HENKIN-TYPE SEMANTICS FOR PROGRAM-SCHEMES TO TURN NEGATIVE
RESULTS TO POSITIVE

Andréke,H. Németi,I.® Sain,I.

For motivations see [2],[21,{121],[120],[7],(61.

NOTATIONS (from textbooks on logic, [91,[3]).

d denotes a similarity type. I.e. d correlates arities (numbers)
to function and relation symbols.

w denotes the set of natural numbers.

Y =1 ¥y ? wew § denotes the set of variables.

Fy is the set of d-type classical first order formulas with variables
in Y. Cf. e.g. [5]p.22 .

T denotes a term of type d in the ususl sense of logic. See [5]p.22
or [9]1p.166 Def.10.8.(i{) .

Md denotes the class of all classical models of type 4 see e.g. [5]
or [9]Def.11.1.

A classical model is denoted by an underlined capital like D and its
universe is denoted by the same capitasl without underlining.

By a "“valuation of the varisbles" 1in a model D a function g:w—»D
is understood, see [9]p.195 .

T[q]B denotes the value of thé term 4 in the model D under the
valuation g of the variables, see [5]p.27 D.1%.1% or [9]Def.11.2.
If v contains no variable, then we write T instead of ¢[q]D if
D 1is understood. ~

AB denotes the set of all functions from A into B , see [9]p.7 .
Ly = <F » Mg,) is the first order language of type d , see [117, (6],

§1. SYNTAX (of program schemes)

The followings are basicelly the seme as 4-1.1 in Mannal8].

Now we define the set Py of d-type program-schemes.

The set ©Lab of "label symbols"™ 1is defined to be a fixed infinite
subset of the set of constent d-type terms, i.e. d-type terms which do
not contain variable symbols. Logical symbols: {A» 7. I,=). Other
symbols:{—<-, IF, GOTO, HALT, (,), +}. The set Cq of d-type commands
is defined by: (i:y-<ﬁv)€Ud if i€ Lab, yeY, and T is a d-type term.
(i: IF X GOTO v)E€ Uy if i,veleb, YEFy is a formula without quan-
tifiers. (i:HALT)e Uy if ieLab. These are the only elements of Ujg.

¥Mathematical Institute of the Hungerien Academy of Sciences, Budavest,
Redltanoda u. 13-15, H-1053 Hungary

By a d-type program scheme we understand a finite sequence p of com-
mands (elements of Ud) ending with a "HALT" , in which no two members
have the same label, and in which the only "HALT-commend” is the last
one. Further, every label occurring in p 1is the label of some command
in p. JT.e., an element p of P, is of the form

p=< (g yee, (L) ,(in+1:HALT) > , where (i :u)€U4 , etc.

§2, SEMANTICS (of program schemes)

By langusges with semantics we understand triples L ={F, M, k5 where
F is called syntex, M is called the set of models or possible inter-
pretations, and = is called validity, see [6],[101,[21].

A possible semantics for P, would be the standard classical lan-
suage <Pd’ Md,lﬁi"> where DFE2 plg] for some qe®“™) iff q is
a standard trace of the program scheme p 1in the model J . Since
Ienov, this standard semantics was used, see [8lChap 4. The precise
definition of this E= can be found in [6],[1]. This standard lor
clas8ical) semantics might look clean and simple but it was proved in [2],
{12] that it has highly undesirsble features, it is anomalous and it
simply cennot be a faithful mathematical model of our real programming
situation.

Here we try to develop a natural semantic fremework for programs

and statements about programs. In trying to understand the “Programming
Situetion", its languages, their meanings etc., the first question is
how an interpretation or model of & program scheme PEP4 should look
like. The classical approach (Mannal8]) says that an interpretation or
model of a program scheme is a relational structure geMd consisting of
all the possible data values. The program p conteins variables, say,
¥y « The classicel approach says that y denotes elements of D just as
varigbles in classical first order logic do. Now we argue that y does
not denote elements of D but rather y denotes some kinds of "locations"
or "addresses" which may contain different data values (i.e. elements

of D) at different points of time. Thus there is a set I of locations,
a set T of time points, and a function ext: IXT—>D which tells for
every location seI and time point beT what the content of location

8 1is at time point b . Of course, this content ext(s,b) is a data
value, i.e. it is an element of D . Time has a structure too ("later
then" etc.) and data values have structure too, thus we have structures

T and D over the sets T and D of time points and possible data
values, respectively. Therefore we shall define a model or interpretation

20

for programs pePd to be a four-tuple W = ¢ 2,D,I, ext >

where T eand D are the time structure and data structure resp., I is
the set of locations and ext: IxT—>»D is the "content of...at time..."
function.

Consider e.g. the statement "y=y+1" which frequently occurs in
programs. If y denotes elements of D then the interpretation of
"y=y+1" 1is not very natural. However, if y denotes a location seI
then "y=y+1" means that the content of the location s changes during
time T .

Of course, when specifying the sementics of a programming language
Pd we may have ideas about how an interpretation Tl of Pd may look
like and how it may not look. These ideas may be expressed in the form
of axioms about Wl. E.g. we may postulate that I of Wl has to sat-
isfy the Peano Axioms of arithmetic. These axioms are easy to express
since a closer investigation of W defined above reveals that it is a
model of classical 3-sorted logic (the sorts being T , D, and I).

Thus the axioms can be formed in classicel 3-sorted logic in a convenient
manner to express all our ideas or postulates about the semantics of the
programming lenguage Pd under consideration. We shall call the elements
of I intensions instead of locations.

DEFINITION 1 (see [21):

Now to every similarity type d -we define an associated 3-sorted similar-
ity type td . About many-sorted logic and model theory see [9]p.483,
[31p.42. Let t denote the similarity type of Peano Arithmetic and let

t be disjoint from d . The type td 1is defined as follows:
There are 3 sorts of td : t ,d, 1 called "time", "data", and

"intensions" respectively.

The operation symbols of td are the following: the operation symbols
of d , those of t, and an additional operstion symbol “ext" .

The gorts (or arities) of the operstion symbols of td: the op.symbols
of t go from sort t to sort t, those of d go from sort d to
sort d, the op.symbol "ext" "has two arguments, the first is of sort
i, the second is of sort 1, znd the result or value of “ext" is of

sort d . Now the definition of the 3-sorted type td is completed.

TLd = <:TFd , TMd y EY p denotes t?; Z-sorted %inguage of type td ,
see [93,[31. I.e. Thy T Lyg s TRy = Frg » ™, = M,

Following [31p.42 the elements W of TMy, will be denoted as m=
={(I2,D, I, ext). Inmore detail: An element W of ™, hes

1. three universes throughout denoted bty T , D, and I of sorts 1

)
a , and i respectively,

2. operstions [ey, ‘originating from the type t , operations
nip s originating from d , and an operation ext: IXT—>D .

21

Roughly spesking, Ml consists of structures EeMt , BeMd , and an addi-
tional operation ext: IXT-—>D .

Conventions: The elements of ™y are called time-models. If a time-
model is denoted by W(,then its parts are denoted as: 1 = (I‘ D,I,ext) .
If a program scheme is denoted by p ,then its parts are denoted as

p =< (io:uo) ey (G u), (im_l:HALT) > . Throughout, { Yo ...,ye}
contains all the varisbles occurring in the program scheme p such that

Ve really occurs in p . Then we shall use Yoqr &S the control
variable of p .

Now we define the meanings of prosram schemes PeP 4 in the 3~sorted
models 'me'I'Md .

DEFINTTION 2 : Let pePy and ’mGTMd .« Let so’""seﬂ.EI be
arbitrary intensions in Wl . The sequence (so,...,se+1> of intensions
is & trace of p in M if the following (i and (i) are satisfied:
(H ext(se+1,0)=io .
(i) Suppose bHeT and ext(s +1’b) i .
If m=n+l then Y (ext(sa,b) ext(sJ,b+1)>, else 1) and 2)) below hold:
1) If u -"y 7" then ext(s +1,b+’L) 1m 1 and for every Jj4e
ext(s Jb+1) -{’E’ r eﬂ,(s ,b),...,ext(s)] if jew
ext (s. ,b) otherwise
24 If u ="IF X GOTO v" then ext(s.,b+1)=ext(s.,b) for every jze
ext (se+1’b+1) ={ v if DEX [ext (so,b) y ore y €XT (se,b)]

i .
mel otherwise

Observe that a trace is nothing but a valuation of veriables of sort 1.
For a valuation & of the variables of sort 1 into the universe I
of M we define M = pls] iff § is a trace of p in M.

By now we have defined & semantics of program schemes, i.e. we have
a langusge <Pd ,y T, ,F > . For any set Th STFy of axioms Mod(Thjs
€ My denotes the class of all models of Th. Now for every set Th €
ETFy we have a language PLp, = < P, , Mod(Th), ¥ > where W& pls]
is cdefined as sbove. We call such a language & pro.cramming language with

semantics. Put it is not yet a language for reasoning about pro.rams.
That comes in the next §% .

Remark: Note that a trace <so,...,se+1> of & program p€Pd correlates
to each variable Yo occurring in the program p an intension S, -
The intension sweI represents a function ext(s,,-): T—>D . This

22

function is the "history" of the variable Yu during an execution of
the program p in the model TN . Def.2 ensures that the sequence

< ext (so,-),...,ext (se+1,-)> of functions can be considered as a behav-
iour or "run" or "trace" of the program p in Wl . Here s
the intension of the “control variable".

is
e+l

It might look counter-intuitive to execute programs in arbitrary
elements of TMd' However, we can collect a&ll our postulates about time
into a set AxGTFd of axioms which this way would define the class
Mod(Ax) of all intended interpretations of Pd' Then we can use the
language PL, = { Py , Modax), E'> . Such a set Ax of axioms will
be proposed in Def.4. If one wants to define semantics with unusual
time structure e.g. parallelism, nondeterminism, interactions etc.,then
one can choose an Ax different from the one proposed in this paper.
Such an applicuation of the present "Explicite Time Approach" was done
in recent works of Gergely and Ury.

§3. STATEMLNTS ABCUT PROGRANS

Let ‘VEFd be arbitrary. We think of (p,w) as stating thet whenever
the program p halts the formula y will be true.

DEFINITION 3 : For pePy , YeFy, and 'mc-:mg we define W E(p,y)
to hold iff for every trace (so,...,se+,l>é *21 of p in W and

for every beT: if e:ct.(se+,1,b§='1n+1 ethen Dk yl ext(so,b)) oo s €X 1T (se,b)].

By now we have defined a new lenguage < (Pg*Fg), T, , =) . From
this we obtain our "Language for Reasoning about Programs" as RLy =
=<(PdXFd) UTFy » ™My » F > . 1In the lenguage RL; we can form axioms

Th G'I‘Fd to express gll our postulates about properties of time T and

processes I happening in time just as well as our postulates about the
possible data structures D . 1In short, Th may be the definition of
the semantics of a programming language. RLd
have arrived at, we shall investigete its properties in the rest of this
paper.

Th &= (p,y) is defined as usual i.e. it means (¥ Trre Moa (Th)) At E{P,w).

is the final language we

§4. PROPERTIES OF THD LANGUAGE RLd_

d
THEOREM 1 : Denote TSd =f (deFd)UTFd . Then the language RLd =
=< TS5 ,. My , & > is strongly complete, i.e. for every recursively

23

enumersble set ThSTSy , the set { §€TSy * Thi=p 1 of its
consequences is recursively enumerable.

Specially: { (p,qz)EdeFd : Th = ()} is recursively enumerable.
Further, the language RLd is compact.

Moreover, in the proof of the present theorem we gave a sirongly complete
calculus inference system for the language RLd . [a1]

As mentioned before, we may require the theory Th to contain a
certain fixed set AxQTFd of axioms expressing all our intuitive ideas
sbout time and sbout processes "happening in time". (Basically the same
was done by Henkin when he defined the new semantics for higher order
logic.)

DEFINITION 4 : Roughly speaking, Ax will be nothing but the Peano
Axioms for the sort t . Let q?(x)eTFd be such that x 1is a variable
of sort t . Then we define L{J* to be the induction formula:

([90 A W= @ue)) 1 - ¥x o)) .

(.?(x) may contain other free variables of all sorts. They are also free
in @*. They are the “parsmeters" of the induction ¥ .

Now the induction axioms are:
12 ¥ { y* : @) €TFy and x is of sort t 1} .
Let PA denote the Peano Axioms for the sort 1t . Now we define:

ax ¥ PAUTAU {(i#j : i,jeLab and i£j 3} .

THEOREM 2 {Unigueness of traces):

Let Axe = Ax U{ Wyuy, (Vx[eri(g,,,x)=ed:(g2,xﬂ > y=4) 1.
Let peP, and MeMod (Axe) be arbitrary. Then for a fixed input q€
e(e+ D, p has gt most one trace in W starting with q .

Naur-Floyd-Hoare Inductive Assertions Proof Method:

In [1],[6]Def.20 precise and detailed definition was given for the re-
lation "Th l»f—(p,ty) " of (p,y)-s being Floyd provable from the theory
ThQFd . We shall use now H— as defined there.

THEQREM % : Let ThGFd , and (p,q/)GPdXFd be arbitrary. Then
Th - (p,¢) implies (thUAx) = (p,y) .

Let d contain a disjoint copy of %t . Let PAdEFd be the set of
Peano Axioms for the type d .

24
THEOREM 4 : Let Th QFd , and (p,y) be such that ThQPAd. Then
Th H- (pyy) is_eguivalent to (ThVax) = (o) .

PROBLEM: Find a nice sufficient condition instead of "1&12PAd" for
the above theorem to be true. It is clear that ThEEPAd is not necess-
ary, but if we simply omit it,then the theorem becomes false.

Thm.3 says that the language RL,, = ey, Mod(Ax) , B D is

reasonable enough, it contains no "impossible models" . I.e. the models
of Ax do not contradict the Floyd proof rules for programs. Thm. 4
says that Ax 1is a characterization of the "informetion contained
implicitely” in the Floyd inference system.

Nonstandard models were used similarly in Cartwright-McCerthy(4].

REFERENCES

1. H.Andréka, I.Németi: A characterization of Floyd provable programs.
Proc.Coll.Logic in Programming, Salgétarj4n 1978. Collog.Math.Soc.J.
Bolyei, North Hollend. To appear. Abstracted in Bull.Section of Lo-
gic, Vol 7, No 3, Wroclaw 1978. p.115-121.

2. H.Andréka, T.Németi, I.Sain: Completeness problems in verification of
programs and program schemes. MFCS'79 Clomuc. Springer 1979.

3. J.Barwise (ed) : Handbook of Mathematical Logic. Studies in Logic &nd
the found. of math. Vol 90, North Holland, Amsterdam 1977.

4. R.Cartwright, J.McCarthy: Reocursive programs as functions in a first
order theory. Preprint Stanford Univ. 1979.

5. C.C.Chang, H.J.Keisler: Model Theory, North Holland, 197%.

6. T.Gergely, M.Sz8ts: On the incompleteness of proving partial correct-
ness. Acta Cybernetica, Tom 4, Fasc 1, Szeged 1979. p.45-57.

7. T.Gergely, L.Ury: Mathematical theory of progremming. Manuscript.

8. Z.Manna: Methematical theory of computation. McGraw Hill, 1974.

9. J.D.Monk: Mathematical Logic. Springer Verlag, 1976,

10. I.Németi, T.Sain: Connections between algebraic logic and initial
algebra semantics of CF languages. Proc.Coll.Logic in Programming,
Salgétarjsn 1978. Collog.Math.Soc.J.Bolyai, North Holland. To appesar.

11. I.Sein: Abstract model theory and completeness of languages. Preprint
Budepest, May 1979.

”"i'z”x(‘{>f”f“:z¥~/‘ ct H
Nenme 3+
Fundamentals of Computation

Theory FCT '79

Proceedings of the Conference on Algebraic, Arithmetic,
and Categorial Methods in Computation Theory
held in Berlin/Wendisch-Rietz (GDR) September 17-21, 1979

edited by Prof. Dr. Lothar Budach
Humboldt-Universitat Berlin

Akademie-Verlag - Berlin 1979

	ANSFCT79.pdf
	ANSFCT79cover.pdf

