List of axioms and axiom systems

Convention: In this list the axiom systems (i.e. theories) to be recalled will be boxed in. The only purpose of this is to make searching in the list easier.

(1) Main axiom systems

\[\text{Basax} \stackrel{\text{def}}{=} \{ \text{Ax1}, \text{Ax2}, \text{Ax3}, \text{Ax4}, \text{Ax5}, \text{Ax6}, \text{AxE} \} \] (cf. p.51), where:

\text{Ax1} \quad G = \text{Eucl}(n, F), \text{p.45}.

\text{Ax2} \quad \text{Obs} \cup \text{Ph} \subseteq \text{Ib}, \text{p.48}.

\text{Ax3} \quad (\forall h \in \text{Ib})(\forall m \in \text{Obs}) \text{tr}_m(h) \in G, \text{p.48}.

\text{Ax4} \quad (\forall m \in \text{Obs}) \text{tr}_m(m) = \tilde{t}, \text{p.48}.

\text{Ax5} \quad (\forall m \in \text{Obs})(\forall \ell \in G) \left(\text{ang}^2(\ell) < 1 \Rightarrow (\exists k \in \text{Obs}) \ell = \text{tr}_m(k) \right) \text{ and}

\text{ang}^2(\ell) = 1 \Rightarrow (\exists ph \in \text{Ph}) \ell = \text{tr}_m(ph) \right), \text{p.50}.

\text{Ax6} \quad (\forall m, k \in \text{Obs}) \text{Rng}(w_m) = \text{Rng}(w_k), \text{p.50}.

\text{AxE} \quad (\forall m \in \text{Obs})(\forall ph \in \text{Ph}) v_m(ph) = 1, \text{p.51}.

\[\text{Newbasax} \stackrel{\text{def}}{=} (\text{Basax} \setminus \{ \text{Ax6}, \text{Ax3}, \text{AxE} \}) \cup \{ \text{Ax6}_0, \text{Ax6}_1, \text{Ax3}_0, \text{AxE}_0 \} = \{ \text{Ax1}, \text{Ax2}, \text{Ax3}_0, \text{Ax4}, \text{Ax5}, \text{Ax6}_0, \text{Ax6}_1, \text{AxE}_0 \} \] (cf. p.191), where:

\text{Ax6}_0 \quad (\forall m, k \in \text{Obs}) w_m[\text{tr}_m(k)] \subseteq \text{Rng}(w_k), \text{p.190}.

Intuitively, observer \(k \) sees all those events which are seen by another observer \(m \) on \(k \)'s life-line.

\text{Ax6}_1 \quad (\forall m, k \in \text{Obs}) \text{Dom}(t_{mk}) \in \text{Open}, \text{p.190}.

\text{Ax3}_0 \quad (\forall h \in \text{Ib}) (\text{tr}_m(h) \in G \cup \{ \emptyset \}) \land (\exists k \in \text{Obs})\text{tr}_k(h) \neq \emptyset, \text{p.191}.

\text{AxE}_0 \quad (\forall m \in \text{Obs})(\forall ph \in \text{Ph})(\text{tr}_m(ph) \neq \emptyset \Rightarrow v_m(ph) = 1), \text{p.191}.
\[\text{Bax} \overset{\text{def}}{=} \text{(Newbasax} \setminus \{ \text{Ax}5, \text{Ax}\text{E}_0 \}) \cup \{ \text{Ax}5^{\text{Obs}}, \text{Ax}5^{\text{Ph}}, \text{Ax}\text{E}_{00}, \text{Ax}\text{E}_{01} \} = \{ \text{Ax}1, \text{Ax}2, \text{Ax}3_0, \text{Ax}4, \text{Ax}5^{\text{Obs}}, \text{Ax}5^{\text{Ph}}, \text{Ax}6_{00}, \text{Ax}6_{01}, \text{Ax}\text{E}_{00}, \text{Ax}\text{E}_{01} \} \] (cf. p.219), where:

\[
\begin{align*}
\text{Ax}5^{\text{Obs}} & \quad (\exists ph)(\forall \ell) \left(m \overset{\circ}{\rightarrow} ph \land [\text{ang}^2(\ell) < v_m(ph) \Rightarrow (\exists k) \ell = tr_m(k)] \right), \text{p.218} \\
\text{Ax}5^{\text{Ph}} & \quad \text{ang}^2(\ell) = v_m(ph) \Rightarrow (\exists ph) \ell = tr_m(ph), \text{p.219}.
\end{align*}
\]

\[
\begin{align*}
\text{Ax}\text{E}_{00} & \quad (m \overset{\circ}{\rightarrow} ph_1, ph_2) \Rightarrow v_m(ph_1) = v_m(ph_2), \text{p.218}.
\end{align*}
\]

\[
\begin{align*}
\text{Ax}\text{E}_{01} & \quad v_m(ph) \neq 0, \text{p.218}.
\end{align*}
\]

\[\text{Flxbasax} \overset{\text{def}}{=} \text{Bax} + \text{Ax}\text{E}_{02} = \{ \text{Ax}1, \text{Ax}2, \text{Ax}3_0, \text{Ax}4, \text{Ax}5^{\text{Obs}}, \text{Ax}5^{\text{Ph}}, \text{Ax}6_{00}, \text{Ax}6_{01}, \text{Ax}\text{E}_{00}, \text{Ax}\text{E}_{01}, \text{Ax}\text{E}_{02} \} \] (cf. p.428), where:

\[
\begin{align*}
\text{Ax}\text{E}_{02} & \quad (\forall m, k \in \text{Obs})(\forall ph, ph_1 \in \text{Ph}) \\
& \quad (m \overset{\circ}{\rightarrow} ph \land k \overset{\circ}{\rightarrow} ph_1) \Rightarrow v_m(ph) = v_k(ph_1), \text{p.427}.
\end{align*}
\]

\[\text{Bax}^- \overset{\text{def}}{=} (\text{Bax} \setminus \{ \text{Ax}5^{\text{Obs}}, \text{Ax}5^{\text{Ph}}, \text{Ax}\text{E}_{00} \}) \cup \{ \text{Ax}5_{\text{Obs}}, \text{Ax}5_{\text{Ph}}, \text{Ax}\text{P}1 \} = \{ \text{Ax}1, \text{Ax}2, \text{Ax}3_0, \text{Ax}4, \text{Ax}5_{\text{Obs}}, \text{Ax}5_{\text{Ph}}, \text{Ax}6_{00}, \text{Ax}6_{01}, \text{Ax}\text{P}1, \text{Ax}\text{E}_{01} \} \] (cf. p.479), where:

\[\text{Ax}\text{P}1\] Intuitively, starting out from one point \(p \) of space-time, in every direction (forwards) there is at most one “speed of light” (i.e. photon-trace), formally:

\[
(\forall m \in \text{Obs})(\forall ph_1, ph_2 \in \text{Ph})(\forall d \in \text{directions})^{1298} \left((ph_1 \text{ and } ph_2 \text{ are moving forwards in direction } d \text{ as seen by } m \text{ and } tr_m(ph_1) \cap tr_m(ph_2) \neq \emptyset) \Rightarrow \right.
\]

\[
tr_m(ph_1) = tr_m(ph_2), \text{p.472}.
\]

\[\text{Ax}5^{\text{Ph}}\] Intuitively, from any point \(p \) of space-time in any direction there is a photon moving forwards in that direction, cf. Fig.138 (p.477), formally:

\[
(\forall m \in \text{Obs})(\forall p \in nF)(\forall d \in \text{directions})(\exists ph \in \text{Ph}) \\
\left[p \in tr_m(ph) \land (ph \text{ is moving forwards in direction } d \text{ as seen by } m) \right], \text{p.477}.
\]

\[^{1298}\text{Let us recall that directions are (nonzero) space-vectors, i.e. directions} = n^{-1}F \setminus \{0\}, \text{cf. p.470.}\]
Ax5\textsubscript{Obs} Intuitively: Let us fix an observer \(m \), a direction \(d \), and a point \(p \) of spacetime. We will speak about things moving forwards in direction \(d \) through point \(p \) as seen by \(m \) (without mentioning all this data). Assume there is a photon moving in direction \(d \). Then there is a photon in the same direction which is limiting in the following sense: For all speeds slower than this limiting photon, there is an observer moving with this speed, cf. Fig.139 (p.478). Formally:

\[
(\forall m \in \text{Obs})(\forall p \in \mathbb{n}F)(\forall d \in \text{directions})
\]
\[
\left(\left(\exists ph \in \text{Ph} \right) \left(p \in \text{tr}_m(ph) \right) \land \left(ph \text{ is moving forwards in } d \text{ as seen by } m \right) \right) \Rightarrow
\]
\[
\left(\left(\exists ph \in \text{Ph} \right) \left(p \in \text{tr}_m(ph) \right) \land \left(ph \text{ is moving forwards in } d \text{ as seen by } m \right) \right) \land
\]
\[
\left(\forall \lambda \in F \right) \left(0 \leq \lambda < v_m(ph) \Rightarrow \left(\exists k \in \text{Obs} \right) \left(p \in \text{tr}_m(k) \land v_m(k) = \lambda \land \right) \right)
\]
\[
(k \text{ is moving forwards in direction } d \text{ as seen by } m)) \right]\] , p.477.

Pax \(\overset{\text{def}}{=} \{ \text{Ax1, Ax2, Ax3}_0, \text{Ax4, Ax5}_\text{Obs}^{--}, \text{Ax6}_0, \text{Ax6}_1 \} \) (cf. p.482) where:

Ax1, Ax2, Ax3\(_0\), Ax4, Ax6\(_0\), Ax6\(_1\) have already been listed.

Ax5\textsubscript{Obs}^{--} Intuitively, for each direction \(d \) there is a positive \(\lambda \) such that through any point there are observers moving forwards in direction \(d \) with all speeds smaller than \(\lambda \). More precisely, for any observer \(m \) and for any plane \(P \) parallel with \(\ell \) there is \(\lambda \in \mathbb{+}F \) such that for any straight line \(\ell \) in \(P \), with \(\text{ang}^2(\ell) < \lambda \), \(\ell \) is the trace of an observer (as seen by \(m \), of course). In other words:

\[
(\forall m \in \text{Obs})(\forall d \in \text{directions})(\forall p \in \mathbb{n}F)(\exists \lambda \in \mathbb{+}F)
\]
\[
(\forall q \in \mathbb{n}F) \left[\text{space}(p) - \text{space}(q) = \delta \cdot d \text{ for some } \delta \in F \Rightarrow \left(\forall 0 \leq \varepsilon < \lambda \right) \right.
\]
\[
(\exists k \in \text{Obs})\left(k \text{ moves forwards in direction } d \text{ with speed } \varepsilon \text{ and } q \in \text{tr}_m(k) \right) \],
\]
p.481.

\[\ast \quad \ast \quad \ast\]

Assume **Ax1, Ax2, Ax3\(_0\), AxP1**. Let \(m \in \text{Obs} \). Then

\[
c_m : \mathbb{n}F \times \text{directions} \rightarrow F \cup \{ \infty \}
\]
is a partial function such that \(c_m(p,d) \) is defined iff \(m \) sees a photon at point \(p \) moving forwards in direction \(d \), and \(c_m(p,d) \) is the speed of this photon,\(^{1299}\) cf. pp. 473, 535.

\(^{1299} \)There is only one such speed because of **AxP1**.
Let Th be one of our theories such that $Th \models \{ Ax1, Ax2, Ax3_0, AxP1 \}$. Then $\boxed{Th^{\oplus}} \overset{\text{def}}{=} Th + c_m(p, d) < \infty$, p.643.

Next, we turn to listing the Reichenbachian versions of our theories. For this we recall some notation.

Assume Bax^-. By Thm.4.3.17 (p.488), the speed $c_m(p, d)$ does not depend on p. This motivates the following:

$$c_m(d) \overset{\text{def}}{=} c_m(0, d),$$

cf. p.488. Intuitively, $c_m(d)$ is the (square of the) speed of light in direction d as seen by observer m.

Notation: Let $m \in Obs$ and $d \in \text{directions}$. Then

$$T_m(d) \overset{\text{def}}{=} \begin{cases} 1/\sqrt{c_m(d)} & \text{if } 0 \neq c_m(d) < \infty, \\ \infty & \text{if } c_m(d) = 0, \\ 0 & \text{if } c_m(d) = \infty, \end{cases}$$

cf. p.555. $T_m(d)$ is the reciprocal of the "speed of light", i.e. it is the time needed for a photon to cover the unit distance in direction d (as seen by observer m).

$\boxed{\text{Reich}_0(Bax)} \overset{\text{def}}{=} Bax^- + R(AxE_{00})$ (cf. p.562), where

$$R(AxE_{00}) \overset{\text{def}}{=} (\forall d, d_1 \in \text{directions})[T_m(d) + T_m(-d) = T_m(d_1) + T_m(-d_1)],$$

cf. p.557.

$\boxed{\text{Reich}_0(Flxbasax)} \overset{\text{def}}{=} Bax^- + R(AxE_{02})$ (cf. p.562), where

$$R(AxE_{02}) \overset{\text{def}}{=} (\forall m, k \in Obs)(\forall d, d_1 \in \text{directions})$$

$$T_m(d) + T_m(-d) = T_k(d_1) + T_k(-d_1), \text{ and } Ax(\sqrt{-}),$$

cf. p.557.

$\boxed{\text{Reich}_0(Newbasax)} \overset{\text{def}}{=} Bax^- + R(AxE)$ (cf. p.562), where

$$R(AxE) \overset{\text{def}}{=} (\forall m \in Obs)(\forall d \in \text{directions})T_m(d) + T_m(-d) = 2,$$

cf. p.557.

$\boxed{\text{Reich}_0(Basax)} \overset{\text{def}}{=} \text{Reich}_0(\text{Newbasax}) + Ax6$, p.562.

Let $Th \in \{ Bax, Flxbasax, Newbasax, Basax \}$. Then

$\boxed{\text{Reich}(Th)} \overset{\text{def}}{=} \text{Reich}_0(Th) + R_\Delta(E)$ (cf. p.576), where

1256
\[\mathbf{R}_\triangle(E) \quad (\forall m \in \text{Obs})(\exists r \in F)(\forall d_1, d_2, d_3 \in \text{directions}) \left[d_1 + d_2 + d_3 = 0 \Rightarrow \frac{|d_1| \cdot T_m(d_1) + |d_2| \cdot T_m(d_2) + |d_3| \cdot T_m(d_3)}{|d_1| + |d_2| + |d_3|} = r \right], \text{ p.574.} \]

(2) **Axioms concerning the direction of flow of time**

The binary relation \(\uparrow \subseteq \text{Obs} \times \text{Obs} \) is defined as follows.

\[m \uparrow k \iff (f_{km}(1_t) - f_{km}(\bar{0})_t > 0), \text{ p.296.} \]

Intuitively, \(m \uparrow k \) means that \(m \) sees \(k \)'s clock running forwards. Further, if \(m, k \in \text{Obs} \) then \(m \text{ STL } k \) means that \(m \) sees \(k \) moving slower than light (cf. Def.4.2.6 on p.460).

\[\text{Ax}(\uparrow) \quad (\forall m, m' \in \text{Obs}) \left(tr_m(m') = \bar{t} \Rightarrow m \uparrow m' \right), \text{ p.296.} \]

\[\text{Ax}(\uparrow \uparrow) \quad (\forall m, k \in \text{Obs}) m \uparrow k, \text{ p.426.} \]

\[\text{Ax}(\uparrow \uparrow_0) \quad (\forall m, k \in \text{Obs}) (m \overset{0}{\rightarrow} k \rightarrow m \uparrow k), \text{ p.840.} \]

\[\text{Ax}(\uparrow \uparrow_{00}) \quad (\forall m, k \in \text{Obs}) (m \text{ STL } k \rightarrow m \uparrow k), \text{ p.840.} \]

(3) **Auxiliary axioms**

Recall that

\[\text{Triv} = \{ f : f \text{ is an isometry of } ^nF \text{ and } f(1_t) - f(\bar{0}) = 1_t \}, \]

\(\text{cf. p.135.} \)

\[\text{Ax}(\text{Triv}) \quad (\forall m \in \text{Obs})(\forall f \in \text{Triv})(\exists k \in \text{Obs}) f_{mk} = f, \text{ p.135.} \]

\[\text{Ax}(\text{Triv}_i) \quad (\forall m \in \text{Obs})(\forall f \in \text{Triv}) \left(f[\bar{t}] = \bar{t} \Rightarrow (\exists k \in \text{Obs}) f_{mk} = f \right), \text{ p.135.} \]

\[\text{Ax}(\text{Triv}_i^-) \quad \text{Assume we are given an observer } m \text{ and a } \text{Triv} \text{ transformation } f \text{ that leaves the time-axis fixed. Then } m \text{ has a brother, call it } k, \text{ such that } m \text{ thinks that (i) the coordinate axes of } k \text{ are the } f\text{-images of the original coordinate axes } \bar{x}_i, \text{ and (ii) the clock of } k \text{ runs forwards, formally:} \]

\[(\forall m \in \text{Obs})(\forall f \in \text{Triv}) [f[\bar{t}] = \bar{t} \Rightarrow (\exists k \in \text{Obs})(\forall i \in n)(f_{km}[\bar{x}_i] = f[\bar{x}_i] \land m \uparrow k)], \text{ p.812.} \]
\textbf{Ax(\textbf{||})} \quad (\forall m, k \in \text{Obs})(tr_m(k) \parallel \bar{t} \implies (f_{mk} \text{ is an isometry})), \text{p.136}.

\textbf{Ax(\textbf{||})}^{-} \quad (\forall m, k \in \text{Obs} \cap \text{Ib}) \quad
\quad \quad [tr_m(k) = \bar{t} \implies (f_{mk} = h \circ I, \text{ for some expansion } h \text{ and isometry } I)], \text{p.828}.

\textbf{Ax(\sqrt{-})} \quad (\forall 0 < x \in F)(\exists y \in F) y^2 = x, \text{p.91}.

\textbf{Ax(rc)} \quad (\text{Axiom schema for real-closed fields})
\quad \quad \quad \textbf{Ax(\sqrt{-})} + \{ \phi_{2n+1} : n \in \omega \}, \text{where}
\quad \quad \quad (\phi_n) \quad \forall x_0 \ldots \forall x_n \exists y [x_n \neq 0 \implies (x_0 + x_1 \cdot y + \ldots + x_n \cdot y^n = 0)], \text{p.301}.

\textbf{Ax(disswind)} \quad (\text{Axiom of disjoint windows})
\quad \quad (\forall m, k \in \text{Obs} \cap \text{Ib}) [(m \overrightarrow{\circ} ph \land k \overrightarrow{\circ} ph) \implies m \overrightarrow{\circ} k], \text{p.812}.

(4) \textbf{Axioms concerning measuring distances}

\textbf{Ax(eqetime)} \quad \text{Observers with common life-line agree on time-like distances, i.e.}
\quad \quad (\forall m, m' \in \text{Obs})
\quad \quad \quad (tr_m(m') = \bar{t} \implies (\forall p, q \in \bar{t}) |p - q| = |f_{mm'}(p) - f_{mm'}(q)|), \text{p.127}.

\textbf{Ax(eqspace)} \quad \text{Observers agree on spatial distances, i.e.}
\quad \quad (\forall m, k \in \text{Obs})(\forall p, q \in \bar{n}F)
\quad \quad \quad (p = q \land f_{mk}(p) = f_{mk}(q) \implies |p - q| = |f_{mk}(p) - f_{mk}(q)|), \text{p.136}.

\textbf{Ax(eqm)} \quad \text{Inertial observers agree on distances, i.e.}
\quad \quad (\forall m, k \in \text{Obs} \cap \text{Ib})(\forall i, j \in n)(\forall p, q \in \bar{x}_i)(\forall p', q' \in \bar{x}_j)
\quad \quad \quad (|w_m(p) = w_k(p') \land w_m(q) = w_k(q')| \implies |p - q| = |p' - q'|), \text{p.796}.

1258
(5) Axiom systems $\text{Pax}^+, \text{Pax}^{++}, \text{Pax}_0^+, \text{Pax}_0^{++}, \text{Wax}, \text{Wax}^+$

$\text{Ax}(\text{Bw}) \ (\forall m,k \in \text{Obs})[m \xrightarrow{\circ} k \Rightarrow (f_{mk} \text{ is betweenness preserving})], \ p.1028.$

$\text{Ax} \bigcirc \ B = \text{Obs} \cup \text{Ph}, \ p.296.$

$\text{Ax}(\infty \text{ph}) \ (\forall m \in \text{Obs})(\forall \text{ph}, \text{ph'} \in \text{Ph}) \left([\bar{0} \in \text{tr}_m(\text{ph}) \cap \text{tr}_m(\text{ph'}) \land \text{(ph and ph'} \right.$

move in the same direction as seen by $m) \land v_m(\text{ph}) = \infty] \rightarrow v_m(\text{ph'}) = \infty), \ p.1028.$

Intuitively, no observer can emit simultaneously in the same direction two photons one with infinite speed and the other one with finite speed.

$\text{Ax}(\text{ext}) \ (\forall m,k \in \text{Obs})[w_m = w_k \Rightarrow m = k] \land \left(\forall b,b_1 \in B \setminus \text{Obs} \right)^2 \ (\forall m \in \text{Obs}) \left[\text{tr}_m(b) = \text{tr}_m(b_1) \Rightarrow b = b_1 \right], \ p.298.$

$\text{Ax}(\text{Ph}) \ (\forall m \in \text{Obs})(\forall \text{p} \in n F)(\exists \text{ph}_1, \text{ph}_2 \in \text{Ph}) \text{tr}_m(\text{ph}_1) \cap \text{tr}_m(\text{ph}_2) = \{p\}, \ p.1073.$

$\text{Pax}^+ \overset{\text{def}}{=} \text{Pax} + \text{AxE}_0 + \text{Ax}(\text{Bw}) + \text{Ax}(\infty \text{ph}) + \left([\text{Ax(eqtime)} \land \left(\forall m,k \in \text{Obs} \right)^2 (\forall 0 < i \in \omega) \text{tr}_m(k) \neq \bar{x}_i] \lor \text{Ax(eq)} \right); \ p.1029.$

$\text{Pax}^{++} \overset{\text{def}}{=} \text{Pax}^+ + \text{Ax(eq)} + \text{Ax(eq)} + \text{Ax(eq)} + \text{Ax(eq)} + \text{Ax(eq)}; \ p.1081.$

$\text{Pax}_0^+ \overset{\text{def}}{=} \text{Pax}^+ + \text{Ax(diswind)}, \ p.1086.$

$\text{Pax}_0^{++} \overset{\text{def}}{=} \text{Pax}^{++} + \text{Ax(diswind)}, \ p.1093.$

$\text{Wax} \overset{\text{def}}{=} \{ \text{Ax1, Ax2, Ax3, Ax4, Ax6, Ax(Bw), Ax(Ph)} \}, \ p.1073.$

$\text{Wax}' \overset{\text{def}}{=} \text{Wax} + \text{Ax(eq)} + \text{Ax(eq)} + \text{Ax(eq)} + \left(\forall m,k \in \text{Aftr} \right); \ p.1081.$
(6) Symmetry axioms

Ax(symm)* $(\forall m, k \in \text{Obs})(\exists m', k' \in \text{Obs})$
\[t_r(m') = t_r(k') = \bar{t} \land f_{mk} = f_{k'm'}, \] p.124.

Ax(symm) is defined to be **Ax(symm)*** + **Ax(eqtime)***, p.127.

**Ax(syt)* $(\forall m, k \in \text{Obs}) (\forall p \in \bar{t})(\forall p \in \bar{t}) |f_{mk}(p) - f_{mk}(\bar{t})| = |f_{km}(p) - f_{km}(\bar{t})|, \] p.134.

**Ax(syt0) $(\forall m, k \in \text{Obs}) |f_{mk}(\bar{t})| = |f_{km}(1_x)| = |f_{km}(1_x)|, \] p.721.

**Ax(eqtime)* $(m, k \text{ are in pre-standard configuration}^{1300}) \Rightarrow |f_{mk}(1_x)| = |f_{km}(1_x)|, \] p.725.

Ax(speedtime) $(\forall m, k, m', k' \in \text{Obs}) (v_m(k) = v_{m'}(k') \Rightarrow \forall p \in \bar{t}) |f_{mk}(p) - f_{mk}(\bar{t})| = |f_{m'k'}(p) - f_{m'k'}(\bar{t})|, \] p.137.

Ax□1 $(\forall m, k, m' \in \text{Obs})(\exists k' \in \text{Obs}) f_{mk} = f_{m'k'}, \] p.350.

Ax□2 $(\forall m, k, m', k' \in \text{Obs}) (t_r(m) = t_r(m') \Rightarrow \text{there is an isometry } N \text{ of } \mathbb{F} \text{ such that } N[\bar{t}] = \bar{t} \text{ and } f_{mk} = f_{m'k'} \circ N, \] p.350.

Ax△1 $(\forall m, k \in \text{Obs})(\exists k' \in \text{Obs}) (t_r(m) = t_r(k') \land f_{mk'} = f_{k'm}, \] p.351.

Ax△2 $(\forall m, k \in \text{Obs}) \text{ (there is an isometry } N \text{ of } \mathbb{F} \text{ such that } N[\bar{t}] = \bar{t} \text{ and } f_{mk} = N \circ f_{km} \circ N, \] p.351.

Ax(ω) is defined to be the disjunction of the following symmetry axioms:

- Ax(syt0), Ax(sym), Ax(speedtime), Ax△1+Ax(eqtime), Ax△2,
- Ax□1+Ax(eqtime), Ax□2, p.844.

Ax(ω) is defined to be the disjunction of the following symmetry axioms: Ax(ω),

Ax(eqspace), Ax(eqnum)+Ax(Triv)−, p.844.

Ax(ω) is defined to be Ax(ω)+Ax(Triv)−+Ax($\sqrt{-}$), p.844.

1300m and k are said to be in *pre-standard configuration* iff $f_{mk}(\bar{t}) = \bar{t}$ and $f_{mk}[\text{Plane}(\bar{t}, \bar{x})] = \text{Plane}(\bar{t}, \bar{x})$. Cf. Def.4.6.5 (p.602) and Fig.201 (p.603).
\(\text{Ax}(\omega)^\oplus \) is defined to be \(\text{Ax}(\omega)^0 + \text{Ax}(\text{Triv}_1)^- + \text{Ax}(\sqrt{_}), \) p.844.

\(\text{Ax}(\text{symm}) \uparrow \) is defined to be \(\text{Ax}(\text{symm}) + \text{Ax}(\text{Triv}) + \text{Ax}(|_|), \) p.151.

\(\text{Ax}(\omega) \) \(\text{Ax}(\Box 1 \land \Box 2 \land \boxdot 1 \land \boxdot 2), \) p.351.

\(\text{Ax}(\omega^-) \) \(\text{Ax}(\Box 1 \lor \Box 2 \lor \boxdot 1 \lor \boxdot 2), \) p.351.

(7) Symmetry axioms adequate for Reichenbachian theories

\(\mathbf{R}^+(\text{Ax eqsp}) \) Intuitively, the thickness of spaceships do not change in the direction orthogonal to movement (cf. pp. 608–614), formally:

Assume \(m, k \in \text{Obs} \) such that \(m \lnot\rightarrow k. \) Assume \(P, Q \) are parallel planes of \(nF \) such that they are parallel with both \(\vec{t} \) and \(tr_m(k). \) Then

\[
\text{Eudist}(P, Q) = \text{Eudist}(f_{mk}[P], f_{mk}[Q]), \quad \text{p.614, where}
\]

\[
\text{Eudist}(H, H_1) \overset{\text{def}}{=} \inf \{ \| p - q \| : p \in H \text{ and } q \in H_1 \}.
\]

\(\mathbf{R}(\text{Ax eqsp}) \) Intuitively, the thickness of spaceships do not change in the direction orthogonal to movement (cf. pp. 608–614), formally:

Assume \(m \) and \(k \) are in pre-standard configuration\(^{1301}\). Let \(P \) be a (2-dimensional) plane parallel with \(\text{Plane}(\vec{t}, \vec{x}) \). Then the distance between \(P \) and \(\text{Plane}(\vec{t}, \vec{x}) \) is the same as the distance between \(f_{mk}[P] \) and \(f_{mk}[\text{Plane}(\vec{t}, \vec{x})] \).

Formally,

\[
\text{Eudist}(P, \text{Plane}(\vec{t}, \vec{x})) = \text{Eudist}(f_{mk}[P], f_{mk}[\text{Plane}(\vec{t}, \vec{x})]), \quad \text{p.611, where}
\]

\[
\text{Eudist}(H, H_1) \overset{\text{def}}{=} \inf \{ \| p - q \| : p \in H \text{ and } q \in H_1 \}, \quad \text{cf. p.609.}
\]

See Fig.205 on p.611.

\(\mathbf{R}(\text{Ax syto}) \) Intuitively \(m \) and \(k \) literally see, via photons, each other’s clocks slowing down with the same rate, see Fig.207 (p.616), formally:

\[(\forall m, k \in \text{Obs}) f_{mk}(\vec{0}) = \vec{0} \Rightarrow (\forall p \in \vec{t}) |\text{view}_m(f_{km}(p))| = |\text{view}_k(f_{mk}(p))| \] (cf. p.615),

where \(\text{view}_m \overset{\text{def}}{=} \{ \langle p, q \rangle \in nF \times \vec{t} : p_i \leq q_i \text{ and } (\exists ph \in Ph) p, q \in tr_m(ph) \}, \) cf. Fig.206 (p.615).

\(\mathbf{R}(\text{sym}) \) is defined to be \(\mathbf{R}(\text{Ax eqsp}) + \mathbf{R}(\text{Ax syto}), \) p.616.

\(^{1301}\)Cf. footnote 1300 on p.1260 for the notion of a pre-standard configuration.
(8) Twin paradox

Let \(m, k \in \text{Obs} \). Then \(m \text{ STL } k \) means that \(m \) sees \(k \) moving slower than light, cf. Def.4.2.6 on p.460 for details.

\[\text{Ax(TwP)} \quad (\forall m, k_1, k_2 \in \text{Obs})(\forall p, q, r \in \mathbb{N}F) \]

\[\big(m \text{ STL } k_1 \wedge m \text{ STL } k_2 \wedge p_t < q_t < r_t \wedge \{ p \} = \text{tr}_m(m) \cap \text{tr}_m(k_1) \wedge \{ q \} = \text{tr}_m(k_1) \cap \text{tr}_m(k_2) \wedge \{ r \} = \text{tr}_m(m) \cap \text{tr}_m(k_2) \big) \Rightarrow \]

\[|p_t - r_t| > |f_{mk_1}(p)_t - f_{mk_1}(q)_t| + |f_{mk_2}(q)_t - f_{mk_2}(r)_t| \text{, p.460} \]

(cf. Fig.43 on p.141).

The existential version \(\text{Ax(∃TwP)} \) of the twin paradox is defined as follows. First, let us notice that \(\text{Ax(TwP)} \) is a formula of the pattern

\[(\forall m \ldots)(\forall p \ldots)(\ldots) \Rightarrow \ldots > \ldots \].

Let \(\psi_1, \psi_2 \) be formulas such that \(\text{Ax(TwP)} \) is the formula

\[(\forall m, k_1, k_2 \in \text{Obs})(\exists p, q, r \in \mathbb{N}F)(\psi_1 \Rightarrow \psi_2) \text{.} \]

Now we define \(\text{Ax(∃TwP)} \) as follows.

\[\text{Ax(∃TwP)} \quad (\exists m, k_1, k_2 \in \text{Obs})(\exists p, q, r \in \mathbb{N}F)[\psi_1 \land \psi_2], \text{p.461} \]

(9) Axiom systems Specrel, Flxspecrel, BaCo, Compl, NewtK\(^-\), NewtK

\[\text{Specrel} \overset{\text{def}}{=} \text{Basax} + \text{Ax(symm)}^\dagger, \text{p.151}. \]

\[\text{Flxspecrel} \overset{\text{def}}{=} \text{Bax} + \text{Ax6} + \text{Ax(symm)}^\dagger + \text{AxE}_{02}, \text{p.428}. \]

\[\text{Compl} \overset{\text{def}}{=} \{ \text{Ax(symm)}, \text{Ax} \heartsuit, \text{Ax}(\uparrow), \text{Ax}^5, \text{Ax(ext)}, \text{Ax(Triv)} \} \text{ (cf. p.298),} \]

where

\[\text{Ax}^5 \quad \ell \in \text{SlowEucl} \Rightarrow (\exists k \in \text{Obs})(\ell = \text{tr}_m(k) \wedge m \uparrow k), \text{p.297}. \]

\[\text{BaCo} \overset{\text{def}}{=} \text{Basax} + \text{Compl}, \text{p.298}. \]

\[\text{NewtK}^- \overset{\text{def}}{=} \text{Bax} + \text{Ax6} + \text{Ax(symm)}^\dagger + (\forall m \in \text{Obs})c_m = \infty \text{ (cf. p.426), where} \]

\(c_m \) is the speed of light for observer \(m \), assuming \(\text{Bax} \).

\[\text{NewtK} \overset{\text{def}}{=} \text{NewtK}^- + \text{Ax}(\uparrow\uparrow) + \text{Ax□1}, \text{p.426}. \]

1262
(10) Geometrical axioms and axiom systems

Axioms $A_0 - A_4$ and P_1, P_2, Pa below apply to geometries with reducts $\langle Mn; Bw \rangle$ or $\langle Mn; coll \rangle$. In the case of $\langle Mn; Bw \rangle$ coll is a defined relation, cf. p.818. The new universe (or sort) lines is (explicitly) defined over $\langle Mn; coll \rangle$ on p.1037. For $H \subseteq Mn$, Plane$^r(H)$ is intuitively the “n-long closure of H under coll” (cf. Def.6.2.15 on p.819), where throughout n is the dimension of our geometry and $n \geq 2$.

A_0 $(\forall a, b, c \in Mn)[coll(a, b, c) \leftrightarrow (\exists \ell \in lines) a, b, c \in \ell]$, p.1038.

A_1 $(\forall a, b \in Mn)(a \neq b \rightarrow (\exists! \ell \in lines) a, b \in \ell)$, p.1038.

A_2 Intuitively, if H is a less than $n + 2$ element subset of Mn then the “n-long closure” Plane$^r(H)$ of H under coll will be closed under coll, hence the plane Plane(H) generated by H coincides with Plane$^r(H)$ (cf. Def.6.2.15, p.819), formally:

$$(\forall H \subseteq Mn) \left((\|H\| \leq n + 1 \wedge a, b \in Plane^r(H) \wedge coll(a, b, c)) \rightarrow c \in Plane^r(H) \right)$$

p.1039.

A_3 Intuitively, if $i \leq n$ and H is an $i + 1$ element independent subset1302 of Mn then there is exactly one i-dimensional plane1303 that contains H, formally:

$$(\forall H, H' \subseteq Mn) \left((\|H\| = |H'| \leq n + 1 \wedge (\text{both } H \text{ and } H' \text{ are independent}) \wedge H \subseteq Plane^r(H') \rightarrow Plane^r(H) = Plane^r(H') \right)$$

p.1039.

A_4 Mn is an n dimensional plane, p.1039.

In connection with axioms P_1, P_2 below we note that the relation of parallelism $\| \|$ on lines is defined the usual way in Def.6.6.19 on p.1039.

P_1 (Euclid’s axiom)

$$(\forall \ell \in lines)(\forall a \in Mn)(\exists! \ell' \in lines)(a \in \ell \wedge \ell \| \ell')$$

p.1040.

P_2 $(\ell \parallel \ell' \wedge \ell \parallel \ell'') \rightarrow \ell \parallel \ell''$, p.1040.

1302Let $H \subseteq Mn$. H is called independent iff $(\forall e \in H) e \not\in Plane^r(H \setminus \{e\})$, cf. p.1039.

1303Let $P \subseteq Mn$. P is called an i-dimensional iff there is an $i + 1$ element independent subset H of Mn such that Plane$^r(H) = P$, where for the notion of an independent subset cf. footnote 1302. Cf. Def.6.6.18(ii) on p.1039.
\[\text{ag} \overset{\text{def}}{=} \{A_0, A_1, A_2, A_3, A_4, P_1, P_2\}, \] p.1040. \text{ag} is the axiom system for \textit{affine geometries}.

For \(a, b, c, d \in M_n\), the abbreviation \(\langle a, b \rangle \parallel \langle c, d \rangle\) means that \(a \neq b, c \neq d\), and there are \(\ell, \ell' \in \text{lines}\) such that \(a, b \in \ell, c, d \in \ell'\) and \(\ell \parallel \ell'\), cf. p.1042.

\textbf{Pa} (Pappus-Pascal property)
\[
(\forall \ell, \ell' \in \text{lines})(\forall a, b, c \in \ell \setminus \ell')(\forall a', b', c' \in \ell' \setminus \ell')
\]
\[
[(\langle a, b' \rangle \parallel \langle a', b \rangle \wedge \langle a, c' \rangle \parallel \langle a', c \rangle) \rightarrow \langle b, c' \rangle \parallel \langle b', c \rangle],
\]
see Fig.319, p.1042.

\[\text{pag} \overset{\text{def}}{=} \text{ag} + \text{Pa}, \] p.1042. \text{pag} is the axiom system for \textit{Pappian affine geometries}.

Axioms \(B_1-B_3\) below apply to geometries with reducts \(\langle M_n; Bw \rangle\). (\text{coll} is a defined relation.)

\(B_1\) \(Bw(a, b, c) \rightarrow (a \neq b \neq c \neq a \wedge Bw(c, b, a) \wedge \neg Bw(b, a, c))\), p.1043.

\(B_2\) \(a \neq b \rightarrow (\exists c)Bw(a, b, c)\), p.1043.

\(B_3\) (Pasch’s Law)

Intuitively, if a line \(\ell\) lies in the plane determined by a triangle \(abc\), and passes between \(a\) and \(b\) but not through \(c\), then \(\ell\) passes between \(a\) and \(c\), or between \(b\) and \(c\), formally:

\[
(\neg \text{coll}(a, b, c) \wedge \ell \subseteq \text{Plane}'(\{a, b, c\}) \wedge (\exists d \in \ell)Bw(a, d, b)) \rightarrow \\
(\exists e \in \ell)(Bw(a, e, c) \lor Bw(b, e, c)), \] p.1043 (cf. Fig.320 on p.1044).

\[\text{opag} \overset{\text{def}}{=} \text{pag} + \{B_1, B_2, B_3\}, \] p.1044. \text{opag} is the axiom system for \textit{ordered Pappian affine geometries}.

Axioms \(L_1, \ldots, L_{10}\) below apply to geometries with reducts

\[\langle M_n, L; L^T, L^p, L^s, \in, <, Bw, \bot_r, eq \rangle. \]

Further, \text{coll} is a defined relation and it is defined over \(\langle M_n; Bw \rangle\), cf. p.818, and \textit{lines} is the new sort firts-order defined from \text{coll}.

\(L_1\) \(L \subseteq \text{lines}, \) p.1071.
\(L_2 \ (\forall a \in Mn)(\exists \ell, \ell' \in L^p) \ell \cap \ell' = \{a\} \), p.1071.

\[
\lopag \overset{\text{def}}{=} \opag + L_1 + L_2, \text{ p.1071.}
\]

\(L_3 \ (\begin{array}{c}
(a \prec b \land (Bw(a, b, c) \lor Bw(a, c, b)) \rightarrow a \prec c) \land \\
(a \prec b \land (Bw(c, a, b) \lor Bw(a, c, b))) \rightarrow c \prec b
\end{array}) \), p.1076.

\(L_4 \) Intuitively, eq is (very) symmetric, formally:
\[
\langle a, b \rangle \ \text{eq} \ \langle c, d \rangle \rightarrow (\langle c, d \rangle \ \text{eq} \ \langle a, b \rangle \land \langle b, a \rangle \ \text{eq} \ \langle c, d \rangle \land \langle a, a \rangle \ \text{eq} \ \langle c, c \rangle), \text{ p.1076.}
\]

\(L_5 \) eq is transitive, i.e.
\[
(\langle a, b \rangle \ \text{eq} \ \langle c, d \rangle \land \langle c, d \rangle \ \text{eq} \ \langle e, f \rangle) \rightarrow \langle a, b \rangle \ \text{eq} \ \langle e, f \rangle, \text{ p.1076.}
\]

\(L_6 \) (For the intuitive meaning of this axiom see Fig.326 on p.1076.)
\[
(\forall \ell, \ell' \in L)(\forall o, e, e', a, a' \in Mn)\left(\begin{array}{c}
(a \in \ell \land e \in \ell \land e', a' \in \ell' \land \\
\langle e, e' \rangle \parallel \langle a, a' \rangle \land \langle a, e \rangle \ \text{eq} \ \langle a, e' \rangle
\end{array}\right) \rightarrow \langle a, a \rangle \ \text{eq} \ \langle a, a' \rangle, \text{ p.1076.}
\]

\(L_7 \) (For the intuitive meaning of this axiom see Fig.327 on p.1077.)
\[
(\forall \ell \in L^p \cup L^S)(\forall a, b, c, d, e, f \in Mn)\left(\begin{array}{c}
(a \in \ell \land e \in \ell \land e, f \in \ell \land \\
\langle a, b \rangle \parallel \langle e, f \rangle \parallel \langle c, d \rangle \land \langle a, e \rangle \parallel \langle b, f \rangle \land \langle c, e \rangle \parallel \langle d, f \rangle
\end{array}\right) \rightarrow \langle a, b \rangle \ \text{eq} \ \langle c, d \rangle, \text{ p.1076.}
\]

\(L_8 \) \(\perp_r \) is symmetric, i.e.
\[
(\forall \ell, \ell' \in L)(\perp_r \ell \land \ell' \rightarrow \perp_r \ell), \text{ p.1076.}
\]

\(L_9 \) \(\perp_r \) is closed under parallelism, i.e.
\[
(\forall \ell, \ell_1, \ell_2 \in L)(\perp_r \ell \land \ell_1 \parallel \ell_2 \rightarrow \ell \perp_r \ell_2), \text{ p.1076.}
\]

\(L_{10} \) \(\perp_r \) is closed under taking limits, p.1077.

\[
\lopag^+ \overset{\text{def}}{=} \lopag + L_3 + L_4 + L_5 + L_6 + L_7 + L_8 + L_9 + L_{10}, \text{ p.1081}
\]
(11) “Speed of light free” axiom systems for relativity
(axioms and axiom systems used in Chapter 5)

\[\text{Relnoph}_0 \overset{\text{def}}{=} (\text{Ax1} - \text{Ax4})^{1304} + \text{Ax6} + \text{Ax} \Box 1 + \text{Ax} \Delta 1 + \text{Ax}(\sqrt{\cdot}) + \text{Ax}(\text{Triv}) + \text{Ax}(\|), \text{p.705.} \]

\[\text{Ax(5nop)} \ \forall m, k \ (\forall \lambda \in F)[\lambda < v_m(k) \ \Rightarrow \ \exists k' (v_m(k') = \lambda)], \text{p.706.} \]

The intuitive idea of \text{Ax(5nop)} is that if a certain speed is realized by some observer then the smaller speeds are also realized by some observers.

\[\text{Relnoph} \overset{\text{def}}{=} \text{Relnoph}_0 + \text{Ax(5nop)}, \text{p.707.} \]

\[\text{Ax(group}^+\) \ (\forall m, k, m', k' \in \text{Obs}) (\exists k'' \in \text{Obs}) f_{mk} \circ f_{m'k'} = f_{mk''}, \text{p.410.} \]

\[\text{Ax(syt)*} \ f_{mk}(0) = 0 \ \Rightarrow \ f_{mk}(1)_t = f_{km}(1)_t, \text{p.721.} \]

\[\text{Ax(syx)*} \ (m, k \text{ are in pre-standard configuration})^{1305} \ \Rightarrow \ |f_{mk}(1)_x| = |f_{km}(1)_x|, \text{p.725.} \]

(*1)–(*3) below are also potential axioms1306 (or principles) connected with \text{Relnoph}.

\[(\ast 1) \text{ The sum of finitely many small positive velocities is not infinite, formally: Let } j \in \omega. \text{ Let } m_0, \ldots, m_j \in \text{Obs. Assume } m_i, m_{i+1} \text{ are in strict standard configuration}1307 \text{ and } v_{m_i}(m_{i+1}) < 1, \text{ for all } i < j. \text{ Then } v_{m_0}(m_j) \neq \infty, \text{p.710.} \]

\[(\ast 2) \text{ The sum of finitely many small positive velocities is nonnegative, formally: Let } j \in \omega. \text{ Let } m_0, \ldots, m_j \in \text{Obs. Assume } m_i, m_{i+1} \text{ are in strict standard configuration and } v_{m_i}(m_{i+1}) < 1, \text{ for all } i < j. \text{ Then } m_0 \text{ sees } m_j \text{ moving forwards in direction } 1_x, \text{p.710.} \]

1304 \text{Ax1, Ax2, Ax3, Ax4.}

1305 \text{Cf. footnote 1300 on p.1260 for the notion of a pre-standard configuration.}

1306 (\ast 1)–(\ast 3) are schemas of formulas.

1307 \text{Assume } m, k \in \text{Obs. Then } m \text{ and } k \text{ are defined to be in strict standard configuration if they are in standard configuration, } m \text{ sees } k \text{ moving forwards in direction } 1_x, k \text{ sees } m \text{ moving backwards in direction } 1_x, \text{ further } [v_m(k) = 0 \Rightarrow f_{km}(1)_t \cdot f_{km}(1)_x > 0] \text{ and } [v_m(k) = \infty \Rightarrow (f_{km}(1)_x > 0 \& f_{km}(1)_x < 0)]. \text{ Cf. Def.5.0.42 (p.709) and Remark 5.0.43 (p.709).}
The sum of finitely many small positive velocities is nonzero, formally: Let $0 < j < \omega$. Let $m_0, \ldots, m_j \in \text{Obs}$. Assume m_i, m_{i+1} are in strict standard configuration and $0 < v_{m_i}(m_{i+1}) < 1$, for all $i < j$. Then $v_{m_0}(m_j) \neq 0$, p.710.

“Flxspecrel”, the notation $\mathfrak{M} \models \text{“Flxspecrel”}”$ was introduced on p.708.

Ax(natu) \quad $(*1) \lor (*2) \lor (*3)$,1308 p.752

Ax(natu)^+ \quad $(\forall m, k, k' \in \text{Obs}) \sqrt{v_m(k')} \leq \sqrt{v_m(k)} + \sqrt{v_{k'}(k')}$, p.753.

Ax(3body) \quad $(\forall m, k (\forall \ell \in \text{Euc})[(v_m(k) > 0 \land f_{mk}[\ell] = \ell) \Rightarrow (\exists b \in B)tr_m(b) = \ell]$, p.757.

$\text{Ax(5nop)}^- \quad \forall m (\exists c \in +F)(\forall \lambda \in +F)[\lambda < c \Rightarrow (\exists k)v_m(k) = \lambda]$, p.761.

$\mathbf{Relnoph}^-$ is obtained from $\mathbf{Relnoph}$ by replacing Ax(5nop) with Ax(5nop)^-, p.761.

$\text{Bax}^-_{nobs} \overset{\text{def}}{=} \text{Bax}^- \setminus \{\text{Ax5obs}\} + \text{Ax(5nop)}^-$, p.762.

$\mathbf{Relnoph}^-_{\forall} \overset{\text{def}}{=} \mathbf{Relnoph}^- \setminus \{\text{Ax}\triangle 1\} + \text{Ax(symp)}$, p.764.

(12) The cone-smooth versions of our theories

Assume Ax1, Ax2, Ax3_0, AxP1. Let $m \in \text{Obs}$. Then

$$c_m : ^mF \times \text{directions} \rightarrow F \cup \{\infty\}$$

is a partial function such that $c_m(p,d)$ is defined iff m sees a photon at point p moving forwards in direction d, and $c_m(p,d)$ is the speed of this photon,1309 cf. pp. 473, 535. Further, for any $m \in \text{Obs}$ and $d \in \text{directions}$

$$c_m(d) \overset{\text{def}}{=} c_m(0,d),$$

1308Ax(natu) is a schema of formulas.

1309There is only one such speed because of AxP1.

1267
cf. p.488. Hence, \(c_m : \text{directions} \rightarrow F \cup \{ \infty \} \) is a partial function. \((\text{Ax}(\text{consm})\) below will imply that it is not partial. The notion of strongly continuous functions, partial derivatives etc. used in \(\text{Ax}(\text{consm})\) below are formulated in our frame language on pp. 536, 518.) Now,

\[
\text{Ax}(\text{consm}) \overset{\text{def}}{=} \text{Ax}(\text{cnsm}_0) + \text{Ax}(\text{cnsm}_1) + \text{Ax}(\text{cnsm}_2) \quad \text{(cf. p.518), where}
\]

\(\text{Ax}(\text{cnsm}_0) \) \(c_m \) is a strongly continuous function defined on directions, p.519.

\(\text{Ax}(\text{cnsm}_1) \) For all \(0 < i < n \), the partial derivative \((\partial_i c_m) : \text{directions} \rightarrow F \) is everywhere defined on the domain \(\text{directions} \), p.519.

\(\text{Ax}(\text{cnsm}_2) \) For all \(0 < i < n \), \(\partial_i c_m \) is strongly continuous on the domain \(\text{directions} \), p.519.

Let \(Th \) be one of our theories such that \(Th \models \{ \text{Ax}1, \text{Ax}2, \text{Ax}3_0, \text{Ax}P1 \} \). Then

\[
[Th_{\text{cnsm}}] \overset{\text{def}}{=} Th + \text{Ax}(\text{consm})
\]

is called the \textit{cone-smooth version} of the theory \(Th \), cf. p.521.

(13) Axioms and axiom systems not listed in this list

\(\text{Ax}_{\text{oF}}, \) p.30.
\(\text{Ax}_c, \) p.31. (\(\text{Ax}_{\text{oF}} \) and \(\text{Ax}_c \) are assumed throughout the present work.)
\(\text{Ax}1', \) p.45.
\(\text{Ax}E_1, \) p.223.
\(\text{Ax}E_2, \) p.223.
\(\text{Ax}2_1, \) p.223.
\(\text{Ax}5_1, \) p.223.
\(\text{Relphax}, \) p.223.
\(\text{Ax}T^0, \) p.354.
\(\text{Ax}\Delta 2^*, \) p.359.
\(\text{Ax}\Delta 3, \) p.406.
\(\text{Ax(isotropy)}, \) p.399.
\(\text{Ax(isotropy')}, \) p.400.
\(\text{Ax(isotropy')}\), p.401.

\(\text{Ax(homogeneity)}, \) p.405.
\(\text{Ax(group')}, \) p.410.
\(\text{Ax(group)}, \) p.410.
\(\text{Flxspecrel}^+, \) p.425.

homogeneity
Ax2^n, p.435.
Ax3^n, p.435.
AxE^n, p.435.
[NewtK^n], p.435.
Ax5^e, p.429.
AxE_6^0, p.429.
Ax5^f, p.431.
AxE_6^0, p.431.
Ax(E_{ess}), p.424.
AxP1^-, p.529.
Ax5^p^h, p.530.
Ax5^p^o^b^s^t, p.530.
Bax^--^, p.531
AxP1^1^i, p.532.
AxP1^2^e^, p.532.
AxP1^3^f, p.534.
Bax^1^-^-^, p.533.
Bax^2^-^-^, p.533.
Bax^3^-^-^, p.534.
Bax^4^-^-^, p.538.
Ax(i), p.540.
Ax(ii), p.540.
Ax(ii)^+^, p.542.
Bax^++^, p.544.
Bax(P1), p.544.
R(AxE)^-, p.557.
R(AxE_0^2)^-, p.559.
R(AxE_0^0)^-, p.559.
Reich_0^0(Th), p.563.
R_0(AxE), p.574.
Reich_1^1(Th), p.580.
AxR^-, p.584.
AxR^1/2^, p.584.
AxR^+^, p.584.
AxR^-^-^, p.585.
Ax(sy), p.628.
Ax(sy0), p.629.
Ax(5nop)++, p.763.
Ax(cont), p.766.
Ax(cont)++, p.767.
Ax(fun), p.768.
Det, p.992.
det, p.992.
Ax(mild), p.1067.
G1, p.1172.
G2, p.1172.
G3, p.1172.
G4, p.1172.
G5, p.1173.
[busg], p.1172.

Credits

Figures 258, 261, 333 are created from works by M. C. Escher, which appeared in D. R. Hofstadter: "Gödel, Escher, Bach", Hungarian translation, Typotex Kiadó, 1998. Figure 355 (representing Gödel’s rotating universe) and Figure 290 are created from figures in S. W. Hawking and G. F. R. Ellis [126]. Figure 281 (view from near a black hole) is created from a figure in K. S. Thorne [258].
Index

$(\perp_0)_\mu$, 878
$(\perp_0)_m$, 882
$(\exists !) \psi (x)$, 947
(x,y), interval, 1179
$+_{\omega}$, 1046
$< \infty$, 477
$|=|$, 193
$R \circ S$, 26
$|\omega|$, 1045
$[x]_I$, 449
$A \rightarrow B$, 1008
nF, 42, 43
nF_1, 42
nF_2, 42
$\| - \|$, 1096
$\| \omega \|$, 189
$\cup \mathcal{K}$, 869
\perp, 785, 790
\perp_{ω}, 821
\perp_{τ}, 822
\perp_{ω}, 791
\perp_0-version of the Minkowskian geometry, 878
\perp_{μ}, 860
\perp_{ω}, 172
\perp_{m}, 881
\perp_{τ}, 792
\perp_{τ}, 810
\perp_{ω}, 810, 811
\perp_{m}, 822
\perp_{ω}, 1046
\simeq, relation of isomorphism between structures, 790
\cong_{F}, 447
\cong_{Δ}, 970
\cong_{ω}, 1046
\ll, 789
\ll_{μ}, 860
\ll_{m}, 881
\equiv_{Δ}, weak definitional equivalence, 986

\equiv_{ω}, 970
$\rightarrow\rightarrow$, 983
$\ell \perp_{\omega} \ell'$, 172
$\ell \sim \ell'$, 894
$\ell_1 \parallel \ell_2$ when $\ell_1, \ell_2 \in \text{lines}$, 1039
τ_p, 152
\equiv_S, 799
\equiv_T, 799
\equiv_{Ph}, 799
\equiv_{ω}, 272
\simeq, 983, 1008
\Longrightarrow, 983
∞, 46, 477
ℓ_x, 333
$\langle a,b \rangle \parallel \langle c,d \rangle$, 1042
$\lambda < \infty$, 477
$\lambda : - -$, 1096
\bigcirc, 192
$\langle expr(x) : x \in D \rangle$, 27
\leq_{Mo}, \leq_{Go}, \leq_{M}, \leq_{G}, 1082
\leq_{ω}, 1046
\leftrightarrow, 1008
\vdash, 28, 35, 161
$A \rightarrow B$, 26
$\not\equiv$, see footnote 207 on p, 197
\equiv_{ω}, 35
ω, 26
Θ_{ω}, 420
\overline{pq}, 68
\overline{pq}, 164
$\|$, 164, 1042
\parallel_{ϕ}, 790, 799
$\partial_i f$, 518
\prec, 789

1271
\[\leq, 1171 \]
\[\preceq, 1169 \]
\[\psi(x/\tau), 945 \]
\[\psi(y), 945 \]
\[\rightarrow, f: A \rightarrow B, 517 \]
\[\mathfrak{F}^\infty, 535 \]
\[\sim, 818, 894 \]
\[\simeq, 1081 \]
\[\bigcup_{i \in \mathcal{F}} \mathcal{F}, 871, 874 \]
\[\bigcup K, 869, 870 \]
\[\succ_r \mu, 1165 \]
\[\succ_r \tau, 1166 \]
\[\tau(-), 1096 \]
\[f_{mk}, 655 \]
\[\sigma_s, 359 \]
\[\sigma_t, 306 \]
\[\sigma_{\mathcal{F}}, 173, 367 \]
\[\tilde{f}_{s, e}, 891 \]
\[\tilde{\varphi}, 154 \]
\[\subseteq_w, 1008 \]
\[f_{mk} \equiv_v f_{m'k'}, 421 \]
\[d \parallel d_1, \text{ when } d, d_1 \in \mathbb{n}^{-1} F, 471 \]
\[f \circ g, 26 \]
\[m \supseteq b, 192 \]
\[v \oplus^{\mathfrak{S}} w, 420 \]
\[+ F, 189 \]
\[\mathbb{n} H, 26 \]
\[\mathbb{n} F, 32, 43 \]
\[(\mathcal{F}) \mathbb{n} F, 135 \]
\[|a|, 30 \]
\[|p|, 100 \]
\[1, 30 \]
\[S, 54 \]
\[\mathfrak{M}_s^M, 331 \]
\[\perp_\mathfrak{F}, 792 \]
\[\perp_e, 172 \]
\[\perp_r, 790 \]
\[\ell_1 \parallel \ell_2, 164 \]
\[\equiv_v, 421 \]
\[f', \text{ derivative of } f, 517 \]
\[g(e, e_1), 797 \]
\[p \perp q, 172 \]
\[1/2\text{-simultaneity}, 582 \]
\[1/2\text{-simultaneous}, 584 \]
\[2\text{-dimensional plane in a relativistic geometry, see footnote 798 on p}, 857 \]
\[l, 69 \]
\[1/2\text{-simultaneous}, 582 \]
\[l, l_x, 1_y, l_z, 69 \]
\[\forall \text{ GlobFTL}, 686 \]
\[\text{Ax(Bw)}^\text{par}, 664 \]
\[\text{Ax(Frame)}, 658 \]
\[\text{Ax(clock-conn)}, 660 \]
\[\text{Ax(continuity)}, 661 \]
\[\text{Ax(eqspace)}, 406 \]
\[\text{Ax(mut)}, 661 \]
\[\text{Ax(pcoll)}, 661 \]
\[\text{Ax(photon)}, 660 \]
\[\text{Ax(simult)}, 660 \]
\[\text{Ax(start)}, 659 \]
\[\text{Ax(syBw)}^\text{par}, 664 \]
\[\text{abspace), 438} \]
\[\text{(abstime), 437} \]
\[A_1, 1038 \]
\[Aftr = Aftr(n, \mathfrak{F}), 152 \]
\[ag, 1040 \]
\[A_3, 1039 \]
\[A_2, 1039 \]
\[\forall \text{ LocFTL}, 686 \]
\[A_4, 1039 \]
\[ang^2(\ell), 46 \]
\[ang^2(d, d'), 538 \]
\[A_0, 1038 \]
\[\text{Asim(K)}, 570 \]
\[\text{Asim(Th)}, 570 \]
\[\alpha\text{-simultaneity}, 444 \]
“async”, 652
(asynch), 436
\(Aut(2), 154, 161\)
\(Aut^E(\emptyset), 915\)
\(Aut(\mathcal{F}), 154\)
Ax1, 45
Ax1', 45
Ax4^par, 658
Ax2, 48
Ax3, 48
Ax3^par, 658
Ax4, 48
Ax5, 50
Ax(5^par)^par, 662
Ax(5^par)^Ph, 662
Ax5^par^Obs, 658
Ax5^par, 661
Ax5^par^Ph, 659
Ax6, 50
Ax6^par, 702
Ax6^par^0, 659
Ax7, 264
Ax(Bw), 1028
Ax((\omega)^0), 844
Ax(cnsm_0), 519
Ax(cnsm_1), 519
Ax(cnsm_2), 519
Ax(\omega)^0, 844
Ax(consm), 518
Ax(cont), 766
Ax(cont)^+, 767
Ax(disswind), 812
AxE, 51
Ax(\exists body), 757
AxE_1, 223
AxE^n, 435
AxE_2, 223
AxE_0, 191
AxE_0^+, 429
AxE_0, 218
AxE_0^+, 431
AxE_0^+, 427
AxE_0_0, 218
Ax(eq), 397
Ax(eq), 796
Ax(eqsp), 136
Ax(eqtme), 127
Ax(eqtme)^par, 697
Ax(E^s), 424
Ax(\exists TwP), 461
Ax(exter), 298
Ax(fun), 768
Ax_0, 31
Ax(group), 410
Ax(group^-), 410
Ax(group^+), 410
Ax3_0, 191
Ax6_0, 190
Ax\triangle1, 351
Ax\triangle2, 351
Ax\triangle2^*, 359
Ax\triangle3, 406
Ax(homogenity), 405
Ax(i), 540
Ax(ii), 540
Ax(ii)^+, 542
Ax(isotropy), 399
Ax(isotropy^-), 401
Ax(isotropy^+), 401
Ax(\uparrow\downarrow), 426
Ax(\uparrow\downarrow_0), 840
Ax(\uparrow\uparrow_0), 840
Ax2_1, 223
Ax2^n, 435
Ax(mild), 1067
Ax(natu), 752
Ax(natu)^+, 753
Ax(Triv), 135, 297, 601
Ax(Triv), 135, 297, 601
Ax(∃↑), 767
Ax□1, 350, 426
Ax□2, 350
Ax□1*, 354
Ax(↑), 296
Ax0, 30
Ax(ω), 351
Ax(ω−), 351
Ax(ω)h, 844
Ax(ω)h, 844
Ax5c, 429
Ax51, 223
Ax5f, 431
Ax5n, 435
Ax(5nop), 706
Ax(5nop)−, 761
Ax(5nop)−+ 763
Ax5obs, 218
Ax5obs, 477
Ax5obs, 530
Ax5obs−, 481
Ax5+ 297
Ax5ph, 219
Ax5ph, 477
Ax5ph, 530
AxP1, 472
Ax(||), 136, 457
Ax(||)−, 828
Ax(∞ph), 1028
Ax(Ph), 1073
AxP1−, 529
AxP1−, 531
AxP1−, 533
AxP1−, 532
Ax(rc), 301
AxR1/2, 584
AxR−, 584
AxR−, 585
AxR+, 584
Ax(speedtime), 137
Ax(sy), 628
Ax(synt), 426
Ax(synt), 127
Ax(synt)0par1, 696
Ax(synt)0par+, 696
Ax(synt)1, 151
Ax(synt)0, 124
Ax(synt0), 629
Ax(synt0), 386, 457
Ax(synt0)par, 694
Ax(synt)*, 712
Ax(synt0), 134, 457
Ax(synt)*, 725
AxV, 296
Ax(V), 91
Ax(V), 481
Ax(Triv)−, 812
Ax(TwP), 140
B, 29
B, 29
B1, 1043
B2, 1043
B3, 1043
BA, 1017, 1018
BaCo, 298
Basax, 51
Basax geometry, 799
Bax, 219
Bax−, 533
Bax1−, 533
Bax3−, 534
Bax−, 479
Bax−, 521
Bax−, 531
Bax−, 538
Bax−, 544
Bax_{noobs}, 762
Bax(P 1), 544
Betw(p, r, q), 790
Betw(p, r, q), 492
Bw, 790
Bw_{μ}, 860
Bw_{μ}, 881
c, 428
C, 492
Ch(H), convex hull of H \subseteq M_{n}, 838
(clock), 436
(clock)_{α}, 438
c_{m}, c_{m}(d), 488
C_{m}, 505
c_{m}, 535
c_{m}(p, d), 535
c_{m}^{α}(p, d), 542
c_{m}(p, d), 473
c_{m}(p, d) < \infty, 491
C_{m}, 505
C_{o_{0, e_{0}, \ldots, e_{n-1}}}, 1051
code, 966, 967
coll(a, b, c), 818
coll_{F}, coll_{D}, 1040
Col, 991
Col_{T}, Col_{m}, Col_{Ω}, 998
Compl, 298
Cone_{m, p}, 473
Det, 992
det, 992
directions, 470
Dom(R), 26
(E1), 635
E_{m}^{1/2}, 584
(E1)^{par}, 698
(E2), 635
(E2)^{par}, 698
(E3), 636
(E3)^{par}, 699
(E3)^{par_{α}}, 699
(E4), 636
(E5), 638
(E5)^{±}, 641
(E5)^{±α}, 649
(E6), 641
(E6)^{par}, 700
(E7), 641
(E7)^{par}, 700
EC_{Δ}, 451
EC_{Δ}, 452
EC_{Δ, 0}, 451
\exists GlobFTL, 686
(Ei)(or), 640
(Ei)(fast), 640
\exists LocFTL, 686
eq, 795
\langle a, b \rangle eq \langle c, d \rangle, 795
eq_{m}, 881
eq_{0}, 793
eq_{0}-witness, 899
eq_{i}, 795
eq_{i}^0, 860
eq_{j}^0, 902
eq_{j}^0-witness, 902
Eucl = Eucl(n, \mathcal{F}), 45
Eucl_{geom}^{θ}(n, \mathcal{F}), Eucl_{geom}^{θ}(\mathcal{F}), 1129
Eucl_{geom}(n, \mathcal{F}), Eucl_{geom}(\mathcal{F}), 1129
Eudist, 609
Exp = Exp(n, \mathcal{F}), 153
expr(-), 1096
F, 30, 43
F_{∞}, 535
f : A \rightarrow B, 26, 1008
F_{0} = \langle F; 0, +, \leq \rangle, 1151
F_{1} = \langle F; 0, 1, +, \leq \rangle, 788
\mathcal{F}, 30, 43
\mathcal{F}, 30, 43
1275
\begin{table}
\begin{tabular}{ll}
$f^2 := f \circ f$, if f is a function, 1011 & \text{Ge}'(Th), 847 \\
\text{F}^{\text{sn}}, 30 & \text{Ge}''(Th), 847 \\
\text{f}[\mathcal{A}], 1085 & \text{Ge}_{\text{We}}, 993 \\
"fat", 652 & \mathcal{G}, 1007 \\
\text{\&categorical}, 299 & \mathcal{G}_0 \cup \mathcal{G}_1, 871 \\
\text{Flxbasax}, 428 & \mathcal{G}_m, 880 \\
\text{Flxspecrel}, 428 & \mathcal{G}^{\perp_0}, 881 \\
\text{Flxspecrel}^+, 425 & \mathcal{G} : \text{Mod}(Th) \longrightarrow \text{Ge}(Th), 1008 \\
\text{FM}, 35, 1006 & \mathcal{G}_{\text{FR}}, 787 \\
\mathcal{F}m, 28 & \mathcal{G}^*, 1111 \\
\mathcal{G}^{\text{sn}}, 30 & \mathcal{G}^0_{\text{FR}}, 1070, 1124 \\
\text{\&}_{\text{mk}}, 56 & \mathcal{G}^0_{\text{FR}}, 846 \\
\text{\&}_{\text{mk}}, 915 & \mathcal{G}^1_{\text{FR}}, 1124 \\
\text{\&}_{\text{mk}}(p), 61 & \mathcal{G}^n_{\text{FR}}, 846 \\
\mathcal{F}m(K), 962 & \mathcal{G}^{n_1}_{\text{FR}}, 1124 \\
\mathcal{F}m(Th), 1020 & \mathcal{G}^{n_2}_{\text{FR}}, 1124 \\
\mathcal{G}_{\text{FR}}, 1046 & \mathcal{G}^{n_3}_{\text{FR}}, 1124 \\
\mathcal{F}_{\text{ac}}, 1046 & \mathcal{G}^{n_4}_{\text{FR}}, 1124 \\
f \mid C, 27 & \mathcal{G}^{n_5}_{\text{FR}}, 1125 \\
f(x), 26 & \mathcal{G}^6_{\text{FR}}, 1129 \\
f[X], 27 & \mathcal{G}^7_{\text{FR}}, 1129 \\
\mathcal{G}, 30 & \mathcal{G}^{+}_{\text{FR}}, 871 \\
\mathcal{G}, 29 & \mathcal{G}^{\text{FR}}, 799 \\
g, 797 & \mathcal{G}^{\text{FR}}, 799 \\
g(e, e_1), 796 & \mathcal{G}_{\text{FR}} \mid N, 882 \\
g, \text{pseudo-metric}, 796 & \mathcal{G}^* \mid N, 1130 \\
\text{Ge}(Th), 798 & \mathcal{G}^+ \mid N, 882 \\
\text{Ge}^0(Th), 1070 & \mathcal{G}_3, 1171 \\
\text{Ge}^{\perp_0}(Th), 871 & \mathcal{G}^{\text{inc}}_{\text{FR}}, 1174 \\
\mathcal{G}_1, 1171 & \mathcal{G}_2, 1171 \\
\text{Ge}^{\text{inc}}(Th), 1174 & \text{GM}, 269 \\
\text{Ge}'(Th), 1125 & \mathcal{g}_m, 881 \\
\text{GEO}, 1070 & \mathcal{G}_m, 1209 \\
\text{geod}, 52 & \mathcal{G}_{\text{FR}}, 787 \\
\text{Geom}(Th), 798 & \mathcal{G}_{\text{FR}}, 787 \\
\text{Ge}^{\perp}(Th), 1174 & (\mathcal{G}^R_{\text{FR}})^{\text{FR}}, 800 \\
\text{Ge}^{R}(Th), 1169 & \mathcal{g}_n, 860 \\
\text{Ge}_{\text{TA}}, 993 & \mathcal{g}^{+}_{\text{FR}}, 152 \\
\text{Ge}(Th), 1085 & \mathcal{g}^{\text{FR}}_{\text{FR}}(p, q), 152 \\
\end{tabular}
\end{table}
G_4, 1171
G_6, Mo, 1072
G_5, 1172
g^x, 1169
g^R(e, e_1), 800
G_{Ta}, 991
G T_{gr}, 923
G T_{gr}^i, -2 \leq i \leq 2, 925
G_{w}, 991
g(-, y, z), g(x, -, z), g(x, y, -), 518, 1096
I, 785
Ib, 30
Id, 27
Id_A, 27
i-dimensional plane in \langle Mn; Bw \rangle, 1039
IK, 785
inf, 451
int(p, q), 509
j-dimensional plane, 164
K is definable implicitly over L, 936
k sees p, 482
K \upharpoonright Voc, 933
k-way speed of light, 573
L, 789
L_1, 1071
L_{Ggr}, 408
L_{G}(Th, n), 409
L_2, 1076
L_6, 1076
L_7, 1076
LightCone(0), 207
LightCone(p), 207
Linb = Linb(n, \emptyset), 152
lines, defined sort of \langle Mn; Bw \rangle or
\langle Mn; coll \rangle, 1037
Lines = L
cf. footnote 958 on p, 991
L_2, 1071
L_9, 1076
L_{m}, 880
L_{gr}, 790
L_{\mu}, 859
L_{\mu}^p, 860
L_{\mu}^S, 860
L_{\mu}^T, 859
L_4, 1076
L_8, 1076
Loc_1(Th), 702
lopag, 1071
lopag^+, 1081
Lor = Lor(n, \emptyset), 152
L_5, 1076
L_{\mu}^p, 788
L_{\mu}^p^S, 880
L_{\mu}^S, 800
L_{\mu}^S^p, 788
L_{\mu}^S^T, 881
L_{\mu}^T, 788
L_{10}, 1077
L_{m}^T, 880
M, 28
Mod(Th), 1085
(meter), 436
(meter)^+, 438
(meter)^\geq, 438
(meter)^\leq, 438
M, G, Mo, Go, 1087
min, see footnote 665 on p, 796
Mink_{\sigma}(\emptyset), 878
Mink_{\sigma}^{\emptyset}(n, \emptyset), 1160
Mink_{\sigma}^{\emptyset}E(\emptyset), 1160
Mink(n), 1159
Mink(n, rc), 1116
Mink(n, \emptyset), 859
Mink(\emptyset), 859
M, 1054
M is obtained from M by step (1), 946

1277
\(\mathcal{M} \) is obtained from \(\mathcal{M} \) by Step (2.1),
947
\(\mathcal{M} \) is obtained from \(\mathcal{M} \) by Step (2.2),
950
\(\mathcal{M} \models \psi[\tilde{a}], 945
\mathcal{M} \cup \mathcal{N}, 869
\text{Mod}(TH), 1085
\mathcal{M}^2, 325
\mathcal{M} \upharpoonright \text{Voc}, 932
\mathcal{M}/P, 569
\mathcal{M} \subseteq \mathcal{M}, 868, 869
\mathcal{M} \subseteq \mathcal{N}, 161
\text{Mn}, 787
\text{Min}, 790
\text{Mod}(Th), 1006
\text{Mod}_{\text{Arch}}(Th), 757
\text{Mod}_{\Sigma}(\Sigma), 194
\text{Mod}_{\text{op}}(Th), 35
\text{Mod}(\Sigma), 35
\text{Mog}(TH), 1071
\text{Mor}_{\text{C}}, 1085
\text{MS}(\mathcal{M}, m), 89
\text{MS}, 89
m\text{-space like}, 566
m \uparrow k, m \downarrow k, 296
\mathcal{M} \models \text{“Th”}, 708
n, 29, 44
\varepsilon\text{-neighborhood}, 189
\varepsilon\text{-neighborhood of an event in an observer-independent (or a relativistic) geometry}, 797

Newbasax, 191
NewtK, 426
NewtK^-, 426
NewtK^n, 435
“noftl”, 652
\text{N}_{pq}, 268
\text{Ob C}, 1085
\text{Obs}, 30

\text{opag}, 1044
\text{Open} = \text{Open}(n, \mathcal{F}), 190
\text{Ordinals}, 791
\mathcal{P}(H), 26
(P1), 522
(P2), 522
(P3), 522
\text{Pa}, 1042
\text{pag}, 1042
\text{Pax}, 482
\text{Pax}^+, 1086
\text{Pax}^{++}, 1093
\text{Pax}^+, 1029
\text{Pax}^{++}, 1081
\text{P}_1, 1040
\text{PG}_{\text{sr}}, 408
\text{PG}(Th, n), 408
\text{Ph}, 30
\text{PhtEucl} = \text{PhtEucl}(n, \mathcal{F}), 58
p_i, 42
p_{ij}, 947
\text{P}_2, 1040
\text{Plane}(\ell_1, \ell_2), 820
\text{Plane}(H), 819
\text{Plane}^{'}(H), 820
\text{Plane}(\ell_1, \ell_2), 164
\text{Planes}(n, F), 532
\text{Planes}, 532
\text{Plane}(\tilde{t}, \tilde{x}), 69
\langle \text{Points}; \text{Col} \rangle, 991
\langle \text{Points}, \text{Lines}; \in \rangle = \langle \text{Mn}, L; \in \rangle, 991
\text{Points} = \text{Mn}
\text{cf. footnote 958 on p}, 991
\text{Poi} = \text{Poi}(n, \mathcal{F}), 153
\text{PT}^M = \text{PT}^M(n, \mathcal{F}), 332
\text{PT}^Q = \text{PT}^Q(n, \mathcal{F}), 327
\text{PT}, 265
p_0, 44
\text{Pth}, 541
\[p_z, 44 \]
\[p_y, 44 \]
\[p_z, 44 \]
\[Q, 29 \]
\[\mathfrak{R}, 26 \]
\[R, 26 \]
\[R^{-1}, 27 \]
\[R(Ax E), 557 \]
\[R(Ax E)^{-}, 557 \]
\[R(Ax E_0), 557 \]
\[R(Ax E_0^0)^{-}, 557 \]
\[R(Ax E_0^0), 557 \]
\[R(Ax E_0^2)^{-}, 559 \]
\[R(Ax E_0^2), 559 \]
\[R(Ax e q s p), 611 \]
\[R(s y m), 616 \]
\[R(Ax s y t_0), 615 \]
\[R_\Delta(E), 574 \]
\[Reich(Th), 576 \]
\[Reich, 563 \]
\[Reich'(Th), 580 \]
\[Reich_0(Th), 562 \]
\[Reich_0(Th)^{-}, 563 \]
\[Reich_0(Th)_0, 562 \]
\[Relnoph, 707 \]
\[Relnoph^*, 761 \]
\[Relnoph^{--}, 764 \]
\[Relnoph_0, 705 \]
\[Relphax, 223 \]
\[rep, 966, 967 \]
\[Rhomb, 74 \]
\[\text{Rhom}b^Q = \text{Rhom}b^Q(n, \mathfrak{F}), 327 \]
\[\text{Rhom}b^M = \text{Rhom}b^M(n, \mathfrak{F}), 332 \]
\[R(Ax E), 574 \]
\[R_{n}(R), 26 \]
\[R[X], 27 \]
\[S, 208 \]
\[S(e, \varepsilon), 797 \]
\[S, \text{ space-part}, 470 \]

\[S_1, 492 \]
\[S_{m}^{1/2}, 584 \]
\[S_{m}^{1/2}-\text{simultaneous}, 584 \]
\[S(a), 444 \]
\[S''(a, b), 839 \]
\[S'(H), 838 \]

“shrink”, 652

simplexes, 838

\[SL_{m}, 408 \]

\[SL_{or} = SL_{or}(a, \mathfrak{F}), 153 \]

“slow”, 652

\[\text{SlowEucl} = \text{SlowEucl}(n, \mathfrak{F}), 58 \]

\[SL(Th, n), 409 \]

\[SM, 249 \]

space \((p) \), 470

space \(p \), 438

space, 470

\[S(p, \varepsilon), 189 \]

\[\text{Specrel}, 151 \]

\[S^R(e, \varepsilon), 800 \]

\[STL, 110, 139, 460 \]

\[\text{suc}, 939 \]

\[\text{sup}, 451 \]

\[\bar{t}, 43 \]

\[\bar{t}, \text{ time-part, time-axis}, 470 \]

\[\mathcal{T}, 797 \]

\[\mathcal{T}', \text{ alternative version of the topology part } \mathcal{T} \text{ of observer-independent geometry}, 839 \]

\[\mathcal{T}''', \text{ alternative version of the topology part } \mathcal{T} \text{ of observer-independent geometry}, 839 \]

\[T_0, \text{ a subbase for the topology } \mathcal{T}, 797 \]

\[T_0', \text{ a subbase for the topology } \mathcal{T}', 839 \]

\[T_0''', \text{ a subbase for the topology } \mathcal{T}'', 839 \]

\[t^R, 800 \]

\[\bar{t}-\text{axis}, 43 \]

\[\text{TH}, 451 \]

\[\text{Th}^{+-}, 828 \]
\[\text{Th}(\emptyset), 29 \]
\[\text{TH}, 452 \]
\[\text{Th} \] geometry, 799
\[\text{TH}_0, 451 \]
\[\text{Th}_1 \models "\text{Th}" , 708 \]
\[\text{Th}_1 = \models \text{Th}_2, 193 \]
\[\text{Th}_0, 521 \]
\[\text{Th}(\emptyset), 301 \]
\[\text{Th}(\emptyset), 29 \]
\[\text{Th}^0, 643 \]
\[\text{Th}-potential \ law \ (of \ nature), 1109, 1110 \]
\[\text{Th}-simultaneity-stable, 578 \]
\[\text{time}(p), 470 \]
\[\text{time}, 470 \]
\[\mathcal{T}_\mu, 861 \]
\[\mathcal{T}_m, 881 \]
\[\mathcal{T}(\text{Axi}), \text{theory \ generated \ by \ the \ axiom} \]
\[\text{system \ Axi } \subseteq \text{Fm}, 1027, 1111 \]
\[T_m(d), 555 \]
\[T_{mp}, 268 \]
\[T^K, 800 \]
\[\text{Tran} = \text{Tran}(n, \emptyset), 152 \]
\[\text{Triv} = \text{Triv}(n, \emptyset), 135, 247, 601 \]
\[\text{Triv}^0 = \text{Triv}^0(n, \emptyset), 247 \]
\[tr_m(b), 47 \]
\[Tr, 966, 967 \]
\[T_k, 967 \]
\[\bar{\ell}-\text{symmetric}, 306 \]
\["\text{twin}" , 652 \]
\[\text{(TwP)}, 38 \]
\[U(V(\emptyset)), 929 \]
\[\text{Var}(U_i), 964 \]
\[(\text{vel}), 437 \]
\[\text{view}_m, 615 \]
\[V\lambda(\emptyset), 420 \]
\[v_m(b), 655 \]
\[v_m(b), 47 \]
\[\bar{v}_m(b), 48 \]
\[\text{Voc } \cap \text{Voc}' , 933 \]
\[\text{Voc } \cup \text{Voc}' , 933 \]
\[\text{Voc}(\emptyset), 931 \]
\[\text{Voc}(K), 932 \]
\[W, 32 \]
\[\text{Wax}, 1073 \]
\[\text{Wax}^+, 1081 \]
\[w_m, 32 \]
\[w_m : "F \rightarrow (??)\), cf. \ footnote \ 198 \ on \ p, 188, 1210 \]
\[w_m, 654 \]
\[Wtm, 60 \]
\[\bar{x}, 43 \]
\[\bar{x}_i, 44 \]
\[X = \langle X, \mathcal{O} \rangle, \langle Mn, \mathcal{T} \rangle, \text{topological} \]
\[\text{space}, 870 \]
\[\bar{y}, 44 \]
\[\bar{z}, 44 \]
\[3\text{-sorted \ first-order \ language}, 27, 29 \]
\[0, 30 \]
\[0, 42 \]
\[(*1), 710 \]
\[(*2), 710 \]
\[(*3), 710 \]
\[(A)-(i), \text{theorem \ schemas \ for \ duality} \]
\[\text{theories}, 1012 \]
\[\text{absolute \ space}, 438 \]
\[\text{absolute \ time}, 437 \]
\[\text{abstract \ class \ of \ structures}, \text{see \ footnote \ 643 \ on \ p, 786, 799} \]
\[\text{abstract \ structure}, \text{see \ footnote \ 643 \ on \ p, 786} \]
\[\text{abstract/concrete \ distinction}, \text{cf. \ footnote \ 643 \ on \ p, 786} \]
\[\text{additive (geodesic, quasi \ geodesic)}, 1183 \]
\[\text{additive}, \ g \mid D \text{ is additive}, 1183 \]
\[\text{adequate}, 607 \]
adequate (a symmetry principle being adequate for a theory), 456
adequate for Reich(Th), 607
adjoint pair of functors, 1091
adjoint situation, 1091
affine geometry, 1040
affine structures, 988
affine transformation, 152
affinity of space-time, 405
Alexandrov-Zeeman theorem, 1156
Alexandrov-Zeeman Theorem, cf. e.g. Goldblatt [108, Appendix B], 170
algebra, 785
algebraic element of $$\mathfrak{F}$$, 834
Algebraic Logic, 1105
algebraic structure, 160
analytic geometry = represented geometry i.e. Cartesian geometry, 1106
Archimedean field = Archimedean ordered field, 66
Archimedean geodesic, 1182
Archimedean ordered field, 446
Archimedean ordered field, see footnote 88 on p, 66
Archimedean ordered group, 1185
art-sim hull of $$K$$, 570
art-sim models of a theory, 570
art-sim version of a model, 569
artificial-simultaneity version of a model, 569
automorphism, 65, 160, 298
auxiliary axioms, 135, 297
auxiliary relation, 964
axiom of choice, 434
axiom of cone-smoothness, 519
axiom of continuity, 766
axiom of disjoint windows ($$\text{Ax}$$ (diswind)), 812
axiom of functionality, 768
B-submodel of a frame model, 708
backwards, 471
base for a topology, see footnote 710, 809
basic equidistance ($$eq_0$$) of an observer-independent geometry, 793
basic orthogonality ($$\perp_0$$) of an observer-independent geometry, 791
basic paradigmatic effects, 635
between, 530
betweenness ($$Bw$$), a ternary relation of an observer-independent (or a relativistic) geometry, 790
big universe of a many-sorted model, 929
binary relation, 26
bisecting segments, 167
bodies, 29
Boolean (topological) spaces, 1018
Boolean algebras, 1017
boundary, 510
boundary point, 510
bounded, 509
$$C^*$$-algebras, 1100
Carnap, 781
Cartesian geometry over a field, 41, 1138
category, 1085
category of theory morphisms, 1025
category theoretic convention for introducing functions like $$f(-)$$ or $$g(-, p)$$, 1095
causality pre-ordering relation, $$\prec$$, 789
changing simultaneities, 566
circle, cf. footnote 184, 176
class form of the axiom of choice, 983
clocks get out of synchronism, 90, 96, 436
clocks slow down, 90, 92, 436
clopen sets of a topology, 1017
closed set of a topology, 870
closure operator up to isomorphism, 1013
closure operator, cf. footnote 996 on p, 1013
CMA-lattices = complemented modular algebraic lattices, 1099
codomain of a morphism, 1085
collinear points, 167, 168
collinearity relation (ternary relation on points), 167, 168
collineation, 65
common generalization of axiom systems or theories, 434
compact subset of a topology, cf. footnote 1104 on p, 1100
compact topological space, cf. footnote 1008 on p, 1018
complemented modular algebraic lattices = CMA-lattices, 1099
complete ordered field, 520
complete theory, 301
composition of a category, 1085
conceptual analysis of relativity, 469, 522
conceptual analysis, cf. footnote 2 on p, 8
concrete class of structures, see footnote 643 on p, 786, 799
cone-smooth, 519
cone-smooth version of a theory, 521
congruence transformation, 350
connectedness, (\(\sim\)) a binary relation on points of relativistic geome-
tries, 818
conservative extension, 704
continuity, 766
continuous, 536
continuous weak geodesic, 1183
conventional, 581
convergence, 791
convex, 509
convex hull, 509
convex hull of a set of points of a relativistic geometry, 838
coordinate-system, 32, 470
coordinatization (of an ordered Pappian affine geometry), 1051
coproduct of topologies = sum of topologies, 870
core part of a theory, 465
core theory part of a theory, 454
coreflection, 1091
coreflection arrow, 1091
curve, 1180
deductively closed theories, 451
definability, 943
definability of topological spaces, 809
definable, 945
definable implicitly, 936
definable implicitly up to isomorphism, 934, 935
definable implicitly with parameters, 935
definable implicitly without taking reducts, 934, 935
definable in, 930, 951
definable over, 930, 951
definable relation, 945
definitional expansion, 946, 950, 951
definitional expansion without taking reducts, 950
definitionally equivalent, 970
definitionally equivalent languages, cf. footnote 959 on p, 991
definitionally equivalent theories, 972
definitionally equivalent, weakly, 986
derivative \(f' \) of \(f \), 517
Desargues Theorem, cf. e.g. Hilbert [134], 170
direction, 470
directional speed, 534
disjoint unions of frame models, 868, 869
disjoint unions of geometries, 871, 874
disjoint unions of non-body-disjoint models, 869
disjoint unions of non-disjoint geometries, 874
distance, 609
distance between simultaneities, 444
distance preserving transformation, 350
divisible geodesic, 1182
division ring, 1040
domain of a morphism, 1085
drawing compositions of world-view transformations, 744
duality theory, duality theories, 1003–1007, 1014–1027, 1069, 1096–1107

Einstein’s 1/2-simultaneity, 582
Einstein’s Special Principle of Relativity, 123, 454
elementarily-equivalent, 303
elementary classes, 451
ellipse, 176
embeddable, 1008
emit a photon, 472
empty model, cf. footnote 977 on p,
empty point, 510
equidistance (eq), a 4-ary relation of an observer-independent (or a relativistic) geometry, 793
equivalence of categories, 1094
equivalent categories, 1094
Euclid’s axiom, 1040
Euclidean case, 1135
Euclidean distance, 609
Euclidean field = Euclidean ordered field, 91
Euclidean geometry over \(\mathfrak{F} \), 1129
Euclidean length, 100, 189
Euclidean ordered field, 91
Euclidean orthogonality, 172
Euclidean reduct of a relativistic geometry, 1148
Euclidean straight line, 45
Euclidean topology, 841
evaluation, 945, 963
evaluation, cf. footnote 1134 on p, 1110
event, 32, 787
existential version of the twin paradox, 460
expansion, 153
expansion of a class of models, 933
expansion of a model, 930
explicit definability with parameters, 950
explicit definition, 946, 950
explicit definition of \(\mathfrak{R} \) over \(\mathfrak{M} \), 950
explicit definition of type (1), 946
explicit definition of type (2.1), 947
explicit definition of type (2.2), 950
explicit definitional expansion, 946, 951
explicitly definable, 945, 950
explicitly definable in, 951
explicitly definable over, 951
explicitly definable relation, 945
explicitly definable without taking reducts, 950
explicitly rigidly definable, 951
field, 30
field reduct, 30
field-extension, 1014
finite, 447
finite elements of a non-Archimedean field, 447
finitely nr-implicitly definable, 944
first-order definable meta-function, 983
first-order formulation of Bax_+^-, 542
first-order language, cf. language, 27
first-order logic, 27
FOL, 7
forwards, 470
Fourier transformation, 1103
frame model, 35
frame theory, 35
frame-language, 29, 34
Friedman, 774, 776, 777
Friedman’s conceptual analysis of relativity, 469
FTL, 110
full Reichenbachian version, 576
function, 26
function notation $f(-)$, $\text{expr}(-) : \equiv \langle \text{expr}(x) : x \in A \rangle$, 1095
functionality, 768
functor, 1085
Gödel’s rotating universe, 775, 781, 912, 1120
Galilean transformation, 439
Galois connection, 453, 1080
Galois group, 1014, 1027
Galois theory of Cylindric algebras, 1027
Galois theory of fields, 1014
gapy in \mathcal{F}, 834
general case, 1136
general models, 269
generalization of an axiom system or a theory, cf. footnote ?? p, 423
generalized definitional expansion, 950, 951
generalized disjoint unions of frame models, 869
generalized Galilean transformation, 439
generalized manifold, 788
generalized Minkowski distance, 728
generalized Minkowski model, 726
generalized Poincaré transformation, 728
generalized rotation model, 730
globftl, 686
$(\mathcal{G}, \mathcal{M})$-duality, 1009, 1012
Goldblatt-Tarski reduct $GT_{\mathcal{M}}$ of $\mathcal{G}_{\mathcal{M}}$, 923
$(\mathcal{G}_{\mathcal{M}})$-duality, 1072
half-line in a geometry $\langle Mn; Bw \rangle$ (defined by Bw), 1045
half-line in a relativistic geometry (defined by L and Bw), 891
half-line with origin o and containing e (defined by Bw), 1045
half-line with origin o and containing e (defined by L and Bw), 891
Hausdorff (i.e. T_2 space), cf. footnote 1009 on p, 1018
higher-order logic, 801
homeomorphism, see footnote 676 on p, 798

1284
homogeneity, 405
homogeneity of space, 405
homogeneity of space-time, 405
homomorphism, 160, 298
hyper-plane, 164, 566
hyper-plane in a relativistic geometry, 1129
ideal of infinitely small numbers in an ordered field, 447
imaginary observer, 803
implicit definition, 934, 936
implicitly definable, 934, 936
implicitly definable without taking reducts, 935
incidence geometry associated to \(\mathfrak{M}\), 1174
incidence relation, 789
independent axiom system, 75
independent subset of \(M_n\), 1039
inertial bodies, 31
infimum, 451
infinitely large, 447
infinitely small, 447
instances of SPR, 349
interior, 510
interpret, 968
interpretation of one theory (or language) in another, Fig.306, 984, 1020, 1021, 1023
interval of \(\mathbf{F}_0\), 1179
isometry, 134, 349
isomorphism, 298
isomorphism as a distinguished morphism of a category, 1093
isomorphism between observer-independent (or relativistic) geometries, 798
isotropy, 219, 399, 468
Kant, 775, 781
language = first-order language = a language of first-order logic = similarity type, cf. any textbook on logic e.g. Monk [197, p.14] or Enderton [82], 27
language of first-order logic, 27
language, language of \(K\), cf. also footnote 924, 962
Laplace transform, 1101
Laplace transformation, 1101
lattice of theories, 451
lattice, cf. footnote 1002 (cf. also p.451), 1015
laws of nature, 348, 777, 778, 1107
least common generalization of theories, 452
Leibniz, 775
Leibniz's principle of identity of indistinguishable concepts, cf. footnote 621 on p, 775
life-line, 47
light-cone, 207, 473
light-cone, \(\text{Cone}_{m,p}\), 473
light-point, 510
light-sphere, 505
limit, 791
limit of lines, 791
limit of sequences, 791
linear operator, cf. footnote 1111 on p, 1102
linear transformation, 65
linearly ordered field, 30, 43
lines, 29, 30
\(\text{Lines} = L\)
-cf. footnote 958 on p, 991
lines \((L)\) of an observer-independent (or a relativistic) geometry,
lines, see \(L, \) lines, Eucl e.g. on p, 789
local definability, 937, 943
locally additive geodesic, 1183
locally compact topological space, 1100
location, 32
locftl, 686
logic, cf. item 1.1.(XI) and footnote 37 on pp, 13, 29
logical positivism, 774, 781
Lorentz Group, 408
Lorentz transformation, 152
Lorentzian metric, see footnote 668 on p, 797
manifold, 788
many-sorted approximation of higher-order logic see higher-order logic, 801
many-sorted first-order language, 27
many-sorted first-order logic, 27
many-sorted logic, 27
many-sorted logic, cf. item 1.1.(XI) and footnote 37 on pp, 13, 29
many-sorted model theory, 298
many-sorted models, cf. item 1.1.(XI) and footnote 37 on pp, 13, 29
many-sorted universal algebra, 298
mathematical logic, cf. item 1.1.(XI) and footnote 37 on pp, 13, 29
maximal definitional expansion, 951
maximal geodesic, 1182
median observer, 306
meter rods shrink, 436
\((\mathcal{M}, \mathcal{G})\)-duality, 1009, 1012
midpoint of a segment, 166
Minkowski distance, 728, 860
Minkowski model, 331, 726
Minkowski-circles, 89
Minkowski-distance, 152
Minkowski-orthogonal lines, 860
Minkowski-sphere, 89
Minkowski case, 1135
Minkowskian case, 859
Minkowskian geometry, 859
Minkowskian geometry, \(\perp_0 \)-version, 878
Minkowskian orthogonality \((\perp_\mu) \), 860
mirror image w.r.t. a line, 173
model theory, 160, 298
\((\mathcal{M}_0, \mathcal{G}_0)\)-duality, 1072
morphisms of a category, 1085
move backwards in direction \(d \), 471
move forwards in direction \(d \), 470
move in direction \(d \), 470
natural number, 26
neighborhood, 189, 536
Newtonian kinematics, 423
nice automorphisms of \(\mathcal{G}_\infty \), 915
non-adequate, 607
non-body-disjoint models, 870
non-elementarily-equivalent models cf. elementarily-equivalent, 303
non-standard higher-order logic, 801
non-standard higher-order logic = many-sorted approximation of higher-order logic, see higher-order logic, 801
non-uniform definability, 943
nonstandard simultaneities, 554
nonstandard synchronization, 554
not adequate (a symmetry principle being not adequate for a theory), 455
nr-implicitly definable, 936
objects of a category, 1085
observational, 774
observational/theoretical, 774
observer brothers, 702
observer-dependent geometry, 880
observer-independent geometry \mathfrak{g}_M, 786, 787
observer-point, 510
observers, 31
Occam, 775
Occam’s razor, 123, 464
Occam’s razor, cf. footnote 621 on p, 775
of nonzero speed, world-view transformation, 709
one-by-one (explicit) definability, 951
one-by-one definability, 937, 943
one-by-one nr-implicitly definable, 943
one-sorted vector space, 42
one-way speed of light, 553
open interval, $\text{int}(p,q)$, 509
open set of a topology, 870
ordered field, 30, 43
ordered field corresponding to an ordered Pappian affine geometry, 1049
ordered field reduct of a frame model, 30, 43
ordered Pappian affine geometry, 1044
orthogonal, 172
orthogonal in the Euclidean sense, 172
orthogonality (\perp_r, \perp), a relation of an observer-independent (or a relativistic) geometry, 790
orthogonality, Minkowskian (\perp_μ), 860
orthogonality, relativistic, 790
P1, 522
P2, 522
P3, 522
Pappian affine geometry, 1042
Pappus-Pascal Property, 1041
paradigmatic effects, 90, 491, 635
paradigmatic theorems, 90
parallel lines, 1039
parallel lines ($\ell \parallel \ell_1$) in an observer-independent (or in a relativistic) geometry, 790
parallel straight lines, 164
parallelogram, 167
parameterization, 1180
parametrizable curve, 1180
parsimonious version of a theory, 465
partial derivative, $\partial_k f$, 518
partial function, 517
parts of SPR, 349
Pasch’s Law, 1043
periodical body, 1117
photon-disjoint unions of frame models, 869
photon-free reduct of a frame model, 708
photon-free sub-reduct of a frame model, 708
photon-glued disjoint unions of geometries, 873, 874
photon-glued disjoint unions of non-disjoint geometries, 874
photon-like Archimedean geodesic, 1179
photon-like geodesic, 1179
photon-like lines, L^ph, 788
photon-like quasi geodesic, 1179
photon-like separated events, $e \equiv^{\text{ph}}_e c_2$, 799
photon-line, 58
photon-preserving affine transformations, 265
photon-preserving transformation, 62
photon-sphere, \mathcal{C}_m, 505
photons, 31
plane, 164
plane generated by a set of points of a
relativistic geometry, 819
plane tangent to a light-cone in a
relativistic geometry, cf. footnote 799 on p, 857
Poincaré Group, 408
Poincaré transformation, 153, 728
Points = Mn
cf. footnote 958 on p, 991
points (Mn) of an observer-independent geometry, 787
points of a topology, 870
poset, 451, 1097
potential laws (of nature), 777, 778, 1107
pre-standard configuration, 602
pre-standard symmetric configuration, 603
pre-standard-sym configuration, 603
prime ideal, cf. footnote 1002 on p, 1015
principle of absolute space, 438
principle of absolute time, 437
principle of isotropy, 219
principle of parsimony, 123, 464, 775
principles (*1), (*2), (*3), 710
projection functions, 947
pseudo-metric reduct of a relativistic
gometry, 1179
pseudo-metric, g, 797
quantities, 29
quasi geodesic, 1181
quasi-standard configuration, 605
quasi-standard-sym configuration, 605
rank of a relation symbol, 931
real-closed field, 301
reduct, 30
reduct of a class of models, 932
reduct of a model, 930, 932
reference frames, 54
reflection, 1090, 1091
reflection arrow, 1091
reflection w.r.t. a line, 173
Reichenbach, 774, 775, 777, 781
Reichenbach-adequate, 608
Reichenbachian version of a theory, 562
Reichenbachian version of
the observer-independent ge-
ometry, 799
Reichenbachizing a theory, 563
relation of connectedness, ∼, 818, 894
relative space-time, 470
relativistic addition of velocities, 420
relativistic effect, 491
relativistic geometry, 798
relativistic orthogonalities, ⊥r, ⊥r (al-
ternatives for ⊥r), 810
relativistic orthogonalities, ⊥r, ⊥r
(alternatives for ⊥r), 821
relativistic orthogonality, ⊥r, ⊥, 790,
792
relativity based on Einstein’s SPR only
(i.e. not mentioning speed of
light), 704
relativity without any connection with
electrodynamics, 704
relativized model, 569
relativized models of a theory, 570
relativizing with artificial simultane-
ities, 569
representation theorems, 1106
residuated-residual pair, 1097
rhombus, 172
rhombus transformation, 72

1288
rigidly definable, 951
Robb hyper-plane, 804, 1130
Robb plane, 1163
Robb’s “after”, 1156
rotating observers, 554
rotation model, 729
rotation, cf. footnote 584 on p, 729
round-trip of photons, 553

segment, 166
semantical, 581
sentence, see footnote 954 on p, 987
short geodesic, 1182
short space-like geodesic, 1182
short time-like geodesic, 1180
similar algebraic structures, cf. footnote 167 p, 161
similar models, 932
similar models, cf. footnote 167 p, 161
similar structures, 798
similarity type, 27
simple models, 249
simplifying principles part of a theory, 465
simultaneity-stable, 578
simultaneous events, 95
slow observer, 483
slow-line, 58
space component, 32, 43
space coordinates, 43
space location, 32
space part, 54
space part of the coordinate-system, 208
space-axes, 470
space-like Archimedean geodesic, 1181
space-like geodesic, 1181
space-like hyper-plane in a relativistic geometry, 1130
space-like lines, L^S, 788
space-like quasi geodesic, 1180
space-like separated events, 799
space-part, S, 470
space-time, 33, 470, 788, 802
space-time location, 32
spaceships shrink, 90, 100
spatial direction, 470
special case of an axiom system or a theory, cf. footnote ?? p, 423
special relativity with no photons, 704
speed, 47
speed of a body in a direction, 534
speed of light axiom, 564
speed of light axioms, 555
speed of light is finite, 491
SPR, 123, 347, 454, 523
SPR0, 523
square of generalized Minkowski distance, 728
standard configuration, 71
Standard Lorentz Group, 408
standard Lorentz transformation, 152
standard model of $\textbf{Reich}_0(Th)$, 570
standard models of a Reichenbachian theory, 570
Stone, 786, 1015, 1019
Stone duality theory, 1015, 1019
Stone representation theorem, cf. also
Stone duality theory, 786
straight line, 45
streamlined partial metric = time-like-metric, 1169
streamlined partial metric reduct of \mathfrak{G}_3, 1170
strict standard configuration, 71, 709
strict standard world-view transformation, 709
strong embedding, 1085
strong geodesic, 1182
strong submodel, 161
cf. footnote 983 on p, 1008
strong substructure, cf. strong submodel, 161
strongly continuous, 537
strongly non-inertial body, 1119
sub-vector space, cf. footnote 166 on p, 160
sub-vocabulary, 932
subalgebra, 160
subbase for a topology, cf. footnote 1004 on p, 1016
subcategory, 1090
submodel, 161
subspace, cf. footnote 166 on p, 160
substructure, 161
sum of topologies = coproduct of topologies, 870
sum topology, cf. footnote 766 p, 841
supremum, 451
surface, 594
symmetric version of Reich(Basax), 627
symmetric version of a theory, 454, 455
symmetry, 347
symmetry axioms, 123, 844, 910, 913, 1107
symmetry principle, 454, 455, 777
symmetry principle part of a theory, 454
synchronism, 90
syntactical, 581
syntax-semantics duality, 453, 1020
(syntax, semantics)-duality, 1020
synthetic geometry = “axiomatic geometry”, 1106
T₂ (i.e. Hausdorff) space, cf. footnote 1009 on p, 1018
T₀-space, T₀ topological space, cf. footnote 1006 on p, 1017
taking limits, 791
terminology of universal algebra, 160, 161
theorem-schemas (A)–(i) for duality theories, 1012
theoretical, 774
theory, 299
theory generated by an axiom system, 1027, 1111
theory morphisms, 1025
three-sorted first-order language = 3-sorted first-order language, 27
three-way speed of light, 572
time axis, 43
time component, 32, 43
time coordinate, 43
time-axis, 470
time-like Archimedean geodesic, 1181
time-like geodesic, 1181
time-like hyper-plane in a relativistic geometry, 1130
time-like lines, L⁺, 788
time-like quasi geodesic, 1180
time-like separated events, e ≡⁺ e₁, 799
time-like-metric g⁻, 1169
time-like-metric geometry, 1170
time-like-metric reduct of a relativistic geometry, 1170
time-like-metric relativistic geometry, 1170
time-like-metric structure, 1170
time-part, t, 470
topology generated by ..., see footnote 672 on p, 797
topological space, 870
topology \((\mathcal{T})\) of an observer-independent (or a relativistic) geometry, 797

trace, 47
transformation, 62
translation, 152
twin paradox, 38, 140, 460
two-dimensional plane in a relativistic geometry, see footnote 798 on p, 857
two-sorted vector space, 42
two-way speed of light, 553
type A transformations, 751
type B transformations, 751
type C transformations, 751
types A, B, C, 751

ultrapower, 1139
uniform (explicit) definability, 951
uniform implicit definition, 937
uniformly definable, 937
unions of geometries and models, 868
unit vector, 69
universal algebra, 160, 161, 298
universes of a three-sorted model, 33

vector, 38
vector space, 42
velocities add up, 437
velocity, 48
velocity structure, 420
velocity-equivalence, 421
visibility relation, 192
vocabulary, 27, 931, 962
vocabulary of a model, 931

weak geodesic, 1183
Weak Principle of Isotropy, 219
weak submodel, 1008
weakly definitionally equivalent, 986

weakly standard configuration, 416
why-type questions, 469
window, 876
witness to \(eq^S_0\), 902
witness to \(eq_0\), 899
work (configurations work), 604
world-view, 52
world-view function, 32
world-view relation, 32
world-view transformation, 56, 913–915
world-view transformation of nonzero speed, 709
world-view transformations of types A, B, C, 751

WPI, 219
References

1293

1295

1297

1299

[146] B. Jónsson. Lattice-theoretic approach to projective and affine geometry. In Henkin et al. [131].

don, 1997.

[240] H. Stein. On relativity theory and openness of the future. *Philosophy of

[241] W.F. Stinespring. Integration theorems for gauges and duality for unimodular

291–306.

[243] P. Suppes. The axiomatic method in the empirical sciences. In L. Henkin,
J. Addison, C.C. Chang, W. Craig, D. Scott, and R. Vaught, editors, *Proced-
ings of the Tarski Symposium*, Proceedings of Symposia in Pure Mathemat-
Mathematical Society.

[244] L.E. Szabó. The problem of open future, determinism in the light of relativity
and quantum theory. Manuscript, Dept. of Theor. Physics, Eötvös Loránd
University, Budapest, 1998.

[245] L.W. Szczerba and A. Tarski. Metamathematical properties of some affine
Congress for Logic, Methodology and Philosophy of Science*, Studies in Logic

1309

1311

Alfréd Rényi Institute of Mathematics
Budapest, Pf. 127
H-1364, Hungary
e-mail: andreka madarasz nemeti@renyi.hu