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Abstract

Theorem 1 states a negative result about the classical semantics |=ω of program

schemes. Theorem 2 investigates the reason for this. We conclude that Theorem

2 justifies the Henkin-type semantics |= for which the opposite of the present

Theorem 1 was proved in [1]–[3] and also in a different form in part III of [5].

The strongest positive result on |= is Corollary 6 in [3].

Basic concepts

First we recall some basic notions and notations from textbooks on Logic
[7], [4] and from Program Scheme Theory e.g. [6], [1]–[3], [5].

ω denotes the set of natural numbers.
d denotes an arbitrary similarity type. I.e.: d correlates arities to some
fixed function symbols and relation symbols.
Y = {yz : z ∈ ω} denotes the set of variable symbols.
Fd is the set of all classical first order formulas of type d with variables in
Y .
Md is the class of all classical first order models of type d.
|=⊆ Fd ×Md is the usual validity relation.
τ denotes a term of type d in the usual sense of first order logic, see [4],
p. 22 or [7], p. 166 D.10.8.(ii).
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D and E denote elements of Md the universes of which are D and E
respectively.
Pd denotes the set of program schemes of type d. Pd is defined as in [6],
[1], [2], [5], p. 72. E.g. let t be the similarity type of arithmetic. Then the
following sequence is an Pt, i.e. it is a program scheme of type t:

< (0 : y0−← 0),
(1 : IF y0 = y1 THEN 1 + 1 + 1 + 1),
(1 + 1 : y0−← y0 + 1),
(1 + 1 + 1 : IF y1 = y1 THEN 1),
(1 + 1 + 1 + 1 : HALT ) >.

Pd × Fd is the set of output statements about programs. An output state-
ment (p, φ) ∈ Pd × Fd means intuitively that be program scheme p is
partially correct w.r.t. output condition φ.
D |=ω (p, φ) is meaningful if D ∈ Md and (p, φ) ∈ Pd × Fd. Now, D |=ω

(p, φ) holds if the program scheme p is partially correct w.r.t φ in the model
D. I.e. if p is started in D with any input q : ω → D then whenever p halts
with some output k : ω → D, the formula φ will be true in D under the
valuation k of its free variables, i.e. D |= φ[k]. See [6] Chapter 4.

Note that a precise definition of |=ω would strongly use the structure
〈ω,6〉 of natural numbers. See [5], p. 78, [1], p. 116, [2], [3]. The letter ω
above the sign |= serves to remind us of this fact.

For any set Th ⊆ Fd of formulas, “Th |=ω (p, φ)” is defined in the usual
way: (∀D ∈Md)[D |= Th⇒ D |=ω (p, φ)].

From now on c and τ denote arbitrary terms of type d such that c
contains no variables and τ contains one variable y0. To make this explicit
we write τ(y0).
Notation: τ0 =df c, and τz+1 =df τ(τz) for every z ∈ ω. Note that the
terms τ0, τ1, . . . , τz, . . . contains no variables.

Definition. Th ⊆ Fd is good if there exist terms c and τ(y0) such that
Th ⊇ {τz 6= τ r : z < r ∈ ω} =df Th′. Let E ∈ Md be an arbitrary model
of Th′ such that (∀b ∈ E)(∃z ∈ ω)[τz in E denotes b]. Then

May(Th) =df {(p, φ) ∈ Pd × Fd : Th |=ω (p, φ)}.
Must(Th) =df {(p, φ) ∈May(Th) : p terminates in E for every input,

and φ is an atomic formula or the negation of it and Th |= y0φ}.
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Remark. To a fixed Th, Must(Th) is not unique since it may depend
on the choice of c, τ(y0) and E. This makes the following theorem even
stronger since it will hold for any choice of c, τ and E. Observe that
Must(Th) is a reasonably small set of output statements since φ contains no
quantifiers, no “∨” or “∧” and at the same time p is such that it terminates
in E for every input. (Thus Must(Th) contains no tricky statement about
the “halting problem” (since p has to terminate) and no “strange sentence”
since φ has to be simple).

Theorem 1. Let d be arbitrary and let Th ⊆ Fd be good and consistent.
Let H be an arbitrary set such that May(Th) ⊇ H ⊇Must(Th). Then H
is not recursively enumerable.

The following theorem says that if one “avoids Logic” and proves prop-
erties of programs by using “Mathematics in general” then this will not
help one to avoid the “shortcoming” formulated in Theorem 1.

Theorem 2. Let the real world 〈V,∈〉 |= ZFC of set theory (see [9], p. 3
or [4], p. 476) be fixed. I.e. V is the class of all sets and ∈ is the “element
of” the relation between then.

Then there exist

– a similarity type d, and

– a model 〈W,E〉 |= ZFC of set theory inside of 〈V,∈〉 (i.e. 〈W,E〉 is
an element of V and 〈W,E〉 |= ZFC is true inside 〈V,∈〉, see [9],
p. 14) such (i) and (ii) below hold.

(i) There is a finite set Th ⊆ Fd of axioms and an output statement
(p, φ) such that
Th |=ω (p, φ) is true, but inside 〈W,E〉 we have Th 6|=ω (p, φ).
More precisely:
〈V,∈〉 |= “Th |=ω (p, φ)” but
〈W,E〉 |= “Th 6|=ω (p, φ)”.
(Observe that “Th |=ω (p, φ)” is a statement on the language of
ZFC).

(ii) There is an output statement (p, φ) such that
〈V,∈〉 |= “Md |=ω (p, φ)” while
〈W,E〉 |= “Md 6|=ω (p, φ)”.
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As a contrast we note that: For all φ ∈ Fd and for every model 〈W,E〉 ∈
V of ZFC,

〈V,∈〉 |= “Md |= φ” implies 〈W,E〉 |= “Md |= φ”.

The above Theorem 2 says that something is wrong with the classical se-
mantics (or model theory |=ω of program schemes. Namely: there exists a
good program (p, φ) which is not provable from ZFC despite of the fact
that (p, φ) is good. See [8] D.2 about “Th |=ω (p, φ)”-s being a formula of
Set Theory. In this way Theorem 2 supports the Henkin-type semantics
introduced in [1]–[3] which is well presented and the consequence concept
(Th |= (p, φ)) of which does not have the above shortcoming.
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[6] Z. Manna, Mathematical Theory of Computation, McGraw
Hill 1974.

[7] J. D. Monk, Mathematical Logic, Springer Verlag 1976.
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