sort d .: I.e. "ext" has two arguments, the 

first is of sort [ , the~second is of sort ~ s and the result or value 

of "ext ~ is of sort S . Now the definition of the 3-sorted type td 

is completed. 

t,ype 

(i) 

TL d = < TF d , TM d , ~ ~ denotes the 3-sorted language of 

td , see ~Tonk[lO], p.483. In more detail: 

I.e. a model ~6TM d has 

~. three universes throughout denoted by T , D , and 

, S , and T respectively. 

2. Operations "T n ---~ T" originating from the type 

operations "D n --~ D" originating from the type 

an operation extr IxT --~D . 

is the class of all models of t.ype td , see Monk [i0], Def.29.27. 

I, of sort 

t 

d , and 

Roughly speaking, we could say that ~I consists of structures 

TsK t , ~M d , and an additional operation ext: ~ I~T-->E . 
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(iii) 

Therefore we shall use the sloppy notation: 

~ < ~ ' 2 ' I , ex$ > f o r  e l e m e n t s  of TM d . 

(ii) TF d is the so% of first order (3-sorted) formulas of type td . 

Eoughly speaking, we can say that F t and F d are contained in 

T9 d , and there are additional terms of the form "ext(y,T) "~ where 

is a term of type t and y is a variable of sort T . FUrther, 

"ext(y,T) ~ is defined to be a term of sort d . 

~ (TM d × TF d) is the usual, see Monk[10], p.484. 

Now we define the meanings of program schemes p 6P d in the 3- 

-sorted models ~eTM d . Let p ePd be a fixed program scheme. 

Let yl,..,y m be the variables occurring in p . Let ~eTM d be 

fixed. Hecall that I is the universe of sort T of T~ . 

A trace of p in ~ is a sequence <So,.-,Sm> 6 (m+i)I of 

elements of I satisfying (~) below. (Y.e. a trace of p in T6L 

is a sequence of i-sorted elements of q~l .) To formulate (~), ob- 

serve that if s ~ Y then "ext(s,-) w is a function 

<ext(s,z) : zeT) from T into D • We shall use Yo as "the 

control-variable" of p . I.e. ext(so,Z) is considered to be the 

"Value of the control or execution" at time point z . Thus "ext(So,Z)" 

is supposed to be a "label" in the program scheme p . 

(~ The sequence <ext(So,-) ,..., ext(Sm,-) ~ of functions should be 

a histor~of an execution of p in ~ along the "time axis" T . 

The only difference from the classical definition (cf. Manna[9], Andr4ka- 

-N4meti[1]-[5], Gergely[14]~[8])ef a trace of p in ~ is that now the 

"time-axis" of execution is not necessarily <oO,s,+,.,O,l> but, 

instead, it is T . 

Condition (~) above can be made precise by replacing cO with T in 
, r8 the classical definition, see Andr4ka-N@meti[1]-[3] Gergely-~ryL ]° 

The trace <So,...ism~ of p in ~ tel~inates if ext(so,z) 

is the label of the HALT statement, for some z e T • If the trace 

<So,...,s m~ terminates at time z e T then its output is 
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• Now we define for ~aF d : 

For an arbitrary theory Th-CTF d 

Th ~ (p,~ 

is defined in the usual way. 

for every terminatin~ trace of p 

in ~ the output satisfies 

in ~ . Cf. Def.8 of SraSts-Gergely 

[14], Andr@ka-N~meti[l]-[3], and 

def. of ~ in the present paper. 

the consequence relation 

THEOREM 3 (Completeness of Programverification) : 

Let Th~TF d be recursively enumerable. Then the set 

{ (P,~) ~ PdXFd : Th ~ (P,~) 

of all its consequences is also recursively enumerable. 

Proof: The proof can be found in Andr~ka-Ndmeti-Sain[4]. l~oreovsr, a 

complete inference system is explicitly given there, with decidable 

proof concept. 

QED 

To execute programs in arbitrary elements of T~ d might look counter- 

-intuitive. However, we may require Th to contain the Peano Axioms 

for the sort ~ and some Induction Axioms for the sort ~ o The set 

of these axioms was denoted by Ax in Andr~ka-N@meti[3]. The induction 

axioms for ~ are of the kind: 

for every ~) 6F d . Now the models ~TM d of Ax 

all the intuitive requirements about time and about processes 

in time" . 

do satisfy 

"happening 
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PROPQSITION 4 : 

Let Th~Ax be a subset of 

-H0are provable from Th . 

Then Th ~ (p,~J . 

TF d . Suppose that (p,~) is Floyd- 

Proof is in Andr4ka-N4meti[3]. 
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