COMPLETENESS PROBLEMS IN VERIFICATION OF PROGRAMS AND PROGRAM SCHEMES

H. Andréka I. Németi I. Sain

Mathematical Institute of the Hungarian Academy of Sciences Budapest, Reáltanoda u. 13-15 H-1053 Hungary

Basic concepts

First we recall some basic notions and notations from textbooks on Logic Monk[10], Chang-Keisler[5] and from Program Schemes Theory, e.g. Manna[9], Andréka-Németi[1],[2],[3], Gergely-Ury[8].

- ω denotes the set of natural numbers.
- d denotes an arbitrary similarity type. I.e.: d correlates arities to some fixed function symbols and relation symbols. See Sacks[12], p.11.
- $\mathbf{Y} = \{ \mathbf{y}_{\mathbf{z}} : \mathbf{z} \in \omega \}$ denotes the set of variable symbols.

- F_d is the set of all classical first order formulas of type d with variables in Y. See Chang-Keisler[5], p.22.
- Ed is the class of all classical first order <u>models</u> of type d . See Chang-Keisler[5] or Monk[10], Def.ll.l. or Sacks[12], p.11.
- ⊨ ⊆ F_d×M_d is the usual validity relation. See Chang-Keisler[5] or Sacks[12], p.21.
- τ denotes a <u>term</u> of type d in the usual sense of first order logic, see Chang-Keisler[5], p.22 or Monk[10], p.166.Def.10.8. (ii).
- D and E denote elements of M_d, the universes of which are D and E respectively.

(2: $y_0 \rightarrow y_0+1$) (3: IF $y_1=y_1$ THEN 1), (4: HALT)

- $P_d \times F_d$ is the set of <u>output statements</u> about programs. An output statement $(p, \psi) \in P_d \times F_d$ means intuitively that the program scheme p is partially correct w.r.t. output condition ψ .
- $\underline{p} \stackrel{\bowtie}{\models} (p, \psi) \quad \text{is meaningful if } \underline{p} \in \mathbb{M}_d \quad \text{and} \quad (p, \psi) \in \mathbb{P}_d \times \mathbb{F}_d \cdot \mathbb{N}_d \\ \underline{p} \stackrel{\bowtie}{\models} (p, \psi) \quad \text{holds if the program scheme } p \quad \text{is partially correct} \\ \text{w.r.t. } \psi \quad \text{in the model } \underline{p} \cdot \mathbb{I} \cdot \mathbb{I} \cdot \mathbb{I} \cdot \mathbb{I} p \quad \text{is started in } \underline{p} \quad \text{with} \\ \text{any <u>input } q: \omega \longrightarrow D \quad \text{then whenever } p \quad \underline{\text{halts}} \text{ with some output} \\ k: \omega \longrightarrow D \quad , \quad \text{the formula } \psi \quad \text{will be true in } \underline{p} \quad \text{under the valuation } k \quad \text{of its free variables, i.e. } \underline{p} \models \psi[k] \cdot \mathbb{S} \text{ee Manna} \\ [9], Chapter 4 \cdot \mathbb{N} \text{ote that a precise definition of } \stackrel{\bowtie}{=} \quad \text{would} \\ \text{strongly use the structure } \langle \omega, \leqslant \rangle \quad \text{of natural numbers. See [14]}, \\ \text{Gergely-Ury[8], p.78, Andréka-Németi[1], p.116, [2], [3]. The letter} \\ \omega \quad \text{above the sign } \stackrel{\bowtie}{=} \quad \text{serves to remind us of this fact.} \end{cases}$ </u>

For any set $Th \subseteq F_d$ of formulas, "Th $\stackrel{\text{\tiny{lag}}}{\models} (p, \psi)$ " is defined in the

usual way: Th $\stackrel{\text{proposition 0}}{=}$ iff $(\forall \mathbf{D} \in \mathbf{M}_d) \left[\mathbf{D} \models \text{Th} \Rightarrow \mathbf{D} \stackrel{\text{proposition 0}}{=} \right]$. PROPOSITION 0: Let the type d contain the similarity type of successor arithmetic $\langle \omega, \mathbf{s}, \mathbf{0} \rangle$. Let Th $\in \mathbf{F}_d$ be such that Th $\geq \{ \mathbf{s}^{\mathbf{Z}} \mathbf{0} \neq \mathbf{s}^{\mathbf{r}} \mathbf{0} : \mathbf{z} < \mathbf{r} \in \omega \} \stackrel{\text{d}}{=} \text{Th}^{\mathbf{1}}$ where $\mathbf{s}^{\mathbf{0}} \mathbf{0} \stackrel{\text{d}}{=} \mathbf{0}$ and $\mathbf{s}^{\mathbf{r}+\mathbf{1}} \mathbf{0} \stackrel{\text{d}}{=} \mathbf{s} \mathbf{s}^{\mathbf{r}} \mathbf{0}$ for $\mathbf{r} \in \omega$. Let $\mathbf{E} \in \mathbf{M}_d$ be an arbitrary but fixed model of Th' such that $\mathbf{E} = \langle \omega, \mathbf{s}, \mathbf{0}, \dots \rangle$. Suppose H is an arbitrary set such that $\{ (\mathbf{p}, \psi) : \text{Th} \stackrel{\text{prop}}{=} (\mathbf{p}, \psi) \} \supseteq \mathbf{H} \supseteq$ $\{ (\mathbf{p}, \psi) : \text{Th} \stackrel{\text{prop}}{=} (\mathbf{p}, \psi) \text{ and } \mathbf{p} \quad \underbrace{\text{terminates}}_{\text{and } \psi} \text{ is quantifier-free } \}$.

Then H is not recursively enumerable.

<u>Proof</u>: The present proposition is a special case of Thm 1 to be formulated later. <u>QED</u>

Now we turn to relax the conditions made on d and Th in the above proposition. I.e. we are going to generalize Proposition O .

<u>From now on</u> c and τ denote <u>arbitrary terms</u> of type d such that c contains no variable and τ contains one variable y_0 . To make this explicit, we write $\tau(y_0)$.

Notation: $\tau^{0} \stackrel{d}{=} c$, and $\tau^{z+1} \stackrel{d}{=} \tau(\tau^{z})$ for every $z \in \omega$. Note that the terms τ^{0} , τ^{1} , ..., τ^{z} , ... contain no variable. DEFINITION 1 :

<u>Remark</u>: To a fixed Th , Must(Th) is not unique since it may depend on the choice of c , $\tau(y_0)$, and <u>E</u>. This makes the following theorem even stronger since it will hold for any choice of c , τ , and <u>E</u>. Observe that Must(Th) is a reasonably small set of output statements since ψ contains no quantifiers, no "V" or " \wedge " and at the same time p is such that it terminates in <u>E</u> for every input. Thus Must(Th) contains no tricky statement about the "halting problem" (since p has to terminate) and no "strange sentence" since ψ has to be simple; moreover, $\exists y_0 \psi$ is <u>provable</u> from Th .

THEOREM 1 :

Let d be arbitrary and let $Th \subseteq F_d$ be good (in sense of Def.1.) and consistent. Let H be an arbitrary set such that

 $May(Th) \ge H \ge Must(Th)$.

Then H is not recursively enumerable.

<u>Proof</u>: We shall treat the constant-term "c" as zero and $\tau(y_0)$ as the successor function. E.g. τ^Z will be considered to be the name of the natural number $z \in \omega$. By using successor τ and zero c we can write programs "add" $\in P_d$ and "mult" $\in P_d$ for addition and multiplication. By using these programs, for an arbitrary Diophantine equation $e(y_2, ..., y_m)$ we can write a program $\overline{e} \in P_d$ such that after having executed \overline{e} we shall have $y_0 = y_1$ iff $e(y_2, ..., y_m)$ was true before starting \overline{e} .

Let p be an m-variable version of the program scheme given as an example at the beginning of this paper. Namely, p starts with (0: $y_{m+1} \leftarrow c$), (1: IF $y_2=y_{m+1}$ THEN 4), (2: $y_{m+1} \leftarrow y_{m+1}$), (3: IF TRUE THEN 1), (4: $y_{m+1} \leftarrow c$), (5: IF $y_3=y_{m+1}$ THEN 8), This program p terminates iff all the initial values of y_2, \ldots, y_m can be reached from "c" by finitely many applications of τ . Now, by writing \bar{e} after p we obtain a program $p\bar{e} \in P_d$ which first checks whether y_2, \ldots, y_m can be reached from "c" by applications of τ and if yes then results $y_0=y_1$ if $e(y_2, \ldots, y_m)$ was true, $y_0\neq y_1$ if $e(y_2, \ldots, y_m)$ was false for the initial values. Now to each Diophantine equation $e(\bar{y})$ correlate $\bar{e} = (p\bar{e}, y_0\neq y_1)$.

Clearly $\overline{e} \in P_d \times F_d$. Also Th $\stackrel{\mbox{\tiny \square}}{=} \overline{e}$ iff e has no solution in the standard model $\langle \omega, +, \cdot, 0, 1 \rangle$ of arithmetic. If there were a recursively enumerable H as in the statement of the present theorem then

Eq $\stackrel{d}{=} \{ e \in "Diophantine equations" : Th <math>\stackrel{\mu}{\models} \overline{e} \}$

would be recursively enumerable since the construction of \overline{e} from e was "constructive". But, since Hilbert's tenth problem is unsolvable (Davis[6] or Monk[10]), this is impossible. QED

The following theorem says that if one "avoids Logic" and proves properties of programs by using "Mathematics in general" then this will <u>not help</u> one to avoid the "shortcoming" formulated in Thm 1.

THEOREM 2 :

Let the real world $\langle V, \epsilon \rangle \models$ ZFC of Set Theory (see Devlin[7], p.3, line 4 from below or Chang-Keisler[5], p.476) be fixed. I.e.: V is the class of all sets and ϵ is the "element of" relation between them.

Then the following is true:

There exist - a similarity type d , and - a model $\langle W, E \rangle \models ZFC$ of Set Theory inside of $\langle V, \epsilon \rangle$ (i.e. $\langle W,E \rangle$ is an element of V and $\langle W,E \rangle \models$ ZFC is true inside of $\langle V, \epsilon \rangle$, see Devlin[7], p.14, line 6) such that (i) and (ii) below hold. (i) There are a finite set $Th \subseteq F_d$ of axioms and an output statement (p,ψ) such that Th $\stackrel{\text{\tiny $\ensuremath{\{\ensuremath{\&\ensuremat$ Th $\not\models$ (p, ψ). More precisely: $\langle \mathbf{v}, \epsilon \rangle \models$ "Th $\stackrel{\text{\tiny but}}{\models} (\mathbf{p}, \boldsymbol{\psi})$ " but $\langle \Psi, E \rangle \models$ "Th $\not\models$ (p, ψ) ". (Observe that " Th $\stackrel{\mbox{\tiny ${\rm ${\rm μ}$}$}}{=}$ (p, ψ) " is a statement of the language of ZFC .) (ii) There is an output statement (p, ψ) such that $\langle v, \epsilon \rangle \models "M_{a} \stackrel{\omega}{\models} (p, \psi)$ " while $\langle W, E \rangle \models "M_a \not\models (p, \psi) "$. As a contrast we note that: For all $\varphi \in F_d$ and for every model $\langle W, E \rangle \in V$ of ZFC, $\langle \mathbf{V}, \boldsymbol{\varepsilon} \rangle \models \mathbf{M}_{a} \models \boldsymbol{\varphi}$ implies $\langle \mathbf{W}, \mathbf{E} \rangle \models \mathbf{M}_{a} \models \boldsymbol{\varphi}$. Proof: (i) Let $d \stackrel{d}{=} \{\langle 0, 0 \rangle, \langle s, 1 \rangle \}$. Let Th consist of the following two axioms: ∀y (sy≠0) $\forall y_1 \ \forall y_2 \ (sy_1 = sy_2 \rightarrow y_1 = y_2)$ We know that Hilbert's tenth problem is unsolvable. This implies the existence of a Diophantine equation $e(\overline{\mathbf{y}})$ such that the set theoretic formula " $\langle \omega, s, +, \cdot, 0, 1 \rangle \models \exists \overline{y} e(\overline{y})$ "

is false in $\big< V, \varepsilon \big>$ but is true in $\big< W, E \big>$ for some model $\big< W, E \big> \in V$ of ZFC .

Now let the output statement $\bar{e} = (p\bar{e}, y_0 \neq y_1)$ be the one defined in the proof of Thm 1. There it was observed that

Th
$$\overset{\mu}{=}$$
 iff $\langle \omega, +, \cdot, 0, 1 \rangle \not\models \exists \overline{y} e(\overline{y})$

(Note that the present Th satisfies the conditions of Thm 1.) Thus $\langle V, \epsilon \rangle \models$ "Th $\stackrel{\boxtimes}{=} \overline{e}$ " and $\langle W, E \rangle \models$ "Th $\stackrel{\boxtimes}{\neq} \overline{e}$ ". (ii) The proof of (ii) is an easy modification of the proof of (i) above. Namely, let us choose the above e, $\langle W, E \rangle$, and $\overline{e} = (p\overline{e}, y_0 \neq y_1)$. Let φ be the conjunction of all elements of Th. (Note that Th is finite and therefore $\varphi \in F_d$.) Let $\psi \stackrel{d}{=} (\varphi \rightarrow y_0 \neq y_1)$. Now, $\langle V, \epsilon \rangle \models$ " $M_d \stackrel{\boxtimes}{=} (p\overline{e}, \psi)$ " while $\langle W, E \rangle \models$ " $M_d \stackrel{\boxtimes}{=} (p\overline{e}, \psi)$ ". QED Thm 2 (For a more detailed proof cf. Andréka-Németi-Sain[4].)

The above Thm 2 says that something is wrong with the classical semantics (or model theory) $\stackrel{(\omega)}{=}$ of program schemes. Namely: There exists a good program (p,ψ) which is <u>not provable</u> by mathematics, i.e. the goodness of (p,ψ) is not "a mathematical truth" i.e. it is not implied by ZFC despite of the fact that it happens to be the case that (p,ψ) <u>is</u> good. See Németi-Sain[11]Def.2 and Andréka-Németi-Sain[4] about "Th $\stackrel{(\omega)}{=}$ (p,ψ) " -s being a formula of Set Theory. This way Thm 2 supports the Henkin-type semantics introduced in Andréka-Németi [1]-[3], the consequence concept (Th $\models (p,\psi)$) of which does <u>not</u> have the above shortcoming.

By Thm 2 above there exists an output statement (p,ψ) which is valid, i.e. " $\stackrel{\text{lef}}{=} (p,\psi)$ ", but the validity of which is <u>not</u> a mathematical truth, i.e. ZFC $\stackrel{\text{lef}}{=} "\stackrel{\text{lef}}{=} (p,\psi)$ ". A semantics with this paradoxical property was called <u>instable</u> in Andréka-Németi-Sain[4]. It was proved in [4] that any "reasonable" semantics has to be stable. Indeed, the Henkin-type semantics introduced in Andréka-Németi[1]-[3] was proved to be <u>stable</u> there.

On basis of Thm 2 above an effective inference system for program correctness was given in Andréka-Németi-Sain[4] such that if (p,ψ) cannot be proved then there exists a model of ZFC Set Theory in which

the program p is actually not correct w.r.t. ψ . Cf. Andréka-Németi [1]-[3], too.

A HENKIN TYPE SEMANTICS FOR PROGRAM SCHEMES

Now to every classical (one-sorted) similarity type d we define an associated <u>3-sorted similarity</u> type td . About many-sorted logic and its model theory see Monk[10], p.483.

As before, d is an arbitrary type. Let t denote the similarity type of <u>Peano Arithmetic</u> and let t be disjoint from d. The type td is defined as follows: There are <u>3 sorts of td</u>: \bar{t} , \bar{d} , $\bar{1}$ called "time, "data", and "intensions" respectively. <u>The operation symbols of td</u> are the following: The operation symbols of t, the operation symbols of d, and an additional operation symbol "ext". <u>The sorts (or "arities") of the operation symbols of td</u>: The operation symbols of t go from sort \bar{t} to sort \bar{t} . The operation symbols of d go from sort \bar{d} to sort \bar{d} . The operation symbols of sort ($\bar{1}, \bar{t}$) to sort \bar{d} .: I.e. "ext" has two arguments, the first is of sort $\bar{1}$, the second is of sort \bar{t} , and the result or value of "ext" is of sort \bar{d} . Now the definition of the 3-sorted type td is completed.

 $TL_d = \langle TF_d, TM_d, \models \rangle$ denotes the 3-sorted language of type td, see Monk[10], p.483. In more detail:

- (i) TM_d is the class of all <u>models of type td</u>, see Monk [10], Def.29.27.
 I.e. a model *W(eTM_d* <u>has</u>

 - 2. Operations "T" \rightarrow T" originating from the type t, operations "D" \rightarrow D" originating from the type d, and an operation ext: I×T \rightarrow D .

Roughly speaking, we could say that \mathfrak{M} consists of structures $\mathfrak{T} \in \mathbb{M}_t$, $\mathfrak{D} \in \mathbb{M}_d$, and an additional operation ext: $\mathfrak{I} \times \mathfrak{T} \longrightarrow \mathfrak{D}$.

Therefore we shall use the sloppy notation:

 $\mathfrak{M} \stackrel{d}{=} \langle \mathfrak{X}, \mathfrak{D}, \mathfrak{I}, \mathsf{ext} \rangle$ for elements of \mathtt{TM}_d .

(ii) TF_d is the set of first order (3-sorted) formulas of type td. Roughly speaking, we can say that F_t and F_d are contained in TF_d , and there are additional terms of the form "ext(y, τ)", where τ is a term of type t and y is a <u>variable of sort $\overline{1}$ </u>. Further, "ext(y, τ)" is defined to be a term of sort \overline{d} .

(iii) $\models \subseteq (TM_a \times TF_a)$ is the usual, see Monk[10], p.484.

Now we define the meanings of program schemes $p \in P_d$ in the 3--sorted models $\mathfrak{M} \in \mathbb{T}M_d$. Let $p \in P_d$ be a fixed program scheme. Let y_1, \dots, y_m be the variables occurring in p. Let $\mathfrak{M} \in \mathbb{T}M_d$ be fixed. Recall that I is the universe of sort \overline{i} of $\mathfrak{M} l$.

A <u>trace</u> of p in \mathcal{M} is a sequence $\langle s_0, \dots, s_m \rangle \in {}^{(m+1)}I$ of elements of I satisfying (*) below. (I.e. a trace of p in \mathcal{M} is a sequence of i-sorted elements of \mathcal{M} .) To formulate (*), observe that if $s \in I$ then "ext(s,-)" is a function

 $\langle ext(s,z) : z \in T \rangle$ from T into D. We shall use y_0 as <u>"the</u> <u>control-variable</u>" of p. I.e. $ext(s_0,z)$ is considered to be the "value of the control or execution" at time point z. Thus " $ext(s_0,z)$ " is supposed to be a "<u>label</u>" in the program scheme p.

(#) The sequence $\langle ext(s_0,-), ..., ext(s_m,-) \rangle$ of functions should be a <u>history of an execution</u> of p in D along the "time axis" T.

The only difference from the classical definition (cf. Manna[9], Andréka--Németi[1]-[3], Gergely[14],[8]) of a trace of p in D is that now the "time-axis" of execution is not necessarily $\langle \omega, s, +, \cdot, 0, 1 \rangle$ but, instead, it is T. Condition (*) above can be made precise by replacing ω with T in the classical definition, see Andréka-Németi[1]-[3], Gergely-Ury[8].

The trace $\langle s_0, ..., s_m \rangle$ of p in \mathcal{M} terminates if $ext(s_0, z)$ is the label of the HALT statement, for some $z \in T$. If the trace $\langle s_0, ..., s_m \rangle$ terminates at time $z \in T$ then its <u>output</u> is

 $\begin{array}{ll} \left\langle \mathsf{ext}(\mathbf{s}_1,\mathbf{z}) \ , \ , \ \mathsf{ext}(\mathbf{s}_n,\mathbf{z}) \right\rangle & . & \text{Now we define for } \psi^{\in F_d} : \\ \\ \mathfrak{M} \models (\mathbf{p},\psi) & \text{holds} & \text{iff} & \text{for every terminating trace of } \mathbf{p} \\ & \text{in } \mathfrak{M} & \text{the output satisfies } \psi \\ & \text{in } \mathfrak{B} \ . \ Cf. \ Def.8 \ of \ Sz \\ \texttt{dts-Gergely} \\ & \left[14\right], \ \text{Andréka-Németi[1]-[3], and} \\ & \text{def. of } \stackrel{\bowtie}{=} \ \text{in the present paper.} \end{array}$ For an arbitrary theory $\ \mathrm{Th} \subseteq \mathrm{TF}_d$ the consequence relation \\ & \mathrm{Th} \models (\mathbf{p},\psi) \end{array}

is defined in the usual way.

<u>THEOREM 3 (Completeness of Programverification)</u> : Let $Th \subseteq TF_d$ be recursively enumerable. Then the set $\left\{ (p,\psi) \in P_d \times F_d : Th \models (p,\psi) \right\}$

of all its consequences is also recursively enumerable.

<u>Proof</u>: The proof can be found in Andréka-Németi-Sain[4]. Moreover, a complete inference system is explicitly given there, with decidable proof concept. QED

To execute programs in arbitrary elements of \mathbb{TM}_d might look counterintuitive. However, we may require Th to contain the Peano Axioms for the sort \overline{t} and some Induction Axioms for the sort \overline{t} . The set of these axioms was denoted by Ax in Andréka-Németi[3]. The induction axioms for \overline{t} are of the kind:

$$\forall y \Big[\Big(\varphi(ext(y,0)) \land \forall z \Big[\varphi(ext(y,z)) \rightarrow \varphi(ext(y,z+1)) \Big] \Big) \rightarrow \forall z \ \varphi(ext(y,z)) \Big],$$

for every $(\phi(x)\in F_d$. Now the models $\mathbb{M}\in\mathbb{TM}_d$ of Ax do satisfy all the intuitive requirements about time and about processes "happening in time".

PROPOSITION 4 :

Let Th⊇Ax be a subset of TF_d. Suppose that (p,ψ) is Floyd--Hoare provable from Th. Then Th \models (p,ψ) .

<u>Proof</u> is in Andréka-Németi[3]. <u>QED</u>

REFERENCES

- Andréka, H. and Németi, I., Completeness of Floyd Logic. Bulletin of Section of Logic 7(1978), 115-121, Wrocław.
- Andréka, H. and Németi, I., A characterization of Floyd provable programs. Submitted to Proc.Coll.Logic in Programming, Salgótarján 1978. Coll.Math.Soc.J.Bolyai, North Holland.
- Andréka, H. and Németi, I., Classical many-sorted model theory to turn negative results on program schemes to positive. Preprint 1978.
- Andréka, H., Németi, I., and Sain, I., Abstract model theory, semantics, logics. Preprint 1979.
- 5. Chang, C.C. and Keisler, H.J., Model Theory. North Holland, 1973.
- Davis, M., Hilbert's tenth problem is unsolvable. Amer.Math.Monthly 80(1973), 233-269.
- Devlin, K.J., Aspects of Constructibility. Lecture Notes in Math. 354, Springer Verlag, 1973.
- 8. Gergely, T. and Ury, L., Mathematical Programming Theories.
- 9. Menna, Z., Mathematical Theory of Computation. McGraw Hill, 1974.
- 10. Monk, J.D., Mathematical Logic. Springer Verlag, 1976.
- Németi, I. and Sain, I., Connections between Algebraic Logic and Initial Algebra Semantics of CF Languages. Submitted to Proc.Coll. Logic in Programming, cf. [2].
- Sacks, G.E., Saturated Model Theory. W.A.Benjamin, Inc. Publ., Reading, Massachusetts, 1972.
- 13. Sain, I., On the General Theory of Semantics of Languages. Preprint 1979.
- Szöts, M. and Gergely, T., On the incompleteness of proving partial correctness. Acta Cybernetica Tom 4, Fasc 1, Szeged 1978, pp.45-57.