Bulletin of the Section of Logic
Volume 8/3 (1979), pp. 124-128

reedition 2010 [original edition, pp. 123-129]

Hajnal Andréka
Istvan Németi
I1dik6 Sain

PROGRAM VERIFICATION WITHIN AND WITHOUT
LOGIC

Abstract

Theorem 1 states a negative result about the classical semantics = of program
schemes. Theorem 2 investigates the reason for this. We conclude that Theorem
2 justifies the Henkin-type semantics |= for which the opposite of the present
Theorem 1 was proved in [1]-[3] and also in a different form in part III of [5].
The strongest positive result on = is Corollary 6 in [3].

Basic concepts

First we recall some basic notions and notations from textbooks on Logic
[7], [4] and from Program Scheme Theory e.g. [6], [1]-]3], [5].

w denotes the set of natural numbers.

d denotes an arbitrary similarity type. l.e.: d correlates arities to some
fixed function symbols and relation symbols.

Y = {y. : z € w} denotes the set of variable symbols.

Fy is the set of all classical first order formulas of type d with variables in
Y.

My is the class of all classical first order models of type d.

E=C F; x My is the usual validity relation.

7 denotes a term of type d in the usual sense of first order logic, see [4],
p. 22 or [7], p. 166 D.10.8.(ii).
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D and E denote elements of My the universes of which are D and F
respectively.

P, denotes the set of program schemes of type d. Py is defined as in [6],
[1], [2], [5], p- 72. E.g. let t be the similarity type of arithmetic. Then the
following sequence is an P, i.e. it is a program scheme of type t:

< (0:yo—~0),

(1:TFyo=y; THEN 14+14+1+4+1),
(I1+1:yo—~yo+1),
(1+1+1:1IF y; =y THEN 1),
(I1+1+1+1:HALT) >.

P; x Fy is the set of output statements about programs. An output state-
ment (p,¢) € Py x F; means intuitively that be program scheme p is
partially correct w.r.t. output condition ¢.

D E¥ (p,¢) is meaningful if D € My and (p,¢) € Py x F4. Now, D ¥
(p, @) holds if the program scheme p is partially correct w.r.t ¢ in the model
D. le. if p is started in D with any input q : w — D then whenever p halts
with some output k£ : w — D, the formula ¢ will be true in D under the
valuation k of its free variables, i.e. D |= ¢[k]. See [6] Chapter 4.

Note that a precise definition of E=* would strongly use the structure
(w, <) of natural numbers. See [5], p. 78, [1], p. 116, [2], [3]. The letter w
above the sign |= serves to remind us of this fact.

For any set Th C Fy of formulas, “Th =¥ (p, ¢)” is defined in the usual
way: (VD € My)[D |=Th= D E* (p,d)].

From now on ¢ and 7 denote arbitrary terms of type d such that ¢
contains no variables and 7 contains one variable y. To make this explicit
we write 7(yo)-

Notation: 70 =4 ¢, and 7*1 =¥ 7(7%) for every z € w. Note that the

terms 70, 71, ..., 7%, ... contains no variables.

DEFINITION. Th C Fy is good if there exist terms ¢ and 7(yg) such that
ThO{r* #7172z <rcw} =Y Th'. Let E € My be an arbitrary model
of Th' such that (Vb € E)(3z € w)[7* in E denotes b]. Then

May(Th) =¥ {(p,é) € Pa x Fa: Th = (p,6)}.

Must(Th) =% {(p,¢) € May(Th) : p terminates in E for every input,
and ¢ is an atomic formula or the negation of it and Th = yo¢}.
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REMARK. To a fixed Th, Must(Th) is not unique since it may depend
on the choice of ¢,7(yp) and E. This makes the following theorem even
stronger since it will hold for any choice of ¢, 7 and E. Observe that
Must(Th) is a reasonably small set of output statements since ¢ contains no
quantifiers, no “v” or “A” and at the same time p is such that it terminates
in E for every input. (Thus Must(Th) contains no tricky statement about
the “halting problem” (since p has to terminate) and no “strange sentence”
since ¢ has to be simple).

THEOREM 1. Let d be arbitrary and let Th C Fy be good and consistent.
Let H be an arbitrary set such that May(Th) 2 H O Must(Th). Then H
18 not recursively enumerable.

The following theorem says that if one “avoids Logic” and proves prop-
erties of programs by using “Mathematics in general” then this will not
help one to avoid the “shortcoming” formulated in Theorem 1.

THEOREM 2. Let the real world (V,€) = ZFC of set theory (see [9], p. 3
or [4], p. 476) be fized. Le. V is the class of all sets and € is the “element
of” the relation between then.

Then there exist

- a similarity type d, and

- a model (W, E) |= ZFC of set theory inside of (V,€) (i.e. (W, E) is
an element of V and (W, E) = ZFC is true inside (V,€), see [9],
p. 14) such (i) and (ii) below hold.

(i) There is a finite set Th C Fy of axioms and an output statement
(p, @) such that
Th Y (p,d) is true, but inside (W, E) we have Th [£* (p, d).
More precisely:
(V.€) F “Th = (p,6)” but
W, E) = “Th I (p, 6)".
(Observe that “Th E¥ (p,¢)” is a statement on the language of
ZFC).
(ii) There is an output statement (p, @) such that
(V.e) E “Ma = (p,¢)” while
(W E) = “Ma =~ (p.¢)"
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As a contrast we note that: For all ¢ € F,; and for every model (W, E) €
Vof ZFC,

(V,€) k= “My |= ¢” implies (W, E) |= “My = ¢".

The above Theorem 2 says that something is wrong with the classical se-
mantics (or model theory =% of program schemes. Namely: there exists a
good program (p, ¢) which is not provable from ZFC despite of the fact
that (p, ¢) is good. See [8] D.2 about “Th =¥ (p, ®)”-s being a formula of
Set Theory. In this way Theorem 2 supports the Henkin-type semantics
introduced in [1]-[3] which is well presented and the consequence concept
(Th E (p, @)) of which does not have the above shortcoming.
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