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For notivations aee [2],ltl,lrrl,[191,IZj,Ie].
NOTATIONS(fron textbooka on logic, t9l,[t]).
d denotes a ginilarity type. f.e. d comelates arities (nunbere)

to firnction and relation syobolo.
6; denotee the set of natural numbers.
1 = { J* : weq:l denotes the set of variables.
FU ie the set of d-type claesical first order fonsrulas with variablee

in I . Cf. e.g. L>fp.zz
f denotes a tero of type d in the usual sense of trogic. See [5]p.22

or [g]p.166 Def.to.8. (ii) .

MU denotes the claes of aII classical roodels of type d see e.S. [5]
or [9]oer.tt.t.

A claesical nodel is denoted by an underlined capital like g and its
universe is denoted by the sane capital- without underlining.

By a "Ig$!!g of the variables" in a model p a function g:@-tD
is rmderstood, see [9] p.195

tt91g denotes the value of th6 teru t in the nodel I under the
valuation q of the variables, see [5] p.ZT D.L7.L1 or fg]psf .LL.z.
ff c contains no variable, then we write f instead of Ztqll if
I is understood.

AB denotes the set of all functions fron A into B , see [9]p.? .
Ld = (Fd, MdrF) is the first order language of type d , see ttf1,151.

51. SfNTAX (of proerano schenes)

The followin6s are basi-ca1ly the sane as 4-| .L in lrtanna[8].
Now we define the set Pd of d-type progren-schemes.
The set Lsb of "l-abel symbols" is defined to be a fixed infinite
subset of the set of constant d-type terins, i.e. d-type terms which do
not contain variable syrnbols. Los;ica1 strnbols: {4, t , l r=J. Other
synbole: [-<, IFr coTo, HALT, ( , ) I :J. The set ud of d-type conmands

is defined by: (i:y<-t)eUd if j€ Lab, yeY, and d is a d-type teflr.
(i: IF X cOTo v)e Uu if irvelab, J'eFa js a foruula without quan-

tifiers. (i:mf,t)e Uu if i€Lab. These are the only elenents of Ud.
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By a d-type orograo schemg we understand a finite sequence p of coro-

rnands (elenente of UU) ending with a "HALT" , in which no two memberg

have the sane label, and in which the only "!{AlT-command" is the last
one. llrther, every label occurring in p is the labe1 of some conmand

in p . I.e. an eleroent p of Pa is of the fom
p = < (io:uo) ,.-, (irr:urr) , (irr*r:HALT) ) , where (i.:u)eu. , etc.

$2. SEMaNTICS (of prosran schenes)

By languages with semantics we understand triples L = (F, M, ts) where
F is cal1ed syntax, M is called the set of nodels or possible inter-

pretations, and F is calLed val-idity, see [6], [tOl ,F1l .

A possible senantics for P. wq\$d be the standard classical 1an-

suage (ru, uu, P) where .g E t t-f for some q € o(ab) iff g is
a standard trace of the prograrn schene p in the model P . Since
Ianov, thie standard senantics was used, see iglCnap 4. The precise
definition of this E can be found in tOlrftl. This standard (or

claegical) senantics night look clean and simple but it was proved in [2j,
[f1 that it has hisjily undesirable features, it is anonalous anal it
sinply cannot be a faithful nat\enatical model of our real progranning
si tustion .

Here we try to develop a natural- sernantic fraroework for prograns
and statetrents about prograrns. fn trying to understand the ,'Progranraing

Situetion", its languages, tlreir meanings etc., the first question is
bow an interpretation or nodel of a progran scheme p€Pd should look
like. The classical approach (Uanna[8J) saye that an interpretation or
nodel of a progran scheme is a rel-ational structure .9.M0 consisting of
all the possible data values. The progran p contains variables, say,
y The classical approach says that y denotes elements of D just as

vari,ables in classical first order i-ogic do. Now we ar6ue that y does
not denote elements of D but rather y denotes some kinds of "locations"
or "addresses" which nay contain different data values (i.e. elenents
of D) at different points of tinb. Thus there is a set T of locations,
a set T of time points, and a function ext: IxT-->D which te1ls for
every location s€f and tine point beT what the content of location
s ie at time point b . Of course, this content ext(erb) is a data

value, i.e. it is an elenent of D . Time has a structure too ("later
than" etc.) and data values have structure too, thus we have structures
2 and l over the sets T and D of tine points and possible data

val-ues, respectively. Therefore vre shall define a rnodel or interpretation
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for programs prPU to be a four-tuple 'ff(= < I , l , I , ext)
where 3 and ,g are the tine structure and data structure resp., I is
the set of locations and ext: IXT--+D is the "content of...at time..."
function.

Consider e.g. the statement "y=y+l" which frequently occurs in
programs. ff y ilenotes elenents of D then the interpretation of
ry=y*t'r is not very natural. However, if y denotes a location s€f
then *y=y*1r neans thet the content of the location s changes dur,ing
tiroe T .

Of course, when specifying the semantics of a progrsnming language
Pd we Inay have ideas about how an interpretation Tdt of Pa nay look
like and how it rnay not 1ook. These iCeas roay be expressed i.n the foro
of axioms about 'trfl. E.g. we nay postulate that I of Tft has to sat-
isfy the Peano Axions of arithnetic. These axions are easy to express
since a closer investigation of ?f( definecl above reveals thet it is I
model of classical }-sorted logic (the sorts being T , D , and I ).
Thus the axions can be forned in classicel J-sorted l-ogic in a eonvenient
manner to express all our ideae or postulates about the senantics of the
programroing langualie Pd under consideration. *e shalL call the elements
of I intensions instead of locations.

DDFINITION L (see tzl):
Now to every siroilarity type d ' we define an associated 1-sorted similar-
ity type td . About nany-sorted logic and model theory see [9Jp.481,
L51p.42. Let t denote the similarity type of Peano.Arithnetic and let
t be disjoint fron d . The type td is defined as follows:

There are J eorts of td:1,, E, i ealled "time", "data", and

"intensions" respectively.
The operation syrobols of td are the following: the operation syrnbols

of d , those of t, anC an additional operation synbol ',ext,' .

The sorts (or arities) of the operation synbols of td: the op.symbols
of t go from sort t- to sort f , those of d go froro sort d to
Bort d, the op.synbol "ext', has two ar€uments, thc, first is of sort
i, the second is of sort T, and the result or value of ',ext,'is of

sort A . Now the definition of the 1-sor.tec1 type td is completed.

IIO = (TFd , TMd , F) . denotes the-;:-se"1ud language of tr,'pe td ,

""I ts:,Lri. r.;. Tld { Ltd , rFu { Ftd , ffid {r Mtd
Following lllp.qZ the elements 'A[ of ffia will be denoted as ?n-
= (I , B, f , ext>. fn more detail: An element 'fft of ffid has
1. three universes throughout denoted by T , D , and I of sorts T ,-d', and f respectively.,
2. opera+,ions "nT >T" ori6inating fron the type t , operations

'DD -->D' originating fron d , and an operation ext: IxT--?D .
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Roughly speaking, '[I1 consists of stmctures JuMt , !.Md , and an addi-
tional operation ext: fxT--+D .

Conventions: The elenents of Tlild are called t.ime-models. If a tine-
noclel is denoted by firthen its parts are denoteal as: ff,t = (l,p,I,ext).
ff a progran gcheme is denoted by p r then its parts sre denoted as
p = < (io:uo) ,..., (irr:urr), (in*1 :iIALT) ). ?hroughout, { vo,.-rye}

contains arl the variables occur'ri.ng in the prograrn scheree p such that
ye really occure in p . Then we shall ,rse y^,a as the cqntrol
variable of p .

Now we define the neaninAs of prortram scheqes p€p, in the 1-sorted
nod els ?n€ TMd .

DEFINTTfON 2 : Let p€pd and f,f(e TIfA . Let so r .- ,s"*1 € f be

arbitrary intensions in ?&. The sequence ("o,...,se*1) of intensions
is a trace of p in ?fl if the follov,ing (i) a:1d (ii) are satisfied:
(i) ext (s"*r,O) =io .

(iil Suppose b€T and ext(s"*r,b)=io, .
rf n=n+1 then V5 ("riCJ'u)=ext.(s'u*t))1 else t) anrj 2) betow hold:

1) If un=nyw-<?". then ext(5"*a,b*1)=i"m*l and for every i*e
ext(e.,b+1) = { t f t"t' (eorb) , "' ,ext(s",b)l if i=w

'r L ext (silb) otherwise
2.) If uro="rF X GOTO v" then ext(s;1b+1)=sx1 (s1,b) for every i 4e

ext (s"*r,b+r) = i ;r_.tt"ri";,:i 
6xt (so,b) , -'lext (s",b)l

Observe that a trace is nothing but a valuation of variables of sort I.
For a valuation d of the variables of sort I into the univet'se I
of f,Il we define tn F pls] iff e- is a rrace of p in ?ft.

By now we have defined a semerntics of prog;ram schemes, i.e. v;e have
a language (PO , It[d , F ) . For any set Th€TFd of axions Mod(Th)E
c Wd denotes the class of all nodels of Th. Now for ever)' set Th €

=TFd we have a language PLTh = (Po , Mod(Th), F> where AI F plsl
is Cefined as above. We call such a languap;e a pr'o::raulnin,: language rlith
semantics. Put it is not yet a language for rea-"onint about pro,_1rarns.

That cones in the next S] .

Rensrk: Note that a trace ("or...rse*1) of a program pePd cor:,eletes
to each variable yw occurring in the progran p an intension srr, .
The intension swef represents a function ext(s*r-;: T--+D . This
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function is the trElglg'r of the variable yw cturing an execution of
the progran p in the model T[[ . Def,Z enaurea that the sequence

(ext(sor-),...rext(s"*a,-)) of functione can be considered as a behav-

iour or rrrunrr or "traee' of the progran p in Tft . Here oe+t is
the intension of the "control variable".

ft might look counter-intuitive to execute prograrns in arbitrary
elenents of 1l[-. However, we can collect all our oogtulateg about tine

o
into a set Ax€IFd of axione which thi.s way would define the cLass

l[od(Ax) of all jntended interpretations of Pd. Then we can uee the
language P!A" = (Pa, Mod(Ax), F > . Such a set Ax of axione will
be proposed in Def.4. If one wants to define senantics with unusual
time structure e.g. parallelisn, nondetenniniem, interactions etc.r then

one csn choose an Ax tlifferent fron the one ploposed in this paper.

Such an application of the present "Explicite Tine Approach" wag done

in recent worke of Gergely and Ury.

51 . STATEI"INTS A3OUT PROGnIMS

Let V€Fa be arbitrary. We think of (prV) as stating thet whenever

the progran p halts the formula ty will be true.

DEIIINITION I : For pePd , V€Fd' and ?f(eTMa -*e define m ts(p'V)
to hold iff fot "o"r) 

trace "(sor.-r""*n;e(E*2)r of p in tft and

for every b€T: if ext(s"*1,b)=irrit, th!n- B F VI ext(sorb) '-.'ext(s",b[.

By now we have defined a new language ( (eutru), Md , F) . Fron

thie we obtain our "Language for Reasoning sbout Prograns" as RLd =

=( (pd"fa) U TF6 I TMd , ts > . fn the 1an1,uage RLd we can fono axioms

ThcTFd to express all our postulates sbout proDerties of tine X and

processes I happening in tine just as well as oul. postulates about the

possible dats structures P . In'short, Th nay be the defjnition of
the sereantics of a prograrcming langua.qe. RLA is the final language we

have srrived at, we shrall investigate its properties in the rest of.this
paper.
Th F (prtY) is defined as usual i.e. it means ( Vmeuoa (tir))?n 

=(p,v).

84. PROPNRTIIS OF TIi: LANCUACE RL.

THE0RIM t : Denote fsu { ip.*"u) U rf. . Then the language RLU =

= 4tSa ,.TMd , F> is stronglv conplete, i..e. for every recursively
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enuaerable set ThsTSd ' the set { 3eTSu : ThFg i of its
consequences is recursively enumerabLe.

Specially: { b,V) € PdtFd : Th F (p,V) } is recursively enumerable.

hrther, the language RLU is compact.

trloreover, in the proof of the present theoren we gave a stronAlv cooplete
calculus inference systen for the langusge RLd . [4tl

As mentioned before, we nay require the theory Th to contain a

certain fixed set Ax€TpU of axioms expressing all our intuitive icleas

about time and sbout plocesses "happening in time". (BasicaLly the sane

was done by Henkin when he defined the new sernantics for higher order
loei c .)

DEFINITION 4 : Roughly speaking, Ax will be nothing but the Peano

Axioms for the sort T . Let 9(x) € TFd be such that x is a variable
of sort t . Then we define tl* to be the induction formula:

( [ 9ro> a Vx( q(a -+ q(x+a)) ] -+ Vx prx) ) .

tp(x) roav contain other free varigbles of all sorts. They are also free
in tf*. Ttrey are the "palameters" of the induction a?* .

Now the induction axioms ire:
rl { i q* : g(x) € TFd, and ,x is of eort t } .

Let PA denote the Peano Axions for the sort T . Now we define:
Ax g PAurA u ti/i : i,ie Lab and ili \

TiixOREM 2 (thiqueness of traces) :

Let Axe = Ax U { V1g, ( Vxf al(q'x;=e$(g.rx[ -+ 9,: g.) J
Let .p€P^ and (fl€Mod(Axe) be arbitrary. Then for a fixed input q€

a(e+D, I p has at noet one trace in ftrt starting with q .

Naur-Flovd-Hoare Tnductive Assertibns Proof lt{ethod:

In L1l,L6lO"f.tO precise ancl detailed definition was given for the re-
lation "Th lL (prv) " of (p,v) -q being Flovd provabl.e fron the theory
TheFd . We shall uae now FE- as defined there.

copy of *.

d.
Let PAd € I'd be the set of
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TI{EOREM 4 : Let Th6.I'd , and (prv) be such that thaPAd.

rh lt (p,V) ie equi:vat-ent to (rnUu) F (p,,y)

PROBI,EM: Find e nice sufficient condition instead of .'ThppAd', for
the above theoren to be true. ft is clear that Thafl. is not necess-
ary, but if we sinply omit itethen the theoren becones fa1se.

Thn.'J says that the language RLO*

reasonable enough, it contains no "inpossibre models" . r.e. the moders
of Ax do not contradict the Floyd proof rules for prograrns. Th$.4
says that Ax is a characterization of the "infornatjon contained
inplicitely" in the Floyd inference systen.
Nonstandard rnodels were used siroilarly in Cartwright-McCarthy[4].
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