COMPLETENESS PROBLEMS 1IN VERIFICATION OF PROGRAMS
AND PROGRAM SCHEMES

H. Andréka
I. Németi
T, Sain

Mathematical Institute of the

Hungerian Lcedemy of Sciences

Budepest, Redltanoda u. 13-15
B-105% Hungsary

Abstraei: Thm 1 states & negative result about the classical se-
mantics of program schemes. Thm 2 investigates the reason for
this. We conclude that Thm 2 justifies the Henkin-type semantics F
for which the opposite of the present Thm 1 was proved in Andréka~
-Németi[l],[Z],[3] and slso in a different form in part III of Gergely-
-Ury[B]. The strongest positive result on = is Cbrollary € in
Andréka-Németi[3].

Besic concepts

First we recell some basic notions and notations from textbaooks on
Logie Monk[10], Cheng-Keisler[5] and from Program Schemes Theory , e.g.
Mannal9], Andréka-Németil[1],[2],[3] , Gergely-Uryls].

w denotes the set of natural numbers.
d denotes an arbitrary similarity type. I.e.: d correlates arities
to some fixed function symbols and relation symbols. See Sacks[lz],

p.11.

Y = { ¥y ¢ Z €W } denotes the set of variable symbols.

209

Fy is the set of all classical first order formulas of type d@ with
variables in Y . See Chang-Keisler{5], p.22.

& is the class of all classical first order models of type d . See
Chang-Keisler[5] or Monk[10], Def.11.1. or Sacks[12] p.11.

= o F My is the usual validity relation. See Chang-Keisler[5] or
Sacks[12], p,21.

T denotes a term of type d in the usual sense of first order logic,
see Chang-Keislerl5],p.22 or Monk[101, p-166.Def.10.8. (ii) .

I

eand E denote elements of Md , the universes of which are D and
E respectively.

Py denotes the set of progrem schemes of type d . Pd is defined as
in Mannal9], Andréka-Németil1l,[2], Gergely-Ury[8], p.72. E.g., let
t be the similarity type of arithmetic. Then the following se-
quence 1is in |) i.e. it is a program scheme of type t :

{(0: y,—<0) ,
(1: IF YooV THEN 4) ,
@: y, < y,+1) ,
(3: IF y,=y, THEN 1) ,
(4: HALT) > .

PdXFd is the set of putput statements about programs. An output state-
ment (p,\y) & deFd means intuitively that the program scheme p
is partially correct w.r.t. output condition Yy .

D E (p,y) is meaningful if DeM; and (p,y) €Pg¥Fq . Now
D K P,y holds if the progrem scheme p is partially correct

’;.r.t. ¢ in the model D . T.e.x If p is started in J with
any input q:w —>D then whenever p halts with some output
kiw -——>D , the formula y will be true in D, under the valu-
ation k of its free variables, i.e. D = ylk]l . See Manna
[9],Chapter 4 . Note that a precise definition of E2 would
strongly use the structure < w,<> of natural numbers. See [14]

Gergely-Ury[8],p.78, Andréka-Németil1lp,116,[2],[3]. The letter

1]

w above the sign K2 serves to remind us of this fact.

For eny set Th&F, of formulas, " Th ¥ (p,y) * is defined in the

210
usual way:

™ ¥ (p,y) ief (Vnemd)[g E Th = p # (o)] .

PROPOSITION O :
Let the type & contain the similarity type of successor arithmetic
{w,s,0>. Let ThEF; be such that

m 2 {e%0#s0 : z<rew} $ m

“

where s% d 0 and srﬂO d 8870 for rew .

Iet Ee nrd be an arbitrary but fixed model of Th’ such that E =

= {0,8,0, we >

Suppose H is an arbitrary set such that
{(P)‘«P) : Th B {psy) } = H =

{(p,q}) : Th B2 (p,y) and p terminates in E for every input
and ¢ is quantifier-free I

Then H is not recursively enumerable.

Proof: The present proposition is a special case of Thm 1 to be for-
mulated later.

QED

Now we turn to relax the conditions made on 4 and Th in the
above proposition. I.e. we are going to generalize FProposition Q .

From now on ¢ and % denote arbitrary terms of type & such that
e contains no varisble and T contains one variable Yo To make
this explicit, we write T(yy) -

0 g

Notation: = #+1 d

¢c, and 7T = 'c'('c'z) for every zew .

Note that the terms 'np ’ fcl y see fc'z) wee contain no vari-
able.

21

DEFINITION 1 :

Th € Fy ig said to be good if there exist terms ¢ and Ty,
such that
™m 2 { ZF# < z<reu.>}gTh’ .

Let EGMd be an arbitrary model of Th’ such that

(Yoer) (Jzew) ['L‘z denotes b in g] . Then we define
May (Th) d {(p,w)ePdXFd : Th }g(p,k\ﬂ } .

Must (Th) d { (p,y) € May{(Th) : ©p terminates in E for every input;
and Y 1is an atomic formula or the
negation of an atomic formula such
that Th |~ 3Jy ¢ oo

Remark: To a fixed Th , Must(Th) is not unique since it may de-

pend on the choice of ¢ , ’L‘(yo) y and E . This makes the following

theorem even stronger since it will hold for any choice of e, T ,
and E . QObserve that Must {(Th) is a reasonably small set of output
statements since ¢ contains no quentifiers, no "v* or “A"* and
at the same time p 1is such that it terminates in E for every input.
Thus Must(Th) econtains no tricky statement about the “halting prob-
lem" (since p has to terminate) and no *strange sentence" since Y
has to be simple; moreover, Byo y is provable from Th .

THEOREM 1 :

Let 4 be arbitrary and let Th&Fy be good (in sense of Def.l.)
and consistent. Let H be an arbitrary set such that

May(Th) 2 H =2 Must(Th) .
Then H is ngot recuraively enumerable.

Proof: We shall treat the constant~term "¢" as zero and 'r.‘(yo) as
the successor function. E.g. 7% will be considered to be the neme of
the natural number Z€W , By using successor T and zero c¢ we

ean write programs “add"e Py and “mult® ePy for addition and mul-

212

tiplication. By using these programs, for an arbitrary Diophantine equa-
tion e(yz,...,ym) we can write a progrem € €Py; such that after
having executed €& we shall have Yo<¥1 iff e(yz,...,ym) was true be-
fore starting € .

Let p be an m-variable version of the program scheme given as an
example at the beginning of this paper. Namely, p sterts with

(o: Yme1 ™ e), (1: 1P Yo=¥me1 THEN 4), (2: Yme1 ym+1) s

(3: IF TRUE THEN 1), (4: yp,,—<c¢), (5: IF y,=y, . THEN 8), w .

This progrem p terminates 1iff &ll the initial values of Yores¥y

ecan be reached from ©“c" by finitely many applications of T . Now, by
writing € after p we obtain a program péePd which first checks
whether Ypsewes¥y can be reached from "c" by applications of T and
if yes then results ¥o=¥1 if e(yz,v... ,ym) was true, yo;!y1 if
e(yz,...,ym3 was false for the initial values. Now to each Diophantine
equation e(§) correlate ¥ = (pg, yo#yl) .

Clearly ?ePdXFd « Also Th¥ 8 iff e has no solution in
the standard model <w,+,-,0,1> of arithmetic., If there were a re-
cursively enumerable H &8s in the statement of the present theorem then

~

Eq ¢ { ee"Diophentine equations® : Th K 3F }

would be recursively enumerable since the construction of % from e
was ‘"constructive" . But, since Hilbert’s tenth problem is unsolvable
(Davis[6] or Monk[10]), this is impossible.

QED

The following theorem says that if one "avoids Logie" and proves
properties of progresms by using "Mathematics in general"™ then this will
not help one to avoid the *"shortcoming" formulated in Thm 1 .

THEQOREM 2 :

Det the real world <{V,e> E ZFC of Set Theory (see Devlin(7l, p.3,
line 4 from below or Chang-Keisler[5}, p.476) be fixed. I.e.: V s
the class of &1l sets &nd € is the "element of" relation between
them.

Then the following is true:

213

There exist
- a gimilarity type 4 , and
- amodel {W,ED> k= ZFC of Set Theory inside of {(V,€) (i.e.
{W,E) 1is en element of V and (W,ED> F ZFC is true inside
of (V,e)» , see Devlin[7], p.14, line 6)
such that (1) end (ii) below hold.

(i) Thereare a finite set The& Fa of axioms and an output statement
(p»y) such that

Th ¥ (p,y) is true, but inside of {W,ED> we have
Th %"—-/ (p,y) .
More precisely:
V,E> = " Th B () * but
MES> = " Th 1 p,y) " .
(Observe that " Th ¥ (p,y) is a statement of the language
of ZFC .)
(ii) There is an output statement (p,y) such that
,ed> = "M ¥ (p,9) " while
MEY = "M ¥ (p¢) " .

As a contrast we note that:
For all €F; and for every model {W,EYEV of 2zFC,

VeED = "My B " implies CWEY B "My = ¢ "

Proof:
(i)
et a & {<0,0),¢s1) } .
Let Th consist of the following two axioms:
Vy (sy#0)
Yy, Vy, (syp=sy, = y7y,) .
We know that Hilbert’s tenth problem is unsolvaeble. This implies the
existence of a Diophantine eguation e(§) such that the set theoretic
formula

" <w’s’+"’011> % 3? e(y) "

is false in (V,e) but is true in (W,E) for some model
(W,E> eV of zZFC .

214

Now let the output statement & = (pé , y #y,) Dbe the one defined
in the proof of Thm 1 . There it was observed that

Th B ife r4,,0,1> B Jge@ .

(Note that the present Th satisfies the conditions of Thm 1 .)
Thus {V,e> k= * Th & &~ and (WED = » €3~

iin

The proof of {ii) is an easy modification of the proof of (i) above.

Namely, let us choose the above e , ¢(W,ED>, and @€ = (p§, yoﬁyl) .

Let ¢ be the conjunction of all elements of Th . (Note that Th is
ini d

finite and therefore (eF, o) Let g = ('*P -)yoyéyl) . Now,

{V,ed> k= "My B (ps,y) " vhile
KWE> = "M 8 e,) v .
QED Thm 2 (For & more detailed proof cf. Andréka-Németi-Sein[4].)

The sbove Thm 2 says that something is wrong with the classical
semantics (or model theory) 2 of program schemes. Nemely: There
exists a good program (p,y) which is not proveble by mathematics, i.e.
the goodness of (p,y) ie not "a mathematical truth" i.e. it is not
implied by ZFC despite of the fact that it happens to be the case that

(p,y) is good. See Németi-Sain[11]Def.2 eand Andrékae-Németi-Sein[4]
sbout " Th Eg (p,w) * =g being a formula of Set Theory. This way
Thm 2 supports the Henkin-type semantics introduced in Andréka-Németi
[11-[3], the consequence concept {Th F-(p,w)) of which does not

have the above shortcoming.

By Thm 2 above there exists an output statement (p,y) which is
valid, i.e. "E2 (p,y) ", but the validity of which is pot e math-
ematical truth, i.e. ZFC K& " 2 (p,p) " . A sementics with this
paradoxical properiy was called instable in Andréka-Németi-Sain[4].

It was proved in [4] that any “reasonable" semantics has to be stable.
Indeed, the Henkin-type sementics introduced in Andréka-Németil1]-[3]
was proved to be stable there.

On basis of Thm 2 above an effective inference system for program
correctness was given in Andréka-Németi-Sain{4] such that if (p,y)
cannot be proved then there exists a model of ZFC Set Theory in which

215

the program p ig actually not correct w.r.t. ¢ . Cf. Andréka-Németi
[11-[31, too.

A _HENKTN TYPE SEMANTICS FOR PROGRAM SCHEMES

Now to every classical (one-sorted) similarity type 4 we define
en associated J-sorted similarity type td . About many-sorted logic
and its model theory see Monk[10], p.483.

As before, d is an arbitrary type. Let t denote the similarity

type of Peano Arithmetic end let t be disjoint from d . The type

td is defined as follows:
There are _3 sorts of td : t,d, I called "time , *data®™ , and
"intensions" respectively.
The operation symbols of td are the following: The operation symbols
of t , the operation symbols of d , and an additional operation sym-
bol “"ext” .
The sorts (or “arities") of the operation symbols of td : The oper-
ation symbols of t go from sort t teo sort T . The operation symbols
of 4 go from sort & to sort d . The operation symbol “ext" goes
from sort (I,t) to sort d .: T.e. "ext® has two arguments, the
first is of sort I , the‘second is of sort T, and the result or value

of "ext™ is of sort d . Now the definition of the 3-sorted type td
is completed.

TLd = <: TFd , TMd , h::> denotes the 3-sorted language of
type td , see Monk[10], p.483. In more detail:

(i) TMy 1is the class of ell models of type td , see Monk [10], Def.29.27.
T.e. amodel TleTh, has

X. three universes throughout denoted by T y D, and T, of sort
t,3, and T respectively.

2. Operations "% — originating from the type t ,
operations g —» D originating from the type d , and
an operation ext: IXT —D .

Roughly speaking, we could say that %l consists of structures
Tem, , Eemd y @and an additional operation ext: IXT—>7 .

218
Therefore we shall use the sloppy notation:

m d <£,B,I,ext> for elements of ™; -
(ii) TFd is the set of first order {3-sorted) formulas of type td .
Roughly speaking, we can say that Fe and Fd are contained in
'J.-‘Fd , end there are additional terms of the form “ext(y,v) ", where
T is & term of type t and y is a variable of sort i . Further,
vgxt(y, T)" is defined to be a term of sort 4 .

i) & e (TdeTFd) is the usual, see Monk[10], p.484.

Now we define the meanings of progrem schemes PEPy in the 3-
-sorted models WLE€ 'l'Md . Let p ePd be a fixed program scheme.

Let yyrees¥p be the variables occurring in p . ILet WeTH; de
fixed. Recall that I is the universe of sort i of Wl .

K trace of p in T is & sequence CIRTIEI e(m+1)I of
elements of I satisfying (#) below. (F.e. a trace of p in WL
is a sequence of i-sorted elements of T .) To formulate (%), ob-
gerve that if g€I then “ext(s,-)™ 1isg a funection

<ext(s,z) : zET> from T into D . We shall use y as Ithe
control-variable" of p . I.e. ext(so,Z) is considered to be the
*"value of the control or execution" at time point z . Thus '*ext(so,z)"
is supposed to be & “label™ in the program scheme p .

€] The sequence <ext(s°,-—) 3 ooo s ext(sm,-) > of functions should be
a history of an execution of p in D along the "time axis" .

The only difference from the classical definition (cf. Manna[9], Andréka-
-Németi[11-[%], Gergely[141,[8])of a trace of p in D, is that now the
*time-axis™ of execution is not necessarily <w,s,+,-,0,l> but,
instead, it is T .

Conditiom (%) above can be made precise by replacing «w with T in
the classical definition, see Andréka-Németi[ll-{3], Gergely-Ury[s].

The trace (S yw,8p)> of P in Tl terminates if ext(so,z)
is the label of the HALT statement, for some 2z€T . If the trace
<So"“’sm> terminates at time 2z €T then its output is

217
<ext(sl,z) yuey €Xt (sm,z)> . Now we define for YEFy ¢

W = (p,\y) holds iff for every terminating trace of p
in Ml the output satisfies
in D . Cf. Def.8 of Sz6ts-Gergely
{141, Andréka-Németi[11-[3], and
def. of]:)‘— in the present paper.

For an arbitrary theory ThQTFd the consequence relation
T™h k= (p,y)

is defined in the usual way.

THEOREM 3 (Completeness of Programverification) :

Let The& ’.T.'l"‘d be recursively enumerable. Then the set
{ (p,y) €EPXFy : Th b= (p,y) }

of all its consequences is also reeursively enumerable.

Proof: The proof can be found in Andréka-Németi-Sain[4]. Moreover, a
complete inference system is explicitly given there, with decidable
proof concept.

QED

To execute programs in arbitrary elements of 'I’Md might look counter-
-intuitive. However, we may require Th to contain the Peano Axioms
for the sort I eand some Induction Axioms for the sort I . The set
of these axioms was denoted by Ax in Andréka-Németi[3]. The induction
axioms for 1 are of the kind:

N\
Vy[<Lp(ext(y,0)) /\Vz[kp(ext(y,z)) - Lp(ext(y,zﬂ))]) - Yz Lp(ext(y,z))]’

for every (pix) € Fg - Now the models 'b'ﬂeTMd of Ax do satisfy
all the intuitive requirements about time and about processes "happening
in time" .

218

PROPOSITION 4 :

Let

Th24x be a subset of TF; . Suppose that (p,y} is Floyd~

-Hoare proveble from Th .

Then

™ E (p,y) .

Proof is in 4&ndréka-Németi{3].

QED

REFERENCES

l.

2.

11,

l12.

13.

14.

Andréke, H. and Németi, I., Completeness of Floyd Logiec. Bulletin
of Section of Logie 7(1978), 115-121, Wroclaw.

Andréka, E. and Németi, I., A characterization of Floyd provable
programs. Submitted to Proc.Coll.Logic in Programming, Salgétarjén
1978. Coll.Math.Soc.J.Bolyai, North Holland.

Andréka, H. and Németi, I., Classical many-sorted model theory to
turn negative results on program schemes to positive. Preprint 1978.

4Andréka, H., Németi, ¥., and Sain, I., Abstract model theory, se-
mantics, logics. Preprint 1979.

Chang, C.C. and Keisler, H.J., Model Theory. North Holland, 1973.

Davis, M., Hilbert’s tenth problem is unsolvable. Amer.Math.Monthly
80(1973), 233-269.

Devlin, K.J., Aspects of Constructibility. Lecture Notes in Math.
354, Springer Verlag, 1973.

Gergely, T. and Ury, L., Mathematical Programming Theories.
Menna, Z., Methematical Theory of Computation. McGraw Hill, 1974.
¥onk, J.D., Mathematical Logic. Springer Verlag, 1976.

Németi, I. and Sain, I., Connections between Algebraic Logic and
Initial Algebra Sementics of CF Languages. Submitted to Proc.Coll.
Logic in Programming, cf. [2].

Sacks, G.E., Saturated Model Theory. W.A.Benjamin, Inc. Publ.,
Reading, Massachusetts, 1972.

Sain, I., On the General Theory of Semantics of Languages. Preprint
1979.

Sz8ts, M. and Gergely, T., On the incompleteness of proving partial
correctness. Acta Cybernetica Tom 4, Fasc 1, Szeged 1978, pp.45-57.

