
COMPLETENESS PROBr~Mg IN ~ERIF!CATION OF PROGRAMS

AND PEOGRAM SCH~A~S

H. Andr4ka

I. ~4meti

I. Safn

Mathematical Institute of the

Hungarian ~csdemy of Sciences

B~/dapest, Re~itanoda u. 13-15

H-I055 Ku n g a r y

Abstract: Thm 1 states a negative result about the classical se-

manZics ~ of program schemes. Yam 2 investigates the reason for

this. We conclude that Thm 2 justifies the Senkin-type semantics

for which the opposite of the present Thm 1 was proved in Andr4ka-

-N~meti[~ ,[2],[3] and also in a different fo~m in part III of Gergely-

-ury[8]. The strongest positive result on ~ is Corollary 6 in

Andr~ka-N4meti[3].

B~sic concepts

First we recall some basic notions and notations from textbooks on

Logic Monk[lO] , Chang-Keisler[~] and from Program Schemes Theory ~ e.g.

Karma[9], Andr~ka-N~meti[l],[2],[3] , Gergely-Ury[8].

denotes the set of natural numbers.

d denotes an arbitrary similarity type. I.e.: d correlates arities

~o some fixed function symbols and relation symbols. See Sacks[12],

p.ll.

Y = { Yz : z E co ~ denotes the set of variable symbols.

209

F d is the set of all classical first order formulas of type d with

variables in Y . See Chang-Keisler[5], p.22.

Hd is the class of all classical first order models of t~pe d . See

5Vnang-Keisler[5] or Monk[lO],Def.ll.l. or Sacks[12], p. ll.

~= G FdXM d is the usual validity relation. See Chang-Keisler[5] or

Sacks[12S, p.21.

denotes a term of type d in the usual sense of first order logic,

see Chang-Keisler[SS, p.22 or Monk[10],p.166.Def.10.8.(i~ .

and E denote elements of M d , the universes of which are D and

E respectively.

Pd ~enotes the set of program schemes of type d . Pd is defined as

in lanna[9~, Andr4ka-N4meti[l],[2], Gergely-Ury[8],p.72. E.g., let

t be the similarity type of arithmetic. Then the following se-

quence

< (o:
(i:
¢2:
(5:

(4:

is in Pt' i.e. it is a program scheme of type

yo -~- 0)

IF yo=Yl THEN 4) ,

Yo -<- Yo +I)

IF yl=Yl THEN i] ,

HALT) > .

t :

Pd ~ F d is the set of output statements about programs. An output state-

ment (~,~) ~ PdXFd means intuitively that the program scheme p

is partially correct w.r.t, output condition ~ .

~ (p,v/) is meaningful if D Ds M d and (p,~) 6 Pd~Fd . Now

~ (p,~) holds if %he program scheme p is partially correct

w.r.t. %u in the model N . l.e. : If p is started in ~ with

any fnput q:co ---*D then whenever p halts with some output

k:co---~I~ , the formula ~ will be true in ~ under the valu-

ation k of its free variables~ i.e. D ~ T[k] . See Manna

[9],Chapter 4 • ~[ote that a precise definition of ~ would

strongly use the structure <o~,~> of natural numbers. See[4$],

Gergely-[[ry[8],p.78, Andr4ka-N~meti[l],p.ll6,[2],[3]. The letter

co above the sign ~ serves to remind us of this fact.

For any set Th~ F d of formulas, " Th ~ (p,~) " is defined in the

usual way~

210

PROPOSITION 0 :

Let the type d

<~,s,o>. ~t
contain the similarity type of successor arithmetic

Th~F d be such that

Th ~- { szo # sro r_ z<r6oO] =d Th'

where sO0 =d 0 and sr+?0 d ssr0 for r ~ '~ .

Let Eel[d be an arbitrary but fixed model of Th'

= <oo,s,O, ... >.

Suppose H is an arbitrary set such that

such that E =

[(p,y) : Th ~ (p,~) and p terminates in ~ for every input

and ~ is quantifier-free 3 •

~en H is no__! recursively enumerable.

Proof: The present proposition is a special case of

mulated later.

Thm I to be for-

Now we turn to relax the conditions made on d and Th in the

above proposition. I.e. we are going to generalize Proposition 0 .

From now on c and ~ denote arbitrar 2 terms of type d such that

c contains no variable and T contains one variable Yo " To make

this explicit, we write ~(yo) •

and Tz+[~ ~(z) for every od
Notation: ~ = c , zeoo .

Note the% the terms

able.

1 z , ~ , ... , ~ , ... contain no vari-

211

DEFINITION I :

Th ----- F d is said to be ~ood if there exist terms c and "~(yo)

such that

Th ~_ { z~ ~r : z<r~ -~ Th' .

Let E6M d be an arbitrary model of Th' such that

(Vb~E) (SZ600) [~z denotes b in EL] . Then we define

May(Th) ~ [(p,~) £ Pd×Fd : Th ~ (p,~) ~ .

Kust(Th) ~ [(p,~> E ~[sy(Th) : p terminates in E for every input;

and ~ is an atomic formula or the

negation of an atomic formula such

that Th ~- ~Yo ~ ~ "

Remark: To a fixed Th , lust(Th) is not unique since it may de-

pend on the choice of c , ~(y~ , and E . This makes the following

theorem even stronger since it will hold for any choice of c , Z ,

and E . Observe that Must(Th) is a reasonably small set of output

statements since ~ contains no quantifiers, no "V " or "A " and

at the same time p is such that it terminates in E for every input.

Thus Must(Th) contains no tricky statement about the "halting prob-

lem" (since p has to terminate) and no "strange sentence" since

has to be simple~ moreover, 3y 0 ~ is provable from Th .

THEOREM i :

Let d be arbitrary

and consistent. Let

May(Th~ ~ H ~ Must(Th) .

Then H is not recursively enumerable.

and let Th~ F d be good (in sense of Def.l.)

H be an arbitrary set such that

Proof: we shall treat the constant-term "c" as zero and T(yo~ as

the successor function. E.g. ~z will be considered to be the name of

the natural number z6oO . By using successor ~ and zero c we

can write programs "add"6 Pd and "mult" e Pd for addition and mul-

212

tiplication~ By using these programs, for an arbitrary Diophantine equa-

tion e(Y2,..,ym) we can write a program ~ ePd such that after

having executed ~ we Shall have yo=Yl iff e(Y2,...,y m) was true be-

fore starting ~ .

Let p be an m-variable version of the program scheme given as an

example at the beginning of this paper. Namely, p starts with

[0: Ym+l -~- c) , (~: IF y2=Ym+l THEN 4), (2: Ym+l --<-- Ym+l) '

(3: IF TRUE THEN ~) , (4: Ym+l < c) , (5: IF y3=Ym+l THEN 8),

This program p terminates iff all the initial values of y2,...,y m

can be reached from "c" by finitely many applications of ~ . Now, by

writing ~ after p we obtain a program p~ ePd which first checks

whether y2~...,y m can be reached from "c" by applications of T and

if yes then results yo=Yl if e(Y2,..,ym~ was true, yo#Yl if

e(Y2,..,ym) was false for the initial values. Now to each Diophantine

equation e(~) correlate ~ = [p~, yo#Yl) •

Clearly ~ e PdXFd . Also Th~ ~ iff e has no solution in

the standard model <oo,+,.,0,I > of arithmetic. If there were a re-

cursively enumerable H as in the statement of the present theorem then

Eq ~ { e ~"Diophantine equations" : Th ~ ~ }

would be recursively enumereble since the construction of ~ from e

was "constructive" . But, since Hilbert's tenthproblem is unsolvable

(Davis[6] or Monk[lO]), this is impossible.

The following theorem says that if one "avoids Logic" and proves

properties of programs by using "Mathematics in general" then this will

not help one to avoid the "shortcoming" formulated in Thm 1 .

THEOREM 2 :

Let the reel world <V,E> ~ ZFC of Set Theory (see Devlin[7], p. 3,

line 4 from below or Chang-Keisler[5]~ P.476) be fixed. I.e.: V is

the class of all sets and e is the "element of" relation between

them.

Then the following is true:

213

There exist

- a similarity type d , and

- a model <W,E> ~ ZFC of Set Theory

<W,E > is an element of V and <W,E>

of <V,&} , see Devlin[7], p.14, line 6)

such that (i) and (ii) below hold.

(i) There a~ a finite set Th~ F d of axioms

(p,~) such that

Th ~ (p,~) is true, but inside of

Th ~ (p,~) .

More precisely:

inside of <V,e> (i.e.

ZFC is true inside

and an output statement

<W,E> we have

<v,~> ~ "~h ~(p,~) - but

<%V,E > ~ " Th ~ (p,~) "

(Observe that " Th ~ (p,~))

of ZFC .)

(ii~ There is an output statement (p,%u) such that

<V,6 > ~ " M d ~ (p,q)) " while

<W,E> ~ " M d ~ (p,%U) " .

" is a statement of the language

As a contrast we note that:

For all ~EF d and for every model <W,E> E V of ZFC ,

<V,£ > ~ " M d ~ q " implies <W,E> ~ " M d

Proof:

(i)

Let d d { <0,0>, <s,~> } •

Let Th consist of the following two axioms:

¥y (sy~O)
Vy I Vy 2 (Syl=sy 2 -- yl=Y2) .

We know that Hilbert's tenth problem is unsolvable. This implies the

existence of a Diophantine equation e[y) such that the set theoretic

formula

is false in <V,~> but is true in <W,E> for some model

<W,E> e V of Z~FC .

214

Now let the output statement ~ = (p~ , yo#Yl) be the one defined

in the proof of Thm I . There it was observed that

Th ~ ~ iff 4co,+,.,o,I> ~ 3y e(~ .

(Note that the present Th satisfies the conditions of Thm i .)

Thus <V,E) ~ " Th ~ ~ " and <W,E> ~ " Th ~-~ "

The proof of (ii~ is an easy modification of the proof of (i) above.

Namely, let us choose the above e , < W,E >, and ~ = (p~, yoCy~

Let ~ be the conjunction of all elements of Th . (Note that Th

finite and therefore ~eF d .) Let ~ ~ (~ --->yo#Yl) . Now,

<V,e > ~ " M d ~ (p~,~) " while

<W,E ~ ~ " M d ~ (P~,~) " •

QED Thm 2 < For a more detailed proof cf. Andr~ka-N~meti-Sain[4].)

is

The above Thm 2 says that something is wrong with the classical

semantics (or model theory) ~ of program schemes. Namely: There

exists a good program (p,~) which is not provable by mathematics, i.e.

the goodness of (p,~) is not "a mathematical truth" i.e. it is not

implied by ZFC despite of the fact that i% happens to be the case that

(p,~] is good. See N4meti-Sain[ll]Def.2 and Andr4ka-N4meti-Sain[4]

about " Th ~ (p,~) " -s being a formula of Set Theory. This way

Thm 2 supports the Henkln-type semantics introduced in Andr4ka-N~meti

[1]-[~], the consequence concept (Th ~ (p,~)) of which does not

have the above shortcoming.

By T~hm 2 above there exists an output statement (p,~) which is

valid, i.e. " ~ (p,~)"~ but the validity of which is not a math-

ematical truth~ i.e. ZFC ~ " ~ (p,~) " • A semantics with this

paradoxical property was called instable in Andr4ka-N4meti-Sain[4].

I% was proved in [4] that any "reasonable" semantics has to be stable.

Indeed, the Henkin-Zype semantics introduced in Andr4ka-N4meti[1]-[5]

was proved to be stable there.

On basis of Thm 21 above an effective inference system for program

correctness was given in Andr4ka-N4meti-Sain[4] such that if (p,~)

cannot be proved then there exists a model of ZFC Set Theory in which

215

the program p i s actually not correct w.r.t. ~ .

too.

Cf. Andr4ka-N4meti

A HENKIN TYPE SEMANTICS FOR PROGRAM SCHEMES

Now to every classical (one-sorted) similarity type d we define

an associated 3-sorted similarity type td . About many-sorted logic

and its model theory see Monk[lO], p.4~3.

As before, d is an arbitrary type. Let t denote the similarity

type of Pean0 Arithmetic and let t be disjoint from d . The type

td is defined as follows:

There are ~ sorts of td : ~ , S , [called "time , "data ~ , and

"intensions" respectively.

The operation s.vmbols of td are the following: The operation symbols

of t , the operation symbols of d , and an additional operation sym-

bol "ext" .

The sorts (or "arities") of the operation s.Tmbols of td : The oper-

ation symbols of t go from sort ~ to sort ~ . The operation symbols

of d go from sort ~ to sort ~ . The operation symbol "ext" goes

from sort ([,~) %0 sort d .: I.e. "ext" has two arguments, the

first is of sort [, the~second is of sort ~ s and the result or value

of "ext ~ is of sort S . Now the definition of the 3-sorted type td

is completed.

t,ype

(i)

TL d = < TF d , TM d , ~ ~ denotes the 3-sorted language of

td , see ~Tonk[lO], p.483. In more detail:

I.e. a model ~6TM d has

~. three universes throughout denoted by T , D , and

, S , and T respectively.

2. Operations "T n ---~ T" originating from the type

operations "D n --~ D" originating from the type

an operation extr IxT --~D .

is the class of all models of t.ype td , see Monk [i0], Def.29.27.

I, of sort

t

d , and

Roughly speaking, we could say that ~I consists of structures

TsK t , ~M d , and an additional operation ext: ~ I~T-->E .

216

(iii)

Therefore we shall use the sloppy notation:

~ < ~ ' 2 ' I , ex$ > f o r e l e m e n t s of TM d .

(ii) TF d is the so% of first order (3-sorted) formulas of type td .

Eoughly speaking, we can say that F t and F d are contained in

T9 d , and there are additional terms of the form "ext(y,T) "~ where

is a term of type t and y is a variable of sort T . FUrther,

"ext(y,T) ~ is defined to be a term of sort d .

~ (TM d × TF d) is the usual, see Monk[10], p.484.

Now we define the meanings of program schemes p 6P d in the 3-

-sorted models ~eTM d . Let p ePd be a fixed program scheme.

Let yl,..,y m be the variables occurring in p . Let ~eTM d be

fixed. Hecall that I is the universe of sort T of T~ .

A trace of p in ~ is a sequence <So,.-,Sm> 6 (m+i)I of

elements of I satisfying (~) below. (Y.e. a trace of p in T6L

is a sequence of i-sorted elements of q~l .) To formulate (~), ob-

serve that if s ~ Y then "ext(s,-) w is a function

<ext(s,z) : zeT) from T into D • We shall use Yo as "the

control-variable" of p . I.e. ext(so,Z) is considered to be the

"Value of the control or execution" at time point z . Thus "ext(So,Z)"

is supposed to be a "label" in the program scheme p .

(~ The sequence <ext(So,-) ,..., ext(Sm,-) ~ of functions should be

a histor~of an execution of p in ~ along the "time axis" T .

The only difference from the classical definition (cf. Manna[9], Andr4ka-

-N4meti[1]-[5], Gergely[14]~[8])ef a trace of p in ~ is that now the

"time-axis" of execution is not necessarily <oO,s,+,.,O,l> but,

instead, it is T .

Condition (~) above can be made precise by replacing cO with T in
, r8 the classical definition, see Andr4ka-N@meti[1]-[3] Gergely-~ryL]°

The trace <So,...ism~ of p in ~ tel~inates if ext(so,z)

is the label of the HALT statement, for some z e T • If the trace

<So,...,s m~ terminates at time z e T then its output is

<ext(Sl,Z) ,..., ext(Sm,Z)>

~I D (p,w) holds i f f

217

• Now we define for ~aF d :

For an arbitrary theory Th-CTF d

Th ~ (p,~

is defined in the usual way.

for every terminatin~ trace of p

in ~ the output satisfies

in ~ . Cf. Def.8 of SraSts-Gergely

[14], Andr@ka-N~meti[l]-[3], and

def. of ~ in the present paper.

the consequence relation

THEOREM 3 (Completeness of Programverification) :

Let Th~TF d be recursively enumerable. Then the set

{ (P,~) ~ PdXFd : Th ~ (P,~)

of all its consequences is also recursively enumerable.

Proof: The proof can be found in Andr~ka-Ndmeti-Sain[4]. l~oreovsr, a

complete inference system is explicitly given there, with decidable

proof concept.

QED

To execute programs in arbitrary elements of T~ d might look counter-

-intuitive. However, we may require Th to contain the Peano Axioms

for the sort ~ and some Induction Axioms for the sort ~ o The set

of these axioms was denoted by Ax in Andr~ka-N@meti[3]. The induction

axioms for ~ are of the kind:

for every ~) 6F d . Now the models ~TM d of Ax

all the intuitive requirements about time and about processes

in time" .

do satisfy

"happening

218

PROPQSITION 4 :

Let Th~Ax be a subset of

-H0are provable from Th .

Then Th ~ (p,~J .

TF d . Suppose that (p,~) is Floyd-

Proof is in Andr4ka-N4meti[3].

REFERENCES

i. Kndr4ka, H. and N4meti, I., Completeness of Floyd Logic. BUlletin
of Section of Logic 7(1978), I15-121, Wroclaw.

2. Andr4ka, H. and N4meti, I., A characterization of Floyd provable
programs. Submitted to Proc.Coll.Logie in !mrogrmmming, Salg6tarj~n
1978. Cbll.Math.Soc.J.Bolyai, North Holland.

5. Andr4ka, H. and N~meti, I., Classical many-sorted model theory to
turn negative results on program schemes to positive. Preprint 1978.

4. Amdr4ka, E., N4meti, I., and Sain, I., Abstract model theory, se-
mantics, logics. Preprint 1979.

5. Chang, C.C. and Keisler, H.J., MOdel Theory. North Holland, 1973.

6. Davis, M., Hilbert's tenth problem is unsolvable. Amer.Math.Monthly
80(1975), 233-269.

7. Devlin, K.J., Aspects of Construct~bility. Lecture Notes in Math.
354, Springer Verlag, 1973.

8. Gergely, T. and Ury, L., Mathematical Programming Theories.

9. Manna, Z., Mathematical Theory of COmputation. McGraw Hill, 1974.

lO. Konk, J.D., Mathematical Logic. Springer Verlag, 1976.

II. N4meti, I. and Sain, I., Connections between Algebraic Logic and
Initial Algebra Semantics of CF Languages. Submitted to Proc.Coll.
Logic in Programming, c~ [2].

12. Sacks, G.E., Saturated Model Theory. W.A.Benjamin, Inc. Publ.,
Keading, Massachusetts, 1972.

15. Sain, I., On the General Theory of Semantics of Languages. Preprint
1979.

14. Sz6ts, M. and Gergely, T., On the incompleteness of proving partial
correctness. Acta Cybernetica Tom 4, Faso i, Szeged 1978, pp.45-57.

