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1 Introduction

Our goal is to make relativity theory accessible and transparent for any
reader with logical background. The reader does not have to “believe”
anything. The emphasis is on the logic-based approach to relativity theory.
The purpose is giving insights as opposed to mere recipes for calculations.
Therefore proofs will be visual geometric ones, efforts will be made to replace
computational proofs with suggestive drawings.

Relativity theory comes in (at least) two versions, special relativity (Ein-
stein 1905) and general relativity (Einstein, Hilbert 1915). They differ in
scope, the scope of general relativity is broader. Special relativity is a theory
of motion and light propagation in vacuum far away from any gravitational
object. I.e. special relativity does not deal with gravity. Also, special relativ-
ity is a “prelude” for general relativity, it provides a foundation or starting
point for the general theory. General relativity unifies special relativity and
the theory of gravitation. In some sense, general relativity is an “exten-
sion” of special relativity putting also gravity into the picture. General
relativity can be used as a foundation for cosmology, e.g. it is a suitable
framework for discussing the (evolution, properties of the) whole universe
(expanding or otherwise). Special relativity, on the other hand, is not rich
enough for this purpose. General relativity also provides the theory of black
holes, wormholes, timewarps etc. Special relativity shows us that there is
no such thing as space in itself, instead, a unified space-time exists. This in-
separability of space and time becomes more dramatic in general relativity.
Namely, general relativity shows us that gravity is nothing but the curvature
of space-time. It is extremely difficult, if not impossible, to explain gravity
without invoking the curvature (i.e. geometry) of space-time. The crucial
point is that curvature of space is not enough (by far), it is space-time whose
curvature explains gravity.1 From a different angle: general relativity is a
“geometrization” of much of what we know about the world surrounding us.
E.g. it provides a full geometrization of our understanding of gravity and
related phenomena like motion and light signals.

In Sec. 2 we study special relativity, in Sec. 3 we do the same for general
relativity, in Sec. 4 we apply the so obtained tools to black holes, wormholes,

1If we took into account the curvature of space only, then apples would no more fall
down from trees. Gravitational attraction as such would disappear. On the other hand, if
we keep the temporal aspects of curvature but ignore curvature of pure space, then gravity
would not disappear, instead, this would cause only minor discrepancies in predicting
trajectories of very fast moving bodies (relative to the source of gravity, e.g. the Earth or
a black hole).
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timewarps. The emphasis is on the space-time aspects. In Sec. 5 we briefly
discuss the literature.

2 Special relativity

In this section, among others, we give a first-order logic (FOL) axiom system
for special relativity such that we use only a handful of simple, streamlined
axioms. In our approach, axiomatization is not the end of the story, but
rather the beginning. Namely: axiomatizations of relativity are not ends in
themselves (goals), instead, they are only tools. Our goals are to obtain sim-
ple, transparent, easy-to-communicate insights into the nature of relativity,
to get a deeper understanding of relativity, to simplify it, to provide a foun-
dation for it. Another aim is to make relativity theory accessible for many
people (as fully as possible). Further, we intend to analyze the logical struc-
ture of the theory: which assumptions are responsible for which predictions;
what happens if we weaken/fine-tune the assumptions, what we could have
done differently. We seek insights, a deeper understanding. We could call
this approach “reverse relativity” in analogy with “reverse mathematics”.

2.1 Motivation for special relativistic kinematics in place of
Newtonian kinematics

Why should we replace Newtonian Kinematics with such an exotic or coun-
ter-common-sense theory as special relativity? The Newtonian theory proved
very successful for 200 years. By now, the Newtonian picture of motion has
become the same as the current common-sense picture of motion. Hence the
question is why we have to throw away our common-sense understanding of
motion.2

The answer is that there are several independently good reasons for
replacing the Newtonian worldview with relativity. These reasons are really
good and decisive ones. They are so compelling, that any one of them
would be sufficient for justifying and motivating our replacing the Newtonian
worldview with relativity. We will mention a few of these reasons, but for
simplicity of presentation, we will base this work on a fixed one of these
reasons, namely on the outcome of the Michelson-Morley experiment. We
will call this outcome of the Michelson-Morley experiment the Light Axiom.
There are deeper, more philosophical reasons for replacing the Newtonian

2A second, equally justified question would ask why exactly those postulates/axioms
are assumed in relativity which we will assume. We will deal with both questions.
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worldview with relativity theory, which might convince readers who are not
experimentally minded, i.e. who are not easily convinced by mere facts about
how results of certain experiments turned out. These philosophical reasons
(under the name “principles of relativity”) are intimately intertwined with
issues which were significantly present through the last 2500 years of the
history of our culture; see p. 63 and [Bar89].

We now turn to the Light Axiom which will play a central role in this
work. The first test of the Light Axiom was the Michelson-Morley exper-
iment in 1887 and it has been tested extremely many times and in many
radically different ways ever since. As a consequence, the Light Axiom has
been generally accepted. An informal, intuitive formulation of the axiom
is the following. (Later we will present this axiom in more formal, more
precise terms, too, see AxPh in Sec. 2.3.)

Light Axiom: The speed of light is finite and direction independent, in
the worldview of any inertial observer.

In other words, the Light Axiom means the following. Imagine a (huge) space-
ship drifting through outer space in inertial motion. ( Inertial here means
that the rockets of the spaceship are switched off, and that the spaceship is
not spinning.) Assume a scientist in this inertial spaceship is making exper-
iments. The claim is that if the scientist measures the speed of light, he will
find that this speed is the same in all directions and that it is finite. It is
essential here that this is claimed to hold for all possible inertial spaceships
irrespective of their velocities relative to the Earth or the Sun or the center
of our galaxy or whatever reference system would be chosen. The point is
that no matter which inertial spaceship we choose, the speed of light in that
spaceship is independent of the direction in which it was measured, i.e. it is
“isotropic”.

In the technical language what we called “inertial spaceship” above is
called an inertial reference frame, and the scientist in the spaceship making
the experiments is called an “observer”. Later “ observer ” and reference
frame tend to be identified.3

Let us notice that the Light Axiom is surprising, it is in sharp contrast
with common-sense. Namely, common-sense says that if we send out a light
signal from Earth, and a spaceship is racing with this light signal moving
with almost the speed of the signal in the same direction as the signal does,
then the velocity of the signal relative to the spaceship should be very small.

3However, it is good to keep in mind that some thought-experiments are carried out by
a team of observers (and if the members of this team do not move relative to each other
then they are called, for simplicity, a single observer).
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Hence, one would think that the astronaut in the spaceship will observe the
motion of the light signal as very slow. With the same kind of reasoning,
the astronaut should observe light signals moving in the opposite direction
very fast. But the Light Axiom states that light moves with the same speed
in all directions for the astronaut in the spaceship, too. Hence, the Light
Axiom flies in the face of common-sense. This gives us a hint/promise that
very interesting, surprising things might be in the making. See also Fig. 18
on p. 40.

In fact, if we add the Light Axiom to Newtonian Kinematics, then we
obtain a logical contradiction. I.e. (Newtonian Kinematics + Light Axiom)
is an inconsistent theory in the usual sense of logic as we will outline soon
(cf. Prop. 2.1). Seeing this contradiction, Einstein did the natural thing. He
weakened Newtonian Kinematics (NK for short) to a weaker theory NK−

such that NK− became consistent with the Light Axiom. Then the theory
(NK− + Light Axiom) became known as Special Relativistic Kinematics
(SRK for short). We will study this theory under the name Specrel0 to
be introduced in a logical language soon. We represent the above outlined
process by the following diagram:

(NK + Light Axiom) leads to Contradiction (!)

⇓
NK gets replaced with the weaker NK−

⇓
(NK− + Light Axiom) receives the name Special Relativity (SRK).

SRK is consistent (this will be proved in Cor. 2.2, p.43).

To see the above process more clearly, let us invoke a possible axiomatization
of NK, still on the intuitive level.

Preparation for NK: If we want to represent motion of “particles” or
“bodies” or “mass-points”, it is natural to use a 4-dimensional Cartesian co-
ordinate system R×R×R×R (where R is the set of real numbers), with one
time dimension t and three space dimensions x,y,z. A three-dimensional part
of this is depicted in Fig. 1. The time-axis t is drawn vertically. Representing
the motion of a body, say b, in a 4-coordinate system can be done by spec-
ifying a function f which to each time instance t ∈ R tells us the space
coordinates x, y, z where the body b is found at time t. Hence a function
f : Time → Space specifies motion of a particle in this sense. The function
f representing motion of b is called the worldline or lifeline of b. Fig. 1
represents motion of bodies, in this spirit. Besides the coordinate axes, we
have represented the worldlines of inertial bodies b1, b2 and b3 in Fig. 1. The
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Figure 1: A space-time diagram. Wordlines of bodies b1, b2, b3 represent
motion. (Coordinate z is not indicated in the figure.) b3 is motionless and
b1 moves faster than b2.

straight line labeled by b1 is the worldline of b1. The slope of the worldline
of b1 is greater than that of b2 which means that b1 moves faster than b2

does. The worldline of the third body b3 is parallel with the time-axis, this
means that b3 is motionless. Bodies b1 and b2 meet at space-time point
p = 〈t, x, y, z〉. Such a meeting (of two or more bodies) is called an event .
We will extensively refer to such 4-dimensional coordinate systems and such
worldlines of bodies and events.

The axioms of NK are summarized as (i)-(v) below.

(i) Each observer “lives” in a 4-coordinate system as described above.
The observer in his own coordinate system is motionless in the origin, i.e.
his worldline is the time-axis.4

(ii) Inertial motion is straight: Let o be an arbitrary inertial observer
and let b be an inertial body. Then in o’s 4-coordinate system the worldline
of b is a straight line. I.e. in an inertial observer’s worldview or 4-coordinate
system all worldlines of inertial bodies appear as straight lines.

As we said, an observer in his metaphorical “spaceship” is inertial if his
rockets are turned off and the spaceship is not spinning. In special relativity,

4It is sufficient to assume that his worldline is parallel with the time-axis.
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we discuss only inertial motion, hence in our axiomatization the adjective
“inertial” could be omitted. (Of course, then we need a general claim that
only inertial things/objects will be studied.)

(iii) Motion is permitted: In the worldview or 4-coordinate system of
any inertial observer it is possible to move through any point p in any
direction with any finite speed.

(iv) Any two observers “observe” the same events. I.e. if according to o1

bodies b1 and b2 have met, then the same is true in the 4-coordinate system
of any o2. We postulate the same for triple meetings e.g. of b1, b2, b3.

(v) Absolute time: Any two observers agree about the amount of time

elapsed between two events. (Hence temporal relationships are absolute.)

So, now, NK is defined as the theory axiomatized by (i)-(v) above.

It is easy to see that (NK + Light Axiom) is inconsistent. Einstein’s idea
was to check which ones of (i)-(v) are responsible for contradicting the Light
Axiom and to throw away or weaken the “guilty” axioms of NK. We will see
that (v) is guilty and that part of (iii) is suspicious. Hence we throw away
(v) and weaken (iii) to a safer form (iii−) where (iii−) is the following.

(iii−) Slower-than-light motion is possible: in the worldview of any
inertial observer, through any point in any direction it is possible to move
with any speed slower than that of light (here, light-speed is understood as
measured at that place and in that direction where we want to move).

In the formal part we will carefully study whether all of these modifica-
tions are really needed and to what extent (cf. Thm.s 2.3, 2.5). We define
NK− as the remaining theory:

NK− := {(i), (ii), (iii−), (iv)}

and Special Relativistic Kinematic is defined as

SRK := (NK− + Light Axiom).

The formalized version of this SRK will appear later as the theory
Specrel0. We will prove that Specrel0 is consistent (i.e. contradiction-
free) and will study its properties. Therefore SRK is also consistent, since,
as we said, Specrel0 is a formalized version of SRK. Actually, the whole
process of arriving from NK and the Light Axiom (or some alternative for
the latter) to SRK will be subjected to logic-based conceptual analysis in
Sec. 2.5.

Before turning to formalizing (and studying) Special Relativity SRK in
logic, let us prove (informally only) on the present level of precision why
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absolute time (i.e. axiom (v)) is excluded by the Light Axiom, or more pre-
cisely, it is excluded if we want to keep a fragment of our intuitive picture
of the world, i.e. if we want to keep (i), (ii), (iv) of NK. We will prove:

(NK− + Light Axiom) ⊢ Negation of (v),

where we use turnstile “ ⊢ ” as the symbol of logical provability or deriv-
ability. I.e. A ⊢ B means that from statement A one can prove, rigorously,
statement B.

Actually, we will prove something stronger and stranger from the Light
Axiom (and a fragment of NK−). We will prove that the time elapsed be-
tween two events may be different for different observers even in the special
case when this elapsed time is zero for one of the observers. I.e. the very
question whether two events happened at the same time or not will de-
pend on the observer: two events A and B may happen at the same time
for me, while event A happened much later than event B for the Mar-
tian in his spaceship. We will refer to this phenomenon by saying that
“ simultaneity is not absolute ”. Moreover, we will see later (Cor. 2.1) that
the temporal order of some events may be switched: event A may precede
event B for me, while for the Martian in his spaceship, event B precedes
event A.
We say that events e and e′ are simultaneous for observer O if in O’s
coordinate system the two events e, e′ happen at the same time.

Proposition 2.1. (Simultaneity is not absolute) Assume SRK. Moving clocks
get out of synchronism, i.e.: Assume that a spaceship S is in uniform motion
relative to another one, say E, and assume that two events e, e′ happen
simultaneously at the rear and at the nose of the spaceship S according to
the spaceship S. Then e and e′ take place at different times in E’s coordinate
system.

I.e., the time elapsed between e and e′ is zero as “seen” from the spaceship
S, but the time elapsed between e and e′ is nonzero as “seen” from E. See
Fig. 3.

Intuitive proof. Assume that we are in spaceship E, and let us call E
“Earth”. Assume that spaceship S – let us call it “Spaceship” – moves
away from us in a uniform motion with, say, 0.9 light-speed. The captain of
Spaceship positions his brothers called Rear, Middle, and Nose at the rear,
middle and nose of the spaceship, respectively, and asks Rear and Nose to
switch on their flashlights towards Middle exactly at the same time. Then
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the light signals (photons5) Ph1 and Ph2 from the two flashlights arrive to
Middle at the same time, because Middle is exactly in the middle of the
spaceship, and because the speed of Ph1 sent by Rear is the same as the
speed of Ph2 sent by Nose (by the Light Axiom). See Fig. 2.

time

space

Ph1 Ph2

Figure 2: Seen from Spaceship, the two light-signals (i.e. photons) Ph1 and
Ph2 are sent out at the same time, and meet in the middle. This is indicated
by the clocks at the rear and at the nose of the spaceship. Notice that time
in this figure is running upwards! I.e., this figure is similar to drawings in
cartoons in that a sequence of scenes is represented in it. However, here
the temporal order of the scenes is switched: the scene at the bottom took
place earliest. The reason for this convention is our seeking compatibility
with the usual space-time diagrams like Fig. 1.

How do we see all this from the Earth? We see that Rear and Nose send
5We use the word “photon” as a synonym for light signal. It tacitly refers to the corpus-

cular conception of light. In this work we do not need the quantum-mechanical definition
of photons. (That will be needed only in the final, as yet nonexistent, generalization of
general relativity called quantum gravity.)
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light signals (or photons) Ph1 and Ph2 towards Middle, and we also see that
Ph1, Ph2 arrive to Middle at the same time (because this is a 3-meeting of
bodies/entities and axiom (iv) in NK−). (Spaceship’s hull is missing, we
can imagine it having only a grid of metal rods for keeping it together or
something to this effect.) However, by the Light Axiom, the speeds of Ph1
and Ph2 are the same for us on the Earth, too. Since Spaceship moves
away from us (with 0.9 light-speed), we see Ph1 crawl very slowly along
the hull of Spaceship because the ship is “running away” from us (and from
Ph1, too). On the other hand, the other photon, Ph2, flashes along the hull
of the spaceship towards us with enormous relative speed (relative to the
hull of the spaceship). Because of this difference of their speeds relative to
Spaceship, according to Earth, Ph1 and Ph2 either meet close to the rear
of the spaceship, or if they meet in the middle, then Nose had to switch on
his flashlight much later than Rear did. See Fig. 3.

Earth

time

space

Ph1

Ph2

t1

t2

v

Figure 3: Seen from the Earth, the photon Ph2 had to be sent out later in
order that it arrive in the middle at the same time as Ph1 does. But seen
from Spaceship, they were sent out at the same time. Hence the clocks at
the nose and the rear are out of synchronism, as seen from the Earth.
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So far we proved that at least one of two things cannot be absolute. These
are (a) being in the middle of the spaceship, and (b) simultaneity. Here, (a)
means that Spaceship observes Middle in the middle of the ship, while Earth
observes that Middle is not in the middle of the ship; and (b) means that
emissions of photons Ph1 and Ph2 are simultaneous for Spaceship but not
for Earth.

The first possibility is that Middle stands closer to the rear of Spaceship
as seen from the Earth, i.e. that he is not in the middle of the ship according
to Earth observers, while he is in the middle according to the ship observers.
Here is a thought-experiment which shows that this is not possible. Let us
ask the captain to give mirrors to Rear and Nose, and order Middle to send
photons Ph3, Ph4 at the same time to these two mirrors. Since Middle is
exactly in the middle of the ship, the bounced-back photons arrive to him
at the same time, by the Light Axiom. By (iv) in NK−, we on the Earth
also see that the two photons Ph3, Ph4 meet again at Middle after bouncing
back, so they traveled their round-trips in the same amount of time. We
will show that, as seen from the Earth, the time needed for the round-trip
is proportional to the covered distance: if, say, Nose is twice as far from
Middle as Rear is, then the time needed for Ph4 for the round-trip Middle-
Nose-Middle is twice as much as the time needed for Ph3 for the round-trip
Middle-Rear-Middle, even in a fast-moving spaceship. From the Earth we
see that the round-trip took the same time for Ph3 and for Ph4, therefore
we have to infer that Middle is really in the middle of the ship. See Fig. 4.

We now prove that the time needed for the round-trip is proportional
to the covered distance. Indeed, assume that the distance Middle-Nose is
twice as much as the distance Middle-Rear. We will show that the round-
trip Middle-Nose-Middle takes twice as much time for a photon Ph4 as the
round-trip Middle-Rear-Middle for a photon Ph3. Let us watch from the
Earth how the two photons Ph3 and Ph4 move relative to the spaceship
(as in Fig. 4, but now Middle standing closer to Rear). We will see that
Ph3 covers the segment Middle-Rear fast, traveling towards us, and then
covers the segment Rear-Middle slowly, moving away from us. The same
way, Ph4 covers the segment Middle-Nose slowly, moving away from us,
while Ph4 covers the segment Nose-Middle fast, moving towards us. The
relative speed of Ph4 in the “towards-us” segment Nose-Middle is the same
as the relative speed of Ph3 in the “towards-us” segment Middle-Rear; hence
this part of the trip takes twice as much time for Ph4 as for Ph3 because
we assumed that the distance Nose-Middle is twice as much as the distance
Middle-Rear. The situation is completely analogous for the “away-from-us”
segments, so the trip Middle-Nose takes twice as much time for Ph4 as the
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trip Rear-Middle for Ph3. Summarizing the segments, the round-trip takes
twice as much time for Ph4 as for Ph3.

Earth

time

space

Ph3 Ph4

v

Figure 4: The round-trip for Ph3 takes the same time as for Ph4, seen
both from Spaceship and from the Earth. Hence Earth infers that Middle
is indeed in the middle of the ship.

As we said earlier, we observe from the Earth that Ph3, Ph4 and Middle
meet in a single event. Therefore, since we observe that Ph3 arrives to
Middle exactly when Ph4 arrives to Middle after their round-trips, we have
to infer, on the Earth, that Middle really stands exactly in the middle of
Spaceship. There remains only the possibility that Nose sent out his photon
Ph2, which we see as fast-moving along the hull of the space ship, much
later than Rear sent Ph1 which we see as slowly-moving along the hull of
the spaceship. Thus, as seen from the Earth, the clocks at the nose and at
the rear of the spaceship show different times (at the same Earth-moment).
This is what we mean when we say that the clocks of the spaceship get out
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of synchronism.
Summing up: Let e and e′ be the events when Rear sends his photon

Ph1 towards Middle, and when Nose sends his photon Ph2 towards Middle,
respectively. Then these two events took place at the same time as seen
from Spaceship, while as seen from the Earth, e′ took place later than e did.
This finishes the proof of Prop. 2.1.

Let us notice that Prop. 2.1 above is a far reaching claim. It implies that
one of the most basic words of natural language refers to an illusion only
and carries no real meaning. The word in question is the word “now”.

In order to be able to carry out the proof of Prop. 2.1 and other similar
chains of thought in the “safe”, precise setting of mathematical logic, in
the next subsection we introduce a first-order logic language in which we
formalize our axioms, statements, and proofs.

2.2 Language

Motivation for language. We want to talk about space-time as relativity
theory conceives it. We will talk about space-time as experienced through
motion. Though we discuss here kinematics (theory of motion) only, one
can derive (logically) dynamic predictions of relativity, too (i.e. phenomena
involving forces, energy) using the same approach/axioms.6 We will use
first-order logic, and the most important decision is to choose the language
( vocabulary ), i.e. what objects and what relations between them will belong
to the language. We will specify our first-order language by specifying its
models.

We want to axiomatize motion. What moves? Bodies. Hence our model
has a universe B for bodies. What does it mean to move? To move means
changing location in time. We will have coordinate systems, or reference
frames in other words, for marking locations and time, and we will use
quantities in setting up these coordinate systems. So our model has another
universe Q for quantities. We will think of quantities as real numbers, so
Q together with the operations +, ∗, < will form a linearly ordered field.
We will think of coordinate systems as belonging to special bodies called
observers. Hence Ob is a one-place relation on B (picking out a subset
of B). We will have another kind of special bodies, photons, too. Hence
Ph is another one-place relation on B. The heart of our model is the so-
called worldview-relation W . This is a 6-place relation connecting bodies

6For the spirit of this we refer to the relativity textbook [Rin01, Sec. 6 “Relativistic
particle mechanics”]. [Rin01, Sec. 6.2] is particularly relevant here.
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and quantities. We think of W (o, b, t, x, y, z) as the statement that the body
b is in location xyz at time t in observer o’s coordinate system. We will
simply pronounce this as

o sees the body b at txyz

though this has no connection with optical seeing, instead, it is an act of
coordinatizing only. With this intuition in mind we now fix the language of
our theories of special relativity.

The language. We fix a natural number n > 1, it will be the number of
space-time dimensions. In most works n = 4, i.e. one has 3 space-dimensions
and one time-dimension. Recent generalizations of general relativity in the
literature indicate that it might be useful to leave n as a variable (e.g. string-
theory uses 11 dimensions).

We declare two sorts of objects. One sort is for “quantities”, it will be
denoted by Q. (This is the same as “real numbers” in other treatments.) We
have two-place (i.e. binary) operation symbols +, ∗ and a 2-place predicate
symbol < of sort “quantities”. To avoid misunderstandings, we emphasize
that, in this work, Q is not the set of rational numbers. (The letter Q
abbreviates “quantities”. It is a coincidence that the same letter is used in
the literature to denote the rationals. We do not follow that convention.)

The other sort, B, is for entities which do the “moving”. We will call
these “bodies”. (We call the moving entities “bodies” whatever they may
be, in reality they can be e.g. coordinate systems or electromagnetic waves,
or centers of mass.) We have two kinds of special bodies, observers and
photons. Thus Ob and Ph are one-place predicate symbols of sort B.

We have a relation which connects these two sorts, the (n+2)-place rela-
tion W which is of sort B×B×Q×· · ·×Q. The sentence “observer o observes
body b at space-time location p1, ..., pn” is denoted as W(o, b, p1, ..., pn), or
as W(o, b, p) in short.

Summing up, a model M of our language is of form

〈Q,+, ∗, <; B, Ob, Ph; W 〉
where 〈Q,+, ∗, <〉 is a structure similar to ordered fields, Ob, Ph are subsets
of B, and W ⊆ B × B × Q × · · · × Q.

2.3 Axiomatization Specrel of special relativity in first-order
logic

In this subsection we formalize the axioms we talked about on an intuitive
level in Sec. 2.1, by using the first-order logic language introduced in the
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previous subsection. The formalized version of (NK− + Light Axiom) will
be called Specrel0.

Axiom 1 ( AxField) . The quantities behave like real numbers do in the

sense that 〈Q,+, ∗, <〉 is a linearly ordered field in which every positive
member has a square root. Such fields are called “quadratic”.

For an axiom system for linearly ordered fields we refer to e.g. [CK73,
p. 41, below item 18]. We will often simply say “field” or “ofield” or “ordered
field” instead of “linearly ordered field”. We recall that if 〈Q,+, ∗, <〉 is a
field, then 0 and 1 denote the neutral elements of + and ∗ respectively,
and an element x ∈ Q is called positive iff x > 0. Further, y is called a

square root of x iff y∗y = x and y ≥ 0, we denote this by writing y =
√

x .

With this notation, the absolute value |y| of y is |y| :=
√

y2 (as usual, y2

denotes y ∗ y). The inverses of the operations + and ∗ will be denoted

by − and / , respectively. Thus a linearly ordered field is quadratic (or

Euclidean) iff (∀x > 0)(∃y)x = y ∗ y is true in it. According to the usual
practice, we will often omit ∗ from an expression, e.g. we write td in place
of t ∗ d.

On AxField: In most physics books, the set of quantities is taken to be the set
of real numbers (with +, ∗ as addition, multiplication of the real numbers).
Some, fancy, books use also imaginary numbers for quantities. We know
from mathematics that much complexity is tied to the real numbers. Hence
in our axiomatic approach, we single out those properties of the quantities
that we rely on in the investigation in question. In special relativity only
the quadratic ordered field-structure of the quantities is presupposed, but
we could do much even with assuming only the ring-structure. In particular,
the ordering and the existence of square roots are used mostly in order to
be able to formulate results in a simpler way. (E.g. we use square roots
in expressing the distance between two coordinate points. Without the use
of square roots we always would have to talk about the square of distance.
This would cause only an inconvenience but not an impossibility.) As a pay-
off of this explicit way of handling the quantities, we can build models of
special relativity with a finite field as structure of quantities, or we can use
fields with infinitesimally small numbers. In general relativity, in addition
to AxField it will suffice to use an axiom-schema called CONT, see Sec. 3.6.

By a coordinate point , or space-time location , we understand an n-tuple
(i.e. a sequence of length n) p = 〈p1, . . . , pn〉 of elements of Q, the set of all
these n-tuples is denoted by Qn. If p ∈ Qn, then p1,. . . ,pn are its compo-
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nents, i.e. p = 〈p1, . . . , pn〉. We call 0 := 〈0, . . . , 0〉 ∈ Qn the (n-dimensional)
origin , and we call t := {〈x, 0, . . . , 0〉 ∈ Qn : x ∈ Q} the (n-dimensional)

time-axis . By the worldline (or lifeline, or history) of a body b as observed
by the observer m we mean the set of space-time locations where m observes
b to be present,

wlinem(b) := {p ∈ Qn : W(m, b, p)}.

Axiom 2 ( AxSelf) An observer m in his own coordinate system is

motionless in the origin (of space), i.e. his worldline is the time-axis:
wlinem(m) = t. As a formula of the FOL language this axiom is

(∀m ∈ Ob)(∀p ∈ Qn)[ W(m, m, p) ↔ p2 = · · · = pn = 0 ].

Having a field in our language makes it possible to talk about straight
lines. We recall that the straight line going through p, q ∈ Qn, p 6= q
is the set {p + x ∗ (p − q) : x ∈ Q}. In the latter formula, +,− and ∗
denote operations of Qn as a vector-space . We will often say just “line” for
“straight line”.

Axiom 3 ( AxLine ) The motion of an observer as observed by any observer
is uniform, i.e. such that both the “spatial direction” and the “pace” of
the motion are constant (and “longest possible” with this property). In
geometrical terms this means that in each observer’s coordinate system,
the worldline of an observer is a straight line, i.e. wlinem(k) is a straight
line for all m, k ∈ Ob. Formally,

(∀m, k ∈ Ob)(∃p, q ∈ Qn)(W(m, k, p) ∧ W(m, k, q) ∧ p 6= q ∧
(∀r ∈ Qn)[W(m, k, r) ↔ (∃x ∈ Q)r = p + x ∗ (p − q)]).

On AxLine: AxLine is a formalized version of postulate (ii) in Sec. 2.1.
Later we will consider non-uniform motions, too. We will call those mo-
tions “ accelerated ” ones. Newton’s First Law of Motion states that “an
object moves with constant, uniform motion until acted on by a force”. A
body is called “inertial” if no force acts on it. Hence AxLine indicates that
Ob denotes the set of inertial observers when using AxLine.

We introduce the speed of a uniform motion. In geometric terms, this

is the “slant” or “ slope ” of the straight line (representing the motion). For

p, q ∈ Qn, let space(p, q) and time(p, q) denote the spatial distance and the

time-distance between p and q, respectively:

space(p, q) :=
√

(p2 − q2)2 + ... + (pn − qn)2, and
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time(p, q) := |p1 − q1| =
√

(p1 − q1)2.

Now speed(p, q) denotes the speed necessary to reach q from p (or p from
q):

speed(p, q) := space(p, q)/time(p, q) when time(p, q) 6= 0.

Axiom 4 ( AxPh ) For every observer, the speed of light is 1, and moreover,
photons move uniformly along straight lines and in each location in each
direction it is possible to send out a photon. In geometrical terms this
means that the worldlines of photons are exactly the straight lines of slope
1. Formally this is:

(∀m ∈ Ob)(∀ph ∈ Ph)[ (wlinem(ph) is a straight line) ∧ (∀p, q ∈ Qn)
p 6= q ⇒ (speed(p, q)=1 iff (∃ph ∈ Ph)[W(m, ph, p) ∧ W(m, ph, q)])].

On AxPh: This is the formal version of the Light Axiom used in Sec. 2.1.
It expresses that the speed of light is finite (nonzero) and isotropic , i.e.
direction-independent. We formulated the Light Axiom in a seemingly stronger
form, namely such that we require the speed of light to be 1. This way we
are freed from having to deal with always adjusting everything to the actual
speed of light. Instead, we adjust the units of measurement to the speed of
light: we measure distances with “light-years” if we measure time in “years”.
We emphasize that assuming that the speed of light is 1 instead of some fi-
nite direction independent number (which might depend on the observer) is
not a “physical” assumption but instead a merely “linguistic” one. It would
be sufficient (for our results) to use a more literal formalization of the Light
Axiom in Sec. 2.1. That such a weaker version of AxPh is sufficient for our
results in shown in [AMN02], [Mad02, p. 121].

In Sec. 2.1 we talked about photons bounced back from a mirror. When
using AxPh, we will simulate this “bouncing back” by treating the out-going
and the bounced-back photons as two different photons that have met at
the mirror (see e.g. Fig. 8).

The next axiom states that each observer can make thought-experiments
in which he assumes the existence of “slowly moving” observers. This is the
formalized version of postulate (iii−) in Sec. 2.1.
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Axiom 5 ( AxThEx ) For each observer m ∈ Ob, in each space-time loca-
tion, in each direction, with any speed smaller than that of the light it is
possible to “send out” an observer:

(∀m ∈ Ob)(∀p, q ∈ Qn)[space(p, q) < time(p, q) →
(∃k ∈ Ob)(W(m, k, p) ∧ W(m, k, q))].

In geometric terms this means that each line in the coordinate system
with slant smaller than 1 is the worldline of a (potential) observer, in m’s
worldview.

The next axiom is the formalized version of postulate (iv) in Sec. 2.1.

Axiom 6 ( AxEvent ) If an observer observes three bodies at the same
space-time location, then all other observers observe that these three bodies
meet:

(∀m, k ∈ Ob)(∀b, b′, b′′ ∈ B)(∀p ∈ Qn)(∃p′ ∈ Qn)
[W(m, b, p) ∧ W(m, b′, p) ∧ W(m, b′′, p) →
(W(k, b, p′) ∧ W(k, b′, p′) ∧ W(k, b′′, p′))].

On AxEvent: In Sec. 2.1 we talked about “events”. E.g. “Rear sent light
signal Ph1” was called an event, another event was that “Nose sent light
signal Ph2”, and a third event was that “Middle, Ph1, and Ph2 meet”.
In the axiom AxEvent above, we talk about “3-meetings”. We will reserve
the word “event” for the set of all bodies present at a space-time location.
Let us call AxEvent+ the axiom we obtain from AxEvent by replacing “3-
meetings” with “events” in it, in this latter sense. We will see at the end of
this subsection (cf. Thm. 2.1) that, in our approach, AxEvent is equivalent
with this seemingly stronger axiom.

Specrel0 := {AxField, AxSelf, AxLine, AxThEx, AxEvent, AxPh}.

Specrel0 is the formalized version of SRK = NK−+Light Axiom introduced
in Sec. 2.1. Most of the interesting predictions of special relativity can be
proved (in the rigorous manner of first-order logic) from Specrel0. However,
some of the predictions have a little bit more complicated forms because
different observers may use different “units of measurement”. The last axiom
brings the units of measurement of two observers to a common “platform”.

For an observer m and space-time location p ∈ Qn, evm(p) denotes the
“full event” happening in m’s coordinate system at p,

evm(p) := {b ∈ B : W(m, b, p)}.
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We call the next axiom the Axiom of Simultaneous Distance.

Axiom 7( AxSim ) Any two observers agree on the spatial distance between
two events, if these two events are simultaneous for both of them:

(∀m, k ∈ Ob)(∀p, q, p′, q′ ∈ Qn)[ evm(p) = evk(p
′) ∧ evm(q) = evk(q

′) ∧
time(p, q) = time(p′, q′) = 0 → space(p, q) = space(p′, q′) ].

Specrel := Specrel0 ∪ {AxSim}
= {AxField, AxSelf, AxLine, AxThEx, AxEvent, AxPh, AxSim}.

In Sec. 2.5 we will prove that Specrel is consistent, and hence the weaker
Specrel0 is also consistent. This will show that we have succeeded in elim-
inating the contradiction from (NK+Light Axiom): there is no statement A
such that from the new theory (NK−+Light Axiom) we can derive both A
and its negation ¬A. In the next subsection we will prove that Specrel0
implies (in the rigorous manner of first-order logic) the negations of (v) and
(iii), i.e. the negations of “absolute time” and “all motion is possible”. In the
next subsection we will also begin to investigate what the world looks like
assuming SRK, in which ways it is different from our common-sense Newto-
nian world. Before doing this, we show two simple properties of Specrel0.

An important theme will be to establish which things all the observers
perceive (“see”) the same way, and which things they perceive differently.
The things that they see the same way will be called “ absolute ”, the things

that they see differently will be called “ relative ”. Whence the name “rel-
ativity theory”. First we show that all observers see the same “events” to
occur, and not only they see the same 3-meetings to occur.

Let AxEvent+ denote the statement that if an observer observes an event,
then all other observers observe this event:

(∀m, k ∈ Ob)(∀p ∈ Qn)(∃p′ ∈ Qn)(∀b ∈ B)[W(m, b, p) ↔ W(k, b, p′)].

The symbol |= denotes the semantic consequence relation of FOL.

Before discussing the details, we note that in the case of FOL, |= coincides
with FOL-provability ⊢. If M is a possible model and ϕ is a FOL formula,
then M |= ϕ abbreviates the statement “formula ϕ is valid in model M”.
For a set Ax of formulas, Ax |= ϕ means that for every possible model M,
if M |= Ax, then M |= ϕ.

Theorem 2.1. {AxEvent, AxPh, AxField} |= AxEvent+.

Proof. Assume M = 〈Q, . . . , W 〉 |= {AxEvent, AxPh, AxField} and let m, k ∈
Ob, p ∈ Qn. There are (at least) two distinct lines ℓ1, ℓ2 of slope 1 going
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through p, e.g. ℓ1 = {p + x ∗ 〈1,−1, 0, . . . , 0〉 : x ∈ Q} and ℓ2 = {p + x ∗
〈1, 1, 0, . . . , 0〉 : x ∈ Q} are such. (We used AxField here.) There are photons
ph1, ph2 “living on ℓ1, ℓ2” respectively, by AxPh. (I.e. ℓi = wlinem(phi) for
i = 1, 2.) Let us consider the worldlines of these photons in k’s worldview.
By AxPh, these are straight lines of slope 1. We are going to show that they
intersect in a unique point.

We have that wlinem(ph1) 6= wlinem(ph2). Let q ∈ ℓ1, q /∈ ℓ2 and let ℓ3

be the straight line of slope 1 going through q and parallel with ℓ2. (I.e. ℓ3 =
{q+x∗〈1, 1, 0, . . . , 0〉 : x ∈ Q}.) Let ph3 ∈ Ph be such that wlinem(ph3) = ℓ3.
Now, m “sees” 3-meetings of {ph1, ph2, ph2}, {ph1, ph3, ph3} but m does not
see a 3-meeting of {ph2, ph3, ph3}. By AxEvent, the same must hold for
k. Thus wlinek(ph1) and wlinek(ph2) must meet but must not coincide and
hence they intersect in a unique point.

Let p′ be their intersection point, i.e. {p′} = wlinek(ph1) ∩ wlinek(ph2).
Now, it is easy to show by using AxEvent again that evm(p) = evk(p

′).
(Indeed, let b ∈ B be arbitrary. Then m sees a 3-meeting of ph1, ph2, b iff
b ∈ evm(p), and the same for m, p replaced with k, p′.)

Theorem 2.2. No observer observes the same event at two different space-
time locations in models of {AxPh, AxField}.

Proof. Let p, q ∈ Qn, p 6= q. There is a straight line ℓ of slope 1 through
p which avoids q (because through each point p there are at least 2 distinct
lines of slope 1). By AxPh, ℓ is the worldline of a photon ph ∈ Ph (in m’s
worldview). Then ph ∈ evm(p) while ph /∈ evm(q), showing that evm(p) 6=
evm(q).

Thm.s 2.1 and 2.2 imply that in each observer’s worldview, the space-
time locations and the events observed by any observer are in one-one corre-
spondence. Thus, in a given observer’s worldview, we can speak of events as
if they were space-time locations. E.g. we can quantify over events, mean-
ing that we have in fact quantified over space-time locations. By the same
token, we can apply any function defined on space-time locations to events.
Specifically, let locm(e) denote the location of event e in m’s worldview,
then

locm(e) = p iff evm(p) = e.

By the time-distance between two events as seen by an observer we will mean
the time-distance between the space-time locations where the observer sees
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the two events, and similarly for spatial distance . Formally, with p =
locm(e), p′ = locm(e′) we have

timem(e, e′) := time(p, p′), spacem(e, e′) := space(p, p′),

timem(e) := p1 denotes the time where m sees event e happen, and spacem(e) :=

〈0, p2, . . . , pn〉 denotes the space-location where m sees event e happen.

2.4 Characteristic differences between Newtonian and spe-
cial relativistic kinematics

The most frequently quoted predictions of special relativity are the following
three paradigmatic effects . (1) moving clocks slow down, (2) moving meter-
rods shrink, and (3) moving pairs of clocks get out of synchronism. These
three effects are easily formulated in the first-order logic language introduced
so far.

Figure 5: Moving clocks slow down and moving spaceships shrink.

~vm(k)

Figure 6: Moving clocks get out of synchronism.

Let m, k be observers in a model of our language. By the direction of

spatial separation of two events e, e′ in m’s worldview we mean the natural
thing, i.e. we mean the straight line connecting the “spatial projections”
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〈0, p2, . . . , pn〉 and 〈0, q2, . . . , qn〉 if p and q are the space-time locations m
sees e and e′ at, respectively (or the point 〈0, p2, . . . , pn〉 if these two points
are the same). The spatial direction of motion of a body b in m’s worldview
is the direction of spatial separation of two distinct events in wlinem(b),
whenever the latter is a straight line. (In order to deal with the “degenerate”
situations in the next theorem, we say that a point is both parallel and
orthogonal to a line or to another point.) We say that e, e′ are simultaneous

in m’s worldview iff timem(e, e′) = 0. Let vm(k) denote the speed of k as

seen by m, i.e. vm(k) is the slope of the worldline of k in m’s worldview.
We note that Specrel0 6|= (∀m, k ∈ Ob)vm(k) = vk(m) while Specrel |=
(∀m, k ∈ Ob)vm(k) = vk(m) (see Cor. 2.3).

Thm. 2.3 below implies that Absolute Time (i.e. (v) of NK) is incon-
sistent with SRK (i.e. with NK−+Light Axiom), hence it was necessary to
omit it from NK. Thm. 2.3 says that simultaneity of events is not absolute.
Actually, it implies something more surprising, more exotic: the question of
what happened earlier and what later is not absolute either (see Cor. 2.1
after the theorem). Fig. 7 illustrates the statements in Thm. 2.3. Thm. 2.3
is a more detailed version of Prop. 2.1.

m
k

k

e

e

e′

e′

e′′

e′′D

v ∗ D

v

1

m’s worldview k’s worldview

Figure 7: Illustration for Thm. 2.3. Simultaneity of events is not absolute.
Events e, e′, e′′ are simultaneous for k, but e, e′ are not simultaneous for m.

Theorem 2.3. (simultaneity of events is not absolute) Assume Specrel0 and
let m, k be observers. Statements (i) and (ii) below hold.
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(i) Assume that in m’s worldview the spatial separation of events e, e′ is
parallel with the direction of motion of k. Then

e, e′ are simultaneous in k’s worldview

iff

timem(e, e′) = vm(k) ∗ spacem(e, e′).

(ii) Assume that e, e′′ are simultaneous both in k’s worldview and in m’s
worldview. Then in m’s worldview the spatial separation of e, e′′ is
orthogonal to the direction of motion of k.

Proof. The proof of Thm. 2.3 follows the structure and ideas of the intuitive
proof of Prop. 2.1.
Proof of (i). Let e, e′ be simultaneous events in k’s worldview. Let p =
lock(e), p′ = lock(e

′) and let q = (1/2) ∗ (p + p′), their “middle-point”.
Let ℓ1, ℓ2, ℓ3 be straight lines parallel with the time-axis and going through
p, p′, q respectively and let m1, m2, m3 be observers with ℓi = wlinek(mi)
(i = 1, 2, 3). See Fig. 8.

Let δ := |p − q| =
√

(p1 − q1)2 + · · · + (pn − qn)2. This exists since the
field 〈Q,+, ∗,≤〉 is quadratic by AxField. By using δ now we can construct
straight lines of slope 1 connecting ℓ1, ℓ2, ℓ3 as follows. Let u = 〈1, 0, . . . , 0〉
(the “time unit-vector”), p1 = q + δ ∗ u, p2 = p + 2δ ∗ u, p3 = p′ + 2δ ∗ u,
p4 = p1 + 2δ ∗ u. The straight lines connecting the points pp1, p′p1, p2p4,
and p3p4 all have slope 1 by construction, hence by AxPh there are photons
ph1, . . . , ph4 whose worldlines these are, respectively. Let ei = evk(pi) for
i = 1, . . . , 4. See Fig. 8.

We will think of the pattern constructed so far as representing the two
thought-experiments in Prop. 2.1. We will think of k, m1, m2, m3 as the
Spaceship, Rear, Nose, and Middle respectively; e is the event when Rear
sent ph1 towards Middle, e′ is the event when Nose sent ph2 towards Middle,
and e1 is the event when these two reached Middle. The upper part of
the arrangement (events e1, . . . , e4 and photons ph1, . . . , ph4) represents the
experiment of Middle by which he tested that he indeed was standing in the
middle (the two photons ph2, ph1 sent towards Rear and Nose arrived back,
after bouncing back at the mirrors, at the same time in event e4).

Switch now to the worldview of m! See Fig. 9. The worldlines of
m1, m2, m3, ph1, . . . , ph4, respectively, are all straight lines, the last four of
slope 1, by AxLine, AxPh. The meeting points of these lines are exactly as
those of the corresponding worldlines in k’s worldview, by AxEvent. The
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Figure 8: Illustration for the proof of Thm. 2.3(i).

worldlines of m1, m2, m3, k are parallel in m’s worldview because they are
so in k’s worldview. (In more detail, e.g. for m1, m2: their worldlines do not
meet, by AxEvent. Their worldlines are not skew, because one can construct
photons ph1, ph2 with meeting points e, e′, e1, e2, e3 as in Fig. 8, and this
ensures that they are in one plane (i.e. in the plane determined by e, e′, e1).)
Now assume that the spatial separation of e, e′ is parallel with the spatial
direction of movement of k, in m’s worldview. This means that there is a
plane P containing the whole configuration (the worldlines of m1, . . . , ph4),
and it is vertical , i.e. it contains a line parallel with the time-axis. The
worldlines of ph1, ph2 are parallel with those of ph3, ph4, respectively, in m’s
worldview, because they are so in k’s worldview (and because they are all in
one plane). Thus the distance of events e2 and e1 is the same as the distance
of events e4 and e3 according to m, i.e. with the notation ri = locm(ei) we
have |r2 − r1| = |r4 − r3|. Similarly, since the lines connecting e4, e1 and
e3, e

′ are also parallel, we get |r1−r′| = |r3−r4| (where r′ = locm(e′)). Thus
|r2 − r1| = |r1 − r′|. For this reason, the distance between e and C in Fig. 9
is the same as the distance between C and E, i.e. C is the middle-point of
e and E. Thus m also sees that m3 is positioned exactly in the middle of
m1 and m2.
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Figure 9: Illustration for the proof of Thm. 2.3(i).

We now recall the intuitive chain of thought in the proof of Prop. 2.1
taking into account the quantitative aspects, too. We think of m as Earth.
Let us measure time in “seconds”, and let us assume that the length of
the ship as Earth sees it is 2d. Now, Earth sees that inside the spaceship
the photon ph1 covered distance d with velocity 1 − v, thus it took t = d/
(1−v) seconds for ph1 to reach the middle of the ship. Similarly ph2 covered
distance d with velocity 1+v, so it took t′ = d/(1+v) seconds for it to reach
the middle of the ship. Hence Nose had to send ph2 exactly T = t− t′ = [d/
(1 − v)] − [d/(1 + v)] = 2dv/(1 − v2) seconds later in order that they meet
in the middle. Since the photon was sent T seconds later, the ship covered
T ∗ v distance during this time, thus the spatial distance of event e (which
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is sending out photon ph1) and event e′ (which is sending out photon ph2)
is D = 2 ∗ d + T ∗ v = ([2d(1 − v2)] − [2dv2])/(1 − v2) = 2d/(1 − v2).
Hence T = v ∗ D, as was to be shown. This computation can be faithfully
reconstructed in the settings of the present Thm. 2.3, see Fig. 9.

This proves the “only if” part in (i). The “if” part in (i) can be proved
by taking an event e′′ in k’s worldview which is simultaneous with e and
which takes place at the same place as e′, i.e. spacek(e

′′, e′) = 0; now we can
use the previously proven part for e, e′′ and then use timem(e′′, e′) 6= 0.

t

space

e

e

e′ e′
d

d

m3

s

ph1

ph2

m

Figure 10: Illustration for the proof of Thm. 2.3(ii). If ph1, ph2, m3 meet,
then the spatial separation s of e, e′ must be orthogonal to the spatial direc-
tion d of movement. This figure shows how m “sees” the thought-experiment
illustrated in Fig. 8, but conducted in a spatial direction not necessarily par-
allel with the direction d of motion of k.

The proof of (ii) is similar to that of (i), we include Fig. 10 for illustration.

Remark. The first-order logic axiomatization of relativity theories we
are describing here is a very good place for applying Tarski’s first-order
logic axiomatization of Euclidean geometry . We try to illustrate this claim.
In the proof of Thm. 2.3 we used several geometrical properties of the Eu-
clidean geometry G built on the field 〈Q,+, ∗〉 in place of the reals. E.g.
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we used that “for any two distinct points there is a unique (straight) line
connecting them”, or “through any point there is a unique line ℓ′ parallel
with ℓ”, we used the notions of planes, being parallel etc. The properties of
G we used in the proof are easy to check directly by using the axioms of a
quadratic ordered field and the (analytic) definitions of a straight line etc.
There is another way, though. Instead of directly checking in the geometry G
validity of each statement which arises in the proof, we could use the axioms
in a first-order logic axiomatization of (synthetic) Euclidean geometry and
derive everything from those axioms (or just rely on the existing theorems
and definitions of this area of research). We recall that [Hil77] axiomatized
Euclidean geometry over the reals by using second-order logic axioms, and
[Tar59] gave a first-order logic axiom system for this geometry. This also
made possible to replace the field of reals with arbitrary fields and investi-
gate what algebraic properties of the field correspond to what geometrical
properties. This subject—which is highly relevant in the approach presented
in this paper—is quite rich, see e.g. [Tar59], [Gol87], works of Schwabhäuser,
Szmielev, Szczerba and Tarski [SST83], [Szc70], [Szm74], [AvB02]. [Ax78],
[Gol87] and [Mun86] make use of Tarski’s axiom system for Euclidean geom-
etry in their axiomatizations of Special Relativity Theory. Actually, Fig. 11
shows that by using the methods of axiomatic Euclidean geometry, the proof
of Thm. 2.3 could be made simpler and more transparent.

Corollary 2.1. (The temporal order of events is not absolute) Assume Specrel0.
For all observers m, k not at rest relative to each other there are events e, e′

such that e happens earlier than e′ according to m while e happens later than
e′ according to k. Formally:

Specrel0 |= (∀m, k ∈ Ob)[ vm(k) 6= 0 →
(∃e, e′)[ timem(e) < timem(e′) ∧ timek(e) > timek(e

′) ] ].

Proof. Assume that vm(k) 6= 0. Let e, e′ be distinct events in the life of
k (i.e. k ∈ e ∩ e′, e 6= e′) and assume timem(e) < timem(e′). If timek(e) >
timek(e

′) then we are done. So assume timek(e) < timek(e
′). Let P be

the “plane of movement of k”, i.e. let P be a plane parallel to the time-
axis and which contains wlinem(k). By Thm. 2.3(i), the events on P which
are simultaneous according to k with e form a straight line ℓ which is not
“horizontal”, see Fig. 12. Therefore there is an event e′′ on ℓ such that
timem(e′′) > timem(e′). Now timek(e

′′) = timek(e) < timek(e
′), and we are

done.
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Figure 11: Simpler proof for Thm. 2.3(i) by using synthetic geometry: By
using the parallelograms e2 − e1 − e3 − e4 and e1 − e′ − e3 − e4 we get that
the distance between e2 and e1 is the same as the distance between e1 and
e′. The triangles e − e2 − e1 and e − e′ − e1 are congruent since the two
photon-lines are orthogonal to each other. Since the slope of the light-line
e − e1 is 1, the angle between the time-axis t and e − e2 is therefore the
same as the angle between the “space axis” x and e−e′, yielding the desired
result.

In the next theorem we formalize the three paradigmatic effects of SRK
and prove them from Specrel. Fig.s 13,14 illustrate the statement of
Thm. 2.4 in cartoon and in space-time diagram respectively, while Fig. 17
at the end of the proof summarizes in one picture how two observers “see”
each other’s coordinate systems. Fig. 18 gives a geometric illustration and
explanation for the three paradigmatic effects.

Theorem 2.4. (the three paradigmatic effects) Assume Specrel and n ≥ 3,
and let m, k, k′ be observers with v := vm(k), and vk(k

′) = 0. Assume
that k’s spaceship, the rear and nose of which are marked by observers
k, k′, moves forwards (i.e. wlinem(k), wlinem(k′) are contained in a plane
parallel with the time-axis and for some e′′, e∗ with k ∈ e′′, k′ ∈ e∗ and
spacem(e′′, e∗) = 0 we have timem(e∗) < timem(e′′)), time flows forwards

for k as seen by m (i.e. timem(evk(0)) < timem(evk(1t))). Assume fur-
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ℓ

k
t

e

e′

e′′

Figure 12: Illustration for the proof of Cor. 2.1. In m’s worldview, e happens
earlier than e′ and e′′ happens later than e′. However, in k’s worldview e is
simultaneous with e′′.

ther that, according to k, the clocks in the ship are synchronized (i.e.

timek(evk′(0)) = 0) and the length of the ship is D (i.e. |spacek(e
′)| = D),

see Fig. 14). Then (1)-(3) below hold.

(1) (moving pairs of clocks get out of synchronism) According to m, the
clock-readings at the nose of k’s spaceship are v ∗ D less than the
simultaneous readings at the rear of the ship. (The clocks in the nose
are late relative to those in the rear. See Fig. 13.) Formally:

(∀e, e′)[ k ∈ e ∧ k′ ∈ e′ ∧ timem(e, e′) = 0 →
timek′(e′) = timek(e) − (v ∗ D) ] .

(2) (moving clocks slow down (called “time-dilation”)) Any process that lasts

t seconds in the ship, lasts for t/
√

1 − v2 seconds as seen by m. For-
mally:

(∀e, e′)[ k ∈ e ∩ e′ → timem(e, e′) = timek(e, e
′)/

√
1 − v2 ] .

(3) (moving ships get shorter (called “length-contraction”)) According to

m, the length of k’s ship is only D ∗
√

1 − v2 (and not D as k states).
Formally:

(∀e, e′)[ k ∈ e ∧ k′ ∈ e′ ∧ timem(e, e′) = 0 →
spacem(e, e′) = D ∗

√
1 − v2 ].
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my spaceship
is 1km long

it’s only
√

1 − v2

km long

now (m) 1 second later (m)

1 km = 1 light-second
(in this picture)

√
1 − v2 −v +

√
1 − v2

0

0

1
m

k

−v

Figure 13: Illustration for Thm. 2.4. According to m, the length of the
spaceship is d km, it is 1 km wide and tall, and the clocks in the nose show
dv/

√
1 − v2 less time than those in the rear. According to k, the length of

the ship is D = d/
√

1 − v2, it is 1 km wide and tall, and the clocks in the
nose and the ones in the rear all show the same time. In the picture we
chose d =

√
1 − v2 and D = 1. Compare this picture with Fig. 3. As v

increases, the spaceship becomes squat: it becomes shorter while its width
and height remain the same. Cf. also Fig.s 5,6.
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Figure 14: Illustration for Thm. 2.4, which states that t = T/
√

1 − v2 and
d = D ∗

√
1 − v2.

Hence, moving spaceships become ‘squat”: They get shorter but their
width and height do not change by AxSim. So they get distorted. This
distortion effect remains true in weaker fragments of Specrel, e.g. in
Specrel0, and for arbitrary n, as shown in [AMN02, Sec. 4.8, esp.
p. 653].

Proof. To prove Thm. 2.4, we will use two new thought-experiments anal-
ogous to the one in Prop. 2.1. Indication for the proof in geometrical flavor
is in the caption of Fig. 18. Let m, k, k′, v be as in the hypothesis part of
the theorem.

The thought-experiment for proving time-dilation uses Einstein’s light-
clock, cf. Fig. 15. This light-clock consists of two mirrors and a photon
which bounces back and forth between the two mirrors. The two mirrors,
M1 and M2, are positioned at the rear of k’s spaceship so that their spatial
separation is orthogonal to the movement of the ship (as seen by m) and
their spatial distance is 1 light-second. Thus for the photon ph from one
mirror M1 to the other M2 lasts for 1 second; one tick of the clock lasts
1 second as seen from the ship k. Let e, e′ be the events when ph leaves
mirror M1 and reaches mirror M2, respectively. According to m, the spatial
distance between e and e′ is not 1 (as seen from k’s ship) but

√
1 + x2 where

x is the distance the second mirror M2 covers while the photon reaches it. If
t is the time elapsed between e and e′ as m sees it, then x = t ∗ v, and thus
spacem(e, e′) =

√
1 + x2, hence t =

√
1 + x2 because the speed of ph is 1 in
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Figure 15: Illustration for the proof of Thm. 2.4(2) (time-dilation). Ein-
stein’s light-clock consists of two mirrors and a photon ph bouncing between
them. One tick lasts t = (1/

√
1 − v2) seconds in m’s worldview, if one tick

lasts 1 second in the ship.

m’s worldview, too. Now from t2 = 1 + t2v2 we get t = 1/
√

1 − v2 (which is
greater than 1). We obtained the desired rate of time-dilation.

The thought-experiment for proving length-contraction (Thm. 2.4(3))
uses a so-called “two-dimensional light-clock”, this is the following. See
Fig. 16. There are two pairs of mirrors and two photons bouncing between
them. The first pair of mirrors M1, M2 and the photon ph bouncing between
them is as in Einstein’s light-clock. The second pair of mirrors M3, M4 and
ph′ are like M1, M2, ph with the difference that M3, M4 are separated in the
direction of movement of the ship. Thus if ph, ph′ leave mirrors M1, M3 in
the same event e (we may assume that M3 is positioned where M1 is), then
after bouncing they will be back in the same event e′ again. The whole scene
in m’s worldview is as follows. Photon ph behaves exactly as in Einstein’s
light-clock, so t = timem(e, e′) = 2/

√
1 − v2, as before. Let us see what

the “tick” made by ph′ looks like in m’s worldview. By the arguments in
the proof of Thm. 2.3(i), if d = spacem(e, e′), then t = d/(1 − v) + d/
(1 + v) = 2d/(1 − v2). Hence d =

√
1 − v2, the distance between mirrors

M3, M4 is
√

1 − v2 (which is smaller than 1) as seen by m and not 1 as seen
by k. We obtained the desired rate of length-contraction.
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e′

e′

ph

ph′

M1
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M3 M4

m’s worldview k’s worldview

mirrors

photons bouncing
between mirrors

m

Figure 16: Illustration for the proof of Thm. 2.4(3) (length-contraction).
The “two-dimensional” light-clock consists of two pairs of mirrors and two
photons (ph, ph′) bouncing between them. The two photons’ bouncing-time
is the same in k’s worldview, thus it has to be the same in m’s worldview,
too.

We get Thm. 2.4(1) by combining Thm. 2.3(i) and Thm. 2.4(2) (cf. e.g.
Fig. 17).

Thm. 2.5 below implies that the statement “Motion with every finite
speed is possible” (i.e. (iii) of NK) is inconsistent with Specrel0. This
justifies the step of weakening (iii) to (iii)− in NK−. Thm. 2.5 below also
shows that we do not have to postulate as an axiom that no observer can
move faster than light; as an axiom this would be difficult to motivate.
Luckily, “no faster-than-light observer” turns out to be a corollary of the
well-motivated axioms in Specrel0. Putting it more succinctly: “no faster-
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Figure 17: Illustration for Thm. 2.4. The three photon-worldlines illustrate,
in some sense, the three thought-experiments for proving time-dilation,
length-contraction, and getting out of synchronism, respectively. This figure
also illustrates Lorentz transformations to be defined soon (in Def. 2.1).
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than-light observer” (No FTL for short) is a theorem only in our approach
and not an axiom.

Theorem 2.5. (no faster-than-light motion) Assume Specrel0.

(i) No observer can move with the speed of light, i.e. vm(k) 6= 1 for all
observers m, k.

(ii) Assume n ≥ 3. Then vm(k) < 1 for all observers m, k, i.e. if n > 2
then no observer can move faster than light. If n = 2, then vm(k) > 1
for some observers m, k is possible.

For proof see e.g. [AMN99, Prop. 1, Thm. 3], [Mad02, 2.3.5, 2.8.25, 3.2.13],
[MNT04, Thm. 3, Thm. 5]. A proof can also be reconstructed from the
proof of Thm. 2.8, p. 39.

For a conceptual analysis of the above No FTL theorem we refer to
Sec. 2.7. There we will address the question “why No FTL?”, e.g. which
parts of Specrel0 are responsible for No FTL, etc.

In Newtonian Kinematics, NK, spatial distance of events is not absolute
(e.g. two events that took place in the dining car of a moving train at different
times, took place at different places for someone not on the train), but the
time elapsed between two events is the same for any two observers, moving
relative to each other or not. Thm. 2.4(ii) says that in SRK the time elapsed
between two events is not absolute, either. In this respect, SRK is a more
symmetric theory than NK. But is there anything left that the observers see
the same way? Curiously, a “mix” of time and space does remain absolute
(as opposed to being relative like time and space are).

Theorem 2.6. (relativistic distance) Assume Specrel and n ≥ 3, and let
m, k be observers, e, e′ be events. Then

timem(e, e′)2 − spacem(e, e′)2 = timek(e, e
′)2 − spacek(e, e

′)2.

The above theorem is the starting point for building Minkowski geome-
try, which is the “geometrization” of SRK. It also indicates that time and
space are intertwined in SRK.

Let us denote the quantity that is the same for all observers as stated in
Thm. 2.6 above by

µ(p, q) := time(p, q)2 − space(p, q)2 .
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The letter µ refers to Minkowski distance (also called relativistic dis-
tance ). We will see that every coordinate property that the observers
observe the same way about events (in a model of Specrel) can be de-
fined from this relativistic distance µ (Cor. 2.4). More importantly, the
whole structure M can be retrieved from relativistic distance µ (provided
we disregard irrelevant properties of observers and photons like e.g. “there
are several distinct photons on ph’s worldline”). This means that we can re-
define photons, observers, and even the field-operations on quantities Q from
knowing only relativistic distance µ (Thm. 2.11). This indicates that there is
an “ observer-independent reality ” which is behind the different worldviews
of the observers. This observer-independent reality is often called “objec-
tive” or absolute (as opposed to being “subjective” or relative like relative
motion). We will explore these ideas in Sec. 2.6.

2.5 Explicit description of all models of Specrel, basic logical
investigations

An advantage of having axiomatic theories is that we can use the benefits
of the well-developed syntax-semantics duality of first-order logic. Namely,
if we want to check whether a formula ϕ follows from Specrel, instead of
making a rigorous syntactic derivation, we can check whether in all models
of Specrel the formula ϕ holds or not. Specifically, we can prove that ϕ
does not follow from Specrel by exhibiting a model of Specrel in which
ϕ fails. In this subsection we give an explicit description of all models of
Specrel and Specrel0. Based on this, then we will give a sample of logical
investigations such as consistency, completeness, categoricity, decidability,
and independence of axioms.

Thm.s 2.3-2.5 in the previous subsection provide all the important in-
gredients for describing the models of our theories Specrel0 and Specrel.
The “heart” of this description is the description of the so-called worldview
transformations. Let m, k be observers. The worldview transformation
wmk relates the worldview of m with that of k, it relates those space-time
locations where m and k observe the same events. I.e.

wmk := {〈p, q〉 ∈ Qn × Qn : evm(p) = evk(q)}.

The worldview transformation is defined to be a binary relation on space-
time locations, but under very mild assumptions it is a transformation of Qn

indeed and evk = evm ◦ wkm, hence the name “worldview transformation”.
(Here, and later, f ◦ g denotes the composition of functions f and g, i.e.
(f ◦g)(x) = f(g(x)).) In fact, the worldview transformation wmk : Qn → Qn
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is the natural coordinate-transformation between the coordinate systems of
m and k. It shows how the worldview of one observer m is distorted in the
eye of another observer k.

Thm.s 2.3, 2.4 give quite a lot of information on the worldview transfor-
mations in models of Specrel. They imply that wmk is a Lorentz transfor-
mation as defined below, up to a suitable choice of coordinate directions.

It will be convenient to use the so-called unit-vectors. Let 1 ≤ i ≤ n.
The i-th unit-vector is

1i := 〈0, . . . , 0, 1, 0 . . . , 0〉 where the 1 stands in the i-th place.

We will also use the names 1t,1x,1y,1z for the first four unit-vectors.

From now on we fix a quadratic ordered field Q = 〈Q,+, ∗,≤〉.

Definition 2.1. (Lorentz transformation) Let −1 < v < 1, v ∈ Q. By the
Lorentz transformation (or boost) of velocity v and over Q we understand
a linear mapping f : Qn → Qn for which

f(1t) = 〈1/
√

1 − v2, v/
√

1 − v2, 0, . . . , 0〉,

f(1x) = 〈v/
√

1 − v2, 1/
√

1 − v2, 0, . . . , 0〉, and

f(1i) = 1i for all 3 ≤ i ≤ n.

Fig. 17 illustrates Lorentz transformations. A Lorentz transformation as a
coordinate transformation usually is written as

t′ = (t − vx)/
√

1 − v2, x′ = (x − vt)/
√

1 − v2, y′ = y, z′ = z.

The usual Newtonian (or Galilean) coordinate transformation is t′ = t, x′ =
x − vt, y′ = y, z′ = z. Comparing the two transformations reveals that in
SRK time and space are treated in a symmetric way, while in NK they are
treated differently. In the formula for Lorentz transformations, the divisors
/
√

1 − v2 represent time-dilation and length-contraction, while “t − vx” in
place of “t” in the first part represents “getting out of synchronism”.

By a space-isometry (over Q) we understand a Euclidean isometry (i.e.
a mapping that preserves Euclidean distance between space-time locations)
which takes the time-axis to a line parallel to the time-axis. These are affine
mappings, i.e. linear mappings composed with translations.

Theorem 2.7. (description of worldview transformations of Specrel) Assume
n ≥ 3, let Q = 〈Q,+, ∗,≤〉 be a quadratic ordered field and let f : Qn → Qn.
The following are equivalent.
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(i) f is a worldview transformation in a model of Specrel with field-reduct
Q.

(ii) f = σ ◦ λ ◦ σ′ for some Lorentz transformation λ and space-isometries
σ, σ′ (over Q).

(iii) f is a bijection and preserves relativistic distance, i.e.
(∀p, q ∈ Qn)µ(p, q) = µ(f(p), f(q)).

On the proof. (i)⇒(ii): By Thm. 2.3(i) we know that wmk is like a Lorentz
transformation on the “ plane of motion ”, i.e. on the vertical plane contain-
ing wlinem(k), and it takes the subspace of Qn orthogonal to this plane to it-
self, by Thm. 2.3(ii). AxSim then states that wmk is a Euclidean isometry on
this orthogonal subspace. The proof of (i)⇒(ii) from here on is not difficult.
(ii)⇒(iii): A possibility for proving this is that one checks by a computation
that both space-isometries and Lorentz transformations preserve relativistic
distance. However, we would like to provide more insight here concerning
(ii)⇒(iii). Namely, showing that Lorentz transformations preserve lines of
slope 1 (i.e. that they preserve µ(p, q) = 0) is the most important step in
proving that Specrel is consistent. Fig. 18 illustrates a non-computational,
geometric proof for this crucial part of the proof. (iii)⇒(i): If f preserves
µ, then f preserves lines of slope 1, preserves lines of slope < 1, and also
“it satisfies AxSim”. The rest follows from the construction we give after
Thm. 2.8.

By a space-dilation (over Q) we understand a Euclidean dilation (i.e.
a mapping that “dilates” Euclidean distances between space-time locations
with a given ratio r ∈ Q) and takes the time-axis to a line parallel to the
time-axis. These are affine mappings. By a field-automorphism-induced
mapping over Q we understand the natural extension of an automorphism of
Q to Qn. These are not necessarily affine mappings, but they are collineations ,
i.e. they take straight lines to straight lines.

Theorem 2.8. (description of worldview transformations of Specrel0) As-
sume n ≥ 3, let 〈Q,+, ∗,≤〉 be a quadratic ordered field and let f : Qn → Qn.
The following are equivalent.

(i) f is a worldview transformation in a model of Specrel0.

(ii) f = δ ◦ λ ◦ δ′ ◦ α for some Lorentz transformation λ, space-dilations
δ, δ′, and field-automorphism-induced mapping α.
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Figure 18: The Light Axiom states that if we switch on a light source for a moment, we
will observe a light-sphere expanding away from us with the speed of light, and that we
are all the time in the center of this light-sphere. Assume that observers m, k are present
in the event of switching on the light source and that they are moving relative to each
other. Then both observers m and k have to observe that they are in the center of the
photon-sphere! How is this possible? This figure illustrates how. Let x be in the direction
of movement of k in m’s worldview, and let y be any spatial direction orthogonal to x. The
expanding light-sphere in space-time when concentrating on the 3-dimensional subspace
determined by t, x, y is a cone. k’s plane of simultaneity is tilted just so that k is in the
center of the ellipse that is the intersection of this plane with the light-cone. For this, the
“long axis” of the ellipse is tilted just the amount that it is symmetric to the worldline of
k (w.r.t. a photon-line as in Fig. 17), and the “small axis” of the ellipse is parallel with y.
This implies “k’s clocks getting out of synchronism” (Thm. 2.3). The time-unit 1

k

t of k
is on k’s worldline exactly so “high” that the length of the “short axis” of the ellipse is 1,
when AxSim is true (and arbitrary otherwise). This implies that k’s time flows slowly as
seen by m when AxSim is true. (Paradigmatic effects in Thm. 2.4!) The other space-unit
1

k

x of k is chosen so that the length of the “long axis” of the ellipse counts as 1, too. With
this choice of the units of measurement, k sees the ellipse as a circle, hence k thinks that
he is in the center of the light-cone. There is enough room for everyone in the center of
the expanding lightsphere!
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(iii) f is a bijection and preserves relativistic distance 0, i.e.
(∀p, q ∈ Qn)[µ(p, q) = 0 iff µ(f(p), f(q)) = 0].

On the proof. (ii)⇔(iii) is a variant of the Alexandrov-Zeeman theorem,
see e.g. [Gol87, App. 2]. (i)⇒(iii) follows from AxPh, and (ii)⇒(i) follows
from the construction we give soon, because (ii) implies that f preserves
lines of slope 1 and lines of slope < 1.

Remark: We could have proved Thm.s 2.3 - 2.5 by first deriving the prop-
erties of the worldview transformations as in Thm.s 2.7, 2.8, and then
deriving the paradigmatic effects (i)-(iii) from their properties. We think
that deriving the predictions of relativity theory directly from the axioms is
more illuminating. For the student, Lorentz transformations appear as non-
observation oriented theoretical constructions not explaining why we are
doing what we are doing. In our approach, stating the axioms in Specrel
and then deriving the three paradigmatic effects motivate the introduction
of Lorentz transformations. In some sense, Specrel can be considered as an
“implicit definition” of the Lorentz transformations.

We now turn to an exhaustive description of all models of Specrel0
and Specrel.

Given an arbitrary quadratic ordered field Q, let PLines and TLines
denote the set of all straight lines in Qn of slope 1 and of slope < 1, respec-
tively. Let WT denote the set of all transformations of Qn which preserve
both PLines and TLines. Then WT forms a group, and Thm. 2.8 describes
the members of WT.

Consider M = 〈Q; B, Ob, Ph; W 〉 |= Specrel0 in which Ob 6= ∅. Then
Ph and Ob are disjoint, by Thm. 2.5(i). We let

B1 := B − (Ph ∪ Ob).

In the discussion below we will see that (after having chosen Q), the
“heart” of a Specrel0 model is a subgroup WT0 ⊆ WT such that {f−1[ t ] :

f ∈ WT0} = TLines. Here f [H] := {f(a) : a ∈ H} for any function f

and subset H of the domain Dom (f) of f , as usual. Having chosen the
heart WT0 of our model, we still have to decorate it with “observer names”
(Ob), “photon names” (Ph), and with extra bodies B1 not necessarily in
Ob ∪ Ph. This decorating or labelling gives rise to an extra plurality of
(nonisomorphic) possible models for Specrel0 in addition to the possible
choices of WT0. (These choices will be formally specified in items (i)-(v)
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below.) Below we present the details giving precise meanings to what we
understand by the above, e.g. by “labelling”, “heart” etc. The reader not
interested in the details might skim over them just to have an impression
and continue serious reading with Cor. 2.2.

Let us return to our M = 〈Q; B, Ob, Ph; W 〉 |= Specrel0. For any
observer m ∈ Ob let us define the “ worldview of m ” as a structure

wm := 〈Qn, wlinem(b) : b ∈ B〉

where Qn is the carrier set and wlinem(b) is a one-place relation (or unary
predicate) with relation symbol b (denoting this subset of Qn) for each b ∈ B
(recall that wlinem(b) ⊆ Qn, and cf. Fig. 1 on p.7). The set of all worldviews
contains exactly the information content of W ∩ Ob × B × Qn. Let W1 :=
W − Ob × B × Qn. When we want to define a model of Specrel0, we have
to define the 6-place relation W . Instead of defining W directly, often it is
easier to define the set of worldviews along with W1.

All these worldviews are isomorphic with each other, actually the world-
view transformations are isomorphisms between the worldviews, i.e. wmk :
wm → wk is an isomorphism for any m, k ∈ Ob, by the definition of wmk.
What do the worldviews wm look like? The carrier set is Qn, the photons are
distributed surjectively on the PLines by AxPh; the observers are distributed
surjectively on the TLines by AxLine, AxThEx, Thm. 2.5; wlinem(m) = t by
AxSelf. Instead of specifying all the worldviews one-by-one, we can specify
one “Platonic” (or generic) worldview

P := 〈Qn, π(b) : b ∈ B〉, where

π ↾ Ph : Ph ։ PLines is surjective,

π ↾ Ob : Ob ։ TLines is surjective, and

π ↾ B1 : B1 → {Y : Y ⊆ Qn},

and then for each observer m ∈ Ob we can specify an element of WT which
describes how m realizes this Platonic worldview, i.e. we specify a function

w : Ob → WT such that w(m)[π(m)] = t;

and then we define wm as the image of P by the function w(m). The
information content of π ↾ Ob : Ob ։ TLines can be recovered from this last
function w (by π(m) = w(m)−1[ t ]), so we may skip specifying π ↾ Ob.

With the above intuition in mind, we can construct a model of Specrel0
by specifying a quintuple 〈Q, w, π, β, W1〉 with the following properties:
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(i) Q is a quadratic ordered field,

(ii) w, π, β are functions with disjoint domains Ob, Ph, B1 respectively,

(iii) w : Ob → WT is such that {w(m)−1[t] : m ∈ Ob} = TLines,

(iv) π : Ph ։ PLines is surjective,

(v) β : B1 → {Y : Y ⊆ Qn}, and W1 ⊆ (B1∪Ph)×(B1∪Ph∪Ob)×Qn.

Let us call a quintuple satisfying the above conditions a pre-model . From
any pre-model 〈Q, w, π, β, W1〉 we can construct a model of Specrel0 by
defining

M(Q, w, π, β, W1) := 〈Q; B, Ob, Ph; W 〉 where

Ob := Dom(w), Ph := Dom(π), B := Dom(β) ∪ Ob ∪ Ph; and W is
defined the natural way

W := {〈m, b, p〉 : p ∈ w(m)[β(b)], m ∈ Ob} ∪ {〈m, ph, p〉 : p ∈ w(m)[π(ph)],
m ∈ Ob} ∪ {〈m, k, p〉 : p ∈ w(m)[w(k)−1[t]], m ∈ Ob} ∪ W1.

It can be checked that all models constructed from pre-models are models of
Specrel0; and conversely, all models of Specrel0 with nonempty observer-
part arise this way from pre-models.

We described the models of Specrel0 with Ob 6= ∅. The description
when Ob = ∅ is easy. The description of the models of Specrel is exactly

like above with the only change that in place of WT we use its subset WT+

characterized in Thm. 2.7.

Corollary 2.2. (Consistency) Specrel is a consistent theory, i.e. for no for-
mula ϕ can both ϕ and its negation ¬ϕ be derived from Specrel. Moreover,
Specrel + (Ob 6= ∅) is also consistent.

Proof. To construct a model of Specrel + (Ob 6= ∅) we have to show that
there exists at least one pre-model 〈Q, w, π, β, W1〉 with w : Ob → WT+. Of
the conditions (i)-(v) in the definition of a pre-model, only condition (iii) is
not trivial to satisfy. However, Thm. 2.7(ii) shows that for all ℓ ∈ TLines
there is w ∈ WT+ which takes t to ℓ, and we are done.

Cor. 2.2 above completes justification of the move NK 7→NK−. It shows
that by this move, we indeed got rid of all contradictions between NK and
the Light Axiom.
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Having a description of all models of Specrel and Specrel0 at hand
makes it easy to see which statements follow from Specrel and Specrel0
and which do not. As an example we include the following.

Corollary 2.3. Let n ≥ 3. Specrel ⊢ (∀m, k ∈ Ob)vm(k) = vk(m) while
Specrel0 6⊢ (∀m, k ∈ Ob)vm(k) = vk(m).

Hint for proof. Field-automorphism-induced mappings α can occur in
worldview-transformations in models of Specrel0, but not in models of
Specrel.

Theorem 2.9. (independence of the axioms) Assume n ≥ 3.

(i) (Specrel0 − {AxLine, AxThEx}) ⊢ AxLine.

(ii) Specrel−{AxLine} is an independent axiom system, i.e. (Specrel−
{Ax}) 6⊢ Ax for any element Ax in Specrel different from AxLine.

(iii) Every model of Specrel0 − {AxThEx} can be extended to a model of
Specrel0. Hence if formula η is universally quantified in the sort B
and Specrel0 ⊢ η, then (Specrel0 − {AxLine, AxThEx}) ⊢ η. The
same holds for Specrel in place of Specrel0.

By Thm. 2.9(iii) above, all our paradigmatic effects can be proved in
the more economical fragment Specrel − {AxLine, AxThEx} of Specrel.
(This is so because the paradigmatic effects can be reformulated as sen-
tences universally quantified in sort B, by using Thm. 2.1.) On the other
hand, Thm.s 2.3, 2.4 do not hold if we omit any one of the axioms of
Specrel0−{AxLine, AxThEx}, and Thm. 2.4 does not hold if we omit AxSim.
Such investigations of economy asking which axioms are needed for prov-
ing what theorem are called “reverse relativity theory” motivated by the
highly successful branch of mathematics called “reverse mathematics” and
is pursued in [AMN02]. We will return to this important subject in Sec. 2.7.

Specrel has many non-elementarily equivalent models over any quad-
ratic ordered field. We show that Specrel can be extended to a theory
Specrel ∪ Comp which is categorical over any quadratic ordered field, it
can be extended to a complete and decidable theory, and Specrel can also be
extended to a hereditarily undecidable theory. Both extensions are natural.
(Cf. Thm. 2.10 below.)

Recall that from any pre-model 〈Q, w, π, B1, W1〉 we can construct a
model of Specrel0. The most natural pre-models for Specrel are 〈Q, Id ↾

WT+, Id ↾ PLines, ∅, ∅〉. We will call the models constructed from these
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standard models for Specrel. Thus, in the standard models we include
all the possible kinds of observers, but otherwise we are as “economic” as
possible. There is exactly one standard model of dimension n over any
quadratic ordered field Q. We are going to give a complete axiom system
for these standard models.

AxCoord (∀m ∈ Ob)(∀ space-isometry S of Qn)(∃k ∈ Ob)wmk = S.

AxExtob (∀m, k ∈ Ob)(wmk = Id → m = k).

AxExtph (∀ph, ph′∈Ph)(∀m∈Ob)(wlinem(ph) = wlinem(ph′) → ph = ph′).

AxNobody B = Ob ∪ Ph and W ⊆ Ob × B × Qn−2 .

Comp := {AxCoord, AxExtob, AxExtph, AxNobody}.

The above are natural axioms which hold in all standard models of Specrel.
AxCoord expresses that each observer can “re-coordinatize” his worldview
with a space-isometry. There is a quantifier ranging over space-isometries
in this formula. Nevertheless, this axiom can be expressed with a first-order
logic formula because space-isometries are affine mappings and hence can be
“coded” with the images of the n unit-vectors 1i. The next two axioms in
Comp say, intuitively, that of each kind of observers and photons we have
only one copy (or, in other words, according to Leibniz’s principle, if we
cannot distinguish two observers or photons with some observable proper-
ties expressible in our language, then we treat them as equal). Hence we call
them extensionality principles, whence the abbreviation AxExt. The example
of AxExtph reveals that here we consider only space-time-oriented properties
of photons, hence two photons of different “color” but same worldline are
not distinguished in the theory Comp. AxExtob also expresses that we re-
ally identify observers with coordinate systems. These axioms are natural
to assume, we did not include them in Specrel because these “simplifying
axioms” are not needed for proving the theorems. The last axiom in Comp
says that every body is an inertial observer or photon. This is a real restric-
tion that we usually do not want to make when we use AxLine. The main
reason is that we can treat accelerated observers in Specrel if we do not
make this restriction AxNobody, see Sec. 3.1. Treating accelerated observers
in Specrel is important for the transition from special relativity theory to
general relativity theory, as we shall see. AxNobody excludes accelerated
bodies. So we do “pay a physical price” for assuming AxNobody.
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By a theory we understand an arbitrary set of first-order logic formulas
(i.e. we will not assume that a theory contains all its semantical conse-
quences). We call a theory Th decidable (or undecidable respectively) if
the set of all first-order logic semantical consequences of Th is decidable (or
undecidable respectively). We call Th complete if it implies either ϕ or ¬ϕ
for each first-order logic formula ϕ without free variables (of its language).
It is known that the theory of quadratic ordered fields is undecidable. A
quadratic ordered field is called real-closed if every polynomial of odd de-
gree has zero as a value. This last requirement can be expressed with the
infinite set RC := {φ2n+1 : n ∈ ω} of first-order logic formulas, where φn

denotes the following sentence

∀x0 . . .∀xn∃y(xn 6= 0 → x0 + x1 · y + · · · + xn · yn = 0).

Tarski proved that the theory of real-closed fields is complete and decidable
(cf., e.g., [Hod93, Thm. 2.7.2, p. 67, p. 92]). The above suggests that if we
want to obtain interesting and relevant decidability-theoretic results, then
we have to concentrate on real-closed fields; or at least include a decidable
theory of field-axioms into our theories.

Theorem 2.10. Let n ≥ 3.

(i) The models of Specrel ∪ Comp are exactly the models isomorphic to
standard ones.

(ii) Specrel ∪ Comp ∪ TF is complete and decidable, for any complete,
decidable theory TF of quadratic ordered fields.

(iii) Specrel∪(Comp−{Ax})∪RC can be extended to a hereditarily unde-
cidable theory Th for any Ax ∈ Comp, in the sense that no consistent
extension of Th is decidable.

For proof of Thm. 2.10 and for related results we refer to [AMN99, §7],
[AMN04, §7].

In the standard models of Specrel there is no orientation for time , “re-
versing time” is an automorphism of these models. In relativity theory, both
special and general, we sometimes use the fact that “time has a direction”,
i.e. that Ax↑ below is assumed.

Ax↑ (∀m, k ∈ Ob)(∀p, q ∈ t)[ (vm(k) < 1∧pt ≤ qt) ⇒ wkm(p)t ≤ wkm(q)t ] .
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Axiom Ax↑ expresses that every observer sees the time of another slowly
moving observer “flow forwards”, i.e. m sees k’s clocks ticking “forwards”
and not “backwards”. All our theorems so far are true for Specrel + Ax↑
in place of Specrel with minor modifications.

2.6 Observer-independent geometries in relativity theory;
duality and definability theory of logic

According to the approach taken so far, each observer observes the world
through the “looking-glass” or “spectacles” of his own coordinate system.
The question comes up: Is there an observer-independent, “absolute” reality
which the individual observers observe through their respective coordinate
systems, or is the set of worldviews of the different observers just an ad-hoc
collection of subjective personal views? (The philosophy of subjective ideal-
ism contra the assumption of the existence of an objective external world.)
We will see that relativistic space-time (or relativistic geometry) provides
such an observer-independent reality. Namely, in the present subsection
we show that the observers (and their coordinate systems) can be defined
from relativistic distance µ as defined at the end of Sec. 2.5, in models of
Catrel := Specrel ∪ Comp. If we regard the worldviews of the various
observers as “subjective” (in some sense), then µ is “objective” in the sense
that µ is the same for all observers, in Specrel. Thus relativistic distance
µ provides such an observer-independent, absolute reality. This statement
will be made more tangible in the definition of the observer-independent
geometry Mg(M) associated to Specrel models M below.

We already saw that in models of Specrel0, all observers observe the
same events. Let Events denote the set of events observed by some (or
equivalently by each) observer,

Events := {evm(p) : m ∈ Ob, p ∈ Qn}.

In models of Specrel, we can define relativistic distance µ of events, by
Thm. 2.6, as

µ(e, e′) := µ(locm(e), locm(e′)), for any observer m ∈ Ob.

Relativistic distance of events is a function µ : Events× Events → Q. Given
M |= Specrel we define its metric-geometry (or Minkowski geometry )
Mg(M) as a two-sorted structure as follows:

Mg(M) := 〈Events, µ; Q, 1〉.
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Mg(M) is also referred to as the space-time of M. The two sorts of Mg(M)
are Events and Q; µ is a function of sort Events × Events → Q and 1 is a
constant of sort Q. We want to state a strong equivalence between Mg(M)
and M. These two structures have different vocabularies (or signatures, or
languages).

The part of logic that connects structures and theories on different vo-
cabularies is called definability theory. The strongest kind of connection be-
tween two theories is definitional equivalence of theories. When two theories
are definitionally equivalent, we say that they are lexicographical variants of
the same theory, the only difference being that they use different concepts of
the theory as basic ones. We will need definitional equivalence of first-order
logic theories on vocabularies that have different sorts (or universes), hence
the definitionally equivalent models will have different kinds of universes.
This amounts to defining new “entities” in a model, not only new relations
or functions on already existing entities as in “standard” one-sorted defin-
ability theory of first-order logic. Definability of new sorts is important in
the kind of definability that arises in relativity theory; therefore we worked
out such a definability theory in [AMN02, §6.3] and [Mad02, §4.3]. Below
we recall the elements of definability theory that we are going to use.

Let L be a vocabulary, possibly many-sorted, and let L′ be an expan-

sion of L , i.e. L′ may contain new sorts, and new relation and function

symbols. The L-reduct of a structure M′ on vocabulary L′ is the obvious
thing (we “forget” the interpretations of symbols not in L). Let Th and
Th′ be theories on vocabularies L and L′, respectively. We say that Th′ is
a definitional expansion of Th iff the following (i)-(ii) hold:

(i) The models of Th are exactly the L-reducts of models of Th′.

(ii) For any two models M1 and M2 of Th′ with the same L-reduct there
is a unique isomorphism between M1 and M2 that is the identity on
this common reduct.

Let Th1 and Th2 be arbitrary theories (possibly on completely differ-
ent vocabularies). We say that Th1 and Th2 are definitionally equivalent
when they have a joint definitional expansion Th3. (More precisely, defini-
tional equivalence is the transitive closure of the notion just defined. In this
subsection we will not need to take transitive closure.)

Intuitive explanation for definitional equivalence of theories: By “Th′

is a definitional expansion of Th” we mean that each sort, relation and
function in the vocabulary of Th′ that is not present in the vocabulary of
Th is actually defined in Th′ in the following sense. Properties (i)-(ii) above
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express that we consider a new relation (i.e. one in L′ but not in L) on an
existing sort as defined (in Th′) if it can be “put” on every model of Th
in a unique way so that it satisfies Th′, and we consider a new sort (and
relations on it) as defined if it can be added to each model of Th in a unique
way, up to a unique isomorphism.

In definability theory of logic, there are a semantical and a syntactical
approach to definability, and of course the interesting thing is to state their
equivalence (this is Beth’s theorem in the usual definability theory of first-
order logic). We presented here the notions of the semantic approach; when
Th′ is a definitional expansion of Th we can say that Th′ is an “implicit, or
semantical definition” of the symbols not occurring in Th. In [AMN02, §6.3]
and [Mad02, §4.3] we worked out the “syntactical” counterpart of this defin-
ability, i.e. we gave concrete prescriptions for what an “explicit, syntactical
definition” of a new element of the vocabulary can look like. Then we proved
the analogue of Beth’s theorem (stating that a new element of the vocabulary
has an implicit definition exactly when it has an explicit definition). When
two theories are definitionally equivalent, there is a computable meaning-
preserving translation function between their languages (see [Mad02, 4.3.27
and 4.3.29]). For more on definability theory we refer to e.g. [Mak93].

We now proceed to state definitional equivalence between theories occur-
ring in relativity theory. From now on, in the present subsection, we assume
n ≥ 3.

The formula µ(p, q) = (p1− q1)
2− (p2− q2)

2−· · ·− (pn − qn)2 is referred
to as the (squared) Minkowski metric and the structure 〈Qn, µ; Q, 1〉 is
the (metric) Minkowski geometry over Q. For a class K of structures, IK
denotes the class of all structures isomorphic to elements of K.

Theorem 2.11. (definitional equivalence between metric-geometries and Catrel
models) Assume n ≥ 3.

(i) Catrel is definitionally equivalent to the first-order logic theory of its
metric-geometries, i.e. Catrel and Thm in (ii) below are definitionally
equivalent.

(ii) I{〈Events, µ; Q, 1〉 : M |= Catrel } =: MG is axiomatizable by finitely
many formulas, i.e. there is a finite axiom system Thm such that MG
is the class of all models of Thm .

(iii) I{〈Qn, µ; Q, 1〉 : Q is a quadratic ofield } = MG. I.e., the class of
Minkowski geometries (over quadratic ordered fields) coincides with
the class of metric-geometric models of Catrel.
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Outline of proof. (i): We define a joint definitional expansion Th3. The
vocabulary of Th3 contains all the symbols occurring either in Specrel or in
Mg(M), plus one new n + 2-place relation symbol J of type B × Eventsn+1.
Let M = 〈Q, +, ∗,≤; B, Ob, Ph; W〉 |= Specrel0 be given, and define

JM := {〈m, evm(0), evm(1t), . . . , evm(1n)〉 : m ∈ Ob} ∪
{〈ph, e1, . . . , en+1〉 : ph ∈ Ph, e1, . . . , en+1 ∈ Events,
ph ∈ e1, . . . , ph ∈ en+1}, and the expansion of M

F (M) := 〈Q, +, ∗,≤, 0, 1; B, Ob, Ph; Events, µ; W, JM〉,

Th3 is the set of all formulas valid in {F (M) : M |= Catrel}.
Clearly, JM gives an “interpretation” of observers and photons in Events, and
so makes a connection between the two “alien” sorts B and Events. The fol-
lowing are the main ideas in showing that Th3 is a definitional expansion of
Thm (the theory of metric-geometries of Catrel). We have Events, µ, Q, 1 at
our disposal and we have to “define” (or recover) +, ∗,≤, 0, B, Ob, Ph, W, J .
First we define 0 := µ(e, e), then we define “lightlike collinearity” on Events
by using µ as follows: e1, e2, e3 are lightlike collinear iff µ(ei, ej) = 0 for
all i, j = 1, 2, 3. From lightlike collinearity then we define usual collinearity
as in the proof of the Alexandrov-Zeeman theorem in [Gol87, App. 2], or
in [AMN99], [AMN04]. For the idea of this part of the proof see Fig. 19.
A proof for (a generalization of) the Alexandrov-Zeeman theorem using
a different, elegant idea is in [Hor05]. A definability-theoretic analysis of
the Alexandrov-Zeeman theorem in an axiomatic setting can be found in
[Pam06]. From collinearity and 0, 1, µ we define the field-operations +, ∗
by using Hilbert’s coordinatization technique (see e.g. [Gol87, pp. 23-27] or
[AMN02, §6.5.2]). Since the original field was quadratic and ordered, we
can recover the ordering ≤, too. From collinearity and µ we can define the
so-called relativistic (or Minkowski) orthogonality relation (see Fig. 22), and
from µ again then we can define the n + 1-tuples of events 〈e0, e1, . . . , en〉
that correspond exactly to 〈evm(0), evm(1t), . . . , evm(1n)〉 for some observer
m by requiring that µ(e0, ei) = 1 and e0, ei is orthogonal to e0, ej for all
i, j = 1, . . . , n, i 6= j. We can use these to define Ob, Ph, B, J and W. In
the above we made use of the fact that all the constructions can be tracked
with first-order logic formulas. Showing that Th3 is a definitional expansion
of Catrel is the easier direction, for a proof see [Mad02, p. 241]. (ii): In
the above construction, we defined the operations of Catrel by using µ, 1,
thus we can express the finitely many axioms defining Catrel by using µ, 1
and we are done. (iii): The functions evm and locm define isomorphisms
between the structures 〈Qn, µ; Q, 1〉 and 〈Events, µ; Q, 1〉.
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From the proof of Thm. 2.11 we actually can construct a finite theory
Thm axiomatizing the metric-geometries MG. This Thm, however, is com-
plicated and not really illuminating. It would be nice to find a streamlined,
finite axiom system Th axiomatizing MG which contains few and easy-to-
understand, illuminating axioms about µ, 1.

pp

ℓ ℓ

P = Plane(ℓ, p) Plane(ℓ, p) 6= P

Figure 19: Collinearity can be defined from lightlike collinearity, as follows.
Assume n = 3. Given a lightline ℓ, the plane P tangent to the light-cone
and containing ℓ is the set of those points p through which no lightline
intersecting ℓ goes. The reason for this is illustrated in the two parts of the
figure. Then we get all spacelike lines as intersections of tangent planes.
Then each timelike plane can be defined by a pair of intersecting lightlines
and the spacelike lines connecting them; timelike lines then are the “new”
intersections of timelike planes. In the above, spacelike, timelike lines, and
lightlines are straight lines that lie outside, inside, and on the light-cone,
respectively. A plane is timelike if it contains a timelike line. The case
n > 3 is similar.

We called a property absolute if every observer “sees” it the same way.
This “absolute” means also “observer-independent” or “coordinate-independent”.
Thm. 2.6 states that relativistic distance µ is such an absolute property.
Clearly, every formula expressible by the use of µ, 1 is absolute, too. The
corollary below says that these are all the absolute coordinate properties of
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events, in Specrel. By a coordinate property of events we understand a
property expressible in terms of the coordinates locm(e) of events e; more
concretely by a coordinate property of events e1, . . . , er we understand a for-
mula either in the form (∀m ∈ Ob)ψ(locm(e1), . . . , locm(er)) or in the form
(∃m ∈ Ob)ψ(locm(e1), . . . , locm(er)) where ψ is a formula in the vocabulary
of the field-reduct 〈Q,+, ∗,≤〉n.

Corollary 2.4. Every relation definable (in FOL) on Events in a model of
Catrel can be defined from µ and 1. Every coordinate-property of events in
a model of Specrel can be defined from µ and 1.

Thm. 2.11 can be interpreted as saying that metric-geometries are the
observer-independent, “absolute realities” corresponding to models of Specrel.
If we abstract from the concrete values of the metric-properties in the metric-
geometries, we get the so-called causal-geometries, to be defined below.
These correspond to the “absolute realities” of models of Specrel0. We
are going to elaborate these ideas.

Let us call events e, e′ causally separated , in symbols e ∼c e′, iff there
is either an observer or a photon that participates both in e and in e′, i.e.
iff e ∩ e′ ∩ (Ob ∪ Ph) 6= ∅. We call two space-time locations p, q ∈ Qn

causally separated, in symbols p ∼c q, iff time(p, q) ≥ space(p, q), i.e. iff
(p1 − q1)

2 ≥ (p2 − q2)
2 + · · · + (pn − qn)2. Visually, p ∼c q means that

q is inside or on the light-cone emanating from p. In Specrel0 we have
〈Events,∼c〉 ∼= 〈Qn,∼c〉, in fact locm and evm are isomorphisms between
these structures, for any m ∈ Ob.

Let M |= Specrel0 and define its causal-geometry as

Cg(M) := 〈Events,∼c〉.

Ants and elephants may use different units of measurement (e.g., their
feet). The following axiom expresses that we abstract from the value of
the units of measurement. We do so by requiring that all kinds of units of
measurement be there. (In connection with the intuition/philosophy related
to the following “ant-elephant” axiom cf. the Incredible Shrinking Man in
[Nic82, pp. 194-5].)

AxDil (∀m ∈ Ob)(∀λ > 0)(∃k ∈ Ob)(∀p ∈ Qn)wmk(p) = λp.

Catrel0 := Specrel0 ∪Comp∪ {AxDil} = Catrel− {AxSim} ∪ {AxDil}.

Assume M |= Catrel0. Then every part of M can be recovered from Cg(M),
except 0 and 1. By this we mean that B, Ob, Ph, W, Q,≤ all can be defined
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(or recovered) from Cg(M), but instead of +, ∗, which are not definable, we
can define their affine ternary versions +3, ∗3 where

+3(x, y, z) := x + y − z, ∗3(x, y, z) := x ∗ y/z.

Alternately, M can be defined over Cg(M) parametrically only, i.e. if we
add two (arbitrary) constants to Cg(M). So we have here an analogue
of Thm. 2.11 working between Catrel0 and its causal-geometries of form
Cg(M). In particular, M and Cg(M) are definitionally equivalent in the
parametric sense of definability.

Instead of stating the precise analogue of Thm. 2.11 for this intimate
connection between causal-geometries and Catrel0, we turn to the question
of what the definable relations in causal-geometries are.

Algebraic logic is a branch of logic that investigates the structure of the
definable concepts in a theory, or in a model of a theory. Let us consider
Cg(M) for an arbitrary M |= Catrel0. The definable relations in Cg(M)
are exactly those absolute properties of events which do not involve concrete
values of the metric µ. We will call these relations causal-relations .

The unary (i.e. one-place) causal-relations are Events and ∅. What are
the binary (i.e. two-place) causal-relations?

We call events e, e′ timelike (lightlike, spacelike) separated , in sym-

bols e ∼t e′ (e ∼ℓ e′, e ∼s e′) iff [e 6= e′ and e ∩ e′ ∩ Ob 6= ∅ (e ∩ e′ ∩
Ph 6= ∅, e ∩ e′ ∩ (Ob ∪ Ph) = ∅, respectively)]. On the “coordinate-side”,

we call space-time locations p, q timelike (lightlike, spacelike) separated ,

in symbols p ∼t q (p ∼ℓ q, p ∼s q) iff [p 6= q and time(p, q) > space(p, q)
(time(p, q) = space(p, q), time(p, q) < space(p, q), respectively)]. These are
corresponding properties via the bijections locm and evm for m ∈ Ob, as
before.

Timelike, lightlike, and spacelike separability of events are all causal-
relations, i.e. they can be defined from ∼c. In fact, all these four relations
can be defined from each other.

Below we sketch how ∼t can be defined from ∼c. The argument is
easier to follow in the isomorphic structure 〈Qn,∼c〉. The points causally
separated from a point x are in the “solid” light-cone emanating from x. This
light-cone consists of two separate parts, the “upward” and the “downward”
parts. We cannot distinguish with a formula the two separate parts of the
light-cone, but we can express that “y, z are in the same half-cone of x”, in
symbols y ≡x z, as follows.

y ≡x z ⇔ [x ∼c y ∧ x ∼c z ∧ ∃w(x ∼c w ∧ ¬w ∼c y ∧ ¬w ∼c z)].
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From this then we can define timelike separability as follows:

x ∼t y ⇔ ∃zw(x ∼c z ∼c y ∧ ¬x ≡z y ∧ x ∼c w ∼c y ∧ ¬x ≡w y ∧
¬z ∼c w).

We used four variables in the above definition. By using 3 variables only,
∼t is not definable from ∼c. This can be proved by using the techniques of
algebraic logic, as follows. The four relations ∼t,∼ℓ,∼s, Id form the atoms
of the Boolean algebra they generate. All these relations are symmetric,
i.e. they are their own converses. Moreover, the relational composition of
any distinct two is Di := −Id, while the relational composition of any non-
identity one with itself is the unit Events × Events of the Boolean algebra.
Hence they form a relation algebra. Relation algebras are introduced and
briefly discussed in Ch. ??, Sec. 2.3 (see also [HMT85], [HH02], [ANS01]).
The elements of a concrete relation algebra are binary relations, and the
operations are the Boolean ones together with relational composition of
binary relations, taking converse of a binary relation, and the relation Id as
a constant. The binary causal-relations then form a relation algebra. We

1

◦

◦◦
◦

Id+ ∼s Id+ ∼t Id+ ∼l

Id ∼s
∼t ∼l

0

1

atoms

Di

◦

1

1

1∼l

∼l

∼t

∼t

∼s

∼s

Di Di

Di

DiDi
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Figure 20: The binary causal-relations (in Specrel0) form a relation algebra.
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can check that in this relation algebra ∼t is not in the subalgebra generated
by ∼c, hence ∼t cannot be defined from ∼c by using only three variables,
by Tarski’s theorem [TG87] or Ch. ??, Prop. 2.4. That ∼t can be generated
from ∼c by using 4 variables is equivalent to the fact that, in the so-called
4-dimensional cylindric algebra of 4-placed causal-relations, ∼t is indeed in
the subalgebra generated by ∼c. For cylindric algebras we refer to [HMT85],
[HMT+81], [ANS01].

One can prove that all the binary causal-relations are the ones occurring
in the above relation algebra, which is represented in Fig. 20. Thus we have
described all the binary causal-relations. Similar definability results for the
special case Q =“the rational numbers” are in [vB83, pp. 23-30].

There are infinitely many ternary (i.e. 3-place) causal-relations. The
most often used ternary and 4-place causal relations are the following ones
(again, it is easier to define their “coordinate-versions” in 〈Qn,∼c〉).

Collinearity of 3 space-time-locations is a causal relation, let coll (p, q, r)
denote that p, q, r are collinear, i.e. they lie on a straight line.

Betweenness: Bw (p, q, r) iff “coll(p, q, r) and q is between p and r”.

Equidistance: Eq (p, q, r, s) iff “µ(p, q) = µ(r, s)”. Minkowski-circles (or
Minkowski-spheres) can be defined from equidistance, cf. Fig. 21.

radius = 0radius = 0

radius = −r

radius = −2rradius = 2r

radius = r

Figure 21: Minkowski circles.

Orthogonality: Ort (p, q, r, s) iff “the line connecting p, q is Minkowski-
orthogonal to the line connecting r, s”, i.e. iff (p1−q1)(r1−s1)−(p2−q2)(r2−
s2) − · · · − (pn − qn)(rn − sn) = 0. For illustration see Fig. 22.

Betweenness with ratio ρ: Let ρ be any rational number. Then Bwρ(p, q, r)
iff “Bw(p, q, r) and µ(p, q) = ρ ∗ µ(q, r)”.

The above are all definable from ∼c. The last example shows that there
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are infinitely many ternary causal-relations.
If we have time-orientation, i.e. in models of Specrel0 +Ax↑, the follow-

ing important relation can also be defined. Event e causally precedes event

e′, in symbols e ≺c e′ iff ( e ∼c e′ and (∃m ∈ Ob)timem(e) ≤ timem(e′) ). In
Specrel0 + Ax↑, e ≺c e′ is equivalent with the simpler formula (∀m ∈
Ob)timem(e) ≤ timem(e′), assuming n > 2. It can be proved (analogously to
Cor. 2.1) that the corresponding property in space-time locations is: p ≺c q
iff (p ∼c q and pt ≤ qt). ≺c is also called causality relation , or after , the
first axiomatization of special relativity in [Rob14] axiomatized this causal-
ity relation. The general relativistic version of ≺c is quite important, too,
and is more intricate than the Specrel0 version; cf., e.g., works of Penrose,
Malament, Buseman.

Finally, we list some absolute relations that can be defined in Mg(M),
but cannot be defined in Cg(M), for M ∈ Catrel. Clearly, µ is such.

Minkowski scalar-product : g4 (p, q, r, s) := (p1 − q1) ∗ (r1 − s1)− (p2 −
q2)∗(r2−s2)−· · ·−(pn−qn)∗(rn−sn). We note that g4(p, q, p, q) = µ(p, q)
and g4(p, q, r, s) = 0 iff Ort(p, q, r, s). Hence, g4 “codes” both Minkowski-
distance and “relativistic angle”.

Relativistic (non-squared) distance of causally separated points:
rd (p, q) :=

√

(p1 − q1)2 − (p2 − q2)2 − · · · − (pn − qn)2. This is a partial
function defined exactly when the expression in the argument of the square
root is nonnegative, i.e. when p ∼c q. rd(e, e′) > 0 means proper time
elapsed between e and e′, for any observer who takes part in both e and
e′ (and that there is such an observer), i.e. any observer who takes part in
both e, e′ measures that the elapsed time between e and e′ as rd(e, e′) (and
there is such an observer).

We note that µ, g4, rd are definable from each other. Actually, we will
make use of this in our section on general relativity, in Sec. 3.4, where we
will use the binary version g of g4 which is defined by

g (p, q) := g4(p, 0, q, 0).

For more concrete definitions and for intuition for the above relations we
refer to e.g. [Gol87], or [Mad02, §4.2].

By Thm. 2.11 and the analogue for Catrel0, if we want to study spe-
cial relativity in the form of Catrel or Catrel0, then this can be done
equivalently by studying the simple metric-geometries and causal-geometries
〈Events, µ; Q, 1〉 and 〈Events,∼c〉, using their finitely axiomatized theories
Thm and Thc respectively. (A finite Thc can be found in [Lat72].) The
possibility of switching to the geometries instead of the original models
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Figure 22: ℓ is Minkowski-orthogonal to each straight line in P .

(without losing information) is useful e.g. because the transition from spe-
cial relativity to general relativity (GR) is quite smooth on the level of
geometries. The study of GR on this causal-geometric (axiomatic) level of
abstraction is promoted e.g. in [KP67]. [Bus67] uses the generalization of
rd in his approach to general relativity space-times. The study of GR on
the metric-geometric level using the generalization of g is most common, see
e.g. [Wal84], [HE73], [Rin01] (but in this “g-oriented” cases the linguistic
economy of the Kronheimer-Penrose approach is usually sacrificed).

One of the most useful and most interesting branches of mathematical
logic is, in our opinion, definability theory. Definability theory is strongly
related to relativity theory, in fact its existence was initiated by Hans Re-
ichenbach in 1924 [Rei69] motivated by relativity theory. Reichenbach in his
works emphasized the need of definability theory and made the first steps in
creating it. It was Alfred Tarski who later (1930) founded and established
this branch of mathematical logic.

Very briefly, the reason for the need of definability theory (of logic) in
relativity theory is as follows. When one sets up a physical theory Th,
one wants to use only so-called observational concepts, like e.g., “meeting
of two particles”.7 While investigating the theory Th, one defines new, so-

7 The concepts potentially usable in scientific theories (such as e.g. relativity) have been
partially ordered in the literature as being more observable (and less “theoretical”) or less
observable and more theoretical. Here “observable” also means primary or empirical.
This observable/theoretical distinction, or rather hierarchy, is recalled from the literature
(of relativity theory) in e.g. [Fri83, pp. 4–5]. This observable/theoretical hierarchy is not
perfectly well defined and is known to be problematic, but as Friedman puts it, it is still
better than nothing. E.g. the motion of the oceans called tides are more observable (or
closer to be observable) than the pull of gravity of the Moon which, we think, is causing
them. That is, the gravitational force field of a mass-point (like the moon) is a more
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called “theoretical” concepts, like e.g. “relativistic distance of events”. Some
defined concepts then prove to be so useful that one builds a new theory
Th′ based on the most useful theoretical concepts, and investigates this new
theory Th′ in its own merits.

The new theory Th′ usually is simple, streamlined, elegant - built so
that we satisfy our aesthetic desires. The original theory Th contains its
own interpretation, because we defined it so. The physical interpretation
of the new streamlined theory Th′ is provided by its connection with Th.
The strongest known relationship between two theories is definitional equiv-
alence. When Th and Th′ are definitionally equivalent, in the rigorous sense
of definability theory of first-order logic, the observational oriented theory
Th can be recaptured completely from the theoretical-oriented streamlined
theory Th′; and vice versa, the theoretical concepts of Th′ can be defined
(justified) over the observational Th. Looser relationships between Th and
Th′ are also very useful, these kinds of relationships between theories are
called interpretability and duality theories. Cf. [vB82] for more on logic,
definability theory, model theory for empirical theories.

In Sec.s 2.1-2.3 when we formalized special relativity in first-order logic,
we tried to choose the basic concepts of our language as observational as
possible; and we introduced the more theoretical concepts of relativity as
definitions at later stages, when development of the theory justified them.
Eventually, in Sec. 2.6, this process led to the introduction of a new theory
with new basic concepts (new vocabulary, like ∼c, ≺c). This is a natural way
of theory development, theory “understanding”, theory analysis. In modern
approaches to logic, theories are considered as dynamic objects as opposed
to the more classical “eternally frozen” idea of theories. For approaches to
the dynamic trend in mathematical logic cf. [vB96].

Theories form a rich structure when we investigate their interconnec-
tions. Algebraic logic establishes a duality between hierarchies of theories
(on different vocabularies) and between classes of algebras, cf. e.g., [HMT85,
§4.3] or [ANS01, Part II]. Investigating a theory via investigating the hi-
erarchy of its different perspectives and subtheories is like investigating a
3-dimensional object from all sides. This leads us to the subject of the next

theoretical concept than the motion of a body (e.g. ocean’s shore-line). Actually the
gravitational force field might turn out to be a “wrong concept” and we may have to
replace it with something else like the curvature of space-time. Probably the motion of
the ocean’s shore-line will be less questionable as a “something” which one can talk about.
As [Fri83, p. 4] points out, the observational/theoretical distinction is not an absolute one.
E.g. what is an observational concept at a certain stage of theory development might turn
out to be a theoretical one later.
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subsection.

2.7 Conceptual analysis and “reverse relativity”

In the previous subsections we strengthened Specrel to a complete theory
Catrel+RC. But in reality, when working with a theory, we do not want
to make our axioms generate a complete theory. Our purpose is just the
opposite: we want to make our axioms as weak, simple, and intuitively
acceptable and convincing as possible while still strong enough for proving
interesting theorems of relativity theory. Similar striving for economy of
assumptions is e.g. in [Sza06],[Sza02], [Ax78]. The reasons for wanting to
study weak theories as opposed to strong ones are, among others, the desire
for answering the “why-type questions”, and seeking a conceptual analysis
of the theory. For more on this we refer to [AMN02, §1.1]. Further reasons
for striving for weak physical theories having many models are presented in
[vB82]. Namely, e.g. “small” mechanical systems like our solar system or
another one or our galaxy can be regarded as many different “small models”
of e.g. Newtonian mechanics.

Among other things, we can use logic to find out which axioms are re-
sponsible for certain surprising predictions of relativity theory like e.g. “no
observer can move faster than the speed of light”, “the twin paradox” or
issues concerning the possibility of time travel. We can call such studies “re-
verse relativity” alluding to the analogy with the highly successful direction
called reverse mathematics, cf. e.g. [Sim05], [Fri04].

In reverse relativity, we single out an interesting prediction of relativity
theory like “observers cannot move faster than light (NoFTL)”, or one of
our paradigmatic effects in Thm. 2.4 and ask ourselves which axioms (of e.g.
Specrel) are responsible for the prediction in question, cf. Thm. 2.5. Let
ϕ denote the prediction in question. So typically we know that Specrel ⊢
ϕ and that ϕ “is interesting”. Then we ask ourselves whether the whole
of Specrel is needed for proving ϕ. (Recall, the axioms of Specrel are
“assumptions”, hence they cost money so to speak.) A further question is
to ask which fragment of Specrel is needed/sufficient for proving ϕ. This
type of research has been carried through for several interesting choices of
ϕ, e.g. in [AMN02], [Mad02], [AMN04].

Let us take as an example for ϕ the prediction NoFTL (i.e. that no ob-
server can move faster-than-light relative to another) established as Thm. 2.5(ii),
p. 36. Certainly, NoFTL is an interesting prediction, indeed, many thinkers
tried to get rid of NoFTL either by using “tachions” or by circumnavigating
it by using wormholes, cf. Sec. 4 for the latter. An instructive “saga” of
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such efforts is provided by relativist Kip Thorne in [Tho94]. The analysis of
NoFTL tells us that Specrel can be considerably weakened without losing
NoFTL. By Thm. 2.5 in this work, the assumption n > 2 is needed, however.
The two key axioms of Specrel are the Light Axiom, AxPh, and AxEvent (in
some sense). It turns out that both of these are needed for NoFTL. However,
both of them can be weakened considerably without losing NoFTL. In case
of AxPh, isotropy is not needed for NoFTL. Of AxPh, it is enough to assume
that photons are not like bullets, they do not race with each other, and they
can be sent from each point in each direction; i.e. that for any observer m
in each direction d there is a number cm(d) ∈ Q representing the speed of
light for m in direction d. Of AxEvent, it is enough to assume that if m sees
an event on the worldline of k, then k also sees that event; and that if m
sees an event that k sees then m sees all events in a neighborhood (in k’s
coordinate system) of this event. Some reflection reveals that this is a more
natural, milder assumption than AxEvent was. As it turns out, the rest of
the axioms of Specrel0 can also be weakened without losing NoFTL.

Careful analysis of the noFTL prediction can be found in [Mad02, 2.8.25,
3.2.13, 3.2.14], [MNT04, Thm. 3, Thm. 5], [AMN02]. Similar pieces of con-
ceptual analysis, analysing predictions similarly interesting (like NoFTL) can
be found in [AMN02, §4.2], [AMN04, MNT04, MNS06b, MNS06a]. Predic-
tions that have been analyzed in these works include the twin paradox, the
paradigmatic effects, the effect of gravity on clocks.

3 General relativistic space-time

In this section we extend our logic-based study of relativity from special rel-
ativity to general relativistic space-time (GR space-time). In particular, in
Sec. 3.6 we present a purely first-order logic axiomatization Genrel for GR
space-time. Thm. 3.3 is a kind of completeness theorem for Genrel. Besides
providing a first-order logic axiomatization of GR space-times (analogously
to Sec. 2) and comparing it with Specrel, we will put extra emphasis on
discussing the exotic properties of various distinguished examples of GR
space-times in Sec. 4. One of the reasons for this is that these exotic GR
space-times are at the center of attention nowadays, e.g. because of their
fantastic properties and because astronomers have been discovering exam-
ples of these, e.g. finding observational evidence for huge black holes in the
last 15 years. Another reason for putting emphasis on examples is that
while Specrel has basically one intended model, general relativity (GR)
has many different intended models (e.g. various kinds of exotic black holes,
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wormholes, timewarps, models for the expanding universe, the Big Bang, to
mention a few). This contrast between special relativity and GR motivates
our shifting the emphasis to distinguished models in what comes below. This
kind of motivation is further elaborated in the book [TW00].

A motivation for the logical analysis of GR is that, in principle, GR
space-times permit such counter-common-sense arrangements as is time travel
(in one form or another). This was discovered by Kurt Gödel during his co-
operation with Einstein. But the so-called paradoxes of time travel offer
themselves for a logical analysis, since these kinds of circularity are the
“bread-and-butter” of the logician ever since Gödel’s incompleteness proof
or since the first logical analysis of the liar paradox and its variants. Even
if we would want to exclude time travel by some axiom like one or another
form of the so-called Cosmic Censor Hypothesis, it remains a question how
to find and justify a natural axiom to this effect without making unjustified
assumptions. This dilemma is illustrated by the debates about the various
forms of the Cosmic Censor Hypothesis and related assumptions discussed
e.g. in [Ear95].

3.1 Transition to general relativity: accelerated observers in
special relativity

In Specrel, we restricted attention to inertial observers. It is a natural idea
to generalize the theory to including accelerated observers as well. Actu-
ally, when creating general relativity, Einstein emphasized that accelerated
observers should be included, cf. [Ein61, pp. 59-62]. Indeed, the usual transi-
tion from special relativity to the general theory of relativity goes as follows.
First special relativity is generalized to accommodate accelerated observers,
and then one introduces Einstein’s principle of equivalence ( EPE ) which
states that the phenomena of acceleration and gravity are equivalent (in a
carefully specified concrete sense). Then, at this point, our language is rich
enough to talk about gravity in the form of acceleration. After this point,
one refines the theory, arriving at GR, and then it all hangs together to form
a worldview broader than special relativity and also broader than Newto-
nian gravitation theory. The above is illustrated by e.g. [Ein61], the classic
general relativity book [MTW70, pp. 163-165], [Rin01, e.g. p. 72, §3.8, §12.4,
pp. 267-272]. Even works intending to venture to the unknown beyond GR
use the above “methodology” of starting by accelerated observers, cf. e.g.
[Smo01, pp. 77-80].

The same is done in the research area reported in the present work.
Namely, in Sec. 2 and in related works, the logical analysis of special rel-
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ativity is done, yielding e.g. the hierarchy of theories containing Specrel0,
Specrel, Catrel. The next stage extends Specrel by considering new kinds
of entities called accelerated observers and stating further axioms governing
their behavior. This yields a new theory Accrel which can be regarded
as an extension and refinement of Specrel. Gravity can be studied in
Accrel in form of acceleration; this is done e.g. in [MNS06a], in the spirit
outlined above. The works [AMN06b], [MNS06b], [MNS06a] which study
Accrel stay inside the purely first-order logic based approach represented
by Specrel in Sec. 2 in this work. Using the experience and motivation
gained by studying Accrel, in Sec. 3.6 we introduce a first-order logic the-
ory Genrel for general relativistic space-time. All this converges to a logical
analysis of GR.

Instead of recalling Accrel, which is very similar in spirit to the ax-
iom system Genrel in Sec. 3.6, we summarize its main features relevant to
Genrel. In Accrel, “accelerated observer” means “not necessarily inertial
observer”, and “observer” means a body that has a worldview, i.e. which
occurs in the domain of the worldview relation W. Thus, an accelerated ob-
server has a worldview. Roughly, the worldview of an accelerated observer k
is obtained from the worldview of an inertial one, m, by re-coordinatizing it
along a smooth bijection wmk with an open subset of Qn as its domain. Thus
k may use only part of Qn for coordinatizing events, and more importantly,
the worldlines of inertial observers and photons are no longer straight lines in
an accelerated observer’s worldview. I.e., AxEvent and AxLine cease to hold.
They hold in generalized, weaker forms only. Specifically, an accelerated
observer can recognize worldlines of inertial bodies as so-called “geodesic
curves”, this is the motivation for Sec. 3.3 and for the axiom AxLine− in
Genrel.

The key axiom of accelerated observers states that at each moment of
his life, each accelerated observer sees the nearby world for a short while
as an inertial observer does. Technically, in Accrel we formulate this as
stating that at each moment of the life of an accelerated observer k there is
a so-called co-moving inertial observer m such that the linear approximation
(i.e. the differential) of the worldview transformation wmk at this space-time
point is the identity function. This axiom, called AxAcc in the quoted works,
is the connecting point between the worldviews of inertial and non-inertial
observers. The counterpart of AxAcc in the present work will be discussed
next.

We can think of an accelerated observer in special relativity as a space-
ship which uses fuel for accelerating (in a space where there is no grav-
ity). When the drive is switched off, the ship will transform into an inertial
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ship—this is the co-moving inertial observer at the event of switching off
the ship-drive. Or, equivalently, we can think of the co-moving inertial ob-
server as a spaceprobe which was let go from the ship—a metaphorical apple
dropped in space. The ship can measure its own acceleration by measuring
the acceleration of the spaceprobe; just as here on Earth we can measure
gravity by measuring the acceleration of a dropped apple. EPE then implies
that the spaceship can interpret “falling of the metaphorical apples” either
by thinking that he is accelerating in an empty space, or by thinking that
he is suspended in a space where there is gravity, and dropped apples fall
because they are no longer suspended. By EPE, the worldview of an ac-
celerated observer in special relativity is similar to a “suspended” observer
in a space-time where there is gravity. The gravitational counterpart, by
EPE, of AxAcc is Einstein’s Locally Special Relativity Principle which we
recall at the beginning of Sec. 3.2; it will be our starting point in defining
GR space-times.

Summing up: by EPE, investigation of gravity can be reduced to the
investigation of the worldlines of inertial bodies in a GR space-time.

Let us turn to the reasons of why the transition from special relativity to
general relativity goes via accelerated observers and EPE. In Sec. 2, we chose
to derive special relativity from the outcome of the famous Michelson-Morley
experiment, i.e. from the Light Axiom. However, as we already mentioned,
relying on the Light Axiom is not really necessary. As Einstein always em-
phasized (e.g. in [Ein61]), relativity can be derived from a deep philosophical
principle called the special principle of relativity ( SPR ). SPR has been
around in our culture for 2500 years (roughly), hence it is well understood
and it blends nicely with our best understanding of the world. Roughly,
SPR says that the Laws of Nature are the same for all inertial observers.
The modern form of SPR was articulated by the Normann-French Nicole
d’Oresme around 1300 (Paris) and (a bit more thoroughly) by Galileo Galilei
(around 1600). After Olaf Roemer, James Bradley and followers discovered
that the speed of light is finite (and related issues were clarified), SPR could
have been used8 to show inconsistency with the Newtonian worldview and
then to derive special relativity (analogously to the train of thought we
used in Sec. 2). This in turn would have predicted the outcome of the
Michelson-Morley experiment.9 Einstein elaborated this idea in detail, and
in particular, emphasized that special relativity can be derived from SPR (in

8With hindsight, this possibility was there around the 1830’s or so. Roemer made the
discovery around 1680, but it was not generally accepted until 1750 approx.

9Of course, for this, light propagation needs to be regarded as Law of Nature, but as
Einstein points out, this is absolutely natural.
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place of the Light Axiom). The same kind of philosophical taste lead Einstein
to asking why SPR is restricted to inertial observers only. Why aren’t the
Laws of Nature the same for all observers (not only the inertial ones)? After
all, we ourselves sitting on the surface of the Earth (and fighting gravity all
the time) are not inertial observers according to the definition used in SPR.

So, Einstein started working towards GR by generalizing SPR to the
general principle of relativity ( PR ) which says that the Laws of Nature
are the same for all observers, including accelerated ones. This move cre-
ates some extra tasks to handle, because accelerated observers experience
the existence of a new “force-field”, namely gravity. So Einstein introduced
his principle of equivalence EPE unifying acceleration created by gravity
with “ordinary gravity”. Now, to uphold PR we have to regard gravity
(and light propagation of course) as part of what constitute Laws of Na-
ture. This creates some extra tasks (mentioned above) since in Specrel
properties of gravity were not part of the picture. As we will see in the next
section, this extra work can be handled leading to a unification broader than
that provided by special relativity. The new theory GR unifies space, time,
motion, light-propagation, and gravitation into a single purely geometrical
perspective.

3.2 Einstein’s “locally special relativity principle”

Einstein’s locally special relativity principle saying that General Relativ-
ity is locally Special Relativity is the following. Let p be a point in a GR
space-time. Then if we drop a small enough spaceship, put an experimental
scientist in the spaceship who lives for a short enough time, the experimen-
talist will find special relativity true in the spaceship. This holds true even
on the event horizon of a spinning black hole or wherever you want. Of
course, it is crucial that the spaceship is small enough and that its life is
considered only for a small enough time interval. This is Einstein’s locally
special relativity principle. See Fig. 23. These local tiny spaceships will
appear later as “local reference frames” LFR’s. They play the same role in
GR as co-moving observers did in AxAcc.

Next we implement Einstein’s locally special relativity principle formu-
lated above for formalizing GR space-times. In this and in the next few
subsections, for simplicity, we will use R in place of an arbitrary linearly
ordered quadratic field Q, and also we will use n = 4. Later, in Sec. 3.6 we
will return to the generality of Q and n ≥ 2.

For general relativity, we will use global coordinate frames, GFR’s . A

global coordinate frame is based on an open subset of R
4. So a global
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Figure 23: Einstein’s locally special relativity principle: where-ever we drop
a small enough spaceship, for a short enough time it will experience special
relativity.

coordinate frame looks like a special relativity frame, we even call one of
the coordinates time, the others space etc. The difference is that in a global
frame the coordinates do not carry any physical or intuitive meaning.10 They
serve only as a matter of convention in gluing the local special relativity
frames, LFR ’s, together. For simplicity, at the beginning we will pretend
that the coordinate system of our global frame is the whole of R

4. Later we
will refine this to saying that the global frame is an open subset of R

4. And
even later, in Sec. 3.6, we will generalize this to be a manifold. Since the
differences are extremely minor and secondary from the point of view of the
basic notions we are going to introduce now, let us first pretend that the
global frame is R

4.
Imagine a general relativistic coordinate system, a GFR, representing

the whole universe, with a black hole in the middle etc. So we are look-
ing at the bare coordinate grid of R

4 intending to represent the whole of
space-time. What is the first thing we want to specify for our readers about
the points of this grid R

4? Well, it is how the local tiny little special rela-
tivistic space-times are associated to the points p of R

4, in accordance with
Einstein’s locally special relativity principle formulated at the beginning of
this subsection. Thus, to every point p of R

4 we want to specify how the

10To be precise, the topology of the global frame will be relevant.
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local special relativity space-time at point p is squeezed into the local neigh-
borhood of p. The point is in specifying how the clocks of the LFR slow
down or speed up at p, and which axis of the local LFR points in what
direction and is distorted (shortened/lengthened) in what degree. The LFR
at p corresponds to the metaphorical spaceship dropped at p as in Fig. 23.

0

R
4

Lp

Lp

p

x̄

ȳ

t̄

M

1t

1x

1y

Gt

Gx

Gy

Local Specrel Frame
LFR

Global Frame
GFR

Figure 24: The local frame at p is an affine mapping Lp of R
4 to R

4 taking
0 to p. We will use Lp in small neighborhoods of 0 only.

How do we specify the local frames LFR’s? A local frame Lp at p
will be a bijective mapping Lp : R

4 → R
4 such that Lp(0) = p. We will

think of the first R
4 as the coordinate system of special relativity, or of the

Minkowski space represented by LFR, and of the second R
4 as the global

frame GFR upon which we want to build our GR space-time. Thus we write

Lp : LFR → GFR, where formally LFR := GFR := R
4 . Since we want to

use our local frames to specify how the tiny clocks slow down in the “linear
limit” (roughly, in an “infinitesimally small” neighborhood of p), we will
choose these Lp’s to be affine mappings.

So, the key device in building our GR space-time is associating to each
point p of our global coordinate grid GFR an affine transformation Lp map-
ping the Minkowski space represented by LFR to the global frame GFR.
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Definition 3.1. (general relativistic space-time) By a general relativistic

space-time we understand a pair 〈M, L〉 where

M ⊆ R
4 is open and

L is a function defined on M such that L(p) : R
4 → R

4 is a bijective affine
mapping which takes the origin 0 to p, for each p ∈ M . Further,
we require that L (as a function of p ∈ R

4) be infinitely many times
continuously differentiable, in short smooth .

For better readability, we will write Lp to denote L(p). We will use local

special relativity frames (the LFR’s) for importing the notions of special
relativity to our GR space-times. We will use the inverse mapping L−1

p of
the affine transformation Lp to translate our general relativistic problems
to special relativity, and we will use Lp to bring back the answers special
relativity gives us. Though L−1

p is defined on the whole of R
4, we will

use it only in small enough neighborhoods of p (i.e. we will use it in the
limit, more and more accurately as we close on p). Restricting attention to
small neighborhoods of p is what is meant by saying that GR can be locally
reduced to special relativity, but only locally. If we want to solve a problem
at a point q farther away from p , then we will have to use the mapping Lq

associated to q in place of using Lp.
We can specify the local frame Lp by the images of the four unit-vectors

1i, as follows: G(p) = 〈Gt(p), ..., Gz(p)〉 is a 4-tuple of vectors (i.e. elements
of R

4) such that Lp : R
4 → R

4 is the affine transformation which maps the
origin 0 to p, and 1i to Gi(p)+p, for i ∈ {t, x, y, z}, see Fig. 24. Thus, we can
specify a GR space-time 〈M, L〉 by simply specifying four vector-fields. Here
we use the word “field” as in analysis and not as in algebra. Thus “field” in
“vector-field” means that we have a vector at each point of M ⊆ R

4. This
gives us the following equivalent definition for a GR space-time.

Definition 3.2. (general relativistic space-time in vector-fields form) By a
general relativistic space-time in vector-fields form we understand
a four-tuple 〈Gt, Gx, Gy, Gz〉 of vector-fields such that

each Gi : M → R
4 is smooth, where M = Dom(Gi) ⊆ R

4 is open (i ∈
{t, x, y, z}) and

the vectors Gt(p), ..., Gz(p) at each point p ∈ M are linearly independent in
the usual sense. (This means that the affine mapping they specify is a
bijection.)
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An advantage of Def. 3.2 is that it is simple, and that it is in this
form that we can “draw” or visualize a general relativistic space-time. See
Fig.s 30, 31, 33, 40, 34.

Now, how do we use a GR space-time, i.e. such a 4-tuple of vector-
fields, for representing some aspects of reality? Very, very roughly, the
information content of a GR space-time G = 〈Gt, ..., Gz〉 can be visualized
as follows. The vector tetrad Gt(p), ..., Gz(p) at point p tells us how the
measuring instruments (clocks, meter-rods) of the tiny little inertial observer
we imagine as being dropped at p go crazy (go wrong) from the point of view
of the big, global general relativistic coordinate grid GFR we are using in
G. This information is very subjective, since as we said, the big global
coordinate grid carries no physical meaning, it is conventional. But some
objective content can be extracted from this subjective information. As we
said, for a fixed p, the vector tetrad Gt(p), ..., Gz(p) wants to represent how
the local frame is glued into the holistic picture of the global frame. The
important point is, however, how the individual local frames are distorted,
rotated etc w.r.t. each other, the big global frame grid is only a theoretical,
conventional device to serve as a common denominator in arranging the little
local frames relative to each other.

What can be described in terms of the 4-tuple 〈Gt, ..., Gz〉 of vector-
fields? Well, we can describe the (potential) worldlines (parameterized with
wristwatch times) of inertial observers and the worldlines of photons. We
will see that knowing what the potential worldlines of inertial observers and
photons are tells us everything important about a GR space-time. Grav-
ity, curvature can be defined explicitly from knowing the above mentioned
worldlines.

3.3 Worldlines of inertial observers and photons in a general
relativistic space-time

The worldlines of inertial observers will be described mathematically as time-
like geodesic curves. We now turn to defining these. In this subsection we
fix a general relativistic space-time 〈M, L〉, and we let

GFR := M, LFR := R
4 .

By a (smooth) curve f we understand a smooth mapping f : I → R
4,

where I is an open interval of R. By a point of the curve we mean a point
in its range.

Intuitively, the curve f : I → GFR is called timelike at point p iff the
local frame at p “sees” an observer co-moving with the curve at p. In more
detail, the curve f is called timelike at p iff the speed of f as seen by the
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local frame at p is smaller than 1. This means that the tangent of the curve
L−1

p ◦f has slope smaller than 1, at the origin; geometrically this means that
the tangent straight line at the origin is within the light-cone. The curve f
is called timelike iff the curve f is timelike at each of its points p . (Note:
this is independent of how the curve f is parameterized.) See Fig. 25.

L−1
p ◦ f

R
4

M

L−1
p

f

p

Figure 25: The curve f is timelike at point p.

Note that talking about the tangent of L−1
p ◦ f : I → LFR involves

nothing “fancy”, since (at this step) we are in a special relativity space-time
and we are using its Euclidean geometry over R

4 and we are looking at a
smooth curve in it.

We think of a timelike curve as a curve that in principle can be the
worldline of a (perhaps accelerated) observer.

When is a timelike curve f : I → GFR called a timelike geodesic? First
we have to check whether the curve f represents (or measures) relativistic
time correctly. Here, the parametrization will be important. In what follows,
[a, b] denotes the closed interval of R with endpoints a, b, i.e. [a, b] := {x ∈
R : a ≤ x ≤ b}. For the definition of relativistic distance rd : R

4 × R
4 → R

see Sec. 2.6, p. 56.

Definition 3.3. We say that f represents time correctly if the following
statement holds. For every t ∈ I, and for every positive ε there is a positive
δ such that for all s ∈ [t − δ, t + δ] it holds that |s − t| agrees with what
rd(f(s), f(t)) is as measured by the local frame determined by Lf(t) up to an
error bound by ε∗|s−t|. Here “rd(f(s), f(t)) as measured by the local frame”
is the relativistic (Minkowski) distance between L−1

p (f(s)) and L−1
p (f(t))

understood in special relativity.) Formally this is:
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(∀t ∈ I)(∀ε > 0)(∃δ > 0)(∀s ∈ [t − δ, t + δ])
|rd(L−1

p (f(s)), L−1
p (f(t))) − |s − t|| < ε ∗ |s − t|.

We call a curve time-faithful iff it is timelike and represents relativistic
time correctly. Intuitively, a timelike curve is time-faithful iff at each point
p of the curve, the local frame at p “sees” an observer co-moving with the
curve such that the parametrization of the curve “agrees” with how time
passes for this co-moving observer. See Fig. 26.

∃ co-moving inertial observer

L−1
p

p

f

LFR GFR

Figure 26: A time-faithful curve at p.

We imagine that a time-faithful curve f is the worldline of an observer
b such that the parameter t measures proper time of b; or in other words, t
shows the time on the wristwatch of b. We imagine the motion of b such that
f(t) in GFR is the space-time location of observer b at his wristwatch time t.
The condition in Def. 3.3 serves to ensure that wristwatch time t of observer
b (whose motion is represented by the curve f) agrees with the relativistic
time interval measured by the relativistic metric rd at the local frame which
is situated at the location f(t). More precisely, small time intervals on the
wristwatch of b agree with the relativistic time interval measured by the
rd’s of the local special relativity frames. Thus f is the general relativistic
analogue of the special relativistic wlinem(b) + parametrization with “proper
time” or “inner time” of b.

Put differently, we think that a timelike curve can be the worldline of
(the mass-center of) a spaceship which uses fuel (i.e. uses its ship-drive) for
accelerating and decelerating. The curve is time-faithful if the parametriza-
tion of the curve agrees with “inner time” of the spaceship.
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Definition 3.4. (timelike geodesic) By a timelike geodesic we understand
a time-faithful curve f : I → GFR satisfying the following. For any t in I
there is a neighborhood S of f(t) (understood in R

4) such that inside S, f is
a “straightest possible” curve in the following sense: For any two points p, q
of S connected by f , the distance of p and q as measured by f is maximal
among the distances measured by “competing” time-faithful curves inside S.

Formally, this maximality condition is expressed by the following. As-
sume that h is a time-faithful curve with range inside S. Assume that
p = f(s) = h(s′), q = f(r) = h(r′) and h(t′) is in S for all t′ which
are between s′ and r’. Then |s − r| ≥ |s′ − r′|. See Fig. 27.

p

q

≥f(t)

f

S

∀h

Figure 27: f is a timelike geodesic curve.

If f is a timelike geodesic, then we imagine that an inertial observer b
can move along it. By an inertial observer b we imagine (the mass-center
of) a spaceship with ship-drive switched off, i.e. a spaceship which does not
use fuel for influencing its motion.

The above definition of timelike geodesics is the natural reformulation
of the Euclidean notion of geodesics (straight curves in a possibly curved
surface of Euclidean 3-space) with “minimal” replaced by “maximal” (cf.
[HE73, Prop. 4.5.3, p. 105]). If one thinks about this maximality condition,
one will find that it is strongly connected to the Twin Paradox of special
relativity. Indeed, the Twin Paradox is exactly the statement that in special
relativity, worldlines of inertial observers are timelike geodesics in the sense
of Def. 3.4, cf., e.g., [MNS06b, Thm. 3.1].
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By the above definition of timelike geodesics, we can express what world-
lines of inertial observers are in GR space-times 〈M, L〉. The definition of
photonlike geodesics is analogous, and goes as follows.

The curve f is called photonlike at p iff the speed of f as seen by the
local frame at p equals 1. In more detail, this means that the tangent of the
curve L−1

p ◦ f at the origin has slope 1. The curve f is called photonlike iff
the curve f is photonlike at each of its points p.

We imagine that a photonlike curve can be the worldline of a photon
perhaps directed (diverted) by suitably many mirrors.

A photonlike geodesic is a photonlike curve f with the property that
each point in the curve has a neighborhood in which f is the unique pho-
tonlike curve through any two points of f . (In more detail, let F denote the
range of f . Then any point in F has a neighborhood S such that whenever
f ′ is a photonlike curve connecting two points of F ∩S and such that F ′=the
range of f ′ is inside S, we have that F ′ ⊆ F , cf. [HE73, Prop. 4.5.3].)

We imagine that photonlike geodesics are worldlines of photons. Let
us notice at this point that a GR space-time 〈M, L〉 determines “inertial
motion” and also determines how photons move.

3.4 The global grid seen with the eyes of the local grids:
general relativistic space-time in metric-tensor field form

In the previous subsection, we imported special relativistic notions by using
the local frames, the Lp’s. We used the inverse L−1

p of the affine transforma-
tion Lp to translate our general relativistic “problems”, or “questions”, to
special relativity, and then we used Lp to bring back the answers special rel-
ativity gave us. Since we will use the notions of special relativity this way all
the time, it is useful to “transport”, via Lp, the most useful notions of spe-
cial relativity themselves to our general relativistic frame GFR to be ready
for use when we need them. Thus, in each point p of GFR, we can “store”,
e.g., relativistic squared distance µ of special relativity transported via Lp;
we will denote this by µp and we will call it the“local special relativistic
squared distance µ at p”. This way we will get “fields” of notions, where we
use the word “field” as in analysis and not as in algebra (as mentioned on
p. 67). Special relativistic squared distance (i.e. Minkowski distance) µ and
scalar product g4 were defined on p. 36, p. 56. Here we use the simplified
version g(p, q) = g4(p, 0, q, 0) of g as introduced on p. 56.

Definition 3.5. (fields of “transported” special relativity notions) Let 〈M, L〉
be a general relativistic space-time. For any p ∈ M we define µp : R

4×R
4 →

R as follows: for any q, r ∈ R
4
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µp(q, r) := µ(L−1
p (q), L−1

p (r)); and similarly we define

gp(q, r) := g(L−1
p (q), L−1

p (r)). See Fig. 28.

Lp

M

p
r

q

d

d

1t + p

1x + p

1y + p

Gt + p

Gx + p

Gy + p
0

LFR GFR

Figure 28: The metric µp of local special relativity at p. d = µp(q, r).

In the literature, the most often used form for specifying a GR space-
time is by transporting the Minkowski scalar product g to each point p of
GFR. The reason for this is that it is easy to make calculations with these
data. From 〈M, L〉 then we get 〈M, gp〉p∈M , usually just written as 〈M, g〉.
We call g := 〈gp : p ∈ M〉 the metric-tensor field of 〈M, L〉, and we call

〈M, g〉 the metric-tensor field form of 〈M, L〉.
Since g is linear in its two arguments, the most convenient way of spec-

ifying gp : R
4 × R

4 → R is to specify gp(1i + p,1j + p) for all 1 ≤ i, j ≤ 4:

gij(p) := gp(1i + p,1j + p) := g(L−1
p (1i + p), L−1

p (1j + p)), for all 1 ≤
i, j ≤ 4.

Then we can specify 〈M, g〉 by associating the 4 by 4 matrix (gij(p) : 1 ≤
i, j ≤ 4) to each point p ∈ M . What is the meaning of the gij(p)’s ? Well,
√

|gii(p)| tells us how long the i-th unit-vector of the big grid GFR is in the
eye of the local special relativity frame at p. On the other hand, gij(p) for
i 6= j tells us what “angle” between the unit-vectors 1i and 1j of the big
GFR is as seen by the local special relativity at p. If gij(p) = 0, then the
local special relativity at p (also) thinks that 1i and 1j are orthogonal to
each other. If gtt(p) = 1, then time at the local special relativity at p flows
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just as in the GFR grid. If, say, gtt(p) = 4, then two hours pass in the local
special relativity at p while in the big grid only one hour passes, hence local
special relativity LFR-time at p is twice as fast as coordinate GFR-time. In
general, gtt(p) > 0 tells us how the local special relativity sitting at p sees
“time of the coordinate grid GFR” to flow (how much slower or faster). If
gtt(p) is negative, then the local special relativity at p “sees” the time-axis
of the GFR as a spatial direction, and not as a “temporal direction”. This
means that in the local special relativity at p, no observer can “move/live”
in the space-time direction 1t of the GFR. If gxx(p) = −1, then the local
special relativity at p sees that spatial distance along the x-axis behaves like
the one in the big GFR-grid. Also, gii(p) > 0 iff 1i of GFR is timelike as
seen by the LFR. Etc.

By definition, µp(q, r) is the relativistic squared distance between q and
r as seen by the LFR at p, and µp can be expressed using the gij ’s as follows:

µp(q, r) =
∑{gij(p) ∗ (qi − pi) ∗ (rj − pj) : 1 ≤ i, j ≤ 4}.

The “infinitesimal version” of the above formula is called the line-element ,
(⋆) below. In this work, we will use the line-element only as an economic
linguistic device for specifying the matrix (gij(p) : 1 ≤ i, j ≤ 4). Namely,
for p ∈ M , the line-element at p is

(⋆) ds2 (p) =
∑{aij didj : 1 ≤ i ≤ j ≤ 4}.

In the above, we consider ds2, d1, . . . , d4 as “specific linguistic markers”,
the information content of the line-element (⋆) above is

gii(p) = aii for 1 ≤ i ≤ 4, and

gij(p) = gji(p) = 1
2aij for 1 ≤ i < j ≤ 4.

E.g. if at p ∈ M the line-element is ds2(p) = dt2 − dx2 − dy2 − dz2, then
gtt(p) = 1, gxx(p) = gyy(p) = gzz(p) = −1, and gij(p) = 0 for i 6= j. For
more examples see Sec. 4. In Sec. 4 we will use the line-element in specifying
a given space-time 〈M, L〉, not only because of its economy, but also in order
to keep comparability with the literature. We want to emphasize that, in
this work, the line-element is just a convenient linguistic way of specifying
gp, we will not attach independent meanings to ds2, d1, . . . , d4.

Let 〈M, L〉 be a GR space-time and let G = 〈Gt, . . . , Gz〉 and 〈M, g〉 be
its vector-fields and metric-tensor field forms, respectively. Now, G contains
the same information as 〈M, L〉, but 〈M, g〉 contains slightly less informa-
tion. However, as we will see in the next section, the really relevant “in-
formation” of a space-time 〈M, L〉 is what is contained in 〈M, g〉. We use
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GR space-times in the form 〈M, L〉 or G because these are easy to draw
(visualize), see Fig.s 30, 31, 33, 40, ??; while a GR space-time in the form
of 〈M, g〉 is not so convenient to draw.

From the perspective of the present subsection, in a GR space-time
〈Gt, . . . , Gz〉, the tetrad 〈Gt(p), . . . , Gz(p)〉 tells us how the big GFR sees
the local special relativity unit-vectors of an arbitrarily chosen observer in
the local special relativity space-time that “sits” at p. On the other hand,
the matrix (gij(p) : 1 ≤ i, j ≤ 4) tells us how the local special relativity
space-time sitting at p “sees” the unit-vectors of the big global frame GFR!

3.5 Isomorphisms between general relativistic space-times

We said that the big global frame carries no physical meaning, and only
timelike and photonlike geodesics carry physical meanings, everything else
(e.g. gravity) can be defined from these geodesics. We give “meaning” to
this statement (or claim) in the form of defining what isomorphisms of GR
space-times are.

Definition 3.6. Let G = 〈M, L〉 and G′ = 〈M ′, L′〉 be two general relativis-
tic space-times. An isomorphism between these two GR space-times is a
bijection Iso : M → M ′ such that (i)-(iii) below hold.

(i) Both Iso and the inverse of Iso are smooth.

(ii) Iso preserves timelike geodesics. In more detail, for any curve f : I →
M , f is a timelike geodesic in G iff f ◦ Iso is a timelike geodesic in G′.

(iii) Iso preserves photonlike geodesics (in the above sense).

We note that we could omit (iii), because one can prove that it follows
from (i)-(ii) above.

By using Def. 3.6, it is difficult to check whether a bijection Iso : M →
M ′ is an isomorphism if we know only L and L′ and we did not compute
what the geodesics are in 〈M, L〉 and in 〈M ′, L′〉. Below we give an equiva-
lent definition that uses only the “building blocks” L and L′ of the general
relativistic space-times.

We will use the notion of the differential of a differentiable function.:
When f : R

4 → R
4 is differentiable, the differential of f at p ∈ R

4 is the

affine transformation D(f)p which is closest to f at p. Of the properties of

a differential we will mostly use that f and D(f)p take p to the same point,
and they take a curve g passing through p to tangent curves, i.e. f(g) and
D(f)p(g) are tangent at f(p).
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Theorem 3.1. (Equivalent form of definition of isomorphisms) Let G =
〈M, L〉 and G′ = 〈M ′, L′〉 be general relativistic space-times and let 〈M, g〉
and 〈M ′, g′〉 be their metric-tensor field forms, respectively. Let Iso : M →
M ′ be a smooth bijection such that its inverse is also smooth. Then (i)-(iii)
below are equivalent.

(i) Iso is an isomorphism between G and G′ in the sense of Def. 3.6.

(ii) For any p ∈ M , the differential of L′(Iso(p))−1 ◦ Iso ◦L(p) at the origin
is a Lorentz transformation (on LFR) perhaps composed with a space-
isometry. See Fig. 29.

(iii) For any p, q, r ∈ M we have that gp(q, r) = g′Iso(p)
(D(Iso)p(q), D(Iso)p(r)).

p

p′

M M ′

Lp
L′

p′

D(L
′
−1

p′ ◦ Iso ◦ Lp)0

D(Iso)p

0

LFR

Figure 29: Isomorphism between general relativistic space-times.

In connection with Thm. 3.1(ii) above we note the following. Here,
the general pattern is L′(Iso(p))−1 ◦ Iso ◦ L(p) : LFR → LFR because
L(p) : LFR → M , Iso : M → M ′, and L′(Iso(p))−1 : M ′ → LFR. (More
precisely, L(p) : LFR → R

4 ⊇ M etc., but that does not matter here.)
Recall that LFR = R

4 refers to the special relativistic frame we are using
(in the present section).

By the above, we have the basic building blocks of General Relativity
at place and we can start working, we can start discussing black holes,
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wormholes, the Expanding Universe, etc. So, from here the reader can jump
right to Sec. 4 which discusses examples of GR space-times, e.g. black holes.
In the next subsection we present a FOL axiomatization of GR space-times
which is analogous to Specrel and which can serve as a starting point for
logic-oriented investigations of GR similar to the ones in Sec. 2.

In Sec. 3.6 we will use the following.

Definition 3.7. A Lorentz manifold is a system of GR space-times con-
nected by commuting partial isomorphisms. I.e. a Lorentz manifold is a
system 〈〈Gm, ψmk〉 : m, k ∈ J〉 such that for all m, k ∈ J the following hold.

(i) Gm = 〈Mm, gm〉 is the metric-tensor field form of a GR space-time
〈Mm, Lm〉 in the sense of Def. 3.5, except that we do not assume
smoothness of L, we only assume that gm is smooth.

(ii) 〈ψmk : m, k ∈ J〉 is a commuting system of smooth functions with open
domains. Commuting means that ψkh ◦ψmk ⊆ ψmh for all m, k, h ∈ J .

(iii) ψmk is a partial isomorphism between Gm and Gk. This means that
ψmk is an isomorphism between Gm and Gk restricted to the domain
and the range of ψmk, respectively, in the sense of Thm. 3.1(iii).

Thus, a Lorentz manifold could be called an “organized system of GR
space-times” or a “patched space-time”. It is not difficult to show that the
above definition of Lorentz manifolds is equivalent with the usual definition
in the literature, e.g. with the one in [Wal84, pp. 12,23].

3.6 Axiomatization Genrel of general relativistic space-time
in first-order logic

In this subsection we give an axiom system called Genrel to general rel-
ativistic space-times. This axiom system is formulated in first-order logic
and is analogous to Specrel, even at the level of the individual axioms.

The vocabulary (or language) of GR space-time models is the same as
that in the case of special relativity, with the same intuition as in Sec. 2.1;
the motivation for the axioms in Genrel is in Sec.s 3.2,3.3. In the present
subsection we will use arbitrary ordered fields and arbitrary dimensions n ≥
2 for the space-time models as in Sec. 2 (and not only R and n = 4). We
will use the same notation as in Sec. 2, e.g. we will use evm, PLines, etc.

Convention: The elements of Ob are called inertial observers . The ele-

ments in the domain Dom(W) = {b : (∃k, p)W(b, k, p)} of W are called

(ordinary) observers .
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We will no longer require that an observer m uses the whole coordinate
grid Qn for coordinatizing the events; the part he uses is denoted by Cd(m),

and is defined as Cd(m) := {p ∈ Qn : evm(p) 6= ∅}. If p, q ∈ t, then

[p, q] := {r ∈ t : pt ≤ rt ≤ qt}.

AxSelf− An observer m in his own coordinate system is motionless in the
origin, and his worldline is connected, i.e.

(∀m ∈ B)[ wlinem(m) = t ∩ Cd(m)∧
(∀p, q ∈ wlinem(m))[p, q] ⊆ wlinem(m) ].

We formalize when two subsets h and g of Qn are tangent at p ∈ Qn:

tangent(h, g, p) means that

p ∈ h ∩ g and (∀ε > 0)(∃δ > 0)(∀s ∈ [pt − δ, pt + δ])(∀q ∈ h)(∀r ∈ g)
[ qt = rt = s ⇒ |q − r| ≤ ε ∗ |s − pt| ].

AxPh− An inertial observer m at the origin, where he stands, sees photons
move in each direction with speed 1, and each photon meeting m moves
with speed 1, i.e.

(∀m ∈ Ob)[ (∀ℓ ∈ PLines)(∀p ∈ ℓ ∩ wlinem(m))(∃ph ∈ Ph)
tangent(ℓ,wlinem(ph), p) ∧ (∀ph ∈ Ph)(∀p ∈ wlinem(ph)∩
wlinem(m))(∃ℓ ∈ PLines)tangent(ℓ,wlinem(ph), p) ].

AxThEx− An inertial observer m at the origin, where he stands, sees
inertial observers move in each direction with speeds < 1, and sees at least
one inertial observer in each event, i.e.

(∀m ∈ Ob)(∀ℓ ∈ TLines)(∀p ∈ ℓ ∩ wlinem(m))(∃k ∈ Ob)
tangent(ℓ,wlinem(k), p) and (∀p ∈ Cd(m))(∃k ∈ Ob)k ∈ evm(p).

AxSelf−, AxPh−, AxThEx− express that an inertial observer experiences
special relativity in the space-time location where he is. Next we formalize a
generalization of AxLine to general relativity. It will say that in each inertial
observer’s worldview, the worldlines of inertial observers and photons are
timelike and photonlike geodesics, respectively. In formulating this axiom,
we will follow the definitions given in Sec. 3.3. We quantified over curves in
the definition of geodesics. Since we want to use the language of first-order
logic, instead of arbitrary (smooth) curves, we will quantify over bodies rep-
resenting special curves; namely 3 times continuously differentiable curves
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which can be defined by first-order logic formulas. This will be the only
difference in the definition.

Let us call a curve r-smooth if it is r-times continuously differentiable.
In general relativity, it is enough to use 3-smooth curves in place of arbi-
trarily smooth curves. E.g. for defining curvature, the Riemann-tensor etc.,
one needs only 3-smooth ingredients in place of smooth ingredients.

Let ψ be a first-order logic formula in our present vocabulary, and as-
sume that the free variables of ψ are among t, x1, . . . , xn, y1, . . . , yr where
t, x1, . . . , xn are variables of sort Q. We will denote this assumption as
ψ = ψ(t, x, ~y ). We can easily express in first-order logic that, at parameter
~y, the formula ψ defines a 3-smooth curve, we will denote this formula by
curve(ψ). To give a flavor for this definition, we start formulating curve(ψ).

fn(ψ) denotes the formula ∀t(∃xψ(t, x, ~y ) → ∃!xψ(t, x, ~y )). This expresses

that ψ defines a (partial) function at parameter ~y. When this is the

case, we will denote by ψ(t) the value of this function at t. In a
similar way, we can express that the domain of the function defined
by ψ is an open interval.

vel(ψ, t) = v denotes the formula (∀ε > 0)(∃δ > 0)(∀s ∈ [t − δ, t +

δ])( |[(ψ(s) − ψ(t))/(s − t)] − v| < ε ). This formula expresses that
the velocity vector of the function defined by ψ at t is v ∈ Qn. Then
we can express that the velocity vector changes with t continuously,
i.e. the function defined by ψ is 1-smooth. Similarly, we can express
that it is 3-smooth. Let curve(ψ) denote that ψ defines a 3-smooth
function, and the domain of this function is an open interval. We note
that vel(ψ, t) is the tangent-vector of the curve ψ at t. The length of
this vector depends on the parametrization of the curve.

By the worldcurve of observer k in m’s worldview we understand the
worldline wlinem(k) parameterized with the wristwatch time of k. We can
define this worldcurve by the formula γmk = γmk(t, x) = γ(t, x, m, k) as
follows:

γmk := γ(t, x, m, k) denotes the formula “wkm(t, 0) = x ∧ W(k, k, t, 0)”.

Intuitively, γmk holds for t, x iff m sees k present at coordinates x such that
k’s wristwatch shows t when k is present at x. Below we use γmk(t) as a
function of t.

Finally, we express that ψ = ψ(t, x, ~y ) defines a time-faithful curve, or
that ψ defines a photonlike curve, respectively as
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timef(ψ) denotes the formula “curve(ψ) ∧ ∀t(∃xψ(t, x) →
(∃k ∈ Ob)(∃s ∈ Q)[ ψ(t) = γmk(s) ∧ vel(ψ, t) = vel(γmk, s) ])”.

phot(ψ) denotes the formula “curve(ψ) ∧ ∀t(∃xψ(t, x) →
(∃ph ∈ Ph)[ ψ(t) ∈ wlinem(ph) ∧ tangent(∃tψ, wlinem(ph), ψ(t)) ])”

To be able to quantify conveniently over parametrically defined timelike
and photonlike curves, we will use the following axiom schema which is an
analogue of the Comprehension axiom schema in Set Theory. Below, we
are thinking of ψ(t, x) as defining a curve, hence t ∈ Domψ abbreviates the
formula ∃xψ(t, x), or equivalently, ∃xψ(t, x, ~y ). We systematically do not
indicate ~y because in ∃xψ(t, x, ~y ), the variables in ~y are free variables, they
remain free variables while we use ψ in building up new formulas like Ax∃ψ

below and eventually in postulating the axioms, all free variables become
universally quantified. Hence e.g. Ax∃ψ looks like ∀~y (. . . ψ(t, x, ~y ) . . . ).

In each inertial observer’s worldview, the parametrically definable timefaith-
ful curves are worldcurves of (not necessarily inertial) observers; and the
photonlike curves are worldlines of bodies. Formally: Let ψ(t, x, ~y ) be a
formula. Then

Ax∃ψ (timef(ψ) → (∀m ∈ Ob)(∃b ∈ B)(∀t ∈ Domψ)ψ(t) = γmb(t)) ∧
(phot(ψ) → (∀m ∈ Ob)(∃b ∈ B){ψ(t) : t ∈ Domψ} = wlinem(b)).

COMPR := {Ax∃ψ : ψ is a formula of our vocabulary}.

For any p ∈ Qn and ε > 0 let S(p, ε) := {q ∈ Qn : |q − p| < ε}, the open

ball (or sphere) of radius ε with center p. We now can formulate

“ γmk is a timelike geodesic ” iff

timef(γmk) ∧ (∀p ∈ wlinem(k))(∃ε > 0)(∀q, r ∈ wlinem(k) ∩ S(p, ε))
(∀b ∈ B)[ timef(γmb)∧wlinem(b) ⊆ S(p, ε)∧ q = γmb(t

′) = γmk(t)∧ r =
γmb(s

′) = γmk(s) ⇒ |t − s| ≥ |t′ − s′| ].

“ wlinem(ph) is a photonlike geodesic ” can be expressed analogously (see

p. 72 where photonlike geodesics were defined for 〈M, L〉).

AxLine− In each inertial observer’s worldview, the worldlines of inertial
observers and photons are geodesics. Formally:

(∀m, k ∈ Ob)“γmk is a timelike geodesic” and

(∀m ∈ Ob)(∀ph ∈ Ph)“wlinem(ph) is a photonlike geodesic”.
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Now we turn to formulating a generalization of AxEvent. It expresses
that if m observes k participate in an event, then k himself “sees” this
event. Further, if k sees an event that m sees, then k sees all events which
occur “near” this event in m’s worldview.

AxEvent−

(∀m, k ∈ Ob)(∀p ∈ Qn)(k ∈ evm(p) ⇒ (∃q ∈ Qn)evk(q) = evm(p)) ∧
(Dom(wmk) is open and wmk is a 3-smooth function)).

To formulate a generalization of AxSim, we will use a variant of AxSim
that works for n = 2, too. For more on this variant we refer to [AMN02,
Sec.s 2.8, 3.9], [AMN06b, p.162], [AMN99].

AxSim− Any two inertial observers see each other’s wristwatches run slow
with the same ratio when they meet:

(∀m, k ∈ Ob)(∀t, s ∈ Q)[ evm(γmk(t)) = evk(γkm(s)) ⇒
|vel(γmk, t)| = |vel(γkm, s)| ].

To be able to use the notions of continuity and differentiability etc.
in arbitrary fields in place of R properly, we need the axiom schema of
Continuity. Reasons and details for this can be found e.g. in [MNS06b],
[Gol87], [vB83, p. 29].

AxSupψ is a formula expressing that every subset of Q defined by ψ(t, ~y )

with parameter ~y has a supremum if it is non-empty and bounded.
Formally AxSupψ is: ∃t′∀t[ψ(t, y) → t < t′] → ∃t′(∀t[ψ(t, y) → t <
t′] ∧ ∀t′′[∀t(ψ(t, y) → t < t′′) → t′′ ≥ t′]).

CONT := {AxSupψ : ψ is a formula in our vocabulary}.

The formula schema CONT above is a variant of Tarski’s first-order logic
version of Hilbert’s axiom of continuity in his axiomatization of Euclidean
geometry. It is also strongly related to the induction axiom schema in the
dynamic logic of actions in the sense of [Sai86], [ANS82].

Genrel := {AxSelf−, AxLine−, AxThEx−, AxPh−, AxEvent−, AxSim−}
∪ {AxField} ∪ CONT ∪ COMPR.

As a first theorem we state that special relativity is the special case
of general relativity where the worldlines of all observers and photons are
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straight lines; and where the Light Axiom holds. This is stated in the next
theorem. We conjecture that a much weaker axiom suffices in place of the
Light Axiom.

Theorem 3.2. Genrel∪{AxLine, AxPh} is equivalent to Specrel∪CONT∪
COMPR in the sense that they have the same models, if n ≥ 3.

Proof outline. Assume Genrel + AxLine + AxPh. First one proves that
(∀m ∈ Ob)Cd(m) = Qn, by AxLine. Then AxEvent can be proved from
AxLine, AxPh and AxEvent− along the lines of the proof in [AMN02, pp. 98-
100]. Now the axiom AxEOb used in [MNT04] holds, so one gets that the
worldview transformations are affine mappings, by [MNT04, Thm. 1]. It is
proved in [AMN02, Thm. 3.9.11] that AxSim− implies AxSim when the world-
view transformations are affine. This proves one direction of Thm. 3.2. In
the other direction we have to prove in an axiomatic setting that timelike and
photonlike straight lines are timelike and photonlike geodesics, respectively.
This is done, basically, in [MNS06b, Thm. 3.1].

Next we show that the metric-geometric forms of the models of Genrel
are Lorentz manifolds and each Lorentz manifold is the metric-geometric
form of a model of Genrel. This will be the analogue of Thm. 2.11 in
Sec. 2.6.

Definition 3.8. Let Q = 〈Q, +, ∗,≤〉 be an ordered quadratic field. By a
3-smooth n-dimensional Lorentz manifold over Q we understand
〈〈Mm, gm, ψmk, Q〉 : m, k ∈ J〉 where 〈〈〈Mm, gm〉, ψmk〉 : m, k ∈ J〉 is a
Lorentz manifold in the sense of Def. 3.7 with the following changes:

(a) in place of R
4 we use Qn, and

(b) in place of requiring the metric-tensor fields gm and the partial isomor-
phisms ψmk to be smooth, we only require that they be 3-smooth.

The following theorem says that the models of Genrel are exactly the
3-smooth Lorentz manifolds over ordered real-closed fields, up to ignoring
some “decorations” on the Genrel side. Thm. 3.3 can be considered as a
completeness theorem for Genrel.

Theorem 3.3. (completeness theorem for Genrel) Assume n ≥ 3.

(i) There is a theory Comp− analogous to Comp such that Genrel ∪
Comp− is definitionally equivalent with the class LM of all 3-smooth
Lorentz manifolds over ordered real-closed fields.
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(ii) There is a definable function Lm that maps the class of all models of
Genrel onto the class LM. Moreover, if M |= Catrel then Lm(M) is
definitionally equivalent with the Minkowski geometry Mg(M) of M.

The proof of Thm. 3.3 is based on the following proposition, which states
that the models of Genrel are “locally special relativistic”.

Proposition 3.1. Assume that M |= Genrel and m, k ∈ Ob. If p ∈
wlinem(k) ∩ t then D(wmk)p exists and it preserves relativistic (Minkowski)
distance µ.

Proof outline. Assume p ∈ wlinem(k)∩ t. Then k, m ∈ evm(p) by AxSelf−,
and so p ∈ Dom(wmk) and F := D(wmk)p exists by AxEvent−. By AxPh−,
and the definition of wmk, F takes PLines and only PLines going through p
to PLines going through p′ := wmk(p). Thus F is a bijection and by AxSim−

it preserves µ.

To give an idea for the proof of Thm. 3.3, we define Lm(M) for M |=
Genrel. Let us fix a model M = 〈Q, +, ∗,≤; B, Ob, Ph; W〉 |= Genrel and
let Q = 〈Q, +, ∗,≤〉. Let m ∈ Ob and p ∈ Cd(m). Let k ∈ evm(p) ∩ Ob be
arbitrary (such a k exists by AxThEx−) and let p′ := wmk(p). We define

Lp,k := D(wmk)p′ ◦ τ(p′), where τ(p′) : Qn → Qn is “translation with p′”,

and

gp,k is the metric-tensor field belonging to this Lp,k as defined in Def. 3.5,

i.e. gp,k(q, r) := g(L−1
p,k(q), L

−1
p,k(r)), for all q, r ∈ Qn.

It follows from Prop. 3.1 that, though Lp,k depends on how we choose k ∈
evm(p), the metric-tensor gp,k does not depend on how we choose k ∈ evm(p).
Therefore we will omit the index k from the notation:

gp := gp,k , gm := 〈gp : p ∈ Cd(m)〉, Gm := 〈Cd(m), gm〉, and

Lm(M) := 〈〈Cd(m), gm, wmk, Q〉 : m, k ∈ Ob〉.

laim 3.1. Assume M |= Genrel. The following (i),(ii) hold.

(i) Lm(M) is a 3-smooth Lorentz manifold over Q, and Q is an ordered
real-closed field.
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(ii) The worldlines wlinem(k), wlinem(ph) of observers and photons in m’s
worldview are timelike and photonlike geodesics in Gm. Conversely,
any timelike geodesic ℓ is a worldline of an observer locally, i.e. (∀p ∈
ℓ)(∃ε > 0)(∃k ∈ Ob)ℓ ∩ S(p, ε) ⊆ wlinem(k). The same converse holds
for photonlike geodesics, too.

We outlined above that the geometry of each model of Genrel is a
Lorentz 3-smooth manifold. The converse is also true, each Lorentz 3-
smooth manifold over an ordered real-closed field is isomorphic (as a mani-
fold) to the geometry Lm(M) of a model M of Genrel.

The extension Comp− for Genrel is completely analogous with Comp.
A typical axiom in Comp− states that if the worldlines of two photons ph1

and ph2 coincide for all observers, then ph1 = ph2. Further, the worldline
of a photon is a maximal photonlike geodesic. The point in the axioms in
Comp− is to eliminate things like the multiplicity of otherwise undistin-
guishable objects (like ph1 and ph2 above) which cannot be defined over
LM because they are undistinguishable. In some sense these statements are
incarnations of Occam’s razor.

We omit the rest of the idea for proof of Thm. 3.2.

What we call the worldview of an inertial observer m ∈ Ob in Genrel
corresponds to “spaceships with ship-drive switched off”: the worldline of
the center of mass is a geodesic, but we did not care about whether the space-
ship rotates or not. One can base an axiomatization of GR on worldviews
of the so-called “ local inertial frames ” ( LIF ’s, cf. [Rin01, pp. 177-179])
which correspond to nonrotating inertial spaceships. LIF’s reflect the lo-
cal special relativity more closely (e.g. they do not rotate). However, LIF’s
can be defined in models of Genrel and the axiomatization based on LIF’s
would provide the same geometrical entities Lm(M) behind the models as
the present Genrel does. The role of Einstein’s field equations in interpret-
ing Genrel is touched upon in Sec. 4.5.

4 Black holes, wormholes, timewarp. Distinguished
general relativistic space-times

In Sec. 3.6 we introduced the first-order logic theory Genrel of general rel-
ativity. In such a situation, the next natural thing to do is to turn to the
intended models of the theory in question, and to discuss what these models
look like. Indeed, we will do this in the present section, we will study some
of the intended models of the theory Genrel. A difference between special
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relativity and GR is that while the special theory had basically one intended
model (namely Minkowski space-time), the general theory has many noni-
somorphic intended models, as we will see below.

It will be convenient for us to study the models of Genrel in their
geometric forms. Hence we will speak about GR space-times 〈M, L〉, but it
is important to remember that in Sec. 3.6 we saw that such a space-time
〈M, L〉 is equivalent with a Genrel model M |= Genrel. So each one of
the GR space-times in this section represents a distinguished Genrel model,
and discussing these will shed some light on the semantic aspects of Genrel.

For discussing the models of Genrel we leave the realm of first-order
logic and then we work in mathematics proper, the reason for which is that
by Tarski’s theorem one cannot satisfactorily describe the semantics of a
language L inside the framework of L itself. To study the semantics of L,
we have to rise above L and use the meta-language of L. In our case, this
metalanguage is ordinary mathematics (or equivalently Set Theory, say ZF).

4.1 Special relativity as special case of general relativity

Minkowski space-time is Gsr = 〈M, L〉 where M = R
4 and L(p) is transla-

tion with p (i.e. Lp(q) = p+q for any q ∈ R
4), for all p ∈ R

4. In vector-fields
form this is 〈G1, . . . , G4〉 where Gi(p) = 1i for all p ∈ R

4 and 1 ≤ i ≤ 4, see
upper part of Fig. 30. In metric-tensor field form Minkowski space-time is
〈M, g〉 where the 4 by 4 matrix (gij(p) : 1 ≤ i, j ≤ 4) at p ∈ R

4 is

g(p) =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









,

i.e. the line-element is ds2 = dt2 − dx2 − dy2 − dz2. The timelike and pho-
tonlike geodesics in this space-time are the straight lines of slope < 1 and
of slope 1, respectively. The automorphisms (i.e. isomorphisms onto itself)
of Minkowski space-time Gsr are exactly the possible worldview transfor-
mations in a model of Specrel (where 〈Q, . . .〉 = 〈R, . . .〉), cf. Thm. 2.7.

Worldview of a uniformly accelerated observer in Specrel:

We let n = 2, for simplicity. Consider the following space-time Gua =

〈M, L〉 where M = {〈t, x〉 ∈ R
2 : x > 0} and Gt(p) = 〈1/p2, 0〉, Gx(p) =

〈0, 1〉 for all p = 〈p1, p2〉 ∈ M , cf. the lower part of Fig. 30. Thus the
line-element is
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ds2 = x2dt2 − dx2, and the gij-matrix is

g(t, x) =

(

x2 0
0 −1

)

.

In this space-time, as we approach the origin, local LFR clocks tick slower
and slower beyond any limit compared with coordinate GFR time, and local
LFR clocks tick faster and faster beyond any limit compared with coordinate
GFR time as we move away from the origin. On the other hand, local
meter-rods do not change along the x-axis, local LFR spatial distances agree
with coordinate GFR spatial distances. This space-time looks different from
Minkowski space-time Gsr, but in fact it is isomorphic to a sub-space-time
of 2-dimensional Gsr. The isomorphism denoted by Iso is represented in
Fig. 30, it maps M of Gua bijectively onto {〈t, x〉 : |t| < x}. The space-time
Gua is the worldview (or space-time) of a uniformly accelerated observer k
who lives in Minkowski space-time, with uniform (relativistic) acceleration
a = 1. (The space-time for arbitrary uniform acceleration a is given by
Gt(p) = 〈1/(ap2), 0〉, Gx(p) = 〈0, 1〉.) One can think of Gsr as the worldview
of an inertial observer m in special relativity, and then Iso is the worldview
transformation wkm between the worldview Gua of accelerated k and the
worldview Gsr of m.

Gua is rather similar to the exterior of the (2-dimensional tr-slice of
the) simplest black hole Gsb below, which, in turn, is no longer partially
isomorphic to any open part of Gsr. Studying the simple space-time Gua of
accelerated observers can lead to a deeper understanding of the space-time
Gsb of the important Schwarzschild black hole to which we turn now. This
connection is elaborated e.g. in the textbook [Rin01, Sec.s 3.7, 12.4].

4.2 The Schwarzschild black hole

There is an overwhelmingly mounting observational evidence for the exis-
tence of large black holes in our universe. In the last 15 years astronomers
have observed them. At the same time, black holes have really fantastic
properties. Black hole physics is at the cutting edge of modern science.

There are many kinds of black holes, the Schwarzschild black hole is
the simplest one. We will recall more exotic ones in Sec. 4.3. Why is the
Schwarzschild black hole important? Here are four reasons for this: it is the
simplest form of relativistic gravity (all the mass is in one point), it is an
idealization of the gravitational space-time of our own Sun, it is a typical
general relativistic space-time, and many other GR space-times build on it.
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t̄

t̄

k

km

x̄

x̄

worldline of a
uniformly accelerated

observer k

1
ax

Minkowski space-time Gsr

Iso

Space-time Gua of uniformly accelerated observer

Figure 30: Isomorphism from the worldview of a uniformly accelerated ob-
server to Minkowski space-time. (The example in the text is given for uni-
form acceleration a = 1, the figure is for a = 1/3.) Iso(t, x), for t > 0, is
the point p on the Minkowski-circle M(0, x) of radius x and with center the
origin such that the relativistic arc-length of M(0, x) from 〈0, x〉 to p is axt.
1
ax

is the length of Gt at x.

Worldview of a suspended observer far away from the black hole:

The Schwarzschild (black hole) space-time is Gsb := 〈M, L〉 where
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M = {p ∈ R
4 : |〈p2, p3, p4〉| 6= 0, 1} and L is given as follows. For any

p = 〈p1, p2, p3, p4〉 ∈ R
4 let r := r(p) := 〈0, p2, p3, p4〉, r := |r|, and

1r := 1r(p) := 1
r
∗ r. Here, “r” stands for “radius”. Now L is specified by

the following four vector-fields

For r > 1:

Gt(p) =
√

r
r−1 ∗ 1t, Gx(p) =

√

r−1
r

∗ 1r, the lengths of Gy(p) and Gz(p) are

1, and Gt(p), Gx(p), Gy(p), Gz(p) are pairwise orthogonal.

For r < 1:

Gt(p) =
√

1−r
r

∗ 1r, Gx(p) =
√

r
1−r

∗ 1t, the lengths of Gy(p) and Gz(p) are

1, and Gt(p), Gx(p), Gy(p), Gz(p) are pairwise orthogonal.
See Fig. 31.

Gsb in metric-tensor form is the following. We use cylindric-polar coor-
dinates because they are more convenient (by spatial spherical symmetry of
the space-time). The line-element is

ds2 = (1 − 1
r
)dt2 − (1 − 1

r
)−1dr2 − r2dϕ2,

where dϕ represents two coordinates the usual Euclidean way. Namely, ϕ
represents “space-angle”, i.e. ϕ is the usual Euclidean combination of two
polar coordinates θ (longitude) and η (latitude). Formally, dϕ2 = dθ2 +
sin(θ)2dη2 (metric on Euclidean unit 2-sphere). We note that by defining
the line-element we also defined the metric-tensor field g of the Schwarzschild
space-time Gsb.

In the general form of the Schwarzschild space-time, there is a parameter
that we chose to be 1 in the above. Namely, the general form of the line-
element for Schwarzschild black hole is

ds2 = (1 − M

r
)dt2 − (1 − M

r
)−1dr2 − r2dϕ2,

the parameter M ∈ R is thought of as the “mass” of the black hole. M is
also called the radius or size of the black hole. (For historical reasons 2m
is used for M in the literature, but this does not matter when one wants to
understand the “logic” of the black holes.) Similarity with the accelerated
observer can be discovered by choosing x = r − 1. Then the accelerated
line-element (i.e. that of Gua) becomes ds2 = (r − 1)2dt2 − dr2. For lack of
space we do not discuss this more here, but we note that there is more in
this direction in [AMN06a].

The set of coordinate points p ∈ R
4 with r = 0 is called the singularity

(this coincides with the time-axis), and the set of coordinate points p ∈ R
4

with r = 1 is called the event horizon ( EH ). These are disjoint from
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singularity r = 0

event horizon r = 1

|Gt| =
√

r
r−1

|Gx| =
√

r−1
r

|Gy| = 1

Gx

Gt

Gy Gx

Gt

Figure 31: Illustration for the Schwarzschild space-time. Gt gets longer
as we approach r = 1 from above, i.e. local time runs slower and slower
as we approach r = 1. Gx gets shorter as we approach r = 1, i.e. there
is more and more space (compared to “coordinate-space”) as we approach
r = 1. The length of Gy stays 1, this means that spatial distances orthogonal
to the radius agree with coordinate-distances. Time and (radial) space are
interchanged in the interior of the black hole, this means that, in the interior,
the r-axis is the worldline of an observer, but lines parallel to the time-axis
are not possible worldlines. The singularity is in the future of an observer
inside the black hole.

the domain of Gsb, i.e. we did not associate local clocks and meter-rods to
these points. Thinking in terms of the global coordinate frame, the event
horizon is a sphere of radius 1 (or M in the more general case), and the
singularity is the center of this sphere. Loosely speaking, we will refer to
the EH and its interior as the black hole ( BH ). When we want to be more
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careful, we will refer to the part outside of the EH as the exterior of the
BH and we will refer to the inside part of the EH as the interior of the
BH. Later we will see that the interior and the exterior of the BH behave, in
some sense, like two different universes connected by a one-way membrane,
namely by the EH. Here one-way membrane means that an observer may
fall through the EH into the interior of the BH, but nothing, not even light
can come out from the interior. This effect is not yet clear from our present
space-time diagram (Fig. 32) but it will be clear after we apply the so-called
Eddington-Finkelstein re-coordinatization (and extension) to it, cf. Fig. 35.

Let us think for a while in terms of the global coordinate system , and
let us see what the exterior of the BH looks like. Infinitely far away every-
thing is normal, the farther away we are from the EH, the more “normal
life is”, e.g. both local time and local meter-rods agree with the global GFR
coordinate ones asymptotically. Space-times with this property are called
asymptotically flat . Asymptotically flat means asymptotically Minkowski
(or asymptotically special relativistic), namely as we move away from the
BH, space-time becomes more and more like Minkowski space-time is. This
can be formalized by saying that as r(p) tends to infinity, so the metric-
tensor g(p) tends to “Minkowski g”.

Convention: by coordinate properties (e.g. coordinate time) we always
mean the global, GFR-coordinate properties.

Let us now approach the EH from far away. As we get close, local clocks
begin to tick radically slower (compared to the global coordinate time),
beyond any limit; so metaphorically local clocks “stop” or freeze at the
EH. (This is only metaphorical because we did not associate local clocks
and meter-rods to the points of the EH. However, this will be helped after
the upcoming Eddington-Finkelstein re-coordinatization and then time will
really freeze on the EH.) At the same time, local meter-rods in the radial
direction get smaller (beyond any limit) as we approach the EH, but local
meter-rods orthogonal to the radius of the EH continue to agree with the
coordinate meter-rods.

Far away from the BH, GFR-coordinate-speed of light tends to be the
same, namely 1, in all directions, but as we approach the EH, the coordinate-
speed of light in the radial direction gets radically smaller compared to
the coordinate-speed of light in directions orthogonal to the radius (this
coordinate “anisotropy” is the reason why the light-cones in Fig. 31 close to
the EH but in the exterior get “flattened out”); and as we get closer to the
EH, the coordinate-speed of light tends to 0 in all directions. We note that
the fact that gti(p) = 0 for i 6= t everywhere means that at each event, the
coordinate-speed of light in a spatial direction d and in its opposite direction
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−d is the same, if measured by the global frame. The above means that the
so-called light-cones get infinitely narrow towards the EH but they do not
get tilted as seen by the GFR, cf. Fig. 31, Fig. 32.

Since a timelike curve must stay inside the local light-cones, this means
that observers stay for all the coordinate time outside the EH, they never
“enter” the EH, as seen via the global coordinate grid. We will see that this
is only an “artifact” of Schwarzschild’s particular choice of global coordinate
system (GFR), similar to the “artifact” mentioned earlier and also in Fig. 30.
Avoiding of this artifact will be done via the so-called Eddington-Finkelstein
re-coordinatization which will be presented soon.

Let us see what the worldlines of observers and photons in the Schwarzschild
space-time look like in the exterior of the EH.

Consider, for an example, the curve f : R → R
4 where f(τ) = 〈

√
1.5 ∗

τ, 3, 0, 0〉 for all τ ∈ R. (This f is represented in Fig. 32 as “suspended
observer”.) This is a time-faithful curve, so we can imagine an observer k
whose worldcurve this f is; the worldline of k (in Gsb) is the vertical line
going through 〈0, 3, 0, 0〉 and k’s wristwatch shows τ at the coordinate point
〈
√

1.5 ∗ τ, 3, 0, 0〉. Is this curve f a geodesic? Local clocks at coordinate
points farther away from the EH tick faster, so one can “gain time” by
moving outwards a little, clocking up a lot of wristwatch time while out
there, and then coming back. Special relativistic time-dilation dampens
this effect somewhat since the clocks of a fast moving observer slow down.
But it is not hard to show that by moving outwards and then coming back
with small velocities all the time, one gains time, and there is an optimum
“outward-bulging” with maximum gain of time. Hence, vertical lines are
not geodesics and the timelike geodesics always “bulge a little outwards”,
i.e. they accelerate (or “turn”), as seen in GFR, towards the BH. So, f is
not a geodesic.

Radial timelike geodesics are similar to the worldlines of pebbles thrown
up into the air here on the Earth; with “upward” replaced by “outward”; a
geodesic curve which begins to move away from the EH looses (coordinate)
speed, eventually it stops and “falls back” towards the EH. According to
GR, things thrown up fall back not because gravity of the Earth pulls them
with myriad small invisible “hands”, but because time ticks slower near
the Earth, and faster farther away from the Earth. Newton’s apple falls
from the tree because of the “gravitational time-dilation” (known also as
gravitational red-shift)! This is the first explanation for gravity since its
behavior has been described by Newton.

There is a similar reason for a photonlike geodesic with a velocity in
nonradial direction to bend toward the EH as if the EH “pulled” the geodesic
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Figure 32: The “tr-slice” of the Schwarzschild black hole. This is a geodesi-
cally closed 2-dimensional sub-space-time of Gsb. The worldline of m is a
geodesic, it “bulges” outward because m can maximize his time by bulging
outwards. The worldline of k is not a geodesic (because it does not “bulge”
outwards). Photons and inertial observers moving in radially “freeze” to the
EH. The wristwatch of an in-falling inertial observer slows down “infinitely”,
and will show times which are bounded.

towards itself. So, even photons “fall” (gravitational “light-bending” effect).

Since the BH attracts, if an observer wants to stay at a constant dis-
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tance from the EH, he has to use fuel for accelerating away from it. We
call an observer like k above a “suspended observer”. Suspended ob-
server means that the worldline of the observer is parallel with the time-axis
in the present Schwarzschild GFR coordinate system. However, the no-
tion of “suspended observer” is coordinatization-independent, i.e. observer-
independent, because these “vertical” worldlines can be defined by a first-
order logic formula in the language of local clocks and meter-rods (i.e. in
the language of Genrel in Sec. 3.6). In other words, there is an experiment
with which an observer can check whether he is suspended or not. In still
other words, being suspended is an observational concept.

Let us consider a (timelike or photonlike) geodesic curve that starts
out towards the EH in a radial direction. By cylindrical symmetry of the
space-time, there is “no reason” for the geodesic to bend right or left, since
“right” and “left” are completely alike by symmetry. This implies that a
geodesic curve which starts in a radial direction, will always move in this
radial direction, i.e. the (range of the) curve will be a subset of a tr-plane.
Thus a tr-plane is a geodesically closed sub-space-time of Gsb.

Let us review briefly the interior of the EH . In the interior of the EH,
time and (radial) space are interchanged, the r-axis is in fact the worldline of
a possible inertial observer. Hence the global r-axis is the local time-axis for
some LFR “living” in the interior of the BH. Similarly, the t-axis of the GFR
is a spatial direction for this LFR. The singularity is no more a “place” for
this observer (or for any observer in the interior), instead, it is like a future
time instance like the Big Crunch in usual cosmology, something that will
happen in the distant future but not “present” in the “now” of the in-falling
observer. Similarly, for this inertial observer inside the BH, the EH is like a
time instance or a “time-slice of space-time” which happened sometime in
the past like the Big Bang in cosmology. We see the light coming from the
Big Bang or from the EH in our past but we cannot influence it causally
because it is in our past. Local time at the EH (in the interior) is “infinitely
fast” compared to coordinate-time and local meter-rods in the t-direction
are “infinitely long”. As we move towards the singularity, local time “slows
down” (compared to GFR) beyond any limit, and local meter-rods in the t-
direction get shorter, approaching zero coordinate-length at the singularity.
Thus local light-cones in the interior of the EH are “infinitely wide” at the
EH, and get “infinitely narrow” at the singularity, see Fig. 32.

We could say that the space-time Gsb is the worldview of an observer k
suspended far away from the black hole. How far away? We measure “far” by
multiples of the radius of the EH (which we chose to be 1 presently), and the
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farther away the suspended observer is, the more he will experience special
relativistic space-time on his own worldline. He sees that inertial observers
fall towards the black hole, but he never sees them reach the black hole, for
him (k) they stay outside for the eternity of k. As they fall towards the
black hole, they move slower and slower as they approach the event-horizon,
and eventually they “freeze” onto the event-horizon. Also the wristwatches
of the inertial observers tick slower and slower towards the EH, and “stop
altogether at the EH”. The same happens to the photons sent towards the
EH in a radial direction: the photons slow up as they approach the EH,
and eventually, and metaphorically, they “freeze” onto the event horizon.
Our suspended observer k observes things this way both via photons (i.e.
visually by his eyes) and via his coordinate system.

Since an in-falling inertial observer m lives for an infinite GFR-time, it is
possible in theory that there is no upper bound for the time his wristwatch
shows, i.e. that m also will experience that all his infinite time passes outside
the EH. However, this is not the case: the wristwatch readings of an in-falling
inertial observer m are bounded, e.g. the wristwatch of m may approach 12
as he falls in, tick slower and slower and never reach 12 o’clock, cf. Fig. 32. So
what happens in the in-falling inertial observer’s own worldview or spaceship
when his wristwatch reaches 12 o’clock?

We will see that he falls through the EH into the interior of the BH. For
our suspended observer k, the interior of the BH is not visible by photons,
he cannot get information about the inside of the BH while suspended.
However, he may wonder what might be inside of that “big black ball”, i.e.
the EH. While suspended he cannot find out the answer. But, in principle,
he may choose to fall in, and because of this, the interior of the BH is a
“reality” for him.

In many ways this worldview Gsb of the suspended observer k is simi-
lar to the worldview of Gua of an accelerated observer in special relativity.
However, the following is an important and significant difference between
Gua and Gsb. Assume two inertial observers m, h fall radially into the black
hole, in the same “path”, i.e. in the same direction, and they started to
fall at the same GFR-time, and close to each other. During their fall, one
of them, say m, measures the distance between them by sending photons
to h which it mirrors back to m. Then m measures constantly the time it
takes for the photon to get mirrored back. The result of this measurement
is called radar-distance. In Gua this radar-distance remains the same, since
the distance of parallel geodesics in Gsr does not change (this means that
it is “flat”). However, in Gsb, m will find that the radar-distance between
him and h is growing; and since Gsb is the relativistic version of a gravita-
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tional source, this is expected to be so because in Newtonian gravity, things
closer to a gravitational source fall faster than things more distant. Tech-
nically speaking, timelike geodesics that started out in a parallel way, will
increase their distance from each other in the tr-plane; the space-time Gsb

is curved .11 This shows that there is no partial isomorphism between Gsb

and Gsr with an open domain.

Worldview of an observer falling into the black hole:

In the worldview of an observer falling into the black hole, the worldline
of the in-falling observer m ought to be a straight line parallel with the time-
axis. Instead of aiming for this, it is more convenient to “re-coordinatize”
Gsb in such a way that the worldline of a radially ingoing photon will be a
straight line of slope 1. There are no essential differences between such a
worldview and a worldview where the worldline of m would be a straight
line.12 In fact, since the EH and the singularity in its middle are special
“marked” places in this worldview, it is quite natural to make a worldview
where these “do not move” in the GFR.

In Gsb, the worldline of a radially in-falling photon in the tr-plane and
outside the EH is {〈−r − ln(r − 1) + constant, r〉 : r > 1}, and the worldline
of a photon inside the EH is {〈−r − ln(1 − r) + constant, r〉 : r > 1}. (This
is not difficult to show by using the definition of a photonlike curve given
in Sec. 3.3, and by knowing that the worldline is a subset of the tr-plane.)
Thus the following simple (partial) function Iso : R

4 → R
4 will take these

photon worldlines to straight lines of slope 1:

Iso (t, x, y, z) := 〈t + ln |r − 1|, x, y, z〉 where r =
√

x2 + y2 + z2.

Let us look for the isomorphic image of Gsb along Iso. By Thm. 3.1(ii)
(p. 76), the simplest way of defining the isomorphic image G0

ef = 〈M ′, L′〉 of
Gsb = 〈M, L〉 is by letting L′(Iso(p)) = D(Iso)p ◦Lp for all p ∈ M . By doing
so we get the following definition (see Fig. 33).

The Schwarzschild black hole in Eddington-Finkelstein coordinates is G0
ef =

〈M ′, L′〉 where M ′ = {p ∈ R
4 : r(p) 6= 0, 1}, and L′ is specified by the vector-

tetrad G′(p) = 〈G′

t(p), G′

x(p), G′

y(p), G′

x(p)〉 where

G′

x(p) =
√

1
r(r−1)1t +

√

r−1
r

1r, G′

t(p) = Gt(p) for r > 1,

11Parallel geodesics diverge means negative curvature. Hence the tr-plane of Gsb is
negatively curved. This is an instance of the so-called tidal forces which Gsb (and, in
general, GR) inherited from the Newtonian theory of gravity.

12“parallel with the time-axis” is inessential here, since it is easy to rotate a picture
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Figure 33: Eddington-Finkelstein re-coordinatization as an isomorphism be-
tween space-times

G′

t(p) =
√

1
r(1−r)1t −

√

1−r
r

1r, G′

x(p) = Gx(p) for r < 1, and

G′

y(p) = Gy(p), G′

z(p) = Gz(p) for all r.

(A few words on how we got G′(p): Assume r = r(p) > 1 and let p′ = Iso(p).
Now D(Iso)p takes 1t + p to 1t + p′ and 1r + p to 1r + 1

r−11t + p′. It can
be seen in Fig. 33 that we get G′

x(p) by considering its “slope (relative to
1x)” and by considering the length of its “r-projection”. The slope is given
by the derivative of Iso, thus it is 1

r−1 , and the r-projection of G′

x(p) is

Gx(p) = r−1
r

∗ 1r. We obtain 1
r−1 |Gx| = 1

r(r−1) as the t-component of G′

x.

The case r < 1 is analogous. G′

t, G
′

y, G
′

z are obtained similarly.) Thus, G′(p)
specifies the local LFR frame at p, see Fig. 34.

To see what the metric-tensor field gef of Gef is we have to “look at the
coordinate unit vectors 1i” with the eye of this LFR. This was explained in
Sec. 3.4, on p. 73.

In the coordinate system specified by G′(p), the coordinates of 1t and

1r are 〈
√

r−1
r

, 0, 0, 0〉 and 〈−
√

1
r(r−1) ,

√

r
r−1 , 0, 0〉 respectively. Hence for

r = r(p) > 1,
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Figure 34: The Schwarzschild space-time in Eddington-Finkelstein coordi-
nates.

gtt(p) = gp(1t,1t) = (
√

r−1
r

)2 = r−1
r

,

grr(p) = gp(1r,1r) = (−
√

1
r(r−1) )2 − (

√

r
r−1 )2 = −(1 + 1

r
), and

gtr(p) = grt(p) = gp(1t,1r) =
√

r−1
r

∗ −
√

1
r(r−1) = −1

r
.

For r < 1 we obtain the same final values for gij(p). For this reason, the
metric-tensor field gef belonging to G0

ef is given by the following line-element

ds2 = (1 − 1
r
)dt2 − 2

r
dtdr − (1 + 1

r
)dr2 + r2dϕ2.

In this metric-tensor, gtr 6= 0 because the coordinate unit vectors 1t,1r are
not orthogonal in the eye of the local LFR specified by the vector-tetrad
G′(p), see Fig.s 33,34. This, gtr 6= 0, means that the light-cones in the
tr-planes are tilted as illustrated in Fig.s 34,35.

We can see that the above gef can smoothly be extended to the event
horizon, i.e. to EH = {p ∈ R

4 : r(p) = 1}. The reason for this is that the
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above formula for gef is not degenerate for r = 1. Hence we can extend

G0
ef to EH, and this way we get Eddington-Finkelstein space-time , in short

EF-space-time , Gef = 〈Mef , gef 〉 where Mef = {p ∈ R
4 : r(p) 6= 0}. This

is an extension of G0
ef and Iso is a partial isomorphism between Gsb and

Gef . The event horizon EH is part of the space-time here; and in fact the
EH in a tr-plane is the worldline of a photon! This extended Gef explains
what happens on the event horizon and shows how the inside of the BH can
be connected to the outside. (We note that the above given G′ cannot be
smoothly extended to EH, but one can smoothly change G′ to G′′ which
gives the same metric-tensor field and which can be smoothly extended to
EH.)

r = 0

II I
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11.50
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13

t̄

r

suspended
observer

inertial
observer

event
horizon

Figure 35: The “tr-slice” of space-time of the Schwarzschild black hole in
Eddington-Finkelstein coordinates.

What will an in-falling inertial observer experience in Gef? Throughout
we assume that the BH in question is big enough so that the tidal forces on
the EH and also well inside the EH are negligible. The present “animation”
is based largely on Gef in Fig. 35, but also Fig. 32, Fig. 36 are taken into
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account. So, it is useful to consult these figures with an emphasis on Fig. 35
before reading on. For visualizability, we assume that the BH is like the ones
in centers of galaxies in that there are some stars (suns) orbiting our BH.
So there is the EH, outside that there are the nearby suns orbiting the EH,
and far away, there are the distant galaxies. As explained in [Rin01, §12.5,
pp. 267-271, Fig. 12.6], it is observationally possible to decorate the exterior
of our BH with a latticework or “scaffolding” consisting of suspended ob-
servers (spaceships using fuel for maintaining their latitude) which surround
the EH (only the exterior) and which maintain constant radar-distance from
each other by using rockets. Gyroscopes are used to avoid rotation. We will
think of these suspended observers as milestones, telling our in-falling ob-
server where he is and what his speed is. It is impossible to have suspended
observers on the EH or inside the EH, so one sign telling the in-falling ob-
server that he is already inside will be the nonexistence or disappearance of
the milestones.

As the in-falling observer m approaches the EH, he will see the milestones
flashing by him, so to speak, faster and faster approaching the speed of light.
If there were a milestone on the EH, then it would flash by (i.e. move relative
to the observer) with the speed of light. However, this milestone cannot be
realized by an observer. When all the milestones have flashed by our in-
falling m, he will notice that there are no more milestones and even the
BH has disappeared. Then m finds himself in basically empty flat-looking
space13 with no BH and no singularity in any of his spatial directions. More
precisely, if he knows what to look for, then he can still observe some traces
of the EH just as we can “see” our Big Bang (via the cosmic microwave
background radiation) but it is all in the past, gone so to speak, and not
influenceable causally. Like history is not changeable. The nearby suns (say,
of different colors for fun) are also visible, even moving as m watches them,
but they are like ghosts, their light comes from before the (Big Bang like) EH
and they are causally not “touchable”, since they all are in the distant past.
All of the outside world, even the future of the suspended observers outside
the EH, are in the past for m inside the BH, moving, living, dynamical,
and changing but in the distant past before the Big Bang like EH, causally
unreachable. What is interesting about this is that it is tempting to say
that for m safely inside the EH the exterior of the EH does not exist. He is
in a different universe, period. But that would not be the complete truth.
Namely, the nearby suns circling the BH are still visible for m, they are
just not influenceable causally. For more on this experience of seeing several

13Space may become flat (inside EH, of course), space-time remains curved.
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universes via a BH we refer to the professional physics movie “Falling into
a BH” [Ham01], and the Prologue of [Tho94]. What we described so far is
nothing but a decoding of the space-time diagrams Fig. 32-36 and of the
metric of Gef . This is the meaning of the mathematical expression of saying
“space and time gets interchanged”. Soon we will discuss more subtle BH’s
where m can avoid the fate of eventually hitting the singularity.

If we want to concentrate on the causal structure of a space-time, e.g. of
the Eddington-Finkelstein black hole in Fig. 35, then that can be represented
more compactly by a so-called conformal diagram (or Penrose diagram) of
Gef . Such a conformal diagram (of Fig. 35) is represented in Fig. 36. In a
conformal diagram, photonlike geodesics are represented as straight lines of
slope 1 and local time flows upwards.

Gsb and Gef are two worldviews of the Schwarzschild black hole, con-
nected by Iso. With an analogous way as we obtained Gef we can obtain
a re-coordinatization where the worldlines of the outgoing photons will be
straight lines of slope 1. In this worldview, the interior of EH will behave
like a so-called white hole: things can come out of the interior but cannot
move inside. If we go on completing the worldlines of observers when we can
we will also obtain a so-called hypothetical dual universe. All of these fit
into one world-view called the Kruskal-Szekeres space-time, whose conformal
structure is illustrated in Fig. 36.

4.3 Double black holes, wormholes

After an observer falls into a Schwarzschild black hole, he has only a finite
time to live inside, and he must meet the singularity. There are many more
friendly kinds of black holes, where he can live for an infinite time inside
the black hole, he can avoid meeting a singularity, and he can even come
out into an asymptotically flat region. (The expression “wormhole” refers
to this last property.) We briefly describe here two such black holes, the
electrically charged black hole and the rotating black hole.

Electrically charged black holes

This black hole is also called Reissner-Nordström black hole in the lit-
erature. Its line-element is

ds2 = (1 − 1
r

+ e
r2 )dt2 − (1 − 1

r
+ e

r2 )−1dr2 − r2dϕ2

where 0 ≤ e < 1
4 . (Notice the strong analogy with the Schwarzschild space-

time Gsb.) Here, e represents the square of the electric charge. In this
space-time r = 0 is the singularity, and there are two event horizons at
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Figure 36: Conformal or Penrose diagram of “completed” Schwarzschild
black hole. The shaded area consisting of blocks I, II is conformal diagram
of EF-black hole. Region I is the exterior of the BH, region II is the interior
of BH, region III is the white hole, and region IV is the dual universe. In
some sense, regions III, IV may or may not exist but regions I, II have a
stronger ontological status, they probably exist.

r− = 1
2 −

√

1
4 − e and r+ = 1

2 +
√

1
4 − e .

The exterior of the outer event horizon is similar to the Schwarzschild black
hole: the light-cones get narrower towards the outer EH, and they are “in-
finitely narrow” at the EH. Inside the outer EH, the space-time remains
similar to Gsb till about halfway towards the inner EH: time and space get
interchanged and as we move inwards, local time gets faster and faster. But
after a while, local time begins to slow down again, and local time “stops”
at the inner event horizon, where time and space get interchanged once
more. The innermost part, the interior of the inner event horizon, is similar
somewhat to the exterior of the outer EH, but time runs faster and faster
towards the singularity, beyond any limit. The singularity can be avoided
in the inside of the black hole, the in-falling observer can “live forever”.14

The coordinatization represented by the above line-element is analogous to
the Schwarzschild coordinatization of simple black hole, where the events of
the in-falling inertial observers’ entering the outer EH are not included. An

14Actually, it is extremely difficult to go near the singularity (because of the repelling
effect), so the in-falling observer is safe, will not be hurt by the BH.
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Eddington-Finkelstein-type re-coordinatization of the space-time where the
worldlines of the ingoing photons are straight lines of slope 1 is illustrated
in Fig. 37.

The conformal diagram of the electrically charged BH is shown in Fig. 39.
An observer falling into this BH may come out to an asymptotically flat
region (after crossing the EH’s) as indicated in Fig. 39.
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2
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event

horizon

outer
event

horizon

wrist-
watch-
time

III II I

t̄ z = r− z = r+

z
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Figure 37: The “tr-slice” of electrically charged black hole. (Also the “tz-
slice” of space-time of slowly rotating black hole in coordinates where z is
the axis of rotation of black hole.) r+ is the outer event horizon, r− is the
inner event horizon, z = 0 is the “center” of the black hole. The tilting of the
light-cones indicates that not even light can escape through these horizons.
That there is an outward push counteracting gravity can be seen via the
shape of the light-cones in region III (central region of the black hole). The
time measured by m is finite (measured between an event outside the inner
EH and the event when m meets the inner event horizon) while the time
measured by k is infinite.

Rotating (spinning) black holes
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The space-times of slowly rotating black holes, called slow Kerr space-

times in the literature, are similar to the electrically charged ones in that
there are two EH’s. We can think that the second, inner EH is the result of a
repelling force overtaking the attraction of gravity. In the case of electrically
charged black holes, the repelling force can be thought of, roughly, as the
result of an excess of electrons (or protons) “in the BH”, cf., e.g., [d’I83,
pp. 239-244] or [HE73, p.156] for a more careful explanation. In the case of
rotating black holes, the repelling force can be thought of as the centrifugal
force of rotation. The metric-tensor g(p) of Kerr black hole at p = (t, r, ϕ, ϑ)
is given by the 4 by 4 matrix

gKerr =









−1 + µ 0 −µa sin2 ϑ 0
0 Σ/∆ 0 0

−µa sin2 ϑ 0 gϕϕ 0

0 0 0 Σ









,

where Σ = r2 + a2 cos2 ϑ, ∆ = r2 − Mr + a2, µ = Mr/Σ, and gϕϕ = (r2 +
a2 + µa2 sin2 ϑ) sin2 ϑ. We used the so-called Boyer–Lindquist coordinates
(t, r, ϕ, ϑ) where (t, r, ϕ, ϑ) are kind of polar-cylindric coordinates, r being
radius (to be precise, r is the logarithm of the radius) and ϕ, ϑ being angular
coordinates like η and θ were on p. 88. In the Kerr metric, gKerr, M, a ∈ R

are parameters, M corresponding to mass and a to the angular momentum
of the rotating singularity. Indeed, choosing a = 0 yields the metric of the
simple Schwarzschild BH. A two-dimensional slice of a slowly rotating black
hole is very similar to the one in Fig. 37, and a “spatial” representation is
in Fig. 38.

We meet two interesting features in these black holes. The first inter-
esting feature is that there are so-called Malament-Hogarth events in these
space-times. An event e is called a Malament-Hogarth event if in the causal
past of e there is a time-faithful curve which is infinite in the future direc-
tion. The words “past” and “future” are important here, these refer to
a time-orientation of the space-time, as follows. A time-orientation on a
GR space-time 〈M, L〉 is a smooth vector-field each member of which is
timelike (formally, a time-orientation is a smooth T : M → R

4 such that
µp(T (p) − p) > 0 for all p ∈ M). All the GR space-times mentioned in
Sec. 4 have natural time-orientations. Given a time-orientation, the notion
of a future-oriented timelike curve can be defined. The causal past of an
event e is defined to be the set of events e′ which can be connected with
e by a future-oriented timelike curve such that e′ is “earlier” in this curve
than e is.
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Figure 38: A slowly rotating (Kerr) black hole has two event horizons and a
ring-shape singularity (the latter can be approximated/visualized as a ring
of extremely dense and thin “wire”). The ring singularity is inside the inner
event horizon in the “equatorial” plane of axes x, y. Time coordinate is
suppressed. Fig. 37 is a space-time diagram of this with x, y suppressed.
Rotation of ring is indicated by an arrow. Orbit of an in-falling observer m
is indicated, it enters outer event horizon at point e, and meets inner event
horizon at point b. For more on the basics of this figure cf. [[O’N95, Fig. 2.2,
p. 63]].

One could think that in Malament-Hogarth events “actual infinity” is
an observable physical reality. This phenomenon raises lots of intriguing
questions to think over and has consequences even for the foundation of
mathematics. For more on this we refer to [ND06], [NA06], and to [EN02].
There are Malament-Hogarth events in both the charged and the rotating
black holes, see Fig. 39.

Another intriguing feature is the presence of closed timelike curves ( CTC ’s)
in Kerr space-time. CTC’s raise the question of time-travel into the past,
and offer themselves for a logical treatment like the Liar Paradox. For more
on this we refer to [Ear95]. There are CTC’s in the space-time of a rotat-
ing black hole, see e.g. [O’N95, pp. 76-77, Prop. 2.4.7], [Wüt99], [ANW06].
There are many other kinds of space-times with CTC’s, e.g. Tipler- van
Stockum’s rotating cylinder, Gödel’s universe, the ones described in [Tho94]
and [Nov98], to mention a few. Cf. Fig. 40.
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Figure 39: Penrose diagram of electrically charged black hole (and also of
slowly rotating black hole). The red line represents a segment of the life-line
of an in-falling inertial observer m, and the blue line represents the life-line
of a suspended observer k. The time passed on the red line is finite, while
the time passed on the blue line, i.e. for the suspended observer, is infinite.
In principle, the in-falling observer has access in a finite wristwatch-time
of his to all of the future history of the suspended observer k (an ultimate
effect of “slow time” caused by BH’s).

4.4 Black holes with antigravity (i.e. with a cosmological
constant Λ). Triple black holes

One can combine the idea of a BH with a universe in which the vacuum
regions have a nonzero curvature characterized by Einstein’s cosmological
term Λ ∈ R. Λ may be positive or negative, but |Λ| is small. Recent
cosmological observations suggest that Λ or something like it might be out
there, i.e. might be important for understanding the acceleration of our
expanding universe. The line-element is a generalization of the one of the
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Figure 40: Starting point for Gödel’s rotating cosmological model. This is a
GR space-time, the vector fields and local light-cones representing the local
special relativity frames (LFR’s) are indicated. CTC’s can be seen in the
figure.

charged BH (generalizing Gsb) on p. 100

ds2 = (1 − M

r
+ e

r2 − Λr2)dt2 − (1 − M

r
+ e

r2 − Λr2)−1dr2 − r2dϕ2.

Here M is the mass of the BH, e is (square of) its electric charge, and Λ rep-
resents the hypothetical antigravitational property of intergalactic vacuum.
The parameters M, e,Λ can be chosen independently of each other obtaining
various kinds of special cases. Λ > 0 causes the timelike geodesics outside
the outer EH behave as if an antigravitational force would be pushing them
outwards, away from the EH, cf. [Rin01, §14.4, pp. 304-306]. If Λ = 0, we
are in asymptotically flat universe, Λ > 0 means negative curvature, hence
what is called de-Sitter universe, while Λ < 0 means positive curvature (for
our vacuum), and so-called anti-de-Sitter universe.

The choice Λ < 0 causes distant clocks speed up15 (via the −Λr2 term
in gtt), while small Λ > 0 causes them to run slow (assuming Λr2 ≤ 1; at

15Hence Malament-Hogarth computers breaking the Turing Barrier become possible, cf.
[ND06], [Hog04].
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Λr2 = 1 there is a “coordinate-event horizon”16 if M = e = 0). The behavior
(speed) of distant clocks determine the behavior of geodesics (gravitation)
according to the same “logic” as explained at the Schwarzschild BH on
pp. 91-92. The choice of M = e = 0 yields de-Sitter and anti-de-Sitter
space-times respectively, depending on the sign of Λ.

4.5 Einstein’s field equations

In the present work we concentrate on the space-time aspects of general
relativity (GR). One of the reasons for this choice is that to study GR, it is
reasonable to start with studying GR space-time, this enables one to study
advanced and exotic examples of GR space-times like black holes, worm-
holes, cosmological models etc. as done e.g. in the GR textbook [TW00],
and then turn to studying Einstein’s field equations EFE and the rest of
GR together with its “borderlines”. This order is followed in, e.g., Penrose’s
recent book [Pen04]. About this possible continuation of studies we note
the following. EFE is not a new axiom in the language of GR space-times
restricting these. Instead, EFE is a definitional expansion of GR space-
times in the sense of definability theory of mathematical logic (described
in Sec. 2.6). EFE comes in two versions, a more flexible version, EFE+,
permitting the use of an extra parameter Λ for “fine-tuning” our space-time,
and a less flexible one, EFE, in which Λ = 0 is assumed (or equivalently Λ
is not used).

First we consider the Λ = 0 version. In this case, EFE is an explicit
definition associating a tensor field denoted as 〈Tij(p) : p ∈ M〉, or briefly

Tij , to every GR space-time G = 〈M, g〉. From the logical point of view,

Tij is a brand new symbol not occurring in Genrel (or in the language of
〈M, g〉 or 〈M, L〉). Hence Genrel + EFE can be regarded as a new theory
expanding Genrel with new kinds of entities not mentioned in Genrel (or
in its manifold oriented forms). Since EFE is an explicit definition (over
Genrel) of the new entities called Tij , the new theory Genrel + EFE is a
conservative extension of Genrel (in the logical sense). This is the reason
why we said earlier that EFE does not restrict the generality of Genrel,

16the event horizon at r2 = 1/Λ (i.e. where g
tt

becomes 0 because of Λ) is in many
respects like a huge Schwarzschild BH turned inside out, cf. [Rin01, p. 306, lines 11-
22]. An electric BH in a de-Sitter space-time possesses three distinct event horizons, the
innermost one caused, roughly, by e, the middle one caused, roughly, by M, and far out the
outermost one cased by Λ. As we move away from the singularity lying on the time-axis
t, in the positive r direction, time and space get interchanged at crossing each one of the
three event horizons.

107



though it introduces a new linguistic (or conceptual) device to add such
restrictions later if/when wanted and justified.

The physical role of EFE is the following. EFE helps us in elaborating
the connections between Genrel and other physical theories (such as e.g.
electrodynamics, or e.g. mechanics). This is so because the new concept Tij

(or new property Tij of 〈M, g〉) can be interpreted in the various physical the-
ories as representing typical physical quantities like mass-energy-momentum
density at points p ∈ M . In other words, the “new” tensor field Tij can be
regarded as associating various physical properties (or entities) to points p
of the space-time under investigation. It is in this connection that Tij makes
it possible for related theories of physics to induce restrictions on the models
of Genrel via Genrel + EFE.

The more flexible theory Genrel+EFE+ is also a conservative extension
of Genrel but in EFE+ we introduce two new concepts, Tij and Einstein’s

cosmological parameter Λ . What is Λ? It intends to specify the curvature
of vacuum.17 What do we mean by referring to the vacuum, in Genrel
there was no such concept as the vacuum. Again, using the concept of
vacuum is connected to the physical interpretations of the theory. Roughly,
vacuum consists of those points p of the space-time where Tij(p) = 0. The
assumption Λ = 0 amounts to assuming that the curvature of vacuum is
the same as the curvature of Minkowski space-time, i.e. as that of special
relativity. Intuitively, Genrel + EFE+ permits us to choose an arbitrary
but fixed value Λ ∈ R for the whole space-time. Usually |Λ| is small. It was
this extra flexibility which made it possible for Kurt Gödel to specify his
rotating universe [Göd49] as a universe containing only pressureless dust.

EFE+ can be written in the following form:

(EFE+) Tij − Λ ∗ gij = expression of(gij and derivatives of gij).

Cf. e.g. [Rin01, item 14.15, p. 303] or [Wal84, item 5.2.17, p. 99]. In
(EFE+) we suppressed the constants deriving from units of measurement.
By inspecting (EFE+) above, one can see that instead of determining Tij

(matter-energy-momentum-etc density), it determines only the difference of
Tij and Λ, more precisely, it tells us the value of Tij − Λgij (from knowing
gij and its behavior). Hence (EFE+) leaves us a certain degree of freedom
for distributing effects between Tij and Λ. Further, gij occurs on both sides
of the equation, hence (EFE+) is only an implicit circumscription, not an
explicit definition.

17The curvature of a GR space-time G = 〈M, g〉 is a definable property of G. In more
detail, the curvature tensor field of G is defined from the behavior of the geodesics of G.
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For completeness, we note that EFE+ can also be used for a kind of
classification of space-times, roughly, in terms of what they may “contain”.
An example is “vacuum space-times” which refer to space-times compatible
with Tij = 0 (uniformly). A complication here is that in principle the
“division of labor” between Tij and Λ is up to the interpreter’s mind to
choose. E.g. de-Sitter space-time (having a constant negative curvature)
can be classified as a vacuum space-time with Λ 6= 0, or equivalently as one
with Λ = 0 and Tij nonzero. This classification can be further stretched to
associate “realisticity” or “physicality” to space-times but such judgements
often turn out to be subjective later. For illustration we note that Minkowski
space-time is vacuum and so are Gsb, Gef , the rotating BH’s space-time, but
the electrically charged BH’s space-time is not vacuum (because the presence
of electrical field at p implies Tij(p) 6= 0).

5 Connections with the literature

Elaborating the logical foundations of relativity goes back to Hilbert’s 6-th
Problem. Most of the (logic oriented) work we are aware of concentrate on
special relativity or on its fragments. Probably the first axiomatization for
special relativity was given by Alfred Arthur Robb in 1914 [Rob14], and his
work is the model or starting point of many later axiomatizations. There are
many works in which an axiom system for special relativity is given, a small
sample (which is far from being complete) of these is: [Rob14], [Rei69],
[Car24], Alexandrov and his school starting with 1950 ([Ale74], [Gut82]),
Suppes and his school starting with 1959 ([Sup59], [Sup68], [Sup72]), [Sze68],
[Win77], [Ax78], [Fri83], [Mun86], [Gol87], [Sch97], [Lat72]. Of these, only
[Ax78] and [Gol87] are in first-order logic. These works usually stop with
a kind of completeness theorem for their axiomatizations. What we call
the analysis of the logical structure of relativity theory begins with prov-
ing such a completeness theorem but the real work comes afterwards, dur-
ing which one often concludes that we have to change the axioms. Very
roughly, one could phrase this as “we start off where the others stopped
(namely, at completeness)”. Most of this literature concentrate on what we
call Specrel0, namely the causal fragment of special relativity without its
metric aspect (which is present in Specrel). We note that there are in-
teresting works connecting modal logic with special relativity, e.g. [Gol80],
[vB83, p. 4, pp. 22-29], [Cas02], [SS03].

As a contrast with special relativity, we know only of a few attempts
for providing a logical analysis of general relativity. Examples are [Bas66],
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[KP67], [Bus67], Ehlers, Pirani and Shild [EPS72], [Wal59]. None of these
examples tries to stay within the framework of first-order logic (or even
something like that, say, second-order logic) or attempts proving something
like a completeness theorem. In Sec. 3.6 of the present work we propose
a relatively simple first-order logic axiomatization Genrel for general rela-
tivistic space-times, and in Thm. 3.3 we formulate a completeness theorem
for Genrel. What remains as a future research task is doing “reverse math-
ematics” for Genrel, i.e. providing a conceptual analysis for Genrel which
would be analogous to the conceptual analysis provided for Specrel in Sec. 2
and in [AMN02]. Of course, a related future research task remains to push
the present logic based conceptual analysis to the not yet existing theories
conjectured to exist beyond general relativity like quantum gravity.
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tute of Mathematics, Budapest, 1998-2002. http://www.math-
inst.hu/pub/algebraic-logic/Contents.html. With contributions
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[AMN06a] H. Andréka, J. X. Madarász, and I. Németi. Logi-
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