write

Mod

{{(Fm(Th), Thy : Th is a theory } — {K : Kis a class of similar models }.

Th

This was already explained except for the case when K is arbitrary (on the right-
hand side). Let K be arbitrary, then Th(K) is a theory and Mod(Th(K)) is the closure
of K in the category of classes of models. To get the morphisms in the category of
models we consider K as a topological space K = (K, Ok) where

Ok = {K\ Mod(Th) : Th is a theory }.
Now, the morphisms between K and K; are exactly the continuous functions.

In our next item we will discuss a restriction (or “sub-structure”) of the (syntax,
semantics)-duality, under the name (Mod, Th)-duality.'%*

(IV)
Analogy with the operators Mod and Th in model theory. The (Mod, Th)-duality:°%8
Let Fm and M be, respectively, the set of all formulas and the class of all models
of an arbitrary first-order vocabulary. Recall that the functions

Mod : P(Fm) — P(M) and Th:P(M) — P(Fm)

were defined on p.28.

Now, our functions G and M can be put in analogy with the functions Mod
and Th. To make the analogy with (M, G)-duality sharper, we consider (P(M), C)
and (P(Fm),D) as the two worlds connected by the duality (Th,Mod). ILe. we

1027The name (Mod, Th)-duality is not extremely fortunate for this restriction, since the general
functors in the (syntax, semantics)-duality could also be called Mod and Th. Perhaps we should
have used the expression “small (Mod, Th)-duality” or “poset-(Mod, Th)-duality”. Actually, what
we call (Mod, Th)-duality below was called “syntax-semantics duality” in Chapter 4, p.453. (The
explanation for this is that, as we said, (Mod, Th)-duality is a part of the (syntax, semantics)-duality
cf. Fig.314.) We hope context will help.

102875 see that the (Mod, Th)-duality as discussed here is a restriction to a single vocabulary of the
more general (syntax, semantics)-duality discussed in (III) above, we note the following: Let Voc
be an arbitrary but fixed vocabulary. Now, if we restrict (syntax, semantics)-duality to Voc then
we obtain the (Mod, Th)-duality. More precisely when writing up the more general duality, instead
of { K : Kis a class of similar structures } we used the more special { Mod(Th) : Th is a theory }
on the right-hand side. The only reason for this was to save space, but cf. p.1026 where we
indicated the more general formulation. Because of this connection between (Mod, Th)-duality and
the (syntax, semantics)-one, from other parts of this work sometimes we refer to (Mod, Th)-duality
with the name “syntax-semantics duality”, cf. p.453.
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changed the ordering on P(F'm) to make the similarity with our original duality
more obvious. Theorem schema (A) concludes 9 >=— M (G(9M)). The counterpart
here says K C Mod(Th(K)). On the other side we had & << G(M(®)). The
counterpart here says 7“>”Th(Mod(T)) where “>” is C.

The closure operator induced on P(Fm) by this duality is an important one. We

denote it as follows:
def

T := Modo Th,

i.e. for Axi C Fm, T(Axi) = Th(Mod(Axi)) is the theory generated by the axiom
system Axi.

(V) Analogy with Galois theory of Cylindric algebras: Let us take the Galois
theory of Cylindric algebras as an example, cf. Andréka-Comer-Németi [9, 10] and
Comer [61]. Here, 9 corresponds to an RCA, say 2, and G(9) corresponds to
the Galois group of 2. Then M(G(9M)) corresponds to the Galois closure AT of
2, for which it is true that AT = 2T D 20 So in a sense M(G(9M)) is a kind of
“Galois closure” of the original model 9t (which will contain extra observers whose
existence is kind of suggested by the observers already existing in 90t). We note that
the Galois theory of cylindric algebras is strongly analogous with the Galois theory
of fields, cf. item (I) above.

(VI) Analogy with algebraic logic will be discussed in §6.6.7. Algebraic logic can
be regarded as a very important duality theory (actually it is a system or collection
of duality theories). Connections with Galois connections and adjoint functors will
be discussed in §§ 6.6.5, 6.6.6.

(VII) For further uses of Galois theories and duality theories (e.g. in connection
with differential equations) cf. Janelidze [142, p.369]. For further duality theories in
physics we refer to Varadarajan [270], but cf. also Lawvere-Schanuel [163, pp. 56,
pp. 76-77]. Important additional information is in Remark 6.6.61 (“Motivation for
Galois connections”) item (II) footnote 1077 (p.1079). Duality theories involving
C*-algebras, and Laplace transform are on pp. 1098-1105.

(VIII) Further examples for duality theories (in and outside of physics) will be
given on pp. 1096-1105.

This concludes Remark 6.6.4 (Galois theories, Galois connections, duality theo-
ries all over mathematics, in analogy with the ones in the present work).
<
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For stating our first theorems (of schema (A)—(1)) we introduce two new axioms
Ax(Bw), Ax(coph) and the new axiom system Pax™t.

Ax(Bw) (Vm, k € Obs)[m > k = (fn; is betweenness preserving) 1029).

Ax(ocoph) (Ym € Obs)(Vph, ph' € Ph) ([(_) € tr,,(ph) N tr,,(ph') A (ph and ph'
move in the same direction as seen by m ) A v,,(ph) = 00| — v,(ph') = oo).

Intuitively, no observer can emit simultaneously in the same direction two
photons one with infinite speed and the other one with finite speed.

In connection with Ax(Bw) and Ax(coph) we state Propositions 6.6.5, 6.6.9
which will be needed later. Recall that Pax is weaker than Bax™, cf. p.482 in §4.3.
The proposition below says that Pax® + Ax(v/ ) implies Ax(Bw) and that if
n>2 Bax? implies Ax(Bw).

PROPOSITION 6.6.5
(i) Pax+ Ax(V ) = Ax(Bw).
(ii) Assume n > 2. Then Bax® = Ax(Bw).

Proof: Item (i) follows from Thm.4.3.13 on p.482 saying that the word-view trans-
formations are bijective collineations in all models of Pax, and from Lemma 3.1.6
on p.163 saying that a line preserving bijection is an affine transformation composed
by a field automorphism. Item (ii) follows from Thm.3.4.40 on p.241 saying that
Bax implies that f,,, = @o f, for some f € Aftr and ¢ € Aut(F), from Thm.3.4.19
on p.221 which says that Bax does not allow F'TL observers, and from Lemma 6.6.6
below. B

LEMMA 6.6.6 Let § = (F,<) be an ordered field. Let ¢ € Aut(F) be such that
(Vz € F) (Jz| <1 = |p(z)| <1).
Then we have ¢ € Aut(F), i.e. @ is order preserving.

We omit the proof. 1

QUESTION 6.6.7 Assume n > 2. Does Bax~" = Ax(Bw) hold?

1029This can be formalized as (Vp,q,r € "F)(Betw(p,q,7) = Betw(fru(p), fmk (@), fmr(r)).
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Remark 6.6.8 Many of the theorems of the present work remain true if we re-
place the assumption Ax(y/ ) with the “weaker” Ax(Bw). An example for such
a theorem is Thm.4.3.24 saying that if n > 2 then Bax~ " + Ax(v') excludes
FTL observers. There are similar examples almost in every chapter. By replacing
Ax(v/) with Ax(Bw), usually we obtain theorems stronger than the original one,
since usually Pax is assumed and then Prop.6.6.5(i) implies that the new theorem
is stronger (or equivalent).

<

PROPOSITION 6.6.9 Bax™ = Ax(ooph).

We omit the easy proof.

Definition 6.6.10 Pax™ :% Pax + AxEq; + Ax(Bw) + Ax(coph) +
([Ax(eqtime) A (Vm,k € Obs)(YO < i € w) tro(k) £ T;]  V Ax(eqm)).1030
<

If we replace Ax(Bw) by Ax(v/ ) in Pax™ then'®! we get a stronger axiom
system than Pax™.

The theory Pax™ above is designed to be weak, just strong enough for defining
the function M : Ge(Paxt) — Mod(Pax™).132 This is why Pax™ is so artificial.
Our next proposition shows that in our definitions, and statements the assumption
Pax™ can be replaced by more natural (but stronger) theories. In passing we note
that Pax™(2) allows Basax + Ax(symm) models with FTL observers.

PROPOSITION 6.6.11 Assume n > 2. Then (i)-(iii) below hold.
(i) Bax~ " + Ax(Bw) + Ax(eqtime) = Pax'.
(ii) Bax~® + Ax(V") + Ax(eqtime) = Pax™.

(iii) Bax® + Ax(eqtime) = Pax™.

1030Tpstead of Ax(eqtime) we could use the weaker axiom Ax(eqtime)V Ax(egspace)®. Then
we would obtain a weaker axiom system Paxt~. The theorems of the present sub-section (i.e.
§6.6.1) remain true if we replace Pax™ with Paxt~ in them. For an even more general duality
theory cf. Remark 6.6.51 (p.1065).

1031y Thm.4.3.13 (p.482), Lemma 3.1.6 (p.163) and Remark 3.6.7 (p.268)

1032That functor M will be defined later (beginning with p.1052).
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Proof: Assumen > 2. Then, by the proof of Thm.4.3.24 (p.497), Bax_®+Ax(Bw)
excludes FTL observers. Further, Bax™ = Ax(ooph) by Prop.6.6.9. Therefore item
(i) of the proposition holds. Item (ii) follows by (i) and by Prop.6.6.5(i). Item (iii)
follows by Thm.3.4.19 (p.221) and Prop.6.6.5(ii).

Below we state a theorem corresponding to the theorem schemas (C) and (D)
on p.1009 way above. The theorem below implies that Mod(7Th) =X Ge(Th), if we
assume that Th satisfies Ax(diswind) and condition (x) in the theorem. We will
see that more than this is true, namely Thm.6.6.13 says that Mod(7Th) = Ge(Th)
under the same conditions.

THEOREM 6.6.12
There is a first-order definable meta-function M : Ge(Pax™) — Mod(Pax™)
such that (i)-(iii) below hold, for any Th satisfying condition (%) way below.

(i) M : Ge(Th) — Mod(Th)  (and of course G : Mod(Th) — Ge(Th)).

(ii) Both MoG and Go M have strong fized-point property in the sense that
for any & € Ge(Th) and 9 € Mod(Th)

(MoG)(®) =& and (GoM)(ON) M,

moreover there is an isomorphism between & and (M o G)(®) which is the
identity map on F, and the analogous statement holds for M and (GoM)(9M),
see Figure 315 and pictures (C), (D) in Figure 811 (p.1010).

(iii) Moreover, G and M are first-order definable meta-functions, assuming Th =
Ax(diswind).

(*) n>2and Th = Bax®+ Ax(Trivy)~ + Ax(||)” + Ax(eqtime) + Ax(ext) +
AxQ + Ax(V).

Proof: The theorem follows by Thm.6.6.46 (p.1061) way below. B

Our next theorem states a very strong connection between our frame-models
Mod(Th) and our observer-independent geometries Ge(Th). The methodological
importance of these kinds of theorems (from the point of view of physics) was dis-
cussed in the introduction of §6.2.2 (p.806) and in the introduction to the present
chapter (86.1). The theorem below says that Mod(Th) and Ge(Th) are definitionally
equivalent under some assumptions. But if two theories (or axiomatizable classes
of models) are definitionally equivalent then this means that, basically, they are the
same theory “represented” in two different ways; cf. Remark 6.3.31 (p.973) and the
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M
taking g
isomorphic
Mod(Th) MogG copies GoM Ge(Th)
g /
Ge(Th) Mod(Th)

Figure 315: (M0 G)(®) = & and (G o M)(9M) = M.

discussion on p.972 (in §6.3). The same applies to classes of models (like Ge(Th)
and Mod(Th)) in place of theories. Therefore our next theorem can be interpreted
as saying that our observational world Mod(Th) is basically the same as our theo-
retical world Ge(7Th). The theorem implies that our theoretical concepts are already
available in Mod(Th) as “abbreviations” or “shorthands”!%33; and that in the other
direction, our observational concepts (like observer, coordinate system etc.) are
present in our theoretical world Ge(Th) as “abbreviations”.

THEOREM 6.6.13 Mod(Th) and Ge(Th) are definitionally equivalent, in symbols

Mod(Th) =a Ge(Th),

assuming n > 2 and Th E Bax® + Ax(Triv,)~™ + Ax(]|)” + Ax(eqtime) +
Ax(ext) + AxQ + Ax(v ) + Ax(diswind).

In the proof of Thm.6.6.13 we will use Lemma 6.6.14 below. Therefore the proof of
Thm.6.6.13 comes below the lemma.

The subject matter of the following lemma belongs to definability theory, i.e. to
§6.3. For a similar lemma cf. Lemma 6.5.4 (p.994).

LEMMA 6.6.14 Let K, L and K be classes of models. Then (i) and (i) below
hold.

(1) Assume that IK is aziomatizable and that KT is rigidly definable over both K
and L. Then
K =A L.

1033This direction can be interpreted as concluding that our theoretical concepts are acceptable
(or well chosen) from the point of view of Machian-Einsteinian philosophy of theory making.
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(ii) Assume that KT is rigidly definable over K, IL is closed under taking ultra-
products, VocK*t N VocL = VocK N Vocl, and K =5 L. Then KT =4 L.

Proof: To prove item (i) assume K, L, K* satisfy the assumptions in (i). Then, by
Lemma 6.5.4 on p.994, to prove that K =4 L it is enough to prove that IK™ is closed
under taking ultraproducts. Since K% is definable over K, there is a definitional
expansion KT* of K such that K* is a reduct of K**. Let such a K** be fixed. Thus
IK** is a definitional expansion of IK and IK* is a reduct of IK**. Hence, IK*™™ is
axiomatizable (because IK is axiomatizable by our assumption in (i)). Thus, IK**
is closed under taking ultraproducts. Since IK™ is a reduct of IK™*, we have that
IK™ too is closed under taking ultraproducts. This completes the proof of item (i).
We omit the proof of item (ii). ®

Outline of proof of Thm.6.6.13: Assume n > 2 and that Th satisfies the as-
sumption of the theorem. Let Ge™ (Th) be the topology free reduct of Ge(Th). Let
Ge™ (Th)+T, denote the expansion of Ge™ (Th) with the subbase Tj (of the topology)
and the membership relation €pp,«7, as indicated in Prop.6.3.19 on p.959. Hence,
the models Ge™ (Th) + Ty are of the form (&,To; €puxry) With & € Ge™ (Th) and
To, € MaxT, as indicated on p.959. By the proof of Prop.6.3.19, Ge™ (Th)+Tj is rigidly
definable over Ge™ (7h). By this and by Lemma 6.6.14(ii), we conclude that it is
sufficient to prove Mod(Th) = Ge™ (Th) for proving Mod(Th) =a (Ge™ (Th) + Tp).
According to our convention below (xx) on p.809 we consider the latter sufficient for
proving Mod(Th) =a Ge(Th). Therefore to prove the present theorem it enough to
prove Mod(Th) = Ge™ (Th). We will do just this.

To prove Mod(Th) =a Ge™ (Th), by Lemma 6.6.14(i), it is enough to find a class
M such that M is rigidly definable both over Mod(Th) and Ge™ (Th). Now, we turn to
constructing such an M. First, we define the vocabulary of M. (The common vocab-
ulary of Mod(Th) and Ge (Th) consists of the sort symbol F and relation/function
symbols +, -, <). Voc M :=“Voc Mod(Th) + Voc Ge™ (Th) + (relation symbols O and
P, where the rank of O is (B, Mn, ..., Mn), and the rank of P is (B, L))”. Now,

(n + 1)-times

M ;dzefx{ (9N, Bon; O, P) : M € Mod(Th),
O = {(m, wn(0), wn(lo),..., wm(la_1)) : m € Obs™}
P={(ph,{e€Mn : phee}): phEth}}.
By the proof of Prop.6.3.18 (p.957) and Thm.6.3.22 (p.961) it is not hard to see that
M is rigidly definable over Mod(7Th). By Def.6.6.41 (p.1054), Prop.6.6.44 (p.1059),

Remark 6.2.66 (ii) (p.867), Propositions 6.2.88 (p.895) and 6.2.92 (p.901) it is not
hard to see that M is rigidly definable over Ge™ (Th). N
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Conjecture 6.6.15 We conjecture that in the above theorem Ax(diswind) is

needed (because we conjecture that L, is not first-order definable in

Mod(Th \ {Ax(diswind)}), where Th is as in Thm.6.6.13 above), cf. Figure 316.
<

J4 20 S
\E,el \", 1, A 129
., . /
N, A\ S \
KN g\" EN ‘/—\:, ,2 A SN / ,~:
‘, “*d B “ 7 .
\ 2 \,\ ) 3 0N, NSRS/
\ R NS ° L4 L4
\ N .S

Figure 316: We conjecture that Ax(diswind) is needed in Thm.6.6.13, i.e. that
without assuming Ax(diswind) L, is not definable. (Hint: £,¢,... € L*" ¢ 1, 4,
by closing L, up under limits; and ¢ 1, ¢, = ¥ly L, l3 = ¥, 1L, 0ls = ..., by
closing L, up under parallelism.)

The following theorem implies that the sentences in our frame language can be
translated (in a meaning preserving way) to sentences in the language of our observer
independent geometries and vice-versa, under some assumptions. Cf. the text above
Thm.6.6.13, Remark 6.3.31, introduction of §6.2.2 and the text above Prop.6.4.8
(p.987). In connection with the following theorem we note that F' is a common sort
of Mod(Th) and Ge(Th).

THEOREM 6.6.16 Let M : Ge(Pax™) — Mod(Pax™) be a first-order definable
meta-function such that for this choice of M the conclusions of Thm.6.6.12 above
hold. Assume n > 2 and that Th is as in Thm.6.6.18 above. Then there are
“natural” translation mappings

Tr : Fm(Mod(Th)) — Fm(Ge(Th)) and Tg: Fm(Ge(Th)) — Fm(Mod(Th))

such that for every ¢(z) € Fm(Mod(Th)), ¥(y) € Fm(Ge(Th)) with all their free
variables belonging to sort F, MM € Mod(Th) and & € Ge(Th), and evaluations a, b
of Z,7, respectively (in F of course), (i)—(iv) below hold.'%*

1034We note that the formulas ¢ and Th(p) have the same free variables (therefore (i) below
makes sense). Similarly for Tg etc.
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(i) M(®) Evla] & & ETulp)a and GM) EYP] & ME T[]
(i) M ola] & GOMN) ETu(p)a and & Eyb] & M(8) = Tx(y)[D)].
(iii) M = o(2) < To(Tm(p))(@)  and & =b(F) < Tm(Te(4))(H)-

(iv) Mod(Th) = ¢ < Ge(Th) = Ta(p) and Ge(Th) =1 < Mod(Th) = T ().

Proof: The theorem follows from Theorems 6.6.12 and by Prop.6.4.8 on p.987 (and
by noticing that Thm.6.6.12 implies that Mod(Th) =X Ge(Th)).
|

Below we state a theorem corresponding to the theorem schemas (A), (C)—(H)
on p.1009 way above. In connection with the formulation of the next theorem we
note that for any Th, G : Mod(Th) — Ge(Th) by the definition of G. (Hence, in
particular G : Mod(Pax™) — Ge(Pax™).)

THEOREM 6.6.17
There is a first-order definable meta-function M : Ge(Pax™) — Mod(Pax™)
such that (i)-(iv) below hold.

(i) The members of the range of M are fized-points of Go M, formally: For any
® € Ge(Pax™)
(G 0o M)(M(&)) = M(8),

see picture (F) in Figure 311 (p.1010).

(ii) Both GoM and M oG have fized-point property in the sense that for any
M € Mod(Pax™) and & € Ge(Pax™)

(G o M)*(M) = (Go M)(M) and (Mo G)*(8) = (Mog)(e),
see Figure 317 and pictures (G) and (H) in Figure 311 (p.1010).

(iii) M : Ge(Pax™ + Ax(ext) + AxQ) — Mod(Pax™t + Ax(ext) + AxQ) and

for any 9 € Mod(Pax™t + Ax(ext) + AxQ)
M is embeddable into (G o M)(IM), i.e.

M >—— (G o M) (M),

see Figure 318 and picture (A) in Figure 811 (p.1010).
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Mod(Th) Th = Pax™t Ge(Th)

Ge(Th) Ge(Th) Mod(Th) - Mod( Th)
M| \J/M g| / g
/ v
Mod(Th) Mod(Th) Ge(Th) Ge(Th)
M % M
Ge(Th) Mod(Th)
Mod(Th) Ge(Th)
Go / \ (Mo G)? MoG

Figure 317: These diagrams commute up to isomorphism.

Th = Paxt + Ax(ext) + AxQ Mod(T

embeddlngs/_s / e(Th)

Figure 318: MM >—— (G o M) (M)
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(iv) M : Ge(Pax™ + Ax(eqm)) — Mod(Pax™t + Ax(eqm)) (and of course
G : Mod(Pax™ + Ax(eqm)) — Ge(Paxt + Ax(eqm))), and
Mo G has a strong fized-point property in the sense that
for any & € Ge(Pax’ + Ax(eqm))

(Mo G)(8) = e,

(cf. the left-hand side of Fig.315 and picture (D) in Fig.311).

Further, the members of the range of G are fized-points of Mo G, formally:
For any MM € Mod(Pax™ + Ax(eqm))

(Mo G)(G(M)) = G(M),
cf. picture (E) in Figure 311 (p.1010).

Proof: The theorem follows by Thm.6.6.46 (p.1061) way below. B

Assume, for M : Ge(Pax™) — Mod(Pax™) that the conclusions of Thm.6.6.17
hold and M is a first-order definable meta-function. Let

Th := Pax™ + Ax(eqm) + Ax(ext) + Ax.

Then, by Thm.6.6.17, G o M and M o G are closure operators on (Mod(Th), C,,)

and (Ge(Th),w2) up to isomorphism, respectively (cf. p.1013), assuming G o M
and M o G preserve C,,. Further, M o G is the “identity operator” on Ge(Th)
up to isomorphism, i.e. for any & € Ge(Th), (Mo G)(®) = &. The analogous
statement for G o M does not hold in general, i.e. there is 9 € Mod(Th) such that
(G o M)(9M) 2 M. This asymmetry is caused by our choice of G, i.e. by the fact
that G is surjective in the sense that Rng(G) is Ge(Th) up to isomorphism. We will
have a duality theory for the (g, 7)-free reduct of our geometries in §6.6.4 which
will be more symmetric.

Further theorems in this line (duality theories, Galois connections etc.) will
follow after we elaborate the definitions of e.g. the function M. For that definition

we will need some preparation e.g. coordinatization of our geometries summarized
in §6.6.2 below.

Our next sub-section is on coordinatization. For applications of this kind of
coordinatization in physics cf. e.g. Varadarajan [270].
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6.6.2 Coordinatization of geometries by ordered fields

In the present sub-section our geometries, in most of the cases, are of the form
(Mn; Bw), where Mn is the set of points and Bw is a ternary relation (of be-
tweenness) on Mn. We do not assume that our geometries (Mn; Bw) are reducts
of relativistic geometries. It is known from elementary geometry that if a geome-
try (Mn; Bw) satisfies certain axioms, then it can be coordinatized by an ordered
field and this ordered field is unique up to isomorphism (cf. e.g. Hilbert [134] or
Goldblatt [108] or Schwabh&user-Szmielew-Tarski [237]). We will recall this coordi-
natization procedure from the literature (cf. [108, 134, 237]) in a slightly modified
form. Before recalling the coordinatization we collect some axioms obtaining the ax-
iom system opag which will be sufficient for the coordinatization'%® of (Mn; Bw)
by an ordered field. The “geometrical theory” opag and the theory of ordered fields
will turn out to be weakly definitionally equivalent, cf. Prop.6.6.29 (p.1045).

Roughly speaking, opag is an axiomatization of affine geometry. Affine geometry
has been thoroughly studied in the literature, and several axiomatizations for affine
geometry are available in the literature, cf. Remark 6.7.17 on p.1148. (So opag is
not particularly new, it has been put together to suit our purposes in the present
work.)

Beside the geometry (Mn; Bw) we will also discuss the geometry (Mn; coll ). In
the case of “(Mn; Bw)” coll is a defined relation, i.e. we use the abbreviation coll
over (Mn; Bw) exactly as it was introduced in item 6.2.12 on p.818.

The new sort lines of (Mn; coll) as well as of (Mn; Bw) together with the
incidence relation € C Mn x lines are explicitly defined (in the sense of §6.3.2) as
follows. (Recall that in the case of “(Mn; Bw)” coll is a defined relation.) First we
define

R:={{a,b) : (3c € Mn) coll(a,b,c), a #b}

as a new relation. Then we define the new auxiliary sort U to be R together with
Djo, Pj1- Intuitively, the elements of U will code the elements of lines. We define a
kind of incidence relation E’ between Mn and U as follows. Let e € Mn and ¢ € U.

1035The coordinatizations (by Hilbert and others) of (synthetic) geometries mentioned above are
related to the subject matter of the present section because observer m coordinatizes Mn by the
world-view function w,y,, i.e. w, : "F — Mn is a coordinatization of Mn. In passing we note
that the coordinatization methods of Hilbert, von Neumann, von Staudt (cf. in [13]), and others
are applied in pure logic e.g. in Andréka-Givant-Németi [13, pp. 16-19]. (The reference to von
Neumann can be found in [13].) Tarski’s school call such coordinatization results representation
theorems. The idea is that we represent an abstract axiomatic geometry as a concrete (analytic)
geometry in the Cartesian spirit. Cf. Remark 6.6.87 (p.1106).
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Then
eE't <% coll(pjy(6), pi (), ).

Then we define the equivalence relation = on U as follows. Let £,/ € U. Then

(=0 & (Yee Mn)(eE'L < e E' 1)

We define the new sort lines := U/= together with €y = C UxU/=. Finally, the
incidence relation E C Mn x lines is defined as follows. Let e € Mn and ¢ € lines.
Then
eBl & (@l el)eE l.

Since the axiom of extensionality holds for the incidence relation E we identify E with
the real set theoretic membership relation €. More precisely, without loss of gener-
ality we may assume that lines C P(Mn) and that E coincides with the set theoretic
€, so we will do this from now on.!%*¢ This completes the explicit definition of the
two sorted geometry (Mmn, lines; €, coll) over the one-sorted geometry (Mn; coll),
and the explicit definition of the two sorted geometry (Mn, lines; €, Bw, coll ) over
the one-sorted geometry (Mn; Bw). For the connection of lines with L of Ggy cf.
Item 6.6.39 on p.1052.

Next, we introduce axioms Ag—Ay4, P;, P53, Pa. Though these axioms will be
in the two-sorted language of (Mn, lines; €, coll }, by Thm.6.3.26 (p.962), they can
be translated to the one-sorted languages of both (Mn; coll) and (Mn; Bw).

Ay (Va,b,c € Mn)[coll(a,b,c) +» (3¢ € lines) a,b,c € £].

Intuitively, a, b, ¢ are collinear iff there is a line that contains a, b, c.

A; (Va,be Mn)(a#b — (3 € lines)a,b e ).

Informally, any two distinct points lie on exactly one line.!03”

Though axioms Ay, Az, A4 below are not first-order formulas in their present
form, they can be easily reformulated in the first-order languages of both (Mn; Bw)
and (Mn; coll). Throughout n > 2 is the dimension of our geometry. If H C
Mn then we will use the definition of Plane’'(H) exactly as it was introduced in
Def.6.2.15(ii) (p.820). Intuitively, Plane'(H) is the n-long closure of H under coll.
Recall that the definition of Plane'(H) is a first-order one over both structures
(Mn; coll, H) and (Mn; Bw, H).

1036 For more detail on why and how we can do this (with “€”, E and lines) we refer to Appendix
(“Why fist-order logic?”).
1037Cf. axiom AS1 in Golblatt [108, p.112] and axioms I; and I, in Hilbert [134, §2].
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A, Intuitively, if H is a less than n 4+ 2 element subset of Mn then the “n-long
closure” Plane'(H) of H under coll will be closed under coll, hence the plane
Plane(H) generated by H coincides with Plane’(H) (cf. Def.6.2.15, p.819),
formally:

(VH C Mn)
(( |H|<n+1 A a,b€ Plane'(H) A coll(a,b,c)) — c€ P]ane’(H)).

For introducing axioms Az and A4 we need the following definition.

Definition 6.6.18 Consider a geometry (Mn; Bw).
(i) Let H C Mn. Then H is called independent iff (Ve € H) e ¢ Plane'(H \ {e}).

(ii) Let P C Mn. Then P is called an i-dimensional plane iff there is an i 4 1
element independent subset H of Mn such that Plane'(H) = P.

<
Ag Intuitively, if + < n and H is an 7 + 1 element independent subset of Mn then
there is exactly one ¢-dimensional plane that contains H, formally:
(VH,H' C Mn)(( |H|=|H'| <n+1 A (both H and H' are independent) A
H C Plane'(H')) — Plane'(H) = P]ane’(H’)).

A4 Mn is an n-dimensional plane.

Our next two axioms P; and Py concern “parallel lines”. For these axioms we
need the notion of parallelism.

Definition 6.6.19 Informally, two lines are parallel if they are in the same 2-
dimensional plane, they do not meet or they coincide, formally: Let £,¢ € lines.
Then ¢ and ¢ are parallel, in symbols ¢ || ¢, iff (Ja,b,c € Mn)t, V' C
Plane'({a,b,c}) and ((N¢ #Q or £ =4¢).108

<

103817f we apply these definitions (i.e. the def. of lines and ||) to ®gy then (assuming Pax +
Ax(diswind)):

(i) lines and L are potentially different with L C lines, further

(ii) || and ||@ are potentially different with || being the restriction of || to L. Cf. Item 6.6.39 on
p.1052.
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Py (V4 € lines)(Va € Mn) (3¢ € lines)(a € ¢! N L || £').

Informally, if we are given a line £ and a point a, then there is exactly one line
¢' that passes through point a and is parallel to line £.1%3° This axiom is called
Euclid’s axiom in the literature.

Po (L]0 A& 0) — 2] ¢

Le. the relation of parallelism is transitive.!%4

Definition 6.6.20
(i) ag :(126f {A‘Oa A17 A-27 A37 A47 Pla P2}

(ii) If (Mn; coll) = ag then we say that (Mn; coll) is an affine geometry.

<

An algebraic structure D = (D; +,-) whith binary operations + (addition) and
- (multiplication), is called a division ring iff 1-3 below hold.

1. (D; +) is an Abelian (i.e. commutative) group. We let 0 denote its neutral
(i.e. identity) element.

2. (D\ {0}; -) is a group.
3. The distributive laws
z-(y+2)=z-y+z-2, (y+2)-z=y-x+z2-x
hold for all x,y,z € D.

We note that a division ring in which the multiplication is commutative (z-y = y-x)
is a field.

Assume D = (D; +,-) is a division ring. Then the set of lines Eucl(n,D) C
P("D) of the “coordinate system "D” is defined completely analogously to the case
of fields on p.45. Further, collp is a ternary relation on "D defined as

collp & {{p,q,r) €D x"D x"D : (3¢ € Eucl(n,D))p,q,r € £ }.

The following fact (known from geometry) says that a geometry is an affine one
iff it can be coordinatized by a division ring.

1039Cf. axiom AS3 in Goldblatt [108, p.113], and axiom IV in Hilbert [134, §7].
1040Cf. axiom AS4 in Goldblatt [108, p.113].
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FACT 6.6.21 Assume n > 2. Then

(Mnj; coll) = ag

0

(there is a division ring D = (D; +,-) such that (Mn; coll) = ("D; collp)).

On the proof: A proof can be recovered from Goldblatt [108, pp. 23-27, 71, 114]
and Hilbert [134, §24]. Cf. also the proof of Fact 6.6.28 (p.1044). &

Fact 6.6.21 above gives hints how one can try to find relativistic models behind
geometries. It also gives an idea for a possible generalization of our approach, namely
in our frame theory for relativity instead of requiring that § is an ordered field we
could require only that § is an ordered division ring.

Our theorem below implies that the theory of division rings and the theory
of affine geometries are weakly definitionally equivalent. Therefore, by Prop.6.4.8
(p.987), there are meaning preserving translation mappings between the two theories
such that these translation mappings are inverses of each other in some sense. Cf.
the discussion of weak definitional equivalence on pp. 984-987 for more intuition for
the next theorem.

THEOREM 6.6.22 Assumen > 2. Then

(the class of division rings) =X {(Mn; coll) : (Mn; coll) =ag}, but
(the class of division rings) #a {(Mn; coll) : (Mn; coll) = ag},

i.e. the theory of division rings and the theory of affine geometries (if n > 2) are
weakly definitionally equivalent, but they are not definitionally equivalent.

On the proof: We omit the proof but cf. the proof of Thm.6.6.29.

It is interesting that by the above theorem the “one-sorted” class of division rings
is weakly definitionally equivalent with the geometries (Mn, lines; €, coll) satisfying

ag.

To make our division ring D in Fact 6.6.21 commutative (i.e. to make it a field)
we introduce a new axiom Pa called Pappus-Pascal Property in the literature, cf.
e.g. Hilbert [134] or Goldblatt [108, p.21]. In the axiom Pa we will use the following
abbreviation.
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Notation 6.6.23 Let a,b,c,d € Mn. Then

(@,6) || {c,d)

def,
<~

(a;éb Ac#d A (300 € lines)(£|| € A abel A c,dEE’)).

Pa (V¢, ¢ € lines)(Ya,b,c € £\ ¢')(Vd', b, ¢ € 0!\ {)
[({a,0) [ {a',b) A (a,c) [ {d',c)) —  (b,c) [V, c}],

see Figure 319.

Figure 319: Pappus-Pascal Property.

Definition 6.6.24
(i) pag ' ag + Pa.

(ii) If (Mn; coll) = pag then we say that (Mn; coll) is a Pappian affine
geometry.

<

The following fact (known from geometry) says that a geometry is a Pappian
affine one iff it can be coordinatized by a field.

1042



FACT 6.6.25
(Mn; coll) = pag
(there is a field F such that (Mn; coll) = ("F, collg)).

On the proof: A proof can be recovered from Goldblatt [108, pp. 23-27, 71, 114]
and Hilbert [134, §24]. Cf. also the proof of Fact 6.6.28 (p.1044). &

THEOREM 6.6.26

(the class of fields) =% {(Mmn; coll) : (Mn; coll) = pag}, but
(the class of fields) #a {(Mn; coll) : (Mn; coll) = pag },

i.e. the theory of fields and the theory of Pappian affine geometries are weakly defi-
nitionally equivalent, but they are not definitionally equivalent.

On the proof: We omit the proof but cf. the proof of Thm.6.6.29. 1

To make our field an ordered field in Fact 6.6.25 we need a few further axioms.
These further axioms concern betweenness Bw, and they are in the language of
(Mn; Bw). (coll is a defined relation.)

B; Bw(a,b,c) — (a#b#c#a N Bw(c,b,a) A -Bw(b,a,c)).

Intuitively, if b lies between a and c then a, b, ¢ are distinct points and b lies
between ¢ and a. Further, for any three points a, b, ¢ at most one of them lies
between the other two.!04!

By a#b — (3c)Bw(a,b,c).

Informally, for any two distinct points a, b there is at least one point ¢ such
that b lies between a and c.1%42

Axiom Bg below is called Pasch’s Law in the literature.

B3 Intuitively, if a line £ lies in the plane determined by a triangle abc, and passes
between a and b but not through ¢, then ¢ passes between a and ¢, or between
b and ¢,'%*3 formally:

(—coll(a,b,c¢) A £ C Plane'({a,b,c}) A (3d € £)Bw(a,d,b)) —
(e € £)(Bw(a,e,c) V Bw(b,e,c)), see Figure 320.
1041Cf. axioms B1, B3 in Goldblatt [108, pp. 70-71] and axioms II; and I3 in Hilbert [134, §3].

1042Cf, axiom B2 in Goldblatt [108, p.70] and axiom II, in Hilbert [134, §3].
1043Cf. axiom B4’ in Goldblatt [108, p.136] and axiom II, in Hilbert [134, §3].
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Figure 320: Pasch’s Law.

So far it was clear what we meant when we wrote (Mn; coll) = pag. Now,
beside coll we want to use Bw too, and we want to write (Mn; coll, Bw) k=
pag + (some new axioms [concerning Bw]). Since coll is definable from Bw, we will
write (Mn; Bw) =“...” instead of (Mn; coll, Bw) =“...”. We hope that the sim-
ilarity between the expressions (Mn; coll ) and (Mn; Bw) will create no confusion'04*
(because context will help).

Definition 6.6.27

(i) opag = pag + {B1, B2, Bs}.

(ii) If (Mn; Bw) = opag then we say that (Mn; Bw) is an ordered Pappian
affine geometry.

<

The following fact (known from geometry) says that a geometry is an ordered
Pappian affine one iff it can be coordinatized by an ordered field.

FACT 6.6.28

(Mn, Bw) = opag

(there is an ordered field § such that (Mn, Bw) = ("F, Betw)).

1044Cf, Convention 6.3.1 on p.931.
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Proof: Proof of direction “{}” goes by checking the axioms, while direction “|}”
follows from Prop.6.6.38 (p.1052) way below. (Cf. also Def.6.6.37 on p.1051). 1

THEOREM 6.6.29

(the class of ordered fields) =% {(Mn; Bw) : (Mn; Bw) =opag}, but
(the class of ordered fields) #a {(Mn; Bw) : (Mn; Bw) = opag },

i.e. the theory of ordered fields and the theory of ordered Pappian affine geometries
are weakly definitionally equivalent, but they are not definitionally equivalent.

On the proof: A proof for the “=X” part can be obtained by Def.6.6.31,
Prop.6.6.32, Def.6.6.34, Prop.6.6.35 and Examples 6.3.16 (p.954).

A proof for the “#A” part can be obtained by using item (6) on p.972 and
Fact 6.6.28 as follows. It can be seen that ("F,Betw) has many non-trivial auto-
morphisms for any ordered field §. (E.g.  — 2z induces such an automorphism
of ("F,Betw).) Thus any ordered Pappian affine geometry has many non-trivial
automorphisms, in particular, the automorpism group has more than one element,
by Fact 6.6.28. On the other hand, there are ordered fields with one-element au-
tomorphism groups (e.g. the ordered field R of real numbers is such). Then (6)
on p.972 implies that the class of ordered fields cannot be definitionally equivalent
(=a) with the class of ordered Pappian affine geometries. By this, the “ZA” part
of our theorem is proved, too. B

Assume (Mn; Bw) = opag. In Def 6.6.31 for every o,e € Mn with o # e we
will define an “ordered field” §,. corresponding to o,e. Prop.6.6.32 says that F,. is
indeed an ordered field. In Prop.6.6.33 we will see that the ordered field §,. does
not depend on the particular choice of o,e. Thus, there is a unique ordered field
§ behind the geometry (Mn; Bw). In Def.6.6.34 we will define this ordered field §
explicitly over (Mn; Bw). Finally, in Def.6.6.37 we will define a coordinatization of
the geometry (Mn; Bw) by § = (F,...) which will be proved to be an isomorphism
between (Mn; Bw) and ("F; Betw) as Prop.6.6.38.

Notation 6.6.30 Let (Mn; Bw) be a geometry, and o,e € Mn. Then the half-line
[oe with origin o and containing e is defined as follows.

[oe % {a € Mn : coll(o,e,a) A ~Bw(a,o,e)}.1045

<

1045We note that we had a slightly different notion of a half-line denoted as 7. in §6.2.6, p.891.
Our present notion “[oe” of a half-line is slightly different (it is tailored for the structure (Mn; Bw),
while the previous one was tailored for &gy), but the basic idea is the same.
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Definition 6.6.31 (The ordered field F,e)
Assume (Mn; Bw) = opag. Let o,e € Mn with o # e. We define an “ordered
field” T, corresponding to o and e as follows. Our o and e represent 0 and 1,

respectively. Let
def

Foe := {a € Mn : coll(o,e,a)},
i.e. F,, 1is the line determined by o and e. We will first define addition +,. as a
ternary relation +,. C Foe X Fye X Fype and later (in Prop.6.6.32) we will see that it is
a function +,. : Fe X F,, — F,.. We will define multiplication -, C F,o X Fyp X Fyp
in an analogous style. Further we will define “ordering” <, C F,, X F,..
Let a,b,c € 4.

Fe ¢
C
+0€(a/’ b7 c) a
N b
(3¢ € lines) (o 0 AC|Fy, A
OI
(30, 0" € ) ({0, 0) || {b,0') A (d,a) || (b’,c))). b
(0]
Foe
e
'oe(a7 ba C)
def b
<~
(EIEGL)(EﬂFoe:{o} A a
C
(Jd', e’ € O)((e, €) || {a,a’) A (b€} || {c, a')))-
o e ' ' ¢
a e
(Vd € Fue)(0 <pe d &oge [oe ), and

<o b &L (FdeF)(a+d=b A 0<pd).
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We define the algebraic structure §,. as

&oe :d:ef <Foe; +oea ‘oey Soe)-
Soe is an ordered field by Prop.6.6.32 below.
<

PROPOSITION 6.6.32 Assume (Mn; Bw) = opag. Assume o,e € Mn with
o#e. Then Foe is an ordered field.

On the proof: A proof can be recovered from Goldblatt [108, pp. 23-27, 71, 114]
and Hilbert [134, §24].

Item (i) of the following proposition says that the ordered field F,e does not
depend on the particular choice of o and e. I.e. if we choose o,e differently we
obtain an ordered field isomorphic to Fse. In item (ii) we state that there is an
isomorphism beween the ordered fields §,. and Fy such that it is (uniformly) first-
order definable over the structure (Mn; Bw,o,¢e, 0, ¢€').

PROPOSITION 6.6.33 Assume (Mn; Bw) = opag. Assume o,e,0',e' € Mn
are such that o # e and o' # €'. Then (i)-(iii) below hold.

(i) &oe = ',So’e’-

(ii) There is an isomorphism O";e' t Soe — Soer which is first-order definable
over the structure (Mn; Bw,o,e,0',¢e') and the first-order definition of this
isomorphism fo";e' does not depend on the particular choice of o,e,0d’,€; i.e.

(iii) the definition of the relation fo° is uniform over the class

{{(Mn; Bw,o,¢,0,€') : (Mn; Bw) = opag, o,e,0',¢' € Mn, o#e, o' #¢€'}

of models; where we note that f;"e' C Mn x Mn.

e

Outline of proof: Assume the assumptions. Let fg;e’ C F,. X Fyo be defined as
follows. Let {(a,a’) € Foe X Fye. Before reading the formula below the reader is
advised to consult Figure 321. Then

(a,a') € f3.¢
def,
A

([(o: o A =coll(o,e,¢')) — ((1) below hold)] A
[(o=0" A coll(o,e,e')) — ((11) below hold)] A
[0# 0 — ((11) below hold) ]),
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(111)

Figure 321: (1) is the easy case when o = o' and o,e, €’ are not collinear, (11) is
somewhat more complicated because there o, e, e’ are collinear, etc.
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see Figure 321.

(1) (e €) [ {a,a’).
(11) (3¢ € lines)(Jer, a1 € £)(£NF,e = {0} A {e,e1) || {a,a1) A {er,€') || {a1,a’)).

(
(111) (3 distinct £, ¢ € lines)(Jey, a; € £)(3e), d} € ')
(UNFye=4{o} NU'NFya={d} AN L|C A
(e;en) |l {@,a1) A (0,0) || {er, ) || {ar,a1) A ey, €) || (a3, 0a')).

Then Ooée' is an isomorphism between §,. and §, .. A proof of this can be recovered
from Goldblatt [108, pp. 23-27, 71, 114] and Hilbert [134, §24].

The present definition of the isomorphism f2¢ is somewhat complicated. Prob-
ably we would obtain a less complicated definition for this isomorphism if we first
defined it for the special cases (1)!%¢ and (0,0') || {e,e’) A (o,e) || {¢',€'), and
then we would obtain an isomorphism for the general case as a composition of three

isomorphisms defined for the special cases. B

Definition 6.6.34 (The ordered field § corresponding to (Mn; Bw))
Assume (Mn; Bw) = opag. We define the ordered field § explicitly (in the sense
of §6.3.2) over (Mn; Bw) as follows. First, we define the new relation

R:={{(a,0,e) €’F : 0#¢e, a€F,}.

Then we define the new auxiliary sort U to be R together with the projection
functions pj,, pjy, Pjo- Then we define the equivalence relation = on U as follows.
Let (a,o0,¢e),{da’,0',¢') € U. Then

{(a,0,e) = (d', 0, €) PN (a,d") € f;’;e’,

where f2¢ : Foe — Forer is the isomorphism which was defined in (the proof of)
Prop 6.6.33. Of course one uses pjg,, pj;, Pjo in the formal definition of =. We define
the sort F to be U/= together with € C U x F.'%" Now, we define +,- C3F and
< C2F as follows. Let a,b,c € F. Then

+(a,b,c)
def
<

1046} e, for the case o = o' and —coll(o, e, €')

1047We use the notation pj and € in the style of §6.3.2. If someone want to avoid this then he can

use a notation like +({ag,a1,a2)/=,...,{co,c1,¢2)/=) el da'[a’ = a etc.
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(Fa’ € a)(3' € b)(3¢ € ¢)
(pjl(al) = pj1(t') = pi1(c') A piz(a’) = pja(b') = pja(c) A
Piol@) +pi@ypine Piob) = pialc)),
-(a, b, c)

(Fa’ € a)(3' € b)(3c € ¢)
(pii(@") = pis(¥) = Pir(¢) A pia(a’) = pia(¥) = pi(c) A
Piol@") “pisinine) Pio(¥) = Piole)).

a<b
def
<~

(30’ € a)(3 € b) (pjs(@) = pis(V) A pia(a’) = pial¥) A
Pio(@") <pi@iminte) Pio))-

Let .
s:d:e <Fa +7'7§>'

§ is first-order defined over (Mn; Bw). § is an ordered field by Prop.6.6.35 below.
We will often use the elements of F in the form (a,o0,e)/= where o # e and
a € Fy.
<

PROPOSITION 6.6.35 Assume (Mn; Bw) = opag. Let § = (F,...) be the
“ordered field” corresponding to (Mn; Bw) defined in Def.6.6.34. Assume o,e € Mn.
Let oo = (Foe; -..) be the ordered field corresponding to o,e defined in Def.6.6.31.
Let foo: Foe — F be defined by a +— {(a,o0,e)/=.

Then fo. is an isomorphism between §o. and §.

On the proof: The proposition can be proved by Prop.6.6.33. 1

Assume (Mn; Bw) = opag. We will use n + 1 tuples (o, eg, €1, ..., €, 1) where
{o,€0,...,€n_1} is an n + 1 element independent subset of Mn to identify potential
coordinate systems. We will think of o as the origin and eg,...,e,_; as the unit
vectors. We will define a coordinatization for such n + 1 tuples in Def.6.6.37 below.
In Def.6.6.37 we will use the following notation.
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Notation 6.6.36 Assume (Mn; Bw) is a geometry. Let a,b € Mn and H C Mn.
Then

{a,b) || Plane'(H) & (3c,d € Plane'(H)) {a,b) || {c,d).

Definition 6.6.37 (coordinatization)

Assume (Mn; Bw) = opag. Recall that for every o, e € Mn with o # e the ordered
field Foe = (Foe; - - .) was defined in Def.6.6.31. Let § = (F; ...) be the ordered field
corresponding to (Mn; Bw) defined in Def.6.6.34. Let (o,€q,...,e,_1) € ""'Mn be
such that {o,ep,e1,...,e, 1} is an n+ 1 element independent subset of Mn. We
define the coordinatization

Co(o,eo,...,en,l) :Mn —"F

as follows. Let a € Mn. For every ¢ € n, let a; € F,, be such that if a € F,,, then
{a,a;) || Plane'({o,eq,...,en_1}\ {€;}), otherwise a; = a, see Figure 322. Such a;’s

Figure 322:

exist and are unique.

We define
.def

CO(O,CO,--qenfl)(a) T <f0€0 (a())a R foen71(a'nfl)>a
where foeq, - - -, foe,_, are as defined in Prop.6.6.35 (p.1050).
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PROPOSITION 6.6.38 Assume (Mn; Bw) = opag. Assume {o0,€eg,...,€n 1) €
"1 Mn is such that {o,eq,...,en 1} s an n + 1 element independent subset of
Mn. Let § = (F;...) be the ordered field corresponding to (Mn; Bw) defined
in Def.6.6.34.

Then Cooe,.en_r) 5 an isomorphism between (Mn; Bw) and ("F,Betw).

On the proof: A proof can be recovered from Goldblatt [108, pp. 23-27, 71, 114]
and Hilbert [134, §24].

Item 6.6.39 (Summary of some notation)
Let us return to Ge(Pax). Our definitions of lines, || make sense for the geometries
in Ge(Pax), too. Now, we have strongly related triples of notions L, Col, ||¢ and
lines, coll, ||. The differences between these two are rather small. The reason for the
differences is that by the construction of &gy some lines may be missing from L (in
some sense).l%48 Assume Pax + Ax(diswind). (Recall that L, Col, and ||s belong
together, while lines, coll and || belong together.) Now, L C lines, Col C coll and
lle C ||- Further Col and || are the natural restrictions (of coll and ||) to the “world
of L”. If we assume Bax® + Ax(Triv,)~™ + Ax(v/ ) in addition then L, Col, ||
coincide, respectively, with lines, coll, ||.

<

6.6.3 Continuation of duality theory

Let us recall from p.1036 that our purpose with §6.6.2 was to prepare ourselves to
the definition of our functor M.

In Def.6.6.41 below we define the functor M : Ge(Pax™) — Mod(()). In this
definition we will use facts and propositions stated in §6.6.2 for ordered Pappian
affine geometries (i.e. for opag) and notation introduced in §6.6.2. Therefore we
include Prop.6.6.40 below. Intuitively, the proposition says that the windows of
(Pax+Ax(Bw))-geometries are ordered Pappian affine geometries.

1048 The reason for this is that L was obtained from coordinate axes (and traces of photons) only. If
we had defined L such that a set of events is in L if some inertial observer thinks that it is a Euclidean
line then we would have obtained all of lines as elements of L. In other words L corresponds to
inertial coordinate axes (and traces of photons), while lines corresponds to Euclidean lines. Le.
¢ € L if some inertial m thinks it is a coordinate axis (or is a trace of a photon), while £ € lines if
some inertial m thinks it is a Euclidean line.
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PROPOSITION 6.6.40 Assume & = (Mn,...) € Ge(Pax+ Ax(Bw)). Assume
0 € Mn. Let Mn, be the “window of 0”, i.e. Mn,: % {e € Mn : e~ 0}.% Then

(Mn,; Bw | Mn,) = opag.

Outline of proof: Let & = (Mn,...) € Mod(Pax + Ax(Bw)). Then & = &gy =
(Mngp, . . .) for some 9 € Mod(Pax+ Ax(Bw)). Let this 9 be fixed. Let o € Mngy
and (Mngn), = { e € Mngy : o ~ e }. To prove the proposition it is enough to prove

(%) ((Mngy),; Bwan [ (Mnsgy),) E opag.

Let m € Obs be such that o € Rng(w,,). Then by Thm.4.3.13 (p.482), w,, is an
isomorphism between ("F; Betw) and ((Mnon),; Bwor | (Mngy),). Cf. Prop.6.2.79
(p.884). But then (%) above holds. ®

Intuitive idea for the definition of the functor M : geometries — frame models.
Assume we are given a geometry & € Ge(Pax™). We want to define (by using
first-order logic only) an observational model M(®) over this geometry &. More-
over, we would like to choose M(®) such that its geometry G(M(®)) should be
as close to the original & as possible (cf. potential theorem schemas (A)—(1) for du-
ality on pp. 1009-1012). (In a sense, one could say, that using the functor M we
would like to recover from I& [but using only the “legitimate geometrical” structure
of &| that “long forgotten” observational model whose geometric counterpart & is.)
Cf. here the relevant motivational parts of the introduction (pp. 774-778) to the
present chapter. What do we need in order to find an observational 90t inside our
geometry &? Surely we need to find a field ™ in &, but that is no problem as we
saw in §6.6.2 (“Coordinatization ...”). This is a good start, but what else do we
need to find in &? Certainly we will need to find observers in &. But what is an ob-
server? We can identify an observer m with his coordinatization!®®® w,, : "F — Mn
of (a part of Mn). What is w,,? It is a coordinatization of (a part of) Mn %! by
"F. For simplicity, in this intuitive remark we fix n = 3. We can represent such
a coordinatization w,, : "F' — Mn, by a choice of w,,’s origin o € Mn and by
Wp,'s three unit-vectors 1, 1, 1,. More precisely, we are thinking of the w,,-images
of the origin, and of the unit-vectors as they appear in Mn. Let us notice that in
geometry, i.e. in Mn, vectors are easily represented by pairs of points. Actually,

Wi (0), Wi (14), Wi (1s), wm(1ly) are nothing but 4 elements o, e, e,, e, € Mn of our

1049Recall that ~ is a binary relation of connectedness on Mn defined in Def.6.2.12 (p.818).
10506y world-view function

1051 Eyventually, we will need a coordinatization of a part of P(B) instead of Mn but that change
will be easy to make, hence we postpone worrying about it.
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geometry satisfying some conditions.!%*? So the idea naturally comes to one’s mind
to try to represent (or code or define) observers as four-tuples (o,...,e,) of points
(in Mn) satisfying certain conditions.

To make this idea work, we still have to figure out how to reconstruct the whole
of the coordinatization w,, from the origin o and the unit vectors e, ...,e,, but
having access to the whole geometry &gy, one can believe that, one way or another,
at least some w,, can be reconstructed from (o, ...,e,). So, our plan is to code (or
represent'*>®) observers (found in &) by tuples (o,...,e,) € *Mn satisfying some
conditions. It is natural to identify photons with photon-like lines i.e. elements of
L2 Tt is also natural to choose B = Ib = Obs U Ph. At this point we already
have a grasp on what the %, B™, Obs™, Ph™ parts of our model M(&) = M =
(B,...,8,G,e, W) will be. It is, again, natural to choose G = Eucl(§). Hence
the only remaining part of 9 which we still have to define over & is W™ which
in turn is equivalent to defining w,, for each m € Obs. However, by knowing m’s
unit vectors!®* and having the geometric tools of & (e.g. g, lines, ||)!%°5 at our hand
it is only a matter of patience to work out a definition for w,,. E.g. for A € F,
Wi ({A,0,0)) € Mn is on the line determined by o,e; and its g-distance from o is
|A - g(0,€;)]. There are only two such points in Mn, and it is easy to figure out (by
using e.g. Bw) which one to choose. We leave the details of defining W to the formal
definition below. Now, we are ready for the formal (first-order) definition of M (&)
over &, which comes below.

The definition given below becomes simpler and more intuitive if condition (e)
is omitted. The so obtained simpler definition still works but less “spectacularly”.
What we mean by this is explained in footnote 1056.

Definition 6.6.41 (the functor M)
We define M : Ge(Paxt) — Mod() as follows. Let & € Ge(Pax™). Then we
define

M(®) = ((B; Obs, Ph, Ib), §, Eucl(3); €, W)

as follows:
1. Obs & {{o,€e0,...,€n_1) €' Mn : (a)-(f) below hold }, see Figure 323.

(a) {o,eq,...,€, 1} is an n+ 1 element independent subset of Mn.

(b) 0 < ep.

10520 0 0 < €;, 0 # e, and (0,€;) L, (0,e,) etc.
1053 identify
1054; . knowing W, (0), wm (1e),- .., wm(ly)

10551, C lines, cf. Item 6.6.39 on p.1052.
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This is not the case:

by € T
£y
/Plane' (2, £o)
€0 ¢ ¢ e LPh
0": ‘
. PDleLPh
L7 34 (a)-(d), (f) (e)

Figure 323: Illustration for the definition of Obs.

(c) (o,e9) eq {0,€;), forall i€ n.
(d) (Ew() € LT)(Elﬁl, . ,gn—l € LS)
((Vi €n)o,e; € ; N (V¥ distinct 3,7 € n)¢; L, Ej).

Convention: To each choice of (o, ..., e, 1) we will use £y, 4y,...,0, 1 as
fixed by (d) above.
(e) P := Plane'({o,ey,...,e,—1}) is space-like in the following sense:

(V4,6 € LPh) <[o €lCP Aoel CPlane(6,6)] — £= E’),

see the right-hand side of Figure 323. In Bax™ geometries, intuitively,
this means that if P contains the trace of a photon then the speed of this
photon is infinite.!%® Without assuming Bax ™, condition (e) corresponds
to axiom Ax(ooph) on p.1028 as part of the theory Pax™ (Def.6.6.10).

(f) g(o &) =1.

9. Ph X Ph

1056Ttem (e) is required only in order to make the following statement true: If & is a Bax ™"

geometry then M(®) is a Bax~ " model, assuming Pax™ of course.
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def def

3. B:= Ib:= ObsU Ph.

4. Definition of the world-view relation W: First for every m € Obs we de-
fine the coordinatization function w? : "F>——Mn as follows.!%7 Let
m = (o, €q,...,e,_1) € Obs. (Notice that, by (c), o,eq,...,e, 1 are pairwise
connected, i.e. ~-related.) We use the notation F, introduced in Def.6.6.31,
i.e. F,e is the line determined by the points o and e. First, by using parallel

lines'%%® we obtain a coordinatization mapping

Foey X Foe, X ... X Fye, > Mn,

as depicted in the left-hand side of Fig.324. Next, for every ¢ € n, we identify
Foe, with F,, as depicted in the right-hand side of Fig.324, using lines parallel
with F.,. By these identifications and the above coordinatization, we obtain

we can make
measurements

L along this line

F oep F oeg

&)

€0

bo

e @

€ b; ¢ Foe
e; — €q, b,' — b(), C; — Co

(ag,a1,a2) = a (eiyeo) || {bisbo) || {ciyco)

Figure 324: In the left-hand side of the picture we assume that n = 3.

a coordinatization
n
Foeo ™ Mn.

1057The problem which we will have to circumnavigate is that by g we can make reliable measure-
ments only on the line determined by o, e (since we assumed Ax(eqtime) but not Ax(eqm)). ILe.
by g we can suitably measure the o, eq distance, while by the same g we cannot suitably measure
the o, e; distance. This is why we will use parallel lines, cf. the right-hand side of Fig.324.
1058Here we use lines and || both definable in &, cf. Item 6.6.39 (p.1052).
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We identify F by F,., using g, the natural way, i.e. 0 and 1 get identified
with o and e, repectively, and = € F gets identified with a € F,, such that
g(o,a) = |z| and (Bw(a,0,e9) & x < 0). (This identification can be done
because by the assumption Paxt we can make reliable measurements along
Foe, by g.) In this way, from the above coordinatization "F,,>——Mn we
obtain the coordinatization

w) " F=——Mn.

In the next step, from w2, we define the real world-view function w,, (whose
range is a subset of P(B)). To this end we “represent” Mn as part of P(B)
i.e. we define a mapping f : Mn — P(B) the natural way. Let e € Mn. Then
we say that a photon ¢ € Ph is present in event e iff e € £, and an observer
(0, €5y - - -, €,_1) € Obs is present in event e iff e € Fyer. Let

f:Mn— P(B)

be defined by

f(e) :d:ef{b € B : bispresent in e}, forall e € Mn.

Let w,, 4o w? o f. The world-view relation W is defined from the w,,’s the
obvious way, i.e.

W:d:ef{(m,p,b> € Obs x"F x B : be w,(p)}.

Thus, all ingredients of M(®) are defined except for the ordered field §. Now
we turn to defining §.

. Definition of §: To define the ordered field § from the geometry & it is enough
to define multiplication on F (from &), since F; = (F; 0,1, +, <) is contained
in &. Now we turn to doing this.

First let us notice that there is an original ordered field " behind &, since
® = Bgy, for some M € Mod(Pax™). Let such an 9 be fixed. Let

|2 G N RUNE S0
Now, F; Fiﬁ by & = &gy. Of course we are not allowed to use > when we

are defining something from &, since ™ is not explicitly included in &. (We
use 7 only for didactical [i.e. explanatory] purposes.) Now, we start defining
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multiplication over &. Assume o,e € Mn, o =T e and g(o0,e) = 1. Such o,e

exist by Ax(eqtime) (and by AxEg; + (Vm, k)(V0 < i € n) tr,(k) # Z;) or
by Ax(eqm) (and AxEqy;). Let Mn, a {a : o~a}. Then

(Mn,; Bw | Mn,) = opag by Prop.6.6.40. Let Foe = (Foe; +oes ey <oe) be
the ordered field corresponding to o, e defined in Def.6.6.31. By Prop.6.6.32,
Soe is indeed an ordered field (and is isomorphic to ng) Let gpe: Fpe — F
be defined as follows: Let a € F,.. Then

def g(o,a) if a € oe
Goe(a) := { —g(0,a) otherwise.

Clearly, g,.(0) = 0 and gee(e) = 1 by our choice of o,e. We note that g, :
F,e — F is an isomorphism between (F,e; 0, €, +4e, <oe) and F;. Now we
use these g,.’s to copy the multiplications -, on F,.’s to obtain multiplication
- on F. We define multiplication - C F X F' x F as follows. Let z,y,z € F

'(.T, Y, Z)
def,

(Jo,e € Mn)| o=""¢e A glo,e) =1 A g;.'(2) = 5.1(Z) “0e 955" (y) |-

By this, multiplication - is defined on F. By the above the structure § :=
(F; +,-, <) is defined. We will prove as Claim 6.6.43 that § is an ordered field
isomorphic to ™.

By items 1-5 above, the frame model M(®) is defined.

END OF DEF. OF THE FUNCTOR M.

<

Remark 6.6.42 We note that, if n > 2, M is defined on Ge(Bax® + Ax(eqtime))
and Ge(Bax~® + Ax(v") + Ax(eqtime)), by Proposition 6.6.11 (p.1029).

<

Claim 6.6.43 below serves to prove correctness of Def.6.6.41 above.

Claim 6.6.43 Assume & € Ge(Pax™). Let 9 € Mod(Pax™) be such that & =
Bon. Let the structure § be defined as in item 5 of Def.6.6.41 above. Then § is an
ordered field isomorphic to F™.
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Outline of proof: Let &, 91, § be as in the claim. Without loss of generality we
can assume that & = Bgy, because the functor M was defined in such a style that it
associates isomorphic models to isomorphic structures. Assume o,e € Mn are such
that o =7 e and g(0,e) = 1. Let Mn, := {a € Mn : a ~o0}. Let m € Obs be such
that o, e € wy,[t]. Exists. Then

W : ("F; Betw) >—~ (Mn,; Mn, | Bw)

is an isomorphism by Thm.4.3.13 (p.482). Let o' := w,'(0) and € = w,;'(e).
Clearly o',¢' € t. Let Foer = (Fyer; ...y and Foe = (Foe; - .) be the ordered fields
corresponding to o', ¢’ and o, e, respectively defined in Def.6.6.31 (p.1046). Then
Fye =t and |e} — 0;| = 1. The latter holds by

glo,e) =1 and AxEgy +
(+) ((Ax(eqtime) A (Ym, k)(Y0 < i € n)trp(k) #z;) V Ax(eqm)).

Without loss of generality we may assume that e; — o), = 1. Let gy : Fpe — F M he
defined as on p.1058. Now, (W, [ )0 goe : Fye — F™ and (wy, [ 1) 0 goe : p —
p;— 0} by (%). Thus, (w, [ )0 gee : Foer == F is an isomorphism. By this and
by noticing that w,, [t : Foe == Foe is an isomorphism, we conclude that

Goe - Soe —r Sm

is an isomorphism. By this it can be checked that the multiplication defined on F™
on p.1058 coincides with the multiplication of . Hence § and ™ are isomorphic.
(Actually, by our assumption that & = B¢y F and F™ coincide.) W

Next we state that the functor M constructed so far is of the kind we need for
our duality theory outlined on pp.1007-1008, cf. Fig.310 (p.1007).

PROPOSITION 6.6.44 M : Ge(Pax™) — Mod(Pax™t) and M is a first-
order definable meta-function. Hence M[Ge(Pax™t)] C Mod(Pax™) is first-order
definable over Ge(Pax™).

Outline of proof: First-order definability of M comes immediately from the def-
inition of M (by using Remark 6.3.36 on p.980). To prove M : Ge(Pax™) —
Mod(Pax™) let & € Ge(Pax™). Let 9 € Mod(Pax™) be such that & = Gy,

Without loss of generality we can assume that & = Ggy. The visibility relation N
is an equivalence relation when restricted to Obs™ by Thm.4.3.13. Let O C Obs™

be a set of representatives for the equivalence relation %, Recall that for every
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k € Obs™ @&, = ("F,...)is the observer-dependent geometry defined in Def.6.2.76
(p.880). Then similarly to item 3b of Prop.6.2.79 (p.889) the L ,-free reduct of & is
a photon-glued disjoint union of the family

(L,-free reduct of & : k € O).

Further Bw; = Betw and L; C Eucl by Thm.4.3.13 for every k € Obs™. Thus & is a
photon-glued disjoint union of the familiar " F-geometries. By this, it can be checked
that M(®) = Pax+ Ax(Bw)+ AxEy; + Ax(ocoph). Thus it remains to prove that
M(8) E (Ax(eqtime) + (Vm, k)(V0 < i € n)tr, (k) # T;) or M(8) = Ax(eqm).
By M = Pax™, we have 9 = (Ax(eqtime) + (Vm, k)(V0 < i € n)tr,,(k) # Z;)
or M = Ax(eqm). For the case M = (Ax(eqtime) + ...) checking M(8) =
(Ax(eqtime) + ...) is easy and is left to the reader. (Hint: L N L% = ) and
LT N LP" = () hold in this case.)

Assume MM = Ax(eqm). We will prove that M(®) = Ax(eqm). Let g* :
Mn x Mn -2+ F be the partial function defined as follows. Let e,e; € Mn and
A € F. Then

g*(e,er) = A
def,

(3m € Obs™)(Fi € n)(3p,q € T)(wm(p) =€ A wn(q) =er A [p—q|=N).
By Ax(eqm), ¢g* is well defined. By Ax(eqm)+AxEq, it is easy to check that

g and g* agree on time-like separated pairs of points. For every m € Obs™M(®) et
w? :"F — Mn be defined as on p.1056 in Def.6.6.41. If we prove
(+) (Vm € Obs™®)(Vi € n)(Vp,q € ;) [p — q| = ¢" (wy, (p), w3, (9))

m

then M(®) = Ax(eqm) will hold (by the definition of W on p.1057). Thus it
is enough to prove (x) above. For every o,e € Mn with 0 # e and o ~ e let
F,e = {a € Mn : coll(a,o0,e) }; and for every o,e,0',¢’ € Mn with o # e, o' # ¢,
o~ eand o ~ ¢ let o”ée' : Fope — Fyo be defined as in the proof of Prop.6.6.33
on p.1047. Now items 1 and 2 below hold because of the following. It is easy
to check that items 1,2 hold when eq is replaced by eq, in them. By this, by

11,01

/ o/ sl . . o .
oL o fo.s = fo ¢ and since eq is defined to be the transitive closure of eq, we

have that 1 and 2 below hold. (In proving this, LT N L™ = () is used too).
1 {a,8) eq (c.d) = g°(a,b) = g (c, d).
2. (Yo,e, 0, € € Mn)((o;aé e N o #e A {oe)eq(d,e)) —

(Va,b € Fi) (a,6) eq (£ (a), £ (5))).
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Now we turn to proving (x) above. Let m € ObsM®) i en, pqe z; Thenm =
(0,€eq,...,e,_ 1) for some o, ey, ...e, 1 € Mn satisfying (a)—(f) on p.1054. By 2 above
and by (o, eq) eq (o, €;), we have that (wy, (p), wn,(q)) eq (f5e (wi (), foe? (w3, (0)))-
Hence, by 1 above, g*(w%(p), S (q)) = g"(£2 (w®,(p), J20(uS(q))). By the def-

inition of M(&), %9 we have |p — q| = g*(fo(w® (p)), fo°(w? (¢))). Thus

oe; m » J oe; m
0

lp — q| = g* (w2 (p), w%,(¢q)) and this proves the proposition. i

The following theorem implies that the sentences in our frame language can be
translated to sentences in the language of our relativistic geometries (in a mean-
ing preserving way), assuming Paxt. More intuitively, whatever can be said in
the language of the (“observational”) frame models can be said in the “theoretical
terminology” of relativistic geometries, too. (Cf. Thm.6.6.16 on p.1033.)

THEOREM 6.6.45 There is a “natural” translation mapping
Tr : Fm(Mod(Pax™)) — Fm(Ge(Pax™))

such that for every ¢(z) € Fm(Mod(Pax™)) with all its free variables belonging to
sort F, & € Ge(Pax™) and evaluation a of z (in F of course)

M(8) =plal & & =Tulp)ldl
Proof: The theorem follows by Prop.6.6.44 and by Prop.6.4.4 (p.985). 1

The following theorem says that for our (G, M)-duality, theorem schemas (A)-
(H), hold under some conditions.

THEOREM 6.6.46 For the choice of M given in Def.6.6.41 above the conclusions
of Theorems 6.6.12 (p.1030) and 6.6.17 (p.1034) hold. E.g. G and M are first-order
definable meta-functions and

g
Mod(Th) =  Ge(Th),
M

assuming Th satisfies condition (x) in Thm.6.6.12 and Ax(diswind). Further,
theorem schemas (A)—(H) hold, etc.

1%%%and by noticing that fJ5? (w3, (p)), foef (w5, (2)) € Foeos (wh,(p), 562 (wi(p))) I (es o),
(wi(a), foe2 (wh,(2))) |l (i, eo)
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Outline of proof:

Case of Thm.6.6.12:
Let Th be as in Thm.6.6.12. Assume n > 2. Clearly, Th = Pax™ (by Thm.4.3.24).
Let M € Mod(Th). Let  hops : Obs™ — Obs'9°EM  be defined by hops -
m = (W (0), wm(1o), ..., Wm(le_1)) and hpy : PA™ — PhO MO he defined
by hpn: ph— {e € Mngy : ph € e}. By Remark 6.2.66 (ii) (p.867), Propositions
6.2.88 (p.895) and 6.2.92 (p.901) one can check that

(hobs U hpp, Id [ F,1d [ G) : 9 —— (G o M)(9N)

is an isomorphism. Thus
(%) (VO € Mod(Th))(G o M)(9M) = 9.

T

Let & € Ge(Th). Then & = G(M) for some M € Mod(Th). Let this I be
fixed. Then (G o M)(9M) = M by (x) above. Hence, (M o G)(G(M)) = G(M).
Thus, (M o G)(8) = &. By the above, item (ii) of Thm.6.6.12 is proved. By
() above, and by the fact that Rng(G) is Ge(Th) up to isomorphism we conclude
that M : Ge(Th) — Mod(Th). Further, G : Mod(Th) — Ge(Th) holds by
the definition of G. First-order definability of M comes from Prop.6.6.44 while
first-order definability of G comes from Thm.6.3.22 (p.961). By this Thm.6.6.12 is
proved.

Case of Thm.6.6.17: For any & € Ge(()) let &* be the geometry obtained from
® by omitting 7 and replacing g with ¢ | {{a,b) € Mn x Mn : a =" b}. It can
be checked that for any & € Ge(Pax™), &* = (M o G)(®*). Further, for any
® € Ge(Pax™), M(&) = M(&*). Therefore, for any & € Ge(Pax™), M(®) =
(G o M)(M(®)). This proves item (i) of the theorem. Item (ii) follows from item
(i) by the fact that Rng(G) is Ge(Th) up to isomorphism. For the proof of item
(iii) cf. the proof for the case of Thm.6.6.12 above. Item (iv) follows by the proof of
Prop.6.6.44 and by the proof of item (i). N

The next proposition says that for certain choices of Th, if & is a Th-geometry
then M(®) is a Th-model. More intuitively, our duality theory works for these
choices of Th.

PROPOSITION 6.6.47
M : Ge(Th) — Mod(Th) and G : Mod(Th) —» Ge(Th), 1060

assuming
Th := Thy + Pax™,

1060The G : Mod(Th) — Ge(Th) part is easy by the definition of Ge(Th), so the emphasis is on
the M : Ge(Th) — Mod(Th) part.
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where Thy € {0, Bax~", Bax® + Ax(||)” + Ax(V ) + Th,, Flxbasax +
Th,, Newbasax + Thy, Basax + Th,, Basax + Ax(u))0 + Thy '}, where Thy C
{ Ax(Triv), Ax(Triv;)~, Ax(]])}.

Further, for these choices of Th and for M defined in Def.6.6.41 conclusions
(i)-(iii) of Thm.6.6.17 (p.1034) hold when Pax™ is replaced by Th in them.

On the proof: We will give a proof for the case Th; = Bax~ % and n > 2.
The proofs for the remaining cases can be obtained by Remark 6.2.66 (ii) (p.867),
Propositions 6.2.88 (p.895) and 6.2.92 (p.901), and are left to the reader.

Assume n > 2. Let & € Ge(Bax_eB + Pax*). Then M(&) € Ge(Pax™) by

Prop.6.6.44. Thus to prove M(®) € Ge(Bax~" + Pax™) it remains to prove ()
below.

In the world-view of any observer m € Obs™(® for any point p and

for any direction d the following holds. There is exactly one photon

trace forwards in direction d passing through p and the “speed of
(%) : n )

this photon trace” is not oo; and for all speeds slower than the

speed of this photon trace there is an observer moving in direction

d with this speed and passing through point p.

Throughout the proof we tacitly use Prop.6.2.79 (p.884). Let 91 € Mod(Bax ™" +
Pax"') be such that & = Ggy. Without loss of generality we may assume that & =
B! Let m € Obs™(®). Then m = (o, ey, ...,e,_1) for some o, e, ..., e, 1 €
Mn satisfying (a)—(f) on p.1054. Let ¢, € L” be such that o,eq € £). Let P be
defined as in item (e) on p.1055. Intuitively P is the space part of observer m. We
claim that there are no photon-like lines in P. To prove this claim, assume that
there is a photon like line in P. Then, by Thm.4.3.17 (p.488), there is ¢ € L™ such
that o € £ C P. Let this £ be fixed. Then by item (e) on p.1055 there is exactly
one photon-like line in the plane determined by ¢ and ¢; passing through o. /¢ is
the life-line of some observer k € Obs™, i.e. o = {e € Mn : k € e}. Let this k be
fixed. Then, since 9 = Bax ™, and since there is only one photon-like line in the
plane determined by ¢ and /¢, passing through o we conclude that for £ the photon
whose life-line is £ moves with infinite speed. This contradicts “®”, i.e. contradicts
Bax~ . Thus there are no photon-like lines in P.

Now, we turn to proving (*) above for m and for p = 0. Let P’ be a 2-dimensional
plane that contains £y. Since I = Bax~" and the life-line of k € Obs™ is /, there
are exactly two photon-like lines in P’ passing through o. These two photon-like
lines divide the plane P’ into two regions as illustrated below.

1061 Thig is so since M preserve the property of being isomorphic as we already noted.
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Let £p be the intersection of P’ and P. Neither one of the two photon-like lines
coincides with £p since in P there are no photon-like lines. We will prove that ¢p
and ¢, are in different regions. Assume that /p and ¢, are in the same region. See
the left-hand side of Figure 325. Then, since 9 = Bax™ and the life-line of £ is

Kl ) k4
S - N
PI $' \’\\\f PI - Y
4 o A ’
S o ~ P
¢ o A\ 4
e i
Lp — e h £p p
: -y ~ : R
P g ~, I _-'/ \1
| / ’l\ | N
’ ’ >
Figure 325:

{y, we conclude that £ sees an observer h on fp, i.e. £p is the life-line of observer
h € Obs™. Since through any point and in any direction A sees a photon and A’s
life-line /p is contained in P we conclude that there is a photon-like line in P. This
leads to a contradiction since we proved that there are no photon-like lines in P.
Thus, ¢y and ¢p are in different regions, cf. the right-hand side of Figure 325. Then
any line in the same region as ¢y passing through o is time-like. This can be proved
by using the world-view of observer k. But then it can be seen that any line in
the same region as f, passing through o is a “life-line” of an observer in the model
IMM(®) | £00.192 Thus we proved that () above holds for m and for p = 0. Since, by
Thm.4.3.17 (p.488), straight lines parallel to traces of photons are traces of photons
again and since any line parallel to a time-like line is a time-like line by Ax4, we
conclude that (x) above holds for arbitrary p and not only for 0. 1

QUESTION 6.6.48 Does Proposition 6.6.47 above generalize from Thy =

Bax~ Y to Th, = Bax™?
<

1062 A1] observers of 9t show up in (G o M)(9M) in a modified form.
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The next proposition says that the operator G o M makes our models more
“puritan” in some sense.

PROPOSITION 6.6.49 Assume 9 € Mod(Pax™). Then
(GoM)(IM) E Ax(ext) + AxQ.

We omit the easy proof.

It might be interesting to notice that by the above proposition some of the conditions
of the categoricity theorem (Thm.3.8.7 on p.299) become true in (G o M)(9N).

Question for future research 6.6.50 It would be interesting to see for which
reduct of Bgy does the above outlined duality theory still go through. We note that
in §6.6.4 we will have an analogous duality theory for the (g, 7)-free reduct of our
geometries.

<

We close the present sub-section with Remark 6.6.51 below. Further theorems
about (G, M)-duality will be stated in §6.6.5 (p.1078) and §6.6.6 (p.1084).

The following remark shows how to remove the condition Ax(eqtime) (or
Ax(eqm)) from our duality theory (G, M), i.e. how to reconstruct 9t (at least
a version of 9) from the geometry Ggy even if Ax(eqtime) is not assumed.

Remark 6.6.51 On a possible more general function M™ : Geometries — Models
(not requiring the whole of Pax™ to be assumed before the definition):

(A) Assume & € Ge(Pax + Ax(Bw)). Let o,e € Mn with 0 # e and o ~ e.
Let §oe = (Foe, - - ) be the ordered field corresponding to o, e as defined Def.6.6.31.
An element a of F, is called positive iff o <,. a and o # a, as one would expect.
Consider the possible properties (i), (ii) below.

(i) (V positive a,b € F,e) [a #b = g(o0,a) # g(o,b)].
Let goe : Foe — F be defined by

(a) def g(o,a) if a is positive
Joel0) = —g(0,a) otherwise.1%63

(i) Goe : (Foe; 0,€, 4oe; <oe) — F1 is an isomorphism.

1063 This g, is the same as the go. on p.1058.
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If (i) and (ii) hold for o,e € Mn with 0 # e and o ~ e then we say that g is nice on
F,.

Question for future research: Do we need (ii) or is (i) enough? That is, is (i) = (ii)
true in some sense?

Def. of M*(&): We distinguish two cases.

Case (I): Assume & is such that g is nice on some F,.. Then we define multiplication
“” on I as follows.

'(33, Y, Z)
def,

(Jo,e € Mn)[o# e AN o~e A (gisniceon F,) A
9o (2) = 921 (%) “0e G0’ (¥) |-

Then we construct M (&) the same way as M(®) was constructed, except that
we do not require item (f) to hold in the definition of Obs, i.e.

Obs := {({o0,€p,...,en—1) € ""'Mn : (a)-(e) hold on p.1054 }

and § := (F,+,-, <), where - is defined above. At the end of the remark we will
prove that
() § is an ordered field.

The rest of the ingredients of M*(®) are defined exactly as those of M(®).

Case (II): Assume that for any o,e € Mn with 0 # e and o ~ e, g is not nice on F,.
Then we throw g away and use an arbitrary o,e € Mn with 0o # e and 0 ~ e and an
arbitrary isomorphism!%* i : (F,e; 0, €, +oe, <oe) — F1 to copy the multiplication
‘0e Of Foe to F obtaining an ordered field §. The rest of M™*(®) is defined as in Case
(D).

We note that in Case (II) M™(®) is not first-order definable over & in general
while in Case (I) M™(®) is first-order definable over &.

Now, we conjecture that the theorems stated for M go through for M™ with
very little change (and the same conditions). Further we guess that some simple
theorems like (GoM™)2(M) = (GoM™T)(M) will be true, for M = Pax+Ax(Bw).

(B) Item (A) above suggests the following possibility for improving/generalizing our
(G, M)-duality theory. First, one formulates an axiom in our frame language which
implies about 9 that in Ggy g is nice on some F,., assuming Pax. Let us notice

10647t can be proved that (F,e; 0, €, +oe, <oe) is isomorphic with Fy.
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that there exist very mild choices for such an axiom, e.g. Ax(mild) below is such.
We note that Ax(mild) is much weaker than Ax(eqtime) V Ax(eqm), assuming

e.g. Bax~? + Ax(v") and n > 2.

Ax(mild) (3m € Obs)(3Fi € n) [(Vph € Ph)tr,,(ph) # Z; N (Vp,q € T;)(Vk € Obs)
(the distance between events w,,(p) and w,,(q) as measured by k is not smaller
than the distance between these two events as measured by m, i.e. if k sees
both w,,(p) and w,,(¢) on the same coordinate axis then the distance between
W, (p) and wy,(¢) as measured by £ is not smaller than |[p — ¢|)].

Then, one can obtain a duality theory (between frame models and geometries) in
which one uses the milder Ax(mild) in place of Ax(eqtime). IL.e. one defines a
first-order definable meta-function M* : Ge(Pax + Ax(Bw) + Ax(mild)) — FM
exactly as M™ was defined in item (A) for Case (I).

Proof of (&): Now we turn to proving that § defined in Case (I) is an ordered field.
Let & € Ge(Pax + Ax(Bw)) be such that g is nice on some F,. and let “” and
§ be defined as in Case (I) above. Then there is 9 = Pax + Ax(Bw) such that
B = Bgy. Let this 9 be fixed. Without loss of generality we may assume that
® = Ggy. Hence F; = Fgﬁ To avoid ambiguity we will denote the multiplication
of the ordered field ™ by “+” (instead of the usual “”). To prove that § defined
in Case (I) above is an ordered field it is enough to prove that - and * coincide, i.e.

(x) (Vz,y,z € F) ((x,y,2) & xxy=2).

Let 0,e € Mn be fixed such that o # e and o ~ e. Observer m is called good for F,.
iff m sees F,, on a coordinate axis (i.e. w,[Z;| = F,. for some i € n) and the distance
between o and e as measured by m is 1 (i.e. |w;(e) — w;(0)| = 1). For every
observer m which sees F,, on a coordinate axis we define a function ¢™ : F,, — F
as follows. Intuitively, g™ (a) will be the signed distance between o and a as measured
by m. Let m € Obs be such that m sees F,, on a coordinate axis. Let a € Fl..
Then

0)| if a is positive
—|w_t(a) — w,'(0)| otherwise.

By Thm.4.3.13 (p.482), it is easy to see that

gm(a) 2 { |t (a) = wi(

g™ (Foe; 0, 4oe; <oe) == (F; 0,4, <) is an isomorphism and

if m is good for F,. then
g : Soe — g
is an isomorphism.
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Claim 6.6.52 Assume that ¢ is nice on F,.. Then for every z,y,z € F there is an
observer m such that m is good for F,e, (¢™)7'(z) = g;.}(z), (™) (y) = g,.} (y),
and (¢™)7'(2) = g5 (2)-

Proof: Assume, g is nice on F,.. To prove the claim it is enough to prove that
for every a,b,c € F,. there is an observer m such that m is good for F,. and
g"™(a) = goe(a), g™ (D) = goe(b), g™(¢c) = goe(c). Let a,b,c € Foe. For every f € F,,
by —oef we denote the inverse of f taken in the group (Fye; 0, +0e). Since for every

f € Foey ™ (—oef) = —9™(f) and goe(—oef) = —goe(f) without loss of generality we
may assume that a, b, c are non-negative, i.e. that o <, a etc. Let

d:=€4pe @ 4oeb+oeC

Let m € Obs be such that m sees F,, on a coordinate axis and the distance between
o and d as measured by m is g(o, d), formally |w_!(d) — w}(0)| = g(o,d). Such an
m exists by the definition of ¢g. Hence,

gm(d) = Goe (d)

By (x*),
g"(d) = g™ (e) + g™ (a) + g™ (b) + g™ (c),

and ¢g™(e), g™(a), g™(b), g™(c) are non-negative. Further, (since g, is nice on Fl)
we have,

goe(d) = goe(e) + goe(a/) + goe(b) + goe(c)a
and g,e(€), goe(@), goe(b), goe(c) are non-negative. Further,

goe(€) < g™(€),  goe(a) < g™(a),  Goe(b) < g™ (b),  Goelc) < g™ (c)

by the definitions of g, gee, g™ (i.e. by the fact that for every positive f € F,.  ¢™(f)
is the distance between o and f as measured by m while g,.(f) is the minimum of
the distances between o and f measured by observers who see F,, on a coordinate
axis). Therefore, |w,!(e) — w,'(0)] =: g™(€) = goe(€) = 1, g™(a) = goe(a), etec., i.e.
observer m has the desired properties.

(QED Claim 6.6.52)

Now, we turn to proving (%) above. Let z,y,2z € F.

Proof of direction “=”: Assume -(z,y, z). Then there are o,e € Mn such that
0 # e 0~ e gisnice on F,, and ¢;.'(2) = ¢;.}(2) e 9, (y). Let such o,e be
fixed. Then, by Claim 6.6.52, there is an observer m such that m is good for F,,,
(g™)H2) = g5 (), (9™) ' (y) = g (¥), and (g™)7'(2) = g,'(2). Let this m be
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fixed. Now, (¢™)7(2) = (¢™)"1(x) ‘0e (¢™)*(y). Thus, by the second part of (),
Z=1T %Y.

Proof of direction “<=”: Assume z = x xy. Let o,e € Mn be such that g is
nice on F,. (and, of course, o # e, 0o ~ ¢e). If m € Obs is good for F,. then by
z =z xy and (%), we have (¢™)71(z) = (gm)_l(x) “oe (gm)_ (y). By Claim 6.6.52
there is m such that m is good for o,e, (¢™)7!(z) = goe "(z), (9™ (y) = g,.' (y),
and (¢™)7'(z) = g, (2). Therefore g;.'(z) = 9,;.'(2) “0e 95 (v)- Hence «(z,y, z) and
this completes the proof of ().

<

6.6.4 Duality theory for the (g, 7)-free reducts of our geometries

Motivation for looking at reducts of our relativistic geometry ®gy is given in the
introduction of §6.7 (“Interdefinability ...”) pp. 1134-1135 and on p.1124. A
further motivation for the physicist might be that depending on which aspect of the
physical world we want to concentrate on we will “see” different reducts'®®® of our
Bon.

The main message of our (G, M)-duality is that we can reconstruct the original
observational model 9t from the streamlined, more abstract geometry &gy associated
to it (under some conditions of course). So, we do not loose information if we move
from the “detail-rich” world 9% to the geometry abstracted from it. The question
naturally comes up: How much of &gy is needed for this reconstruction? In other
words, from which reducts of &gy is our “original world” 90 reconstructible? Of
course, if we take a too small reduct e.g. (Mn, L; €) then we will not be able to
reconstruct 9% from this reduct. Below we will see that if we omit g and T from
g then 9 remains reconstructible from this weaker geometry &3, = (Mn, . .., eq),
under some conditions.'%® We will do more than just reconstructing 9 from &9,
namely we will elaborate a duality theory (analogous to our original one) between
Mod(Th) and our weaker geometries. %7

10650 ¢, we may want to concentrate on the so called conformal structure (i.e. the light-cones) of

space-time, or we may want to concentrate on orthogonality, or on the metric g etc.

1066 A price we will have to pay for omitting g is that we will have to add Ax6 to our assumptions.
1067We leave it, partially, to the reader to decide exactly which other reducts of ®gy are strong
enough such that 9 is recoverable from them. In other words: which reducts of gy are strong
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In more detail: In the present sub-section we will see that even if we omit g
from our geometries we can still develop a duality theory between geometries and
models. As a contrast, later (in §6.6.10) we will see that we cannot omit much more
from our geometries without loosing the possibility for building a (similarly strong)
duality theory.

The present duality theory will be more symmetric than the previous one (M, G),
namely in the new duality the geometries will be axiomatically defined just as the
frame models are, cf. the text below Thm.6.6.17 on p.1036.

At the same time, we note that at least from a certain point of view, the new
duality will involve loosing (or forgetting) a bit more “information” than in the case
of (M, G). Namely, under some assumptions,

M = Ax(eqtime) = (Go M)(M) = Ax(eqtime).

Le. G oM “preserves” Ax(eqtime). This property will be lost in the case of the
new duality. (This can be sometimes be an advantage and some other times a
disadvantage).

Definition 6.6.53

(i) For every frame model 9, &Y, is defined to be the (g, T)-free reduct of Ggy =
(Mn,...), i.e.

&Y, & (Mn, L; L, LP" LS, €, <, Bw, L,, eq).

(ii) For any set Th of formulas in our frame language the corresponding class
Ge’(Th) of geometries is defined as follows.

Ge®(Th) & { & : (3M € Mod(Th)) &% = & }.

(iii) GEO is defined to be the class of all structures of the similarity type of Ge’(0)
in which the axiom of extensionality holds for the incidence relation € (€ C
Mn x L). Because of this, without loss of generality we may assume that
our incidence relation is the real set theoretic €. Actually throughout we will
assume this.

enough to support a duality theory analogous to (G, M)-duality and the one below. Cf. also
item 6.6.50 (p.1065). In §6.6.10 and §6.7 we will obtain some partial information in this direction.

1070



(iv) For any set TH of formulas in the language of GEO

def

Mog(TH) := {6 € GEO : & = TH} .'0%8

We introduce axioms L; and Ls in the language of GEO. We use the abbreviation
coll introduced in item 6.2.12 and the new sort lines which is first-order defined
from coll (and Mn) on p.1037. Axioms Ly, Ly below state that L-lines are also
lines-lines, and that any point is the intersection of two photon-like lines.

L, L C lines.

(This is one of the places where we heavily use the assumption in Def.6.6.53(iii),
i.e. that the geometric incidence relation is the set theoretic €. Of course the
axiom could be formulated without relying on this assumption, but then it
would become longer.)

Ly (Ya € Mn)(3¢,¢' € LP*)¢n ¢ = {a}.

Recall that opag is the axiom system for ordered Pappian affine geometries
defined on p.1044 in Def.6.6.27.

Definition 6.6.54 lopag 4 opag + L; + Lo.
<

In the following definition we define the functors Go and Mo connecting the two
worlds Mod(...) and Mog(lopag); according to the pattern

Go
Mod(...) —  Mog(lopag)
Mo

and more generally
Go
Mod(Th) —  Mog(TH),
Mo

where Th and TH are in two different languages.

Much of the intuitive idea for the definition of M on p.1053 applies to the
definition of Mo given below.

1068Gince TH is a theory and Mog( TH) consists of the models of that theory we could have used the
notation Mod(TH) in place of Mog(TH). However we wanted to emphasize that the language of
our present TH is the geometric language of GEO. Therefore the models of TH will be geometries.
To emphasize this we use the notation Mog(TH) to remind the reader that the language is now
that of geometries.
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Definition 6.6.55 (functors Go and Mo)

(i) We define the functor Go: FM — GEO to be the function 90t — &Y.

(ii) We define the functor Mo : Mog(lopag) — FM as follows. Let & €
Mog(lopag). Then the model

Mo(8) = ((B; Obs, Ph, Ib),§,Eucl(F); €, W) is defined as follows.
Obs : & {{o,€e9,...,n_1) €™ Mn : (a)—(e) on p.1054 hold }.

If Obs = (), then Mo(®) is defined to be the empty model, otherwise the rest
of the ingredients of Mo(®) are defined as follows.

Ph & ph

B2 1 .2 obsu Ph.

§ = (F;...) is the ordered field corresponding to (Mn; Bw) defined in
Def.6.6.34 (p.1049).

For every (o, ey, ...,e,_1) € Obs the coordinatization
Co(o,e0,....en_1) : MD — "F

is defined in Def.6.6.37 (p.1051). By Prop.6.6.38, we have that these coordi-
natizations are bijections. For every m = (0, ey, ..., e,_1) € Obs, we define

0 .def ~ —1
Wy, = Co(o,eo,...,en_l)'

Now the world-view relation W is defined from the functions w? ’s exactly as
in Def.6.6.41. Let m € Obs and p € "F. Then

def
W (p) 1=
{¢€Ph: wl(p)el}u{{oeg-..,en1) € Obs : coll(o,eq, w? (p)) } .1

m

W is defined from the w,,’s the obvious way, i.e.

W:dzef{(m,p,b> € Obs x"F x B : be wny(p)}.

<

Now we introduce the axiom system Wax in our frame language which will nicely
“match” with the geometrical axiom system lopag. Ax(Ph) below is one of the
axioms of Wax.

1089For a more intuitive (but longer) formula defining w,, cf. the definition of M, p.1057.
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Ax(Ph) (Ym € Obs)(Vp € "F)(3phy, phy € Ph) try,(ph;) N try(phy) = {p}.

Intuitively, each observer at any point p sees at least two photons, and these
two photons do not meet at any point different from p.

Definition 6.6.56 Wax :& {Ax1, Ax2, Ax3, Ax4, Ax6, Ax(Bw), Ax(Ph)}.

<

We note that the following “weak” axiom systems are stronger than Wax.
Bax~ " + Ax(v ) + AxS, Bax~ " + Ax(Bw) + Ax6, Pax + Ax(v ) +
Ax(Ph) + Ax6, Pax + Ax(Bw) + Ax(Ph) + Ax6; and if n > 2
Bax~ (n) + Ax(v/ )+ Ax6, Bax™ (n) + Ax(Bw) + Ax6, Bax(n) + Ax6.

Item (ii) of the following theorem is of the pattern of theorem-schemas (G), (H)
on p.1011 way above. (Cf. Thm.6.6.17 for a similar theorem.) The whole theorem

is of the pattern

Go
Mod(Wax) — Mog(lopag).
Mo

THEOREM 6.6.57

(i)
Go : Mod(Wax) — Mog(lopag), Mo : Mog(lopag) — Mod(Wax),

and Mo is a first-order definable meta-function.

(ii) Both Goo Mo and Moo Go have fized-point property in the sense that for any
M € Mod(Wax) and & € Mog(lopag)

(Goo Mo)* (M) = (Goo Mo)(IM) and (Moo Go)*(B) = (Moo Go)(®).

(iii) For any 9M € Mod(Wax) and & € Mog(lopag)

Go(M)+——=< (Moo Go)(Go(M)) and Mo(&)—(Goo Mo)(Mo(8)).

We omit the proof, but cf. the proof of Thm.6.6.46. 1

Galois connections will be introduced on p.1080, §6.6.5. Motivated by the above
theorem we conjecture that there is a Galois connection between Rng(Go) and

1073



Rng(Mo),197° c¢f. Thm.6.6.70 (p.1083). Actually, this Galois connection can be re-
garded as an adjoint situation (to be introduced on p.1091) too according to the
following pattern

Go
Rng(Mo) 2 Rng(Go),
Mo
cf. Conjecture 6.6.81 (p.1093). Further, we conjecture that between Rng(Go o Mo)
and Rng(MooGo) the same connection turns out to be an equivalence of categories
(cf. p.1094) of the pattern

Rng(Go o Mo) (g_—% Rng(Mo o Go),
Mo

cf. Conjecture 6.6.84 (p.1094).

Conjecture 6.6.58 We conjecture that
Mod(Th) =a Mog(TH),

for certain natural choices of Th and TH. We note that these choices of Th we
have in mind contain the aziom (Ym)(Vh € Exp)(3k)fy, = h.'07

Filling out the details and including the proof is left to the interested reader. Hint:
Use the construction in the proof of Thm.6.6.13 (p.1031) omitting of course any
references to those parts to the geometry which do not exist in the present case like
e.g. g.

<

Further theorems in this line will be stated in the next two sub-sections.

The following theorem says that the sentences in our frame language can be
translated to sentences in the language of our relativistic geometries (not involving
the function g and the topology 7) in a meaning preserving way, assuming lopag
on both sides. (Cf. Thm.6.6.45 for a similar theorem.)

1070Ty show that this is a Galois connection one has to define appropriate pre-orderings on the
classes Rng(Go) and Rng(Mo).

107 Intuitively, this means that there are arbitrarily large as well as arbitrarily small animals, cf.
Remark 4.2.1 on p.458.
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THEOREM 6.6.59 There is a “natural” translation mapping
Trmo : Fm(FM) — Fm(GEO)
such that for every & € Mog(lopag) and sentence ¢ € Fm(FM)

Mo(B) Ep & & Tamlp)

Proof: The theorem follows by item (i) of Thm.6.6.57 and by Prop.6.4.4 (p.985).
|

The next proposition says that the operators Go o Mo and Mo o Go make
our models and geometries “smooth” in some sense. (Cf. Prop.6.6.49 for a sim-
ilar proposition.) We already know, by Thm.6.6.57, that for any 9 = Wax
(Go o Mo)(9M) = Wax. Item (i) of the proposition states that besides Wax some
further axioms become true when Goo Mo is applied to 9. A similar remark applies
to lopag and item (ii) below.

PROPOSITION 6.6.60
(i) Assume M € Mod(Wax). Then
(Goo Mo)(M) = Ax(ext) + AxQ + (Vm,k)(f.x € Aftr) +
+ Ax(ocoph) + (Ym)(Vh € Exp)(3k)fue = h.
(ii) Assume & € Mog(lopag). Then
(Mo0Go)(8) = Lg + Ly + Ls + Lg + Lz + Lg + Lg + Ly,

where axioms Lg, ..., Lyig are introduced below the present proposition.

Moreover;
(iii)
Rng(Mo) = Ax(ext) + AxQ + (Vm,k)(fnx € Aftr) + Ax(ocoph) and
Rng(Go) = Ls+Ls+Ls+ L+ Ly +Lg+ Lo + Ly,

where axioms Lg, ..., Ly are introduced below.

Itt meg lehetne We omit the proof. 1
emliteni a . . . .
hangya Now we turn to introducing axioms Lg, ..., Ljo in the language of GEO. These

eleféntot! axioms are motivated by item (ii) of the above proposition and/or by contemplating
the idea that they are very natural (it is hard to imagine a reasonable geometry in
which one of them would fail).
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Ly ([e<b A (Bw(a,b,c) V Bw(a,c,b))] = a<c) A
([a<b A (Bw(c,a,b) V Bw(a,c,b))] — ¢=<b).
Intuitively, Bw and < are both kinds of orderings. The axiom says that these
two are “in harmony”. In particular if we know Bw on a line ¢, and two points
of ¢ are <-related then this fact induces a <-connection between any two other
points of /.

L4 Intuitively, eq is (very) symmetric, formally:
@,b) eq(c,d) —  ({c,d)eq (,b) A (ba) eq{cd) A {a,a) eq {c,c)).

L5 eq is transitive, i.e.

({a,0) eq (c,d) A (c,d)eq (e, f)) — {a,b)eq e, f).

L¢ (For the intuitive meaning of this axiom see Fig.326.)
(Ve, 0 € L)(Vo, e, €, a,a" € Mn)([éﬂﬁ’ ={o} Neacl ANeédel A

(e.¢) Il {a, @) A (o,€) eqo0,e)] = (0,0) eq(o,)) ).

({e;€) || (a,a’) A (0,€) eq {o,€)) — (0,a) eq (0, d')

Figure 326: Axiom Lg.

L7 (For the intuitive meaning of this axiom see Fig.327.)
(Ve € L U L%)(Ya,b,c,d,e, f € Mn) [(a,b,c,d € £ A
(a,0) || {e, f) I {c;d) A (a,e) | (b ) A (c.e) || {d, f)) — (a,b) eq(c,d)].

Lg 1, is symmetric, i.e.
(Ve,0 e L)(£ L, 00 — ¢ 1. 10).

Lg L, is closed under parallelism, i.e.
(Vﬁ,gl,EQEL)[(ﬁLrgl A 4y ||€2) — KJ_TEQ]
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< ] If this is the case then (a,b) eq (c,d).

telTuL®

Figure 327: Axiom Lz.

Lio L, isclosed under taking limits, i.e. L, satisfies item (ii) on p.792. This property
can be formulated in the language of GEO as follows. (See Fig.328.)

Figure 328: Illustration for axiom Lyy.

(V2,0 € L) ((3 distinct a, b € ¢)(3 distinct o, b € £)(3¢,, ¢, € L)

[ﬁﬂﬁl ={b} NN ={V} N (Ve,d e b))V, d €l))
[(Bw(c,b,d) A Bw(c,V,d)) — (e, e € Mn)(3y, L, € L)
(Bw(c,e,d) N Bw(c,e',d') N eaectly N €e,d ety N by L, th)]| —

01,0 ) of. Fig.328.
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6.6.5 Galois connections

In this sub-section we will see that (G, M) and (Go, Mo) form “Galois connections”.
In Def.6.6.62 below, we will recall from the literature the notion of a Galois con-
nection cf. e.g. Addmek-Herrlich-Strecker [2, item 6.26(4), p.81]. We will compare
Galois connections with adjoint functors and with further related concepts in the
mathematical literature in item entitled “Connections between adjoint situations,
Galois connections, ...” on p.1096 at the end of §6.6.6. Cf. also Remark 6.6.4 (pp.
1014-1027) as motivation for studying Galois connections.

Remark 6.6.61
(Motivations for Galois connections [for the physicist reader])

(I) Galois connection is a simplified form of adjoint situation (from category
theory)!%2 which in turn is regarded as one of the most important!?™® conceptual
tools of category theory. (To understand adjoint situations well, the first step is to
understand Galois connections [as special adjoint situations].) Galois connections
are obtained from adjointness by considering the simple kinds of categories called
pre-orderings (where between any two objects there is at most one morphism); for
these kinds of categories etc. cf. the subtitle “Connections between adjoint situa-
tions, Galois connections, ...” on p.1096.

Galois connection is a generalization of isomorphism. The idea is that isomor-
phism is very useful but it is a too rigid concept (and therefore it occurs rarely).
So let us make isomorphism a little bit more flexible such that it would retain most
of its useful properties'®™ but would become more flexible (more often applicable).
The result i.e. the flexible version of isomorphism is called Galois connection (in the
case when it connects pre-orderings). The definition is given in Def.6.6.62 below.
In the general case (of categories) the name of “flexible isomorphisms” is adjoint
situations or adjoint pairs of functors. To see a glimpse of the idea let us recall that
an isomorphism from (P, <) onto (@, <) is a homomorphism f such that there is a
backward homomorphism g

P 2 (@)

1072Cf. §6.6.6 (p.1084) for category theory.

1073Cf. e.g. Addmek-Herrlich-Strecker [2], p.283 first sentence (Chap.18, Adjoint functors). There
they write: “Perhaps the most successful concept of category theory is that of adjoint functor.
Adjoint functors occur frequently in many branches of mathematics ... surprising range of appli-
cations.” Cf. also (1) on p.1096 for importance of adjointness in physics.

10746 o. we can transfer “constructions” from one side to the other
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with (fog)(z) =z and (g o f)(y) = y. For easier formulation (of what comes) we
replace homomorphism with dual-homomorphism (i.e. order reversing map). Now,
to make the concept less rigid, we replace the condition (f o g)(z) = x with the
weaker one (f o g)(z) > z and similarly for g o f. The result is summarized in
Fact 6.6.63 below, but cf. also (x) on p.1097 which might be a more suggestive
(equivalent) definition of “flexible isomorphism”. Then Fact 6.6.65 indicates that
the resulting notion of “flexible isomorphisms” (i.e. Galois connections) retains many
of the useful properties of isomorphisms.'%”® But to convince the reader that the so
obtained notion of “flexible isomorphisms” really does the job it is supposed to do,
one has to go through the literature of Galois connections and adjoint functors for
which a few references and hints are collected on pp. 1014-1027, pp. 1084-1107; but
perhaps pp. 1096-1105 is convincing in itself.

(IT) Galois connections can serve as a unified theory of the research-branches men-
tioned on pp. 1096-1105 ranging from Boolean algebras with operators, residuated-
residual pairs, conjugates of operators, linear logic, Lambek calculus, relation
algebras, closure operators, geometry, vector spaces, C*-algebras, but cf. also
Janelidze [142] for more daring applications via Galois theories (which are of course
strongly tied up!®™ with Galois connections).

In particular, studying Galois connections can serve as an abstract, unified study
of duality theories or adjoint situations, which in turn, according to Adamek et
al. [2], Lawvere [160] and others!®”" pervade much of mathematics and modern
mathematical physics. We hope, recalling the patterns:

(P, <) ﬁ (@, <) Galois connection

9

1075The same idea in different words: A homomorphism f is called an isomorphism iff it admits
a two-sided inverse g (go f = Id and f o g = Id). Now, in order to be a flexible isomorphism it is
enough to admit a quasi-inverse as sketched in footnote 1093 on p.1097.

1076 A Galois theory is always a (special) Galois connection, cf. items (I), (V) of Remark 6.6.4 (pp.
1014, 1027)

1077 sample of the references claiming and illustrating with examples that duality theories, i.e.
adjoint situations are very broadly applicable (and applied) throughout mathematics and also in
mathematical physics is Lawvere [160, 162, 161], Arbib-Manes [33, 32], Manes [184], Guitart [117],
Mac Lane [168], Goldblatt [107], Handbook of Categorical Algebra [50], Barr-Wells [40, §1.9, p.
50-63], Freyd-Scedrov [89], Addmek et al. [2], [3], Varadarajan [270], Lawvere-Schanuel [163],
Nel [202], Pelletier-Rosicky [211], Dimov-Tholen [74], Janelidze [142], Davey-Priestley [68]. These
references give examples ranging from algebraic geometry, compact Galois groups, geometry and
analysis, sheaves of continuous maps, metric spaces, tensor algebra, Banach spaces and spaces of
generalized Lipschitz functions, computability & automata & linear systems. (Cf. the works of
Arbib, Manes, Guitart for the latter four topics.) Cf. also () on p.1096.
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g
Mod(Th)  —  Ge(Th) duality theory!0™
M

gives a hint for the above idea (of Galois connections serving as a unified, abstract
study of dualities).

(IIT) Whenever we are given two sets or classes say K, L and a binary relation
R C K x L between them then R induces a natural Galois connection between
P(K) and P(L) as follows. For X C K, fr(X) ={yeLl: (VzeX)zRy}.
So fr: P(K) — P(L) is order reversing. gg : P(L) — P(K) is defined
analogously. Cf. item (IV) of Remark 6.6.4 (p.1026) which is the (Mod, Th)-Galois
connection induced by the relation . Cf. also p.453.

(IV) Cf. Remark 6.6.4, pp. 1014-1027.

END OF MOTIVATION FOR GALOIS CONNECTIONS.

Definition 6.6.62 (Galois connection)
Let (P, <) and (@, <) be pre-ordered classes and

f:P—@ and ¢g:Q — P.
The pair (f,g) is called a Galois connection between (P, <) and (Q, <) iff for all
p€ PandqgeQ

p<gle & q<f(p)-
<

The following fact states a (known) equivalent reformulation of the definition of
Galois connections.

FACT 6.6.63 Assume (P,<) and {(Q,<) are pre-ordered clases and that f :
P— @ and g:@Q — P. Then the pair (f,g) is a Galois connection between
(P, <) and (Q, <) iff (a) and (b) below hold.

(a) f and g are both order-reversing, i.e. if p < p' € P then f(p) > f(p'), and if
q<q €Q then g(q) > g(¢').

(b) fog and go f are both monotonous, i.e.
p<(fog)(p) forall pe P and q<(gof)(qg) forall ¢€@. N

1078We have not yet defined a structure like “<” on Mod(Th), Ge(Th) but that will come later
(and is kind of implicit already in schemas (A)—(I) on pp.1009-1012).
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Notation 6.6.64 Assume that (P, <) is a pre-ordered class. Then the binary
relation ~ on P is defined as

f
pxp ES <y AP <p).
We note that ~ is an equivalence relation.
<

Fact 6.6.65 below is known from algebra. Items (i)—(iii) of this fact say that if
(f,g) is a Galois connection then both f o g and g o f are closure operators up to
the equivalence relation ~ (cf. the notion of a closure operator up to isomorphism
on p.1013.) Further, item (iv) says that the closed “up to ~" elements of f o g are
the elements of the range of g (“up to ~”). Similarly for g o f.

FACT 6.6.65 Assume (P,<) and (Q,<) are pre-ordered classes and (f,g) is a
Galois connection between them. Then for all p € P and q € Q, (i)-(iv) below
hold.

(i) p<(fog)lp) and q<(gof)(a)-

(ii) Both fog and go f have fized-point property in the sense

(fog)’p) = (fog)(p) and (gof)*(q) = (g0 f)(q)
(iii) If p<p eP and q<q €Q then

(fog)p) < (fog)) and (gof)(q) < (g0 f)(q)
(iv) (9o f)(f(p) = fp) and (fog)(g(q) ~g(g).

For the motivation of the following definition cf. Propositions 6.6.49 (p.1065)
and 6.6.60 (p.1075).

Definition 6.6.66

Paxtt & paxt + Ax(eqm) + Ax(ext) + AxQ,
def

Waxt = Wax + Ax(ext) + AxQ + Ax(coph) + (Ym, k) (fux € Aftr)
lopag+ :d:ef lopag + L3 + L4+ L5 -+ L6 + L7 + LS —+ Lg + L10.
<

Remark 6.6.67 We note that item (iii) of Prop.6.6.60 (p.1075) states, by
Thm.6.6.57 (p.1073), that

Rng(Mo) = Wax™ and  Rng(Go) = lopag™.
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We will prove that (Go, Mo) forms a Galois connection between the classes
Mod(Wax™) and Mog(lopag™) for a certain choice of pre-orderings <4, and <g,
of these two classes. (L.e. <y, is a pre-ordering of Mod(Wax™), and similarly for
<go and Mog(lopag™)). We will prove an analogous statement about (G, M) and
ezekre jobb, Mod(Pax’H’), Ge(Pax++).

természetesebb
definiciot adni!

Definition 6.6.68 (<pp, <go, <m,<g)

(i) We define <,4, to be the smallest transitive binary relation on Mod(Wax™)
for which 1 and 2 below hold.

1. M <o (Goo Mo) (M), and
2. MEN = M<u, M, for all M, I € Mod(Wax™).

(ii) We define <g, to be the smallest transitive binary relation on Mog(lopag™)
for which 1 and 2 below hold.

1. 8 <g, (Moo Go)(®), and
2.629H => 6<5, 9, forall B, He Mog(lopag"’).

(iii) We define <, to be the smallest transitive binary relation on Mod(Pax*™)
for which 1 and 2 below hold.

1L 9M <p (GoM)(IM), and
2. MM = M<p M, for all M, N € Mod(Pax*).

(iv) We define <g to be the smallest transitive binary relation on Ge(Pax™*™) for
which 1 and 2 below hold.

1. 8 <g (MoG)(8), and
2.2 = <59, forall® $Hc Ge(PaxTT).

Next we state some simple properties of the pre-orderings <4, etc.
PROPOSITION 6.6.69
(i) Let M, M € Mod(Wax™). Then

(E)JISMO‘.YI A ‘ﬁSMOE)ﬁ) = 9)?%’9‘1, and
M<po N = M N,
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(ii) Let &, 9 € Mog(lopag™). Then

(B<goH AN H<g,8) = &29H, and
& Sgo H = G—=9H.
(iii) Let M, M € Mod(Pax™T). Then
(WSMM/\‘.RSM&R) = M=N, and
M<p N = M—N

(iv) Let &,% € Ge(Pax™™). Then

B<GHAN<SGE) = BEH, and
B<gH = GE+——9HN

We omit the proof. 1

THEOREM 6.6.70
(i)
Go : Mod(Waxt) — Mog(lopag™) and
Mo : Mog(lopagt) — Mod(Wax™).
(ii) (Go, Mo) is a Galois connection between (Mod(Wax™), <) and
(Mog(lopag™), <go).

We omit the proof. 1

We suggest that the reader compare Theorem 6.6.70 with the intuitive text on
p.1073 below Thm.6.6.57 together with Remark 6.6.67 (p.1081).

The following corollary is of the pattern of theorem schemas (A), (B), (E)—(H)
and it is a corollary of Theorem 6.6.70, Fact 6.6.65, and Prop.6.6.69.

COROLLARY 6.6.71
For any 90t € Mod(Wax™) and & € Mog(lopag™), (i)-(iii) below hold.

(i)
M——(Goo Mo)(IM) and G«+—=< (Moo Go)(®).
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(ii) The members of the range of Go are fixed-points of Moo Go and the members
of the range of Mo are fixed-points of Go o Mo, i.e.

(Moo Go)(Go(M)) 2 Go(M) and (Goo Mo)(Mo(8)) = Mo(®).

(iii) Both Goo Mo and Moo Go have fixed-point property in the sense

(Goo Mo)*(M) =2 (Goo Mo)(9M) and (Moo Go)*(&) = (Moo Go)(®).

THEOREM 6.6.72

(i) M : Ge(Pax™t) — Mod(Pax™) (and G : Mod(Pax*t) —
Ge(Pax™T)).

(ii) (G, M) is a Galois connection between
(Mod(Pax™1), <g) and (Ge(Pax™T), <,().

Proof: The theorem follows by Thm.6.6.17 (p.1034) and Fact 6.6.63. &

At this point we could formulate a corollary of Thm.6.6.72 which would be anal-
ogous with Corollary 6.6.71 of Thm.6.6.70. This corollary of Thm.6.6.72 basically
coincides with our Thm.6.6.17 formulated on p.1034.

6.6.6 Adjoint functors, categories

Motivation for adjoint functors for the physicist reader is found in Remark 6.6.61
(p.1078). Cf. also p.1096. For adjoint situations in physics cf. e.g. Lawvere-
Schanuel [163, pp. 5-6, pp. 76-77]; but see also the references in footnote 1077,
p.1079.1079

1079 Category theory has been becoming increasingly popular and often used in physics recently,
cf. e.g. Baez-Dolan [36], Crane [63], Freed [87], Andai [6], Kassel [153], Baez [37]. Cf. also Lawvere-
Schanuel [163].
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The subject matter of this sub-section is strongly connected to Remark 6.6.4
(p.1014) entitled “Galois theories, Galois connections, duality theories all over math-
ematics ....”

In this sub-section we will see that (M, G) and (Mo, Go) are “adjoint pairs of
functors” in the category theoretic sense, under certain conditions.

We use the notion of a category in the usual category theoretic sense, cf. e.g. Mac
Lane [168]. Assume C is a category. Then ObC and MorC denote the classes of
objects and morphisms of C, respectively. f: A — B means that f is a morphism
with domain A € ObC and codomain B € ObC. For any A, B € ObC,

hom(A, B) & { f € MorC : (f: A— B)}.

Further, composition o is a partial binary operation on MorC, and if f : A — B
and g: B —> (C then fog: A — C. We use the notion of a functor in the usual
sense, i.e. a functor is a map from a category to a category which takes objects to
objects, morphisms to morphisms, preserves domains and codomains, identities!%®°
and composition o. If C and D are categories and D is a functor from C to D, then
we will write D : C — D.

Definition 6.6.73 (strong embedding)
Terminology from model theory: Let f : A>——B be an embedding of model 2 into
model B. By the f-image f[] of A we understand the unique (weak) submodel of
B such that f is an isomorphism between 2 and f[2].

Now, f : A>—*B is called a strong embedding iff it is an embedding and the
f-image f[] of A is a strong submodel of B.

<

Definition 6.6.74 (categories Mod(7Th), Ge(Th), Mog(TH))
Let Th be a set of formulas in our frame language.

(i) Mod(Th) forms a category Mod(Th) the following way. The class of objects
of Mod(Th) is Mod(Th) and the morphisms are those embeddings
f My —— My

1080 A morphism f : A — A is called an identity if for every morphism g with domain A, fog=g¢
and for every morphism ¢’ with codomain A, ¢’ o f = ¢'.
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which are surjective on the sets of photons (i.e. f[Phg] = Phy), unless 90, is the
empty model.!%®! More precisely, the morphisms of the category Mod(Th) are
triples of the form (O, f, M), where f : M = N is such that f[Ph™] = Ph™
or M is the empty model. The reason why we need triples instead of f in
itself is that when looking at a morphism we have to be able to tell what its
domain and codomain are. For simplicity, if there is no danger of confusion
we will use f as a morphism instead of the triple (9, f,91). We hope context
will help. The composition o is the usual one.!%?

(ii) Ge(Th) forms a category Ge(Th) in the following way. The class of objects of
Ge(Th) is Ge(Th) and the morphisms are those embeddings

h:@oH@l

which are (i) strong embeddings on the (Mn; Bw) reducts and are (ii) surjec-
tive on the sets of photon-like lines (i.e. h[L{"] = Lt"), unless & is the empty
model. (The composition o is the usual one.)

(iii) For any set TH of formulas in the language of GEO, Mog(TH) forms a category
Mog(TH) in a completely analogous way with item (ii), i.e. the class of objects
of Mog(TH) is Mog(TH) and the morphisms are those embeddings

h2®0>—)®1

which are (i) strong embeddings on the (Mn; Bw) reducts and are (ii) surjec-
tive on the sets of photon-like lines (i.e. h[L{"] = L}"), unless & is the empty
model.

Definition 6.6.75  Pax® & Pax* + Ax(diswind).
<

1081Gyrjectiveness on the sets of photons is required only because eventually we want M to be a
functor between Ge(Th) and Mod(Th). It is not quite obvious to see why this purpose (functoriality
of M) makes us to need the surjectiveness condition. Hint: this is connected to condition (e) on
p-1055. If we omitted item (e) on p.1055 from the definition of M, then we could define morphisms
of Mod (Th) to be the embeddings. The reader is invited to elaborate an alternative version to our
(M, G)-duality by omitting condition (e) from the definition of M and then dropping the present
surjectiveness condition w.r.t. Ph.

10827 . (M, £, M) o (M1, 9,9) = (M, f o g, M) if N =M, and is undefined otherwise.
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The functions M, G, Mo, Go are defined on the objects of the categories
Ge(Pax_T_), Mod (Paxi), Mog(lopag), Mod(Wax), respectively. In the follow-
ing definition we extend these functions to the morphisms. In this way we obtain
functors

M : Ge(Paxf) — Mod(Pax}), G :Mod(Paxl) — Ge(Pax1),

Mo : Mog(lopag) — Mod(Wax), Go : Mod(Wax) — Mog(lopag).

Definition 6.6.76 (the functors M, G, Mo, Go)

To define a functor, one has to define what it does with the objects and what it does
with the morphisms (of the category in question). On the objects M, G, Mo, Go
agree with M, G, Mo, Go, respectively. It remains to define our functors on the
morphisms.

M. For every morphism h : & — &; of Ge(Paxi) we will define the morphism
M(h) : M(By) — M(1) of Mod (Paxi), see the left-hand side of Fig-
ure 329. Since the definition looks somewhat “longish” we note that in it we
will do the “natural thing” (following the structure of the definition of M).
Let h : &y — &; be a morphisms of Ge(Paxi), ie. & = (Mng,...), & =
(Mny,...) € Ge(Pax:'I_') and h is an embedding satisfying the conditions in
the definition of the category (Ge(Paxi), i.e. in Def.6.6.74(ii). Then h is a
tuple {(ha, hp, hy) with hp : Mng >— Mny, hp : Fo >— F; and hy :
Ly >— L. Further, M(&y) = (By,...), M(&,) = (By,...) € Mod(Paxi)
by Prop.6.6.44 (p.1059). Then M(h) := (M(h)g, M(h)r, M(h)g), where
M(h)g : By — By, M(h)p : Fy — F; and M(h)g : Gy — G are defined
as follows. To define M(h)p let b € By. Then either b = (0, e, ...,€,-1) €
Obsy C "1 Mnq, for some o, ...,e, 1 or b€ Phy= L{". Now,

def [ (ha(0), huleo), ..., hu(en1)) if b= (o,eq,...,en_1) € Obsy
M(h)g(b) := { by (b) if b € Phy.

M(h)p takes observers to observers and photons to photons. M(h)p is de-
fined to be hp and M(h)q is naturally induced by M(h)p, i.e. M(h)g :

Eucl(§o) — Eucl(F1) is defined by £ — M(h)p[{].

We will prove as Claim 6.6.77(i) that M(h) : M(By) — M(&;) is indeed
a morphism of Mod (PaxZ}), moreover that M : Ge(Pax}) — Mod (PaxX)
is a functor.

G. For every morphism f : MMy — M, of Mod (Paxi) we will define the mor-
phism G(f) : G(OMy) — G(IM,), see the right-hand side of Figure 329. Let
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B M(8) Mo G(Mo)

h M(h) f g(f)

& M(81) My Gg(My)
Figure 329:

f = 9My — My be a morphism of Mod (PaxT), i.e. My = (B, ...), My =
(B1,...) € Mod(Paxi) and f is an embedding satisfying the conditions in the
definition of the category Mod(Pax™), i.e. in Def.6.6.74(i). Then f is a tuple
(fB, fr, fa) with fg : By =— By, fr : Fy >— F; and fg : Go > G;. Fur-
ther, G(My) = (Mny,...), G(OMy) = (Mny,...) € Ge(PaXi). Then G(f) :=
(G(f)u,G(f)r, G(f)r), where G(f)u C Mng x Mny, G(f)r : Fo — Fi
and G(f), C Ly x Ly are defined as follows. Let {(ey,e;) € Mny x Mn; and
<€0,£1> € L() X Ll. Then

(o, e1) € G(f)m

def

(3m € Obsy)(3p € ”FO)(wm(p) = ey A Wy (Fr(p) = 61>.
Further

(o, 1) € G(f)L

def,
(3m € Obsy) ((Eli €n) (o = wnlZi] A €y = wpyam[T] )12 V

(3ph € Ph) (L = we[trm(ph)] A €1 = w pym)[t7 5m) (fB(Ph))] ))-

G(f)r is defined to be fr.

1083 The first Z; is the i-th coordinate axis in ™F, while the second Z; is the i-th coordinate axis
in nFl.
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Mo.

We will prove as Claim 6.6.77(ii) that G(f) : G(9My) — G(M;) is indeed a
morphism of Ge (Paxi), moreover that G : Mod (Paxi) — Ge(Paxi) is a
functor.

For every morphism h : 5 — &; of Mog(lopag) we will define the mor-
phism Mo(h) : Mo(&;) — Mo(®;) of Mod(Wax). Let h: &y — &,
be a morphism of Mog(lopag), i.e. & = (Mny,...), &; = (Mny,...) €
Mog(lopag) and h is an embedding satisfying the conditions in the defini-
tion of the category Mog(lopag), i.e. in Def.6.6.74(iii). Then h is a pair
(hpryhr) with hpr @ Mng =—— Mn; and hp : Ly >— L;. Further,
Mo(&y) = (By,...), Mo(61) = (By,...) € Mod(Wax) by Thm.6.6.57.
Then Mo(h) := (Mo(h)p, Mo(h)r, Mo(h)g) where Mo(h)g : By — By,
Mo(h)p C FyxF; and Mo(h)e C Gy x G; are defined as follows. Mo(h)p is
defined analogously to the case of M, i.e. as follows. Let b € By. Then either
b= {(0,€0,...,en_1) € Obsy C "t Mny, for someo, ..., e,_; or b € Phy = L™
Now,

def [ (ha(0), ha(eo),. .., hu(en1)) if b= (o,eq,...,en_1) € Obsy
M(h)5(b) := { hy (D) if b € Phy.

To define Mo(h)r let (p,q) € Fy x Fy. In the definition below, we will use
Fo, F1, 80,81 which were introduced in Definitions 6.6.34 (p.1049) and 6.6.55
(p.1072). Then,

{p,q) € Mo(h)r

def

(3 € )3 € ) (pig) = hu(pi(p)), forallies).

Mo(h)¢ is induced by Mo(h)r the natural way, cf. the definition of M(h)g
in item M. above.

We will prove as Claim 6.6.77(iii) that Mo(h) : Mo(&y) — Mo(B,) is
indeed a morphism of Mod(Wax), moreover that Mo : Mog(lopag) —
Mod (Wax) is a functor.

. For every morphism f : 9y — 9M; of Mod(Wax) we will define the mor-

phism Go(f) : Go(My) — Go(IM,) of Mog(lopag). Let f : 9y — M, be
a morphism of Mod(Wax), i.e. My = (By,...), My = (By,...) € Mod(Wax)
and f is an embedding satisfying the conditions in the definition of the category
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Mod(Wax), i.e. in Def.6.6.74(i). Further, Go(9My) = (Mny,...), Go(IM,;) =
(Mny, ...) € Mog(lopag) by Thm.6.6.57. We define the morphism

Go(f) : Go(M,) — Go(M)

of Mog(lopag) to be (G(f)un,G(f)L), where G(f)n and G(f), are defined as
in item G. above.

We will prove as Claim 6.6.77(iv) that Go(f) : Go(9My) — Go(M,) is indeed
a morphisms, moreover that Go : Mod(Wax) — Mog(lopag) is a functor.

<
Claim 6.6.77 below serve to prove correctness of Def.6.6.76 above.

Claim 6.6.77
(i) M :Ge (Paxi) — Mod(Pax_'::) is a functor.
(ii) G : Mod (Paxi) — (Ge(Paxi) is a functor.
(iii) Mo : Mog(lopag) — Mod(Wax) is a functor.
(iv) Go : Mod(Wax) — Mog(lopag) is a functor.
The proof is available from Judit Madarasz. R

Next, we recall the notion of adjoint pair of functors from category theory e.g.
from Mac Lane [168]. For this, first we introduce the notion of a reflection and
coreflection in Def.6.6.78 below. We will use the notion of a subcategory in the
usual way, cf. e.g. Mac Lane [168].

Definition 6.6.78 (reflection, coreflection) Let C and D be two categories.

(i) Assume D is a subcategory of C. Let A € ObC.

(a) B € ObD is called the reflection of A in D iff B is the “nearest” object
to A in D, i.e. iff there is a morphism f : A — B which is the shortest
one in the following sense:

(VB' € ObD)(VSf" € hom(A, B"))(3lg € hom(B, B')) fog=f,

see the left top picture in Figure 330.
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(b) B € ObD is called a coreflection of A in D iff there is a morphism
f : B — A which is the shortest one in the following sense:

(VB' € ObD)(Vf' € hom(B', A))(3lg € hom(B',B))go f = f,
see the right top figure in Figure 330.
(ii) Assume C : D — C is a functor. Let A € ObC.

(a) B € ObD is called a reflection of A in D iff B is the nearest object to A
in D, i.e. there is a morphism f : A — C(B) which is the shortest one
in the following sense:

(VB' € ObD)(Vf' € hom(A,C(B")))(3lg € hom(B, B')) f o C(g) = f',

see the left bottom picture in Figure 330.

The morphism f : A — C(B) above is called the C-reflection arrow%®!
of the object A.

b) B € ObD is called a coreflection of A in D iff there is a morphism
(b) coreflection p
f :C(B) — A which is the shortest one in the following sense:

(VB' € ObD)(Vf' € hom(C(B'), A))(3lg € hom(B', B))C(g) o f = f,

see the right bottom picture in Figure 330.

The morphism f : C(B) — A above is called the C-coreflection arrow
of the object A. <

Definition 6.6.79 (adjoint situation)!'08
Let C and D be two categories and let

(%) C:D—C and D:C—D

be two functors. Then (C, D) is called an adjoint pair iff for every A € ObC, D(A)
is the reflection of A in D and for every B € ObD, C(B) is the coreflection of B in
C, cf. Figure 331.

Further, we say that (x) above is an adjoint situation iff (C, D) is an adjoint pair
of functors.

<

10843We could call this f intuitively D-reflection arrow.

1085We refer to e.g. Mac Lane [168] for the “official” definition of adjointness. Cf. also Ad4dmek [1, p.
138-148, (sub-section 3F)], and Addmek-Herrlich-Strecker [2, pp. 283-300] where a large number of
mathematical applications/examples of adjointness and what we call here duality theories is given.
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Figure 330: Reflection and coreflection.
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Ge(Th)

Mod (Th)

Figure 331: (M, G) is an adjoint pair of functors, under certain conditions.

Definition 6.6.80 Pax_‘::'*' & paxtt + Ax(diswind).
<

For the following conjectures recall that M, G, Mo, Go are functors by
Claim 6.6.77 (p.1090).

Conjecture 6.6.81 We strongly conjecture that (i) and (ii) below hold.
(i) M Ge(ffaxif) — Mod(Pagfr) and G : Mod(Pax1+) — Ge(Pax}™)
is an adjoint situation,'%®® cf. Figure 331.
(ii) Mo : Mog(lopag™) — Mod(Wax™) and
Go : Mod(Wax*) — Mog(lopag™) is an adjoint situation.
<

Let f : A — B be a morphism of the category C. We call f an isomorphism
(of C) if

(39 € hom (B, A))(f o g and g o f are identity morphisms),
cf. footnote 1080 on p.1085 for identity morphisms.

10861y accordance with our Convention 6.6.2 (p.1008) here we are talking about the restrictions of
M and G to (Ge(Paxi"') and Mod (Paxi""). We will use this convention throughout the present
section.
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Definition 6.6.82 (equivalence of categories)!%’
The categories C and DD are called equivalent iff there is an adjoint pair of functors

C:D—C and D:C—D

such that the following holds. For every object A of C the C-reflection arrow is an
isomorphism and the same holds for the D-coreflection arrows of objects B € ObD.

In such situations the pair (C, D) of functors is called an equivalence of categories
(C and D).'088

<

Conjecture 6.6.83 We strongly conjecture that Mod(Th) and Ge(Th) are equiva-
lent categories, and (M, G) is an equivalence between these two categories, assuming
n > 2 and Th = Bax®+Ax(Triv,)”+Ax(||)” +Ax(eqtime)+Ax(ext) +AxQ+
Ax(v" ) + Ax(diswind).

<

In connection with the above conjecture cf. Thm.6.6.13 (p.1031) saying that
Mod(Th) and Ge(Th) are definitionally equivalent, assuming the assumptions of
the above conjecture. Thm.6.6.13 already implies isomorphism, hence equivalence,
between categories Mod(7Th) and Ge(Th) if we choose elementary embeddings as
morphisms, cf. p.1005.

Before stating our next conjecture we note the following. Consider the functor
G: Mod(Paxj:) — Ge(Pax'_l’:). Then G is surjective in the sense that Rng(G) is

Ge(Paxi) up to isomorphism. This holds for any Th with Th = Pax_':: in place of

+
Pax+.

Conjecture 6.6.84 We strongly conjecture that (i) and (ii) below hold.

(i) Consider the functors M Ge(Paxi"') — Mod(Paxi'*’) and
G : Mod(Paxi"') — (Ge(PaxI"'). Then Rng(M) is a category and

Rng(M) and (Ge(PaXi"') are equivalent categories, and (M, G | Rng(M))

15 an equivalence between these two categories.

1087We refer to e.g. Mac Lane [168] or Addmek et al [2, p.26, Def.3.33] for the “official” definition
of equivalence of categories. Officially a functor ' : C — D is an equivalence iff it is a bijection on
every hom(A, B), i.e. F': hom¢ (A, B) = homp(F'(A), F(B)), and it is surjective with respect
to isomorphisms.

1088 An adjoint situation (C, D) could be called a Galois-adjoint situation iff Rng(C) and Rng(D) are
categories and (C, D) is an equivalence between categories Rng(C) and Rng(D). The so obtained
notion could be considered as a special kind of adjoint situations and at the same time as a
generalization of Galois connections.
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(ii) Consider the functors Mo : Mog(lopag™) — Mod(Wax™) and
Go : Mod(Waxt) — Mog(lopag™). Then Rng(Mo) and Rng(Go) are
equivalent categories and (Mo | Rng(Go), Go | Rng(Mo)) is an equiva-
lence between these two categories.

<

Items (i) of Conjectures 6.6.81 and 6.6.84 together say that (M, G) is a Galois-
adjoint situation in the sense of footnote 1088, assuming Paxi'*'; while items (ii)
of the same conjectures say that (Mo, Go) is a Galois-adjoint situation, assuming
Wax™T and lopag™. Cf. also the intuitive text on p.1073 above Conjecture 6.6.58
together with Remark 6.6.67 and compare them with Conjectures 6.6.81, 6.6.84.

The (syntax, semantics)-duality described in Remark 6.6.4 item (III) (pp. 1020-
1026) is actually an adjoint functor pair between two categories. The functors are
“syntax” and “semantics” (or equivalently Th and Mod). This motivates the follow-
ing

Exercise 6.6.85 Many of the duality theories introduced or outlined before intro-
ducing categories, i.e. before §6.6.6, extend to adjoint pairs of functors between two

categories.
(i) An important example is the

Mod
{(Fm(Th), Th) : Th is a set of formulas} i’ {K : K is a class of similar models}
Th

duality.!%® The first step is to turn the left-hand side and the right-hand side
into categories by defining the morphisms between the indicated objects. Then one
defines what the functors Mod and Th do with these morphisms. I.e. if Tr is a
morphism between theories, then we have to define what Mod(Tr) is.

(ii) There are further examples between pp. 1003-1084. We invite the reader to
select a few of these, then turn the left-hand side into a category, then same with
right-hand side, and then turn the connections into functors.

<

Notation 6.6.86 Let A be a set and let 7(x) be a term with input variable z,
defined for z € A. Recall that then f := (7(z) : z € A) denotes a function
f:A— Rng(f), cf. p.27 where we used expr in place of 7.

1089Note that “Th is a set of formulas” is equivalent with saying that Th is a theory (by definition).
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We will use the intuitive notation 7(—) for denoting this function f. Le.
7(—) 4 (r(z) : z € A).

This notation is somewhat under-specified since A, i.e. the domain of 7(—), is not
explicitly indicated. This intuitive notation 7(—) comes from category theory. Cf.
also the notational convention g(—,y,z) above Def.4.3.35 (partial derivative) on
p.518 (in §4.3). That convention is the same as the present one (with some extra
parameters added).

<

Motivation for studying equivalences of categories, adjoint situations, etc:

If two categories C and D are equivalent then one can utilize this the following
way. Assume we have a problem in the world of C (and assume that it is easier to
think about such problems in D). Then we may transform our problem from C to
D, solve the problem in D and then transform the result back into C. Indeed this
often happens e.g. in Stone duality between Boolean algebras and certain topological
spaces.'%®  Similarly this kind of application often happens in algebraic logic (cf.
[30] and §6.6.7). Of course the problems in question have to satisfy some conditions,
e.g. they have to be isomorphism invariant. (In the case of adjoint situations not
every problem can be translated to “back and forth”, because the functors satisfy
fewer conditions. However there are adjoint situations which have a fixed-point
property like our theorem-schemas (G), (H) (p.1011). Then there is a category
theoretic equivalence between the subcategories of “closed objects” (or equivalently
fixed-points) and using these one can transform problems back and forth [such are
e.g. the spectacular applications of Galois theories!?].) Cf. the introduction to §6.6
(p.1003) and Fig.309 (p.1003) in connection with the above ideas.

(1) The usefulness of adjoint situations in theoretical physics is emphasized e.g.
in Baez [37] (e.g. on p.3 therein). But cf. also footnote 1079 on p.1084 in this
connection. Cf. also p.3 lines 8-10 in Baez [37] for “the relation between category
theory and quantum theory ... so important in topological quantum field theory”.

Connections between adjoint situations, Galois connections, and other duality
theories:
Before getting started, we note that Remark 6.6.61 (p.1078) is also about our present
subject.

1090Cf. the intuitive text on p.1019 above item (IIT).
1091hoth for fields and for cylindric algebras
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Assume that in our category C there is at most one morphism between any two
objects, i.e. assume |hom(A, B)| < 1 is valid in C. Then C becomes a pre-ordering.
(Hint: We use A < B to denote hom(A, B) # ).) Assume the same for category
D. Then functors C : C — D and D : D — C become order preserving map-
pings between pre-orderings C and . Then it is a natural question to ask which
pairs (f,g) of order preserving mappings between pre-orderings P, are actually
adjoint situations. Translating the definition of adjoint situations way above (from
the language of categories to that of pre-orderings) gives us a natural answer to this
question. Assume for simplicity that our pre-orderings are actually partial orderings
(posets for short). Then (f, g) forms an adjoint pair iff (x) below holds.

%) flp)=inf{ge@ : p<yg(q)}
g(q) =sup{pe P : ¢> f(p)}.

Actually, we note that (x) works for characterizing adjointness even in the more
general case of pre-orderings, too. More precisely, if we want (x) to work for pre-
orderings too, then it is enough to replace “f(p) = inf{...}” with “f(p) is a smallest
element!®® of the set {qg € Q : p < g(q) }” and similarly for “g(q) = sup{...}”.

Summing up, (%) is the order-theoretic counterpart of adjointness. The paper
Andréka et al. [15] discusses and investigates equivalent versions and applications of

(order-theoretic) adjointness of the form (x) above. In that paper (x) shows up in
the fourth line beginning with “If (f, g) is such a pair, then f(p) =...”. (This is the
second, equivalent definition they give for order-theoretic adjointness.) They call an
(order-theoretic) adjoint pair (f, g) satisfying (x) a residuated-residual pair. Among
others they show that residuated-residual pairs are equivalent with Galois connec-
tions. They discuss the connections with Galois theory, too. Residuatedness plays
an extremely important role in many branches of algebra, in sophisticated duality
theories, and in Algebraic Logic. One of the slogans in a large part of Algebraic Logic
says that all extra Boolean operators in Algebraic Logic are residuated.!%®® Cf. e.g.
Jénsson-Tarski [148], Jénsson [147], Jénsson-Tsinakis [149], Thompson [257, p.340]
and Jipsen-Jénsson-Rafter [144] and the references in the latter. Actually, Birkhoff
in his famous Lattice Theory book [47] introduces relation algebras as “residuated
Boolean lattices” (where we note that relation algebras are one of the main themes

10921y pre-orderings, z is a smallest element of H iff z € H and (Vy € H)z < y.

1093 An operator f on a Boolean algebra, or more generally a function f : pre-order — pre-order
is called residuated iff it is part of a residuated-residual pair (f, g). Then g is called the residual of
f- (We could call g the “right residual” of f and f the “left-residual” of g, but we do not do this
e.g. because it would cause confusion with the slashes to be discussed soon [the slashes are called
left and right residuals of o].)

It is sometimes useful to think of the residual g of f as a kind of quasi-inverse (w.r.t. the pre-
ordering <) of f. Hence f is residuated iff it is quasi-invertible w.r.t. the pre-order in question.
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in the literature of Tarskian Algebraic Logic). In passing we note that the residual
g of f is very strongly related what is called the conjugate of f in a large part
of abstract algebra, cf. e.g. Jénsson [147, pp. 129-130], Thompson [257, p.340] and
Henkin-Monk-Tarski [129, Part I, p.175]. If our posets are Boolean algebras then for
any mapping g its dual'®®* ¢2 is also defined. Now, if (f, g) are residuated then g¢? is
exactly the conjugate of f. Le. the conjugate of f is the dual g° of the residual g of
f- Therefore, conjugates of mappings are extremely close to residuals of mappings,
e.g. in the case of Boolean algebras the two concepts are term-definable from each
other.!'%% (More generally, the mathematical idea of a “conjugate” in general is
strongly related to the idea of a residual pair, i.e. of an adjoint situation.) In the
literature of Algebraic Logic and in that of Sub-structural Logics (e.g. Lambek cal-
culus, linear logic etc.) the residuals of any fixed “central” binary operation, say o,
are denoted by the slashes /, \ while the conjugates of the same central operation are
denoted by the triangles <, >, cf. Andréka-Mikulds [26], Jipsen-Jonsson-Rafter [144],
Marx-Venema [189], van Benthem [266, pp. 194, 195, 230, 231], [268, p.246] and
Bahls-Cole-Galatos-Jipsen-Tsinakis [38]0%.

The paper Andréka et al. [15] discusses further important applications and vari-
ants of adjointness of the form (x) above. About this subject cf. also our next
sub-section on Algebraic Logic. The present subject (importance of Galois connec-
tions etc.) is continued in a broader perspective in the item below (... importance
“omnipresence” ... duality theories).

On the importance, “omnipresence” and literature of duality theories:

(1) We did not have space to pay due credit to the importance of duality theories
which range from the subjects we already mentioned to geometry, analysis, algebraic
geometry, computability and other fields. What we described in our coordinatization
sub-section §6.6.2 (p.1037) is easily developed to several duality theories (an obvious
one acts between synthetic geometries and fields). This kind of duality is usually
called coordinatization and the idea goes back to von Staudt [273] 1857 (where it
was elaborated for projective spaces). Building on top of such coordinatizations
further, useful kinds of duality theories were elaborated. Many of these act between

109460(z) := —g(~x)

1095 Though the residual of f is its quasi-inverse, the conjugate of f is not a quasi-inverse (but
the dual of a quasi-inverse). E.g. if ¢ is a complemented (¢(—c(z)) = —c(z)) closure operator on
a Boolean algebra (cf. Fig.313) then c is its own conjugate, cf. Henkin-Monk-Tarski [129, Part I,
p-175], while the residual ¢? of c is the interior operator ¢?(z) = —c(—z) naturally corresponding
to c.

10961 this paper, though the residuals “/”, “\” are defined, the lattice we are working in is not
required even to be distributive.
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a class of lattices on the left-hand side and a class like e.g. vector spaces on the

other. The general pattern is:

Ve
a class of lattices : a class like that of vector spaces.
La

In many of these examples the functor La associates something like the subalgebra
lattice (Sub(V), N, V) to the vector-space (-like structure) V coming from the right-
hand side.

An example is the following. Let CMA-lattices denote complemented modular
algebraic lattices . Then, there is a duality theory between

(CMA-lattices satisfying some extra conditions)
and
(Vector spaces over division rings),

cf. Gratzer [111, Thm.15, p.208].19% Cf. e.g. Gritzer [111] for more information on
the above. This research direction proved to be rather useful and fruitful, e.g. von
Neumann!!® and his followers obtained strong and useful duality theories of this
spirit, in addition to Grétzer [111], Czédli [65] and von Neumann [272], cf. also e.g.
Andréka-Givant-Németi [13, p.17], Varadarajan [270], Freese [88], Urquhart [260],
Kurucz [156] and the references in the last two works. These dualities are based on
some version of coordinatization in the sense outlined way above. Lipshitz [165], and
Urquhart [260] generalized von Neumann’s duality (and/or coordinatization) to dif-
ferent kinds of lattices, and Urquhart [260] in §3 (entitled “duality theories”) elabo-
rated further useful kinds of duality theories e.g. in Theorems 3.1-3.3 therein. These
are in turn related to the algebraic logic dualities e.g. in Hansoul [123], Jénsson-
Tarski [148], Madarédsz [171], Jénsson-Gehrke [99], Goldblatt [109], the Algebraic
Logic special issue Németi-Sain [207] to mention only a few, but cf. also subti-
tle “Connections ... duality theories” p.1096 herein. Urquhart’s above mentioned
duality theory was further generalized in the algebraic logic works Andréka-Givant-
Németi [13, pp. 16-20] and Kurucz [156, pp. 22-27].

Von Neumann also developed a coordinatization with rings for orthocomple-
mented modular lattices. This can be developed into a duality theory!''%! (analogous

1097

1098

or one of their generalizations or variants (e.g. R-modules for certain kinds of R)

1098 The division ring part can be eliminated (i.e. replaced by fields) by adding an extra condition
on the lattice side.

1099 A gpecial case of this duality theory was announced by O. Veblen and W. H. Young in 1910,
a full proof without gaps was published by von Neumann in 1936, and a generalization was given
by Frink in 1946.

HO0Cf, e.g. Gritzer [111], von Neumann [272] and Czédli [65, Theorems VI1.36-37, p.138].
H01lyoughly, between Hilbert spaces and orthocomplemented modular lattices
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to the above ones); generalizations and improvements of this duality have been a
central theme in the literature of mathematical physics especially in connection with
quantum mechanics, quantum field theory'!%? cf. e.g. Foulis [86], Varadarajan [270].
Using the idea of coordinatization mentioned way above, one can obtain the
following (with geometries in place of vector spaces). There is a duality theory

Ge
CMA-lattices : projective geometries
Lad'

where the functor La' associates the subspace lattice La'(G) := (Sub(G),N, V) to
any geometry G coming from the right-hand side. Cf. J6nsson [146, Thm.5.5] and
e.g. Czédli [65, Thm’s VIL4, VIL18, VIL23 (p.152, p.166)].

Putting the above dualities together, with some extra work (and under extra
conditions) we can have 3-way dualities

some vector-space-
like structures

\some CML-Iattices, /

cf. also Shafarevich [238, item 10.VII]. For further developments we refer to e.g.
Varadarajan [270], Andréka-Givant-Németi [13], Czédli [65], McKenzie et al. [192,
Thm.4.88 on p.216, p.89, (Exercise 2 on p.216)], footnote 1077 on p.1079, item (4)
on p.1104 herein.

A further duality theory between orthocomplemented, weakly modular lattices
and Baer *-semigroups, relevant to physics, is in Foulis [86].'%

some geometries

(2) Duality between certain topological spaces and commutative C*-algebras:
A topological space X = (X, Q) is locally compact if each point p € X has a
neighborhood U such that U is compact, i.e.

(AU C X)B3A€O)(pe ACU and U is compact!® in X).

Let LTop denote the category of locally compact topological spaces. Roughly, C*-
algebras are vector spaces V over the field C of complex numbers such that V is
1102

a unification of special relativity theory and quantum mechanics

1103 This can be regarded as a generalization of von Neumann’s coordinatization for orthocomple-
mented modular lattices. We note that practically all of the so called coordinatization theorems
(including the one in §6.6.2 herein) can be regarded as duality theories. We note this to emphasize
the unifying power of a “theory of duality theories”.

104j . (X [ U) is compact; in more detail (IH C O)[UH DU = (3 finite Ho CH) UHo D U].
Cf. also footnote 1008 on p.1018.
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enriched with a binary operation “-7,'9 an antilinear involution * (unary) and a

norm || —|| : V. — R Then if (V,-,* ||—||,R) satisfies certain extra axioms
then it is called a C*-algebra. We do not recall the notion of a C*-algebra in more
detail but we note that they play an important role in physics (cf. e.g. Rédei [218,
p.62, Chapter 6 (von Neumann Lattices)], [219]). Cf. also Reed-Simon [220, Vol.IV],
Pelletier-Rosicky [211], and Bratteli-Robinson [51].

Now, there is a duality

F
LTop : “commutative C*-algebras”
G

satisfying certain useful properties. E.g. F,G are functors (w.r.t. the natural mor-
phisms), closed sets (of topologies) correspond to closed ideals (of (V,...,R)), open
sets (of X) correspond to quotient algebras (of (V,...,R)), etc.

(3) Ezample of an important duality theory of which it is not obvious how to refor-
mulate it as an adjointness: 107

According to our philosophy, Laplace transformation is a duality theory.
This duality theory is used in analysis and in particular in solving linear differential
equations.

Roughly, the two “worlds” being connected is the world of (certain) real functions
and the world of (certain) complez functions.

*R denotes the positive half-line of the set of real numbers R. Similarly let *C
denote the positive half-plane of the complex plane''®® with C the field of complex
numbers. Then, roughly, our duality is of the form

1108

where £ and Z are partial functions such that (£ o Z)?(f) = (£ o Z)(f) whenever
(Lo I)(f) exists. L is called Laplace transform and T is the inverse transform.!!1?

1105 A ctually, (V,-) is an algebra over the field C, in the sense of classical algebra, cf. e.g. Shafare-
vich [238, Chap.8, Example 3].

106For the notation ||—|| cf. item 6.6.86 on p.1095.

07Tt may be an adjointness, it is not trivial to our minds how to bring it to an adjoint form in a
short time. (We did not have time to try seriously.)

1108 Cf, second motivation for duality theories at the beginning of §6.6 p.1004, p.1019 (above item
III), p.1096 (“Motivation for ... equivalence of categories ...”), p.777 item (ii) in §6.1.

H0O+C ={a+ib : a€ *R,b € R} where i = /—1.

1110We hope it will cause no confusion that in item (IT) of Remark 6.6.4 (p.1015) £ denoted the
functor going from topological spaces to lattices.
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Tt simplifies discussion if on the left-hand side we take the broader “world” "RC.
Then we have two (infinite dimensional) vector spaces over the field C and

+ o +
L : RC = "CC,
7 : °c%"RC
are two partial vector space homomorphisms'!'! between them.'!''?  Actually,

Dom(L) C "®C is a sub-vector-space of "*C, hence

RC D Dom(L) £ *CC

. . =+ .

is a wvector space homomorphism. Moreover, Dom(Z) C CC is also a sub-vector-
+C .

space of "~ C, hence we have two vector space homomorphisms

L
"RC D Dom(L) —  Dom(I) C "CC
z

between two vector spaces Dom(L) and Dom/(Z) satisfying our theorem schema, (G)
for duality theories (on p.1011) saying that (Vf € Dom(LoZ))(LoZ)(f) is a fixed
point of (LoZ). A similar statement can be made about the other side and (Z o L),
cf. theorem schema (H), p.1012. Further, (£ o Z)(f) differs from f only on a set
of measure zero. We hope that what we have said so far indicates that what we
are discussing here fits into the pattern of what we called duality theories at the
beginning of §6.6, pp. 1003-1012 (ending with theorem schemas (A-H) for duality
theories). Therefore we will also refer to the Laplace transform as the (£, Z)-duality.
We do not describe Dom(L) in detail but we note that all functions f:* R — R
which are piecewise continuous and do not grow too fast'!''? are in Dom/(L).

Why is the (£, Z)-duality useful? The answer is that certain problems formulated
about elements f, f1,... € Dom(L) of the left-hand side world become much simpler
when (L-translated, i.e.) reformulated about their images L£(f),L(f1),... in the
world "€C.

To illustrate this, we note that if f’ denotes the derivative of f, then L(f')
can be obtained from L(f) by taking the simple function mapping p € TC to

111 The traditional expression is linear operator for homomorphisms between infinite dimensional
vector spaces.

1112Recall from p.42, that the vector space RC = (+RC; +,(A - —=))rec is a group
(+RC; +) enriched with the unary operations (A - —) called scalar products, for each A € C.
Similarly for the other vector space “CC. The operations preserved by £ and 7 are the just

indicated vector space operations.
H3je. (AN, € TR)(Vz € TR) |f(x)| < X - e,
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p-L(F)(p) = F(0), ie. L(f) = (p- (L(f)(p)) — £(0) : p € *C). Remark: Since £(f)

is an element of a vector space over C and p, f(0) € C, we can write

L(f)=1d-L(f) = (f(0): p€TC)

(where note that Id = Id [ *C and the constant function (f(0) : p € *C) are
elements of our vector space ' CC).1114

As a further nice property of £ we mention that it takes convolution to products
(note that "©C is not only a vector space but also an algebra''®), where: The
convolution of f,g € Dom(L) is defined as

(f % 9)(x) / T 1) - gla — )t

and what we said is
L(f *g) = L(f) - L(g)

+CC 1116

w”

where is the usual product in the algebra

We do not recall more detail, but we hope that what we sketched above makes it
imaginable that the (£,Z)-duality can be helpful in solving e.g. some linear differ-
ential equations. Actually, this duality is widely used e.g. in electrical engineering,
and in various branches of physics.

A strongly related, but different, duality theory is called Fourier transformation.
For some applications of the latter cf. e.g. Shafarevich [238, §5, Example 8]. For the
definition and discussion of Fourier transformation cf. Kirillov [154, §2.8 “Duality
and Fourier transformations”]; cf. also e.g. Pour-El & Richards [215, p.109] and/or
Reed & Simon [220, Vol.IT]. The definition of Laplace transform'*'” can be found

1114Recall that in the intuitive introduction of duality theories (cf. p.1003) we had a world
on the left-hand side of the “bridge” and one on the right. The above observation about
L(f") points in the direction that, in our present duality theory, the world on the left-hand

side is (+RR with differentiation etc. as “structure” ) while the world on the right-hand side is
(+CC with algebra as “structure”). Le. this duality translates (a part of) analysis to algebra (and
vice versa).

1151 more detail * CC is a ring moreover the ring product “” is suitable for being the algebra
product “”, ie. (f-g)(z) = f(z) - 9().

HI6Cf. footnote 1115.

M7 passing we note that, roughly speaking, the definition of the Laplace transform £(f) is a
relatively simple (perhaps improper) integral: L(f)(p) := [, e P - f(t) dt, for any p € C. Here
e is the usual constant (i.e. the base of natural logarithms).

1103



e.g. in Concise Lexicon of Mathematics [84].11% A categorified version of the Fourier
transformation can be found in Baez [37, §6.1, pp. 52-54)].111?

(4) Further examples, applications, explanations and motivation for duality theo-
ries i.e. adjointness can be found in the following references. Most of the expository
works on categories emphasize that adjoint situations (hence duality theories) are
extremely important for (almost) the whole of mathematics and that besides this
they turn out to be a successful vehicle for unifying and deepening mathemati-
cal thought.''?® Cf. Lawvere [160, 162, 161], Arbib-Manes [33, 32], Manes [184],
Guitart [117], Mac Lane [168], Goldblatt [107], Handbook of Categorical Alge-
bra [50], Barr-Wells [40, §1.9, p. 50-63], Freyd-Scedrov [89], Addmek et al. [2],
[3], Varadarajan [270], Lawvere-Schanuel [163], Nel [202], Pelletier-Rosicky [211],
Dimov-Tholen [74], Janelidze [142], Davey-Priestley [68], Marx [187, Fig.1.2 (p.12)
and §2.2 (... “duality theory”)] and Mikulds [195, §1.3 “Bridge between...” (p.18)].
Several examples for application of duality theories and similar algebraic ideas in
physics can be found in Shafarevich [238] cf. e.g. Example 2 in §21 or Example 8
in §5, or the parts on groups of symmetry and laws of nature, or on elementary
particles and group representations in §18 item E, or the Galois theory of linear
differential equations in §18 item B.

The study of duality theories is an active, fruitful and steadily growing branch of
mathematics and mathematical physics nowadays. To illustrate this we mention only
(i-v) below. (i) The duality between not-necessarily normal Boolean algebras with
operators (non-normal BAQO’s for short) on the one side and partial Kripke-frames on
the other was discovered only recently'?! cf. Madardsz [171]. This duality extends
to a duality for non-normal modal logics with modalities of higher ranks. (Cf. e.g.
Marx-Venema [189] or Blackburn et at. [48] for the latter.) (ii) The results in the very
recent Hirsch-Hodkinson book [135] contains new developments on dualities under
the name “representation theorems”. (iii) The recent duality paper Goldblatt [109].
(iv) Makkai’s duality for ultra-categories and first-order-logic theories [179]. (v) As a

L118We note the following connection between the Fourier transform and the Laplace transform.
For f € "BRUBR welet fO=(f[+*R)U(0: 0>z €R); ie.

0 ifz<0
(@) = { flz) else.

Assume the Fourier transform F(f°) exists. Then L(f) exists and L(f)(z) = F(f°)(i - z), for
x € TR where i = /—1.

H19The notions of “categorification” and “categorified version” are introduced in works of Baez
and Baez-Dolan in connection with applying category theory in physics.

1120Typical examples for this are e.g. Lawvere [160], Mac Lane [168] (but almost all the remaining
references say this with differences only in emphasis).

H21hyt already receives applications e.g. in connection with partial correctness of programs

i
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further illustration that duality theories are dynamically evolving with applications
in physics, we include here a small sample of further references: Stinespring [241],
Sankaran [234], Joyal-Street [150], Schauenburg [235], Gootman-Lazar [110].

As we indicated in Remark 6.6.61 item (II), footnote 1077 on p.1079 the applica-
tion areas range from geometry, analysis, algebra, through to sheaves, computability,
logic and other things.

6.6.7 Algebraic Logic as a duality theory, in analogy with the ones in
the present work

There is a methodological connection here with algebraic logic (for the latter cf. e.g.
Andréka-Németi-Sain [30]), as follows.

In algebraic logic, a logical system £ is a tuple £ = (Fm,...,F) which, in some
sense, is close to a certain intuitive conception of logic. Then a function Alg is
defined which to each logic £ associates a class Alg(L) of algebras. The idea is that
Alg(L) is a mathematically more streamlined object than £, while £ is closer to a
certain intuition. Therefore it is worthwhile to develop a so called duality theory
“Logical systems” — “Classes of algebras” which enables us to “translate” problems
and results in both directions cf. Andréka-Németi-Sain [30].

For discussing the case of our present theory, let G and M be the functions as
defined above. Then our frame models 9 are in analogy with logical systems L,

M 7+ Goy is in analogy with the function £ — Alg(£) and M is in analogy with the
construction of a logical system from a class of algebras (which we did not recall from
Algebraic Logic). Indeed, as in the case of algebraic logic, 90 is also close to a certain
intuitive picture of bodies, motion, observation etc, while Ggy is a mathematically
more streamlined object. (Just as our geometries Bgy (M € Mod(7Th)) form a
category the natural way, the same applies to the Alg(L)’s [for £ € Logics|. le.
the Alg(L)’s form a category.) In this connection cf. the observational/theoretical
distinction in the introduction to the present chapter, e.g. p.774.

To pursue the analogy, for many logics, Alg(L£) is a class of cylindric algebras (e.g.
this is the case for classical first-order logic). It is customary to investigate “reducts”
of Alg(L) e.g. a certain reduct of Alg(L) is a class of Boolean algebras, while another
is a class of distributive lattices. The experience is that investigating these reducts
helps us in understanding the behavior of Alg(£) and even the original object L itself.
In analogous manner, in relativity theory it seems to be interesting to investigate
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reducts of Bgy one &3, = (Mn, L; LT LF" 1° €, <, Bw, 1., T) of which is obtained
by omitting g and eq while another one &%, = (Mn, L; L', L** L% €, <, Bw, 1,) is
obtained by omitting (or forgetting) g, 7 and eq.

A point to make here is the observation that none of the two worlds (that £
and that of Alg(L)) is better than the other. The useful and illuminating thing
is that we can move between the two (without making one superior to the other).
Similar observation applies here to 9 and ®gy, the important thing is that we can
reconstruct one from the other (i.e. move between them) without thinking that one
is superior and the other should be forgotten forever.

Applications of duality theories to definability theory (as used in the present
work) are e.g. in Madardsz [173], [170], [169], Madarasz-Sayed [178], Hoogland [138].

Remark 6.6.87 (On representation theorems, Field’s book “Science with-
out numbers” [85]:) Duality theories usually involve special kinds of results called
representation theorems. E.g. Stone duality theory'!'?? (between Boolean algebras
and certain topological spaces), implies that every “abstract” Boolean algebra is
representable as a concrete Boolean algebra of sets (with real intersection etc. as its
operations).!?3

A more complete version of our duality theory between relativistic models
Mod(Th) and geometries Ge(Th) will also involve such kinds of representation the-
orems, among other things.

We are pointing this out here e.g. because Field’s book [85] suggests using repre-
sentation theorems for studying the logical (and philosophical) connections between
so called “purely” physical theories on the one hand and mathematical theories
on the other hand. (To be more precise instead of “mathematical theories” we
should have said something like “mathematized physical theories”.) In this con-
nection we note that statements like Facts 6.6.21, 6.6.25, 6.6.28 (pp. 1041-1044)
stating that certain “synthetic geometries” are representable as “analytic geome-
tries”, i.e. (Points, Lines; €, ...) type geometries satisfying certain axioms are rep-
resentable over some field (or division ring) are also called representation theorems,
cf. Field [85] and Tarski’s school of logical approach to geometry, cf. [237].

H220f, pp. 1015, 1019 for Stone duality theory.

123Recall that on p.787 we distinguished concrete classes of structures like Boolean set algebras
and abstract classes of structures like the axiomatic class of Boolean algebras. Representation
theorems can often be interpreted as saying that an abstract, axiomatically defined class can
be “represented” by a certain concrete class, i.e. “Abstract class”=I“Concrete class”. Cf. e.g.
Németi [206, Remark 2 (finitization)] for more on these ideas (abstract class, concrete class, rep-
resentation theorems).
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The connections between our duality theories, representation theorems, adjoint
functors and the subject of the logical connections between physical and mathe-
matical theories will be further discussed in a later work related to the present one.
But we emphasize already here the following: Duality theories, adjoint situations,
representation theorems are different words for the same thing. One uses different
words for putting the emphasis on different aspects of the (same) subject.!'?* Ga-
lois theories are special versions of the above things!'?> where groups of symmetries
connected with hierarchy of levels of ontology are emphasized.''?® Galois connec-
tions represent a more abstract unifying view of all the above (and are very strongly
related to the subjects listed on pp. 1096-1105, e.g “flexible isomorphisms”, “quasi-
inverse”, cf. also Remark 6.6.4).

<

6.6.8 On potential laws of nature, characterizing our symmetry axioms

Let us turn to separating out the law-like formulas from Fm(9M), i.e. to distin-
guish the potential laws (of nature) from the “potential factual statements” in the
language Fm(9) of our observational models 9. (We discussed this goal in the
introduction to Chapter 6, i.e. in §6.1 pp. 777-778).'"2" We will do all this relative
to some (arbitrary but fixed) theory Th C Fm(9t). We suggest that before reading
this sub-section the reader re-reads pp. 777-778 (beginning with the title “Potential
laws ...”) in the introduction of the present chapter.

Throughout this sub-section we assume Ge(Th) is definable over Mod(Th). This

is actually true by Theorems 6.3.22, 6.3.23 (p.961), under some conditions on Th. We
could work with Ge'(Th) or Ge"(Th) and then we would need much weaker conditions

124Baez [37], too, treats duality theories, representation theorems and adjointness as belonging
together. He also writes about these concepts being important for physics.

1125 qyality theories etc.

L126Tt might be of interest to compare the mathematically oriented Galois theories mentioned
herein (e.g. that of fields and of cylindric algebras) with the physics oriented considerations on
groups of symmetries and levels of (physical) ontology.

H27The distinction between potential laws and potential contingent (i.e. accidental or factual)
statements is not an absolute one. Anyway, here we are outlining only the first steps in the de-
velopment of a model-theoretic or logical theory of the law-like/fact-like distinction. Cf. lawlike
generalization on p.423 of the philosophical dictionary [34].
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on Th (practically nothing) cf. e.g. Thm.6.3.24 (p.962). We leave generalizations in
this direction to the interested reader.

Definition 6.6.88 Mod(7Th)" denotes the definitional expansion
Mod(Th)" := { (M, Bgy, auxiliaries) : IM € Mod(Th) }28

of Mod(Th) without taking reducts, where for “auxiliaries” cf. p.964 under the
name “auxiliary relations”.
<

Notation: Throughout the present sub-section F'm(90t) denotes our frame language
(for relativity), Fm(®gy) denotes the language of observer independent geometries,
and Fm(9M") denotes the language of Mod(7Th)* defined in Def.6.6.88 above.

<

By Thm.6.3.27 (second translation theorem) p.965 there is a translation mapping
Tr: Fm(IM*) — Fm (M)
and formulas code;(z, Z) such that
(%) Mod(Th)* &= code;(z,z) — [¢(x,2) + Tr(v)(z,z)]'"?*°

as indicated in Thm.6.3.27, p.965. Intuitively, (x) means that Tr(¢) is a meaning-
preserving translation of ¢ (to the narrower language of 9) while code;(x, Z) tells
us how the free variables of 1 are represented in Tr(v)).

Our intuition is the following. From our observation-oriented model 9t we de-
fined a theoretical super-structure!'3? &gy built up from more theoretical concepts
(than the parts of 9). Now, if a formula ¢(z) € Fm(9) can be expressed in the
language Fm(®gy) of this theoretical structure Ggy the chances are better for ¢(z)
being a potential law (as compared to the case when (%) is not expressible in the
[theoretical] language of &gy). The idea is that if a statement ¢(x) can be formu-
lated using (and involving) theoretical concepts only then, in some sense, it will be

H28We note that the common part of the vocabularies of 9t and &gy consists of the sort symbol
F and relation/function symbols +, -, <. Therefore in Mod(Th)* we have only one copy of these
things.

129N\ ore generally, 9 may have more than one variables of sort not available in 9. Let these
be z,y. Then Mod(Th)" | [code;(z,z) A codej(y,y)] — [¥(z,y,2) ¢ Tr@W)(z,y,2)].
Similarly for {z,y,u,...} in place of {z,y}. See Thm.6.3.27 for a general formulation.

H30Cf. Friedman [90] § VL3 (p.236) under the title “Theoretical Structure and Theoretical
Unification”.
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like what one would intuitivelly call a “theoretical statement” like “all bodies fall”
or “electrons repel each others”. Such “theoretical statements” have a better chance
for being potential laws of nature than non-theoretical statements like e.g. “there
are 3 apples in my basket” or “observer k sees 3 inertial bodies on life-line ¢”, or
“there are 3247 ants in the cellar of our neighbor lady”.

Definition 6.6.89 Let Th be fixed, ¢(z) € Fm(9M). We call ¢(z) a Th-potential
law (of nature) iff there is a formula ¢'(z') € Fm(®gy) in the language of &gy such
that

Mod(Th)* = code(z,7') — [¢(z) ¢ Tr(¢')(@)]-

Here code(Z, ') abbreviates the statement expressible by the formulas code; that
those variables in Z which do not belong to the sorts of &gy are replaced by their
codes in 2’ (while the common variables are left unchanged).

<

Intuitively, the above definition utilizes the fact that &gy is definable over 97, hence
the ingredients (relation symbols, sorts etc) of Bgy can be regarded as abbreviations
or defined terms in the language of 9. In other words, the language Fm(®gy) of
®gn can be regarded as a (perhaps complicatedly defined) sublanguage of Fm(9).
Now, a statement ¢(Z) (about the entities Z) is called potential law iff it can be
expressed in the sublanguage of Fm(9) corresponding to &gy.

Certainly, those formulas ¢(Z) € Fm(9) which can be expressed in the
sublanguage!'3! Fm(®gy) built up from the theoretical concepts constituting the
vocabulary of &gy are more “theoretical”, in some sense, than the rest of the formu-
las in F'm(9N). Our above definition of potential laws expresses our faith that the
more theoretical statements are more likely to turn out to be potential laws (than
the less theoretical ones).

If instead of Th-potential law we write simply potential law then we assume that
Th is implicitly understood, or that Th is one of the general theories for which we
proved that Ge(7Th) is definable over Mod(Th).

We note that our law-like/fact-like distinction could be based on our (G, M)-
duality theory

g
Mod(Th) — Ge(Th),
M

elaborated in §6.6, as follows. Roughly ¢(Z) will be regarded a potential law if its
truth-value does not change when passing from 9t to (G o M)(9M). Le. potential

31 B'm(Bgn) is the language of the geometry &gy. We can regard it as a sublanguage of Fm (90)
only because ®gy is definable over .
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laws are those formulas which are not sensitive to the change between 9t and the
model (G o M)(OM) “recovered” from the geometry G(9M) associated to M. This
duality theory based version might be more suitable for further refinement.

Assume Th is strong enough for ensuring the existence of a “canonical” partial
homomorphism

f:9—= (G oM)(M)

for each 9t € Mod(Th). Further assume f is defined on Obs™ U Ph™. What we
understand by f being canonical is explained in Def.6.6.78 (reflection ...) p.1090
and in Fig.330 (p.1092), i.e. by f being canonical we mean that f is a kind of
M-reflection “arrow”, cf. Fig.310 (p.1007) together with Figures 330 (p.1092), 331
(p.1093).1132  In some sense, the homomorphism f : 9 — (...) intends to
“Illustrate” how (G o M) modifies the original 9, i.e. where can we find the original
elements of 9 in the modified model (G o M)(IM).

Assume ¢(z) € Fm(9M) is such that f is defined over all the possible values of Z
in 91133 Consider (¥x) below.

For all evaluations a of Z in 9 such that!'®* Rng(a) C Dom(f),

() M pla] = (Go M) £ plao [l

Now, we could call ¢(z) € Fm(9M) a Th-potential law (in the (G, M)-sense) if (%*)
holds for all 9t € Mod(Th). Let us notice that this new, (G, M)-oriented definition
of Th-potential laws is more-or less equivalent with our first, “translation mapping
(i.e. Tr)”-oriented version. We leave the task of comparing the mathematical content
of the two versions to the interested reader.

* * *

Now, we can use our definition of potential laws for formulating Finstein’s SPR
as saying that no inertial observers m, k € Obs are distinguishable by Th-potential
laws. Le. for any Th-potential law ¢(m) we claim

(Vm, k € Obs) [p(m) < (k) ].

U32Cf, the construction of hopg U hpp : (Obs U Ph)™ —s B(9oMIM) in the outline of proof for
Thm.6.6.46 above statement (x) on p.1062, for the existence of f.

133 A more formal version of this condition on f and z is the Rng(a) C Dom(f) part in (%) below.
H134Here we think of an evaluation a as a function from the set of variables into the universe of
.

135Gince Rng(a) C Dom(f), @o f is an evaluation again.
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We leave comparing the above formalized version of Einstein’s SPR with both §6.2.8
(“Characterizing ... ®g”) and our symmetry axioms (choosing appropriate ver-
sions of Th) as a future research task. Also we leave pursuing further the potential
law /potential fact distinction as a future task. Here we wanted to indicate that
having our theoretical super-structure &gy definable over the more observationally
oriented 9 gives us a handle on beginning to classify the formulas in Fm(9%) ac-
cording to the more law-like/more fact-like distinction.

6.6.9 Geometric dualities, definability, Godel incompleteness

The present section is related to the subject matter of §3.8 (“Making Basax com-
plete...”, pp.294-346), to the “relativity and Gddel incompleteness papers Andréka-
Madardsz-Németi [16], [17], and to the “Accelerated observers” materials, e.g. the
Accelerated Observers Chapter in Andréka-Madardsz-Németi-Sagi-Sain [24], and
[127], [23].

Notation 6.6.90 For any axiom system Axi, we write T(Axi) for the
theory generated by Axi. Le.

T(Axi) :% Th(Mod(Axi)).
<

Let ®&j; be defined exactly as &gy was defined in Def.6.2.2 (p.787) with the
following changes.

LT UIPPULS U “ife-lines of inertial bodies”; i.e.

L ITULPPULSU{{e e Mn:be e} : b€ Ib}.

Now,
&5 & (Mn, Fy, L, L", L™ 15, €, <, Bw, L,, eq,9, ).

Le. &3, is obtained from &gy by including the life-lines of inertial bodies as extra
lines. This is in perfect harmony with our Ax3 (p.48) (or even Ax3q) which say
that the life-lines of inertial bodies are straight lines.

Instead of Bgy, we could have investigated &3y in the present chapter (Chap.6),
the changes would be inessential. Actually, the reader is invited to elaborate a
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version of the present chapter based on &g, in place of &gy. The only reason why
we chose &gy as a basis of the present chapter (instead of &};) was to make it
shorter. However, the nature of the present sub-section (§6.6.9) is such that &}y is
more suitable as a basis for it than &gy. So we will concentrate on &gy instead of
By in the present sub-section. Since the differences are small, to avoid complicated,
heavy notation, we will simply pretend in the present sub-section that &gy := &3,
(i.e. that Bgy denotes B5;) and that all the results, definitions etc. of the present
chapter are about &gy.

CONVENTION 6.6.91 In the present sub-section (§6.6.9) we will pretend that
Gop := Gy, hence in particular, that the life-lines of inertial bodies are lines in Ggy.
This convention is valid only inside this sub-section, after the end of this sub-section
Bgn will retain its original definition. Whenever the present convention would lead
to inconsistencies, we leave it to context and the reader’s common sense to eliminate
these inconsistencies.

We note that besides the present §6.6.9 in later investigations too (especially
after Chapter 7) &5, will be superior to gy. Hence the definition of &3, lives after
the present sub-section. (The role of Bgy will be to keep discussions shorter. So,
after §6.6.9, if a discussion is shorter for &gy than for &g, and it is obvious how to
generalize it to &3y, then we will use Hgy instead of the more proper &3;.)

* Kk X

The purpose of this sub-section is threefold:

(i) We saw, e.g. in Thm.6.6.13 (p.1031), that the “world” of observation ori-
ented models, the 9’s, and the world of observer-independent geometries, the
®&’s, are definitionally equivalent (under some assumptions). From [16, 17],
and/or from the relevant part of the present work we know that Godel’s in-
completeness theorems do apply to many of the 9t’s.1'3 In brief, the limi-
tative theorems''®” of metamathematics do apply to the “world” of the 90s.

1136Hence e.g. T(Basax) is undecidable, moreover T(Basax + some extra axioms) is
hereditarily undecidable, it admits a formulation Con(Basax + extra) of its own consistency
etc. The techniques of proving this (formulatizability of own consistency) ensure that the Liar
Paradox expressing “this sentence is not provable from (Basax + extra)” can be formulated in
“Basax + extra”, which in turn leads to strong hereditary incompleteness results. If someone
wants to make this theory complete, then he will probably try by adding the Liar Paradox
to (Basax + extra) as a new axiom. But this spectacularly fails, because then there will be
a new incarnation of the “Liar” saying “this sentence is not provable from (Basax + extra +
“Liar formulated for (Basax + extra)”). Etc.

1137See e.g. Bell-Machover [44, Chapter 7, “Logic-limitative results”] or Chaitin [58].
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At the same time, one vaguely remembers from logic courses, that Godel’s
incompleteness theorems have a tendency of not being applicable to geometric
structures and in this respect geometries have a tendency of behaving similarly
to real-closed fields (or fR itself) in that they usually do not satisfy the condi-
tions of Godel’s incompleteness theorems (hence, these theorems do not apply
to these structures).!'®® Cf. e.g. Goldbatt [108, p.169 lines 11-10 bottom up]
where it is stated that the theory of Minkowskian geometry over fR is decid-
able. In particular, there are natural frame-theories Th O Specrel, such that
Godel’s incompleteness theorems apply to Th but do not apply to Ge(Th) or
to M[Ge(Th)] = (M o G)[Mod(Th)]. All these lead to the following question:
How is it possible that two “worlds” are equivalent and Godel’s theorems ap-
ply to one of them but not to the other? Similarly, we could ask, why does the
(G, M)-duality not “import” Gddel incompleteness properties from the side (or
“world”) of the M’s to the side (or “world”) of the geometries, the Ggy’s.1140
(Below we will see that the answer is in the conditions of our theorems, and
that the just outlined “tension”!'*! can lead to interesting observations.)

(ii) Can we extend our (G, M)-duality to handling non-inertial bodies (or at least
non-inertial observers) well? (Le. can we extend our duality such that non-
inertial bodies or observers would not necessarily disappear from (GoM)(9M)?)

(iii) We will briefly ask ourselves whether the life-lines of some non-inertial bodies
are definable in Ge(Th), for nice enough choices of Th.

Before going on, we note that the above three issues (i)-(iii) are interconnected
as follows: If all non-inertial bodies of 9 would reappear in G o M(9M) ''*? then

1381 passing we note that if our field § is strange enough (i.e. is far from being a real-closed
field) then we can loose decidability of e.g. Th(Mink(4,F)). Cf. [17]. But this is not too relevant
to our present concerns, so we do not discuss this and we pretend that Th(F) is always decidable.
Although in the typical well behaved cases Godel’s theorems do not apply to B9y whenever § is
a real-closed field,''3? we note that there are exotic exceptions. E.g. we conjecture that either for
the geometry Goy constructed in the proof of Thm.6.2.24 (p.830) Gddel’s incompleteness theorems
do apply, or one can construct an analogous &gy for which Gédel’s incompleteness theorems apply.
We leave solving this conjecture as a future exercise for the reader.

H39F, g. in Minkowskian geometries this is always so (i.e. [§ is real-closed] = [Gddel’s incom-
pleteness theorems do not apply to Mink(F)]), cf. e.g. Goldblatt [108, p.169] for this.

L400f course, there are structures in Ge(Th) to which the conditions of Gédel’s theorems do
apply, but they are the exceptional ones, in some sense (from the physical point of view they are
somewhat strange); while on the Mod(Th) side it is much more typical, frequent (and natural) to
have these conditions satisfied, cf. Andréka-Madardsz-Németi [16],[17] (e.g. having a periodically
moving body is sufficient).

1141By tension we mean something which looks like a contradiction (but is not one).

1142 This would be a positive answer to (ii).
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probably all non-inertial bodies of 90t would be (at least parametrically) definable
in G(9). (This would answer item (iii).) But, if this would be the case, then
applicability of Godel’s incompleteness theorems for 99t would probably be inherited
by G(9M),!1*3 because non-inertial bodies of 9 played an essential role in applying
these theorems to 9 in [16], [17]. So items (i)-(iii) are interconnected.

A perspective on items (i)-(iii): In connection with item (i), in Statement (*)
below, we will see that (M o G) tends to streamline our models, it tends to make
our originally complicated, “untidy” 99 into a “streamlined”, “tidy”, and smooth
variant (M o G)(9M) of the original M. As a byproduct, it may happen that 90t
satisfies the conditions of Godel’s incompleteness theorems but (M o G)(9) does
not.

Now, in items (ii), (iii) we ask ourselves: Is this good for us or is this bad for us?
Roughly, the answer will be the following. At the present level of investigations this
is not bad at all. However, in later generalizations toward general relativity, e.g. in
the theory of accelerated observers''** this might create inconveniencies (which we
will have to be careful to avoid).

Let us turn to discussing (some of) the questions (i)-(iii) above.

In §6.6.3 we had a proposition saying, roughly, that the operator M o G makes
our possibly complicated and “inhomogeneous” 4> models 90t (which might contain
random features) symmetric, “tidy” and “smooth”, e.g.

(%) (MoG)M) E AxQ + Ax(ext).!146

In the “Godel incompleteness” papers Andréka-Madardsz-Németi [16], [17] related
to the present work!!4”, we saw that, roughly, such “smooth” models usually have a
decidable theory to which Gédel’s incompleteness theorems do not apply (assuming

1433t least in most of the cases (i.e. when non-inertial bodies were responsible for

“incompleteness”)

H44CE. e.g. [16], [17], [23], [24, Chap. “Accelerated Observers”], [127], [196].

1145We mean here that on some (but not all) life-lines there may be many indistinguishable ob-
servers in a random manner, and that there may be many non inertial bodies with complicated
life-lines in one part of 9% but not in the another etc.

11461 passing we note that many other duality theories tend to do this “streamlining” of their
objects. E.g. in the case of Galois connections (pp. 1078-1081) if p € P then g(f(p)) is the
“closure” of p and usually has more symmetry properties than p. A similar remark applies to the
(Mod, Th)-duality on p.1026 where to the possibly “untidy” or “random” ¥ C Fm, the streamlined
Th(Mod(Y)) is associated (which is closed under “E=").

H47¢f. also the Godel incompleteness chapter of this work (§7)
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T is a real-closed field).!148

Though (%) can be viewed as a positive result, in a certain other sense it will
turn out to be a limitative one, cf. e.g. Thm.6.6.95, Conj.6.6.97.

Independently of this, we saw in §§ 6.6.3, 6.6.4 that the function

M : Ge(Th) — Mod(Th)

is a first-order definable meta-function (assuming Th is strong enough), i.e. that
M(®) is uniformly first-order definable over &. Moreover Mod(7h) is definable
over Ge(Th) if Th is strong enough, cf. Theorems 6.6.12, 6.6.13 and Prop.6.6.44.

First-order definability of M(®) over & includes the claim that (intuitively
speaking) every observer m of M(®) is first-order definable from & by using n + 1
parameters. Namely, each m is definable by using (as parameters) n + 1 points
0, €, - - -, 1 satisfying (a)—(f) on p.1054. (This kind of definability is called para-
metrical definability in standard mathematical logic, cf. §6.3 [pp. 950, 935].)

Summing up, every observer of M(®) is parametrically definable in . Moreover

(xx)  every body of M(®) is parametrically definable in &.

All the bodies in M(®) are inertial. But in our relativity theories like e.g.
(Basax+Ax(w)") non-inertial bodies also play some important role, cf. e.g. the
formalization of the Twin Paradox in §2 (p.38 and Figure 5 on p.38) and the contin-
uation of this work on accelerated observers [23], the accelerated observers chapter
in [24], [127], and the related discussions in the present work.

Therefore, as we already said, the following question naturally comes up: Can
we define (by first-order means) strongly non-inertial bodies*'*® from &? Further,
can we extend our duality theory

G : Mod(Th) —» Ge(Th), M : Ge(Th) — Mod(Th)

by possibly strengthening 7Th (and improving the definition of M) such that it
would “handle” strongly non-inertial bodies too? We will see that the answer is
no, at least if we want to keep our geometries B9y at least remotely similar to the
geometries considered in the literature, e.g. if we want to stick with the three sorts

148 As we already mentioned in connection with geometries (in footnote 1138), there might be
exceptional models M which are “smooth” in the above sense with §™ = %R and still have an
undecidable theory. Cf. Andréka et al. [16, Thm.9(iii)].

H49CF. Def.6.6.96 for strongly non-inertial bodies.
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Points, Lines and Quantities (i.e. F) only.'’>® On the other hand, we will indicate in
Remark 6.6.92 that a positive answer is possible in the framework of first-order logic
on the expense of making our structures richer than “geometries”. Since accelerated
observers with constant acceleration will play an important role later in generalizing
our theory,**! we note the following. (Life-lines of) accelerated bodies with constant
acceleration are parametrically definable in most of our geometries & € Ge(Pax).

Remark 6.6.92 We note that to recover strongly non-inertial bodies from &gy
we will need to add, among others, an extra sort representing, roughly, a possi-
bly nonstandard model of Peano’s Arithmetic as it was done in the development
of nonstandard temporal logics and nonstandard dynamic logic cf. e.g. Sain [231],
Andréka-Goranko et al. [14] and the references therein. We plan to do such things
in a later work related to the present one. Such developments will also represent
connections with nonstandard analysis.!'®> We note that in this approach we will
add the following extra sorts to &. (i) A sort usually denoted as I which represents
functions from the sort F; into itself. IL.e. I C FF. (ii) Further, a binary operation
value : I x F — F such that for f € I, value(f,z) € F is considered to be the
value “f(z)” for x € F. (iii) A unary relation N C F which plays the role of
the positive integer elements of F, e.g. 0,1 € N and N is closed under +, - of Fy,
moreover (N,0,1,+,-) is a model of Peano’s Arithmetic. (iv) We will postulate the
comprehension axiom-schema for I saying that all functions f : F — F which are
definable in the language of the so expanded model & appear as elements of . I.e.
all first-order definable!!®? functions f : F — F show up in I, roughly f € I. The
purpose of all this machinery is to enable us to express in first-order logic (i.e. in the
first-order language of the so expanded &) the things which we want to express in
order to develop our theory of, say, accelerated observers (and/or motion in general).
This approach will be described in a later continuation of the present work.!1%*

<
Notation 6.6.93 Mink(n,rc) denotes the class
I{Mink(n,§) : § is a real-closed field!1*°}

or anything in the spirit of (Points, Lines, Planes, Quantities)-like arrangement to which e.g.
our definition of &3, does conform

1151ip the direction of general relativity theory

1152 This would mean a connection between the presently discussed kind of “logic-based relativity”
and nonstandard analysis.

1153We mean definable in the many-sorted structure (®, I, value, etc.).

1154We note that at this point we did not explain why and how adding such extra sorts including
an extra arithmetical sort will help. The reader does not have to see why this will work, all
this will be elaborated in a later work. (But consulting Sain [231], Andréka-Goranko-et al [14],

Montague [198], Gallin [96] may give useful hints.)

1150
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of all n-dimensional Minkowskian geometries over real-closed fields.
<

Items 6.6.95, 6.6.97 below can be interpreted as saying that not all important
aspects of (special) relativity can be recovered from the geometries ®gy (or from
Minkowskian geometry).

A body b € B is called periodically moving, or periodical for short, if there is
m € Obs such that ¢r,,(b) can be interpreted as a function t¢r,,(b) : t — "~1F and
this function is periodical. See Figure 332. For simplicity we will use the following
simpler definition.

3

Figure 332: b is a periodically moving body in m’s world-view.

Definition 6.6.94 Let 9T be fixed. Body b is called periodical iff there is m € Obs
such that letting H := ¢t N ¢r,,(b) the set H C F is discrete!'® and cofinal in §, and
for any two neighboring pairs a,b,a’, b’ € H we have |b —a| = |[b' — a/| (where a and
b are neighbors'®” and the same holds for o', b').

<

Intuitively, the following theorem says that life-lines of periodical bodies are not
definable in our geometries like Ge(Bax). Recall that Ax(rc) is the usual axiom
system for real-closed fields defined on p.301 in §3.8.

135Cf. p.301 for the notion of real-closed fields.

1156WWe use the language of §. H is discrete if any point in H has a successor and a predecessor
in H unless it is an endpoint of H.

15T e, [a < band (Afc € H) a < c < b).
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THEOREM 6.6.95

(i) Let n > 1 and consider the class Mink(n,rc) of Minkowskian geometries.

Then, there exists M € Mod(Basax + Ax(w)®) such that gy = (Mn, F,...) €
Mink(n, rc) and for no periodical body b of 9N is the life-line {e € Mn : b € e }
of b definable parametrically in the geometry Ggy. 1158

(ii) Statement (i) remains true if we replace Mink(n,rc) by any one of our dis-
tinguished classes Ge(Th) of geometries. (Here Th ranges over our hierarchy
Bax~,Bax, ..., Basax).

Outline of proof: In Andréka-Madarasz-Németi [16], [17] as well as in the “decid-
ability ... Godel incompleteness” part of this work we will see that if we add the
existence of a periodical body as an extra axiom (this extra axiom is denoted by v
there) to any one of our distinguished theories Th, then the so obtained (Th + v)
becomes essentially undecidable as a theory, it satisfies the conditions of Gdodel’s
incompleteness theorems, hence the conclusions of Godel’s incompleteness theorems
(both of them) apply to the theory (Th + v).11%?

Therefore, if a periodical body was parametrically definable in Mod(Th) then
this would render Th(Mod(7h)) essentially undecidable etc. (The parameters [in
our notion of definability] cause no problem in this argument because we can use
quantifiers in our language to make the parameters “disappear” when translating
number theoretic formulas to formulas in the language of Mod(Th). This technique
[for getting rid of the parameters] was used e.g. in Németi [205]).

Having seen that Mod(Th) would become essentially undecidable if formula v was
added to it, one can push the same argument through to show that Ge(7Th) would
become hereditarily undecidable if v was expressible in the language of Ge(Th).
Since we know that Ge(Th+(F is a real-closed field)) can be extended to a decidable
consistent theory, cf. the “Making Basax complete ...” section, i.e. §3.8 pp.294-346,
we conclude that v cannot be expressible in the first-order language of Ge(7Th). But

U587 e, for no finite number of parameters pi, ..., px from Ggy (i.e. from Uv(Sgy) = MnU FUL)
is the life-line of any periodical body of 9 (first-order) definable in &gy by using p1,...,pr as
parameters. That is, let p = (p1,...,pr). Then no first-order formula ¢(z,p) in the language of
Ggn defines the trace {e € Mn : b € e} of a periodical body b of 9.

1159This can be seen by interpreting Robinson’s arithmetic denoted by R in Monk [197, Def.14.9,
p.247] in the theory (Th +v). Note that this version R of arithmetic is much weaker than Peano’s
arithmetic, in particular, it involves no induction axiom schema. Hereditary undecidability etc.
of R is in Thm.16.1, p.280 of Monk [197]. For more detail on (Th 4 v) cf. Andréka-Madardsz-
Németi [17].
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this implies that no periodical body can be parametrically definable!'® in Ge(Th).
This finishes the proof. 1

Definition 6.6.96 Let 9 be fixed. A body b is called strongly non-inertial iff there
is an observer m such that ¢r,,(b) Nt is a nonempty set and is gapy in the following
sense:

(x) (Vpetrn,(®)nNt)Fg,ret)(pi<q <t AN q&trn(b) A r € tr,(b)).'15!
<

If a body b is periodical (in the sense of Def.6.6.94) then it is strongly non-inertial.

Intuitively, the next conjecture says that the life-lines of strongly non-inertial
bodies are not definable in our geometries like e.g. Ge(Bax).

Conjecture 6.6.97 Theorem 6.6.95 remains true for strongly non inertial bodies
in place of periodical ones.

Possible idea of proof: We choose a model 9 € Mod(Th) such that g™ is a
real-closed field and such that gy is the Minkowskian geometry over %, up to
isomorphism. Then ®gy is definable over . Assume that the life-line of a strongly
non-inertial body b of 90 is parametrically definable over &gy. Then (x) above holds
for some m € Obs. Let this m be fixed. Then the intersection {e € Mn : bym € e }
of the life-lines of b and m is parametrically definable over &gy by a formula ¢(z, p)
with parameters p. Since &gy is definable over ™, there is a definitional expansion
Gy of T such that Bgy is a reduct of & Now, by Thm.6.3.27 (p.965) there
is a translation mapping Tr : Fm(&g,) — Fm(F™) such that the conclusion of
Thm.6.3.27 holds for this Tr. Now, if we apply this Tr to our formula ¢(z,p)
then we obtain a new formula which defines a relation on F parametrically. We
conjecture that from this, one can obtain a further formula which defines a subset
H of 3" parametrically which is gapy in the sense of Def.6.6.96 immediately above.
Now, to such a gapy H one can apply the proof of Lemma 6.2.28 (p.834) to derive
a contradiction. Namely, by the proof of Lemma 6.2.28 it follows that H is not
parametrically definable over ™. (The proof of Lemma 6.2.28 goes through for the
present case if one uses arbitrary polynomials in the proof and not only polynomials

1160Here, we mean uniform definability for the whole class Ge(Th). However one can refine the
present argument to prove that there is a geometry & € Ge(Th) in which no such body is para-
metrically definable.

H61Cf. Def.6.2.27 (p.834) and note that though the two definitions are similar they are not the
same.
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with rational coefficients and if one uses “gapy” in the sense of Def.6.6.96 above and
not in the sense of Def.6.2.27).
<

Remark 6.6.98 (On Gddel’s logic proofs, relativity proof, and Escher:)
Some of Escher’s pictures can be associated both to Godel’s incompleteness proof
(logic) and to his rotating universe construction for general relativity. So these two
seemingly distant creations of Godel seem to be more closely related than is usually
acknowledged in the literature. But cf. Dawson [73, pp. 176-177] for a positive
exception (where the “two Gddel’s” are connected). See Figure 333. For Gdodel’s
rotating universe see Figure 355 on p.1208.

<

Items 6.6.95, 6.6.97 above seem to say that our duality theory
G : Mod(Th) — Ge(Th), M : Ge(Th) — Mod(Th)

cannot be easily extended to a duality theory consisting of some G* and M™ which
would satisfactorily handle periodically moving (or strongly non-inertial) bodies
present in the models 9 € Mod(7Th). Or in other words, the duality theory based
on G and M abstracts from strongly non-inertial bodies (and therefore also from
strongly non-inertial observers (!)), and this feature seems to be unavoidable in
view of items 6.6.95, 6.6.97. More precisely, this seems to be so unless we expand
our geometries in the “nonstandard dynamic logic” style mentioned/promised in
Remark 6.6.92 way above.

Let us return to answering items/questions (i)-(iii) on p.1112 close to the be-
ginning of this sub-section. The above discussion, theorem, etc. answer items (ii),
(iii)HGQ.

To answer (i), let us assume some nice, strong frame-theory''63 e.g. Tht &
Basax+Ax(w)+Ax(Triv)+Ax(]|)+Ax(v )+Ax(rc)+Ax(eqm)+Ax(eqtime).

Now, we are looking at Mod(7Th™) and at G*[Mod(Th™)] = {&}, : M E Th't}
where G* : Mod(Th) —s Ge(Th) with G*(9) % &, for all M. According to
the proofs in [16, 17], there are many models 9 = Th™ satisfying the conditions
of Godel’s incompleteness theorems. At the same time, &3, fails to satisfy the
conditions of Gédel’s theorems for many''%* choices of the above 9. The reason

11624+ least to some extent

1163The purpose of assuming such a theory is to avoid being side-tracked by some, more-or-less,
inessential detail.
1164We are inclined to write “for most choices”.
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Figure 333: Print Gallery, by M.C. Escher. Cf. Fig.334 for the “logic” of this
picture and for its connections with Godel’s proof. A key idea in Godel’s proof
is self reference: “this sentence is not provable” (a variant of the well-known Liar
paradox).
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depiction inclusion

Figure 334: A collapsed version of Fig.333 (i.e. of Escher’s Print Gallery).

for this is item (%) on p.1114 together with the fact that in Thm.10 of [16] we
used the presence of periodically moving bodies to prove the conditions of Godel’s
theorems (for models satisfying Th™). But the functor G* removes (or forgets) the
traces of such bodies. Hence the “periodical body method” in [16],[17] is no longer
applicable to the structure &};."'% Recall that here we pretend that the (G, M)-
duality is really some (G*, M*)-duality where G* corresponds to &3, defined on
p.1111 (beginning of §6.6.9) and M* matches G* the same way and spirit as M
matched G. In summary, we can say that the apparent paradox in (i) is caused by
the following. It is true that M o G(9M) is almost the same as 9 (hence almost
all properties of 9t should probably hold for M o G(9M)), but it is exactly that
remaining little difference between 9 and M o G(9M) which really matters in the
Godel incompleteness issue. Namely, (M o G) preserves all nice properties but it
forgets the non-inertial bodies. And it are exactly these bodies which are used in
the proof in [16], [17].1166

So this is why our (G, M)-duality or (G*, M*)-duality does not preserve the
Godel incompleteness properties of the structures involved.!'®” One still can ask

165 There are other “Godel incompleteness methods” in [16], but they are less important from the
physical point of view. (And even most of these are “killed” by the M o G-transition, with the
exception of one or two.) Anyway, these alternative methods from [16] are excluded now by our
choice of Th'.

1166 There were other incompleteness methods in [16], [17], but that is, so to speak, beside the
point here, for various reasons.

167 There are also similar minor effects, e.g. M oG makes Ax(ext) true which, by [16], eliminates
further possibilities of applicability of Gédel’s theorems, but to save space we do not discuss these
here.
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why the definitional equivalence theorem?!¢®

Mod(Th) =a Ge(Th)

does not export Godel incompleteness properties (e.g. hereditary undecidability)
from Mod(Th) to Ge(Th). The answer is simple: The condition of the just quoted
theorem (Thm.6.6.13) on Th excludes the kinds of applicability of Gidel’s incom-
pleteness theorems even to Mod(7Th) which we used in e.g. [16]. Indeed, it is indi-
cated in [16],[17] that AxQ, Ax(ext), Ax(v ), Ax(diswind), Ax(eqtime)''% are
all axioms working against satisfiability of the conditions of Gédel’s theorems. E.g.
AxQ excludes periodic (hence non-inertial) bodies.

Question for future research 6.6.99 Elaborate the present chapter (Chapter 6)
for &5, in place of Ggy. Note that this implies (among many other things) defining
two functors G*, M* such that they form a duality theory analogous to the present
(G, M)-duality etc.

Our next two sub-sections (6.6.10, 6.6.11) are related to section 6.7 which in
turn, is concerned with streamlining our relativistic geometry &gy (among others),
as was promised in the introduction.

6.6.10 Further connections between relativistic models and geometries

Let us return to the question, formulated at the beginning of this section of whether
we can reconstruct 9 from Bgy or from a reduct of Ggy. In the duality theory
developed in §§ 6.6.1-6.6.6 above we saw that 9 can be reconstructed from Bgy
(under some conditions on 9t). Below, we will look at the same question somewhat
differently. We will look at reduct geometries &%, and we will prove things which
might be interpreted as saying that 90t cannot be reconstructed from &&;. In this
form these sound like negative results. However, in the form we will state them
they will sound like positive results. Roughly speaking, assume we introduced the
notation Ge'(Th) = I{®, : M = Th}. Then for certain choices of Thy and Thy
we will state that

(%) Ge'(Thy) = Ge'(Thy);

1168Thm 6.6.13, p.1031

1169The condition of Thm.6.6.13 requires all these axioms to be provable from Th.

1123



(for certain choices of ¢). This might be interpreted as a representation result stating
that every geometry in Gei(Thl) is representable as a geometry of some Tho-model
(and vice-versa). Theorems of style (x) above can be read of from Fig.282 (p.863).

Intuitively, from a relativity theoretic point of view these results (of form (x))
can be used the following way. Consider certain kinds of thought-experiments the
characteristic feature of which is that they can be formulated in the language of &}j,.
Then a result of the type (x) above can be interpreted by saying that the relativity
theories Th, and Th, cannot be distinguished by thought-experiments of “type &”.
A result of this kind might be of interest e.g. when Th; is Reichenbachian version
of relativity like Reich(Basax) and Th, is something more “classical” like Basax,
cf. e.g. Theorems 6.6.107-6.6.110.

Below we will define several reducts &3, &5, of our relativistic geometry Sgy.
The physical motivation for looking at such reducts is given at the beginning of §6.6.4
on p.1069. The main idea is that at different times one may want to concentrate
at different aspects of the world, and later one might want to compare the results
and/or experiences so obtained. Concrete works on physics are listed in the preface
of Schutz [236] which indeed concentrate on different aspects of the world e.g. on
1., or on, <, or g. Some relatively significant physical conclusions (of the coming
investigation of &Y, ..., ®%;) are summarized on p.1147 at the end of item (2) of
§6.7.1.

Let us look at the geometry
Qﬁﬂﬁ = <MH, Fla La LT, LPha LSa g, <, BW, —Lra €q, g, T)

Recall that &, is obtained from &gy by forgetting g and T (hence also the universe
F;), but keeping all the rest, i.e.

o, = (Mn, L; LT LP" 15 €, <, Bw, 1,,eq),

cf. Def.6.6.53. Let

&L, & (Mn, L; L”, LP" 15, €, <, Bw, L,, T)

be obtained from &gy by forgetting eq and g. Let

62, & (Mn, L; L, L LS €, <, Bw, L,

be obtained from &, by forgetting the topology 7. Let
def

o, = (Mn, L% LT L™ €, <, Bw,T)
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be obtained from &3, by forgetting L% and L, and by replacing the universe L with
the universe L®, where L® = LT U L as defined on p.800. Let

def

Ggyp = (Mn, L% LT L €, <, Bw)
be obtained from &3, by forgetting the topology 7. Let

& & 6 = (Mn,Fy, L% L7, L, €, <, Bw, g%, TF)

be the Reichenbachian version of the geometry &gy defined on p.799.

Now, as we already said above, for various theories Thy, Thsy of relativity theory
(like Bax™, Reich(Bax), etc.) the question whether

(k%) (VO € Mod(Th,))[®iy = B, for some N € Mod(Th,)] with i € 6
is true, makes sense, and seems interesting for various choices of 7 and Thy, Ths.

Definition 6.6.100 Let Th be a set of formulas in our frame language. Let 7 € 6.
Then we define

def

Ge'(Th) := I{®}, : M = Th}.

In the style (x) above, (%) means
Ge'(Thy) C Ge'(Thy).

Next we state theorems of style (x) and (xx) above. The next ten theorems
say that if we restrict attention to certain reducts of our geometries then the
geometries associated to different choices of Th will coincide. The first four of
these theorems say that for certain choices of Th the ®9;-geometries of Th co-
incide with the ®%,-geometries of the symmetric versions of Th, i.e. Ge’(Th) =
Ge’(Th + some symmetry axioms).

In connection with the theorems below recall that, by Thm.6.2.98 (p.910),
in models of Flxbasax® + Ax(v ) + Ax(Triv;)~ almost all the symmetry
axioms are equivalent with one another assuming some auxiliary axioms and
n > 2, in particular Ax(syte) is equivalent with any one of Ax(symm),
Ax(speedtime), AxA1+Ax(eqtime), AxA2, AxO2 Ax(eqgspace), Ax(eqm),
Ax(w)’, Ax(w)”, Ax(w)*, Ax(w)™.

THEOREM 6.6.101 For any Th € { Basax, Newbasax, Flxbasax®} (i) and
(#) below hold.
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(i) Ge’(Th + Ax(v")) = Ge®(Th + Ax(V ) + Ax(syto)).
(ii) Assume, M € Mod(Th + Ax(v/ )). Then

By = B, for some M € Mod(Th + Ax(v ) + Ax(syto))-

The proof is available from Judit Madarasz. R

THEOREM 6.6.102 Assume
n > 2. Then for any Th € {Basax, Newbasax, lebasax@} and for any

Ax € {Ax(w)’, Ax(w)”, Ax(syto), Ax(symm), Ax(speedtime), AxA1 +
Ax(eqtime), AxA2, AxO2} (i) and (ii) below hold.

(i) Ge’(Th+ Ax(Triv,)~ + Ax(V )) = Ge°(Th + Ax(Triv) + Ax(v ) + Ax).
(ii) Assume 9 € Mod(Th + Ax(Triv,)~ + Ax(v/)). Then

By = BY, for some N € Mod(Th + Ax(Triv) + Ax(V/ ) + Ax).

The proof is available from Judit Madarasz. 1

THEOREM 6.6.103 Assume n > 2. Then (i) and (ii) below hold.
(i) Ge’(Basax + Ax(Triv,)~ + Ax(11) + Ax(v )) = Ge’(BaCo + Ax(V)).
(ii) Assume 9 € Mod(Basax + Ax(Triv,)~ + Ax(11) + Ax(V)). Then

Bop = B, for some N € Mod(BaCo + Ax(V ).

The proof is available from Judit Madarasz. 1
THEOREM 6.6.104 Assume n > 2. Then for any

Th € {Reich(Basax), Reich(Newbasax), Reich(Flxbasax)®} and
Ax € {R(Ax syto), R(Ax egsp), R*(Ax eqsp), R(sym) }

(1) and (ii) below hold.
(i) Ge’(Th + Ax(Triv)) = Ge’(Th + Ax(Triv) + Ax).
(ii) Assume M € Mod(Th + Ax(Triv)). Then

Boy = 6%, for some M € Mod(Th + Ax(Triv) + Ax).
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The proof is available from Judit Madarasz. 1

THEOREM 6.6.105
(i) Ge'(Bax® + Ax(v )) = Ge'(Newbasax + Ax(v/ )).
(ii) Assume 9 € Mod(Bax® + Ax(v/")). Then

G = By, for some N € Mod(Newbasax + Ax(v/ )).

The proof is available from Judit Madarasz. I

THEOREM 6.6.106
(i) Ge’(Bax® + Ax(v )) = Ge*(Newbasax + Ax(v/ ) + Ax(syto)).
(ii) Assume M € Mod(Bax® + Ax(v/ )). Then

Baop = Ba, for some N € Mod(Newbasax + Ax(v/ ) + Ax(syto))-

The proof is available from Judit Madarasz. R

THEOREM 6.6.107
(i) Ge*(Reich(Bax)?) = Ge*(Newbasax + Ax(Triv) + Ax(v/ )).
(ii) Assume 90t € Mod(Reich(Bax)®). Then

Bay = B, for some N € Mod(Newbasax + Ax(Triv) + Ax(v/ )).

The proof is available from Judit Madarasz. R

THEOREM 6.6.108
(i) Ge*(Reich(Bax)®) = Ge*(Newbasax + Ax(v/ ) + Ax(syto)).
(ii) Assume 9t € Mod(Reich(Bax)®). Then

Bop = By, for some N € Mod(Newbasax + Ax(v/ ) + Ax(syto))-

The proof is available from Judit Madarasz. R
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THEOREM 6.6.109
(i) Ge'(Reich(Bax)® + Ax(11)) = Ge*(BaCo + Ax(v)).
(ii) Assume 9 € Mod(Reich(Bax)® + Ax(11)). Then

Gogp = &, for some N € Mod(BaCo + Ax(V ).

The proof is available from Judit Madarasz. R

THEOREM 6.6.110
For any Ax € { R(Ax sytq), R(Ax eqsp), RT(Ax egsp), R(sym) } (i) and (ii)
below hold.

(i) Ge’(Reich(Basax)+ Ax(11) + Ax(Triv) + Ax) = Ge’(BaCo + Ax(v/)).
(ii) Assume M € Mod(Reich(Basax) + Ax(11) + Ax(Triv) + Ax). Then

Boyp = B, for some N € Mod(BaCo + Ax(V ).

The proof is available from Judit Madarasz. 1

We plan to go into more detail about questions like (xx) in a later work related to
the present one.

In passing, we note that a variant''™ of (»x) can be formulated in terms of (i)
accelerated observers and in terms of (ii) general relativity where the import of (xx)
would be replacing the principle of locality'!”! with embeddability of finite neigh-
borhoods of certain events into spec. rel. space-time, at the expense of using only a
reduct of our geometries involved. We leave the further discussion of these ideas to
a later work related to the present one (in the meanwhile we refer to David [70]).

1170Using only partial isomorphisms, i.e. of the form Qigﬁ [ H = Q5?n I H', for certain H C Mngy
and H'. This form of () says that &&; | H>—®&}, ie. &}, | H is embeddable into &,.

U7l Using the terminology of nonstandard analysis: infinitely small neighborhoods (of gen. rel.
space-time) are embeddable into spec. rel. space-time.
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6.6.11 Some properties of our relativistic geometries

In this sub-section we will see that for certain choices of Th, the Th geometries
restricted to hyper-planes are either Euclidean or Minkowskian or so called Robb
geometries, cf. e.g. Goldblatt [108] for analogous results as well as for the definition
of Robb geometries.!172

Definition 6.6.111 Assume § is Euclidean and n > 1. By the Fuclidean geometry
over § we understand the usual geometric structure

def

Fuclgeom(§) A Euclgeom(n, §) := ("F,F1,Eucl(n,F); €, Betw, L, eq,g9,7),

where g : "F x "F — F is defined by ¢ : (p,q) — |p — q|, eq C ?("F) x ?("F) is
defined as
def
(p,q) eq (r,s) < |p—ql=I|r—s],
and 7T is the usual Euclidean topology on "F. Further, Euclgeom®(§) is defined to
be the (g, 7)-free reduct of Euclgeom(§), i.e.

Euclgeom®(g) 4o Euclgeom®(n, §) 2 ("F, Eucl(n,F); €, Betw, L, eq).
<

Let 9 be a frame model. Then we define &S, to be (L”, L™ L% <)-free reduct
of of Byy, i.e.

683? :d:ef <MH, Fl; L, €, BWa J—a €q, 9, T>

Let
By 4 (Mn, L; €, Bw, 1, eq).''™

be the (g, T)-free reduct of &S,. The classes Ge®(Th) and Ge’(Th) of geometries
are defined as in Def.6.6.100, for any Th.

Definition 6.6.112 Assume (Mn, L; L, L™ L® €, Bw,) is an n-dimensional ge-
ometry.

(i) Let H C Mn. H is called a hyper-plane iff (Va,b € H)a ~ b and H is an n
element independent subset of Mn (in the sense of Def.6.6.18).

172They are called Robb threefolds, fourfolds there.
H73@T, is the same as the Goldblatt-Tarski reduct GTon of Soy introduced on p.923.
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(ii) A hyper-plane H is called a space-like hyper-plane iff (V¢ € L)( C H — /(€
L5).

(iii) A hyper-plane H is called a time-like hyper-plane iff H contains a time-like
line, i.e. (3¢ € LT)¢ C H.

(iv) A hyper-plane H is called a Robb hyper-plane iff H contains a photon-like line,
and H is not a time-like hyper-plane.

<

The next two theorems say that Bax® geometries restricted to space-like hyper-
planes are Euclidean geometries, under certain assumptions. For stating these the-
orems we need the notion of a new kind of restriction of our geometries to a subset
of their points, introduced below.

Definition 6.6.113 Assume & = (Mmn,...) is an observer independent geometry,
and N C Mn. Then & [ N is defined as in Def.6.2.77 (p.882). Further, & [* N is
defined to be the geometry which is obtained from & [ N by replacing the universe
LI N of lines with L* < {¢ € L | N : |¢| > 1} and by replacing LT | N, LF2 | N,
L N, Ly by (L' | NynL*, (I | NynL*, (L° | N)nL*, Lyn(L*x L*)
respectively.

<

THEOREM 6.6.114

I{ Euclgeom®(n — 1,§) : § is Buclidean } =
=T{&; I* H : MM € Mod(Th(n)), H is a space-like hyper-plane of Gey },
i.e. these two classes of geometries coincide, assuming

Th = Bax® + Ax(Triv,)~ + Ax(||)” + Ax(eqtime) + Ax(v/ ).

On the proof: For the case n = 2 the proof is easy and is left to the reader. Assume
n > 2. By the proof of Prop.6.2.92 (and the proof of Thm.6.2.10) it is enough to
prove the theorem in place of Th (in the formulation of the theorem) for

Th' := Newbasax + Ax(Triv;)~ + Ax(]|)” + Ax(eqtime) + Ax(v/ ).

But the &, reducts of Th' geometries are photon-glued disjoint unions of
Minkowskian geometries by Thm.6.2.75 (p.879). The remaining part of the proof is
left to the reader. 1
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THEOREM 6.6.115 Assume that Th satisfies the assumptions of Thm.6.6.114
above. Assume n > 2. Then

I{ Euclgeom(n — 1,F) : § is Euclidean} = I{ &%, I* H :
M € Mod(Th(n) + Ax(eqspace)), H is a space-like hyper-plane of gy },

i.e. these two classes of geometries coincide.

On the proof: Similarly to the case of Thm.6.6.114 it is enough to prove the
theorem for

Newbasax + Ax(Triv,)~ + Ax(]|)” + Ax(eqtime) + Ax(v/ ) + Ax(eqm)
in place of Th. 1

Our next theorem says that for certain choices of Th, the n-dimensional Th
geometries when restricted to time-like hyper-planes coincide with the (n — 1)-
dimensional Th geometries.

THEOREM 6.6.116 Assume n > 3 and Th € {BaCo, Basax +
Ax(w)ﬂ, Basax, Newbasax, Flxbasax, Bax, NewtK, Relnoph, Reich(Basax),
Reich(Newbasax), Reich(Flxbasax), Reich(Bax), Bax~, Pax }.

(i) Assume, & € Ge(Th(n)) and H is a time-like hyper-plane of &. Then

& |* H € Ge(Th(n — 1)).

(ii) Assume n > 4. Then

Ge(Th(n — 1)+ Ax6 + Ax(V/ )) =
={& ["H : & € Ge(Th(n) + Ax(V")), H is a time-like hyper-plane of & },

i.e. these two classes of geometries coincide.

We omit the proof. 1

We note that the assumption Ax(v/ ) is needed in item (ii) of the above theorem,
e.g. Basax(2) # Ax(v/ ) while Basax(3) = Ax(v/ ), ¢f. Thm.3.6.17 (p.274).

The following is a corollary of Theorems 6.6.116, 6.2.59 (p.861), 6.2.64 (p.866).

1131



COROLLARY 6.6.117 Assume n > 3. Then (i) and (ii) below hold.

(i) Assume, & € Ge(Basax(n) + Ax(w)" + Ax(11)) and that H is a time-like
hyper-plane. Then & [* H is a Minkowskian geometry up to isomorphism, i.e.

& " H = Mink(n—1,%),
for some Euclidean §.

(ii) Assume, & € Ge’(Bax® + Ax(Triv;)~ + Ax(v ) + Ax(11)) and that H is
a time-like hyper-plane of &. Then & [* H is a (eq, g, T)-free reduct of a
Minkowskian geometry up to isomorphism. &

Remark 6.6.118 Assume n > 3. Let Th be as in Thm.6.6.114. Assume H is a
Robb hyper-plane of &. Then & [* H is a Robb geometry in the sense of Gold-
blatt [108].

<

Future research task 6.6.119 Consider the classes Ge'(Th) (i € 8) for our dis-
tinguished theories Bax™ (n), ..., (Basax + Ax(w)")(n), and n > 1. This gives us
several classes of geometries.

It would be nice to find axiomatizations (in first-order logic) of the classes
Ge'(Th) for various choices of i, of Th (and of n > 1). Some of these axiomati-
zations will probably be like axiomatizations obtained by Tarski and his followers
cf. e.g. Schwabhduser-Szmielew-Tarski [237], and Goldblatt [108]. Fig.282 (p.863)
and §6.2.9 (p.923) are relevant here.

<

Question for future research 6.6.120 For which Th’s is Ge(Th) an elementary
class? (Here we mean Th to be one of the theories discussed in this work.)
<

Conjecture 6.6.121 We conjecture that Ge(Newbasax + Ax(diswind)) is an
elementary class.
<

In connection with the above question we note the following. Let Th be fixed.
It is easy to see that Ge(Th) is closed under ultraproducts, since Mod(Th) is closed
under ultraproducts, and the function G : 9 +— Bgy, defined on p.1007, commutes
over ultraproducts. So to prove that Ge(Th) is an elementary class it remains to
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prove that Ge(Th) is closed under elementary equivalence (actually, being closed
under taking ultraroots''™ is sufficient). We conjecture, if for Th the duality the-
ory, described in §§ 6.6.1, 6.6.3, 6.6.4 works, that is if M : Ge(Th) — Mod(Th)
(cf. Def.6.6.41 on p.1054 and Prop.6.6.47 on p.1062) then Ge(7Th) is closed under
elementary equivalence.

H74ltraroots are the “reverse” of ultraproducts.
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6.7 Interdefinability questions;
on the choice of our geometrical vocabulary (or lan-
guage L,LT,...,g,’T)

Our &gy has a large number of components. As we have promised in the introduction
(§6.1), in the present section we explore how &gy can be streamlined such that it
will consist only of a few components and each remaining component will either be
definable in terms of these or turn out to be superfluous. Our criteria here are that
(i) the theory of the streamlined geometry be simple and perspicuous and (ii) the
streamlined geometry be a familiar mathematical structure.''”™ This streamlining
will begin with §6.7.2, thus the impatient reader can go directly to §6.7.2. In other
words: In this section we will investigate how the various ingredients (i.e. non-logical
symbols) of our geometries in Ge(7Th) are definable from each other. Among others,
this amounts to asking ourselves whether one or another ingredient is superfluous
(in presence of the others).

As we said above, the main purpose of the present section is streamlining &gy.
However, this will be obvious only in the second part of this section (i.e. in §§ 6.7.2,
6.7.3, 6.7.4). Namely, if &gy can be streamlined, if several of its ingredients turn out
to be superfluous then the question naturally comes up: Why did we introduce these
superfluous ingredients and why do we still keep them around if they are superfluous?
To prepare ourselves for answering these kinds of questions, in the first part of the
present section we will investigate interdefinability properties of the ingredients of
Bgy. To the above formulated question of why we introduced so many parts of Ggy
despite of its reducibility (streamlineability) to a few parts only will turn out to be
threefold:

(i) It is true that &gy is definable over e.g. its streamlined reduct (Mn, Fy; ¢=) to
be introduced on p.1170, but for this we need to assume some axioms in 7Th.
For other streamlinings of &gy we need some other axioms, cf. e.g. Theorems
6.7.20 (p.1157), 6.7.30 p.1164, 6.7.37 (p.1167), 6.7.39 (p.1168), 6.7.47 (p.1172)
and Corollaries 6.7.38 (p.1167) 6.7.40 (p.1168). One of the reasons why we do
not throw away the ingredients which turn out to be superfluous (e.g. definable
over (Mn,Fy; g7)) in the just quoted theorems is that we are not sure that
we want to assume all these conditions on Th throughout our future research
activities.

17 These two criteria were kept in mind by Tarski and his followers while building up algebraic
logic. Cf. §6.6.7.
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(i) It is useful to have, roughly, two definitionally equivalent versions of the struc-
ture Bgy we want to use. Namely, a streamlined version and a “rich” version.
We use the streamlined version when we want to prove some properties of gy
(or properties of its theory). On the other hand, we use the rich version of
®gy when we want to apply By to some purpose. (The more ingredients of
Bgy are available, the more likely it is that some of them will be applicable to
the purpose in question.)

(iii) Our third reason for keeping gy rich is summarized in item (8) on p.852, and
at the points (of this work) to which we refer from that item (e.g. on p.1069).

* * *

By definability we mean explicit definability in first-order logic without parame-
ters in the sense of §6.3. Our terminology in the present section differs slightly from
that of §6.3 1176 : e.g. if we say that Bw is definable from Col in Ge(Th), then this
means that there exists a formula 3, in which the only non-logical symbol is Col,
such that

Ge(Th) = (Ya,b,c € Mn)[3(a,b,c) < Bw(a,b,c)].

In the present section the orthogonality symbol | denotes both Euclidean and
relativistic orthogonality in an ambiguous way, but context will help. Further let us
also recall that for a set Th of formulas in our frame language we defined

Ge(Th) := I{Bgy : M € Mod(Th)}.

Throughout we will distinguish three cases (when studying geometries similar to
Ge(D)). These are the following:

(i) Euclidean case: By a Euclidean geometry we understand an isomorphic copy of
the usual geometric structure

Euclgeom(§) := ("F,Fy,Eucl(n,F); €,Betw, L, eq,g,T)

over an arbitrary Euclidean field § defined in Def.6.6.111 on p.1129.

(il) Minkowskian case: By a Minkowskian geometry we understand an isomorphic
copy of the Minkowskian geometric structure

Mink(§) = ("F,F1,L,; L, L, Ly, €, <, Bwy, Ly, eq,, gu, T

176 The present terminology remains consistent with that of §6.3. The difference is that it will be
more specialized to certain purposes of the present section.
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constructed in Def.6.2.58 on p.859 from an arbitrary Euclidean field §.

(iii) General case: By the general case we understand investigations of the classes
of the form Ge(Th), where Th ranges over our distinguished theories Pax, Bax™,
..., Basax + Ax(w)" + Ax(11).

It is important to recall that the Minkowskian case is a special part of our
general case, moreover “Minkowskian geometries” = Ge(Basax+Ax(w) +Ax(11)),
assuming n > 2, c¢f. Thm.6.2.59 (p.861). As a contrast, the Euclidean case is not a
part of the general case, unless we omit everything except L, Bw and 7 (cf. item
3 on p.1147). However, if we restrict the geometries in Ge(7Th) to space-like hyper-
planes then the (<, Lt s )-free reducts of our geometries will turn out to be
Euclidean geometries, under some assumptions on Th, cf. Thm.6.6.115 (p.1131).

6.7.1 On Col, Bw, 1, eq, g

In what follows we will use L and Col interchangeably since we have seen that in
most cases they are definitionally equivalent''””, cf. Theorems 6.5.3 (p.993), 6.5.5
(p-996).11"  For the definition of Col we refer to pp. 992, 996 in §6.5. In this
sub-section we will concentrate on the sublanguage (L, Bw, L, eq, g) or equivalently
(Col, Bw, L, eq, g). For completeness we note that this sublanguage is the language
of the geometric model (Mn, Fy; Col, Bw, L, eq, g) (if we disregard the language of
F;). The reason for concentrating first on this sublanguage is, that this sublanguage
makes sense in all three of the Euclidean, the Minkowskian, and in the present more
general (i.e. Ge(Th)-style) case, i.e. in all three cases (i)—(iii) discussed above. We
should have included the topology 7 into this sub-language,''™ but to save space we
will discuss 7 only very briefly and tangentially, e.g. on p.1158 (cf. also the discussion
in (x x x) of Remark 6.2.8 on p.809). In passing we note that 7 is definable over
(Mn, Fy; g).

(1) On (definability from) Col

First let us consider the question, whether from the simplest reduct
(Points, Lines; €) or equivalently (Points; Col) of our geometries any of the re-

1177} e. they are definable from each other (they are interdefinable)

H78E.g. L and Col are definitionally equivalent in Ge(Pax + Ax(diswind)).
H7hecause T too makes sense in all three cases. Actually, (Mn,Fy; Col, Bw, L, eq,g,T) is the
maximal reduct of our geometries making sense in all three cases.
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maining ingredients Bw, L, eq, g is definable. Since Bw is the simplest (in some
sense) of these extra ingredients, first we ask ourselves if Bw is definable from
(Points, Lines; €).

Our first theorem says that in Ge(Pax + Ax(v/ ) + Ax(diswind)) Bw is
indeed definable from (Points, Lines; €). (Recall that Pax is weaker than Bax™.)

THEOREM 6.7.1 Betweenness (Bw) is first-order definable from the collinearity
relation (Col) in Ge(Pax + Ax(v ) + Ax(diswind)), i.e. there is a first-order
formula B(x,y, z) in the language of Col explicitly defining Bw.

Outline of proof: The idea of the proof is depicted in Fig.335. First we define coll
from Col, by using Fig.344 (p.1162). (We note that Col C coll, while Col O coll
does not necessarily hold since coll was defined by Bw and Col was defined by L.)
Then in (Mn; coll) we define the new sort lines together with the incidence relation
€ as they were defined on p.1037. Then we define the ternary relation H on Mn as
follows, cf. Figure 335. (Intuitively, H(a, b, c) means that c is on the half-line with
origin a and containing b.) Let a,b,¢ € Mn. Then

H(a,b,c)

(3¢,0 € lines)[a,b,ce £ N {a} =40l A
(3d € HFV, d" € £)((b,V) || {d, d') A (d, ) || {c;d))];

see Figure 335. Finally Bw is defined as follows.

dl

Figure 335: Illustration for the proof of Thm.6.7.1. ¢ is on the half-line Eab.

Bw(a, b, c) VN [a#b#c#a A collla,b,c) N —H(bc,a)]. B
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For completeness we note that condition Ax(v/ ) in Thm.6.7.1 is needed: Bw
is not definable from (Col, 1, eq) e.g. in Ge(Basax(2)) and in Ge(Flxbasax(n)), cf.
Thm.6.7.13 on p.1143. (We note that Bw is not definable from (Col, L, eq) in &g+,
where the counterexample 9" € Mod(Basax(2)) was constructed in the proof of
Thm.2.7.3 on p.111.)

Question for future research 6.7.2
(i) Does Thm.6.7.1 remain true if the assumption Ax(diswind) is omitted?

(ii) If the answer to (i) turns out to be “NO” then we ask the following. Does
Thm.6.7.1 remain true if the assumption Ax(diswind) is omitted and the

assumption Pax is replaced by Bax~ or Bax~® or Reich(Bax)®?

<

COROLLARY 6.7.3 18 The relation Bw of betweenness is uniformly first-order
definable from (Points, Lines; €) both in the Euclidean and in the Minkowskian
cases.! 18 Actually, the explicit definition 3(z,y, 2) mentioned in Thm.6.7.1 works
here, too.

The proof is available from Judit Madarasz. R

THEOREM 6.7.4 Assume § = (F; <) is an ordered field and n > 2. Let
A(n,§) = ("F; Col, Bw) be the usual n-dimensional Cartesian geometry over §,
i.e. Bw and Col are Betw and collg, respectively (for the latter cf. p.1040). Then

Bw is definable by a first-order formula from Col in A(n, F).
< is definable by a first-order formula from ¥ = (F; 0,1,+,-) in §.
The proof will be given on p.1139.

The Minkowskian geometry Mink,,,g(n, §) over an arbitrary ordered field § will
be defined on p.1160 in Def.6.7.25. The above theorem implies that

Bw is definable by a first-order formula from Col in Minkpo,g(n, §)-

0

< is definable by a first-order formula from F = (F; 0,1, +, ) in §.

1180 This is basically Theorem 1 of Royden [227]. Cf. also Lenz [164].
1181 The relation of betweenness was denoted by Betw in the Euclidean case and it was denoted by
Bw,, in the Minkowskian case.

1138



We will give two proofs for Thm.6.7.4. The first proof will be based on
Lemma 6.7.5 below, while the second one will use the “coordinatization procedure”
recalled from the literature in §6.6.2. We will give the proofs after Lemma 6.7.5 be-
low. We note that Thm.6.7.4 does not generalize to n = 1 because of the following.
For every ordered field §, every permutation of the universe F' of § preserve the
structure (F; Col), but obviously there are permutations of F' which do not preserve
Bw, e.g. each transposition is such. So, by the above argument, for every § we have
that Bw is not definable from (F, Col); and clearly there is an ordered field § in
which < is definable from the field reduct F of §, e.g. each Euclidean § is such.

LEMMA 6.7.5 (Definability and ultraproducts) Let 9 = (My; R) be a
(possibly many-sorted) model of first-order logic,'*®* where R is a distinguished re-
lation of M. Then (i) and (i) below hold.

(i) If R is not (first-order) definable!®® from My, then

there is an ultrapower''®* 19M/U = (9M,/U; 'R/U) and an au-
(%) tomorphismNh of My/U such that h is not an automorphism of

/U (i.e. BR/U] #RJU).

(ii) R is definable from My iff statement (x) above fails, i.e. iff for all ultrafilters
U, every automorphism of /U is an automorphism of ¥M/U, too.

On the proof: The proof is based on the Keisler-Shelah isomorphic ultrapowers
theorem as stated e.g. in Chang-Keisler [59] and on Beth’s definability property.
(We note that the Keisler-Shelah theorem is used two times in the proof.) The
proof is available from Judit Madarasz. B

Proof of Thm.6.7.4: As we already said, we will give two proofs for this theorem.

First proof: Let n > 2. For every ordered field § let
A(n,F) 4 ("F; Col, Bw) and B(n,F) 4 ("F; Col).
Claim 6.7.6 For every ultrafilter U on a set I (i.e., U C P(I)) we have
An,§)/U 2An,'F/U) and  B(n,F)/U = B(n,'§/U).
182The notation M = (Mp; R) means that My is the R-free reduct of M.
1183\We mean explicit definability by a single first-order formula.

11847f 90t is a model then I90t/U denotes the ultrapower of 90, where U is an ultrafilter over the
index set I, i.e. U C P(I), cf. e.g. Chang-Keisler [59] or Enderton [82].
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Claim 6.7.6 follows from Lemma 6.7.27 way below (p.1160).
QED (Claim 6.7.6)

Claim 6.7.7 For every ordered field § = (F; <) we have

Aut(A(n,F)) = {Aop : Ae Aftr(n,F) N ¢ € Aut(F)}, and
Aut(B(n,F)) = {Aop : A€ Aftr(n,F) N ¢ € Aut(F)}.
Claim 6.7.7 follows from Lemma 3.1.6 on p.163.

QED (Claim 6.7.7)
Let § be an ordered field. Then:

Bw is definable from Col in 2(n, §).

i (by Lemma 6.7.5 and Claim 6.7.6)

For every ultrapower '§/U of § every automorphism of B (n,!g/U) is an
automorphism of 2(n,F/U).

i (by Claim 6.7.7)

For every ultrapower /U of § every automorphism of the field reduct 'F /U of
I5/U is order preserving, that is Aut('F/U) = Aut(*F/U).

iy (by Lemma 6.7.5)
< is definable from F in §.

By the above Thm.6.7.4 is proved.

Second proof: This proof is based on Thm.6.6.29 (p.1045) and Prop.6.6.38 (p.1052).
The details are left to the reader. &

Recall that Thm.6.7.1 says that Bw is uniformly first-order definable from Col as-
suming Ge(Pax+ Ax(v/ )+Ax(diswind)). Thm.6.7.8 below says that the assump-
tion Ax(v/ ) becomes superfluous if in Thm.6.7.1 we replace Pax by the stronger
Newbasax and uniform definability by weaker one-by-one definability.

THEOREM 6.7.8 Assume n > 2 and ® € Ge(Newbasax + Ax(diswind)).
Then betweenness Bw is first-order definable from the relation Col of collinearity
in &. Le. in Ge(Newbasax + Ax(diswind)) Bw is one-by-one definable''®
from Col, if n > 2.

H85Cf. p.951 for the notion of one-by-one definability.
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On the proof: Thm.6.7.8 can be considered as a kind of corollary of Thm.6.7.4
(p.1138) and Thm.6.7.10 below (since coll is definable from Col by the proof of
Thm.6.7.1, cf. also Fig.344 on p.1162). &

In connection with Thm.6.7.8 we include the following question.

QUESTION 6.7.9 Assume n > 2. Consider the class Ge(Newbasax +
Ax(diswind)) of geometries. Is Bw uniformly first-order definable by a single
formula from Col in this class?'186

In connection with the above question see Item 6.7.44 on p.1169.

THEOREM 6.7.10 Assume, n > 2 and 9 = Newbasax. Let 37 = (F™; <) be
the ordered field corresponding to M. Then < is first-order definable from F™.

On the proof: The proof goes by contradiction. Assume n > 2. Let 901 be
a model of Newbasax such that < is not first-order definable from F™. Then,
by Lemma 6.7.5 above (p.1139), there is an ultrafilter U such that the ultrapower
Fu = (Fy; <) of 3™ = (F™; <) according to ultrafilter U has the following prop-
erty: Fy has an automorphism ¢ which is not order preserving, i.e. ¢ is not an
automorphism of Fy. Let such U, ¢ be fixed. Let 9y be obtained by taking the
ultrapower of 9T according to ultrafilter U. Clearly 9y &= Newbasax and the or-
dered field corresponding to My is Fy. Now one can use the (non order preserving)
automorphism ¢ and the model My to construct a model My, of Newbasax such
that in 90t FTL observers exist. But this contradicts to Thm.3.4.2 on p.204
which says that Newbasax does not allow FTL observers.

Construction of M, from My = ((B: Obs, Ph,Ib). Fy. Eucl(n,Fy); €, W):

Let my € Obs be arbitrary, but fixed. Let

H % {4 € (Eucl(n, §v) \ SlowEucl) : @[f] € SlowEucl}.

We note that H # () by Lemma 6.6.6 (p.1028) since ¢ is not order preserving. Let

Obs™ def ObsU H.

Let k € Obs*. We define w; as follows:
Case 1: k € Obs and ~(mg 3 k). Then w; % wy.
Case 2: k € Obs and my S k. Then

e

(Vp € "F) w{ (p) ) we(p) U{l e H : p € fuill]}.

1186 Ty avoid misunderstandings we note that, as we have already said, by definability we mean
uniform first-order definability, cf. §6.3.
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Case 3: k € H. Then @¢[k| € SlowEucl, hence ¢[k] = try,,(m), for some m € Obs by
Ax5. Let such an m be fixed. Now,

def ~

mok = © 0 fmgm, and

def _
wi = (Froe) T o Wi,
where w;, is defined in Case 2. Further Bt M puH, Y IbUH, and W+ is
defined from w;’s the obvious way. Now,

M X ((BY; Obs™, Ph, Ib"), §v, Eucl(n, Fyy); €, W).

One has to check that 9, = Newbasax. Clearly, there are FTL observers in 9,
e.g. each observer in Obs* \ Obs moves FTL for observer my. B

QUESTION 6.7.11 Does Thm.6.7.10 above generalize from Newbasax to
Bax®? More concretely: Assume n > 2 and MM € Mod(Bax® + Ax(diswind)). Let
T = (Fm; <) be the ordered field corresponding to M. Is < definable from F7 ¢

If the answer to the above question turned out to be “YES” then Bw would be
definable from Col in every & € Ge(Bax® + Ax(diswind)). We note that Bw is
definable from Col in Ge(Bax + Ax(v/ ) + Ax(diswind)) by Thm.6.7.1 (p.1137),
and for every n > 1 there is & € Ge(Bax + Ax(diswind)) such that Bw is not
definable from Col in & by Thm.6.7.13 below.

The following is a corollary of Thm.6.7.10 above.

COROLLARY 6.7.12 Assume n > 2. Let 9t = Newbasax. Let 7 = (F™; <)
be the ordered field corresponding to 9. Then Aut(F™) = Aut(F™), that is each
automorphism of F™ is order preserving. B

For completeness we note the following. The geometry Mink,ong(n,§) will be
defined on p.1160 in Def.6.7.25. Assume n > 2. Now, Thm.6.7.10 implies that
not every ordered field § can be the reduct of a Newbasax model. Hence, if we
start out from an arbitrary field § and construct the Minkowski style geometry
Mink,ong(n, §), then Mink,onp(n,§) ¢ Ge(Newbasax) may happen. These obser-
vations are relevant to Question 3.6.19 and Thm.3.6.17 on p.274. We leave it as an
exercise to experiment with searching for models 90t such that gy = Mink,oug(n, §)-
What are the properties of 9t if § is not Euclidean? (Hint: 9 may be strange, it
may even not exist.)
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THEOREM 6.7.13 For every n > 2 there is & € Ge(Flxbasax(n) +
Ax(diswind)) such that Bw is not definable from (Col, L,eq) in &. Moreover
Bw is not definable from the rest of &.

Outline of proof: Let n > 2. Let § = (F; <) be an ordered field such that there
is an automorphism ¢ of F which is not order preserving. Let such a ¢ be fixed.

Now, we construct a model 9T of Flxbasax + ¢ =00 + Ax(ext) over
§ such that all the f,,;’s are affine and we include all possible observers into this
model with all possible choices of unit-vectors. (Therefore observers with their clocks
running backwards are also included.) Now, ¢ induces an automorphism of the Bw-
free reduct of &y which does not preserve Bwsy. Hence Bw is not definable from
the Bw-free reduct of &g in Gy, B

Remark 6.7.14 What we write in item (1) (of §6.7) about definability of Bw from
Col (e.g. in geometries of Pax + Ax(diswind) + Ax(v/ )) can be considered as a
(modest) generalization of Theorem 1 of Royden [227]. Cf. also Lenz [164].

<

We note that in all three cases ((i) the Euclidean case, (ii) the Minkowskian case,
and (iii) the general case) neither L nor eq is definable from (Points; Col). Similarly
g is not definable either. As a contrast we will see on p.1151 that F; is definable
over (Points; Col) under some assumptions.

Intuitive summary of item (1): Under some reasonable conditions Bw and F4
are definable over the structure (Points; Col), while no one of the rest (., eq, g) of
the list Col, Bw, L, eq, g addressed in the title of §6.7.1 is definable from Col.

(2) On Col, Bw, L, eq

The sublanguage (Col, Bw, L, eq) or equivalently (L, Bw, L, eq) was introduced
and used already by Hilbert, Tarski, and their followers (as we have already men-
tioned, Tarski used Col in place of L).1*87 Actually, we called (Mn; Col, Bw, L, eq)
the Goldblatt-Tarski reduct of our geometry on p.923. Hilbert and Tarski did not
include L into the basic vocabulary, because in the Fuclidean case, 1 is definable
from eq.''® We recall from the literature that this can be seen as follows: First

1187 A5 we indicated before we treat Col and L as equivalent concepts, hence we use them inter-
changeably. When we use Col then L is defined between pairs of points, i.e. it is a 4-ary relation
on the set of points.

188Tn passing we note, that perhaps the simplest first-order language for Euclidean geometry is
that of the structure (Points; eq). Namely, Col, Bw, and L are first-order definable from (Points; eq)
hence Tarski’s axiom system can be written up as a theory about these very simple structures.
(On the other hand, eq is not definable in (Points; Col, Bw) and in {Points, Lines; €, Bw).)
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one defines Col (in terms of eq) as it is illustrated in Figure 336 (cf. e.g. Tarski-
Givant [254]), and then using Col and eq one defines L as it is shown in Figure 337.
We leave it as an exercise to the reader to show that the definition in Fig.337 does
not work in the case of Minkowskian geometries.

Col(a, b, c) —Col(a, b, c)

9 L

Col(a, b, c) PELN (Vz) [eq(a,b,a,z) A eq(c,b,c,z)) = z = Db

Figure 336: Definition of Col from eq in Euclidean geometry.

For completeness we note that | is definable from eq in the Minkowskian case
for n > 2,189 and this generalizes to Ge(Basax + Ax(v/ ) + Ax(Triv,)~) for n >
2,119 So why do we not throw | away? The answer is threefold: (i) L is not
definable from Col, Bw and eq in the class Ge()) of all our geometries moreover
it is not definable from Col, Bw and eq even in the smaller class Ge(Bax). (ii)
We want to keep compatibility with Goldblatt [108] and there L is a basic symbol.
(iii) We want to consider reducts of &gy without Bw and eq in which L is still
available.''”! The relation | is not definable from (Mn, L; €, Bw) uniformly even
in Ge(BaCo + Ax(rc)). The same applies for the Euclidean case. So, we include
L into our language.

(Let us recall that in this case L is a 4-ary relation on points.) It is not hard
to see that Col is definable from (Points; 1) in the Euclidean case, Minkowskian
case and some of our general cases,'!%? e.g. in the case of Ge(Bax® + Ax(Triv,)~ +

H89We conjecture that this generalizes to n = 2, too.
190This holds by Corollary 6.7.38 on p.1167.
H910ne of the points in looking at reducts (Mn,L; €, 1) is that they are compatible with the
structures in Goldblatt [108, §2.3, p.36].
def

H92A possible definition of Col from L is the following: Col(a,b,c¢) < (Vd)({a,b) L (a,d) <+
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a

(a,b)L{c,d) <&

(3d,d') [cd || dd' A cd | c'd A Col(a,c,b) A eq(a,c,b,c) A eqla,d,b,d)]

Figure 337: Definition of L from Col and eq in Euclidean geometry.

Ax(diswind) + Ax(v/)) for n > 2 (the latter holds by Thm.6.2.71 on p.877).

COROLLARY 6.7.15 Col and L are definable from eq in Ge(Basax +
Ax(Triv;)~ + Ax(v')), as well as in Euclidean and in Minkowskian geometry;
assuming n > 2.119

As a contrast we include the following proposition.

PROPOSITION 6.7.16 The relation Col of collinearity is not definable from the
4-ary relation L on points in

Ge(Reich(Basax) + R(sym) + Ax(Triv) + Ax(]|))-
The proof is available from Judit Madarasz. R

We conjecture that in Ge(Bax) Col is not definable from L. Further, definability
of Bw from Col was discussed in item (1) above. Assume Bax® + Ax(Triv,)~ +
Ax(diswind) + Ax(v/ ) and n > 2. Since now Col is definable from 1; and Bw
is definable from Col (cf. item 1), we conclude that Bw is definable from L. This
is so in the Euclidean geometry, too. A direct definition of Bw from 1 and Col for
the Euclidean case will be shown in Figure 338 below.

The question which remains to be discussed (in item 2) is whether eq is definable
from | and Col. We turn to this question now.

(a,c) L (a,d)).
L1931t would be nice to know what happens if n=2.
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Figure 338: Definition of Bw from L and L in Euclidean geometry.

Fuclidean case: eq is definable from (Points; 1). Instead of prooving this we include
Figure 339.

eq: for eq(a, b, a,c).

The rest uses only parallel lines.

Figure 339: Definition of eq from L and | in Euclidean geometry.

Minkowskian case: eq is definable from (Points; L) for n > 2, and we strongly
conjecture that this holds for n = 2, too.

The general case: eq is definable from (Mn, L; €, 1) even in
Ge(Basax+ Ax(Triv,)~+Ax(v/ )) by Corollary 6.7.41. However eq is not definable
from (Mn, L; €, Bw, L) in Ge(Bax?).

We will return to definability from | and eq at the end of §6.7.2 in items 6.7.38,
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6.7.41. We will see that almost everything is definable from any one of these two
under some assumptions.

In the summary below, we will indicate that there are considerable physical
consequences of the above investigations: E.g. we obtain information on how one
should choose the basic concepts of our theoretical model(s) of the physical world
and what the consequences of such a choice are.

Summing up (of items 1 and 2): We need to keep eq in our language because it
is not definable from (L, Bw, L) in our general case Ge(Bax?).!'% On the other
hand, we keep Bw because it is not definable from (Col, L, eq) e.g. in Ge(Basax(2))
and in Ge(Flxbasax) (cf. Thm.6.7.13). A further reason for keeping Bw is that
it is a more “primitive/elementary” concept than eq or L (in some sense cf. e.g.
Goldblatt [108]), hence at some point, we might want to consider the reduct
(Points, Lines; €, Bw) without L. In this connection, we recall that L is not de-
finable from (Points, Lines; €, Bw) in practically all non-trivial cases, e.g. in the
Euclidean case or in the Minkowskian case.!!?® To see this consider e.g. a usual
geometry over the real field R and a linear transformation which does not preserve
L. These considerations lead up to the subject of the following item.

(3) The reduct (Mn, L; €, Bw)
The point in looking at the reduct

G = (Mn, L; €, Bw)

is that at this level of abstraction Euclidean geometry and relativistic geometries do
not get separated. More precisely assume 9 € Mod(Pax + Ax6 + Ax(v/ )). Then
GE is a reduct of the Euclidean geometry over the field ™ with perhaps some lines
missing. This can be proved using Thm.4.3.13 on p.482.

Assume 90t € Mod(Bax + Ax6 + Ax(v" ) + Ax(Triv,)~). Then GE, is a reduct
of the Euclidean geometry over the field ™. Actually we may even include the
topology, and have

Git = (Mn, L; €, Bw, T)

a Euclidean structure (over the field ) if we assume 90t € Mod(Basax + Ax(w)").

94 A similar observation applies to g as we will see in item (5) way below. Further, no one of eq
or g is definable from the other in Ge(Th) for some of our distinguished choices of Th. This is one
of the reasons why we keep both eq and g in our language.

H95As we indicated at the beginning of the present item (item 2) this is part of the reason why
we keep L in our language.
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Motivated by these observations, we feel that one could call GEl' the
Fuclidean reduct of the relativistic geometry gy, for any model 9.

GET is maximal among the Euclidean reducts in the sense that if we add any
one (e.g. L or eq) of the ingredients of &gy missing from GET to GET then what we
get will no more be representable as an isomorphic copy of a Euclidean geometry,
assuming 9 = Basax + Ax(w)".

Remark 6.7.17 (On the affine reduct or part of Ggy)

We could call GE, the affine part (or reduct) of our relativistic geometry Ggy. The
reason for this is that G§; consists exactly of those parts of Bgy which are preserved
under affine transformations, under some assumptions!'®® on 90t. This might sound
a little sloppy because affine transformations act of "F while the universe of &gy is
Mn. However what we said can be made precise by saying that (VYm € Obs) [the
image of G&, under w,,! is preserved under all affine transformations of "F] while
the other parts (like eq, L, L or g) of gy do not have this property.

For completeness, we note that under reasonably mild assumptions''®” on 90,
G satisfies the usual definition of an affine geometry''®®. For more in this direction
we refer to Coxeter [62] Chapter 13 beginning with p.191 (cf. also pp.175-176 for
connections with relativity). For affine geometry and the claim that GL; satisfies its
axioms we also refer to Schwabhéduser et al. [237] I1.§7 (Allgemeine affine Geometrie)
pp-413-447 where the axioms are on p.415 cf. also item 7.63 on p.447 for the n-
dimensional case. Cf. also Szczerba-Tarski [245] axioms A1-A6, E on the third page
of the paper.

When we say that GJ, satisfies the axioms of affine geometry, we mean only
that it satisfies the axioms of lopag without Lo, i.e. lopag \ {Ly}, introduced on
p.1071 (Def.6.6.54). The acronym lopag \ {Lz2} abbreviates ordered Pappian affine
geometry with distinguished lines. The models of lopag\ {L2} can be considered as
the abstract, axiomatic versions of the affine reduct G&, (with some conditions'!%
on 9 as we already indicated).

We hope that the above discussion clarifies in what sense (and why) we could
call G¥, the affine part of our geometry Ggoy.

<

196 o Bax®, Ax(Triv;), Ax6
19%7¢ g. Ax1-Ax3, Ax6, Ax(Bw)

198 Whose study goes back to Euler but became intensive starting with Klein’s Erlangen program.
1199 g. Ax1-Ax3, Ax6, Ax(Bw)
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(4) On circles or spheres

Before turning to richer languages, we note that having eq around is nice because
it enables us to speak about circles or spheres.!?® We note that for n > 2 in
Basax + Ax(Triv;)~ in terms of eq a sphere looks like as in Figure 340 when
intersected with Plane(¢,Z). So far we talked about circles based on eq. Let us
call them eq-circles. Similarly we can consider circles based on ¢g. Let us call
these second kind of circles g-circles.'?®! We use circles in 2-dimensional models
and spheres in n > 2 dimensional ones. We note that the set of neighborhoods
T, & {S(e,e) : e € Mn, ¢ € "F} defined on p.797 coincides with the set of g-
circles (in any & € Ge(0)).

(i) A g-circle in Basax(2) + Ax(w)® looks like as in Figure 340 (where the lines
of our sheet of paper represent the lines in &gy).

Figure 340: A g-circle in Basax+Ax(w)ﬂ. An eg-circle in Basax may look like this.
Cf. also Fig.29 on p.88.

(ii) However, a g-circle in Basax(2) may look like as any one of those in Figure 341.

(iii) A g-circle in Bax(2) may even look like as in Figure 342.

1200For completeness we note that circles were already touched upon in Chapter 2 (cf. p.89).
1201By a g-sphere we understand a maximal set of such points of Mn whose g-distance is the same
(constant) from a given point. Similarly for g-circles and for eq in place of g.
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Figure 341: A g-circle in Basax may look like any of these. No one of these can be

dh
NI

an eq-circle of Basax, cf. also Fig.29 on p.88.

(iv) If n > 2, a g-sphere as well as a

while the top may be an arbitrarily

is the reflection of the top one w.
of Bax® + “auxiliaries”. If we throw Ax(eqtime) away then the top and
bottom surfaces of the g-sphere may be replaced by clouds of points. If we
throw Ax(Triv,)~ away then the sides of the g-sphere may become “gapy”.

A possible way of visualizing a relativistic geometry say gy (or equivalently the
as in Figures 340-343. More precisely if we
on 9N then this picture will represent the
model or geometry from the point of view of a certain observer. However assuming
the axioms listed in item (iv) together with Ax(11) ensure that such a drawing
contains information about the world-view:
the whole model 9 (or geometry), assuming AxQ and Ax(ext) of course. Cf.
Figure 29 on p.88 for more information in this direction.

model M) is to draw a g-sphere or g-circle
do not assume any “symmetry” property

(5) Ong

Let us turn to definability of g over the

1202For the notion of codomain cf. p.1085.

n eq-sphere in Bax® + Ax(eqspace) +
Ax(eqtime) + Ax(Triv,)~ may look like as in Figure 343. We note that the
hyperboloid part is necessary, and the horizontal part is an (almost) arbitrary
surface. Under these axioms the sides of the sphere always form a hyperboloid,
complicated surface. The bottom surface
This g-sphere is typical
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s of all other observers too, hence about

geometry (Mn; Col, Bw, L, eq). First let

us notice that g has a codomain'?*? Fy, i.e. ¢ : Mn x Mn — F;, where we recall



Figure 342: A g-circle in Bax may even look like this.

that F; = (F; 0,1, 4+, <). Therefore, defining ¢ requires defining F; too, because F
is not available in the geometry (Mn; Col, Bw, L, eq) from which we are supposed to
define the metric-geometry (Mn,Fy; Col, Bw, 1, eq, g).'?®® In passing we note that
in Ge(Pax+Ax(v/ )+Ax6) the structure F; is definable over each one of (Mn; Bw)
and (Mn; Col) by Propositions 6.6.40 (p.1053) and 6.6.38 (p.1052) and Thm.6.7.1.
First, let us consider the reduct when the codomain of ¢ is the ordered group

Fo £ (F; 0,+,<)
(instead of F; = (F; 0,1, +, <)).
PROPOSITION 6.7.18 In Ge(Basax + Ax(w)’), Fq and
g:Mn x Mn =+ F,

are uniformly first-order definable in the language of (Mn; Bw,eq). ILe. in the
(Mn; Bw, eq)-reduct of Ge(Basax + Ax(w)), the structure Fo and

g:Mnx Mn = F

are uniformly first-order definable.

1203 o be precise, the reason for this (i.e. for our saying that defining g requires defining F; too)
is a “subjective” decision: Namely, at this point we decide to identify g with (Mn,Fy; g) , because
to be able to use g we usually need its domain and codomain Mn and F;.
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Figure 343: A g-sphere or an eq-sphere in Bax?(3)+Ax(egspace)+ Ax(eqtime)+
Ax(Trivy)~.
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On the proof: Assume the hypotheses of the proposition. The proof for the case
n = 2 is available from Judit Madarasz. Assume n > 2. First we define the relation

R (a,0,€) € Mn x Mn x Mn : o £ e, coll(a,o,e)}.

Then we define the auxiliary sort U to be R together with pjy, pj;, pj,- The equiv-
alence relation = on U is defined as follows.

(a,0,€e) = (d,d,€) VEN ((a €loe +» d €loe') A {(a,0) eq (d,0") )

(Of course one uses pjy,, pj;, Pj, in the formal definition of =.) F is defined to be
U/= together with € C U x U/=. For every o,e € Mn, F,e, +0e C Fpe X Fye X Foe,
and <,. C F, x F,, are defined as in Def.6.6.31 (p.1046). Now, we define the
addition + C F x F x F and the ordering < C F x F as follows. Let a,b,c € F.
Then

+(a,b,c)
def

(Fa’ € a)(F' € b)(3c' € ¢)
(le(al) = pj1(t') = pji(c') A pjy(a’) = pja(b) = pja(c) A
Pio(a') +pj@)piata) Pio(b) = pjo(C’)),

a<b
def

(3o’ € a) (T’ € b) (pjl(a') = pj1(t)) A piy(a’) = piap(¥) A
Pio(a") <pj,(@)pis(a) ij(bl))'
Further the constant 0 is defined by

def
r=0 <& z4z=u1.

By the above Fg = (F; 0,+, <) is defined. Finally we define g : Mn x Mn — Fy
as follows. Let a,b € Mn and = € F. Then

g(a,b) =x
def
<

<(a =Php A z=0)V (>0 A (32" € 2)(pjy(a') =a A pji(z') :b)).
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It can be checked that this is a correct explicit definition of a partial function g.

We leave it to the reader to check that the above outlined explicit definitions of
Fo and g have the desired properties. Hint: Thm.6.2.60, saying that that the <-
free reducts of (Basax+Ax(w)’)-geometries are the <-free reducts of Minkowskian
geometries up to isomorphism, helps in checking this. 1

Throughout the remaining part of the present item (item 5) we assume
Basax—l—Ax(w)ﬂ. If in our enriched geometries &gy, only F; was present as an
extra sort, then we could avoid including g and Fy into &gy by arguing that they
are definable from the simpler, more elegant one-sorted geometry (Mn; Bw,eq),
cf. Prop.6.7.18 above. However, into &gy we included the richer structure F;
as the codomain of g. Our definability statement in Prop.6.7.18 does not ex-
tend from Fy to F;. In other words while the expanded “metric” geometry
(Mn,Fo; Bw, eq, g) is definable from its one-sorted reduct (Mn; Bw, eq) the richer
expanded geometry (Mn, Fy; Col, Bw, 1 eq, g) is not definable from its one-sorted
reduct (Mn; Col, Bw, 1, eq). Moreover, g is not definable even from the g-free reduct
of & € Ge(Basax + Ax(w)"). The intuitive reason for definability of Fo and unde-
finability of F; (in our geometries (Mn; Bw, ..., eq)) is the following:

We can easily express geometrically statements like g(a, b) = 0, g(a, b) = g(b, c)+
g(d,e), and g(a,b) < g(b,c) by using Bw and eq only, cf. the proof of Prop.6.7.18
above. This leads to definability of the ordered group Fy. At the same time we
cannot express the property g(a,b) = 1 of points a,b (using only Bw and eq).
This can be seen for n = 2 by looking at the simplest 2-dimensional Minkowskian
geometry (R x R, Col, ..., eq) over R and considering its automorphism A defined
as follows:

(Vz,y € R) h(z,y) = (2z, 2y).

Now, there are points p, g here, such that

(*) g9(p,q) =1 but g(hp, hq) # 1.

Since h is an automorphism, this proves that the property g(p,q) = 1 of a pair of
points p, ¢ is not definable in this reduct of Minkowskian geometry. One can push
this argument further to show that in the 1-free reducts of Minkowskian geometries
the binary relation defined by g(p,q) = 1 is not definable.!20

1204t un := {{p,q) € Mn x Mn : g(p,q) = 1}. Then the binary relation un on points is not
definable in the g-free reduct of &gy. Moreover, in some intuitive sense, it is this undefinability
of un which is the real reason for undefinability of g. E.g. (g, F1) is definable from the “simple”,
one-sorted geometry (Mn; Bw, eq, un). (Recall that Basax + Ax(w) is assumed here.) Here “un”
is an acronym for “unit distance”.
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We call transformations like h expansions. Now, expansions are automorphisms
of the Col, ..., eq part but they are typically not extendable to automorphisms of
Ggn because of ().

Summing up (of item 5):
We were discussing definability of g over (Mn; Col, Bw, L, eq). If

g: Mn x Mn — Fy

was the case then g would be definable (even from (Mn; Bw,eq)) under some as-
sumptions on 9. But since in our g there is a distinguished constant “1” i.e. since
we identify'?%® g with the structure (Mn, Fy; g) our g is not definable even over the
g-free reducts (Mn, L; ..., eq,T) of our geometries. Moreover (g, F1) is not defin-
able from the rest of the vocabulary in any Minkowskian geometry &. This is a
quite strong form of undefinability. Therefore we include g in our language. This
completes the discussion of (L, Bw, L, eq, g). As an afterthought, in this connection
we also state the following (which was already mentioned informally).

PROPOSITION 6.7.19 Let & € Ge(Basax + Ax(w)?). Then (i) and (i) below
hold.

(i) {(g,F1) is not definable over the (g, F1)-free reduct of &.

(ii) g is not definable over the g-free reduct (Mn,Fq; Col, ... eq,T) of . Note
that F is present in the reduct in which g is not definable.

On the proof: A proof can be obtained by using expansions the same way as we
used them around (%) above. 1

We guess that the above proposition extends to Bax™ "+ Ax(v )+Ax(eqtime),
n > 2.

In the present sub-section we did not address the question of which parts of
®gy are definable from the pseudo-metric (g, F1). However, this question will be
addressed in §6.7.2 below, cf. e.g. items 6.7.38-6.7.40.

We will return to ¢ and to recoverability of things like LT, L% LS from ¢ in §6.8
devoted to geodesics. Geodesics play an important role in generalizations towards
accelerated observers and eventually towards general relativity, hence they deserve
a special section.

The summary (of item 5) way above might be considered as a logic-based ex-
planation of the following experience in physics. In a majority of the physics books

1205¢f, footnote 1203 on p.1151
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on relativity (both special and general) the mathematical model of the world is a
structure of the form (Mn, g). This can be caused by the fact that as we saw in
the summary, the (g, F1) part of Bgy is not definable from the rest therefore one
has to include it into our mathematical model if we do not want to loose informa-
tion. (We also saw that under strong enough conditions'?*®® we can define gy over
(Mn,Fy; g).)

6.7.2 On <, Col”, Col™ Col° =T =rh

For the definition of Col”, Col™, Col® we refer to p.998 in §6.5. Before plunging into
the subject matter of the present sub-section seriously we point out the following.
No part of the vocabulary studied in §6.7.1 is made superfluous by the “Col-free”
part of the vocabulary of the present sub-section §6.7.2. Namely, at the end of
§6.7.2 we will see that no part of the vocabulary Col, Bw, 1, eq, g discussed in §6.7.1
is definable from the Col-free part <,=",=" =% of the vocabulary discussed in
§6.7.2 in all of our distinguished classes Ge(Th),'2%7 cf. Thm.6.7.42 on p.1168.

(I) On the “causality” pre-ordering <

Next we turn to discussing the status of the causality pre-ordering < (of Mn). It is
not definable from the rest of the vocabulary of Ge(Th) e.g. in Ge(Basax+Ax(11)).

On a connection with the literature: In some of our models < might behave
quite differently from the behavior of Robb’s relation called “after”; the latter is
described in e.g. Goldblatt [108, Appendix B, p.170]. Let & € Ge(()). We define
>=" C Mn x Mn as follows.

b>"a &L a#b AN (Vee Mn)(b<c — a<c).

In Minkowskian geometries our >" is the same as Robb’s after. However our >" is
defined for more general classes Ge(Th), where it can behave quite differently from
the behavior of Robb’s after in Minkowskian geometries. To mention one of the

1206 These conditions are quite restrictive, therefore many authors e.g. Friedman [90] and ourselves
do not utilize this possibility of restricting the model to (Mn, Fy; g). Also, as we mentioned keeping
the other parts gives us the possibility of “abstraction” i.e. concentrating on aspects of the world.
1207By the Col-free part here we mean the (Col”, Col™, Col®)-free part. We have to restrict

attention to this Col-free part because from (COIT, Col? h, Col® ) one can trivially define Col (then
from Col we obtain Bw, under some mild assumptions, c¢f. Thm.6.7.1).
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differences, for some 9 = Basax the relation > is symmetric. However, if we
assume Basax+Ax(11), our =" behaves the same way as Robb’s “after” does.!?%8
E.g. it is a partial ordering. (In the other direction our < is definable from Robb’s
“after” in Minkowskian geometries, of course.)

The following theorem is a generalization of the Alexandrov-Zeeman theorem
which was proved for standard Minkowskian geometry over R, cf. e.g. Goldblatt [108,
Appendix B| or Alexandrov [4, 5] or Zeeman [276]. In the rest of this sub-section L
is a 4-ary relation on the set of points (and is relativistic).

THEOREM 6.7.20 Assume n > 2. Then (i)—(iii) below hold.
(i) Col", Col™ Bw are definable from (Mn; <) in Ge(Th), assuming

Th = Reich(Bax)® + Ax(119) + Ax(diswind).

(ii) Col, Col™, Col™, Col®, Bw, L are definable from (Mn; <) in Ge(Th), assuming

Th = (Bax® + Ax(T10) + Ax(v" ) + Ax(Triv;)~ + Ax(diswind)).

(iii) eq, Col, Col™, Col"™, Col®  Bw, L are definable from (Mn; <) in Ge(Th), as-
suming

Th = (Newbasax + Ax(11o) + Ax(v ) + Ax(Triv,)~ + Ax(diswind)).

On the proof: Before reading the proof cf. Fig.282 (p.863). A proof can be ob-
tained by the proof of Alexandrov-Zeeman theorem in Goldblatt [108] and by The-
orems 6.2.71 (p.877), 6.2.74 (p.878), 6.6.109 (p.1128).

|

The condition Newbasax is needed in the above theorem since if we replace in
(iii) Newbasax with Flxbasax® then eq will not be definable from <, moreover it
will be undefinable even from the eq-free reduct of Ge(Th). Hence, in particular in
Ge(Flxbasax?), eq is not definable from the rest of the vocabulary of Ge(Th).

In connection with item (i) of Thm.6.7.20, i.e. in connection with putting the
emphasis on <, Col’ and Col™” we refer to e.g. Busemann [56, 55] (to be precise
we note that instead of Col” Busemann [56, 55] uses time-like geodesics in the same
sense as we do in §6.8).

1208The definition of Robb’s after generalizes in a very natural (and non-problematic) way to
Ge(Basax + Ax(11)). According to Robb’s after, b >=" qa iff b is on or in the future directed
light-cone of a; i.e. if a “can send a signal” to b without using FTL particles.
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As a contrast to Thm.6.7.20 we note that g, Fy is not definable from < even in
Minkowskian geometries, cf. the end of §6.7.1 on p.1155. (Actually the reason for
this is undefinability of Fy, i.e. the constant 1, cf. Prop.6.7.18 on p.1151.)

In connection with Thm.6.7.20 see Theorems 6.7.35, 6.7.36 (p.1166).

QUESTION 6.7.21 Does item (i) of Thm.6.7.20 generalize from Reich(Bax)®
to Bax~%?

<

We note that if Th = Basax® + Ax(w)* + Ax(11) and n > 2 then all parts of

our geometry Col, ..., T are definable from (Mn; <) in Ge(Th) with the exception of
(F1,9).1?% Even (Fg,g) is definable. (Note that the topology 7T is definable, too.)
This means that everything in our geometry &gy is recoverable from the simple
structure (Mn; <) with the only exception of the “size of a hydrogen atom”!?!°
(i.e. with the exception of the units of measurement). But this is quite natural since
we cannot expect the causality pre-ordering < to contain information like the “size
of a hydrogen atom”.
We will further refine these observations in §6.7.3. Namely, we will add to (Mn; <)
the restriction g~ of g to “<” obtaining the streamlined time-like-metric structure
(Mn, Fy; ¢=) which in turn will prove to be satisfying both from the point of view
of mathematical elegance (streamlined-ness) and expressive power.

Remark 6.7.22 (On causality) Although, following the literature, we call the
pre-ordering < “causality pre-ordering”, we do not claim that the way we introduced
and discussed < would represent a well justified and well understood theory of
causality. (Perhaps “possible future” would be a better name for <, but we decided
to follow the majority of the literature.) One of the reasons why we mention this
is that we feel that elaborating a carefully developed, well understood, sufficiently
“subtle” (or deep) theory of causality which would be also well founded from the
point of view of mathematical logic, would be highly desirable. (So we do not want
to make the impression that we already have such a theory.)

<

1209By (Fy,g) (as well as by (g,F;) or (Mn,g,F;)) we mean the many-sorted structure
(Mn,Fq; g). (Of these (Mn, g, F1) corresponds to the category theoretical spirit, cf. p.1086.)
1210Cf, §2.8, p.139 for an intuitive explanation connecting the size of a hydrogen atom with the
units of measurement (i.e. with the constant 1 of F1). Cf. also the intuitive explanation on the
role of the constant 1 € F1 in our geometry &gy on p.850.
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(IT) On Col”, Col"" and Col®

In the present item we discuss the status of Col”, Col™®, Col®.

Actually in Thm.6.7.20 above we have already started discussing this. No one of
Col”, Col™, Col® is definable from Col in all cases. On the other hand each one of
them is definable from Col and | under assuming Bax® 4+ Ax(Triv;)~ +Ax(v )+
Ax(diswind) and n > 2 (cf. Thm.6.2.115 on p.926).

Consider the incidence geometry GH! := (Mn; Col™). Assume that 9t is the
standard, Minkowski model over some real-closed field §, n > 2. Then in G,
Col, Col*', Col®, L, Bw,eq, T and g, are definable, where gy is obtained from ¢ by
forgetting the constant 1 from the codomain F; of g. This means that the reduct
of Bgy without < and 1 is definable from G}}¥. (The same applies to the other two
incidence geometries GI; and G§,.) The proof is based on the Alexandrov-Zeeman
Theorem in Appendix B of Goldblatt [108].

Next, we consider some generalizations of the above mentioned results.

Let Mink(F) be the Minkowskian geometry over an ordered field § defined in
Def.6.2.58 (p.859). We will use Col,,, C’o]f, Co]fjh, Colﬁ instead of LM,LZ,Lih,LE of
Mink(§F) in the present item. Earlier we used L and Col interchangeably, in this
material. In the present item Col is more convenient for our purposes than L. This
is why we use Col here. Also L, is a 4-ary relation on the set of points. We let
Mink(n) to be the class of n-dimensional Minkowskian geometries.

Mink(n) <% I{ Mink(n,§) : § is Euclidean } .

THEOREM 6.7.23 2! Assume n > 2, and § is Euclidean. Then
Col,,, CO]Z, COIE,BW“,J_u,equ are uniformly definable from ("F; C’olﬁh> in
Mink(n).

On the proof: The proof is based on the proof of Alexandrov-Zeeman theorem in
Goldblatt [108]. &

In connection with Thm.6.7.23 above see Thm.6.7.33 on p.1165.

THEOREM 6.7.24 Let n =2 and § = R the ordered field of reals. Consider the
photon geometry (*F; Co]5h>. Now, Col, is not definable over (*F; Co]ﬁh).

1211'We guess that this theorem was probably known.
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Proof: We note that the idea is to construct an automorphism of (*F; C’olf;h) which
does not preserve Col,. The proof can be found in [16], in more detail the proof of
the statement in [16] saying that the axiom system Specrel(2) is independent proves
our Thm.6.7.24. 1

We note, that the weaker statement saying that CO]Z is not, definable from Colﬁh in
Mink(2,9R) is proved e.g. in Goldblatt [108].

A large portion of Minkowskian geometry can be defined over arbitrary ordered
fields § (assuming Ax(y/ ) is not necessary). Therefore we define the following.

Definition 6.7.25
Minknonp(8) % Minknons (n, §) 1=

("F,Fy; Col,, Colf, Colﬁh, C'o]i, <> Bwy, Ly, eq,,97)
is defined completely analogously with the definition of Mink(n,§) in Def.6.2.58
(p.859). Let us notice, that the only essential difference is that we had to replace g,
with g7 since the definition of g, was the only part where we used square roots."*'?
Another difference is that we use now Colz etc. instead of LZ etc: As we said, in the
present item Col is more convenient for our purposes than L. Also L, is 4-ary. (To
keep the definition short we omitted the topology, but this was not essential since
it is definable from g2 or Bw,, or eq. '*'%)

<

Next, we consider Alexandrov-Zeeman-style theorems about Minkowskian ge-
ometries over arbitrary (possibly non-Euclidean) ordered fields §, cf. e.g. Gold-
blatt [108, Appendix B|.

THEOREM 6.7.26
Let n and § be arbitrary. Then Col,, C’olﬁh, Colﬁ,BWN,J_u,equ are (first-order)
definable from ("F, CO]Z) in the geometry Minkyoue(n, §).

For the proof of Thm.6.7.26 we will need Lemma 6.7.27 below.

LEMMA 6.7.27 Let n and § be arbitrary. Then for every ultrafilter U C P(I) (1
is an arbitrary set) we have

"Minknong(n, §) /U = Minknons(n, '§/U)

1212More precisely, in the definition of eq, we used g,, but g, can be replaced by g2 in the definition
of eq,,.

1213We could have included the topology 7, into Mink,.nz(n,§), and then the definability theo-
rems extend to definability of 7, too (in some sense).
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We omit the proof. 1

On the idea of proof of Thm.6.7.26:

Definition of Col, Col™, Col®:

Below we will use L, L, L™ L instead of Col, Col*, Col™, Col® because the intu-
itive idea of the proof is easier to see with the L’s.

Case 1: n > 2. First one defines P the set of planes from L. Then one defines L
from P. Then one defines a partial orthogonality L, C L™ x L as follows. Let £ € LT
and ¢; € L. Then

01,0
def,

(mel;«é(b A @bcel)b£e A (Yael)(abe L' < meLT)]). 1214

Now,
(el & @ el 1,0

Now, L &' L\ (LT U LS).

Case 2: n = 2. The proof for this case is analogous with the proof that Basax =

(fk preserves L), see Figure 344.

Col(a, b, c) JLEN (the LT lines and L”-triangles indicated in Figure 344 exist

(and the triangles are similar etc)). Since we are in n = 2, the relation of parallelism

is definable in the geometry ("F, L”; €). The definitions of L™, and L® are the same
as they were in Case 1.

Proof that Bw is definable from ("F; Col, Col"):

By Lemmas 6.7.5(ii) (p.1139) and Lemma 6.7.27 (p.1160), it is enough to prove
that for every §, each automorphism of (*F; Col, Col") preserves Bw. To see this
let § = (F; <) be arbitrary, and let h be an automorphism of ("F; Col, Col"). Since
h is an automorphism of ("F; Col) we conclude that h = @o A for some ¢ € Aut(F)
and A € Aftr by Lemma 3.1.6 on p.163. Let this ¢ and A be fixed. Since h preserves
Col” too, we conclude that ¢ € Aut(F), by Lemma 6.6.6 on p.1028. But now we
have that h preserves Bw since both ¢ and A preserve Bw.

Proof that eq and L are definable from ("F; Col, Col®, Col"™®):
The proof of this will be similar to the proof given for definability of Bw. By

1214An alternative definition is the following: ((£N ¢ = {o}, for some 0 € "F) A (Va € £)(Vb,c €
61) [“(o,b) and (o,c) are equidistant” = (ab € LY < ac € L")]); where the statement
“(0,b) and (o, c) are equidistant” can be formalized as follows: There is a parallelogram which

one diagonal is segment (b, ¢) and the intersection of the diagonals of this parallelogram is {o}.
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e L’

e’

Figure 344: Illustration for the proof of Thm.6.7.26.

Lemmas 6.7.5 (p.1139), 6.7.27 (p.1160) it is enough to prove that for every §, every
automorphism of ("F; Col, Col™, Col” h) preserves | and eq. To see this let A be an
automorphism of ("F; Col, Col™, Col” h). Now in the proof for Bw we have seen that
h = poA, for some ¢ € Aut(F) and A € Aftr(n,F). Let this ¢ and A be fixed. Now,
@ is an automorphism of the structure ("F; Col, Col”, Col™) and it is not hard to
check that it preserves | and eq since 1 and eq were defined by equations in the
language of F. So we have that A is an automorphism of ("F; Col, Col”, Col™),
and it remains to prove that A preserves | and eq. To prove this let §, = (F,; <)
be the real closure of § = (F; <), and let A, € Aftr(n,F,) such that A, | "F = A.
Now, by Lemma 3.4.5 on p.205, we have that A, preserves Col:” of Mink,ong (7, §+),
and it is not hard to check that A, preserves Col’ of Minknong(n,J.), too. So we
have that

(392) A, preserves the reduct (*F,; Col’, Col™™ Col,) of Minknong(n, §+)-

Now, L1, and eq, of Mink,,r(n,$«) can be defined from the structure
("F.; Col”, Col™™, Col,) by Alexandrov-Zeeman theorem since §, is a real-closed
field. Therefore, by (392), A, preserves L, and eq,, and this implies that A pre-
serves | and eq since A, ["F =A. 1
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THEOREM 6.7.28 Let§ andn be arbitrary. Consider the Minkowskian geometry
Minkpong(n, §) over §. Then, with the exception of gi, <y, and 1 the whole of

Mink,ong(n, §) is (first-order) definable from ("F;, C’o]ﬁ}.

On the proof: The case of n = 2 is completely analogous with the proof of
Thm.6.7.26.
Assume n > 2.
Below we will use L, LT, LP®, L’ instead of Col, Col*, Col™, Col® because the intu-
itive idea of the proof is easier to see with the L’s. First we define the set P of planes
from L° (any two intersecting L°-line determines a plane). Then we define L from
P (any intersection of two different planes is a line or has fewer than two elements).
The only task which remains is to separate out L from L\ L°. For this we
classify the planes into 3 categories (i) space-like planes (all their lines are in L°),
(ii) time-like planes (they contain many non L°-lines through every point in them),
and (iii) Robb planes, where H € P is a Robb plane iff

(Vpe H)[(3 e (L\L%)petC H] 125
Now,

e L
def
<~

(¢ ¢ L® and £ C H, for some Robb plane H);

and L” & L\ (L% U L*). Next, one checks that this definition of L, L™ L from
L® is “correct” and that we really did not use Ax(v/ ) in showing that it works.
Bw, L, eq are definable from ("F; Col") by Thm.6.7.26 on p.1160. B

Future research task 6.7.29 Let

Mink,on(n) A | { Minkpong(n,§) : § is an ordered field } .

Which ones of the above proved definability results (e.g. Theorems 6.7.26 and 6.7.28)
carry over to uniform definability in the class Mink,ong(n)? E.g. are Bw,, L, and
eq, uniformly definable from Colz in the class Minko,g(n)?

<

1215The present definition of time-like planes etc. is slightly different from our “official” definition
of time-like hyper-planes etc. on p.1129 which is in force throughout of the present work except
for the duration of the present proof.
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The next two theorems are a corollaries of the proofs of Theorems 6.7.23, 6.7.26,
6.7.28. These theorems discuss among others the simple geometries (Mn; L7%).
We note that our structure (Mn; =) is denoted in Friedman [90, p.164, line 11]
by the similar notation (M, )\). In passing we note that the reduct (Mn; L) of
our geometries already forms [an important] geometry. In the general relativistic
case this simple geometry can behave in a very non-Euclidean way, e.g. two LF”
lines may meet exactly in two points etc. In such a general relativistic context
the “simple” geometry (Mn; LF h) is strongly related to what is called a conformal
structure [of general relativistic space-time] in Ehlers-Pirani-Schild [78]. Studying
only the (Mn; L) geometry (of general relativity) in itself can lead to interesting
insights. We also note that the other geometry (Mn; LT) is called a projective
structure of general relativity in the same work [78].

THEOREM 6.7.30 Statements (i)—(iii) below hold for any Th satisfying condition
(x) way below.

(i) eq, Col, Col", Col®, Bw, L are definable from (Mn; Col™) in Ge(Th), assum-

mgn > 2.

(ii) eq, Col, Col™, Col®, Bw, L are definable from (Mn; Col") in Ge(Th).
(iii)
(*)

Proof: Before reading the proof cf. Fig.282 (p.863). The proof is based on the
proofs of Theorems 6.7.23, 6.7.26, 6.7.28. Cf. also Thm.6.2.74 on p.878. 1

eq, Col, Col™, Col™, Bw, | are definable from {Mn; Col®) in Ge(Th).
Th = (Newbasax + Ax(Triv;)~ + Ax(v/ )+ Ax(diswind)).

THEOREM 6.7.31 Statements (i)—(iii) below hold for any Th satisfying condition
(x) way below.

(i) Col, Col", Col®, Bw, L are definable from (Mn; Col™) in Ge(Th), assuming
n > 2.

(ii) Col, Col™, Col®, Bw, L are definable from (Mn; Col") in Ge(Th).
(iii) Col, Col™, Col™, Bw, L are definable from (Mn; Col®) in Ge(Th).
(x) Th & (Bax® + Ax(Triv,)~ + Ax(v ) + Ax(diswind)).

Proof: Before reading the proof cf. Fig.282 (p.863). The theorem follows from
Thm.6.7.30 above and Thm.6.6.105 on p.1127. 1
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THEOREM 6.7.32 Assume n > 2. Then Col" and Bw are definable from
(Mn; CoI™) in Ge(Reich(Bax)® + Ax(diswind)).

Proof: The theorem follows by Thm.6.7.30 above and Thm 6.6.107 (p.1127). 1

For completeness, we note that Ax(yv/ ) is “necessary” in Thm.6.7.23 and in
items (i) of Theorems 6.7.30, 6.7.31 in the following sense:

There is an ordered field § such that in the Minkowskian geometry Mink,,,g(3, §)
COILTL is not definable from (3F, Co]lljh) because this geometry has an automorphism

h for which (3¢ € L)) hl€] ¢ L. (As a contrast Col is definable in the same struc-
ture by Thm.6.7.34.) Of course, this geometry cannot be completed to a model
of Basax (because of our theorem that Basax(3) = Ax(yv/ )). In other words:
The Alexandrov-Zeeman theorem does not generalize to usual 4 (or 3) dimen-
sional Minkowskian geometries Mink,,,r(§) over arbitrary ordered fields § (from
Mink(fR)). To such a generalization we need to assume that § is Euclidean. In
connection with this we state Thm.6.7.33.

THEOREM 6.7.33

(i) Thm.6.7.28 (p.1159) generalizes to the Minkowskian geometry Mink,ong(n, )
(for n > 2) over an ordered field § = (F; <) iff the ordering < is definable (by
a first-order formula) over F. More concretely:

(ii) Let n > 2, and let § be arbitrary. Consider the Minkowskian geometry
Mink,ong:(n, §). Then (a) and (b) below hold.

()

(Co]z; or Co]i or Bw,, is definable from ("F;, C’o]ﬁh> in Minkpong(n, S))

U
( < is definable from F in § = (F; S))

(b)
((Co]u, CO]Z, CO]i,BW“, Ly, eq,) is definable from ("F; Co]5h> in Mink,ong(n, S))

)
( < is definable from F in § = (F; S))

The proof is based on Lemma 6.7.5 on p.1139, and it is available from Judit
Madarasz. 1
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THEOREM 6.7.34 Let n > 2 and let § be arbitrary. Then Col, is definable from
("F; Col,™) in Minknonr(n, ).

The proof is available from Judit Madarasz. I

THEOREM 6.7.35 Let n > 2 and let § be arbitrary. Consider the geometry
Mink,ong(n,§). Then with the exception of gi and 1, the whole of Mink,onr(n,§) is
definable from ("F; <,) as well as from ("F; =), where =}, denotes Robb’s “after”
and 1s defined as:

def,

gl p PLIN p < q A (3¢ € SlowEucl U PhtEucl) p,q € ¢,
for any p,q € "F.

The proof is available from Judit Madardsz. We note that, as we already said in
item (II), =7, can be defined from <, as follows: b =7 a & [b#a A (Vc)(b <,
c — a=<,0)l

|

The following theorem says that Theorems 6.7.35, 6.7.34 above do not generalize
to n = 2 even if we assume that § = R the ordered field of reals.

THEOREM 6.7.36 Col, is not definable from either (*R; <) or (*R; Co]fjh, <u)-

Proof: The proof of Thm.6.7.24 on p.1159 goes through for the present case, too.
|

(IIT) On =7, =Pr, =S

In this item we concentrate on &5, instead of &gy. (We mentioned that we
will usually identify the two.) The connection between g and L will be discussed
beginning with Def.6.8.2 (Geodesics, p.1179) way below, therefore we do not go into
that here.'?!6 To define e.g. L” from L and g we do need =7. (In the standard
literature g is defined in such a way that =T is recoverable from g, cf. Remark 6.2.45
on p.849.) Similarly for L™ and =P etc. This is the reason why we included =7
etc. in our language. Although one can define = from L', we wanted a simple
device like =7 which would help us to define L* directly from the pseudo-metric g.
Similar considerations apply to =° (we omit them). So, in some sense we consider
=T as an additional “part” of g, or in other words an extra datum for using g. Thus

our “pseudo-metric” could be considered the tuple (g, =", =" =) or equivalently
the structure (Mn, Fy; g, =7, =" =5).
1216Ty) our present setting L etc. can be recovered from g, =7, =PP etc. by the Alexandrov-Zeeman

and Latzer type theorems above and below. The purpose of geodesics goes beyond these concerns
and is connected with e.g. accelerated observers and further generalizations.
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In the following theorem, we briefly discuss what parts of our geometry &gy can

be obtained from =2. We could call this theorem an Alexandrov-Zeeman type

theorem, cf. Theorems 6.7.30-6.7.32 (p.1164) and the text above Thm.6.7.26. The
theorem is also a generalization of a result of Latzer [159].

THEOREM 6.7.37 Assume n > 2. Then (i)-(iii) below hold.

(i) Let Th be as in (x) of Thm.6.7.30 (p.1164).

Then eq, Col, Col", Col™® Col®, Bw, L are definable from (Mn; =F") in
Ge(Th).

(ii) Let Th be as in (%) of Thm.6.7.31 (p.1164).

Then Col, Col”, Col™ Col®, Bw, L are all definable from (Mn; =) in
Ge(Th).

(iii) Col", Col™ Bw are definable from (Mmn; =) in Ge(Reich(Bax)® +
Ax(diswind)).

Proof: The theorem follows by Theorems 6.7.30-6.7.32 (p.1164) and by the fact
that Col™ is definable from ="" in Ge(Reich(Bax)® + Ax(diswind)) as follows.

Col™(a,b,¢c) <L q=Php=Pro=Phq n

The next results are here because they are corollaries of our above theorems.
Namely, using our above results we can show properties of g, eq, L which are of
interest in themselves. In more detail, below we briefly indicate that under some
assumptions, almost the whole of the geometry gy is recoverable from (relativistic)
distance as measured by either eq or g. The non-recoverable part is < (which cannot
be recovered since it involves “direction of time” or “direction of causality”, which is
usually asymmetric and is not “coded” in g very roughly because g(a,b) = g(b, a)).

COROLLARY 6.7.38 Let Th be as in Thm.6.7.31, n > 2. Then in Ge(Th), all
parts of our geometry are definable from eq with the exception of <, g, F;.

On the proof: We use Thm.6.7.37(ii). From eq first we define ~ as follows.

def
e~e <= (Jey)(eqle,eq,e e3) A eqler,es er,er)).

Then we define =1 as f%llfows.
e=fle, & [e~e A (e=e V —eq(e e e er))].
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Now we apply Thm.6.7.37(ii). B

The next theorem says that all of &gy is definable from g, with the exception of
<, under certain conditions.

THEOREM 6.7.39 All parts of Ge(Th) are definable over its reduct {Mn,Fy; g)
with the only exception of <, assuming Th is as in Thm.6.7.30 and n > 2.

—Ph

On the proof: Assume Th. Then we can define =" from (g, Fo) as follows.'!7

e=Phe &L g(e,e1) =0.

Now we apply Thm.6.7.37. 1
Actually, in the above proof we did not use the whole of F; but only Fy.

COROLLARY 6.7.40 All parts of Ge(Th) are definable over its reduct
(Mn, Fo; g) with the only exception of < and 1 (of Fy), assuming the conditions
of Thm.6.7.39 above. 1

Items 6.7.38-6.7.40 above generalize (and formalize) the “general wisdom” from
relativity theory saying that “everything is recoverable from relativistic distance”
(or somewhat sloppily, from the “pseudo-metric”) with the exception of < since <
is not symmetric. Of course, if we want, we can modify ¢ such that even < will be
recoverable from the new, non-symmetric pseudo-metric g=. We will further explore
this possibility in §6.7.3.

COROLLARY 6.7.41 Let Th be as in Thm.6.7.30, n > 2. Then in Ge(Th), all
parts of our geometry are definable from the 4-ary relation L on points with the
exception of <, g, F;.

—Ph

On the proof: First, we define as follows.

a=Pry &L (a=bV {(a,b) L {a,b)).
Now, we apply Thm.6.7.37. 1
THEOREM 6.7.42

In Ge(Flxbasax(n)), no one of Col, Bw, L, eq, g, Col", Col"®, Col® is definable from
the rest of our geometry (i.e. from <, =1, = =5 F,).

1217 et us notice that if e and e; are not photon-like separated then either g(e,e;) is undefined or
g(e,er) > 0.
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On the proof: We leave it to the reader to modify the proof of Thm.6.7.13 in
order to obtain a proof for the present theorem. (A different possible approach
is the following. Let n > 2 and M = NewtK. Let m € Obs be fixed and S
be the space of m. Pretend that S C Mn. Take a permutation of Mn which
leaves all points outside of S fixed. This permutation will be an automorphism of
(Mn,Fq; <, =",="" =5 If we choose this permutation suitably than it will not
preserve any one of Col, Bw, L, eq, g, Col”, Col™ Col®.) ®

The following should be known from field theory.
Exercise level question 6.7.43

(i) Is there an elementary class K of ordered fields such that for each § € K the
ordering < of § is definable by a first-order formula from 0, 1, +, -, but there
is no formula uniformly defining < from 0,1, +, - in K?

(ii) Is there an ordered field § = (F; <) such that < is definable from F, and such
that there is an ordering <’, different from <, on F such that §' := (F, <) is
an ordered field too?

<
Item 6.7.44 The answer to Question 6.7.9 (p.1141) will turn out to be “YES” (by
Thm.6.7.8 on p.1140) if (i) or (ii) below hold .

(i) The answer to question 6.7.43(ii) turns out to be “NO”.

(ii) Conjecture 6.6.121 (p.1132) is true and the answer to question 6.7.43(i) turns
out to be “NO”.

<

6.7.3 The streamlined, partial metric ¢~

Recall that the Reichenbachian relativistic geometry'?!® &% = (Mn,..., g% TF)
associated to 9 is defined in item (VI) of Def.6.2.2 on p.799 and is motivated by

1218Reichenbachian relativistic geometry is a short name for Reichenbachian version of the
observer-independent geometry Ggy.
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Ge=(Th)
definici6jat

a fejezetke végérol
eléredobni, és
ebben a tételben
félhasznélni

§4.5. Ge"(Th) is the class of Reichenbachian relativistic geometries associated to
Th, i.e.

Ge®(Th) ‘= I{ &% : 9 € Mod(Th) }.12*

Definition 6.7.45 Assume & is a relativistic (or a Reichenbachian relativistic) ge-
ometry.

(i) The reflexive hull < := < UId of < is defined as follows:

a=<b &L [a<b or a=b], a,b€ Mn.

(ii) The time-like-metric'?® g= is defined to be g | (=), i.e.

< def

g = {{a,b,A)eMnxMnxF : a<b and g(a,b) = \}.1?%

(iii) (Mn, Fy; ¢g~) is called the time-like-metric reduct of &. For “time-like-metric
reduct” we will also use the expressions “time-like-metric geometry”, “time-
like-metric structure”, and “time-like-metric relativistic geometry”.

<

We will see that under some assumptions on 9%, ¢~ satisfies certain very
nice and familiar looking axioms, e.g. is more “streamlined” than ¢ is, from the
mathematical point of view, cf. p.1172. Therefore we will often refer to (Mn, Fy; ¢~)
as the streamlined partial metric reduct of &gy. Beginning with p.1172 we will see
that in many regards (Mn,F;; ¢~) is the most streamlined reduct of &gy and at
the same time it seems to be rather suitable (to serve as a stepping-stone) for
generalizations in the direction of general relativity.

The next theorem says that the Reichenbachian geometry &%, is definable from
its streamlined, time-like-metric reduct (Mn,Fy; ¢~), under mild assumptions on
M. The second theorem (Thm.6.7.47) says the same for the full geometry Bgy,
under some stronger conditions on 9.

THEOREM 6.7.46

1219We note that Ge™(Th) coincides with Ge®(Th), where Ge®( Th) was defined on p.1125.
1220 “Time-like-metric” is the same as “streamlined partial metric”.
12211 6. g=(a,b) = g(a, b) if a < b else is undefined.
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(i) Ge®(Th) is definable from its streamlined, simple reduct (Mn,Fy; g=) more
precisely from its reduct of language (Mn,Fy; ¢=), assuming n > 2 and Th =
Bax~“ + Ax(TwP) + Ax(v ) + Ax(diswind).

(ii) Statement (i) above remains true if the assumption Ax(TwP) is replaced by
any one of R(Ax syto) + Ax(Triv), Bax + Ax(syto).

(iii) Statements (i) and (ii) above remain true if we omit the assumption n > 2
and assume instead Ax(1T10) as a substitute.

Idea of proof:
Case of (i): Assume the assumptions. Then Th = Ax(eqtime) by Prop.6.8.25

on p.1201 and there are no FTL observers by Thm.4.3.24 on p.497. By these (and
by the assumptions, of course), one can check that the following definitions work.

Col"(a,b,c) <% (g%(a,b) = 9" (a,0) +g7*(c.b)

g+(a, C) = g+(a'a b) + g+(b7 C)

g*(b,0) + g% (a,c)), where

V
V
g a,b) =2 <5 gX(a,b) =\ V g¥(ba) = A

Bw is definable from Col” by the proof of Thm.6.7.1 (p.1137) and Fig.344 on
p.1162.1222
def

a="b <= (3c€ Mn)Col"(a,b,c).
a="y &L og=p v (a;‘éTb A (Jce Mn)lc#b A c~b A

(Vd € Mn)(Bw(b,d,¢) — a=T d)]).
Col™(a,b,c) &L ¢=Prp=Prc=Pry.
a<b < a#b A (3N€F)g*(a,b,N).
g%(a,b,)) &= g¢%(a,b,)) V g3(b,a,\) V(a=""b A X=0).
T is defined by gF.

Case of (i1): Item (ii) follows by item (i), Thm.4.7.15 (p.622) and Thm.4.2.9
(p.461).

Case of (iii): Ttem (iii) follows by the proof of item (i) and Prop.6.2.32 on p.840.
|

12227 abvoid misunderstandings we note that this is Bw for all lines and not only for e.g. LT or
L"urhh,
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THEOREM 6.7.47 Ge(Th) is definable from (Mn,Fy; g=) i.e. from its reduct
of language (Mn,Fy; g=), assuming n > 2 and Th = Newbasax + Ax(w)" +
Ax(v' ) + Ax(diswind).

Idea of proof: Assume the assumptions. By Thm.6.2.60 (p.862) and by Exam-
ples 6.2.69 (p.875), the <-free reducts of members of Ge(Th) are disjoint unions of
<-free reducts of Minkowskian geometries. Using this fact together with Thm.6.7.46
and the theorems in §6.7.2 one can complete the proof. 1

Axiomatics of g~

Under some mild assumptions on 90,'223 the following simple axioms G;-Gg4
hold in the time-like-metric reduct (Mn, F1; g) of &gy.

G; The domain < := Dom(g~) is a reflexive partial ordering.
Gz g%(z,y) >0 if it is defined.

Gs g%(z,y) =0 & z=y.

Gy 3 (z,y) + 9% (y, 2) < g%(x, 2) fry<z

We define the axiom system busg as follows.

busg : X G; + Gy + G + Ga.

It is interesting to compare busg with the usual'??* axiomatizations of metric
spaces (we feel that busg is closer to the usual axiomatizations of metrics'??® than
e.g. the axioms which could describe g).

The above axiomatization busg is not unrelated to the one given in Buse-
mann [56, p.7]. Unlike Busemann, however, we regard the topology on (Mn, Fy; ¢~)
to be defined from the partial metric ¢~ (or from <) in the style of either

Def.6.2.31(ii) (p.838) or of Def.6.2.2(VI) (p.800), i.e. in the style of our defining

the Reichenbachian topology 7 from the Reichenbachian partial metric g.1226

Le. for e € Mn and € € TF we let
S<(e,e) X {e; € Mn : 0< g(e,e) < e}

12236 o Bax_®,Ax(TwP),Ax(\/_),Ax(TTO) are sufficient

1224 on-relativistic

1225hoth in complexity and in spirit

1226 The difference between g and g~ seems to be minor but is not negligible. Else: We note that
instead of g~ we could use < for defining the topology in the style of Fig.279, p.839. Cf. Def.6.2.31
(ii), p.838.
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Now, our topology 7~ is the one generated by the subbase

{S*(e,e) : e€ Mn, e € TF }.

When the topology 7~ is present, we add to busg the extra axiom

Gs (Mn, 7<) is a Hausdorff (i.e. To) space!??” and ¢= : Mn x Mn — Fy is
continuous.

It is shown in Busemann [56] that the topological structure
<MH, Fla g<a T-<)

has desirable properties from the point of view of mathematical elegance, and at
the same time admits a relatively natural generalization in the direction of general
relativity theory (cf. e.g. Busemann [56, p.7, axioms 77-T}).

The generalization in the “local” direction of busg tailored for general relativity
theory states only that first we are given a Hausdorff topology 7= and then for
any point e € Mn there is a neighborhood U, of e such that a partial ordering
< and a partial function g are defined on U,. Then the axioms of busg are
stated only for the little structures (U, Fy; <¢,95), € € Mn.'??® In addition to
these axioms one has to add some consistency axioms for the case when U, and
U. overlap. These consistency axioms are rather simple and natural, we do not
recall them, they can be found in Busemann [56, p.7] axiom T;. The so obtained
local version of busg is completely consistent with (and is applicable to) general
relativity theory, cf. Busemann [56] for more information on this. Summing up, the
general relativistic versions of the time-like-metric structures (Mn, F; ¢=, 7~) look
like (Mn, F1; T, =<e, 95 )ecmn (cf. the definition of "F; on p.42 for the (..., 9")ecrn
notation). Further, the class of these structures is axiomatized by the list of axioms
just quoted from Busemann [56, p.7] (ending with 7).

In connection with the general relativistic (i.e. localised) structures
(Mn,F1; T, <e, 95 )ecmn we note that although we included the topology 7= into
the structure, it is definable from the rest GG := (Mn, F1; ¢, 93)ecmn. Therefore

1227For Hausdorff spaces cf. footnote 1009 on p.1018.
12287t would be sufficient to write (U, F1; g;*), € € Mn for these structures, since <. is obviously
definable from g3.
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Lehet, hgoy
Def.1.1.1 (VI)-ban
a Reichenbachi
metrikat erdemes
kicserelni az uj
g=-re, mert (1) g=
szebben viselkedik
es (2) =Ph yrany-
lag konnyen defho
g~-bol.

one can define GG without 7~ and then later one can define 7= from GG. Namely,
assume e € Mn and ¢ € TF. Then

S<(e,e) ‘L {e1 € Mn : 0< gie,e)) <e}

is an open set, and it is an element of the subbase of 7= we want to define. Now,
we postulate that
{S*(e,e) : e€ Mn, e € TF}

is a subbase of our topology 7=. We note this only as a possibility; we do not
explore the general relativistic time-like-metric structures GG, in this section any
further.

Remark 6.7.48 In the language of time-like-metric structures (Mn,Fy; ¢g=) we
could define a kind of collinearity relation coll® the following way and could en-
rich the axiom-system busg by adding natural conditions on this collinearity: First
we define

Bw*(a,b,c) <=  g%(a,¢) = g%(a,b) + g=(b,0).

Then we define coll™ from Bw™ basically the same way as coll was defined from Bw

on p.818.
<

It would be interesting to know how many further axioms we need to add to
busg in order to ensure that the partial metric structure (Mn, Fg; ¢g=) comes from
a model of one of our relativity theories Mod(7Th). Looking into this might be a nice
future research task.

Since the time-like-metric reduct of gy is an important one we introduce the
following distinguished class of geometries. Let Th be a set of frame formulas. Then

Ge™(Th) = I (Mn, Fi; g=) : (Mn,Fy; g%) is
the time-like-metric reduct of gy for some M = Th}.

Recall from p.1174 that the topology 7~ is definable in (Mn, F1; g=) therefore
we can use Ge™(Th) as if its definition were

Ge*(Th) = I{{(Mn,Fy; g%, T=) : ... the usual conditions on 7= 1229},

1229¢ o the definition of 7= on p.1174 is suitable for this
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6.7.4 Relativistic incidence geometries

Let &I be the reduct
®ine . (Mn, L; LT, L™ L5, €)
of Bgn. We call &I the incidence geometry associated to .

Ge™(Th) 4 I{ & : M = Th } is the class of relativistic incidence geometries

associated to Th.

It is attractive to discuss relativistic incidence geometries, since they look “pure
and clean” in their language and since they look so similar to incidence geometries
(Points, Lines; €) known from Euclidean geometry, projective geometry etc. Despite
of this apparent “purity”, we know that

all parts of our geometries Ge(Th) are definable from Ge™(Th),

(%) with the exception of <,g,F;, assuming n > 2 and Th E
Newbasax + Ax(Triv;)~ + Ax(v ) + Ax(diswind), cf. Theo-
rems 6.7.30, 6.7.31

Le. almost all parts of Bgy are definable from the “pure and nice” B¢, assuming

some conditions. This implies two things:

(1) We can base our study of relativistic geometry on the “nice and pure” inci-
dence geometries B (under some assumptions) if we want to. (The prize is that
we loose <, g, F; [but we can use eq in place of g in many situations|.) Perhaps it
would be a useful future activity to rewrite the present chapter (Chapter 6) with
first concentrating on the incidence geometries Ge™*(Th), and later introducing the
parts like g etc. not definable over Ge™(Th) when they are needed. Then one could
compare the two versions of “Chapter Geometry” and discuss the advantages of
both.

(2) In the present work we do not need to discuss the “attractive” geometries
Ge™(Th) since in definitionally equivalent forms they were already discussed: cf.
e.g. Theorems 6.7.30, 6.7.31, p.1164 and the duality theory (Go, Mo) in §6.6.4 (pp.
1069-1078). Our reason for referring to the (Go, Mo)-duality is that on the geometry
side it uses ingredients definable over the incidence geometries Ge™*(Th), with the
exception of <. It does not seem hard to adapt the (Go, Mo)-duality to the <-free
reduct. Of course, in this generalization, one has to adjust the assumptions on the
relativity theories Th.
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It might be a useful future research task to generalize our (Go, Mo)-duality to
(i) the <-free reducts of our geometries and (ii) to Ge™(Th) in place of Ge’(Th).
This would yield a duality of the pattern

Mod(Th) +— Gel™(Th)

with some assumptions on Th. Of course, one should try to make as few and weak
assumptions on Th as possible.

In this connection we note that our (G, M)-duality is of the pattern
Mod(Th) +— Ge(Th)
while the (Go, Mo)-duality yields the pattern
Mod(Th) +— Ge°(Th)
(with appropriate assumptions on Th in both cases, of course).'?* The new duality

would be of the pattern

Mod(Th) +— Gel™(Th).

Here we do not discuss the just outlined “incidence geometries only” direction fur-
ther.

1230The (Go, Mo)-duality does more than this, since it also yields a pattern
Mod(Th) <= Mog(TH),

where Th and TH are in two different languages.
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6.8 Geodesics

In the present section we discuss geodesics which, among other things, will help
us to understand the connections between g and L. In later work, in moving in
the direction of general relativity, geodesics will play an important role (they do
so already in the case of accelerated observers even in “flat” space-time).'?3! In
moving towards general relativity geodesics will replace L as possible life-lines of
inertial bodies. (They will play other important roles, e.g. they can be used for
recognizing curvature of space-time). At the same time, studying geodesics may
be considered as a continuation of §6.7 discussing recoverability of various parts (or
reducts) of our relativistic geometries from each other. Geodesics can be regarded as
an attempt to recover the lines of our geometry, basically, from g, in a style different
from the Alexandrov-Zeeman style proofs in AMN [18, §6.7.2].1232 For completeness
we note that by Corollary 6.7.15 in AMN [18], p.1145, the present author proved
that L and L are first-order logic definable from eq as well as from g under some
reasonable assumptions on M (e.g. (Basax + Ax(Triv) + Ax(v ) + Ax(eqtime))
is sufficient for this).

Though we will not prove this, by using geodesics one can recover from g, =7, ="

,=% 1233 the potential life-lines of inertial bodies even when the axiom Det '23* is
not assumed (but certain conditions are still needed, of course). Roughly speaking,
in generalizations of our geometries in the direction of general relativity (cf. e.g. the
geometries GG on p.1173 in §6.7.3), geodesics will remain suitable for representing
life-lines of inertial bodies. Further, time-like geodesics will be the possible life-
lines of inertial observers, photon-like geodesics will be the life-lines of photons,
while space-like geodesics can be regarded as potential life-lines of hypothetical

1231Cf. e.g. [24], [19], [23]. For completeness we note that sometimes geodesics are used in special
relativity, too, cf. e.g. Friedman [90, pp.125-126, 128ff].

1232To be able to use g we will need its codomain Fg, too. To make our life easier we will also use
=T, =Ph =5 but with sufficient (coding) effort these data could be recovered from g, where g is
understood together with its domain Mn and codomain Fg. We will not discuss here how, under
sufficient conditions =7, =F" are recoverable from (Mn,Fg; g). Cf. Remark 6.2.45 on p.849. Cf.
also the first 15 lines of (III) on p.1166. On p.1150 we used F; as the codomain of g. The reason
for the difference is that here we think of g slightly differently than we did there. So this is not an
inconsistency, but simply a change in perspective. The choice of perspective depends on for what
purposes we want to use g. (Once we identify it with (Mn, Fg; g) and once with (Mn, Fy; g).) For
completeness we note that =7, =P, =5 are definable from g (more precisely, from (Mn,Fo; g)) if
n > 2 and some conditions hold, cf. items 6.7.38-6.7.39 (p.1167) in AMN [18].

1233and Fo, Mn of course

1234Cf. §6.5, p.992 for Det (Det says that “points determine lines”).
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FTL particles called tachyons in the literature (assuming such things exist); all
this is understood under sufficient conditions. Already in the world-view of an
accelerated observer!'?3®, say m, it will be convenient to say that for m the life-lines
of inertial bodies are geodesics [determined by g, Fo, =T, =] because in the world-
view w,, : "F — Mn of m the Euclidean lines of "F do not necessarily correspond
to inertial bodies (if m is really accelerated).'?3

To make a long story short, the present section on geodesics intends to prepare
the road for generalizations (in the direction of general relativity). For further
motivation we refer to Figure 355 on p.1208, to Figure 281 on p.855 and to Figure 308
on p.1002. For further motivation we refer to Figure 355 (p.1208), Figure 281 (p.855)

and Figure 308 (p.1002).

Remark 6.8.1 We note that we could have based our theory of geodesics entirely
on the streamlined, time-like metric reduct (Mn, Fy; ¢=) of &gy. This would have
advantages (i) from the point of view of aesthetics and (ii) from the point of view
of generalizability towards general relativity (as the latter is illustrated in Buse-
mann [56]). To save space we use below a “bigger” reduct. We leave it as a future
research task to elaborate a version of the present section (§6.8 “Geodesics”) based
entirely on the streamlined, time-like metric reduct (Mn,Fy; ¢g=).

<

We base our definition of geodesics in gy (Def.6.8.2) below on the definition
of geodesics in e.g. Busemann [55], [56], cf. also Busemann-Beem [?]. Part of the
relevant mathematical literature uses the same kind of definition while another part
uses a definition (of geodesics) which goes e.g. via using derivatives'?*”. (Within
this, they distinguish “affine geodesics” and “metric geodesics” which distinction
is nicely illuminated e.g. in Friedman [90, pp.349,357].)'?3® Busemann’s version is
simpler (as far as we have a metric around). One might think that a large part
of the literature uses the derivatives oriented version because that is needed for
general relativity. However, this is not the case since Busemann [56] shows that

1235Cf. e.g. [23] and the relevant parts of this work.

1236 A more important point will be that in general relativity the life-lines of inertial bodies do not
satisfy the axiom Det, i.e. different geodesics can meet in several points. This is true in the ap-
proximation of general relativity built on “special relativity” 4+ “accelerated observers” + “Newtonian
approximations” in Rindler [224, §7.7, e.g. item (7.28) on p.124].

1237Cf, e.g. d’Inverno [75, pp.75, 83, 99] or Misner-Thorne-Wheeler [196], or Hawking-Ellis [126],
or Hicks [132, pp.19,27].

1238Tn Friedman [90, p,357] it is explained that the above “metric-affine” distinction behaves
differently in non-relativistic geometries and in relativistic ones (this might perhaps be related to
our Corollary 6.8.21).
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general relativity can be based on his simple definitions.'?3® So, here we stick with
Busemann’s simple definition (especially because in the introduction to AMN [18] we
adopted a policy to keep things as simple as possible, postponing the introduction of
more complicated ideas to the point where they become useful/needed). A further
motivation for adopting Busemann’s definition of geodesics is that Busemann [55]
is an ambitious mathematics (modern geometry) book whose main subject matter
is the study of geodesics.

The definition of geodesics (Def.6.8.2) below is not intended to be a first-order
logic definition over (a reduct of) the structure &. This causes no harm to our first-
order logic oriented philosophy (for building up physical theories). We will return
to discussing this briefly in Remark 6.8.3 below the definition.

Definition 6.8.2 (Geodesics) Assume & is a relativistic geometry.

1. Throughout Fo = (F; 0,+, <) is the ordered group reduct of the sort F; of
&.

2. The pseudo-metric reduct M of & is defined as follows.

M (Mn,Fy; g, =", =" =5).

In the definition of geodesics of the geometry & we will use only its pseudo-
metric reduct. If we wanted to concentrate on the time-like geodesics, then it

would be sufficient to use the streamlined, time-like-metric reduct (Mn, F1; ¢~)
discussed in §6.7.3 (p.1170).

3. Let £ C Mn. Then /¢ is called a photon-like geodesic iff
(Va,b € ) a=""b.

Any photon-like geodesic is also called a photon-like quasi geodesic, and a
photon-like Archimedean geodesic.

4. By an interval of Fq we mean an open interval

(z,y)={z€F :z<z<y},

where 7,y € F U {—00,00}, and z < y.1240

12397t seems a more likely explanation that the derivatives-oriented version is suitable for discussing
the metric geodesic affine geodesic distinction and that it can be used on a level of abstraction where
we throw g and eq away (i.e. we don’t have a metric) e.g. in differential topological approaches to
relativity.

1240Tn this section —oo # oo deviating from our convention on p.534 of AMN [18]. As usual,
—o00 <z < 00, for any x € F.
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5. Let £ C Mn. By a parameterization of ¢/ we understand a function A mapping
an interval of Fy onto ¢, such that h is locally distance preserving, i.e. for any
z € Dom(h) there is € € TF such that, letting D := (2 — &,z + ¢), (*) below
holds. 24

(%) h | D is distance preserving, i.e.
(Vz,y € D) g(h(z), h(y)) = |z — yl.

If / admits such a parametrization, then we call it a parametrizable curve.

6. Let £ C Mn. {is called a time-like quasi geodesic iff there is a parameterization
h of £ such that for every z € Dom(h) there is ¢ € TF such that, for D :=
(z — e,z +¢€), (*x) below holds.

(%) (Vz,y € D) h(z) = h(y).

7. A time-like quasi geodesic £ is called a short time-like geodesic iff there is a
parameterization h of £ such that, for D := Dom(h), (x) and (xx) above hold.

8. Let £, h be as in item 5 above. Intuitively, £ is a space-like quasi geodesic
if it is a union of “intervals” h[D] each one of which consists of events 1/2-
simultaneous for some observer, cf. Figure 345. Formally:

£ is called a space-like quasi geodesic iff there is a parameterization A of £ such
that for any z € Dom(h) there is € € TF such that, for D := (z — ¢,z + ¢),
(* * x) below holds. Intuitively, the second part of (* * x) says that there is
an observer who thinks that all the events in h[D] are 1/2-simultaneous, cf.
Figure 345.

(Vz,y € D) h(z) =° h(y) and

there are a short time-like geodesic ¢ and a € ¢
such that (Vz € D)(3¢,d € ¥')

[c#d A g(a,c)=g(a,d) A c=P1 h(x) =Pt d],1242

( * *)

see Figure 345.

124I1Note that such a parameterization h : “interval of Fo” — £ is always continuous w.r.t. the
natural topology on Fg and the topology induced by g on £. Le. condition (x) (postulated for every
D as above) implies this kind of continuity. This continuity is slightly weaker than continuity w.r.t.
the topology T of &; the latter amounts to viewing h as h : “interval of Fo” — Mn.

1242We note for “general relativitists” that if we make the above condition local by requiring
¢'ND # () then the condition will get only stronger which means that our theorems will get
weaker, i.e. omitting this locality condition makes our theorems stronger.
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10.

11.

12.

13.

14.

Figure 345: Illustration for (s x ).

. Let £ C Mn. / is called a quasi geodesic iff it is a time-like or a photon-like or

a space-like quasi geodesic.

A quasi geodesic £ is called a time-like geodesic iff there is a parameterization
h of ¢ such that for every z,y € Dom(h) with z < y there is € € TF such that
for any z € (x,y), letting D := (z — &,z + ¢€), (*) and (**) above hold.

A quasi geodesic / is called a space-like geodesic iff there is a parameterization
h of £ such that for every z,y € Dom(h) with z < y there is € € TF such that
for any z € (x,y), letting D := (z — ¢,z + ¢€), (x) and (* * *) above hold.

A quasi geodesic £ is called a geodesic iff it is a time-like or a photon-like or a
space-like geodesic.

A geodesic / is called a time-like Archimedean geodesic iff there is a parame-
terization h of £ such that for every z,y € Dom(h) with z < y there is k € w
and intervals Iy, ..., I} of Fg such that

(,y) CLU...UL, AN (Miek)LNLg #0 A
(Vi € (k+1)) [(*) and (**) above hold for D := I;].

A geodesic { is called a space-like Archimedean geodesic iff there is a parame-
terization h of £ such that for every x,y € Dom(h) with z < y there is k € w
and intervals Iy, ..., I} of Fg such that

(l‘,y)gfou...UIk N (VlEk)IZﬂIZ_H?é@ VAN
(Vi € (k+1)) [(x) and (* * x) above hold for D := I;].
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15.

16.

17.

18.

19.

20.

21.

A geodesic £ is called an Archimedean geodesic iff it is a time-like or a photon-
like or a space-like Archimedean geodesic.

A space-like geodesic £ is called a short space-like geodesic iff there is a param-
eterization h of £ such that, for D := Dom(h), (x) and (x * *) above hold.

A geodesic ¢ is called a short geodesic iff it is a photon-like geodesic or it is a
time-like short geodesic or it is a space-like short geodesic.

A geodesic / is called a strong geodesic iff it is either photon-like or there is
a parameterization h of ¢ which is continuous w.r.t. the natural topology on
Fo and the relativistic topology 7 of &,'243 and h satisfies the conditions in
the definition of geodesics (in items 10-12 above).'?** We define the strong
versions of our special kinds of geodesics defined in items 6-17 completely
analogously, i.e. by recuiring that the parameterization h occuring in their
definitions is continuous w.r.t. the relativistic topology 7 of &.

A geodesic / is called a mazimal geodesic iff

(V geodesic £')[{' D¢ — ¢ =1{].

The definition of “maximality” remains completely analogous for special kinds
of geodesics in place of just geodesics. (E.g. a maximal strong space-like quasi
geodesic is a strong space-like quasi geodesic which is maximal among the
strong space-like quasi geodesics.)

A geodesic £ is called a divisible geodesic iff

(Va,b € £) (g(a, b) is defined — (Ix € *F)(Yo € *F)(3c € )

=0 AN g(a,c)+g(cb) <’f]>'

Let e € Mn and € € TF. Let us recall that the e-neighborhood of e is defined
as
S(e,e) :=={e; € Mn : g(e,e;) <e}.'?*

12433

1

.e. h is continuous from an interval of Fg into the topology (Mn; T

1244 Assume £ is a strong geodesic with parameterization h. Then h is a “local” homeomorphism
in the sense that (Vz € Dom(h))(3c € TF)[h | (z — ¢,z + €) is a homeomorphism w.r.t. the
relativistic topology 7 of &]. Cf. the notion of a parameterized curve in Hicks [132, p.10] and
curves in Kurusa [157]. In passing we note that in general continuity w.r.t. (Mn; T) is stronger
than continuity w.r.t. the topology on £ induced by g as discussed in footnote 1241 (p.1180). Hence,
in general, there are fewer strong geodesics than geodesics.
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22. Let £ C Mn. Then / is called a weak geodesic iff
(Ve e £)(Fe € TF)[g | ((N S(e,€)) is additive],
where additivity means that, letting D := £N S(e, ¢),

(Va,b € D) (g(a,b) is defined) A
(Va,b,c € D) [g(a,b),9(b,c) < gla,c) — g(a,¢) = g(a,b) + g(b,c) .

A quasi geodesic which is also a weak geodesic will be called locally additive.'?*

23. Let £ C Mn. { is called additive iff g | £ is additive.

24. A weak geodesic / is called a continuous weak geodesic iff there is a continuous
function A mapping an interval of Fq onto 4.

<

We will see in Thm.6.8.20 (p.1197) that the second part of condition (¥ * )
on space-like quasi geodesics and geodesics in the above definition is needed, cf.
Figure 351 (p.1198).

Remark 6.8.3 (Connections with first-order logic definability) We also note
that our definition of geodesics over (Mn, Fy; g, ...,=%) is not a first-order logic def-
inition in the sense of §6.3. To save space, here we do not address the question of
how and under what price'?*” could we turn the definition of geodesics into a first-
order logic one. We only note that if we include the geodesics together with their
parameterization into & obtaining a structure (&, geodesics, pameterizations. . .) as
extra sorts'?*®, then things can be arranged so that the class of so expanded struc-

tures does admit a first-order logic axiomatization. We note that by the above we

1245Tn the case of Minkowskian geometry our notation S(e,e) might be ambiguous since it both
denotes the relativistic “e-sphere” and the Euclidean “c-sphere”. Throughout the present section
by S(e,e) we always mean the relativistic sphere.

1246 Therefore being locally additive is a property of geodesics and in some situations there may
be fewer locally additive geodesics than geodesics.

1247we mean under what extra conditions and what modification of the definition of &gy
1248 A ctually, it is enough to incude parameterizations of geodesics as an extra sort Geod together
with an extra inter-sort operation valueof : Geod x F — Mn. Intuitively, for h € Geod, e =
valueof(h, ) means that e = h(z), i.e. e is the value of parameterization h at value z € F.
Actually, valueof is a partial function only since we do not want to require Dom(h) = F. The
details are analogous with the style of Nonstandard Dynamic Logic, cf. e.g. Sain [231], Andréka,
Goranko et al. [14].
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do not mean that the &-reduct of (&, geodesics,...) would determine the rest of
the structure (e.g. the sort geodesics) uniquely. We only mean to say that in the
expanded structure (&, geodesics, ...) the geodesics would behave well enough for
our working with them in accordance with our intuition and for basing our relativity
theoretic ideas on them. (This is very much like the difference between standard
models of higher-order logic and Henkin-style nonstandard models of that logic. Our
expanded structures (&, geodesics, .. .) are very much like Henkin-style nonstandard
models.)

In passing we note that if we assume enough axioms of special relativity on 90,
then geodesics become first-order logic definable over (Mn; g, =T, =% =) but the
greatest value of geodesics is in their use in general relativity where these axioms
are not assumed. Hence we do not discuss this direction here. <

In passing we note that for the purposes of accelerated observers and general
relativity (to come in a later work) “quasi geodesic”, “short geodesic” and “geodesic”
are “local” concepts while “maximal geodesic” seems to be more on the “global”
side. Further, in general relativity the emphasis is on time-like and photon-like
geodesics, cf. e.g. Busemann [55, 56| or Ehlers-Pirani-Schild [78].

In the present section we will concentrate on quasi geodesics, geodesics,
Archimedean geodesics, and the maximal versions of these geodesics. By our defi-
nition,

¢ is an Archimedean geodesic = /{is a geodesic = /is a quasi geodesic.

The analogous statements hold, respectively, for time-like, space-like, and photon-
like versions of Archimedean geodesics, geodesics and quasi geodesics, e.g. (£ is
an Archimedean time-like geodesic) = (£ is a time-like geodesic) = (£ is a time-like
quasi geodesic). In some of the cases these implications hold in the other direction,
too. In connection with this we include Propositions 6.8.4 and 6.8.6 below.

PROPOSITION 6.8.4 Assume M = (Mn,Fo; ...) is the pseudo-metric reduct
of a relativistic geometry. Assume that Fo is isomorphic with the ordered additive
group reduct of the ordered field R of reals. Let £ C Mn. Then

¢ is an Archimedean geodesic < { is a geodesic < [ is a quasi geodesic.

The analogous statements hold, respectively, for space-like, time-like and photon-like
versions of Archimedean geodesics, geodesics and quasi geodesics.

We omit the easy proof. I

For stating our next proposition we need the following definition.
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Definition 6.8.5 An ordered group (G; 0,+, <) is said to be Archimedean iff for
any a,b € G
View)yia<b = a=0"29

<

We note that an ordered field § is Archimedean iff its ordered additive group
reduct Fg is Archimedean in the sense of the above definition.

PROPOSITION 6.8.6 Assume M = (Mn,Fy; ...) is the pseudo-metric reduct of
a relativistic geometry. Assume that Fo is Archimedean. Let £ C Mn. Then

¢ is an Archimedean geodesic < £ is a geodesic.

The analogous statements hold, respectively, for space-like, time-like and photon-like
versions of Archimedean geodesics and geodesics.

We omit the easy proof.

Let us consider how the notion of geodesics helps us to recover the “truly geo-

metric parts” LT, L™ etc. from g and =T, =",

Let us recall that the geometry &gy associated to a model 9 looks like

Gm = (Mn,Fy, L; LT, L™, L%, €, <, =", =", =% Bw, 1,,eq,9,7). **

)y — 9

Among others, below we compare lines (i.e. elements of L) with geodesics.'?! We
have time-like, photon-like and space-like lines and the same applies to geodesics.
This gives us, roughly, 4 kind of comparisons, lines with geodesics in general, and
then special lines with special geodesics.

Recall that we call the elements of L lines of &gy. Above we defined the geodesics
of &gy, but they are not necessarily the same as lines of Bgy. We will elaborate this
subject in the following discussion of the theorems which will come soon. We will
see that, under some assumptions on Th, all elements of L turn out to be geodesics,
i.e.

L C (geodesics),

1249Here ia is understood in the sense 3a = a + a + a.
1250 A5 we already said, we identify Ggy with its expansion &5, = (Bay; =7, =1, =5).
1251We mean to compare lines of & with geodesics of the same &.
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in Ge(Th) of course (cf. Prop.6.8.7).1252 Under stronger assumptions, L coincides
with the set of maximal geodesics, i.e.

L = (maximal geodesics)

(Corollary 6.8.33, p.1204). Under somewhat milder assumptions, we will already
have
L' = (maximal time-like geodesics)

(Thm.6.8.24, p.1200 and Corollary 6.8.27, p.1202).
L = (maximal photon-like geodesics),

under some (reasonably mild) assumptions on Th (item (v) of Prop.6.8.8). The
conditions in the above quoted theorems are quite strong, hence we will address the
issue wether they are really needed. We will do this in the form of conjectures, open
problems, etc.

(We will also see that the various kinds of geodesics (e.g. “maximal geodesics”)
introduced in Def.6.8.2 are needed for forming a clear picture of the subject of this
section.)

The following proposition says that lines (i.e. elements of L) are geodesics under
certain assumptions.

PROPOSITION 6.8.7 Assume Bax~® + Ax(eqm). Then the elements of L are
geodesics.

We omit the easy proof.

The following proposition is a more detailed version of Prop.6.8.7 above. Among
others, it says that the elements of LT, L™ L® are geodesics under certain assump-
tions.

PROPOSITION 6.8.8
(i) Assume Ax1, Ax2, Ax3y, Ax4, Ax6g9, AxEg; and Ax(eqm). Then

LT 1253

LT

C  (time-like Archimedean geodesics), and
C  (short time-like geodesics).

1252 A5 a contrast, we will have no theorem saying the reverse of this, i.e. that under some as-
sumptions on Th, say, L D (maximal geodesics) without claiming equality, i.e. without claiming
L = (maximal geodesics).

1186



(ii) Assume Bax™ "+ Ax(eqm), or n > 2 and Bax~" + Ax(v" )+ Ax(eqtime).
Then
LY C (mazimal locally additive time-like geodesics).

(iii) L™ C (photon-like geodesics) = (photon-like Archimedean geodesics).
(iv) Assume Bax~ " + Ax(diswind). Then

L2 C (mazimal photon-like geodesics).

(v) Assume Reich(Bax)® + Ax(diswind). Then

L™ = (mazimal photon-like geodesics).

(vi) Assume Bax~®+Ax(eqm), or n > 2 and Bax~"+Ax(v/ )+Ax(egspace).
Then
L® C (space-like Archimedean geodesics).

(vii) Assume n =2 and Bax~? + Ax(eqm). Then

L® C (mazimal locally additive space-like geodesics).

Outline of proof: The proofs of items (i), (iii) and (iv) are easy and are left to
the reader.

Proof of (ii): Assume the assumptions. Let ¢ € LT, Tt is easy to see that £ is a
locally additive time-like geodesic. We will prove that £ is a maximal one among
these geodesics. Let e € Mn such that e ¢ £. Then there are a,b € £ such that a # b
and a = e =P b, see the left-hand side of Fig.346. ¢ is not additive on {a, b, e},
since g(a,e) = g(b,e) = 0 and g(a,b) > 0. Further, for any ¢ € *F, a,b,e € S(e,¢).
Thus, g is not locally additive on £U {e}. Therefore ¢ is a maximal locally additive
time-like geodesic.

Proof of (v): Ttem (v) follows by item (iv) and by the fact that in Reich(Bax)®

geometries

—Ph y _Ph . _Ph

a c a — coll(a,b,c),

1253Note that (Archimedean geodesics) C (geodesics) and the same holds for time-like ones etc.
Therefore the conclusions of the present proposition remain true if the adjective Archimedean is
omitted. Later we will not return to indicating the consequences of this observations explicitly.
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Figure 346: Illustration for the proof of Prop.6.8.8.

see the middle of Fig.346. This fact holds by Thm.6.6.107 (p.1127).

Proof of (vi): We claim that for every 9t = Bax~ " and ( € Ly, there is an observer
m such that m sees that all the events on ¢ are 1/2-simultaneous. The proof of this
claim is depicted in the right hand-side of Fig.346. Using this claim and item (i) of
our proposition one can easily prove item (vi).

Proof of item (vii): The proof of item (vii) is analogous to that of (ii). B

Remark 6.8.9 (Discussing some of the conditions of Prop.6.8.8)

(i) In item (iv) of Prop.6.8.8 the condition Ax(diswind) cannot be omitted.
Moreover, for every n > 2, there is & € Ge(Newbasax + Ax(eqm)) such that
there is £ € L™ which is not a maximal photon-like geodesic. Hint for the idea
of a proof is illustrated in the left-hand side of Figure 347. In the figure £ € L™
e € Mn, ¢ and e are in different windows and (Va € £)(3¢' € L™)a,e € ¢
Thus, £U {e} is a photon-like geodesic. Hence, ¢ is not a maximal photon-like
geodesic. Further, item (iv) of the above proposition does not generalize to
Bax™ +Ax(diswind) because of the following. If n > 2, in models of NewtK
the photon-like lines are not maximal geodesics.
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Figure 347: Illustration for Remark 6.8.9. On the right-hand side ¢ is a maximal
photon-like geodesic. (Here £ is on the surface of the light-cone.) On the left-hand
side, £ U {e} is a photon-like geodesic.

(i) Item (v) of Prop.6.8.8 does not generalize form Reich(Bax)® to Bax~".
The idea of a proof is illustrated in the right-hand side of Figure 347. In
the figure £ is a maximal photon-like geodesic. We note that in Reich(Bax)
the right-hand side of Figure 347 is excluded by the characterization theorem
of Reich(Th)-models in AMN [18, §4.5]. This is the theorem which states
that every model of Reich(7Th) can be obtained from some model of Th by
“relativizing” with an artificial simultaneity (under some conditions on Th).

<
In connection with Propositions 6.8.7 and 6.8.8 above we ask the following.

QUESTION 6.8.10 Assume n > 2, ® € Ge(Bax~" + Ax(v/" ) + Ax(eqtime))
and that Fg is isomorphic with the ordered additive group reduct of *R.

(i) Are the members of L¥ mazimal time-like geodesics?
(ii) Is there a time-like geodesic £ such that ¢ has a non-injective parameterization?

<

In connection with the above question we note that if we assume that Fg is non-
Archimedean (instead of Fg = (R; 0,+, <)), then the answer to (i) is “no”, while
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the answer to (ii) is “yes”, cf. Theorem 6.8.16 (p.1193), the proof of this theorem
and Fig.348 (p.1194).

Intuitively, item (ii) of Question 6.8.10 is equivalent with the following question.
Does there exist a geodesic time-travel, i.e. can the life-line of a time-traveler who
meets his younger himself be a geodesic?

The following theorem says that (i) in Minkowskian geometries the maximal
Archimedean geodesics are exactly the lines, (ii) in Minkowskian geometries over
Archimedean fields the maximal geodesics are exactly the lines, and (iii) in the
Minkowskian geometry over the field R of reals the maximal quasi geodesics are
exactly the lines.

THEOREM 6.8.11 Assume § is Euclidean and n > 2. Then in the Minkowskian
geometry Mink(n,§) over § (i)—(iii) below hold.

(i)

L = (mazimal Archimedean geodesics),
LY = (mazimal time-like Archimedean geodesics),
L2 = (mazimal photon-like Archimedean geodesics)
= (mazimal photon-like geodesics)
= (mazimal photon-like quasi geodesics), and
L° = (mazimal space-like Archimedean geodesics).

(ii) Assume § is Archimedean. Then

L = (mazimal geodesics),
LY = (mawzimal time-like geodesics),
L° = (mazimal space-like geodesics).

(iii) Assume § =R. Then

L = (mazimal quasi geodesics),
L' = (mazimal time-like quasi geodesics), and
L° = (mazimal space-like quasi geodesics).

Proof: Let § be Euclidean and n > 2. By Propositions 6.8.4, 6.8.6 (p.1185), (i) =
(ii) = (iii). Hence, to prove the theorem, it is enough to prove (i) for Mink(n,§). By
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Thm.6.2.59 (p.861), the eg-free reduct of Mink(n,§) is isomorphic with the eg-free
reduct of gy for some 9 € Mod(Basax + Ax(symm) + Ax(Triv,)~ + Ax(v ) +
Ax(11)). Let such an 9 be fixed. To prove (i) for Mink(n,§) it is enough to prove
it for Bgyn. So we will prove (i) for Ggy.

Claim 6.8.12 Let a,b € Mn and m € Obs.

(i) Assume that a,b are in m’s life-line, i.e. a,b € wy,[t]. Then the time elapsed
between events a and b for observer m is g(a, b).

(ii) Assume that a,b are simultaneous for m and a =% b. Then the (spatial)
distance between a and b for m is g(a, b).

Proof: By item 4(e)ii of Prop.6.2.79 (p.889) the irreflexive parts of the relations ="
,=Ph =5 are pairwise disjoint. Further, Ax(eqtime) holds in 9 (by Ax(symm) =
Ax(symmyg)+Ax(eqtime)). By these we conclude that item (i) of the claim holds.
By Thm.2.8.11 (p.133), Ax(egspace) holds in 9. Therefore, we conclude that item

(ii) of the claim holds.
(QED Claim 6.8.12)

Claim 6.8.13 Assume that ¢ is a short time-like geodesic of &gy. Then
3 elhece.

Proof: Assume that /£ is a short time-like geodesic. Then there is a parameterization
h of £ such that, for D := Dom(h), (*) and (*x) on p.1180 hold. Therefore h is
additive on ¢ and (Va,b € £)a =T b. To prove the claim it is enough to prove
that (Va,b,c € £)(3¢ € L") a,b,c € ¢. By Thm.2.8.18 (p.140), the twin paradox
Ax(TwP) holds in 9. Let a,b,c € £. Since a =T b =T ¢ =T a, there are observers
Ma, Mp, M, such that b, ¢ are on the life-line of m,, a, c are on the life-line of my, and
a, b are on the life-line of m,. Let such m,, my, m. € Obs be fixed. If the life-lines of
two observers from {m,, my, m.} coincide then for this life-line #' € L' we will have
that a,b,c € ¢'. Assume, the life-lines of m,, mp, m, are pairwise distinct. We will
derive a contradiction. It can be checked (even in Bax~" + Ax(vV ) + Ax(11o)
and if n > 2 in Bax~" + Ax(v/)) that there is e € {a,b,c} such that observer
m, thinks that event e is temporally between the other two events. But then by
Ax(TwP) and Claim 6.8.12(i), we have that

g(a,b) > g(a,c)+g(c,b) or
gla,c) > g(a,b) +g(b,c) or
g(b,c) > g(b,a)+ g(a,c).

This contradicts the fact that ¢ is additive on /.
(QED Claim 6.8.13)
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Claim 6.8.14 Assume that / is a time-like Archimedean geodesic of &gy. Then
3 elHecr

Proof: Assume that ¢ is a time-like Archimedean geodesic of Ggy. Then there is a
parameterization h of ¢ such that h satisfies the conditions in item 13 of Def.6.8.2
on p.1181. Let such an h be fixed. To prove the claim it is enough to prove that
for every x,y € Dom(h) with © < y there is # € L” such that h[(z,y)] C #. Let
z,y € Dom(h) be such that < y. By our choice of h, there are £ € w and
intervals'?® I, ..., I} of Fg such that (z,y) C IyU... UL, (Vi € k)N #0
and (Vi € (k + 1)) [h[L] is a short time-like geodesic]. Therefore, by Claim 6.8.13,
we conclude that there is ¢’ € L' such that h[(z,y)] C ¢'.

(QED Claim 6.8.14).

Claim 6.8.15 Assume that ¢ is a space-like Archimedean geodesic of Bgy. Then
3 elSecr

Proof: Assume, /¢ is a space-like Archimedean geodesic of ®gy. Then there is a
parameterization h of ¢ such that h satisfies the conditions in item 14 of Def.6.8.2
on p.1181. Let such an h be fixed. To prove the claim it is enough to prove that
for every z,y € Dom(h) with z < y there is £ € L® such that h[(z,y)] C ¢. Let
z,y € Dom(h) be such that z < y. By our choice of h, there are k € w and intervals
Iy, ..., Iy of Fg such that

and
(Vi € (k+1)) [(x) and (* * %) on p.1180 hold for D := I;].

Thus, to prove that there is £ € L° such that h[(x,y)] C £, by (1) it is enough to
prove that for every i € (k+ 1) there is ¢’ € L°® such that h[[;] C #'. Let i € (k+1).
Since (% * *) on p.1180 holds for D := I; and, by Claims 6.8.12(i) and 6.8.13, there
is an observer m, such that

m thinks that all the events in A[I;] are simultaneous and

®  va,behL])a=50.
Further, since (x) on p.1180 holds for D := I;, we conclude that

g is additive on h[I;].

1254By definition, these intervals are open, cf. Def.6.8.2(4).
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By this, by (f), by item (ii) of Claim 6.8.12, and by the fact that the triangle
inequality holds in Euclidean geometry, we conclude that m sees that any three
events in h[[;] are collinear (and =%-related). Thus, there is ' € L% such that
hlL;] C ¢

(QED Claim 6.8.15).

It can be easily checked that in Ggy,

L' C (time-like Archimedean geodesics), and

L% C (space-like Archimedean geodesics).

Therefore, by Claims 6.8.14 and 6.8.15, in &gy

LT = (maximal time-like Archimedean geodesics), and
L° = (maximal space-like Archimedean geodesics).
Further,
L™ = (maximal photon-like Archimedean geodesics) = etc. and
L = (maximal Archimedean geodesics). 1

Among others, the following theorem says that the condition that § is
Archimedean cannot be omitted from item (ii) of Thm.6.8.11 above.

THEOREM 6.8.16 Assume § is a non-Archimedean and Fuclidean ordered field.
Then (i)-(iv) below hold.

(i) For any n > 2 in Mink(n,§)

L" N (mazimal time-like geodesics) = 1), but
LY C (mazimal locally additive time-like geodesics), while

LY 2 (mazimal locally additive time-like geodesics).
(ii) For any n > 2 in Mink(n,F)
L® N (mazimal space-like geodesics) = 0,
i.e. if £ € L’ then ¢ is not a mazimal space-like geodesic.
(iii) In Mink(2,3)

Lf C (mazimal locally additive space-like geodesics), —while

L° 2 (mazimal locally additive space-like geodesics).
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(iv) As a contrast with item (iii), for any n > 2 in Mink(n, §)

L’ n (mazimal locally additive space-like geodesics) =0 and

L° N (mazimal additive space-like geodesics) = ().
Outline of proof: Assume § is non-Archimedean and Euclidean. Idea of proof for
L' N (maximal time-like geodesics) = 0 in Mink(§)

is depicted in Figure 348. In the figure £ € L™ and ¢ U ¢ is a time-like geodesic.
Hence, ¢ is not a maximal time-like geodesic. By Prop.6.8.8(ii) on p.1186 (and by

5

infinitely small

elements of § 1
\ h
h
<—@
po 0

-y

Figure 348: ¢ € L™ and £U ¢ is a time-like geodesic.

Thm.6.2.59 on p.861), in Mink(F)
L' C (maximal locally additive time-like geodesics).
Idea for the proof of
L" 2 (maximal locally additive time-like geodesics) in Mink(g)

is depicted in Figure 349. In the figure ¢ is a maximal locally additive time-like
geodesic. This holds by the proof of item (ii) of Prop.6.8.8. Clearly, ¢ (in Fig.349)
is not a time-like line. By these item (i) of our theorem is proved. Proofs for items
(ii) and (iii) can be obtained by the proof of item (i). (The proofs of (ii) and (iii)
are left to the reader.)
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Figure 349: ¢ is a maximal locally additive time-like geodesic in the Minkowskian
geometry over a non-Archimedean §F.

z

infinitely small elements of z

To prove item (iv) let £ € L5. Consider a Robb plane!?®® that contains £. Let
¢ be constructed as in Figure 348 but such that ¢ is contained in the Robb plane,
see Figure 350. Then, in Figure 350, /U /' is an additive space-like geodesic, cf. hint
for the proof of Thm.6.8.20 on p.1198. Hence, £ is not a maximal locally additive
space-like geodesic and is not a maximal additive space-like geodesic. B

The geodesic LU/ represented in Fig.348 is not a divisible geodesic.'?°® This mo-
tivates Question 6.8.17 below. We did not have time to check whether the geodesic
in Fig.349 is divisible or not. (Németi guesses that it might perhaps be divisible
after all.) We note that the geodesic in Fig.350 is a divisible one.

QUESTION 6.8.17 Assume that § is non-Archimedean and FEuclidean. Is the
following true in Mink(F)?

LT 0 (mazimal divisible time-like geodesics) = (?

1255¢f, e.g. Goldblatt [108] or p.1163 in the present work for the notion of a Robb plane. If n > 3
then we can talk about Robb hyper-planes (cf. p.804 in AMN [18]) which in Goldblatt [108] are
called Robb threefolds (if n = 4). However, there still exist Robb planes, too, which are (two-
dimensional) and planes with the Robb property. In the above proof of Thm.6.8.20 it is important
that we talk about Robb planes and not about Robb hyper-planes.

1256 Hint: Without loss of generality we may assume that n = 3. We choose p on £ and ¢ on ¢
such that p; = ¢;. Without loss of generality we may assume p =0 and ¢ = 1,. Then g,(p,q) = 1.
Assume s € £U £ is such that g,(p,s) = gu(g,s). If £U ¢ is a divisible geodesic then such an s
exists. We will derive a contradiction. Without loss of generality we may assume s = (z,1,0).
Now a straightforward computation gives a contradiction.
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\ £ elements of §

Figure 350: £U ¢ is an additive space-like geodesic in the Minkowskian geometry
over a non-Archimedean §.
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<

In connection with the proof of items (i) and (ii) of Thm.6.8.16 above we ask the
following.

QUESTION 6.8.18 Assume § is as in Thm.6.8.16 above and n > 2. Are there
mazimal space-like geodesics or maximal time-like geodesics in Mink(n,§)?

<

Among others, the following theorem says that in item (iii) of Thm.6.8.11
(p.1190) above the ordered field 2R of reals cannot be replaced by any Euclidean
ordered field § which is not isomorphic with fR.

THEOREM 6.8.19 Assume § is Euclidean and § is not isomorphic with R. Then
items (i)-(iv) in Thm.6.8.16 hold if we replace “geodesics” with “quasi geodesics”
in them.

We omit the proof. 1

The following theorem says that the second part of condition (x * x) (on p.1180)
is needed in the definition of space-like quasi geodesics, geodesics and Archimedean
geodesics. In other words, if we omit condition (k*x*) from the definition of geodesics,
then they do not “work” in relativistic geometries, e.g. in Minkowskian space-times.
Although they do work in FEuclidean geometry and more generally in Riemannian
geometries. This further implies that if we use the definition of geodesics as given
e.g. in the book “Geometry of Geodesics” (Busemann [55]), then they do not work
in relativistic geometries (n > 2), e.g. in Minkowskian geometry.!25"

THEOREM 6.8.20 Assume n > 3. Then in the Minkowskian geometry
Mink(n,fR) there is a “curve” ¢ C "R such that (Vp,q € £)p="gq,

(Ve € £)(3e € TF) [ no three distinct points of £N S(e, €) are collinear],

and there i1s a homeomorphism h : R ——> £ which is differentiable infinitely many
times and 1s distance preserving in the sense that

1257This entails nothing negative about Busemann [55], since it does not deal with relativistic
geometries. Caution is needed with the word “Minkowskian geometry”, since here (cf. also Gold-
blatt [108], Schutz [236]) we use it for certain relativistic geometries while e.g. in Busemann [55,
§17] it is used for other kinds of (non-relativistic) spaces.
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see Figure 351. Moreover this function h is a homeomorphism w.r.t. (the usual
topology on R and) any one of the following topologies on £: the topology induced
by gy, the relativistic topology T, of Mink(R) and the Euclidean topology on "R.
Actually these topologies coincide on L.

Robb plane

\

Figure 351: Condition (* * ) is needed in the definition of space-like geodesics.

On the proof: Hint: Assume n > 3. The Robb planes'?®® have the following
“exotic” property in Mink(fR) (in connection with the metric g, and geodesics). Let
P be a Robb plane containing the § axis. Then the relativistic distance g,(p, q)
between points p,q € P coincides with the absolute value of the difference between
the y-coordinates p, and ¢, of p and g, respectively. Cf. Figure 351. Therefore
the metric g, is additive on the whole Robb plane. Actually this idea works in
many of our relativistic geometries, e.g. in the case of Ge(Bax? + Ax(egspace) +
Ax(Triv,)~ + Ax(v/)) they do. 1

1258¢f. e.g. Goldblatt [108] or p.1163 in the present work for the notion of a Robb plane.
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COROLLARY 6.8.21 Assume n > 3 and consider & &' Mink(n,R) as in
Thm.6.8.20 above. Then

(i) If we omit condition (% x %) from the definition of geodesics, then there are
geodesics in & which are not straight lines. Further,

(ii) there exist many Robb planes'?®® in &, and

iii) almost'?%® every curve in every Robb plane counts as a geodesic if we omit
Yy Yy g
condition (* * x) from the definition of geodesics.

Discussion of Thm.6.8.20 and Corollary 6.8.21. The condition (* * %) is not
present in the usual definition of geodesics. Items 6.8.20, 6.8.21 say that this con-
dition is needed in relativistic geometries if we want to discuss space-like geodesics,
too.

The definition of usual geodesics is obtained from Def.6.8.2 by replacing all oc-
currences of condition (x x x) with (Vz,y € D)z =5 y.

What we obtain this way is more or less the usual definition of geodesics (cf.
Busemann [55]) adapted to the relativistic situation where we have =7, = =5 1261
Now, what items 6.8.20, 6.8.21 say is that even in the most classical, most standard
form of special relativity, i.e. in Minkowskian space-time with n > 2, usual geodesics
(as defined above) do not “work”. (They do not behave as we wanted them to behave
when defining them.)

COROLLARY 6.8.22 Let n > 2 and consider & = Mink(n,%). Then
there are wusual geodesics ¢ in & which are not straight lines, moreover
¢ can be chosen to be continuous and differentiable such that (Vp €
0)(Ve € *TF)the e-neighbourhood of p in ¢ is not straight. Moreover, this ¢ is an
Archimedean, short, usual geodesic, cf. Def.6.8.2 items 14, 17. Further, it is a
mazximal geodesic, and a strong, divisible geodesic. Through any two distinct space-
like separated points of & there are continuum many such usual geodesics.

Proof. The proof goes by inspecting Figure 351 (and the proof of Thm.6.8.20) and
by checking all the items quoted from Def.6.8.2. 1

1259

each photon line is contained in a Robb plane which is unique iff n = 3. So, if n > 3, then the
Robb plane in question is not unique.

1260Tnstead of defining precisely which curves in the Robb plane we mean, we give only an intuitive
description: Let £ be a “continuous, differentiable” connected curve in the Robb plane as illustrated
in Figure 351. Assume (Vp, q € £)p =° q. Assume further that £ is a homeomorphic image of some
connected interval of Fg. Then £ counts as a geodesic (without (x * x)).

1261 e., so to speak, adapted from Riemannian geometries to pseudo-Riemannian ones; or in other

words, adapted to so called “indefinite metrics”.
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COROLLARY 6.8.23 Let n > 2. A statement analogous to items 6.8.20-6.8.22
applies to our geometries in Ge(Bax® + az(egspace) + Ax(Triv,)™ + Ax(v/ )).

Proof. The proof goes by checking that already under the axioms Bax® + ... +
Ax(\[ ) listed above, the Robb plane exhibits the strange properties illustrated in
Figure 351. &

Items 6.8.20-6.8.23 show that condition (x * x) is really needed and is not
easily replaced with something “more traditional”. Further, they indicate that
the (simplest) usual notion of geodesics'?®? does not work in relativistic situa-
tions for space-like geodesics. This might be connected to the historical fact that
in_general relativity much less attention is paid to space-like geodesics than to time-
like or photon-like ones. E.g. the basic book Hawking-Ellis [126] does not even
mention space-like geodesics.'?® A further indication of this'?* is that in the world-
famous basic book of relativity Misner-Thorne-Wheeler [196] the statement of Ex-
ercise 13.6 on p.324 (discussing space-like geodesics) seems to be either false or not
very carefully formulated. (We mean this of course wrt. the definitions given in
that book.'?®5) Further, as far as we know, this (about the book) has not yet been
pointed out in the literature. With this we stop discussing items 6.8.20-??7 (and
return to discussing our notion of geodesics in our relativity theories).

Next, we generalize our earlier positive results from the concrete case of
Minkowskian geometries to a broader class of our observer independent geometries
of the “axiomatic form” Ge(Th).

Recall that Ax(TwP) is the twin paradox defined in Def.4.2.6 on p.460 of

AMN [18]. Among others, the next theorem says that, assuming Bax_®+Ax(\f)+
Ax(TwP), n > 2 and that § is Archimedean, the maximal time-like geodesics are
exactly the time-like lines.

THEOREM 6.8.24 Assume ® € Ge(Bax™" +Ax(v )+ Ax(TwP)+Ax(11o)),
orn>2 and ® € Ge(Bax~" + Ax(v ) + Ax(TwP)). Then (i)-(iii) below hold.

(i) LY = (mazimal time-like Archimedean geodesics).

1262Cf. the definition of usual geodesics above.

1263 This in turn might be motivated by the famous quotation for Eddington [56, p.22] “Assuming
that a material particle cannot travel faster than light ...we ourselves are limited by material
bodies and have direct experience of time-like intervals.”

1264 o that relativity theorists seem to pay little attention to space-like geodesics

1265Byt it seems to remain false for any usual definition of geodesics known to the present author.
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(ii) Assume that Fq is an Archimedean ordered group. Then

LY = (mazimal time-like geodesics).

(iii) Assume that Fq is isomorphic with the ordered additive group reduct of the
field R of reals. Then

L" = (mazimal time-like quasi geodesics).

Proof: The proof is obtained by pushing through the time-like part of the proof
of Thm.6.8.11 under the present more general conditions. For this generalization of
the proof one uses Proposition 6.8.25 below. 1

PROPOSITION 6.8.25 Bax™ + Ax(v ) = Ax(TwP) — Ax(eqtime).

Proof: The proof goes by contradiction. Assume MM = Bax™ + Ax(v ) +
Ax(TwP) and that 9 = Ax(eqtime). Then there are m,h € Obs with com-
mon life-line ¢, i.e. wy,[t] = wp[t] := ¢, and e,a € £ such that the time elapsed
between e and a for m is x, while the time elapsed between e and a for A is x +¢, for
some positive  and . Let such m,h,a,e, ¢, x,c be fixed. Let d € £ be such that A
thinks that the time elapsed between e and d is € and that the time elapsed between
d and a is z, cf. the left-hand side of Figure 352. Let k1, ks, k3 € Obs be slower than
light as seen by h and let they be as depicted in the left-hand side of Figure 352.1266
Let f € wg, [t] N wg,[t] N wi,[t]. Let the time elapsed between f and a for k3 be y
(y € tF). Since Bax™ + Ax(v/ ) is assumed and ky, ko, k3 are slower than light as
seen by h, it can be checked that k3 thinks that d is happened temporally between
a and f, cf. the left-hand side of Fig.352. By Bax™ + Ax(v/ ) and Prop.6.6.5(i)
(p.1028), m thinks that f happened temporally between e and a (since A thinks this
is s0). Now, applying Ax(TwP) for k3, ko, h and m, k1, k3, respectively, we get that
y > x and x > y. This is a contradiction. 1

The following is a corollary of Thm.6.8.24 herein, and Thm.4.2.9 (p.461) of
AMN [18].

COROLLARY 6.8.26 Assume & € Ge(Bax®+Ax(syto) +Ax(v )+Ax(11o)),
or n > 2 and & € Ge(Bax?® + Ax(syto) + Ax(v/ )). Then items (i)-(iii) in
Thm.6.8.24 hold for &. 1

1266Le. there is an event f such that f ¢ £, h thinks that f is happened temporally between e and
d, ENwy, [t] = {e}, N wp,[t] = {d}, £N wiy[t] = {a}, and wy, [F] 0w, [E] N wps [E] = {f}-

1201



- e
~
~ 1
'~
N
N f
-
\.
~ X
.
Pl Y
a
world-view of h world-view of m

Figure 352: Illustration for the proof of Prop.6.8.25

The following item, for n > 2 is a corollary of Thm.6.8.24 herein, and Thm.4.7.15
(p.622) of AMN [18], while for n = 2 it is a corollary of the proof of Thm.6.8.24
herein, and Theorems 4.7.15 (p.622), 4.7.9 (p.617) of AMN [18].

COROLLARY 6.8.27 Assume & € Ge(Bax~ " + Ax(v ) + Ax(Triv) +
R(Ax sytg)). Then items (i)—(iii) in Thm.6.8.24 hold for &. &

The following theorem says, among others, that assuming n > 2, Bax® +
Ax(eqspace) + Ax(TwP) + Ax(v/ ) + Ax(diswind) and that § is Archimedean,
the maximal geodesics are exactly the lines.

THEOREM 6.8.28 Assume & € Ge(Bax® + Ax(egspace) + Ax(TwP) +
Ax(vV') + Ax(T1o) + Ax(diswind)), or n > 2 and & € Ge(Bax® +
Ax(eqgspace) + Ax(TwP) + Ax(v/ ) + Ax(diswind)). Then (i)-(iii) below hold
for &.

(i)

L = (mazimal Archimedean geodesics),
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LT = (mazimal time-like Archimedean geodesics),
L™ = (mazimal photon-like Archimedean geodesics)
= (mazimal photon-like geodesics)
= (mazimal photon-like quasi geodesics), and
L = (mazimal space-like Archimedean geodesics).

(ii) Assume Fyg is Archimedean. Then

L = (mazimal geodesics),
L" = (mazimal time-like geodesics),
L° = (mazimal space-like geodesics).

(iii) Assume that Fq is isomorphic with the ordered additive group reduct of fR.

Then
L = (mazimal quasi geodesics),
L' = (mazimal time-like quasi geodesics), and
L° = (mazimal space-like quasi geodesics).

Proof: The theorem follows by Thm.6.8.24 and by the proof of Thm.6.8.11. ILe.
the proof is obtained by pushing through the proof of Thm.6.8.11 under the present
more general conditions. 1

QUESTION 6.8.29 Does the “space-like part” of Thm.6.8.28 remain true if we
replace Ax(TwP) with Ax(eqtime) in the assumptions of Thm.6.8.287
<

The following is a corollary of Thm.6.8.28 herein, and Thm.4.2.9 (p.461) in
AMN [18].

COROLLARY 6.8.30 Thm.6.8.28 remains true if Ax(TwP) is replaced by
Ax(syto) in it. B

In the corollary above Bax®+Ax(eqspace)+Ax(syto)+Ax(yv/ ) was assumed.
In connection with this we include the following conjecture. Roughly, it says that
Ax(egspace) + Ax(syto) blurs the distinction between Bax and Flxbasax if
n > 2.
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Conjecture 6.8.31 Assume n > 2. Then (i) and (ii) below hold.
(i) Bax+Ax(egspace)+Ax(syto)+Ax(v ) E (Vm, k) (m 3k — cn = cx).
(ii) Bax + Ax(eqgspace) + Ax(syto) + Ax(v/ ) + Ax6 = Flxbasax.
<

We base our conjecture above on Thm.4.2.4 (p.458) of AMN [18] and on
Thm.4.7.11 (p.619) of AMN [18].

QUESTION 6.8.32 Is the above conjecture true if we replace Ax(syte) with
Ax(TwP)?
<

Recall that Ax(a))O is a very weak symmetry principle introduced in Def.6.2.37
(p.844) and that Ax(w)® is weaker than Ax(w)’. The following is a corollary of
Thm.6.8.28, Thm.6.2.98 (p.910) herein, and Thm.4.2.9 (p.461) of AMN [18]

COROLLARY 6.8.33

(i) Assume & € Ge(Flxbasax® + Ax(w)’+Ax(v/ ) +Ax(1o) +Ax(diswind)),
or n>2and & € Ge(Flxbasax® + Ax(w)” + Ax(V ) + Ax(diswind)).
Then items (i)—(iii) in Thm.6.8.28 hold for &.

(ii) The statement in item (i) remains true if we replace Ax(w)’ with any one
of Ax(sytp), Ax(symm), Ax(speedtime), AxA1l+Ax(eqtime), AxA2,
AxO1+Ax(eqtime), Ax0O2.

(iii) The statement in item (i) remains true if we replace Ax(w)” with any
one of Ax(egspace), Ax(eqm)+Ax(Triv;)~, Ax(sytp), Ax(symm),
Ax(speedtime), AxAl+Ax(eqtime), AxA2, AxO1+Ax(eqtime),
AxO2. 1

Remark 6.8.34 We note that items 6.8.11 (p.1190), 6.8.28 (p.1202), 6.8.30
(p.1203), 6.8.33 (p.1204) above remain true if we replace “geodesics” with “strong
geodesics” in them.

<
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for items (i), (iii) for item (ii)

Figure 353: Illustration for the idea of a possible proof for Conjecture 6.8.35.

By Corollary 6.8.33 above, assuming Basax + Ax(syto) + Ax(v ) + Ax(11)
and that § is Archimedean,

(maximal time-like geodesics) = L7.

This does not remain so if we omit the assumption Ax(syto), since then Rng(g) =0
can happen. Further, in our next item we conjecture that the maximal time-like

geodesics are not necessarily members of the set L of lines even if we assume Basax
and that § = ‘R.

Conjecture 6.8.35 Let Th := Basax + Ax(v/ ) + Ax(11). Then (i)-(iv) below
hold.

(i) Assume n = 2. Then there is 9 € Mod(Th + Ax(Triv) + Ax(eqm)) with
™ =R and with the topology Tsn Euclidean such that

(3 mazimal time-like geodesic £ of Ggn) £ & Loy.
Moreover this £ is not contained in any Lop-line.

(ii) Assume n = 2. Then there is M € Mod(Th + Ax(eqm)) with " = R and
with the topology Ton Fuclidean, and there is a mazximal geodesic £ of Boy such
that no 3 distinct points of £ are Loy-collinear.

(iii) Assume n > 2. Then there is M € Mod(Th + Ax(Triv;)~) with F* = R and
with the topology Ton Fuclidean such that there is a mazimal time-like geodesic
¢ of Ban such that £ ¢ Loy. Moreover this £ is not contained in any Loy-line.
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