(i) wp, is an injection.
(ii) Assume m 3 k. Then f is a bijective collineation by Thm.4.3.11 (p.481).

(iii) (Rng(wm,) N Rng(wg) =0 or  Rng(w,) = Rng(wg)) and
(m3k << Rng(wn) = Rng(wy)). This holds by Thm.4.3.11 and Ax4.

(iv) Assume Ax(v" ) and m > k. Then f,,; is betweenness preserving by Fact 4.7.7
(p.617) and Remark 3.6.7 (p.268).

(v) There are no photons at rest by AxEg;.

(vi) Assume Ax(diswind) and Rng(w,,) N Rng(wy) = (. Assume ph is a photon
such that (Je € Rng(w,,)) ph € e. Then (Ve € Rng(wy)) ph & e.

(vii) Assume Ax(v )+ (cn(d) < 00) and (n > 2 or Ax(119)). Then there are
no FTL observers by items 4.3.24 (p.497) and 6.2.32 (p.840). 1

In connection with the following remark recall that Pax is weaker than Bax™,
cf. p.482 in §4.3.

Remark 6.2.80 The following items remain true if the assumption Bax™ is re-
placed by Pax in them: Remark 6.2.13 (p.819), Prop.6.2.14 (p.819), Prop.6.2.16
(p.820), Prop.6.2.36 (p.843), Thm.6.2.44(ii) (p.847), and almost the whole of
Prop.6.2.79, i.e. Prop.6.2.79 with the exception of items 1h, 4c, 4d, 4e. The new
proofs (i.e. for Pax) can be obtained from the old ones (i.e. for Bax™) by replacing
Thm.4.3.11 (p.481) with Thm.4.3.13 (p.482) in them.

<

Remark 6.2.81 (On Figure 290) Figure 289 shows that our geometries Ggy can
be viewed as being glued together from “windows” which in turn can be regarded
as world-views of individual observers. There is a (deliberate) analogy here with
the so called Penrose diagrams from general relativity. (We will not explain Penrose
diagrams here but certain properties are “visible” without explanation.) Figure 290
on p.888 represents a Penrose diagram (of a general relativistic space-time geometry)
from Hawking-Ellis [126]. It is visible on Figure 290 that this geometry, too, consists
of regions like our windows on Figure 289. (Cf. e.g. regions I, II. III on the diagram.)
Roughly, each of these regions can be regarded as the window of some observer (just
like in our Fig.289). Of course, besides the similarities there are some dissimilarities
which we do not discuss here. We note that the fact that our geometries are glued
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together from windows is intended to make transitions towards general relativity
easier (in later continuations of the present work). In passing we note that Figure 290
is the Penrose diagram of a rotating black hole which contains closed time-like
geodesics (“time travel”). Therefore it is related to Figure 355 on p.1208 which
also contains closed time-like geodesics (among other exotic and exciting features).
Figure 290 is in “Penrose-diagram form” while Figure 355 is in a more usual space-
time diagram form.

<

6.2.6 Proof of Theorems 6.2.22 and 6.2.23 which say that eq is first-order
definable in 9

The reader may safely skip the present sub-section. However Propositions 6.2.83
(p.892), 6.2.88 (p.895) and 6.2.92 (p.901) herein might be interesting.

This sub-section is devoted to the proof®*! of Theorems 6.2.22 and 6.2.23 which
say that the relation eq of equidistance becomes first-order definable in the “ob-
servational world” Mod(Bax® + ...), under some assumptions. In proving these
theorems the key propositions will be Propositions 6.2.83, 6.2.88 and 6.2.92. The
proof of the above mentioned theorems comes on p.906.

Definition 6.2.82 Let & Pe an observer-independent geometry, £ € L and o,e € £
with o # e. The half-line /,, with origin o and containing e is defined as follows.

Eo’e A {e1 €€ : =Bw(ey,o,e€) }.
<

The Euclidean geometry Euclgeom(§) over § will be introduced on p.1129. We
will use it without recalling it. Assume Bax™ + Ax(v/ ). Then without proving
them we will use the facts that our notion of a half-line satisfies the usual (geometric)
properties of half-lines and that a pre-image of a half-line along a world-view is again
a half-line (or the empty set) but now in Euclgeom(g) (i.e. the w,,'-image of a half-
line is a Euclidean half-line or the empty set), cf. Fact 6.2.85 and items 1f, 2b of
Prop.6.2.79.

841We will have a single proof which will prove both theorems.

891



Figures 291 and 294 (p.895) represent the two key steps (or the two key ideas)
of the proof which is the subject matter of the present sub-section.

The proposition below is one of the key propositions in proving Theorem 6.2.22.
For the intuitive meaning of the proposition see Figure 291.

This cannot happen:

Figure 291: Illustration for Proposition 6.2.83.

PROPOSITION 6.2.83 Assume Basax + Ax(v/ ). Let £ € L and o,e € £ with
oF#e. Then .
[a,a1 € Loe N (0,a) eq{0,a1)] = a=a,

see Figure 291.8*2 In other words

Bw(o,a,a;) =~ {o0,a)eq{o,a;).5*

How the arrangement in Figure 291 can happen in systems weaker than Basax
is illustrated in item 6.2.96 at the end of this sub-section.

Intuitively Proposition 6.2.83 above means that eq behaves well under some
assumptions. In some sense this may be relevant to the question why relativity can
be so nicely geometrized. Cf. also Propositions 6.2.92 and 6.2.96.

Proof of Prop.6.2.83: Let 9t € Mod(Basax + Ax(y/ )). Consider the observer-
independent geometry Bgy. Let us recall that gft :"F x"F — F is the square of
the Minkowski-distance defined in Def.2.9.1.

Claim 6.2.84 Let a,b,c,d € Mn. Assume (a,b) eq (c,d). Then, each observer
thinks that the Minkowski-distances between a, b and between c, d coincide; formally:
(¥m € Obs) g2 (1w, (), w, (b)) = 2 (w,,1(0), w,. (@)

m

842We conjecture that Ax(v/ ) might not be needed in Proposition 6.2.83.
843We note that, assuming Bax™, [ Bw(o,a,a1) A {(o0,a) eq{0,a1)] = (3¢ € L)o,a,a; € L.
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Proof: We will show that the claim holds when eq is replaced by eq, in it. This
will prove the claim since eq is defined to be the transitive closure of eq,. Let
a,b,c,d € Mn be such that {a,b) eq, (c,d). Then, by the definition of eq,, we have
that (3k € Obs)(3i,j € n)(3p,q € z;)(3r, s € ;)

(|p—q\:|r—s| A wr(p) =a N wr(q) =b N w(r)=c A wk(s):d>,

cf. Figure 292. Let such k,1,7,p,q,r, s be fixed. Now, let m € Obs be arbitrary but

; %) Z; exp T
P T\
Dea (poexp)(p)pa
o(p)ga
790 O (Poexp)(q) $b
c 4 ¢ 4 i ¢ d 5
s 3 3(s) T (Foexp)(r) (Poexp)(s)’

Figure 292: Illustration for the proof of Claim 6.2.84.

fixed. By Theorem 2.9.4(i), fx,, = @ o exp o poi, for some poi € Poi, exp € Exp
and ¢ € Aut(F). Let these be fixed. It can be easily checked that (o exp)(p), (P o

exp)(q) € Z;, (poexp)(r), (P oexp)(s) € Z; and
(¢ 0 exp)(p) — (¢ o exp)(q)| = [(¢ 0 exp)(r) — (¥ 0 exp)(s)],

cf. Figure 292. Thus
9a (o exp)(p), (P o exp)(q)) = g2 ((@ o exp)(r), (¢ o exp)(s)).
Since the Poincaré transformations preserve gi and f,, = © o exp o poi, we have
9 (Fkm (D) fem(0)) = G5 (Fom (1), Frm (5))-
But frm (D), frm (@), fem (7)), frm (8) are w,!(a), w,,' (b), w,!(c), w,,! (d) respectively. So
9wy (@), w,, (0) = gu(w,, (c), w,,' (d)),

and this proves the claim.
QED (Claim 6.2.84)
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Now we turn to proving Proposition 6.2.83. Let / € L and o,e € ¢ with 0 # e. Let
a,a; € Z;,e be such that (o, a) eq {0, a,). If £ € L' then, by the definition of eq, it
can be checked that o = a = a4, since there is no observer who sees a photon-like line
on a coordinate axis. So, we may assume £ € L°UL”  i.e. £ is space-like or time-like.
Then there is an observer m who sees £ on some coordinate axis, i.e. £ = wy,[Z;],
for some i € n. Let such m and z; be fixed. Clearly, w,'(0), w,,'(a), w ' (a;) €
w;l[zj,e]. Further, w;,}[Zo,e] is contained in Z; and is a Euclidean half-line, i.e.
letting A := w;,'(0), € F,

(*)  wllle)={pedi:p>A} V wllle]={pei:p<A},

see Figure 293, cf. Fact 6.2.85. By Claim 6.2.84,

w;,' (0) wy,' (a) wy' (ar)
z; @ o .é'
A S

Figure 293: w_![0, ] is contained in &; and is a Euclidean half-line.

gu(wy (0), wy,'(a)) = gy(wy,'(0), w,' (a1)).

Therefore w,,'(a) = w,,'(a;). Hence a = a;. N

FACT 6.2.85 Assume Bax™ + Ax(v ). Assume Zo,e is a half-line contained in
the line £ € L. Assume observer m sees ¢ on the coordinate azis T; (i.e. wp[T;] = £).

Then m will see the half-line E,,e as illustrated in Figure 293, i.e. (x) above holds for
some \.3%

Proof: The fact follows by item 1f of Prop.6.2.79 (p.884). 1

Definition 6.2.86 Let & be an observer-independent geometry. We extend the
definition of connectedness ~ from points Mn to lines L the natural way, i.e. as
follows. Let ¢,¢' € L. Then

(ol & Geet)(Te el)en~e.

844The assumption Ax(v/ ) is needed in Fact 6.2.85.
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Remark 6.2.87 Assume Bax™. Let £,¢ € L' UL®. Then

b~l = (Veel)(Ve' ell)e~e. 855

For the intuitive meaning of the proposition below see Figure 294.

PROPOSITION 6.2.88 Assume n > 2 and Bax® + Ax(Triv,)~™ + Ax(v/ ). Let
0,0 € LT ULS be such that £ ~ 0. Further, let a,b € ' and c,u € ¢ with ¢ # u.
Then there is d € £, such that (a,b) eq, {(c,d). See Figure 294.8

Figure 294: Illustration for Proposition 6.2.88: (Va, b, c)(3d as in the figure).

Proof: Assume n > 2 and 9t € Mod(Bax® + Ax(Triv;)~ + Ax(v/ )). Consider
the observer-independent geometry &gy. First we prove Lemma 6.2.89 below.

The intuitive idea of the proof in the present sub-section (i.e. the proof of
Thm.’s 6.2.22, 6.2.23) is explained below Definition 6.2.91 on p.899. To implement
that intuitive idea we will use Lemma 6.2.89 below.

Lemma 6.2.89 Let £ € L" UL® and ¢, € L" be such that £ ~ ¢,. Then there are
m,k € Obs and £, € L such that (a)—(c) below hold, cf. Figure 295. Intuitively,
(a) both m and k see £ on g-axis, (b) m sees ¢1 on t-axis and (c¢) k sees £ on T-axis
or on t-axis; formally:

845This holds by item 2c of Prop.6.2.79 (p.885) and by Remark 6.2.13 (p.819).

846We note that the assumption n > 2 is needed in Proposition 6.2.88, cf. the first 8 lines of the
proof of Thm.6.2.22 on p.906.
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(a) Lo = wn[y] = wi[y]-
(b) 41 = wi[f]-

(c) £ = wg[Z] or £ = wyt].

Case £ € L°: Case £ € LT:

Figure 295: Illustration for Lemma 6.2.89; we are in the world-view of m.

Proof: Recall that 9 was fixed at the beginning of the proof of Prop.6.2.88. Let N
be a model of Newbasax obtained from 97 by changing the units of measurement
for time, formally: Assume 9 = ((B; Obs, Ph,Ib),§, G; €, W). Recall that ¢, is
the speed of light for observer m. Define W C Obs x "F x B by

def
Wm(map()v"'vpn—lvh) <:e> W(m7 l/ch'pO:plv"'apn—lvh)'

Now,
N < ((B; Obs, Ph, Ib),§, G; €, W™).
By the definition of 91 it can be checked that
M = Newbasax + Ax(Triv,)~ + Ax(v/ ),
(Vm € Obs) (Vi € n) w™|z;] = wX|z;], and

(Mngy; Ly, Loy, €m) = (Mng; Ly, Ly, €x), i.e. the reducts involving
only Mn, LT, L of the geometries associated to 9t and D coincide.
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By these, it is enough to prove the lemma for 91 in place of 9. To prove the lemma
for M, let £ € L" UL® and ¢; € L” be such that £ ~ ¢;. (Throughout of the proof of
the lemma we are in 9N [and not in 9R].) Then there is an observer m’ whose life-line
is 01, i.e. wy[f] = £1. Let such an m' be fixed. Let ¢£ := w1[¢]. Since ¢ ~ ¢,
we have that ¢£ € Eucl holds by items 6.2.13, 6.2.48, and 4.3.11. We will work in
the world-view of observer m/, represented in Figure 296, for a while. Throughout
this part of the proof the reader is advised to consult Figure 296. We are in the

Figure 296: We are in Euclidean geometry; in the world-view of m/'.

Euclidean geometry over an Euclidean field. Let £Z € Eucl be such that
8 Lot (81,05 Ent#0 and (2NEE#£0.

Since n > 2 such an /¥ exists by Euclidean geometry. In passing we note that if
tN¢¥ = () then £¥ is uniquely determined, while if n > 3 and £ N ¢ # () then it is
not uniquely determined. Let P, @ € Planes(n, F) be such that

tCP, (PCQ, P|Q and ¢ 1.P.

Such P, (@ exist by Euclidean geometry. Let m € Obs be a brother of m’ such that
the world-view of m looks like as in Figure 295, i.e. (%) below holds for m. The
existence of such an m can be proved by Ax(Triv,)~, and is proved in more detail
below ().

wlt] =41, wn[Plane(t,Z)] = wyy[P] and
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In more detail, there is an observer m satisfying () because of the following: Let £, € Eucl
be such that
by CP, tNlNEE£0, €y 1.t

Then, since £ 1, P and £, C P, we have ¢ L, £,. Thus, £,£,,¢Y are pairwise |-
orthogonal. Therefore there is a Triv; transformation f that takes £, z, 3 to £, £, £5 respec-
tively. Let such an f be fixed. Clearly, f takes Plane(t,z) to P. By Ax(Trivy)™, there is
an observer m such that f,,,/[f] = f[t] = £, fw[2] = f[2] = £z and f0[y] = fly] = 5.
Clearly, for this choice of m (x) holds.

Throughout the remaining part of the proof of the lemma the reader is advised
to consult Figure 295 (p.896). Let

0y X [ € LS.

(We note that in the world-view of m' [i.e. in Figure 296] £, appears as £Y, i.e. m’'
sees £y on (L))

Thus, to complete the proof of the lemma it is sufficient to find an observer k
such that £, = wi[y] and (¢ = w[T] or £ = wi[t]). Let Q' = fum][Q]. Then
Q' || Plane(t,z) by P || Q and (). Further, w,'[¢{] C @', w,'[¢] € Eucl and
N ly # (. We distinguish two cases.

Case 1: Assume £ € L°. Then, by our no FTL theorem Thm.3.4.2 (or Thm.4.3.24),
ang®(w;[¢]) > 1. Let #; be the mirror image of w_![¢] w.r.t. a photon-line lying
in plane Q' and passing through w, (£ N ¢s), see the left-hand side of Figure 295
(p.896). Then ang?(f;) < 1. Let k' € Obs be such that tr,, (k') = fx. Such a k'
exists by Ax5. We claim that, since we are in Newbasax, in the world-view®*" of
k' the time axis, ¢, £, appear as pairwise L.-orthogonal; formally #, w},'[€], w},' [£s)]
are pairwise _L.-orthogonal, cf. Figure 295 on p.896. One proves this claim by
using properties of Basax models and noticing that Basax models and Newbasax
models are very close to each other, cf. Thm.3.3.12. One of the just mentioned
properties of Basax models is that every world-view transformation is a composition
of a PT transformation and a field automorphism, cf. Proposition 3.6.5 (cf. also
Thm.2.9.4(i)). Here we may ignore the field automorphism because it does not
affect orthogonality. We advise the reader to prove this claim first for the special
case Q' = Plane(t, 7), see Figure 295 on p.896.

Now, by Ax(Triv;)~ there is a brother &k of &' such that k sees ¢ on Z-axis and
sees £ on y-axis; formally: ¢ = w[Z] and £y = wy[y).

84TWhen we speak about the world-view of an observer say m then we can mean a structure
whose universe is "F or equivalently a structure whose universe is Rng(w,,) € Mn. Since these
two are isomorphic it does not matter which one we choose. If the choice mattered for some reason
then we leave it to the reader to make the appropriate choice based on context.
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Case 2: Assume ¢ € LT, See the right-hand side of Figure 295. Then, by our no FTL
theorem, ang?(w,'[¢]) < 1. Let %) be the mirror image of w_![{] w.r.t. a photon-
line lying in plane @' and passing through w_'(¢ N ¢y). Then ang®(z;) > 1. Now,
similarly to the proof for Case 1, one can prove that there is £ € Obs such that k
sees £ on t-axis and £y on g-axis, i.e. £ = wi[t] and ly = wi[y] (and w,[Tx] = wi[Z])-

QED(Lemma 6.2.89)

Claim 6.2.90 Let ¢ € L” U L® and ¢; € L” be such that £ ~ ¢;. Then (i) and (ii)
below hold.

(i) Assume a,b € . Then there are e, f € ¢; such that (a,b) eq, (e, f).

(ii) Let e, f € ¢; be arbitrary and ¢, u € £ with ¢ # u. Then there is d € Ecu such
that (e, f) eq; {c,d).

Before proving the claim we need a definition.
We will use the following definition outside the scope of the present proof, too.
Le. the definition applies to arbitrary 9 and m with w,, injective.

Definition 6.2.91 Assume m € Obs and e,ej,es,e3 € Mn. Assume the
world-view function w,, is injective (as usual). Then observer m is called a
witness to (e,e1) eq, (e, es) iff there are coordinate-axes Z; and Z; (4,7 € w) such
that m sees e,e; on Z;-axis, sees ey, e3 on T;-axis, and sees that the distances be-
tween e, e; and between ey, e3 coincide; formally: e, e, € w,[T;], €2, €3 € wy[T;] and
lw t(e) — w,l(er)| = |w,!(e2) — w,'(e3)|. Cf. the definition of eq, on p.793. See
Figure 297.

<

The idea of the proof in the present sub-section®#® is the following. Assume

{(a,b) eq {(c,d). Then there is a finite (but possibly long) chain of eq,-witnesses
establishing this eg-connection. Then we want to replace that original (possibly
long) chain with a short one. The short chain establishes (a, b) eq, (¢, d). This way
one proves eq C eqs.

Proof of Claim 6.2.90: Recall that 91 was fixed at the beginning of the proof of
Prop.6.2.88. Let £ € LT U L® and ¢, € LT be such that £ ~ ¢;. Then there are
m,k € Obs and ¢, € L’ such that (a)-(c) of Lemma 6.2.89 hold for m, k, £, £1, {s,
see Figure 295 (p.896). Let such m, k, 5 be fixed.

To prove (i) assume a,b € £. Recall (from (a)—(c) of 6.2.89) that k sees ¢ either
on T-axis or on t-axis and sees f, on y-axis. Let eg, fo € ¢ be such that k is a
witness to

<0,, b) €q <60: f0>
848 e. the proof of Thm.’s 6.2.22, 6.2.23
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Figure 297: m is a witness to (e, e1) eq, {(ea, €3).

Recall (from (a)—(c) of 6.2.89) that m sees ¢, on gy-axis and sees ¢; on t-axis. Let
e, f € 1 be such that m is a witness to

(€0, fo) eqq (e, f)-

Then, (a,b) eq, (e, f). This proves item (i).
To prove (ii) assume e, f € ¢; and c,u € £ with ¢ # u. Let ¢y, dy € ¢5 be such
that m is a witness to

(e, f) eq, (o, do)-
Let d € E:u be such that k& is a witness to

<CO: do) €]y <Ca d>-849

Thus, (e, f) eq; (c,d). This proves item (ii).
QED (Claim 6.2.90)

To prove Proposition 6.2.88 let £, ¢ € LT U L® be such that ¢ ~ ¢. Further let
a,b € ¢ and ¢,u € £ with ¢ # u. Now, let ¢, € LT be such that £ ~ ¢;. Clearly,
¢ ~ £,.8°% Applying item (i) of Claim 6.2.90 for #' and /; we get that there are
e, f € ¢ such that

<a” b) €q, <6, f>

Let such e, f be fixed. Applying item (ii) of Claim 6.2.90 we get that there is d € E:u
such that

<€7 f> €q, <C, d>

849Gych a d exists by Fact 6.2.85.
850This holds by Remark 6.2.87 (p.895).
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For this choice of d € Z;u we have (a,b) eq, {(c,d). This completes the proof.
Therefore
Proposition 6.2.88 has been proved. 1

The following proposition is a “generalization” of Proposition 6.2.83. For the
intuitive meaning of the proposition see Figure 298.

PROPOSITION 6.2.92 Assume n > 2 and Bax® + Ax(||)” + Ax(Triv,)~ +
Ax(v'). Let £ € L and o,e € £ with o # e. Then

[a,alezo,e A (o,a) eq{0,a1)] = a=a,

see Figure 298.8°1 In other words

BW(Oa a, a’l) = o <0’ (1,> eq <0a al)'

This cannot happen:

Figure 298: Illustration for Proposition 6.2.92.

Proof:

Intuitive idea of the proof: We start out with 9 € Mod(Baxea +...). Then we
transform 9 to a Newbasax model 1. We check that eq remains the same on
space-like separated pairs of points (i.e. on such pairs of points eq of 9t agrees with
eq of M). We already know that in Newbasax models eq behaves well. Hence eq
behaves well in 9. From these we infer that eq behaves well on space-like separated
pairs of points in 9. It remains to check that eq behaves well on time-like separated
pairs of points too in 9%. The idea of checking this is illustrated in Figure 300 on
p-906.

Formal proof: For the formal proof first we need a definition and a lemma.

Definition : Assume 901 is a frame model such that in 97t the world-view transfor-
mations w,, are injections. Consider the observer-independent geometry &gn. We

851The assumption n > 2 is needed in Proposition 6.2.92, cf. Proposition 6.2.96(ii) (p.907).
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define the spatial version eq® of eq as follows. First we define eq C *Mn. Intuitively,
we think of eqy as a binary relation between pairs of points. Let a,b,c,d € Mn.
Then intuitively (a,b) and (c, d) are eqi-related iff there is an observer m such that
for m (i)—(iv) below hold. (i) a and b are simultaneous, (ii) ¢ and d are simultaneous,
(iii) the distances between events a,b and between events c, d coincide and (iv) the
lines connecting a, b and ¢, d intersect the time-axis (cf. Figure 299); formally:

(a,8) a3 e, )

(3m € Obs)(3¢, ¢ € Eucl) ((i)—(iv) below hold).
See the left-hand side of Figure 299.
(a),w,}(b) € £ L. 1.

(€), wl(d) € ' L.t

(1) wy'
(i) w;!
(ii) [wy'(a) — wi' ()] = |wy' (c) — wi'(d)]-
(iv) £Nnt#0 and ¢Nt#0.

Now,
eq® is defined to be the transitive closure of eqy.

Let m € Obs. Then observer m is called a witness to {a.b) eqy (c,d) iff there
are £,¢' € Eucl such that for m,¢,¢' (i)—(iv) above hold, cf. the left-hand side of
Figure 299.

t
m
eq
b
a
C
/ d
A Th

Figure 299: Illustration for eq§ and the proof of Lemma 6.2.93.
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The lemma below says that eq and eq”® coincide on space-like separated pairs of
points, under certain conditions.

Lemma 6.2.93 Let a,b,c,d € Mn. Then
{a,b) eq® {c,d) = (a =50 A ¢c=%d A {(a,b)eq e d));
assuming n > 2 and Bax® + Ax(||)”™ + Ax(Triv,)~ + Ax(V ).

Proof:

Proof of direction “==": Since eq” is the transitive closure of eq and eq is transi-
tive, it is sufficient to prove direction “==" for eqj in place of eq®. Let a, b, c,d € Mn
be such that (a,b) eq? (c,d). Let m € Obs be a witness to {a,b) eq (c,d), see Fig-
ure 299. Let e, f be events on m’s life-line such that for m the distances between
events a,b, between events e, f and between events c,d coincide,®? cf. Figure 299.
By Ax(Triv;)~, m has brothers k and A such that both k and h see events e, f on
the f-axis, k sees events a, b on the Z-axis and h sees events c, d on the z-axis,%3 see
the right-hand side of Figure 299. Let such k, h € Obs be fixed. Then a = b and
¢ =%d. By Ax(]|)”, the world-view transformation between m and k is an isometry
composed by an expansion. Thus, for observer k the distances between events a, b
and between events e, f coincide,* since they coincide for m. Thus, k is a witness
to

<a” b) €dg <61 f>a

for witness to eq, cf. Def.6.2.91 and Figure 297 on p.900. Similarly, by Ax(]||)~, for
observer h the distances between events e, f and between events ¢, d coincide, since
they coincide for m. Thus, h is a witness to

<€, f> €qy <C, d>

(a,b) eq, (e, f) and (e, f) eq, (c,d) imply (a,b) eq {c,d). This completes the proof
of direction “=" of Lemma 6.2.93.

Proof of direction “<=": Let a,b,c,d € Mn be such that ¢« =% b, ¢ =° d and
{a,b) eq (c,d). We want to prove (a,b) eq® {(c,d). If a = b then ¢ = d, by the
definition of eq and by injectiveness of w,,’s. Further {(a,a) eq® (c,c) can be easily
$%2Formally: e, f € wn[t] and |wy'(a) — wi (b)| = |wy () — wi,' ()] = |wy' (¢) — wi' (d)].
853Formally: e, f € wg[t] = wa[t] = wn([t], a,b € wi[Z] and c¢,d € wy[Z].
$54Formally: |wy ' (a) — wy ' ()| = |wy ' (e) — wi " (f)]-
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checked. Thus, we can assume a # b. Since (a, b) eq (c, d), there is a finite chain of
pairs (a‘, b*) with a* # b* (i < k € w) such that

<G,, b) = <a0ab0> €qy <a17b1> edg --- eq0<akabk> = <Cu d>

Without loss of generality we may assume that our chain (a®,8°)...(a*,b*) is of
minimal length (i.e. it cannot be replaced by a shorter similar chain).

Let m!,...,mF € Obs be such that for every 0 < i < k

m' is a witness to  (a"', ") eq, (a’,b"),
for witness to eq cf. Def.6.2.91 and Figure 297 on p.900. For each pair {a‘, b*) in the
above chain we have either o =7 b° or o' =° b, briefly each pair is either time-like
or is space-like.®>® Both (a°, %) and (a*,b*) are space-like.

Assume that a pair (a’,b') in the above chain is time-like. Then, we claim
that its neighbors (a*~!,b""!) and (a**!,b*"!) (exist and) are space-like because of
the following. Assume e.g. that (a*™!, b*™!) is time-like. Then the witness m'"!
will see both pairs (a’,b') and (a**!, "t} on the time-axis. Then witness m’ sees
the pairs (a,b') and (a*™!, ') on its time-axis too, further m’ too thinks that
they are of the same length since m' and m**! have the same life-line (and by
Thm.4.3.11). But since m' is a witness to {(a* 1, b 1) eq, (a, b%) it will be a witness
to (a1, 671 eqy(a, b"™!). Therefore we could throw away (a’, b’) from our chain.
A contradiction®®, proving our claim.

Next, we turn to proving that (a®,b°) and (a*, b*) are in eq”, i.e. that there is an
eqy-chain connecting them. To see this we will replace the eq,-chain between them
by an eq3-chain in a step-by-step fashion. Let 7 < k. If both (a, b) and (a*™!, b"*1)
are space-like then they are in eqy (m‘™! is a witness to this). Therefore we may
assume that one of them is time-like. For simplicity assume (a’,b') is time-like.
Then i # 0 and both (a* %, 6" 1) and (a*™!,b"!) are space-like (and m’, m**! have
the same life-line). Now, we claim that (a’ 1, 0°!) eq? (a*™,b**1) holds. Actually
both m® and m*™ are witnesses to this. In the last step we strongly used Ax(||)~.

This completes the proof of the lemma.
QED (Lemma 6.2.93)

Now, we turn to proving Proposition 6.2.92. Assume n > 2. Let 9 €
Mod(Bax® + Ax(||)™ + Ax(Triv,)~ + Ax(v/ )). Let ¢ be a model of Newbasax
obtained from 9 by changing the units of measurement for time, i.e. 91 is obtained

855This holds by our no FTL theorem Thm.4.3.24, a’ # b’ and the definition of eq,.
856gince we assumed minimality of our chain.
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from 9N exactly the same way as in the proof of item 6.2.89 on p.896. It can be
checked that

M = Newbasax + Ax(||)” + Ax(Triv,)~ + Ax(v/ ),

in particular 91 = Ax(||)” holds by 9 = [Ax(||])” + (trwn(k) =t — cm =),
cf. the text below Ax(||)” on p.828.

Claim 6.2.94 (Mngy, Lon; Bwox, eqsy, €m) = (Mngy, Ly; Bw, eqy, €n)-

Proof: (Mngy, Lon; Bwan, (eq3)m, €m) = (Mng, Ly; Bwe, (eq);m, €Ex) can be
checked by the definitions of eqj and . Since eq® is defined to be the transi-
tive closure of eqj we conclude that the claim holds.

QED (Claim 6.2.94)

By Proposition 6.2.83 (p.892) and by noticing that Basax models and
Newbasax models are very close to each other (cf. Thm.3.3.12), the conclusion of
the position holds for the Newbasax model 9. Further, by Lemma 6.2.93 (p.903),
the conclusion of the proposition holds for 9t when eq is replaced by eq® in the
conclusion of the proposition. Thus, by Claim 6.2.94, we have the same for 90;
formally:

Claim 6.2.95 If 0,e € ¢ € Lgy with 0 # e then
[a,a; € Z,,e A {o,a) eqS(o, a)] = a=a.

To prove the proposition assume ¢ € L, o,e € ¢ with o # e. Let a,a;, € K;,e be

such that
(0,a) eq {0, ay).

We want to prove a = a;. We distinguish three cases.

Case 1: Assume ¢ € L°. Then o =% a and 0 =% a;. So, by Lemma 6.2.93, we
have (0,a) eq® (0,a;). Thus, by Claim 6.2.95, a = a;.

Case 2: Assume ¢ € L. Then, by the definition of eq, it can be checked that
0 = a = a1, since there is no observer who sees a photon-like line on a coordinate
axis.

Case 3: Assume £ € L. Let m be an observer who sees £ on #-axis, i.e. w,,[] = £.
Let

0y, [z] e LS

and c,u € ' with ¢ # u. Let d,d; € [’cu be such that m is a witness to both

<07 CL> €qy <Cv d> and <07 CL1> €qo <C: dl)a
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€qo gc,u

Figure 300: Tllustration for the proof of Proposition 6.2.92.

see Figure 300. Then a = a4 iff d = d;, cf. Fact 6.2.85. Further, by (o0, a) eq (o, a1),
we have (c,d) eq {(c,d;). By Case 1, we have d = d;. Thus a = a;. This completes
the proof. Therefore

Proposition 6.2.92 has been proved. B

Proof of Theorems 6.2.22 and 6.2.23: The proof of Thm.6.2.22 for the case
n = 2 is left to the reader, but we note the following. Assuming Basax(2), eq
has the following property: Assume (a,b) eq {(c,d). Then there is an observer who
sees (a,b) on a coordinate axis, (c,d) parallel to a coordinate axis and that the
distances between a,b and between c, d coincide. Actually, the first eq,-witness in
the eq,-chain establishing (a, b) eq {c, d) will be such an observer, cf. Def.6.2.91 and
the intuitive text below it. (Therefore, assuming Basax(2), each observer sees the
pairs (a, b) and (c,d) on parallel lines or on Minkowski-orthogonal lines.)

Assume n > 2 and that
M = Basax + Ax(Triv,)~ + Ax(v/ ) or
M = Bax® + Ax(Trivy)~ + Ax(||)” + Ax(V ).
To prove the theorems we have to prove eq = eq, (because this is what the conclusion

of the theorems say). eq, C eq is obvious. Thus, we have to prove eq C eq,. Let
a,b,c,d € Mn be such that

{(a,b) eq {c,d).
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Then, there are £,¢ € L U L® such that £ ~ ', a,b € ¢’ and c,d € ¢ (this follows
from the definition of eq and from item 6.2.13). Let u := d if ¢ # d, otherwise let
u € ¢ with u # ¢ be arbitrary. Clearly, d € Zcu By Proposition 6.2.88, there is
d, € Zcu such that

<a'7 b> €49 <Ca dl):

see Figure 294 (p.895). Thus, it is sufficient to prove d = d;. Since eq is transitive
and reflexive (and since eq, C eq) we have

(c,d) eq (c,dy).

This and d, d; € Zcu imply d = d; by Propositions 6.2.83 and 6.2.92, see Figure 298
(p.901). This completes the proof of Thm.’s 6.2.22 and 6.2.23. Therefore
Theorems 6.2.22 and 6.2.23 have been proved. 1

In connection with the following proposition cf. Thm.6.2.24 (p.830).

PROPOSITION 6.2.96

(i) Proposition 6.2.83 (p.892) does not generalize from Basax to Bax?, i.e. for
any n > 1 there is a model M € Mod(Bax®+Ax(v/")) in which the conclusion
of Proposition 6.2.83 fails, i.e. the arrangement in Figure 291 (p.892) becomes
possible.

(ii) Proposition 6.2.92 (p.901) does not generalize to n = 2, i.e. there is a model
M € Mod(Bax?®(2) + Ax(||)” + Ax(Triv,)~ + Ax(v))

such that the conclusion of Proposition 6.2.92 fails in 9N, i.e. the arrangement
in Figure 298 (p.901) becomes possible.

Idea of proof:

Case of (i): Let M € Mod(Bax® + Ax(v/ )) be with m,k € Obs such that m
and k are brothers, m thinks that the speed of light is 1 while k£ thinks that the
speed of light is 22 (i.e. ¢;, = 1 and ¢ = 2?), and m and k agree on coordinate axes
(i.e. fux|Zs] = T; for all i € n). Now it is not hard to find events o, a,a; in Bgy as
represented in Figure 291; actually one can choose these three events to be w,,(0),
Wi (1) and wy, (2 - 1;).

Case of (i): Let 9 € Mod(Bax®(2) + Ax(||) + Ax(Triv) + Ax(v/ )) be such
that there are m,k € Obs with the following properties: k£ moves FTL relative to
m, moreover f,.[Z] = t and fx[t] = Z. Further ¢,, = 1 while ¢, = 22 Now it
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is not hard to check that in this model 9t there are events o, a,a; validating the
arrangement in Figure 298. Hint: both choices ¢ = w,,[Z] and £ = w,,[t] work.

6.2.7 Connections between Ax(eqm) and the rest of our axioms

In this sub-section we discuss some connections between the axiom Ax(eqm) of
equi-measure introduced in §6.2.1 and some earlier introduced axioms. For simplic-
ity, throughout the present sub-section we assume Ax2. This does not restrict gen-
erality since in all our theories introduced so far Ax2 was assumed.®®” We consider
Ax(eqm) as a stronger version of each one of the following axioms: Ax(eqtime),
Ax(eqgspace), Ax(]|) (cf. §2.8 for these axioms). Namely, intuitively,

Ax(eqm) says that observers agree on distances,
Ax(eqtime) says that observers with common life-line agree on time-like distances,
Ax(egspace) says that observers agree on spatial distances, and

Ax(||) says that observers with parallel life-lines agree (on time-like and space-like
separatedness and) on distances.

Ax(eqm) is equivalent with Ax(eqtime)+Ax(egspace), under mild assumptions,
cf. item 2b of Proposition 6.2.97 below. Interestingly, Ax(eqm) is equivalent with
the weaker Ax(egspace), assuming Bax® and some auxiliary axioms, cf. items 5b,
5a of Prop.6.2.97. Further, assuming Flxbasax®(2) and some auxiliary axioms,
Ax(eqm) turns out to be equivalent with both Ax(||) and Ax(eqtime), cf. items
3b, 4a of Prop.6.2.97. Some of the connections between Ax(eqm), Ax(eqtime),
Ax(egspace) and Ax(||) are summarized in the following proposition. Recall that

Basax | Newbasax | Flxbasax® = Bax® = Bax = Bax™.

Below, the boxed notation | Ax(eqm) | means simply Ax(eqm), the role of the box

is only to call attention to the place where Ax(eqm) appears.

857For completeness we note that later we will have important theories in which Ax2 will not be
assumed. These theories will pave the road to generalizations toward general relativity.
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PROPOSITION 6.2.97 1-5 below hold.
1. (a)-(d) below hold.

(a) Bax™ = |Ax(eqm)| — Ax(eqtime).
(b) Bax™ + Ax(Triv) + Ax(v') E |Ax(eqm)| — Ax(egspace).
(c) Bax® + Ax(Triv) + Ax(v') E |Ax(eqm)| — Ax(]]).

(d) Ax(Triv) cannot be omitted neither in item (b) nor in item (c) above.

2. Assume

Bax™ + Ax(v ) + (there are no observers moving with infinite speed ).
Then (a)—(c) below hold.

(a) (Ax(eqtime) + Ax(egspace)) — |Ax(eqm) |

(b) Assume Ax(Triv). Then
(Ax(eqtime) + Ax(egspace)) < [Ax(eqm)|

(¢) The assumption Ax(Triv) cannot be omitted in item (b) above.

3. Assume Bax®(2) + (there are no observers moving with infinite speed )88,
Then (a)—(c) below hold.

(a) Ax(|]) — |Ax(eqm) |

(b) Assume Ax(Triv). Then Ax(||]) + |Ax(eqm)|.

(¢) The assumption Ax(Triv) cannot be omitted in item (b) above.
4. (a)-(c) below hold.

(a) Assume Flxbasax®(2)+ Ax(Triv)+ (there are no observers moving with
infinite speed)®®. Then Ax(eqtime) > |Ax(eqm)|.

(b) Ax(Triv) cannot be omitted in item (a) above.

(c) The statement in item (a) above does not generalize to n > 2. Moreover:
For any n > 2 there is a model M € Mod(Basax(n) + Ax(eqtime) +
Ax(|]) + Ax(Triv) + Ax(v/")) such that M | Ax(eqm) |

88Formally: (Vm, k € Obs)(m Sk — vp(k) # 00).
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5. Assume n > 2 or that ( there are no observers moving with infinite speed)®®.
Then (a) and (b) below hold.

(a) Flxbasax®+ Ax(Triv,)~+Ax(v ) E |Ax(eqm)| ++ Ax(egspace).

(b) Bax® + Ax(Triv,)~ + Ax(v )+ Ax(||)” &
Ax(eqm)| <+ Ax(egspace).

We omit the proof. 1

In connection with Prop.6.2.97 above we note that, assuming Bax®(2),
(there are no observers moving with infinite speed) <> (there are no FTL observers).

The following theorem is a stronger version of Theorems 2.8.17 (p.138), 3.9.11
(p.356) saying that, under certain conditions, the symmetry axioms in models of
Basax are equivalent. Among others, the following theorem says that the axiom
of equi-measure is equivalent with the symmetry axioms introduced in §§ 2.8, 3.9,
assuming n > 2, Flxbasax® and some auxiliary axioms. Further it shows that in
Thm.’s 2.8.17, 3.9.11 the auxiliary axiom Ax(Triv,) can be replaced by its weaker

version Ax(Triv;)~.

THEOREM 6.2.98 Assume n > 2. Let

H ¥ { Ax(syto), Ax(speedtime), Ax(eqgspace), AxA2 },
H, = {|Ax(eqm)| Ax(symm), AxAl+ Ax(eqtime), Ax0O2},

H, := {Ax0O1+ Ax(eqtime) }.
Then (i)—(vi) below hold.

(i) Flxbasax® + Ax(v ) E
“all the axioms in H are equivalent with one another”.

(ii) Flxbasax® + Ax(v ) + Ax(Triv;)~ &
“all the axioms in H U Hy are equivalent with one another”.

(iii) Flxbasax® + Ax(v" )+ Ax(Triv;)~™ + Ax(110) E
“all the axioms in H U Hy U Hy are equivalent with one another”.

(iv) Flxbasax®(2) + Ax(vV' ) + Ax(Triv,)~™ + Ax(110) & “all the azioms in
(HUH,; UH,)\ {Ax(eqm), Ax(eqspace)} are equivalent with one another”.
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(v) Flxbasax®(2)+Ax(v" )+ Ax(Triv;)~ + (there are no observers moving with
infinite speed) = “all the axioms in (H U Hy) \ {Ax(eqm), Ax(egspace)}
are equivalent with one another”.

(vi) Flxbasax®(2) + Ax(v' ) + (there are no observers moving with infinite
speed) = “all the azioms in H \ {Ax(eqspace)} are equivalent with one
another”.

On the proof: A proof can be obtained by Theorems 2.8.17 (p.138), 3.9.11 (p.356),
by item 5a of Prop.6.2.97, by footnote 354 (p.432), by noticing that each axiom in
HUH;UH, implies Ax(eqtime), and by noticing that Ax(eqtime) + Ax(Triv;)~
implies Ax(Triv;) in models of Flxbasax®. Cf. also [174]. 1

As a contrast to Theorem 6.2.98 above we state Proposition 6.2.99 below. It
says that

Basax(2) + | Ax(eqm) |+ “auxiliary axioms”

does not imply any of the symmetry axioms, except for the axiom Ax(eqspace) of
equi-space. In models of Flxbasax®, for n = 2 too, Ax(eqm) and Ax(eqgspace)
are equivalent, assuming some auxiliary axioms, cf. item 5a of Prop.6.2.97.

PROPOSITION 6.2.99 There s a model

I € Mod(Basax(2) + | Ax(eqm) |+ Ax(||) + Ax(Triv) + Ax(11) + Ax(V ))

such that in 9N neither one of the following symmetry azioms Ax(syto),
Ax(speedtime), Ax(symm), AxA1, AxA2, AxO1, AxO2 holds.

The proof is available from Judit Madarasz. R

Roughly, the following theorem says that each one of the symmetry axioms

implies Ax(eqm), assuming Flxbasax®.

THEOREM 6.2.100 (i) and (ii) below hold.

(i) Flxbasax® + Ax(v' ) = Ax(w)” — |Ax(eqm)|.

(ii) The statement in (i) remains true if we replace Ax(w)™ with any
one of Ax(w), Ax(w), Ax(w)ﬂ, Ax(w)mj, Ax(syto), Ax(symm),
Ax(speedtime), AxA1l + Ax(eqtime), AxA2, Ax0O1 + Ax(eqtime),
Ax02, Ax(egspace).
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The proof is available from Judit Madarasz. 1

By Thm.6.2.98, in models of Flxbasax® Ax(eqm) and Ax(symm) are equiv-
alent, assuming n > 2 and some auxiliary axioms. In Thm.4.2.4 (p.458) and
Prop.3.9.37 (p.386) we have seen that, assuming some auxiliary axioms, Ax(symm)
blurs the distinction between Bax and Flxbasax. The next proposition says that
this is not the case if we assume Ax(eqm) in place of Ax(symm).

PROPOSITION 6.2.101 For anyn > 1

Bax® 4| Ax(eqm) |+ Ax(]|) + Ax(Triv) + Ax(v/ ) + Ax6 # Flxbasax.

Let Axy := Bax® + ...+ Ax6 which is the set of axioms on the left-hand side
of ¥ in Prop.6.2.101 (i.e. Prop.6.2.101 says that Ax, = Flxbasax). Ax, will play
a distinguished role in our duality theories, moreover it already played a role in our
earlier propositions about eq (cf. Prop.6.2.88 on p.895, Prop.6.2.92 on p.901, and
Thm.6.2.23 on p.829). The observation that Ax, is weak (e.g. Ax, £ Flxbasax)
makes our theorems based on Axq (e.g. the just mentioned duality theories) stronger.
In this direction we note that Axg is consistent with the existence of photons with
arbitrary finite positive speeds. As a contrast Axg is strong enough to imply that
“simultaneities” i.e. space-like hyper-planes®® are Euclidean. In more detail, assume
® € Ge(Axq) and H is a space-like hyper-plane of &. Then the “subgeometry”
& | H=(H,Fq,...) %" is Euclidean by Thm.6.6.115 (p.1131).86¢1

859For the definition of space-like hyper-planes we refer to p.1130, Def.6.6.112.

860where L, Bw, ..., T are restricted to H the natural way

861Tn passing we note that general relativistic geometries usually fail to have this property (i.e.
“pure” space is already curved). However, the simplified black hole geometry in Andréka et al. [23]
enjoys this property at least for some (kinds of) space-like hyper-planes (more precisely space-like
“geodesic hyper-surfaces”). Besides being Euclidean, these space-like hyper-surfaces are disjoint
from each other, and their union covers the whole of space-time. The same applies to the simplified
black hole geometry in Rindler [224] on p.124 given by equation (7.28). (The two simplified
geometries, in [23] and in [224], are obtained via different trains of thought.) As a curiosity we
note that one of the main features of the model constructed in Godel’s cosmological papers (and
refined in Ozsvéath-Schiicking [209] for a finite universe) is that the whole of space-time of that model
cannot be obtained as a disjoint union of space-like geodesic hyper-surfaces. Such a disjoint union
of space-like geodesic hyper-surfaces could be regarded as a kind of “absolute” (even if artificial)
temporal structure for the whole universe. In passing, universes with rotating black holes have the
same “Godelian” property. (When we write “universe” e.g. in connection with the works of Godel,
Ozsviéth etc. we mean a mathematical structure which is in many respects similar to our &’s but in
which geodesics discussed in §6.8 way below play a dominant role.) Cf. footnote 622 on p.775 for
references etc. See Figure 355 on p.1208 for an intuitive picture of Godel’s (cosmological) model.
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QUESTION 6.2.102 In Thm.4.7.1 (p.606) we have seen that, assuming some
auziliary axioms, Ax(symm) blurs the distinction between Reich(Basax) and
Basax. Is this true for Ax(eqm) in place of Ax(symm)? Le. does

Reich(Basax) + Ax(]|) + Ax(Triv) +|Ax(eqm)| = Basax

hold?
<

Further connections between the symmetry axioms and Ax(eqm) were discussed
in §3.9.3 (in section Symmetry axioms).

Remark 6.2.103

1. In §3.9.3, we used the axiom Ax(Gal), which is almost equivalent with
Ax(Triv). In the present chapter we will use only Ax(Triv). All the the-
orems stated in §3.9.3 remain true if we replace Ax(Gal) with Ax(Triv). We
will use this fact without mentioning it.

2. Ax(eqm) is formulated in the present section slightly differently than its
formulation in §3.9.3. All the theorems in §3.9.3 remain true if we use the
form of Ax(eqm) stated in the present section. <

6.2.8 Characterizing our symmetry axioms by the automorphisms of the
geometry &gy

In this sub-section we turn to characterizing our symmetry axioms (like Ax(w)) in
model theoretic or algebraic terms. More concretely, we will prove that, basically,
our symmetry axioms are equivalent with the statement that

Aut(Bgp) = “World-view transformations of 90" 62

i.e. that the automorphisms of our observer-independent geometry coincide®®® with
the world-view transformations between observers. We will prove this statement

862More precisely, we mean some kind of duals f,,, of the world-view transformations f,,;, which
will be defined soon. The point is that without loss of generality, one may identify the f,,;’s with
their duals.

863in some sense
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under mild assumptions®? on 9, ¢f. Thm.6.2.106 (p.916). Cf. also the introduction
to the present chapter, p.778.8°

We will also see that in our characterization (symmetry axiom < Aut(®) =
“World-view trf.’s”) of the symmetry axioms, on the right-hand side both inclusions
(Aut(®) C “W...” and Aut(&) DO “W...”) can fail if we make the assumptions
weaker, cf. Theorems 6.2.109, 6.2.110, 6.2.111 (pp. 919-921).

Before elaborating the details, we note that the ideas in this sub-section, i.e. the
idea of characterizing (instances of) Einstein’s SPR, (when applied to 90t) by looking
at automorphisms of Bgy, is not unrelated to the subject matter of our Remark 6.6.4
(p.1014, §6.6.1) on Galois theories.®® Here Lemma 6.7.5 (p.1139) is also relevant.

Notation 6.2.104 Assume 9 is a frame model. Assume that the world-view func-
tions w,, are bijections, i.e. that for each m € Obs, w,, : "F>——> Mn.

(i) Let m,k € Obs. Intuitively f:n\k will be the function on the observer indepen-
dent geometry ®gy induced by the world-view transformation f. the natural
way, see Fig.301. For the formal definition of f,,; let us notice that

fmk Id fmk
W Wi W Wi Wi, Wi W,
Mn ?‘ Mn Mn ﬁ- Mn Mn ﬁ- Mn
fmk‘ fmk‘

Figure 301: The diagrams above commute. (Illustration for f:n\k and f.)

864These assumptions are very mild in comparison with the assumptions needed in §3.9 for similar
purposes (cf. BaCo™ on p.347 and Thm.3.9.2).

865The goals of this sub-section were discussed in greater detail there, further they were put into
broader perspective.

866The two subjects together are related to what is called symmetry breaking (and/or invariance
principles or equivalence principles) in natural sciences, in particular in physics, cf. e.g. Gruber-
Millman [114], Greene [113, pp. 122-123], or Darvas [67].
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w;t o wy, : Mn>—-Mn is a bijection. The function

e ~——

w;t owy : L — P(Mn) is defined by w, ! owy: £+ (w' o wy)[¢]. Now,

7 def -

for = (w, ' owy, 1A [ F, w;!owg).

—~

fuk is a potential (three-sorted) automorphism®¢7 of Ggy.

In some sense, f:n\k contains the same “mathematical information” as f,,; does,
cf. Fig.301. Therefore one can identify f,,;, with f,;. In the present sub-
section, by world-view transformations we will always mean the f,,;’s instead
of the f,,;’s.

(ii) Let f € Aut(®gn). Then, f is called nice if it is the identity function on the
sort F.8%8 Hence, the f,,;’s are potential nice automorphisms.

(iii) Aut™(®g:) denotes the set of nice automorphisms of Ggy.

<

Assume N is a frame model. Recall that for every m € Obs™, &,,, is the observer-
dependent geometry corresponding to m, cf. Def.6.2.76, p.880. Intuitively, &,, is
the world-view of observer m, if we abstract from bodies which are not photons or
observers. Roughly, the following proposition says that f,,; is a nice automorphism
(of Bg) iff the world-views of m and k coincide.

PROPOSITION 6.2.105 Assume N is a frame model such that for every m €
Obs™, w,, : "F>—=Mn is a bijection. Then, for every m,k € Obs,

for € AutF (B9) = &, = &,

Idea of proof: Assume the assumptions. Then for every m € Obs, w,, induces
an isomorphism between &,, and &y the natural way, cf. footnote 834, p.885 for
details. The rest of the proof is depicted in Fig.302. 1

Note that (i), (iv), (v) in the theorem below are statements of similar kind. The
main message of the theorem below is that any one of (i), (iv), (v) is equivalent with
(iii). L.e. the main message is the following:

symmetry axiom <  Aut’ (Gg) = “World-view transformations of 90t

867Cf. item (IT) of Def.6.2.2 (p.798) for the notion of an isomorphism between geometries.
868T.e. f is nice if f leaves the elements of F fixed.
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Id Id

[identical] |
pE—— -
s — =
:
‘ automorphism ‘ ‘ automorphism ‘
I
Sn /\\U = Gy S /\W P By
fmk fmk

Figure 302:  fop € Aut? (By) <= &, = &,.

THEOREM 6.2.106 Assume n > 2 and
M = Bax~ " + Ax6 + Ax(v ) + Ax(Triv) + Ax(||).

Then (i)—(v) below are equivalent.

(i) M = AxO1.

(i) (Vm,k € Obs) f € Aut” (Gap).

(iii) Aut®(Gan) = {for : m,k € Obs }.

(iv) M = Ax(w).

(v) M = Flxspecrel® + AxO1.

Outline of proof: Assume n > 2, and that 9 satisfies the assumptions. Then
(i) = (v), by Thm.5.2.17 on p.759 (or equivalently by Thm.4.3.18 on p.490).
(v) = (iv) by Thm.6.2.98 on p.910 (and by Flxspecrel = Ax(symm)). (iv) = (i)
by Ax(w) := AxO1 + ..., cf. p.351. Therefore, (i), (iv), and (v) are equivalent.
(v) = (ii) is not hard to check by using Prop.6.2.105 (and by AxO1 and the
fact that the speed of light is the same for all observers). Cf. also the intuitive text
above Prop.6.2.105. The details of this part of the proof are left to the reader.
Now, we turn to proving (ii) = (i). Assume (ii). First, we prove that
M = Flxbasax. To prove this it is enough to prove that (Vm,k € Obs)(Vd,d €
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directions) ¢,,,(d) = cx(d'). Let m,k € Obs and d,d’ € directions. Let k' € Obs be a
brother of k such that iy € Triv and fi takes d to d'.8%° Then,

ce(d') = cp (d).
By Prop.6.2.105 and (ii), &,, = & . Hence,
cm(d) = ¢ (d).

But then, ¢,,(d) = cx(d'). Hence, M = Flxbasax. Next, we turn to proving
M = AxO1. (ii) is still assumed. Let m,k,m’ € Obs. We want to prove that
fx = fr, for some &'. By Prop.6.2.105,

&, = B,,..
Let A € Obs be such that
trm (k) = tro (h) and m7Tk < m' th,

cf. Fig.303. Such a h exists by &,, = &,,,. Without loss of generality, by Ax(Triv),
we may assume that

fkm(o) = fhm’ (O),
see Fig.303.

R Y/ S/

trm(k) = tro (h)

fkm (() fhm’ ((_))

mtk & m'th

> fem (()) = fhm (()) >

Figure 303: h € Obs is as depicted above.

869Such a k' exists by Ax(Triv).
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By Thm.4.3.24 (p.497), there are no FTL observers in 9%. Hence, by
Ax(|[)+AxEqq,

(%) (Ve,e; € Mn)[e =T e; = (the time elapsed between e, e; is
g(e, e1) for any observer who sees e, e; on his life-line ) |.

By (%) and the statements listed in the middle of Fig.303,

fk:m r t= fhm’ r t.

Thus, fy, o fur leaves the time-axis ¢ pointwise fixed and leaves the set of “photon-
lines”8™ fixed.8™ Hence, by the proof of Lemma 3.6.20 (p.275), fp o fux is a trivial
transformation. Thus, f,,;; = f,p 0 f, for some f € Triv. Let this f be fixed. Let &’
be a brother of h such that fn, = f.52 But then f,,;, =fn © far= fow, for this &'
So, M = Ax0O1, and this completes the proof of (ii) = (i).

So far we have seen that (i), (ii), (iv), (v) are equivalent. It remains to prove
that (iii) is equivalent with these.

(iii) = (ii) is vacuously true. Now, to prove the theorem it is enough to prove
that

(v) = Aut" (Ggn) C {f;\k : m,k € Obs}.

Now, we turn to proving this. Assume (v). Then the f,,;’s are affine transformations
by Prop.3.9.50 (p.392) and by the fact that Bax™ = Ax(symm) — Ax(syto). Let
f € Aut® (Bgz). We have to prove that f = :n\k, for some m, k € Obs. Let m € Obs
be arbitrary but fixed. For simplicity assume that n = 4. Let £y, ¢1,¥s,/3 € L be
the coordinate axes of m in the observer-independent geometry, i.e. ; := wp,[Z;],
for i < 4. Let o, e, €1, €2, e3 € Mn be, respectively, w, (0), wm(1o), wm(11), wm(1ls),
wm(13). Hence, by (%) above and by the definition of &gy,

by € LT, 01,0y,¢5 € L, the {’s are pairwise L,-orthogonal,
(0,€e9) eq (o0,e;) foralli <4, g(o,e9) =1, and o < €.

The above statement holds when ¢;, o, e; (i < 4) are replaced, respectively, by
f), f(o), f(e;) (i < 4) in it. By this, Remark 6.2.66(ii) (p.867), (the proofs of)
Propositions 6.2.88 (p.895) and 6.2.92 (p.901), (x) above, and Ax(Triv) one can
prove that there is an observer k such that the coordinate axes of k are f(¢;) (i < 4)
in the observer independent geometry, and f(0) = wy(0), f(e;) = wi(1;), for i < 4.
Recall that the world-view tarnsformations are affine. Now, it is not hard to check

that f,,x = f (the details are left to the reader). This completes the proof.

870Here, “photon-lines”:= { £ € Eucl : ang?(f) = c}, where c is the (square of the) speed of light
in M. (Recall that M |= Flxbasax.)

871The latter is so by Flxbasax.

872Guch a k' exists by Ax(Triv).
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Conjecture 6.2.107 We strongly conjecture that Thm.6.2.106 above remains true
if we replace the assumption Ax(||) + Ax(Triv) with Ax(eqtime) + Ax(Triv;).
<

Thm.6.2.108 below is a version of Thm.6.2.106 above. The main message of
Thm.6.2.108 is that

any symmetry axiom <> Aut’ (®gq) = “World-view transformations of 90”.

Because of the “any” part (in the previous sentence) the assumptions of Thm.6.2.108
below are much stronger than those of Thm.6.2.106 above.

THEOREM 6.2.108 Assume
M = Flxbasax® + Ax(11) + Ax(eqtime) + Ax(Triv,)~ + Ax(v ).
Then (i)-(iv) below are equivalent.
(i) M= Ax(w)°.
(ii) (¥m,k € Obs) fup € Aut™ (Bgy).
(iii) Aut®(Gan) = {for : m,k € Obs }.

(iv) M = Ax, where Ax is any one of the following symmetry azioms Ax(syto),
Ax(symm), Ax(speedtime), AxA1l, AxA2, AxO1, AxO2, Ax(w)ﬂ.

On the proof: The proof is similar to the proof of Thm.6.2.106, and it is left to
the reader. Among others, the proof uses Thm.6.2.98 (p.910), Thm.6.2.32 (p.840).
|

Since Theorems 6.2.106 and 6.2.108 above are rather important (they character-
izes symmetry principles in terms of Aut™ (®gy)) below we show that their conditions
cannot be omitted. In other words the above connections between Aut" (Bgy), world-
view transformations, and symmetry principles are not automatically true in all of
our relativity theories.

THEOREM 6.2.109 Assume Basax + Ax(Triv) + Ax(11) + Ax(v/' ). Then

weak symmetry azioms (e.g. AxO1) #  Aut™ (Ggy) C {fjn\k : m,k € Obs }.

In more detail
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(i) M = AxO1 + AxAL1 + Ax(symmyg), but
(i) Aut™(Go) € {fop : m,k € Obs },
for some M = Basax + Ax(Triv) + Ax(11) + Ax(v ).

Outline of proof: Let M := M} be the Minkowski model over R defined in
Def.3.8.42 (p.331). The new model 90t will be constructed from 91 in such a way
that for each i € Z we add new observers whose meter rods are 2*-times shorter than
the meter-rods of the old observers and whose clocks are ticking 2'-times faster than
the clocks of the old observers. Formally,

m L (B™; Obs™, Ph™, Ib™), R, Eucl(R); €, W™) where
Obs™ ' Obs™ x 7,

P & pp? 7,

B™ & & opM PR and

for any (m, i) € Obs™, p € "R, and (b, j) € B™,
WW((m’ i)apa <b1.7>) <d:ef> va(ma 22 e b)

Now, we claim that 9 = Basax + Ax(Triv) + Ax(t™) + AxO1 + AxAl +
Ax(symmyg). Proving this claim is left to the reader. (Hint: the “median ob-
server” proof methods from §§ 3.8, 3.9 and [174] might help in proving this claim.)

Next, we turn to constructing a nice automorphism of &gy which is not induced
by any world-view transformation. Let m € Obs™ be fixed. Let f: Mn — Mn be
defined by f: e w,(3-w;l(e)). Let f: L —s P(Mn) be defined by f : £+ f[/].
Now, it is not hard to see that (f,Id [ R, f) is a nice automorphism of &gy, but
(f,Id IR, f) # fry  for any m, k. W

It would be interesting to know if one could replace AxO1 in Thm.6.2.109 above
with a stronger symmetry axiom on the expense of weakening the basic axioms
“Basax + ...”.5™

873Under the present conditions, Ax(w) = Aut” (Bgy) C {ﬁ.n; : m,k € Obs }. Even if we replace
Basax by Bax™.
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THEOREM 6.2.110 Assume Basax + Ax(11) + Ax(||) + Ax(v/ ). Then

weak symmetry avioms (e.g. Ax(syt)) #  Aut’(Gg) D {f:n\k : m,k € Obs }.

In more detail,
(i) M = Ax(syt) + AxDO2 + AxA2 + Ax(speedtime) + Ax(w)’,  but
(i) (3m,k € Obs)fmy ¢ Aut(Goy),

for some 9 = Basax + Ax(11) + Ax(]|) + Ax(V/ ).

Idea of proof: The idea of proof is illustrated in Fig.304. Assume for simplicity
that n = 2. We choose 9 = Basax + ... + Ax(syt) + ... such that there are
m, k € Obs as depicted in Fig.304. For this choice of m and k, &,, # &;. Hence,
by Prop.6.2.105, f,,x is not an automorphism of Ggy. B

This line is nobody’s m,k t
coordinate axis, hence
_ it is missing from &,,,.
; g m e — — — —
m, k
- egu = wm m m (6, #E, eageesssssss———— L,
)

0 ’ fon(—1y) = o /

“ This line is the Z-axis of m,
_1?: k hence it is a line of &.
world-view of m world-view of k

Figure 304: Idea of proof for Thm.6.2.110.

THEOREM 6.2.111 Assume Pax + Ax(Triv) + Ax(||) + Ax(v/ ). Then

strong symmetry azioms (e.g. Ax(w)) #  Aut” (Gg) D {f;z\k : m,k € Obs }.
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In more detail,
(i) M= Ax(w) + Ax(symm), but

(ii) (3m, k € Obs) fp & Aut™ (Goy),
for some M = Pax + Ax(Triv) + Ax(]|) + Ax(V ).

Outline of proof: Let M = “BaCo” 874 be such that Ph™ is a one element set.

Then &,, # &, for some m,k € Obs. For this choice of m,k for ¢ Aut”™ (Goy),
by Prop.6.2.105. But, 9 = Ax(w) +.... &

875

Notice that by the above three results®’® if we weaken our basic axioms then

symmetry does not imply

Aut® (&g) = “World-view transformations of 90",
moreover symmetry does not imply neither — Aut™(&g) C “W...”  nor
Aut™ (Bgn) D “W...7. The next theorem addresses the reverse direction:
symmetry &= automorphism properties.

THEOREM 6.2.112 Assume Basax + Ax(11) + Ax(Triv) + Ax(v/ ). Then

Aut?t (Bgp) = {fop : mk€ Obs} #  Ax(w)’.

Outline of proof: Let M := MY be the Minkowski model over R defined in
Def.3.8.42 (p.331). The new model 9 will be constructed from 91 by including
all the brothers of the observers in 9t with all the possible units of measurement.
Intuitively, 9 will be the “ant and elephant” version of the Minkowski model, where
cf. Remark 4.2.1 (p.458) for the “ant and elephant” version of relativity. Formally,
m < (B™; Obs™, Ph™, Ib™), R, Eucl(R); €, W™) where
Obs™ ¥ Obs™ x 'R,
Pr™ ¥ pp% x R,
™ ¥ pm L opMy PR, and
for any (m, \) € Obs™, p € "R, and (b, n) € B™,
def
W2 ((m, A),p, (b,m) <= W(m,\-p,b).

It is not hard to check that 99t has the desired properties. 1

874The notation 9 = “Th” was introduced on p.708.
875{ ¢. by Thm’s 6.2.109, 6.2.110, 6.2.111
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Problem 6.2.113 Tt would be interesting to know whether Ax(w)° can be replaced
with AxO1 in Thm.6.2.112 above.
<

Future research task 6.2.114 It would be interesting to see how the negative
statements 6.2.109, 6.2.110, 6.2.111, 6.2.112 can be improved by e.g. modifying the
assumptions on the background theory.

<

6.2.9 Some reducts of our relativistic geometries;
connections with the literature

The reader might feel that the geometric object gy defined in Definition 6.2.2 (pp.
787-798) seems to have too many components. However, we will concentrate on
discussing reducts of Bgy instead of the full structure.

A very nicely streamlined reduct is called the time-like-metric reduct which will
be introduced and discussed in §6.7.3 (p.1169). About that reduct we note that it
is not only mathematically elegant, but also is most useful e.g. can be generalized
smoothly such that it becomes a suitable framework for a possible formalization of
the basics of general relativity, cf. Busemann [56]. All the same, below we start
our discussion with a more “classical”, more “Euclidean” reduct (of the incidence
geometry kind).87

(1) Perhaps the most well known reduct of Ggy is
GTon := (Mn, L; €, Bw, L, eq)

which we call the Goldblatt-Tarski reduct of Ggyn. This is a geometry of the form

(Points, Lines; €, Bw, L, eq).

Tarski’s axiomatic approach to Euclidean geometries over ordered fields §, basically,
studies structures of this form:

(Points, Lines; €, Bw, L, eq).

876Qur excuse for starting with this reduct is that, stretching it a little bit, one could say that it
was known already by the ancient Greeks.
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More precisely, there, the first part (Points, Lines; €) is coded up into a one sorted
structure®”” (Points, collinear(x,y, z)). But as it will be discussed in §6.5 (p.991)
below, this causes no essential difference. Actually, Tarski omitted L because it is
definable from Bw and eq, and Goldblatt in [108] did not include eq probably
because it is definable from the rest of GTgy in the cases of Minkowskian and
Euclidean geometries. From now on we will ignore the fact that Tarski and Goldblatt
omitted | and eq, respectively.?"®

As we will recall, Hilbert, Tarski and their followers proved that for the Euclidean
case the language of (Points, Lines; €, Bw, L, eq) is expressive enough in the sense
that all familiar concepts of classical geometry like e.g. circles can be defined in the
first-order language of these structures (Points, ..., eq).8"

In order to continue Tarski’s approach in the direction of geometries of special
relativity, Goldblatt in [108] puts the emphasis on reducts

®; = (Points, Lines; €, Bw, L),
&, = (Points, Lines; €, 1), and
®; = (Points, Lines; €).

Goldblatt in [108] calls B3 an incidence geometry on p.18 or an incidence structure.
(For more on incidence geometries cf. pp.1175-1176.) If &3 satisfies certain axioms
on p.19 of [108] then it is called an affine plane (which is the two-dimensional version
of an affine geometry). If it satisfies other axioms (on p.74 of [108]) then it is called
a projective plane. Further, Goldblatt in [108] calls &, a metric plane if it satisfies
certain axioms collected on p.36. Finally, [108] calls &; an ordered metric plane
if some further axioms (pp. 70-71) are satisfied by it (without L [108] calls it an

877To be precise, Tarski uses (Points; Bw) to “code” (Points; collinear). Hence under very mild
assumptions the geometries of form (Points; Bw) are definitionally equivalent with the geometries
of form (Points; collinear, Bw). The latter version is used extensively in the literature.

878For some of our choices of M, eq is not definable from the rest of GTyy and L is not definable
from the rest of GTgy either. Cf. §6.7.

879 A difference between Hilbert’s and Tarski’s approach to axiomatizing geometry is that Tarski
insisted on using purely first-order logic, and to consider all the models (in the model theoretic
sense) of his first-order axioms. (Hilbert used a second-order axiom besides first-order ones.) The
approach to studying geometries over arbitrary Euclidean fields was started well before Hilbert’s
and Tarski’s work. Referring to so many people would render our present discussion a little
cumbersome. Therefore, instead of writing “Hilbert’s, Tarski’s, their precursor’s and their follower’s
work” we will simply write Tarski’s work or something similar. This is only for simplicity and by
this we do not want to belittle the importance of Hilbert’s, their precursor’s and their follower’s
work. An incomplete list of references includes e.g. [62, 108, 131, 133, 134, 227, 237, 245, 246,
247, 251, 254]. We refer to Appendix (“Why first-order logic?”) for more information, as well as
for an explanation of why it is more useful to axiomatize something in first-order logic than in
second-order logic.
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ordered _affine plane).®®® In passing we note, that Goldblatt [108] shows that if a
2-dimesional geometry &; satisfies certain axioms then it is either (i) Euclidean, or
(ii) Minkowskian or (iii) a rather simple kind called Robb plane.

The reason why we recalled all this is that there seems to be a possibility for a
unified axiomatic study of geometries coming from relativity theory (like our GTgy)
and Euclidean geometry. Indeed Goldblatt presents such a unified treatment for
geometries (Points, Lines; €, Bw, 1).

It would be interesting to study the connections between our geometries GTgy
(9 € models of some of our distinguished theories like Bax™) and what Gold-
blatt [108] writes about the kinds of geometries recalled above. Actually, on this
connection item (2) below taken together with Figures 282, 283 (pp. 863-864) gives
some information; and further information will be given in §6.6.11 (p.1129).

(2) Let us look, briefly, at further reducts of Ggpy.

GTy, = (GTen; L', LPY),
GT2, := G = (GTay; <),

GTy; := (eq-free reduct (Mn,L; € Bw, L) of GTey),
GTy = (L-free reduct (Mn, L; €, Bw, eq) of GTay),
GTy = Ggy = (Bw-free reduct (Mn, L; €, 1) of GTgy).

If we assume Basax + Ax(w)™ + Ax(11) and n > 2 then the structures
Bon, GTon, GTay (for —2 < 4 < 2) are well known and well investigated. Under these
axioms they become parts or variants of Minkowskian geometries (cf. Thm.6.2.59
on p.861) in which form their properties have been thoroughly studied cf. Gold-
blatt [108], Kostrikin-Manin [155], and other works on Minkowskian geometries.
We can say more than this, namely for n > 2, the classes

I{GToy : M |= Basax + Ax(Triv,)~ + Ax(v") },
I{GTiy, : M = Basax + Ax(Triv;)~ + Ax(v ) }, for —2<i<1
I{GT3; : M = Basax + Ax(Triv,)~ + Ax(V ) + Ax(11) }
coincide with the classes of isomorphic copies of the corresponding reducts of

the Minkowskian geometries (cf. Thm.6.2.65, p.867). See Figures 282, 283. Fur-
ther, the classes

880Goldblatt [108], investigated the more than two-dimensional versions of these geometries, too.
Under the name fourfolds Goldblatt in [108] also investigates the 4-dimensional case. Since fourfolds
have more sorts than “Points” and “Lines” we will return to this connection in §6.5 (after having
studied how to create and eliminate new sorts in the framework of definitional equivalence [§6.3]).
For brevity, we do not recall these in more detail.
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I{GTiy : M= Bax® + Ax(Triv;)~ + Ax(V ) + Ax6 }, fori € {0, -2}

coincide with the classes of isomorphic copies of the corresponding reducts of the
Minkowskian geometries (cf. Thm.6.2.64). Cf. also Theorems 6.2.71, 6.2.73, 6.2.74,
6.2.75, pp- 877-879. We obtain new structures if we consider e.g.

I{GToy : M=Bax} or I{GTy : M = Reich(Bax) },
I{GTiy : M=Bax} or I{GTiy : M= Reich(Bax) }, for -2 <i < 2,
I{&y : ME=Bax} or I{By : M= Reich(Bax)}.

Some of these structures are not isomorphic to any reduct of Minkowskian geome-
tries. The mathematical properties of these geometries remain to be investigated.
(There are some analogies with Tarski’s fist-order axiomatization of geometry over
ordered fields which could be utilized here.)

In the spirit of the above discussion, we could consider the Goldblatt-Tarski
reduct GTgy = (Mn, L; €, Bw, L, eq) as our core geometry. (As we mentioned all
concepts needed for geometrical constructions [by straight-edge and compass| are
expressible in GTyy.) However, we do not consider GTyy to be our core geometry
because from some other points of view other reducts will turn out to be important.
Cf. e.g. §6.7.3 devoted to a rather nicely streamlined version of gy, called time-like-
metric reduct which can be nicely connected to general relativity as is shown e.g. in
Busemann [56].

For better expressibility of some relativistic ideas, we include into this geometry
L” and L™ obtaining

GTyy := (Mn, L; LT, L™ €, Bw, 1, eq).

We consider GT}m as a kind of core of our geometry &gy, because in this core we can
both talk about the usual geometric concepts and also we can talk about time-like
lines LT, photon-like lines L™ and lines in general, too.%!

If we assume some conditions on 91, then instead of GT&%}I it is enough to keep
GTyy because of the following.

THEOREM 6.2.115 Assume n > 2. Assume

M = (Bax® + Ax(Triv,)~ + Ax(v/ ) + Ax(diswind)). Then L, L™ L° Bw are
definable in first-order logic over GTyr = Gon = (Mn, L; €, 1), and therefore over
GTgn, too.

881 We omitted L° from the definition of GT4y; because under very mild conditions L? is definable
from the rest.
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Idea of proof: Let £ € L. Then ¢ € LF* iff ¢ 1 ¢. Further ¢ € LT iff

(V 2-dimensional plane®®? P)
[¢ C P there is a photon line in P intersecting ¢ in a single point].

Of course, one has to prove that these definitions work. The details are available
from Judit Madarasz. Definability of Bw follows by Thm.6.7.1 (p.1137). &

Cf. Corollary 6.7.41 on p.1168 in connection with the above theorem.
We will discuss the remaining interdefinability connections between the basic

relations LT, L% ... Bw, L, eq, g of our language for geometries in the section “On
the choice of our geometrical vocabulary (or language)” (pp. 1134-1169).

882(Cf. footnote 798 on p.857 for the notion of a 2-dimensional plane.
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6.3 Definability in many-sorted logic, defining new sorts

Historical remark:

The theory of definability as understood in the present work is a branch of
mathematical logic (and its model theory) which goes back to Tarski’s pioneering
work [249]. Beginning with the just quoted paper of 1934 (and its precursor from
1931), Tarski did much to help the theory of definability to become a fully devel-
oped branch of mathematical logic which is worth of studying in its own right. Of
the many works illustrating Tarski’s concern for the theory of definability we men-
tion only [129, Partl], Tarski-Givant [253], Tarski-Mostowski-Robinson [255] and
Tarski [249, 250], cf. also Tarski [248] and [252, Volume 1, pp. 517-548] (which first
appeared in 1931 and which already addresses the theory of definability).

In passing we note that the creation of the theory of cylindric algebras can be
viewed as a by-product of Tarski’s interest in developing and publicizing the theory
of definitions (a cylindric algebra over a model can be viewed as the collection of all
relations definable in that model).

Below, we try to summarize the theory of definability (allowing definitions of new
sorts) in a style tailored for the needs of the present work and in a spirit consistent
with Tarski’s original ideas and views on the subject. Here the emphasis will be on
defining new sorts (which is usually not addressed in classical logic books such as
e.g. Chang-Keisler [59]).

The subject matter of the present sub-section is relevant to the definability issues
discussed in the literature of relativity cf. e.g. Friedman [90, pp. 62-63, 65, 378
(index)]. In Reichenbach’s book “Axiomatization of the Theory of Relativity” [223]
already on the first page of the Introduction (p.3) he explains the difference between
explicit and implicit definitions and emphasizes their importance. (He also traces
this distinction (underlying definability theory) to Hilbert’s works.) In passing we
note that on p.5, Reichenbach [223] also explains in considerable detail why it is
desirable to start out with observational concepts first when building up our theory
(like we do in Chapters 1,2) and define theoretical concepts later over observational
ones using definability theory (as we do in the present chapter). For the time being
we do not discuss connections between definability theory and definability issues in
relativity theory explicitly, but we plan to do so in a later work.%83

883But we note that Reichenbach [223] makes it clear that he considers definability theory very
important for relativity, and he also explains rather convincingly why he does so. This is also clear
from the relativity works Friedman [90], or Griinbaum [115],[116], to mention only a few. Cf. also
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For the physical importance of definability cf. the relevant parts of the introduc-
tion of this chapter. Further, we note the following. If in our language we allow
using certain concepts and some other concept is definable from these, then this
other concept is available in our language even if we do not include it (explicitly).
So if we allow only such concepts which are definable from observational ones, then
the effect will be the same as if we allowed only observational concepts. l.e. the
physical principle of Occam’s razor has been respected.

* * *

Let M = (Uy,...,U;; Ry,...,R) be a many-sorted model with universes or

sorts Uy, ..., U;, and relations Ry,..., R,  (j,] € w).%* Since functions are special
relations we do not indicate them explicitly in the present discussion. We use the
semicolon “;” to separate the sorts (or universes) from the relations of 9.

When discussing many-sorted models, we always assume that they have
finitely many sorts only.®®® The “big universe” Uv(9M) of the model 9 is the
union of its universes (or sorts). Formally

def

Uy & Uv(9M) : U {U; : U; is a universe of 2t } .38

In passing we note that although the sorts Uy, ...,U; of 9 need not be disjoint,
the following holds. To every many-sorted model 9t there is an isomorphic copy I
of M such that the sorts Up,...,U; of M’ are mutually disjoint (i.e. UyN U] = 0

Stein [240].

884The assumption that [ is finite is irrelevant here in the sense that we will never make use of
it (except when we state this explicitly). What we write in this section makes perfect sense if the
reader replaces [ with an arbitrary ordinal. As a contrast, we do use the assumption that j € w.

885Tn some minor items there may be exceptions from this rule but then this will be clearly
indicated.

886 Although, in general, Uv is not a universe of 9, we can pretend that it is a universe because
there are only finitely many sorts. E.g. if we want to simulate the formula (3z € Uv)¢(z) then
we write [(3z € Up)¥(z) V (Fz € Up)yY(z) V ...V (3z € U;)¢(z)]. Then although the first
formula (3z € Uv) ¢(x) does not belong to the language of M, the second formula “[ (Fz € Up)...]”
does belong to this language (assuming (3z € U;) ¢(x) already belongs to the language) and the
meaning of the second formula is the same as the intuitive meaning of the first one. If (3z € U;) ¥ (x)
did still not belong to our many-sorted language then there is some extra routine work to do in
translating this formula into our many-sorted language. This translation is explained in detail in
the logic books which reduce many-sorted logic to one-sorted logic (cf. [43, 82, 197]). These books
were quoted in §2 where we first encountered many-sorted logic. We also note that the quoted
translation is straightforward. For more on why and how we can pretend that Uv () is a universe
of M we refer to the just quoted logic books.
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etc.). Therefore we are permitted to pretend that the sorts (i.e. universes) of 9t are
disjoint from each other whenever we would need this.

By a reduct of a many-sorted model 9% we understand a model 9t~ obtained
from 9% by omitting some of the sorts and/or some of the relations of 9. IL.e. if

M = <U0,...,Uj; Rl,...,Rl)
then the reduct 9~ may be of the form
<U0, ey Uj—l; Rl, ey Rl—l)

(assuming Ry, ..., R;—; do not involve the sort Uj).

A model M* is called an expansion of M iff M is a reduct of M*. Le. an
expansion 9" is obtained by adding new sorts and/or new relations to 9%. We will
use the following abbreviation for denoting expansions:

m—l— — <9ﬁ, Unew; Rnew>

where U™ is the new sort and R™" = (RP",...,R*") is the sequence of
new relations. Of course there may be more new sorts too, then we write

M = (I, U™, ..., UI™; R™").

However, we will concentrate on the case p = 1 (for didactical reasons). Informally
the general pattern is:

“New model” = (“Old model”, “New sorts”; “New relations/functions”).

We will ask ourselves when 9T will be (first-order logic) definable over®™ 9. By
definable we will always (throughout this work) mean first-order logic definable.
If (9, U""; R"") is definable over 9 then we will say that the new sort Ume"
together with R™" are definable in 9. When defining a new sort U™" (in an “old”
model 9M) we need the new relations R™" too because it is R**" which will specify
the connections between the new sort U"*" and the old sorts of 9.

Although we will start out with discussing definability over a single model 9, the
really important part will be when we generalize this to definability (of an expanded
class KT) over a class K of models (which is first-order axiomatizable).

We will discuss two kinds of definability in many-sorted logic: implicit definabil-
ity in §6.3.1 and explicit definability in §6.3.2.8%8

887 “Definable over” is the same as “definable in”.

888Tn passing, we note that in the special case of the most traditional one-sorted logic when only
relations are defined (i.e. defining new sorts is not considered) the distinction between implicit and
explicit definability is well investigated and is well understood cf. e.g. Chang-Keisler [59, p.90] or
Hodges [136, pp.301-302].

930



Throughout model theory there is a distinction between symbols like Obs and
objects like Obs™ denoted by these symbols in a model 9. This distinction between
symbols and objects they denote is even more important in the theory of definitions
than in other parts of logic. Therefore, in the next two items we clarify notions and
notation connected to this distinction.

CONVENTION 6.3.1 By the vocabulary of a model 9 we understand the system
of sort-symbols, relation symbols and function symbols interpreted by 9%. Since
function symbols are special relation symbols, we will restrict our attention to sort
symbols and relation symbols. Assume e.g. that 91 is of the form

m=(U;",....U" R, ..., R,

and assume that Uj; is the sort symbol “denoting” Uz?m and R; is the relation symbol
“denoting” RP. Then the vocabulary of 9 is

Voc(OM) & ({Us, ..., U} {Ry, ..., Ri}).

Throughout we assume that a relation symbol R’ contains the extra information
which we call the rank of R'. This can be implemented by postulating that R’ is an
ordered pair R’ = (R}, R]) where Rj is the symbol we write on paper while R} is
the rank of R'. E.g. in the case of the usual model 9 = (w, <, +) the rank of “<” is
2 while that of “+” is 3. If there is more than one sort, then the rank of a relation
is a sequence of sort symbols. So, a vocabulary is an ordered pair

Voc = (“Sort symbols”, “Relation symbols”)

where “Sort symbols” and “Relation symbols” are two sets as discussed above sub-
ject to the condition that the sorts occurring in the ranks of the relation symbols
all occur in the set of sort symbols. Now, a model 9 of vocabulary Voc can be
regarded as a pair I = (M, M) of functions such that

Mo : “Sort symbols” — “Universes of 9N

and
M, : “Relation symbols” — “Relations of M7,

with the restriction that 91, is “rank-preserving” in a natural sense.
E.g if M= (U, ..., U}”‘;Rilm, ..., R™), then

My : {U; 14 < j} — {UP i < j}
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M {R:0<i<I} —{R™:0<i<I}.

Le. to each sort symbol in Voc(9M), 9 associates a universe (i.e. a set) and to each
relation symbol R in Voc (), 9 associates a relation (of rank R} as indicated way
above).

We call two models 9 and N similar if they have the same vocabulary, i.e. if
Voc (M) = Voc(MN).

Let Voc', Voc be two vocabularies. We say that Voc' is a sub-vocabulary of Voc
if the natural conditions Vocy C Vocy and Voc] C Voc; hold. Assume Voc' is a
sub-vocabulary of Voc(9M) for a model 9. Then the reduct M | Voc' of M to
the sub-vocabulary Voc' is defined as

M | Voc' & (9, | Voc), M, | Vo).
<

Remark 6.3.2 (On the intuitive content of Convention 6.3.1 above) On a
very intuitive informal level, one can think of a model 9 as a function associating
objects to symbols. E.g. 9 associates U to the symbol U; and R to R;. It is then
a matter of notational convention that we write U™ for the value 9(U;) and R for
M(R;). Then the domain of the function 9 is the collection of those symbols which
9 can interpret. Hence, the domain of 9N is the same thing as its vocabulary.

If the best way (from the intuitive point of view) of thinking about a model is
regarding it as a function, then why did we formalize the notion of a model as a pair
of functions (instead of a single function)? The answer is that formally it is easier to
handle models as pairs of functions, but intuitively we think of models as functions,
we think of vocabularies as domains of these functions and we consider two models
similar if they have the same domain when they are regarded as functions.®

<

CONVENTION 6.3.3 Throughout, by a class K of models we understand a class
of similar models, i.e. we always assume (VO, 0t € K) Voc(9M) = Voc(N). For any
class K of similar models, Voc(K) = VocK denotes the vocabulary of K, that is, the
vocabulary of an arbitrary element of K.

A reduct K~ of K is obtained from K by omitting a part of the vocabulary of K,
i.e. K~ is a reduct of K iff Voc(K™) C Voc(K) and

K-={9M| Voc(K) : MeK}.

889We do not claim that it is always the case that the best way of thinking about models is
regarding them as functions. What we claim is that in many situations, e.g. in definability theory,
this is a rather good way. In other situations it might be better to visualize a model as a set of
objects equipped with some relations and functions.
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Expansion is the opposite of reduct. K™ is an expansion of the class K iff K is a
reduct of KT, i.e. K* is an expansion of K iff Voc(K*) 2 Voc(K) and

K= {9 Voc(K) : MeK"}.

Note that forming expansions or reducts of a class K is somehow uniform over the
members of K. E.g. we forget the same symbols (relation symbols or sort symbols)
from all models 9 € K, when taking a reduct of K.

If Voc is a vocabulary with Voc C Voc(K), then we use the following abbrevia-
tion:

K [ Voc & {3 | Voc : M € K}.

Examples: FM™ = {F™ : 91 € FM } is a reduct of our class FM of frame models.
Let L={F : Fisa field}. Then {(F; +) : (F;+,-,0,1) € L} is a reduct of L.
Intuitively, we think of Voc(K) as a set of symbols where each symbol contains
information about its nature, i.e. about whether it is a sort symbol or a relation
symbol of a certain rank. Therefore, we will write VocN Voc' for (VocyN Vocy, Voci N
Voc'), similarly for Voc U Voc' , for Voc C Voc' ete.
<

Before getting started, we emphasize that in order to define something over a
model 9 or over a class K of models, first of all we need new symbols R}°", U/*"
(with 4 in some index set) not occurring in the language of 9t or of K. (The new
symbols may be relation symbols like R?*" or sort symbols U*" or both.) What we
will define then (using definability theory) will be the meanings of the new symbols
in M+ or K*. Most of the time we will not talk about the new symbols like R'"
because we will identify them with the new relations like (R?*%)™" which they denote
in the expansion 9™ of the model 9. Our reason for identifying the “symbol” with
the “object” it denotes is to simplify the discussion. However, occasionally it will
be useful to remember that an expansion MM+ = (M, R) of a model M involves two
new things not available in 9T, namely: a relation symbol and a relation denoted by
this symbol (in 9MT).
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6.3.1 Implicit definability in many-sorted (first-order) logic

Let 9 be a many-sorted model. Assume, I+ = (9N, U*"; R"") is an expansion
of M. We say that I is definable implicitly up to isomorphism over 9 iff

for any model )
(M, U"; R') = Th(M™)

(expanding 9M) there is an isomorphism

* _
&) h: Mt ——= (M, U'; R')

such that h is the identity function on the sorts of 9 (i.e. for each
sort U; of 9M we have h | U; =1d [ Uj;).

I is said to be definable implicitly without taking reducts over I iff in addi-
tion to the above the isomorphism A mentioned above is unique.

We say that U, R™" are definable implicitly over 90 iff (9M, UreW; Rue") is
definable implicitly without taking reducts over 9. Informally we might say in
such situations that the new sort U™V is definable implicitly in 9 (but then R™e™
should be understood from the context, otherwise the definability claim is sort of
under-specified).

In the above notion of definability, the set of formulas defining U™, R™" im-
plicitly over M is Th(IMT). Hence, Th(IM™) is called an implicit definition of U™,
Rme" over 9 if (%) above holds and the isomorphism A is unique. Further, for
any set A of formulas in the language of 9™, A is called an implicit definition of
Unew  RmeW over O iff (%) above holds with A in place of Th(9t*) in such a way
that A is unique.?%

Remark 6.3.4 The reader might feel that the above notion of (implicit) definability
without taking reducts (of 9t") is not strong enough and he might want to replace h
with the identity function (requiring U™ = U’, R"" = R'). However, we claim that
the above notion is “best possible” because (i) it is reasonable to assume that the
first-order definition of 9M* (over M) is included in Th(9MT) and (ii) any isomorphic
copy M = (M, U’; R') of M+ will automatically validate Th(9*) hence, in first-
order logic we cannot define the new sort U, R™" more closely than up to (a

890The set A of formulas which we call an implicit definition is called a “rigidly relatively cate-
gorical” theory in Hodges [136, p.645]. If A is an implicit definition up to isomorphism only, then
it is called a “relatively categorical” theory on p.638 of [136] (§12.5 therein).
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unique) isomorphism.®%!

<

IME = (I, U; R"V) is said to be definable implicitly with parameters over M
iff there are s € w and p € *Uv(IM) such that the expansion (M, p) is definable
implicitly without taking reducts over the expansion (90, p).8%2

* * *

Let us turn to definability over classes of models. Let K be a class of models with
U#e™, R"" in the language of K. For 9 € K let 9~ be the reduct of 9 obtained
by omitting (forgetting) U™, R™". Let

K:={m :MeK}.

We ask ourselves when K is definable over K~ or equivalently (but informally)
when U"", R"" are definable over K~. We say that the class K of models is
definable implicitly without taking reducts over K~ iff there is a set A C Th(K) of
formulas such that condition (xx) below holds.

For every 9,91 € Mod(A) similar to members of K and such that
(xx) O~ =N € K7, there is a unique isomorphism A : I — N
which is the identity on the universes of 91~

If the isomorphism A is not necessarily unique then we say that K is
definable implicitly up to isomorphism over K~. Informally, we say that the
new sort U™ and R™" are definable implicitly over K~ iff K as understood above is
definable implicitly without taking reducts over K~. When speaking about definabil-
ity of U"", R"" over K—, it should be clear from context how K is obtained from the
data K~ and U™, R"". If (»x) holds, then A in (%) is called an implicit definition
of K over K—.

We leave it to the reader to generalize the above definitions to the case when we
have arbitrary sequences U™ and R"" of new sorts and new relations. However,
herein we restrict our attention to the case when there are finitely many new symbols

891 A possible way out of this would be if we required R™®" to contain membership relations “€”
and projection functions pj; (and then add some restrictions postulating e.g. that € and pj; are
the “real” set theoretic ones etc., cf. p.947 for the definition of the pj,’s). We will not do this
because we feel that it would lead to too many complications without yielding enough benefits.

892We use “definable implicitly” and “implicitly definable” as synonyms. Le. we are flexible about
word order.
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(i.e. both U and R™" are finite sequences of sorts and relations respectively). The
classical notion of definability of new relations (without new sorts) is obtained as
a special case of our general notion by choosing U™" = (), i.e. U"" is the empty
sequence.

Let K and L be two classes of models, i.e. L is not necessarily a reduct of K. We
say that K is definable implicitly over L  iff some expansion K* of K is definable
implicitly without taking reducts over L. (In this case, L will be a reduct of KT, of
course.)®® This means that statements (i) and (ii) below hold for some expansion
K* of K:

(i) L is a reduct of K*,

(ii) K" is definable implicitly over L without taking reducts. (Since here L is
a reduct of KT, our earlier definition of implicit definability without taking
reducts on p.935 can be applied.)

We note that here we have to take seriously that our languages are finite, i.e. K"
has only finitely many new symbols that do not occur in L.3* In this case we say
that A is an implicit definition of K over L if A is an implicit definition of K™ over
L. Thus an implicit definition of K over L may contain symbols not occurring in K.

We will apply the same convention for single models too, i.e. D is
definable implicitly over M iff this holds for {91} and {9M}. We will sometime ab-
breviate “implicitly definable without taking reducts” by “nr-implicitly definable”,
where “nr” stands for “taking no reducts”.

Example 6.3.5 The new sort "F together with the projection functions
pj; :"F — F (i < n), cf. p.947, are definable nr-implicitly over the class FM of our
frame models.

<

Note that (xx) above is a straightforward generalization of (x) on p.934. There-
fore MM™* is definable nr-implicitly over 901 iff the class {91"} is definable nr-implicitly
over the class {9}.

8931t would be more careful of us if we would call this new implicit definability (which permits tak-
ing reducts) weak implicit definability. This is so because when taking reducts then the uniqueness
condition, cf. p.934, on isomorphisms may get lost.

894Cf. Examples 6.3.9 (2).
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In situations like the one involving statement (xx) above, we also say that
Usev R are uniformly definable (implicitly) over K=.8% The set A of formu-
las is considered as a uniform (implicit) definition of U™, R™" over K—. Hence in
the example above we can also say that "F etc. are uniformly definable over FM.
We have not yet discussed non-uniform definability which is also called “local” or
“one-by-one” definability: We will discuss this notion below Examples 6.3.9, on
p-943.

Although we began this sub-section with discussing definability over a single
model 91, the main emphasis in this work will be on definability over a class K of
models such that K = Mod(Th(K)) i.e. such that K is axiomatizable in first-order
logic.

We note that implicit definability without taking reducts of K over K~ is strictly
stronger than implicit definability up to isomorphism. This remains so even if we
assume that K and K™ are first-order axiomatizable classes of models. We leave the
construction of a simple counterexample to the reader, but cf. Example 6.3.9(8) way
below. For the connections between the various notions of definability we refer the
reader to Figure 305 on p.979.

Remark 6.3.6 The following are intended to provide a kind of “intuitive” charac-
terization of implicit definability without taking reducts of a class K of models over
its reduct K~ (as was defined above).

(1) Assume K~ is a reduct of the class K (i.e. K~ is of the form {9t~ : 9 € K}).

Then K is definable implicitly over K~ without taking reducts iff (i)—(ii) below
hold.

(i) (VO € K)9 is definable nr-implicitly over its reduct 9T.

(ii) There is a single set A of formulas such that for every 9 € K, A is an
implicit definition of 9 over 991~. In other words, not only each 901 is
nr-implicitly definable over 9t~, but this defining can be done uniformly
for the whole of K.

(2) Further, assume K is implicitly definable without taking reducts over its reduct
K~. Then the function

rd & {(O0, M) : M € K}

895We will explain soon, beginning with item 11 of Examples 6.3.9 (p.940), what aspect of the
above situation we are referring to with the adjective “uniform” here.
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is a bijection up to isomorphism3?

rd: K —> K™

such that each 9 € K is definable nr-implicitly over rd(9t) and these defini-
tions coincide for all choices of 9.

<

Remark 6.3.7 (properties of “general” definability of classes) Assume K is
definable implicitly over L. Then (1)-(2) below hold.

(1) K and L agree on their common vocabulary, i.e.

K| (VocKN VocL) =L | (VocK N Vocl).

(2) There is a surjective function®” f : L —~ K such that for all 9t € L, f(9MN)
is implicitly definable over 9%%; moreover the definition of f(9M) over 9N is
the same (set of formulas) for all choices of 9.

<
Now we turn to giving examples.

Examples 6.3.8 (Traditional, one-sorted examples)

1. Let PA be the class of models of Peano’s Arithmetic, cf. any logic book, e.g.
Monk [197] or Chang-Keisler [59] for PA. The operation symbols of PA are
+,+,0,1. Consider the extra unary operation symbol “!” intended to denote
the factorial. Let A, be the set of the following two formulas

10)=1
Ve[l(z + 1) = (z + 1)-1(z)].

Le. Ay = { 1(0) =1, Vz[l(z + 1) = (z + 1):(z)] }. We claim that A, is
a (correct) implicit definition of “!” over PA. (The proof is not easy but is
available in almost any logic book.) The point in the above example is that
PA is an axiomatizable class and that A; works over each member of PA. If
we want an implicit definition over a single model instead of an axiomatizable
class, that is easy:

8% e. rd(MM) = rd(M) = M = N. Roughly, something holds “up to isomorphism” iff it holds

modulo identifying some of the isomorphic models.

897 f is a function only up to isomorphism, cf. footnote 941 on p.971 for more detail.
898 e. there is an implicit definitional expansion MM+ of MM with f(IM) a reduct of M.
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2. Consider the model (w,0,suc, +).5% Let A, be the set of the following for-

mulas:
rT+y=y+=zx
O+z=2x

x + suc(y) = suc(z + y).

Now, A, defines + implicitly over the model (w, 0,suc). However, it is im-
portant to note that over the axiomatizable hull Mod(Th({w, 0,suc))) of this
model, A, is not an implicit definition®"’, and moreover addition is not nr-
implicitly definable in Mod(Th({w, 0, suc})).

This shows that nr-implicit definability over a single model is much weaker
than nr-implicit definability over an axiomatizable class of models. (Since pri-
marily we are interested in theories, and theories correspond to axiomatizable
classes, we are more interested in definability over axiomatizable classes than
over single models.)

3. Let £ = {2-n : n € w} be the set of even numbers. Then E as a unary
relation is definable nr-implicitly over the model (w, suc).

4. Let BAg be the class of Boolean algebras with “N”, “U”, 0,1 as basic opera-
tions. Now, {x N —z =0, U —z = 1} is an implicit definition of complemen-
tation over BAg. This implicit definition, however, can easily be rearranged
into the form of an explicit definition as follows®"!:

—(z)=y & [zNy=0AzUy=1].

5. We recommend that the reader experiment with (i) defining the Boolean par-
tial ordering “<” over BAy, (ii) defining “U” over the basic operations “N, —"
(and the same with the roles of “U” and “N” interchanged).

6. The model (w <) is implicitly definable over (w,0,suc), but it is not nr-
implicitly definable because (w,<) is not an expansion of (w,0,suc). If
Mt = (M; R™™), i.e. if MT does not contain new sorts, then ' is nr-
implicitly definable over 90t iff 9" is implicitly definable over 90t. This is not
necessarily true when 91 contains new sorts, too.

<

899Where suc : w — w is the usual successor function on w, i.e. suc(n) =n + 1 for all n € w.

900j e. it does not satisfy (xx) way above

901We have not discussed explicit definitions yet, but they will be discussed soon (beginning with
§6.3.2 on p.944).
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Examples 6.3.9 (More advanced, many-sorted examples)

1. Let § be an ordered field. Then the two-sorted model (F,P(F); €) is not
definable implicitly up to isomorphism over §. Hence it is not nr-implicitly
definable, either.

Proof-idea: Assume |F| = w. Then |P(F)| > w. But by the downward
Léwenheim-Skolem theorem (§, P(F); €) has an elementary submodel with
each sort countable.

2. Let R be any countable sequence of relations defined on the sorts F, P(F) in
example 1 above. Then )
(8, P(F); €,R)
is not definable implicitly up to isomorphism over §.

Hint: The reason remains the same as in example 1.

This means that §+ & (§,P(F); €) is not implicitly definable over §, either.

However, there is an expansion §t+ of §© with uncountably many new rela-
tions such that 7 is nr-implicitly definable over §. Indeed, let us take a new

constant ¢, for each element z of F U P(F). Then ™ o (F,P(F), €,{cg :
z € FUP(F))) is an nr-implicitly definable expansion of §. This shows the
importance of allowing only finitely many relation symbols in our languages
when defining implicit definability, cf. p.936.

3. Let F be a finite field. Then (F,P(F); €) is definable nr-implicitly over F.
The same applies for any finite structure in place of F.

Notation: For any set H and cardinal k we let P,(H) be the collection of those
subsets of H whose cardinality is smaller than . In particular, P, (H) denotes
the set of finite subsets of H.

4. Let 2 be a(n infinite) structure with universe A. Then (2, P;(A); €) is nr-
implicitly definable over 2 for any 7 € w.

5. Let A = (w, <) be the set of natural numbers with the usual ordering. Then
the expansion (A, P, (w); €) is nr-implicitly definable over 2.

Hint: An implicit definition is the following set of formulas:

{Vo1...2, €Ewy € Py(w)y ={z1,...,2,} : n € w}U
{MVyeP,(w)dr € wVz cw(z ey — 2z <x)}U
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10.

11.

{MVy,z € Py(w)(ly=2zVz cw(x €y x€2))}

(In the above, y = {z1,...,z,} abbreviates any formula with the intended
meaning. )

As a contrast, we include the following example.

Consider the expansion {w, P, (w); €) of the “plain” structure {w). Then this
structure (i.e. (w, P, (w); €)) is not implicitly definable up to isomorphism over
(w)-

Hint: Take any countable elementary submodel 8 of an ultrapower of

(w, Py(w); €) which contains a “nonstandard” element in P,(w). Then the
“w-part” of B is isomorphic to (w), but B is not isomorphic to (w, P,(w); €).

(w, Py(w);suc, €) isimplicitly definable over (w, suc). We do not know whether
it is nr-implicitly definable over {(w, suc) or not. (We conjecture that the answer
is in the negative.)

A, U™ is not implicitly definable up to isomorphism over 2, for any struc-

ture 2 and infinite set U™®". Here U™ is a new sort, and there are no new
relations. If 1 < |U""| < w, then U™" is implicitly definable and implic-
itly definable up to isomorphism, but not implicitly definable without taking
reducts. If [U™"| < 1, then U"*" is implicitly definable without taking reducts.

. Let 2 be any structure and let 8 be any finite structure. Then (2, B) as a

two-sorted structure is impicitly definable over 2.

Let A be a fixed structure. Consider
K={& U™) : U™ <w}.

Then K is not nr-implicitly definable over {2} (not even up to isomorphism).

Understanding the examples below is not a prerequisite for understanding the
rest of the present work. (They concern the distinction between uniform and
non-uniform definability.)

For k € w, let 4, be the usual k+1 element linear ordering 4, = ({0, ...,k}, <)
where “<” is the usual ordering of the natural numbers. Recall from set theory
that N, is the £’th infinite cardinal regarded as a special ordinal. E.g. ¥y = w.
Let

K:= {(Nk,ilk) ke w}
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where (U"V R2e") = {[,. I.e. K~ is obtained by forgetting the U;-part. Then
K is not uniformly nr-implicitly definable over K~ although for each 9 € K,

we have that 90 is nr-implicitly definable over 917, i.e. i is nr-implicitly
definable over (X).

12. The following is a generalization of item 11 above. Let g, ..., A, ... (k € w)
be any w-sequence of elementarily equivalent one-sorted models.?? Let {, be
as in item 11 above.

K= { (A, U) : k€w}.

Then K is not uniformly nr-implicitly definable over K= = {2y, : k € w } while
every I € K is nr-implicitly definable over 9N~ .

Hint: The key idea can be formulated with using 2A;, 25 only. The rest of the
2;’s serve only as decoration. So, one starts with 2; =, 2y and®® |U; | # |Us|
are finite. (Where Uj is the universe of 4;, similarly for A;.) It is important
to note that there are no inter-sort relations permitted here i.e. sort A; is
isolated from sort U;. Next, one uses the following property of many-sorted
logic. Assume 2, B are two structures of disjoint languages. Consider the new
many-sorted structure (A, B). We claim that Th({2(,B)) = Th() U Th(B).
The reason for this is the fact that an atomic formula xRy belongs to a many-
sorted language only if z and y are of the same sort. Hence e.g. (3z € Up)(Ty €
Up) x # y is not a (many-sorted) formula.

The present example does not work for “implicitly definable” in place of “im-
plicitly definable without taking reducts”.

Someone might think that the reason why the above counterexample works is
that all elements of K~ are elementarily equivalent. Below we show that this
is not the case.

13. Let the language of K~ consist of countably many constant symbols

Coy - - -, Ci, - .. and just one sort. Let Uy (k € w) be as in item 11 above.
K™ = {{U, ci)icw : theset {i €w : ¢; =cy} is finite and
U is a set with (Vi € w)¢; € U}.
K = {(U,cz-; Upliew : k=1{i€w : c;=cy}| and (U, ¢;)icw € K~ }
That is

92T e. (Vk € w) Th(2Ag) = Th(2Ay).
903Recall that =.. denotes the binary relation of elementary equivalence defined between models.
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K = {(O) : MeK andk=[{icw:inMwehavec;=co}|}.

Now, K is not uniformly nr-implicitly definable over K~ while each concrete
M € K is nr-implicitly definable over IN~, further

VM, NeK) M =N = M=.N|.

Idea for a proof:

Assume A = Th(K) defines K implicitly over K~ (up to isomorphisms). Then
by using ultraproducts one can show that there is Mt = (U, ¢;; Us)ic, € Mod(A)
such that (Vi > 0)(¢; # ¢o holds in ). But clearly for 9% := (N~ LU;) we have
N~ =9M € K~ and 9M € K hence by M 2 N we conclude that A cannot be
a definition of K.

<

The above three examples were designed to illustrate the difference between
uniform (nr-implicit) definability and one-by-one (nr-implicit) definability where by
the latter we understand the case when each 9 € K is definable over its reduct 9~
in K= (but these definitions might be different for different choices of 90t);in more
detail: Let K be a class of models with U™, R"" in the language of K. For It € K
let 9t~ be the reduct of 9 obtained by omitting (forgetting) U™, R"". Let K~ :=
{9~ : M e K}. Then we say that K is one-by-one nr-implicitly definable over K~
iff each 9 € K is nr-implicitly definable over its reduct 9%~ € K~. Sometimes,
informally we will use instead of one-by-one definability “non-uniform” or “local”
definability as synonyms. We hope that the above three examples illustrate (the
generally accepted opinion) that uniform definability is a more useful concept than
one-by-one definability (when considering classes K of models) and is closer to what
one would intuitively understand under definability.

For completeness, we refer the interested reader to the distinction between the
“local” and the “usual” versions of explicit definability described in Andréka-Németi-
Sain [30] Definitions 55-56 (Beth definability properties) therein. We also note that
most standard textbooks concentrate on uniform definability only and they do not
mention what we call here one-by-one definability. We too will concentrate on
uniform definability and unless otherwise specified, by definability we will always
understand uniform definability.

Remark 6.3.10 A useful refinement of the notion of nr-implicit definability is finite
nr-implicit definability. Assume K and K~ are as above statement (xx) on p.935
(definition of nr-implicit definability). Assume, K is nr-implicitly definable over K~.
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Then K is said to be finitely nr-implicitly definable over K~ iff there is a finite set
Ay C Th(K) of formulas such that Ay defines K implicitly over K~ i.e. (%) holds
for A = Ay. In most of our concrete examples and applications we will have finite
nr-implicit definability, but for simplicity we will write just “definability”.

To illustrate the importance of finite nr-implicit definability, consider the simple
model {w,suc). There are continuum many different implicit definitions (involving
one new relation symbol R) over this model while there are only countably many
finite implicit definitions (and we will see that there are only countably many explicit
definitions over this model). (This example cannot be generalized from a single
model like 9 = (w, suc) to first-order-axiomatizable classes K of models, assuming
there are only finitely many sorts).%

<

6.3.2 Explicit definability in many-sorted (first-order) logic

So far we have discussed implicit definability which is a quite general notion of
definability. Below we will turn to a special kind of implicit definability which we
call explicit definability. Each explicit definition can be considered as an implicit
definition. The other direction is not true however, there are implicit definitions
which are not explicit definitions. (Le. there is an implicit definition A which in
its given form is not an explicit definition.) In definability theory, the connection
between explicit and implicit definitions is an important subject. We will return
to this subject at the end of the “definability” section (§6.3). In particular, we
will state a generalization of Beth’s theorem, saying that implicit definability is
equivalent with explicit definability (even in our general framework where we allow
definitions of new sorts, too [besides definitions of new relations], cf. Theorem 6.3.32
and Corollary 6.3.33 on p.977.

Explicit definability will turn out to be (i) a special case of implicit defin-
ability and (ii) a strong and useful concept e.g. in the following way. Assume
K = Mod(Th(K)) and that K* is an expansion of K which is explicitly definable

904The reason for this is the following. In the above reasoning we heavily used the fact that
every element of (w,suc) is definable “as a constant”. (Therefore infinite implicit definitions can
be given by listing the elements of R and the non-elements of R.) This does not remain true in
Mod(Th({w, suc))).
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over the class K of models. Then the theories Th(K) and Th(K™) as well as the
languages of K and K* will be seen to be equivalent in a rather strong sense to be
explained later, see Theorems 6.3.26 and 6.3.27 on p.962.

The key ingredients of explicit definability will be introduced in items (1)—(2.2)
below. Then, on p.950, they will be combined into a description of what we mean
by explicit definability. The generalization from definability over single models 9t
to definability over classes K of models will be given on p.950.

Notation: Assume 9t is a many-sorted model and that 1) is a formula in the language
of 9 such that all the free variables of ¥ belong to zg,...,%;,.... Assume a €
“Uv(9M) and that the sort of a; coincides with the sort of the variable z;, for every
1 € w. Then
M = Jla]

is the standard model theoretic notation for the statement that i is true in 9
under the evaluation @ of its free variables cf. e.g. Monk [197], Enderton [82], Chang-
Keisler [59]. Sometimes we write 9 = ¢[ai,...,a,] in which case it is understood
that the free variables of i) are among xzy,...,z,. The latter is often indicated by
writing ¥ (z1, ..., x,) instead of ¥. Le. if we write 1(z1,...,z,) in place of ¢ then
this means that while talking about the formula 1) we want to indicate casually that
the free variables of ¥ are among x4, ..., z,.

The following is also a standard notation from logic. Assume 7 is a term. Then
(x/7) denotes the formula obtained from ¢ by replacing all free occurrences of
by 7. Similarly for ¢(z1/71,...,2,/m,). We could say that “(xz/7)” is the “operator”
of substituting 7 for x.

If ¢ (z) is a formula and y is a variable (of the same sort as z), then ¢(y) denotes
¥(z/y); and similarly for a sequence Z of variables.

Sometimes below we will write “definable” for “explicitly definable” to save space.
Similarly, we write “definitional expansion” for “explicit definitional expansion”. In
general, we will tend to omit the adjective “explicit”, because our primary interest
will be explicit definability.

(1) Explicit definability of relations and functions in 9.

Let M = (Uy, ..., Uj; Ry, ..., R;) be a many-sorted model with universes or sorts
Uo, ..., Uj, and relations Ry, ..., R;. Let R™" C U;, x...x U, bea (new) relation,
with i1,...,4, € (j +1). Now, R™" is called (explicitly) definable (as a relation)
over I iff there is a formula 9 (z;,, ..., x; ) in the language of 9 such that

R”eW:{(ail,...,aim)EUil X...XUim : mt):’lﬁ[ail,...,aim]}.
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Such definable relations can be added to 90t as new basic relations obtaining a(n
explicit) definitional expansion of 9 in the form

EUIJ’ = <U0, .. .,Uj; Rl, e ,Rl,RHeW>.

To make 9+ “well defined” we have to add a new relation symbol to the language of

M denoting R™". The formula R*"(Z) <> () is called an (explicit) definition of

R™" (over 9M). Notice that A &f {R"¥(z) <> ¥ (Z)} is also a(n implicit) definition

of M+ over M. We call A an explicit definition of type (1). If A is a definition of
M’ over M, then we say that I’ is obtained from M by step (1). Note that if I
is defined over 9 by A, then I is IM™T above.

(2) Explicit definability of new sorts (i.e. universes) in 9.

Defining a new sort explicitly (in 90t) takes a bit more care than defining a new
relation. This is understandable, since now we want to define (or create) a new
universe of entities (in terms of the old universes and old relations already available
in 9) while when defining a relation we defined only a new property of already
eristing entities (or of tuples of such entities) in 9. If we define a new relation,
then this amounts to defining a new property of already existing entities. l.e. we
remain on the same ontological level. In contrast, if we define new entities which
“did not exist” before, then we go up to a higher ontological level.%%

If we want to define a new sort in 9, first of all we need a new sort-symbol,
say U™", which does not yet occur in the language of 9. If there is no danger
of confusion then we will identify a sort-symbol like U™" with the universe, say
(U™™)™  which it denotes in a model 9.

An explicit definition of a new sort, say U"", describes the elements of U™
as being constructed from “old” elements in a systematic, “tangible” and uniform
way. More concretely, first we will introduce a few (basic constructions or) basic
kinds of explicit definition and then “general” explicit definitions will be obtained
by iterating these basic kinds. We will refer to the just mentioned basic kinds (of
explicit definition) as basic steps of explicit definitions. Our basic steps for building
up explicit definitions of new sorts are described in items (2.1), (2.2) below. Our
choice of basic steps might look ad-hoc at first reading, but Theorem 6.3.32 at the
end of this section will say that our selected few steps (i.e. examples of explicit
definitions) cover (via iteration) all cases of implicit definitions (assuming there is a

9095Tn connection with defining new sorts, for completeness, we also refer e.g. to the definition of
the “new” many-sorted structure A*? from the “old” structure A in Hodges [136, p.151] (cf. also
pp. 148, 212, 213 therein). Cf. also the definition of relative categoricity in Hodges [136] p.638
together with p.638 line 3 bottom up to p.639 line 9.
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sort with more than one elements). We will return to a more careful discussion of
the present issue of choosing our basic steps in Remark 6.3.37.

(2.1) The first way of defining a new sort U™" in 9 explicitly.

The simplest way of defining a new sort U"" in a model 9IM =
(Uo,...,Uj; Ry,...,Ry) is the following. Let R € {Ry,..., R;} be fixed. Assume
R is an r-ary relation, i.e. R C "Uv(9t). We want to postulate that U"" coincides
with R. So the first part of our definition of U™" is the postulate:

UHeW _d_ef R
But, if we want to expand 9 with U"®" as a new sort obtaining something like
?IR' = <U0, ey Uj, UHGW; Rl, .. .,Rl>

then we need some new relations or functions connecting the new sort U™®" to the old
ones Up, ..., U;. In our present case (of U™ = R) we use the projection functions
pj; : R — Uv(M) with ¢ < r. Formally,

. def
p]i(<a01 R a'r—1>) ::e Q-

To identify the domain of pj; we should write something like pjZ, but for brevity we
omit the superscript R. Now, the (explicit) definitional expansion of 9t obtained
by the choice U™ := R is

93?+ = <UOa ey Uja UneW; Rla SRR Rlaij, Tt :pjr—l) = <9jt’ UHeW; sz>z<7“

We note that
m+ = <U0’ R Uj: Ra Rl, sy Rlapj?>i<r-
If z is a variable, then (3!z)1(x) denotes the formula expressing that there is exactly

one value for which ¢ holds, i.e. it denotes the formula (3z)(¢(z) A (V2)[¢(z) — z =
z]). Let

AY {3 e U™ (pjr(u, z1) A ... Apje(u,7,)) > R(zy, ..., 1,)
(Fu € U™ (pj1(u,z1) A ... Apjr(u,x,)) = Rz, ..., 2,) ,
(Vu € U™ (3 loy)pji(u, x;) : 1 <i<r}.

Then A is an implicit definition of 9T over M. We call A an
explicit definition of type (2.1). If A is a definition of M’ over M, then we say
that 9 is obtained from M by Step (2.1). Notice that if A is a definition of M’

over 9, then 9 is isomorphic to M™ above via an isomorphism which is identity
on M.
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Remark 6.3.11 This second form of 9t might induce the (misleading) impression
that 9" contains nothing new: it consists of a rearranged version of the old parts
of M. However, let us notice that as a first step we might define a new relation R™"
in 9 (in the style of item (1) above) obtaining

9ﬁ+ = <U(), ceey U], Rl, ce Rl; Rnew>
and then we may define U"®" := R"" obtaining the definitional expansion
Mt .= (Uy,...,U;, U™™; Ry,..., R™" pj;)i<r

of M*. Now, we will postulate that a definitional expansion of a definitional expan-
sion of 9N is called a definitional expansion of 9 again. Hence the above obtained
M* is a definitional expansion of the original 9. Using our abbreviation from
p-930 we can write:

<mt7 UHeW; Rnewap.ji>i<7‘ = I
Now, if we do not want to have R™" as a relation, we can take the reduct
mt++_ = <mt7 UHeW; pjz>z<r

by forgetting R"" as a relation but not as a sort. We will call 9+~ a generalized
definitional expansion of MM (cf. p.950).
<

Example 6.3.12 Let F = (F,...,- ) be a field. We want to define the plane F x F
over F as a new sort expanding F. First we define the relation R = F' x F by the
formula (2o = zy A z; = 7). Clearly, in F this formula defines the relation F x F.
Then we expand F with this as a new relation obtaining

F+:<F;+7'7FXF)

where F' x F' is used as a relation interpreting the relation symbol Relpyr. Now, in
F* we define the new sort U™ := F x F together with the projection functions as
indicated above, obtaining the model

F't =(F,Fx F; +,-,F x F, pjy, pj;)

where pj; : F x F — F. Now, we take a reduct of F** by forgetting the relation
symbol Relpyr, but not the sort F' x F. We obtain

F™'" =(F,F x F; +,-, pjy, 1) = (F, F X F; pjo, pjy)-
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Clearly this model F**~ is the expansion of the field F with the plane F x F as a
new sort as we wanted.

The above example shows that the usual expansion of F with the plane as a new
sort, is indeed a definitional expansion i.e. the plane as a new sort is (first-order)
definable explicitly in F.

<

Similarly to the above example, "F is first-order definable (explicitly) as a new
sort in any frame model 9. Later we will introduce uniform explicit definability
over a class K of models. Then we will see that "F as a new sort is uniformly
(explicitly) definable over the class of all frame models. (In defining "F we use
pj; : "F — F, i € n, the same way as we did in the case of F**7.)

(2.2) The second way of defining a new sort U™" in 9 explicitly.

To define a new sort U™" in a model MM = (Uy,...,Uj; Ry, ..., R;) explicitly
the second way, we begin by selecting an old sort U := U; and old relation R := Ry
(1 < 34,0 <k <1 in M. We proceed only if R happens to be an equivalence
relation over U (i.e. if R C U x U etc.). We define the new sort to be the quotient
set of R-equivalence classes®

U .= U/R.

Again, similarly to the case of pj,’s in item (2.1) above, we need a new relation
connecting the new sort U"" to the old ones. Now we choose the set theoretic
membership relation

€ 1= Cynew 1= Cy ynew = { <LL, CL/R) T ac U}

acting between U and U/R. Since €yunew C U; x U™, this relation connects the
new sort U”®" with the old one U;. Let us notice that from the notation €y yaew
we may omit the first index obtaining the simpler notation €ynew or we may omit
both indices obtaining €. The (explicit) definitional expansion of 9 obtained by
the choice U™" = U; /Ry, is defined to be the model

Mt = (Up,...,U;,U™; Ry, ...Ry, Eguer)
(o, Us/Ry: Ry, .., Ry, €)

= (M, U™Y; Eyuen)
<9ﬁ, U,/Rk, GUnew>.

Let

90617/R ¥ {4/R : a € U} where a/R ¥ {b e U : (a,b) € R}. Le. U/R is the set of all “blocks”

of R, and a/R is the “block” of R a is in.

949



AE {Fue Um™)(€(z,u) A E(y,u) & R(z,y),

[€(z,u) A E(z,v)] 2 u=v }.

Then A is an implicit definition of 9M* over M. We call A an explicit definition
of type (2.2). If A is a definition of 9 over M, then we say that M’ is obtained
from 9N by Step (2.2). Notice that if A is a definition of 9" over 9, then I is
isomorphic to 9t above via an isomorphism which is identity on 9.

* * *

We are ready for defining our notion of explicit definability. We call a new
sort or relation (explicitly) definable in O iff it is definable by repeated applications
of the steps described in items (1), (2.1), (2.2) above.

A model M is called a definitional expansion of I iff N is obtained from N by
repeated applications of steps (1), (2.1), (2.2) above (involving finitely many steps
only). An explicit definition of M over M is the union of the explicit definitions of
type (1), (2.1), (2.2) involved in a sequence leading from 90 to 91. We call A an
explicit definition if A is an explicit definition of some definitional expansion.

A model N is called a generalized definitional expansion of M if (i), (ii) below
hold.

(i) D is a reduct of a definitional expansion, say 9T, of M.

(ii) 91is an expansion of M, i.e. M is a reduct of N.

We call M (explicitly) definable in 9 iff item (i) above holds. If we want to
indicate that we do not take a reduct while defining say 9% from 9 explicitly
(i.e. that 9Tt is obtainable by repeatedly applying steps (1), (2.1), (2.2) to 9)
then we say that 9" is explicitly definable in 9 without taking reducts. Sometimes
we write “definitional expansion without taking reducts” to emphasize that we mean
definitional expansion and not generalized definitional expansion.

We emphasize that a precise statement claiming that U"" is definable as a new
sort should also mention the relations and/or functions (of 91) connecting U™" to
the original sorts of 9. Examples for such “connecting relations” are pj, and €gyuew
discussed above.

We note that ezplicit definability with parameters is completely analogous with
implicit definability with parameters cf. p.935.

Let us turn to (explicit) definability over a class K of models (instead of
over a single model 90t). We say that K is a(n explicit) definitional ezpansion
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of its reduct K™ iff K can be obtained from K~ by (a finite sequence of) re-
peated (uniform) appications of the steps described in items (1), (2.1), (2.2) on
pp-945-950. This is equivalent to saying that there is an explicit definition which
defines K over K~ (as an implicit definition). In this case we also say that
K is (explicitly) definable over (or in) K~ without taking reducts. We say that K
is a generalized definitional expansion of K~ if K is an expansion of K~ and K is a
reduct of a definitinal expansion of K™. We say that K is (explicitly) definable in L
if K is a reduct of a definitional expansion of L.

This is completely analogous with the case of implicit definability. Uniform
(explicit) definability and one-by-one (explicit) definability are obtained from the
notion of (explicit) definability for single models the same way as their counterparts
were obtained in the case of implicit definability, cf. pp. 937, 943.

Finally, we introduce one more notion of definability which we will call rigid
definability. We will use this in our examples to come. About the importance of
this notion see Theorem 6.3.28 on p.969.

Assume M+ = (M, U"®W; R"V) is an expansion of M (with new sorts and re-
lations). We say that 9™ is (explicitly) rigidly definable over 90t if M™ is definable
in 9 and the identity is the only automorphism of 9t which is the identity on
9. Informally, we will say that the new sorts and relations U™", R"" are rigidly
definable over 90 if (IT; U™, R™") is rigidly definable over 9.

Further, K* is rigidly definable over K iff KT is a generalized definitional expan-
sion of K and each 9" € K* is rigid(ly definable) over its K-reduct.

In our opinion, rigid definability is “just as good” as definability without tak-
ing reducts. In other words, we feel that if U™" etc. are rigidly definable over K
then U™ etc. are almost as well determined by K (or describable in K) as if they
were definable without taking reducts. We note that rigid definability seems to be
perhaps, our most important (or most central) version of definability®” (cf. e.g.
Theorem 6.3.27, Theorem 6.3.28 and Theorem 6.3.32).

CONVENTION 6.3.13 Assume K* is a definitional expansion of K. For 9™ €
K* the reduct 9" | VocK may have more than one definitional expansions in KT.
(However these expansions are isomorphic.) Therefore K may have several different
definitional expansions K® with the same set of defining formulas say A which defines
K* from K. In such cases, of course we have IK® = IK*. The largest such class
is called a mazrimal definitional expansion of K. Since most of the time we will

907Qur definition of K* being explicitly definable over K is strongly related to the notion of K+
being “coordinatisable over” K as defined in Hodges [136, p.644], while KT is rigidly definable over
K is strongly related to “coordinatised over” as defined in [136] (same page). We will return to
discussing this connection in the sub-section beginning on p.976.
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be interested in classes of models closed under isomorphisms, sometimes, but not
always, we will concentrate on maximal definitional expansions. There are important
exceptions to this?®®, e.g. the class of two-sorted geometries® is not closed under
isomorphisms and despite of this we will say that it is a definitional expansion of the
class of one-sorted geometries (in Tarski’s sense), under some conditions of course.

<

Remark 6.3.14 In Convention 6.3.13 above, and in the definition of definitional
equivalence “=A” (p.969) way below, we are “navigating around” two different
trends both present in the present work (i.e. we are trying to make the consequences
of these two trends “consistent” with each other). These are the following.

Trend 1. When discussing definability over 91 or over K, what we are really
interested in is definability over I{9)t} or IK. More generally in the present work,
most of the time, we tend to concentrate our attention to isomorphism-closed classes
K = IK of models, moreover we are inclined to identify isomorphic models.

A motivation behind Trend 1 (i.e. isomorphism invariance) is that when dis-
cussing definability over a structure like 901, we want to regard 91 as an abstract
structure (and not a concrete structure).”’’ Cf. also the note on p.786 on this and
cf. Remark 6.2.4 on p.801.

Trend 2. For purely aesthetical reasons, some of our distinguished classes of
models are not quite closed under isomorphisms. E.g. in the definition of our class
FM of frame models we insisted that the relation € connecting "F and G should be
the real set theoretical membership relation.”'! This aesthetics motivated decision
is the only reason why FM # IFM. Similarly in our two-sorted geometries of the
kind (Points, Lines; €) we insisted that Lines C P(Points) and “€” is the real set
theoretic one. This is the only reason why our two-sorted geometries are not closed
under isomorphisms.

If only Trend 1 were present then we could simplify much of the presentation in
this sub-section by discussing only isomorphism closed classes K = IK, KT = IK*
etc. However, we cannot carry through this simplification because Trend 2 presents
a “purely administrative” obstacle to it. We call this obstacle purely administrative

908] e. to concentrating on maximal definitional expansions

909in the sense of (Points, Lines; €), cf. p.991

910Recall that a structure is called abstract if it is defined only up to isomorphism. I.e. when
discussing an abstract structure we want to abstract from knowing what its elements are. (Since
our foundation is set theory the elements of a structure 2 are sets whose elements are again sets
etc. When regarding a structure as abstract, we want to disregard these details about the elements
of the elements of our structure.)

911 This is so if we understand the definition of FM in accordance with Convention 2.1.2 on p.35.
(Otherwise FM can be understood in such a way that it becomes closed under isomorphisms.)
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because the decision behind Trend 2 is purely aesthetical (everything would go
through smoothly if we worked with IFM in place of FM). As a consequence we do
the following: On the intuitive level we tend to follow the simplifications suggested
by Trend 1. At the same time, on the formal level we take Trend 2 into account in
order to make our results (and definitions) applicable to classes like FM or to two-
sorted geometries even when we take the formal details fully into account. Therefore
on the formal level, we try to make sure that our definitions make sense (and mean
what they should) even when K # IK. We suggest that the reader keep in mind
the “intuitive level” (when we use only Trend 1 and replace FM with IFM etc.) and
to treat the “formal level” as secondary, because this simplifies the picture without
loosing any of the essential ideas.

<

We close sub-section 6.3.2 with some examples. As an application, we also will
apply the just defined notions to the geometries we defined earlier in this section.

Example 6.3.15 (Explicit definability of the rational numbers in the ring
Z of integers.)

Let Z = (Z; 0,1,+,- ) be the (usual) ring of integers. We will discuss how the
set Q of rationals is definable explicitly as a new sort in Z.°'?> (Moreover with
a little stretching of our terminology, we can say that the field Q of rationals is
definable in Z.) Here, the new functions connecting the new sort Q to the old
one Z are (i) the ring-operations +q and -g on the sort Q, and (ii) an injection
repr : Z = (Q representing the integers as rationals. The role of repr is to tell
us which member of sort Z is considered to be equal with which member of the
new sort Q. (Although the present “connecting-functions” do not coincide with our
standard “explicit definability theoretical” ones pj, and €, we will see that they are
first-order definable from the latter.)

Let us get started! We start out with Z. First we define

R={{(a,b) : a,b€Z, b£0}

as a new relation, obtaining the expansion (Z; R). Then we define the new sort U
to be R with projections pj,, pj; and for simplicity we forget R as a relation (but
we keep it as a sort named U). This yields the definitional expansion

Z+ = <Z’ U7 07 ]-: +: : ap.jO:pjl) = <Z7 Ua ij:pj1>

912 Although we promised, in §2, not to use the letter Q for other purposes than denoting the
“quantity”-sort of our frame language, in the examples of the present sub-section we make an
exception (since here there is no danger of creating a confusion).
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where pj, : U — Z are the usual. Next, we define the equivalence relation = on U
as follows
(a,b) = (c,d) & a-d=b-c.

Note, that it is this point where we need the operations pj;, namely “(a, b)” is not an
expression of our first-order language, but we can simulate it by using the projections
as follows. We define = by

rT=Yy (d:ef) Pio(@) - pi1(y) = pii(z) - pio(y),

where z,y are of sort . By using item (2.2) of our outline for definability, we
define the new sort Q by Q := U/= together with the usual membership relation €
connecting sort U with sort Q.

Now, using the symbols €, pj,, pj; one can define the operations +q, -q, repr as
follows.

Assume x € Z and y € Q. Then

def . .
repr(z) =y <= (3z €y)[pio(z) =z A pji(z) =1].
Assume z,y,z € Q. Then
TQqY=2 & @ ex)3y € y) (3 € 2)
[Pio(@") - Pjo(y') = Pio(2") A pj(@") - piy(¥) = Py (2')].
The rest is easy, hence we omit it.
The above shows that the structure

Z++ - <Z: Qa +Qa Q» repr}

is definable over Z™* hence it is also definable over Z.
In passing, we note that the above definitional expansion makes sense and re-
mains first-order if instead of Z we start out with an arbitrary ring, say 2.
<

Examples 6.3.16
1. Let F be a field. Consider the geometric expansion
Gy := (F, Points, Lines; pj,, pji, E)

of F where Points = F X F and pj;, : F x F — F and E C Points x Lines
is the incidence relation (the usual way) and Lines C P(Points) is the set of
lines in the Euclidean sense.

Then Gy is rigidly definable over F. See the Hint in Example 2 below.
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2. To each field F let G be associated as in item 1 above. Then
Kt :={Gp : Fisafield }

is rigidly definable (explicitly) over the class K of fields.!?

Hint: First we define Points = F x F (with pj,) as a new sort. Then we define
R = {{p,q) € Points x Points : p# q},

as a new relation. Then we define the new auxiliary sort U to be R with the
new projections pj;, : R — Points and we forget R as a relation (but we keep
it as a sort named U). Then we define the equivalence relation = on U by
saying

(p,q) = (r,5)
g})

(p, q,r, s are collinear in the Euclidean sense).

Then we define the new sort Lines := U/= together with € C U x Lines.
From these data we define our final incidence relation E := Epoints,Lines the
usual way.?

<

In the case of implicit definability we saw that uniform and one-by-one defin-
ability are wildly different. The example below is intended to demonstrate, for the
case of explicit definability, the same kind of difference between uniform and one-
by-one (explicit) definability. In this example we restricted ourselves to the most
classical case: one sort only and the defined thing is a relation over the old sort.
Besides providing explanation, this example was also designed to provide motiva-
tion for consistently sticking with the uniform versions of the kinds of definability
we consider.

Example 6.3.17 Let w = (w; 0,1, +, - ) be the usual standard model of Arithmetic.
Let us choose R C w such that R is not explicitly definable even in higher-order
logic over w (and even with parameters). Such an R exists.?’® Let

Ki={(w;¢,P) : c€w, PCwand (ce R = P={c})and (c¢ R = P=10)}.

913From now on we will tend to omit “explicitly” since we agreed that definability automatically
means explicit definability.

Mo ppe &4 (3z € 0)[pjy(z), pj, (z),p are collinear as computed in F].
9150ne can choose R to be so far from being computable that R is not even in the so called
Analytical Hierarchy cf. [42].

955



Let K~ be the P-free reduct of K i.e.
K™ :={(w,c) : c€ew}.

Claim: Each member 9 = (w; ¢, P) of K is ezplicitly definable over its P-free reduct
M~ = (w, c). L.e. K is one-by-one explicitly definable over its reduct K.

We will see that K is very far from being uniformly explicitly definable over K—.
(Moreover K is far from being uniformly finitely implicitly definable.)

For n € w, we denote the constant-term 1 + ...+ 1 by 2. Assume P is uniformly
—_——

n-times

explicitly definable over K=. Then

K= [Pz) < ¢(c )],

for some formula % (z,y) in the language of w.”'® Now, for any n € w we have the
following:

neR = [K E a=c — P(n) hence
K E a=c — ¢(ce,n) hence
Kr = a=c — ¢(e,n) hence
K- = fi=c — ¥(n,n) hence®!”
K™ = ¢(n,n) hence
w = Y(@n)]

n¢gR = [K E Aa=c — —P(n) moreover
K E n=c — P=10 hence
K= a=c = —9(cn) hence
K-k n=c — —(n,n)  hence’”
w E p(n,n)]

But then v (z, z) explicitly defines R(z) in w, which is a contradiction.

We have seen that while in K~ the new relation P is one-by-one explicitly defin-
able (in other words locally explicitly definable), P is very far from being uniformly
explicitly definable over the same K.

<

916This is so because (¢, ) is in the language of K~, which is the same as the language of w
expanded with a constant symbol c.

Mhy K £ n # ¢ (i-e. by (3M € K)M = n = ¢) and since under any evaluation of the variables
(in a member of K) the value of the constant term 7 coincides with the element n of w.
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We hope that the above construction and proof explain why and how one-by-
one definability is so much weaker than®'® uniform definability. We also hope that
the above example illustrates why most authors simply identify uniform definability
with definability.

Application: definability of the observer-independent geometries

Now we turn to the issue of definability of the observer-independent geometries
Bgy over the (“observational”) frame models 9%, which has already been discussed
in §6.2.2 and Remark 6.2.8 (p.807). The propositions and the theorems below serve
to illuminate parts of Remark 6.2.8.

The following proposition says, roughly, that the set of points Mn, and our
various kinds of lines L, . .., L% are definable over the “observational” models 9.

PROPOSITION 6.3.18 For every frame model I let I := (M, Mn; €ppm) be
the expansion of M with the set of events Mn := |J{ Rng(wy,) : m € Obs} and
the set theoretic membership relation €ypm € B X Mn. Let

FM* .= {9M* : MeFM }.
Then (i) and (ii) below hold.

(i) FM™ is rigidly definable over the class FM of frame models.

(ii) For every Mt € FMT let M+ := (MM+ L; L* LP" L°, €L) be the expansion
of M+, where LT, L*" L° L are, respectively, the sets of time-like, photon-
like, space-like, and all lines as defined in item 5 of Def.6.2.2(I); and € C
Mn x L is the membership (or equivalently the incidence) relation between
points (elements of Mn) and lines. Then the class

FM*™* = {a+* . M+ e FM* }

is rigidly definable over the class FM of frame models.

Proof:
Proof of (i): The new sort "F together with the projection functions are rigidly

918 One-by-one definability is not only weaker than uniform definability, but also it is much less
satisfactory from the point of view of re-capturing the intuitive idea of definability. In our opinion
one-by-one definability does not capture the intuitive notion of definability while uniform defin-
ability does. (All the same, one-by-one definability is useful as a mathematical auziliary concept.)
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definable over FM, therefore we will pretend that "F is an old sort of FM. In
defining FM™* over FM up to unique isomorphism, first we define

R:={{(m,p) e Bx"F : m€ Obs}

as a new relation. Then we define the new auxiliary sort U to be R together with
Djo, Pj; and we forget R as a relation (but we keep it as a sort named U). Then we
define the equivalence relation = on U by saying

(m,p) = (k,q) <d:ef> Wi (p) = wi(g); formally:

(m,p) = (k,q) <= (Vbe B)[W(m,p,b) > W(k,q,b)];

while if we want to get rid of the notation “{/m,p)” we can write the following. Let
a,d € U. Then
ef . . . .
a=d <5 (vbe B) [ W(pjo(a), pi(a),b) <> W(pjo(d), pi(d), ) .

Then we define the new sort Mn := U/= together with € C U x Mn. From these
data finally we define the “membership” relation Ep, € B x Mn as follows. Let
be B and e € Mn. Then

bEwmn e PN (Fa € e) W(pjo(a), pji(a), b).

So far we have defined Mn and E,,, hence all parts of (an isomorphic copy
of) FM* have been defined (over FM). The “rigid-ness” (i.e. “uniqueness”) part of
definability stated in (i) comes from the fact that the axiom of extensionality holds
for Epp, i.e.

(Ve,e1 € Mn)[e=e; <> (Vb€ B)(bEym e <> bEyy €1)].

Proof of (ii): By item (i) it is sufficient to prove that FM™™ is rigidly definable over
FM™. In defining FM*" over FM™ up to unique isomorphism, first we define

R:={(h,iy€e BxF : h€ ObsUPh, i€n, (h¢ Obs = i=0)}

as a new relation. Then we define the new auxiliary sort U to be R together
with pjg, pj; and we forget R as a relation (but we keep it as a sort named U).
Intuitively, the elements of U will code the lines.?'® We define a kind of incidence
relation E C Mn x U as follows. Let e € Mn and ¢ € U. Then

919We code lines by elements of U according to the following intuition. Photon-like lines and
time-like lines are coded by (h,0) where h is a photon or an observer (then (h, 0) codes the life-line
of h). Space-like lines are coded by an observer h and an axis Z; (¢ # 0) and the coded line is what
h sees on the Z; axis i.e. it is wp[%;].

958



eE/?
def
<~

[Pj1(£) =0 A pjo(€) €xn €] V Vogieal Pir(6) =i A (3q € ) (e = wpjo((4))*° |-
Then we define the equivalence relation = on U as follows. Let £,¢' € U. Then

(=0 & VeeMn)(eEL ¢ eEL).

We define the sort L := U/= together with the membership relation € C U x L.
Now, the “membership” (or incidence) relation E;, C Mn X L is defined as follows.
Let e € Mn and ¢ € L. Then

eELl &5 A eneEr.

Finally, the unary relations L™, L™ L% on L are defined as
LT = {eL: (3¢ b (pjyt)cObs A pjy(f) =0)},

P = {teL: (3t €l)(pj(l)ePh A pj(f)=0)},
L5 = {LeL: (3¢ el)(pj(f) e Obs A pj,(¢)>0)}.

So far we have defined L, L, L*" L and Ej, hence all parts of (an isomorphic
copy of) FM™* have been defined (over FM™'). The “rigid-ness” (i.e. “uniqueness”)
part goes exactly as in the case of (i). B

Our next proposition says, roughly, that the topology part T (of our geometries)
is definable over the “observational” models 9.

PROPOSITION 6.3.19 Let FM™ be as in Proposition 6.3.18 above. For every
MM € FM™T let (IM+,Ty; €) be the expansion of M with the subbase

To = {S(e,e) : e€ Mn, e € TF}

for the topology T (as defined in item 14 of Def.6.2.2(1)) and with the (standard)
membership relation € C Mn x Ty. Then the class

FM** = { (MF, Tp; €) : Mt e FMH }

is rigidly definable over the class FM of frame models. Roughly, this means that the
(“heart” of the) topology part of our geometries associated to FM is also definable
over FM, but cf. the discussion in (x *x) of Remark 6.2.8 on p.809.

920We note that “e = wp; (¢)(¢)” is a formula since the following is a formula.
(Vbe B)[bee & W(pjy(£),q,b)].
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Proof: Let FM* FM™" be as above. By Prop.6.3.18(i) it is sufficient to prove
that FM™ is rigidly definable over FM™. In defining FM™* over FM™* up to unique
isomorphism, first we define the pseudo-metric g : Mn x Mn — F as a new relation
as it was defined in item 13 of Def.6.2.2(T) (p.797). It can be checked that the just
quoted definition of g can be translated to a first-order formula in the language of

FM*. Then we define
R:={{e,e) : e€ Mn, c € F}

as a new relation. Then we define the new auxiliary sort U to be R together with
Do, Pj1 and we forget R as a relation (but we keep it as a sort named U). Then we
define the equivalence relation = on U by saying

(e,e) = (e1,€1) & (Vez € Mn) (g(e,e2) <e <> gler,e2) <e1).

(Of course one uses the projection functions pjy, pj; to formalize the above definition
of =)

Then, we define the new sort T := U/= together with the membership relation
€ur, € U x Tj. Finally we define the “membership” relation E C Mn x Ty as
follows. Let e € Mn, A € Ty. Then

eE A &L (FaeU)lacyr, A N g(pjola),e) < pji(a)].

So far we have defined T, and E, hence all parts of (an isomorphic copy of) FM*™*
have been defined (over FM™). The “rigid-ness” (i.e. “uniqueness”) part goes exactly
as in the case of Prop.6.3.18(i). &

In connection with the following two propositions recall that alternative versions
T" and T" of the topology part T of our geometries were defined in Def.6.2.31
(p.838). Further, Tj and T} are subbases for 7' and 7", respectively, as defined in
Def.6.2.31.

PROPOSITION 6.3.20 Proposition 6.3.19 remains true if we replace Ty with T}
in it, where Ty was defined in Def.6.2.31 ().

We omit the easy proof.

Our next proposition says, roughly, that the topology part 7' (of our geometries)
is definable over the “observational” models 90, assuming Bax™ + Ax(v/ ).
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PROPOSITION 6.3.21

(i) For every frame model MM let M* be defined as in Prop.6.3.18, i.e. M* :=
(M, Mn; €pp). Further, let (MY, T§; €) be the expansion of I with the
subbase T} for T, where T} is defined in Def.6.2.81(i); and with the member-
ship relation € C Mn x Tj. Then the class

Mod(Bax™ + Ax(v )" := { (M*,T;; €) : M € Mod(Bax™ + Ax(V)) }

is rigidly definable over the class Mod(Bax™ + Ax(v/)).

(ii) Since in Bax™ + Ax(v/' ) Ty is a base for our topology T, for all practical
purposes (i) “means” that the topology T' is definable over these models (cf.
(%% %) on p.809).

We omit the proof, but we note that a proof can be obtained using Proposi-
tions 6.2.16 (p.820), 6.2.79 (p.884), cf. also Thm.6.2.36 (p.843) and the proof of
Thm.6.2.34 (p.840).

Our next three theorems say, roughly, that our class Ge(Th) of relativistic ge-
ometries is definable over the corresponding class of observational models.??!

THEOREM 6.3.22 The class Ge(Th) is definable over the class Mod(Th), as-
suming that n > 2 and Th is a set of formulas in our frame language such that
Th = Bax® + Ax(||)” + Ax(Triv;)~ + Ax(diswind) + Ax(v/ ).

More precisely, instead of definability of the topology part T we claim definability of
only a subbase Ty for T, together with € C Mn x Ty of course.??

Proof: The theorem follows by Propositions 6.3.18 (p.957), 6.3.19 (p.959) and by
Theorems 6.2.10 (p.813), 6.2.19 (p.823) and 6.2.23 (p.829). Cf. Remark 6.2.8 (p.807).
|

The theorem below says that if in Thm.6.3.22 above Basax is assumed in place
of Bax® then the assumptions n > 2, Ax(||)” and Ax(diswind) are not needed.

THEOREM 6.3.23 The class Ge(Th) is definable over the class Mod(Th), as-
suming that Th is a set of formulas in our frame language such that Th =
Basax + Ax(Triv,)~ + Ax(v/ ). (More precisely instead of definability of T we
claim definability of Ty only.)

921 These three theorems were stated as Theorem 6.2.44 in the previous sub-section on p.847.
922(f. the discussion of definability of 7 in (xx %) of Remark 6.2.8 on p.809.
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Proof: The theorem follows by Propositions 6.3.18 (p.957), 6.3.19 (p.959) and
by Theorems 6.2.10 (p.813), 6.2.22 (p.827). Cf. the proof of Thm.6.3.22 and Re-
mark 6.2.8 (p.807).

In connection with the next two theorems recall that Ge'(Th) and Ge"(Th) are
alternative versions of Ge(7Th) and are introduced in Definition 6.2.43 (p.846).

THEOREM 6.3.24

(i) Ge'(Th) is definable over Mod(Th), for any set Th of formulas in our frame
language. (More precisely instead of definability of T we claim definability of
Ty only.)

(ii) Ge"(Th) is definable over Mod(Th),*® assuming that Th is a set of formulas
in our frame language such that Th = Bax™ + Ax(v/ ).

Proof: The theorem follows by Propositions 6.3.18, 6.3.19, 6.3.20, 6.3.21. Cf. the
proof of Thm.6.3.22 and Remark 6.2.8 (p.807). 1

6.3.3 Eliminability of defined concepts. Definitional equivalence of the-
ories. An extension of Beth’s theorem.

Notation 6.3.25 For a class K of (many-sorted, similar) models, Fm(K) denotes
the set of formulas of the language of K. Hence Th(K) C Fm(K). Sometimes we
refer to Fm(K) as the language of K.

<

THEOREM 6.3.26 (First translation theorem) Let K and Kt be two classes
of (many-sorted) models. Assume that K™ is a generalized expansion of K. Then
there 1s a “natural” translation mapping

Tr : Fm(K") — Fm(K)

923(Cf. Prop.6.3.21(ii) in connection with definability of 7' in Ge"(Th).

924 According to our philosophy, Fm(K) is the language, while the system of basic symbols (like
relation symbols, sort symbols etc.) is the vocabulary of this language, cf. Convention 6.3.1 on
p-931. We note this because some logic books use the word “language” for what we call the
vocabulary (of a language or a model).
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having the following property (called preservation of meaning):"*°

Assume (Z) € Fm(K") is such that all its free variables (indicated
as T) belong to “old”®* sorts, i.e. to sorts of K. Then

K' = [¢(@) « Tr(y)(@)]

(*)

Further, for all ¢ € Fm(K™)

K'=v © KiE Tr(y).

Moreover, Tr is very simple (transparent) from the computational point of view,
e.g. it 1s Turing-computable in linear time.

Theorem 6.3.26 follows from the stronger Theorem 6.3.27 (and its proof) to be
stated soon, so we do not prove it here.

Before stating the stronger version of Theorem 6.3.26, let us ask ourselves in
what sense It in Thm.6.3.26 preserves the meanings of formulas. To answer this
question, let us notice that the conclusion of Theorem 6.3.26 implies (i) and (ii)
below.

(i) v and Tr(¢)) have the same free variables Z, and in some intuitive sense they
say the same thing about these variables Z.

(ii) Let 90t € K*, M~ be the reduct of 9 in K and let @ be a sequence of members
of Uv(9M~) matching the sorts of z. In other words a is an evaluation of the
variables z. Then

MEa = M = (Tr(y))lal;

cf. the notation on p.945. Intuitively, whatever can be said about some “old”
elements @ in a model M in KT, it can be said (about the same elements a)
already in the “old” model 9~ (in K). This will be generalized to “new”
elements also (i.e. to arbitrary elements), in our next theorem.

925The existence of such a translation mapping Tr is often called in the literature “uniform
reduction property”, cf. Hodges [136, p.640]. A result of Pillay and Shelah is that for first order
axiomatizable classes implicit definability without taking reducts implies the reduction property,
cf. [214]. Cf. also Lemma 12.5.1 in Hodges [136, p.641].

926 A symbol (e.g. a sort) is called old if it is available already in K (and not only in K1).
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Recall that K is a reduct of K*. In some sense (i) and (ii) above mean that the poorer
class K and the richer class Kt of models are equivalent from the point of view of
expressive power of language. So, the “language + theory” of K is equivalent with
the “language + theory” of K in means of expression. Therefore, on some level
of abstraction, we may consider the languages of K and K™ to be the same except
that they??” choose different “basic vocabularies” for representing this language. (In
passing we note that a stronger form of this kind of sameness will appear in the form
of definitional equivalence =x, cf. beginning with p.969 (and the figure on p.975).)

Generalization of Theorem 6.3.26 to permitting free variables of new sorts
to occur in ¢ and Tr()

Let us turn to discussing the restriction in Theorem 6.3.26 which says (in state-
ment (%)) that the free variables of ¢ belong to the sorts of K. The theorem does
admit a generalization which is without this restriction on the free variables. This
will be stated in Theorem 6.3.27 below. But then two things happen discussed in
items (I), (II) below.

(I) Consider the process of defining K* over K as a sequence of steps (as described
on p.951). Assume that a relation like pj, or €y connecting a new sort to an
old one is introduced in one step and then is forgotten at the (last) reduct
step. Then we call the relation (e.g. pj;) in question an auziliary relation of
the definition of KT over K. Now, for the generalization of Theorem 6.3.26 we
have in mind, we have to assume that all auxiliary relations (of the definition
of KT) remain definable in K*. We will formulate this condition as “K* and
K have a common (explicit) definitional expansion (without taking reducts)”.

(IT) The formulation of the theorem gets somewhat complicated. Intuitively, the
generalized theorem says that all new objects??® can be represented as equiv-
alence classes of tuples of old objects, and then (using this representation)
whatever can be said about elements of Uv(90) in an expanded model 9t € K*
can be already said in the reduct 9~ € K of 9. This intuitive statement is
intended to serve as a generalization the text below item (ii) in the discus-
sion of the intuitive meaning of Theorem 6.3.26 (presented immediately below
Theorem 6.3.26).

Notation: Var(U;) denotes the (infinite) set of variables of sort U; (where U, is treated
as a sort symbol or equivalently U; is the name of one of the universes of the models
in K*).

927 e. K and K+

928By objects we mean elements of some sort.
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THEOREM 6.3.27 (Second translation theorem) Assume K is a reduct of K*
and K and Kt have a common definitional expansion (without taking reducts). This
holds e.g. whenever Kt is a definitional expansion of K. Assume UPY, ... U are
the new sorts.®?® Then there is a translation mapping

Tr : Fm(K") — Fm(K)

for which the following hold. For each U™ there is a formula code;(z,Z) € Fm(K')
such that the following 1-2 hold.

1. z € Var(UP") and & is a sequence of variables of old sorts.
2. (a)—(c) below hold.
(a) Kt = Vx 37 code;(x, T), %°
(b) KT = [code;(z,%) A code;(y,T)] — = =1y, wherey € Var(U"). %!
(c) Our translation mapping®?
Tr : Fm(K") — Fm(K)

satisfies the following stronger®?® property of meaning preservation. As-
sume Y(y, Z) € Fm(K") is such that y € Var(U") and Z is (a sequence
of variables) of old sorts such that the variables in zZ are distinct from
those occurring in ij. Then

K™ = codei(y, ) — [¥(y,2) < (Tr(¥))(#,2) ]

Intustively, whatever is said by Y about y and zZ, the same is said by the
translated formula Tr(v) about the code i of y and zZ. The case when 1)
contains an arbitrary sequence, say Y, of variables of various new sorts
15 a straightforward generalization and is left to the reader.

929] e. they are available in Kt but not in K.

930Note that here “Vz” means “Vz € UP®"” automatically since we know that z is of sort U™
(as a variable symbol of the language of KT).

931Note that items (a), (b) mean that code; represents an unambiguous coding of elements of
U™ with equivalence classes of tuples of elements of old sorts, cf. (II) preceding the statement
of the theorem and the text immediately below the theorem.

932fixed at the beginning of the formulation of the present theorem

933stronger than in Theorem 6.3.26
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We note that the intuitive meaning of “code;(z,y)” is “g codes z”. Property
(b) then says that “j codes only one element”, property (a) says that “every new
element has a code”, and property (c) then tells us that “whatever can be said of
a new element z in the new language, can be said of any of its codes y in the old
language”, cf. (II) before the statement of Theorem 6.3.27.

Proof:

(I) The case of step (2.1): Assume that K* is obtained from K by applying step

(2.1) so that we defined U™*" &' R where R is an old r-ary relation. For simplicity

we assume r = 2 and R C Uy x U; where Uy, U; are old sorts. Then the new symbols
(in K*) are U"" and pj,, pj;- We want to represent objects (variables) of sort U”"
with pairs of objects of (“old”) sorts. To this end, we fix an injective function

rep : Var(U™") =—— Var(U,) x Var(U;)

such that the values rep(z); of rep are all distinct.”®® For simplicity, we will denote

rep(z); by z;. We also assume that zy,z; do not occur in the formulas to be
translated.

Now, we define Tr by recursion as follows.

o Tr((3z € Um™)) := (o € Uy, 1 € Uy)[R(z0, 1) ATr()]; if 2 € Var(Ue™);
o Tr((3y)v) := (3y)Tr(4); if y is a variable of old sort;

o Tr(~y):=~Tr(d),  Tr(Ap):= Tr(e) A Tr(p);

o Tr(z=y):= (5o =1yo A 21 =), for any z,y € Var(U"");

e for any other atomic formula ¢, Tr(¢) is obtained from 1 by replacing each
occurrence of pj;(xz) with z; (i.e. with rep(z);) in v for every variable z €
Var(U™") and i € 2; i.e. Tr(v) :== ¢(pj;(2) /) pe varunen) ica-

We introduce the formula code(x,zg,z1) (saying explicitly that the values of
xo, 1 form really the code of the value of x) as follows:

code(z, zg, 1) FEIN [zo = pjo(z) N z1 =Dpji(z) N R(zo,21)]

Now, it is not difficult to check that Tr : Fm(K*) — Fm(K) is well defined,
and (a)-(c) in the statement of Theorem 6.3.27 hold.

%4rep(z) = (rep(z)o, rep(w)1); and rep(z); = rep(y); iff (z,i) = (y, ).
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(II) The case of step (2.2): Assume that K is obtained from K by applying step
(2.2) so that the only new symbols (in K*) are U"*" = U/R and €, where U is an
(old) sort of K, and R(x,y) € Fm(K) where z,y are variables of sort U.

We fix an injective function

rep : Var(U"") > Var(U)

and we denote rep(z) by z. So z € Var(U) if x € Var(U™"). As before, we assume
that the variables £ do not occur in the formulas to be translated.
Now, we define Tr by recursion as follows.

(Fz € Um™)y) := (3z € U)Tr(¢); if z € Var(U™™);

(Fy)v) := By) Tr(¢); if y is a variable of old sort;

Ti(
Ti(

o Tr(—¢) :=~Tr(¢), Tr(yp A ) := Tr(y) A Tr(ep);
Ti(
Ti(

x=y):= R(z, g), where z,y € Var(U™");

€(z,z)) == R(z,z) and Tr(v) := ¢; for any other atomic formula ¢ with
no variables of new sort.

We introduce the formula code(z, z) as follows:

code(z, x) VN €(z,x).

Now, it is not difficult to check that Tr : Fm(K") — Fm(K) is well defined,
and (a)-(c) in the statement of Theorem 6.3.27 hold.

(III) The case of explicit definability without taking reducts: If K% is
obtained from K by step (1) then we have an obvious translation with all the good
properties known from classical definability theory.%3

By this we have covered all the steps (i.e. (1)—(2.2)) which might occur in an
explicit definition. I.e. we defined code, Tr to all three kinds of “one-step” explicit
definitions represented by items (1)—(2.2).

Assume now that K% is explicitly defined over K without taking reducts. Now,
the definition of K is a finite sequence of steps with each step using one of items
(1), (2.1), (2.2). Hence by the above, we have a meaning preserving translation
mapping Try for the £’th step for each number

k < n := “number of steps in the definition of K*”.

935Tn the case of step (1), “code” is not needed because there are no new sorts involved. Hence
(if we want to preserve uniformity of the steps) we can choose code(z,y) to be xz = y.
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Besides Tr; we also have a formula codey, for each number k. Also for each Tr; we
have that (a)-(c) in the statement of Theorem 6.3.27 hold. But then we can take
the composition Tr := Try o Try o ... o Tr, of these meaning preserving functions,
and then the composition too will be meaning preserving if we also combine the
formulas codey, ..., code, into a single “big” formula code.

One can check that for the just defined Tr and code, (a)-(c) in the statement of
Theorem 6.3.27 hold.

(IV) The general case: Assume now that K is a reduct of K* and that K+
is a common definitional expansion of K and K*. By the previous case we have
translation mappings Try : Fm(K**) — Fm(K) and Try : Fm(K*") — Fm(K™")
together with appropriate code, code, which satisfy (a)-(c) in the statement of
Theorem 6.3.27. Note that Fm(K*) C Fm(K**). Now we define

Tr & 15, ) Fm(K"), code(z,T) & Try(code: (z, T))

whenever z is a variable of new sort in the language of K*. One can check that
Tr and code as defined above satisfy (a)-(c). In more detail: Assume that U; is a
new sort of K™, i.e. U; is not a sort of K. Then U; is a new sort of K**, therefore
there is code}(z,z) € Fm(K™") which “matches” Tr;. We cannot use code; in the
interpretation from K* to K because code; may not be in the language of K*. We
will use Try to translate code; to the language of K* as follows. Since K™ is an
expansion of K, all the variables in z, Z have sorts which occur in K*. Thus by the
properties of Tr, we have

Kt = code; (z,Z) + Try(code; (z,7)).
Let code;(z, T) & Try(code; (z,%)). Then code;(z,z) € Fm(K") and
K* = code;(z,Z) — [(x,Z) < Tr(v)(z, 2)]
because
Kt = code} (1, Z) — [¢(z, 2) + Tri(¥)(Z, 2)].
This finishes the proof. I

A special case of Theorem 6.3.27 above will be presented in §6.5, cf. items 6.5.5—
6.5.6.

More is true than stated in Theorem 6.3.27, namely the existence of a translation
mapping as in the theorem is actually sufficient for definability, as the following
theorem states.

If Tr and code; satisty the conclusion of Theorem 6.3.27, then we say that they
interpret Kt in K.936

936(Cf. the definition of interpretations in Hodges [136, p.212, 221]. The existence of a
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THEOREM 6.3.28 Assume K is a reduct of K*. Then (i) and (ii) below are equiv-
alent and they imply (iii). If, in addition, K™ is closed under taking ultraproducts,
then (i)-(1) below are equivalent.

(i) KT and K have a common definitional expansion.

(ii) K is interpreted in K by some Tr and code;, i.e. the conclusion of Theo-
rem 6.3.27 is true: there are Tr and code; satisfying 1, 2 in Theorem 6.3.27.

(111) KT is rigidly definable over K.

A proof of this stronger version is in Andréka-Madardsz-Németi [21].

Remark 6.3.29 (In connection with Theorems 6.3.26, 6.3.27.) These theorems
state that the expressive powers of two languages Fm(K') and Fm(K) coincide.
However, the proofs of these theorems prove more. Namely there exists a computable
translation mapping Ir acting between the two languages. Even more than this, Tr
preserves the logical structure of the formulas i.e. in the sense of algebraic logic, Tr
is a “linguistic homomorphism” i.e. grammar preserving mapping, cf. footnote 950
on p.985. (Whether one is interested in this extra property of being a “linguistic
homomorphism” is related to a difference between the algebraic logic approach and
the abstract model theoretic approach to defining the equivalence of logics [hence,
in particular, to how one approaches characterizations of logics like the celebrated
Lindstrém theorems].)

<

Definitional equivalence

Until now we dealt with the case when one of the classes was an expansion of
the other one. In this sub-section we turn to dealing with the case when our L is
not necessarily an expansion of K.

tuple Tr,code; interpreting K* in K (as in Theorem 6.3.27) is strictly stronger than the
uniform reduction property in [136, p.640]. Actually, the existence of Tr, code; is equivalent with
K* being coordinatised over K in the sense of [136, p.644]. This equivalence is proved in [21].
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Definition 6.3.30 Let K and L be two classes of models. We say that they are
definitionally equivalent, in symbols K = L iff they admit a common (explicit)
definitional expansion M (without taking reducts).?’

Further, 9t =A M abbreviates {M} = {N}. If M =4 N, then we say that M
and N are definitionally equivalent models.

<

Cf. also in Hodges [136] under the name “definitional equivalence” pp. 60—61; cf.
also Henkin-Monk-Tarski [129, Part I, e.g. p.56].

The relation =5 defined above is symmetric and reflexive. For certain “adminis-
trative” reasons it is not transitive,but the counterexamples (to transitivity) are so
artificial that we will not meet them (in this work). We could define =% to be the
transitive closure of =5 and then use =}, as definitional equivalence. If this were a
logic book we would do that. However, in the present work we will not need =},
hence we do not discuss it, and we call =5 definitional equivalence (though it is =}
which is the really satisfactory notion of definitional equivalence.)

Discussion of the definition of =4

(1) Assume K =a L. Then K and L agree on the common part of their
vocabularies.?® Le.

K=alL = K (VocKn VoclL) =L [ (VocKnN Vocl).

(2) For any definitional expansion K of K we have K =5 K™.

(3) Assume K =5 L. Then L and K are definable over each other. Moreover their
definitions over each other enjoy the following coherence property. Recall that every
explicit definition is a special implicit definition. Now, we can choose the definitions
of K and L% as sets of formulas Ax, Ap € Fm(M) such that M = Ag and M E
A .24 Here, M is the common definitional expansion of K and L mentioned in the
definition of =5. Hence, e.g.

Th(K) + “the definition of L over K” + “the definition of K over L”

937.e. M is a definitional expansion (without taking reducts) of K and the same holds for L in
place of K. Note that Th(M) can be regarded as an implicit definition of M over K, and the same
for L in place of K.

938 As a contrast, K =% L does not imply this, however as we said we will not need the generality
of =7 in this work.

939over each other.

940 A ctually, one may choose Ak = AL = Th(M).
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is a conservative extension of the theory Th(K). Formally Th(K) + Ak + A, is a
conservative extension of Th(K) and the same holds with L in place of K.

(4) Let K, L be classes of (classical) one-sorted models. We say that K is
(classically) definable over L if K is definable over L without taking reducts (in
our sense, cf. p.951). (This means that we allow repeated applications of Step (1)
only.) This notion of classical definability of one class over another is in agreement
with the spirit of classical one-sorted model theory, cf. e.g. “definitional extension”
in [136, p.60] or in [129, Part I, p.56]. Now, there exist classes of one-sorted mod-
els K, L such that they are classically definable over each other, their vocabularies
are disjoint but K #Zx L. Hence, definitional equivalence is stronger than mutual
(explicit) definability, cf. Andréka-Madardsz-Németi [22].

(5) Assume K =5 L. Then there exists a kind of bijection® f : K = L such
that (VO € K) 90t and f(9) are definable over each other. Moreover, the uniform
definitions Ak, AL in item (3) above are such that

(%) Ay defines f(9M) over M, and Ak defines I over (M)

for each 9M € K.
Further, 9t and f(9M) are reducts of a single model M+ € M, hence M can be
regarded as being a class
{ M, r(M)) : Me K}

of pairs representing the “bijection” (up to isomorphism) f.
(x+x)  When we say that f is a bijection up to isomorphism, then we mean all
properties of a bijection only up to isomorphism, i.e. f need not be a function
instead

(ﬂﬁ,m),(im,‘ﬁl) ef = N=N,

similarly K C I(Dom(f)) is stated only instead of K = Dom/(f) etc. In other words
this means that f induces a bijection on the isomorphism equivalence classes of K
and L, i.e. between K/ and L/2. (It is natural to work with the elements of K/
and L/=2. The elements of K/2 are called isomorphism types in [129, Part I, p.71,
lines 8-10]).

941 £ is a bijection only up to isomorphism. Le. f(IM) = fF(N) = M =N, and (VN € L)(AM €
K) 9t =2 f(IM), cf. () for more on this. Our using properties “up to isomorphism” is based on the
practice in model theory and universal algebra of identifying isomorphic structures in some (but
not in all (1)) situations. If we assume IK = K and IL = L then f can be chosen to be a “real”
bijection (and not only up to isomorphism).
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(6) Assume K =5 L. Then the bijection f : K > L in (5) above has the
following property. For all 9t € K, the automorphism group of 9 is isomorphic to
the automorphism group of f(9M), in symbols

(Aut(M), 0) = (Aut(f(9M)), 0).

This is so because of the following. Let 9%t € M be such that 9" is implicitly
definable without taking reducts both over 9t and over f(9%). Since M™ is implicitly
definable without taking reducts over 9, each automorphism of 90 extends in a
unique way to an automorphism of 9t*, and this implies that the automorphism
groups of Mt and M are isomorphic. We get the same for f(90) and M completely
analogously, and this proves that the automorphism groups of 9t and f(9M) are
isomorphic.

(7) For more on definitional equivalence, its importance, and for motivation for the
way we defined and use =A we refer to [129, pp. 56-57, Remark 0.1.6], [136, pp.
58-61].

<

Two theories Thq, Tho are called definitionally equivalent iff

MOd(Thl) =A MOd(ThQ)

In view of the discussion of the two translation theorems (Theorems 6.3.26 and
6.3.27 way above), one can say that two definitionally equivalent theories can be
regarded as being essentially the same theory and the difference between them is
only that their “syntactic decorations” are different (i.e. they “choose” to represent
their [essentially] common language with different basic vocabularies).

The same applies to classes of models K, L when K =A L. As an example, choose
K to be Boolean algebras with {N, —} as their basic operations while choose L to
be Boolean algebras with {U, —, 0,1} as basic operations. (Then K =5 L.) At a
certain level of abstraction, K and L can be regarded as a collection of the same
mathematical structures (namely, Boolean algebras) and the difference (between K
and L) is only in the choice of their basic vocabularies (which is “N, —” in the one
case while “U,—,0,1” in the other). Summing up: In some sense, definitionally
equivalent theories Thy =a Thy can be considered as just one theory with two
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different linguistic representations. The same applies to definitionally equivalent
classes of models.

The above expounded train of thoughts works really smoothly if we restrict our
attention to finite vocabularies (for our theories, and classes of models). However,
it easily extends to infinite vocabularies if in the definition of “K* is definable over
K” we permit infinitely many new symbols (sorts and relations) to be defined. The
only reason for our not discussing this “infinitary” case is that in the present work
we work with theories etc. of finite vocabularies (practically all the time).

Remark 6.3.31 (How and why can definitionally equivalent theories [and
classes of models|] be regarded as identical [as a corollary of Theo-
rems 6.3.26, 6.3.27]7)

In addition to the text below, we also refer the reader to [129, p.56] and [136,
pp.58-61] for explanations of why definitionally equivalent classes of models can be
regarded as (in some sense) identical.

Let K and L be two definitionally equivalent classes of models (formally, K =4 L).
Then, by the definition of =4, there is a class M which is a definitional expansion
(without taking reducts) of both K and L. We will argue below that this M estab-
lishes a very strong connection between K and L. (Cf. also item (5) in the discussion
of the definition of =A.) Our argument begins with the following: We can apply
Theorem 6.3.26 to the pair M and K with M in place of KT in that theorem. The
same applies to the pair M and L. By Theorem 6.3.26, then we have two translation
mappings

Fm(M)

Fm(K) Fm(L)

both of which preserve meaning (in the sense of Theorem 6.3.26). Both of Tr; and
Try are surjective. Intuitively, Tr; identifies K with M while Try identifies M with L.
Hence K gets identified with L. (Perhaps the best way of thinking about this is that
we identify both K and L with their common expansion M. As a by-product of this
we identify K and L with each other, t00.)

By surjectiveness of Tr; and Try, whatever can be said in the language Fm(K),
the same can be said in Fm(M) and hence (using Trs) the same can be said in the
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language Fm(L) of L. Similarly, whatever can be said in Fm(L) the same can be
said in Fm(K), too.

Now, if we want some more detail, let ¢(z) € Fm(K) with a sequence z of
variables belonging to common sorts K and L. Then there are ¢'(z) € Fm(M),
¢"(z) € Fm(L) such that Tri(¢') = ¢ and Tra(¢') = ¢". Le.

TI'l TI'Q _
¢(2) 4G ¢"(2)-

Actually, we can choose ¢’ = ¢ if we want to. Using Theorem 6.3.26 we can
conclude

(361) M = ¢(2) & ¢"(2).
Le. the same things can be said about the common variables z in Fm(K) and in
Fm(L). Hence the languages of K and L have the same expressive power.

On the basis of (361) above and what was said before (361), we can introduce
two, more direct, translation mappings

15
Fm(K) Fm(L)
T

defined as follows. In defining 7} and 75 we can rely on the fact that
Fm(K) C Fm(M) = Dom(Try)

and that Tr; | Fm(K) = Id [ Fm(K) which is the identity function. Hence we can
choose

T, := Tr; [ Fm(L) and

T2 = TI‘Q [ FIH(K).942

942In passing, we also note that Tr; can be regarded as injective in the sense that if ¥(2),v(2) €
Fm(M) involve free variables of K only then [ Tr;(¢0) = Tri(y) = M | ¢(Z) ¢ v(Z)]. Similarly
for Try and L.
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Fm(M)

Fm(K) Fm(L)

T

Assume ¢ € Fm(M) involves only common free variables of K and L. Then

M ): (TQTI’l(‘O) <~ TI'QQD.
M = (T1Trap) <> Trip.
So in this “logical sense” the above diagram commutes.
For completeness, about the above diagram we also note the following commu-
tativity property:
T
T

(Trl)_l e} TI‘Q,
(TII"Q)_1 e} TI‘l .

N 1N

Here we note that (Tr;)~! o Try is a binary relation but not necessarily a function.

Using Theorem 6.3.26, and (361) way above, one can check that for all ¢ € Fm(K)
and for all » € Fm(L), if ¢ and 9 use only variables of common sorts (of K and L)
then:

(362) M = p(2) > (T2p)(2),
M = (Tiy)(z) + ¥(z), further
(363) K E ¢« (IiTay)(2),

L F () « (RT)(2).

These statements can be interpreted as saying that 7} and 7, are kind of inverses
of each other and that they establish a kind of logical isomorphism between equiv-
alence classes of formulas in Fm(K) and Fm(L) involving free variables of common
sorts only. For completeness, we note that (362-363) can be generalized to formulas
involving free variables of arbitrary sorts by using Theorem 6.3.27. For formulating
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this generalized version of (362-363) one needs to use the formulas “code” as they
were used in Theorem 6.3.27. E.g. the first line of (363) becomes

K &= code(z,Z) = [p(x,2) + (T1Thp) (T, 2)),

where z belongs to a sort of K not in L, and Z is a sequence of variables of common
sorts of K and L. Here code(x, Z) is the formula we get from combining the corre-
sponding formulas belonging to Tr; and Tr,. We leave the details of generalizing
(361-363) to treating free variables not in the common language to the interested
reader.

(We note that the generalization of (363) above reminds us of the notion of equiv-
alence between two categories, in the sense of category theory, cf. Definition 6.6.82
on p.1094.)

We hope, the above shows how and to what extent we consider two definitionally
equivalent classes (and theories) as being essentially identical.
<

A generalization of Beth’s theorem®*

Many-sorted definability theory with new sorts (i.e. the notion of implicit and
explicit definition) is a generalization of one-sorted definability theory (without new
elements) discussed in traditional logic books. This observation leads to several nat-
ural questions which we discuss here only tangentially. One of these is the question
whether Beth’s theorem (about the equivalence of the two notions of definability)
generalizes to our present case.

THEOREM 6.3.32 Assume K = Mod(Th(K)) is a reduct of Kt such that K* has
only finitely many sorts. Assume that the language of KT is countable, and that K
has a sort with more than one element. Then (i) and (ii) below are equivalent.

(i) Kt is implicitly definable over K without taking reducts.
(i1) KT is a definitionally equivalent expansion of K.

The proof uses Gaifman’s theorem (cf. Hodges [136, Thm.12.5.8, p.645]), which is
about one-sorted structures, together with ideas from Pillay & Shelah [214], and can
be found in Andréka-Madarasz-Németi [21]. B

943 Acknowledgement: The results in this sub-section were obtained with help from Wilfrid
Hodges.
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COROLLARY 6.3.33 (Beth’s theorem generalized to defining new sorts)
Assume K = Mod(Th(K)) is a reduct of Kt such that K* has only finitely many
sorts. Assume that the language of KT is countable, and that K has a sort with
more than one element. Then (i) and (ii) below are equivalent.

(i) KT is implicitly definable over K.
(ii) KT is explicitly definable over K.

QUESTION 6.3.34 Can Theorem 6.3.32 and Corollary 6.3.33 above be general-
ized for the case when infinitely many sorts are allowed? (First one has to generalize
the definition of explicit definability. This can be done easily, e.g. we may allow iter-
ation of steps (1), (2.1), (2.2) along an infinite ordinal, taking “unions” of ascending
chains of expansions in the limit steps.) <

The above question seems to be more about logic than about relativity, so we
do not discuss it here. We did not have time to think about it, but it seems to be
an interesting question.

Connections with the literature

For investigations related to definability of new sorts as discussed in the present
section (§6.3 herein) we refer to Hodges [136] Chapter 12, and within that chapter to
§12.3 (pp.624-632), §12.5 (pp.638-652). E.g. p.638 last 3 lines — p.639 line 9 discusses
generalizability of Beth’s theorem, and similarly for p.645 line 6, p.649 lines 5-6. (We
would also like to point out Exercises 13, 14 on p.649 of [136].) We also refer to
Myers [200], Hodges-Hodkinson-Macpherson [137], Pillay-Shelah [214], Shelah [239].
In passing we note that our subject matter (i.e. definability of new sorts) is related
to the directions in recent (one-sorted) model theory called “relative categoricity”
or “categoricity over a predicate”, and “theory of stability over a predicate”.

Below we outline some connections between our notions and the ones used in a
substantial part of the above quoted (one-sorted) literature. We will systematically
refer to Hodges [136].

Assume Kt = Mod(Th(K*)) and that K has finitely many sorts Uy, ..., Us. Let
P =UyU...UUg be the union of these sorts regarded as a unary predicate. Then:

(1) “K* is implicitly definable up to isomorphism over K” is equivalent with
“Th(K™) is relatively categorical over P”.
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(2) “K* is implicitly definable without taking reducts over K” is equivalent with
“Th(K™) is rigidly relatively categorical over P”.

(3) “K* is explicitly definable over K” is not equivalent with “Th(K") is coordi-
natisable over P”.

(4) “K* is a definitionally equivalent expansion of K” is equivalent with “Th(K™)
is coordinatised over P”.

In items (1)-(4) above, on the left hand side we have many-sorted notions, while
on the right-hand side we have one-sorted notions (like relative categoricity). So it
needs some explanation what we mean by claiming their equivalence. The answer
is the following: First we translate our many-sorted notions to one-sorted ones (by
treating the sorts as unary predicates of one-sorted logic) the usual, natural way, and
then we claim that the so translated version of our many-sorted notion is equivalent
with the other one-sorted notion quoted from Hodges [136]. E.g., the so elaborated
version of item (1) looks like the following. “The one-sorted translation of (K*
is implicitly definable up to isomorphism over K)” is equivalent with “(the one-
sorted version of Th(K™)) is relatively categorical over P”. The point here is that
relative categoricity is defined only for one-sorted logic in Hodges [136]. Therefore,
to use it as a possible equivalent of (our many-sorted) “implicit definability up to
isomorphism”, first we have to translate everything to one-sorted logic, and then
make the comparison. Indeed, items (1)-(4) are understood this way.

Connections between the various notions of definability

Figure 305 below shows the connections between the various notions introduced
in this sub-section. It also indicates the above outlined connections with some
notions used in the literature (relative categoricity, coordinatisability). The connec-
tions indicated are fairly easy to show, except for the following proposition (and, of
course where Theorem 6.3.32 and Corollary 6.3.33 are indicated).

PROPOSITION 6.3.35 (Hodges [136]) Assume the hypotheses of Theo-
rem 6.3.32 (which are the same as the hypotheses used in Figure 305). Then ‘Kt
is implicitly definable over K up to isomorphism” does not imply ‘Kt is implicitly
definable over K”.

Proof. A 6-element counterexample proving this is given in Hodges [136, Example
2 on p.625]. There two structures are defined, A and B, with A a reduct of B. B
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explicitly definable
without taking reducts

Thm6332 \H/ jH>

implicitly definable rigidly explicitly

without taking reducts @ definable

(rigidly relatively categorical) (coordinatised)

S

exphc1tly definable
(coordinatisable)

\

implicitly definable <

/

) . Prop.6.3.35

implicitly definable
up to isomorphism
(relatively categorical)

Figure 305: Connections between the various notions of definability. We assume that
K = Mod(Th(K)) is a reduct of K* such that K™ has only finitely many new sorts.
We also assume that the language of Kt is countable, and that K has a sort with
more than one element. On the figure we write “implicitly definable without taking
reducts” for “K* is implicitly definable over K without taking reducts”, and simi-
larly for the other notions. For the implication “implicitly definable” to “implicitly
definable up to isomorphisms” we need the extra assumption K™ = Mod(Th(K")).
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is implicitly definable up to isomorphism over A (this follows from the fact that B
is finite). At the same time, B is not definable implicitly over A, because A has
an automorphism « of order 2 (i.e. oo a = Ids) which cannot be extended to an
automorphism S of B of order 2. Indeed, if B was implicitly definable over A, then
an expansion BT of B would be implicitly definable over A without taking reducts.
Hence the automorphism « would extend to an automorphism 3 of BT. Since the
identity of A extends to a unique automorphism of B, then 8o 8 = Idg+ should
hold. But then g | B would be an automorphism of B of order 2 and extending a.
(Cf. Thm.12.5.7 in [136, p.644].) Since A and B are finite structures, we can take
K =I{A} and K* = I{B}, and then the hypotheses of Proposition 6.3.35 hold for
K and K*. This finishes the proof. 1

On the choice of basic steps in explicit definability

Remark 6.3.36 (Forming disjoint union of two sorts) For didactical reasons
we will refer to items (1)—(2.2) as steps (1)-(2.2) to emphasize their roles in con-
structing an explicit definition (for some new class KT) in a step-by-step manner.
We could have included in this list of steps as step (2.3) the definition of a new
sort as a disjoint union of two old sorts. This goes as follows:
Assume Uy, U, are old sorts, i.e. sorts of 9%, while U"" is not a sort of 9. Then,
we can define the new sort as

Ut .= U, U U,
with two injections
11 IU/C>—)UH€W and igIUm>—)UHeW

such that U™" is the union of Rng(i1), Rng(iz) and Rng(i1) N Rng(iz) = 0. Here
k = m is permitted. But even if k = m, i; and i, are different. Now the expanded
model is
9ﬁ+ = (Dﬁ, Unew; il,i2>.

We note that such an 9 is always implicitly definable over 9, further all the
nice properties of explicit definitions®* in items (1)-(2.2) hold for this new kind
of explicit definition which from now on we will consider as step (2.3) of explicit
definability.

All the same, we do not include step (2.3) into the list of permitted steps of
building up an explicit definition. We have two reasons for this.

944 A5 an example we mention that explicitly defined symbols can be eliminated from the language,
cf. sub-section 6.3.3 on p.962.
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(i) Step (2.3) can be reduced to (or simulated by) steps (1)—(2.2). Namely, assume
M+ is defined from 9M by using step (2.3). Assume further that 9 has a sort
U; with more than one elements (i.e. |U;| > 1). Then by using steps (1)—(2.2)
one can define an expansion 9+ * from 90 such that 9T is a reduct of M+ +.945

Further:

(ii) We will not need step (2.3) in the present work. Le. in the logical analysis of
relativity, explicit definitions of form (2.3) did not come up so far.

Item (i) above shows that adding step (2.3) to the permitted steps of explicit defi-
nitions would increase the collection of sorts and relations definable over 91t only in
the pathological case when all universes of 9t have cardinalities < 1.

Therefore while noting that step (2.3) could be included without changing the
theory of explicit definability significantly, we do not include it. However, sometime
(in some intuitive text) when we want to get “dreamy” we might refer to explicit
definability as involving four steps (1)—(2.3). <

Remark 6.3.37 One might want to develop a more systematic understanding of
what explicit definitions are. For such a more systematic understanding of explicit
definitions let us rearrange the basic steps into steps (1*)—(5*) below.

(1*) Definition of new relations R™" explicitly the classical way (as in item (1) on
p.945).

(2*) Definition of new sorts as direct products of old sorts together with projection
functions (U™" :=U; x U; etc) (as in item (2.1) on p.947).

(3*) Definition of new sorts as disjoint unions of old sorts together with inclusion
functions (U"" := U; U U; etc) (as in item (2.3) on p.980).

(4*) Definition of a new sort as a definable subset of an old sort together with an
inclusion function. lL.e.

vr" ={zelU; : ME=yz)}

and i,y @ U™ — U; is the usual inclusion function. The expanded model
is  IMT = (MM, U™ inew)-

(5*) Definition of a new sort as a definable guotient of an old sort exactly as in
item (2.2) on p.949 (i.e. U™ = U;/R etc).

945More precisely there is a unique isomorphism h between 9™ and this reduct of MM+t such
that h [ 90t is the identity function.
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Now, an explicit definition in the new sense is given by an arbitrary sequence
(i.e. iteration) of steps (1*)—(5*) above.

If we disregard the trivial case when all sorts are singletons or empty, then explicit
definitions in the new sense are equivalent with explicit definitions as introduced in
§6.3.2. We leave checking this claim to the reader.

We would like to point out that explicit definitions as built up from steps (1*)—
(5*) are not ad-hoc at all. In the category theoretic sense the formation of disjoint
unions is the dual of the formation of direct products and the formation of sub-
universes (or sub-structures) is the dual of the formation of quotients. So, we are
left with two basic steps and their duals.

It is interesting to note that our steps (2*)—(5*) correspond to basic operations
producing new models from old ones. (Indeed if U; is a universe of 9% then we can
restrict 9 to U; and then we obtain a one-sorted reduct of 9% with universe U;.
Hence creating new sorts from old ones is not unrelated to creating new models
from old ones. All the same, we do not want to stretch this analogy too far.)

What we would like to point out here, is that steps (2*)—(5*) seem to form a
natural, well balanced set of basic operations, while step (1*) has been inherited
from the classical theory of definability.

Further, we note that while selecting our basic steps (e.g. steps (1*)-(5*) above)
we had to be careful to keep them implicitly definable i.e. they should not lead to
“explicitly definable things” which are not implicitly definable. Therefore operations
like formation of powersets cf. Example 6.3.9(1) (or all finite subsets of a set cf.
Example 6.3.9(6))%4 are ruled out from the beginning.

<

Further recent results on definability theory (sometimes in algebraic form®7)

in Madardasz [173], [170], [169], Madarasz-Sayed [178], Hoogland [138].

are

946Secing that P, (U;) leads to problems (i.e. checking Example 6.3.9(6)) is not obvious, it is not
necessary to check this for understanding this work.
947Cf. our section on duality theory (in particular § 6.6.7).
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6.4 Weak definitional equivalence and related concepts

The present section is a continuation of §6.3.

CONVENTION 6.4.1 f: A—>B denotes that f is a surjective function from
A onto B. Further f : A>——B denotes that f is an injective function from A
into B. L.e. —> denotes surjectiveness, while > denotes injectiveness. (If
we combine the two then we obtain > denoting bijectiveness.) When used
between german letters, i.e. structures, they denote injectiveness or surjectiveness
of homomorphisms the natural way. Cf. Def.6.6.3(i) on p.1008. <

Definition 6.4.2 Let K and L be two classes of models and let f: K — L be a
function. We say that f is a first-order definable meta-function iff for each 9t € K
f(OM) is first-order definable over 9 (in the sense of §6.3.2) and the definition of
F(ON) over 9 is uniform, i.e. is the same for all choices of M € K.

<

A typical example for first-order definable meta-functions will be e.g.
G : Mod(Th) — Ge(Th), where G : 9M +— Bgy, if Th is strong enough, cf.
Thm.6.3.22 (p.961). A similar example will be a kind of inverse to this function
M : Ge(Th) — Mod(Th), cf. Prop.6.6.44 (p.1059) and Def.6.6.41 (p.1054).

We note that if f : K—>L is a surjective first-order definable meta-function then
L is definable over K; and, more generally, if f : K — L is a first-order definable
meta-function then Rng(f) is definable over K. In the other direction, if L = IL is
definable over K then there is a first-order definable meta-function f : K — L such
that Rng(f) is L up to isomorphism. To be able to claim this for the case when
L # IL we make the following convention.

CONVENTION 6.4.3 (Class form of the axiom of choice)

In connection with the above definition, for simplicity, throughout the present chap-
ter we assume the class form of the axiom of choice. More concretely we assume
that our set theoretic universe V is well orderable by the class Ordinals of ordinal
numbers. L.e. there is a bijection

f : Ordinals>—-V.

948 A first-order definable meta-function (acting between classes of models) is a rather different
kind of thing from an ordinary function like factorial : N — N definable in a model, say in
N € Mod(Peano’s arithmetic), cf. Example 6.3.8(1) on p.938. (This is the reason why we call f a
meta-function and not simply a function.)
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This implies that any proper class is well orderable and therefore there exists a
bijection between any two proper classes.

<
K K L L
(1) BA groups (1)
(2) lattices posets (2)
(3) models of models of (3)
set theory Peano’s

arithmetic

2nterpretation Bng(f)
(1) Boolean

groups

Fm(K) Tr 1 Fm(L)
(1) BA-theory =& group theory (1)
. translation

(2) lattice theory (interpretation) theory of posets  (2)

(3) set theory Peano’s arithmetic (3)

Figure 306: Examples for first-order definable meta-functions f and the induced
translations between theories. For more explanation in connection with this pic-
ture cf. item (III) of Remark 6.6.4, pp. 1020-1027. The corresponding theories are
labelled by the same numbers. E.g. BA is interpreted in “groups”, “lattices” in
“posets” etc. Here f, or the pair (f, Try), or Try are (often) called interpretations,
cf. footnote 1022 on p.1023. E.g. Try interprets group theory in BA-theory. Equiv-
alently f interprets BA’s in groups. (This figure also serves as an illustration for
Prop.6.4.4, p.985.)

The following proposition makes connections between the following three things:
(i) “interpretations” of one theory in another, (ii) first-order definable meta-functions
f : K — L between classes of models, and (iii) definability of a class Rng(f)
over another class K, see Fig.306. In this context the function Try (in the propo-
sition) below is what we call an interpretation (or translation). Cf. item (III) of
Remark 6.6.4 on p.1020 and footnote 1022 on p.1023 for the intuitive idea behind

984



interpretations.®*® In particular the proposition says that any first-order definable
meta-function f : K — L induces a natural syntactical translation mapping from
the language Fm(L) of L to that of K. Moreover, this translation is meaning pre-
serving w.r.t. the semantical function f.9°

PROPOSITION 6.4.4 Assume f : K — L s a first-order definable meta-
function. Then there is a “natural” translation mapping

Trp: Fm(L) — Fm(K)

such that for every ¢(Z) € Fm(L) with all free variables belonging to common sorts

of K and L %', A € K and evaluation @ of T in the common sorts (i.e. universes)
of A and f(2A) the following holds.**?

fR) =ela] < A= Tr(p)al.
Cf. Fig.306.

Proof: The proposition follows easily by Thm.6.3.26 (first translation theorem) on
p.962. In more detail: Assume f:K — L is a first-order definable meta-function.
Then there is an expansion K* of Rng(f) such that K* is definable over
K without taking reducts. Then, by Thm.6.3.26, there is a translation mapping
Tr: Fm(K*) — Fm(K) such that (x) in Thm.6.3.26 holds. Let Try := Tr | Fm(L).
One can check that Try has the desired properties. W

We will have results analogous to the conclusion of Prop.6.4.4 above at various
points in the remaining part of this chapter, cf. e.g. Thm.6.6.45 on p.1061.

The following is a weaker form of definitional equivalence. We will use it e.g. in
Thm.6.6.29 (p.1045).

949Tn the one-sorted case an interpretation Tr: Fm(L) — Fm(K) is the same thing as a cylindric
algebraic homomorphism between the cylindric algebras of formulas Fm(L) and Fm(K). Le. if we
endow F'm(L) with the cylindric algebraic structure (of first-order formulas) and do the same with
Fm(K) then the homomorphisms between the two algebras of formulas are typical examples of
interpretations.

950Translation functions of the type Tr: Fm(L) — Fm(K) play an important role in the present
work. They have two important features: (i) they are meaning preserving, and (ii) they respect the
logical structure of the languages involved, e.g. Tr(—p) = =Tr(p) and analogously for the remaining
parts of our logic. (We do not discuss property (ii) explicitly, but since it is important we mention
that it is discussed in the algebraic logic works e.g. in Andréka et al. [30].) In other words (ii)
could be interpreted as saying that our translation mappings are grammatical, i.e. they respect the
grammar of the languages involved. Cf. Remark 6.3.29 on p.969.

951je. to VocogK N Vocol

952We note that the formulas ¢ and Trs(¢) have the same free variables (therefore the statement
below makes sense).
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Definition 6.4.5 (Weak definitional equivalence)
Let K, L be two classes of models. K and L are called weakly definitionally equivalent,
in symbols

K=YL,

iff there are first-order definable meta-functions
f:K—L and ¢g:L—K
such that for any 9t € K and & €L, (i) and (ii) below hold.
(i) (fog)M) =M and (go f)(&)= &, and

(ii) moreover there is an isomorphism between the two structures 9t and (fog)(9MN)
which is the identity map on the reduct 9 [ (VocKN VocL) %23 of 9. Similarly
for structures & and (g o f)(®).

<

Intuitively, K and L are weakly definitionally equivalent iff they are definable over
each other and the first-order definable meta-functions induced by these definitions
are inverses of each other up to isomorphism.

PROPOSITION 6.4.6 Assume K, L are two classes of models. Then
K=alL = K=}

i.e. if K and L are definitionally equivalent then they are also weakly definitionally
equivalent.

We omit the proof. 1

In connection with the above proposition we note that the other direction does
not hold in general, i.e.
K=} # K=aL.

This (i.e. #) is so even if we assume that K and L are both axiomatizable, cf.
Examples 6.4.9 (p.988) and Thm.6.6.29 (p.1045).
Examples come at the end of this section.

953VocK N VoclL is the common part of the vocabularies of K and L.
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Remark 6.4.7 Assume that f : K — L and g : L — K are first-order definable
meta-functions as in Def.6.4.5. Then Rng(f) is L up to isomorphism and Rng(g) is
K up to isomorphism. Moreover, for every 2 € L there is A" € Rng(f) such that
there is an isomorphism between the structures 2 and 2 which is the identity map
on the reduct A [ (VocK N Vocl) of 2; and the analogous statement holds for every
B € K.

<

The following proposition says that if K =% L then the language Fm(K) of K can
be translated into the language Fm(L) of L in a meaning preserving way and vice-
versa; more precisely these translations work well for the sentences?* only or more
generally for those formulas which contain only such free variables that range over
the common sorts of K and L. Moreover these translation mappings are inverses of
each other (up to logical equivalence “+”). We note that if in addition we have =4
in place of =% % then this nice, meaning preserving translation mapping extends
to all formulas, cf. the end of Remark 364 on p.976.

PROPOSITION 6.4.8 Assume K =X L. Then there are “natural” translation
mappings

Tr: Fm(L) — Fm(K) and T,: Fm(K) — Fm(L)
such that for every ¢(z) € Fm(L), ¥(y) € Fm(K) with all their free variables

belonging to common sorts of K and L, A € L and B € K, and evaluations a, b of the
variables T, 7y, respectively, (i)—(iv) below hold, where f and g are as in Def.6.4.5.

(i) f(B) =ola] « B E=Te)al and g(A) =] < A ToW)[0)-
(ii) A = pla] & gA) = Tr(@)al and B P & f(B) F T,(¥)[0].
(iif) A = @(7) & (TroTy)(p)(T)  and B = 4(y) < (T, 0 Ty)(¥)(@)-
(iv) LEy & KETi(e) and KE=¢ o LET©).

Proof: Item (i) of the proposition follows by Prop.6.4.4 above. Items (ii)—(iv) follow
by item (i) and Remark 6.4.7. &

In connection with Prop.6.4.8 above cf. Remark 6.3.31 on p.973. We will have
results analogous to the conclusion of Prop.6.4.8 above at various points in the
remaining part of this chapter, cf. e.g. Thm.6.5.5 on p.996.

954 Sentence means closed formula, i.e. formula without free variables.
955j 6. K=a L
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Examples 6.4.9 In all three examples below we state K #ZA L for some classes
K, L. In all three examples we can use item (6) on p.972 to prove K #x L.

1. Let K be the class of two-element algebras without operations. IL.e.
K={A: |A|=2}.

Let L be the class of two-element ordered sets. Important: The sort symbol
of K and the sort symbol of L are different. Then

K=XL but K#a L.

2. Let Ky be the same as K was in item 1. above. Let K3 be the class of three
element algebras without operations. Let the sort symbols of Ky and K3 be
different. Then

Ky =R K3, but Ks #Za Ks.

3. More sophisticated example, affine structures: Let AB be the class of Abelian
(i.e. commutative) groups.
Assume & = (G; +,—,0) € AB.

We define the affine relation R; on G as follows.

Ri(a,b,c,dye,f) <5 (a—b)+(c—d)= (e~ f).

The affine structure associated to the group & is

As .= (G; Ry).
The class of affine structures is
Af :={%s : B € AB}.
Let the sort symbols of AB and Af be different. Claim:
AB =} Af, but AB #a Af.

Hint: Definability of Af over AB is trivial. Definability of AB over Af: Let
(G; R,) € Af. We define a new relation eq as follows.

<CL, b) eq <C7 d> <dz€f> R+ (CL, bv a,a,c, d)
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Let us notice that eq is an equivalence relation on G x G. Now, let
A:=G x Gleq
be a new sort. Further
{(a,b)Jeq + {c,d) Jeq = (e, [)Jeq N R, (a,b,c,d,e, f).

Now, defining the rest of the Abelian group (A, +, ...) over the affine structure
(G; Ry) is left to the reader.

The proof of ZA is based on looking at the large number of automorphisms of
the affine structure (G; R, ). We omit the details. (The idea is similar to that
of example 1.)

Remark 6.4.10 (Making =% strong by using parameters)
Consider the applications of =Y in items (i), (ii) below.

(i) In Thm.6.6.26 (p.1043) it is stated that
(Fields) =X (pag-geometries).
Theorems 6.6.22, 6.6.29 are analogous.

(ii) Mod(Th) =X Mog(TH) for certain choices of Th, TH, where the class
Mog(TH) of geometries is defined on p.1071. We note that this is not proved
or even stated in the present work, but elaborating this can be considered as
a useful research exercise for the reader.

Now, if in the context (or background) of items (i), (ii) above we replace the notion of
definability with parametric definability using finitely many parameters only (in the
usual sense cf. p.950 and p.935, immediately below Remark 6.3.4, or e.g. Hodges [136,
pp. 27-28])%% then we will obtain that the classes in question e.g. Mod(Th) and
Mog(TH) become definitionally equivalent in this weaker parametric sense. (L.e.
they have a single common parametrically definable definitional expansion etc.)
More concretely we could add (n + 1)-many new constants to pag geometries such
that

(Fields) =a (pag-geometries + these constants).

956 Parametric definability is a slightly weaker notion than definability.
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Completely analogous improved versions of Theorems 6.6.22, 6.6.29 (pp. 1041, 1045)
are also true.

Also we could add n + 1 new constants to Mog(TH) and a constant (a distin-
guished observer) to Mod(Th) yielding

(Mod(Th) + new constant) =x (Mog(TH) + new constants),

for certain choices of Th and TH. This works even if we assume Ax(eqtime) € Th
(cf. Conjecture 6.6.58 on p.1074).
It is these new auxiliary constants which are called parameters in the theory of
parametric definability.
We leave elaborating the details of this parametric direction to the interested
reader.
<
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6.5 On the connection between Tarski’s language for ge-
ometry and ours (both in first-order logic), and some
notational convention

In connection with the present section it might be useful for the non-logician reader
to have a look at the Appendix on higher-order logic versus first-order logic.

In the discussion below we say “the language” and then instead of specifying the
language we write down a typical structure of the language. We hope, this causes
no confusion.

Tarski uses the language

G, = (Points; Col, “extra relations”), %7
while we use the language
Gwe = (Points, Lines; €, “extra relations”)?®

for studying geometry, where Col C 3Points and € C Points x Lines is the
usual incidence relation. Since the “extra relations” part is essentially the same
for both approaches, let us compare (Points; Col) and (Points, Lines; €). Here,
Col C 3(Points) is a ternary relation called collinearity. Intuitively Col(a, b, c) holds
iff a, b, ¢ are on the same line. Now, we claim that the two languages (that of G,
and Gyy) are of the same ezpressive power i.e. they are definitionally equivalent®?,
under some very mild conditions, cf. Example 6.3.16 (p.954), and cf. Thm.6.5.3.
Intuitively, G, = (Points; Col) is definable in Gy, = (Points, Lines; €) by saying
that

Col(a,b,¢c) <% (3¢ € Lines) a, b, c € L.

957 Actually instead of Col Tarski uses Bw, but Col is definable from Bw (in Tarski’s
geometries).

9583ometimes we write “Points, Lines” instead of “Mn, L” only to sound more intuitive or more
suggestive. Summing up: Points denotes Mn and Lines denotes L.

959More precisely the theory of the language (Points, Lines; €) and another one of the language
(Points; Coly are definitionally equivalent assuming very mild axioms on both sides. Even more
precisely to any theory of the language (Points; Col) there is a definitionally equivalent one of the
language (Points, Lines; €), assuming some very mild assumptions on the first theory. The same
holds in the other direction, too. Whenever we say something like said above (namely, that two
languages are definitionally equivalent) we will mean what we explained just now. However we will
not spell this out explicitly. Cf. Def.6.3.30 (p.970) for definitional equivalence.
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In the other direction, we simulate the elements of the new sort Lines by pairs
(a,b) of points®® a,b € Points such that Col(a,b,b) A a # b holds. Tt remains
to simulate the incidence relation “€”. We do this by postulating ¢ € (a,b) iff
Col(a, b, c) holds.%®!

A detailed explanation of the connections between our two-sorted language and
structures (Points, Lines; €) and Tarski’s one-sorted version (Points; Col) is given
both in our definability section §6.3 together with Theorems 6.5.3, 6.5.5 below, in
Givant [102, pp.582-584], and in Appendix A of Goldblatt [108]. Cf. also the first
6 lines on p.viii of [108]. We would like to emphasize that the difference between
the two languages is only “notational”, c¢f. Remark 6.3.31 (p.973), the intuitive text
above that remark and Thm.6.5.3.

To formulate the conditions which we need to prove definitional equivalence
between Tarski’s language and ours we introduce axiom Det in the language of
(Points, Lines; €) and axiom det in the language of (Points; Col). The acronym
“Det” abbreviates “points determine lines”. Similarly for “det”.

Det (Vp, q € Points)(V¢,¢' € Lines)[(p#q N p,gefnNl) — £=10] A
(V¢ € Lines)(3p, q € Points) [p# q N p,q € £].

Intuitively, two different lines intersect each other in at most one point; and
on each line there are at least two points.

PROPOSITION 6.5.1 Ge(Newbasax) (= Det.

Proof: The proposition follows from Prop.6.5.8(i) (p.1000) below. R

Note that axiom Det is an extra possible assumption about our frame models 91
considered in this section. At the end of this section, we will return to discussing
the role of axiom Det.

Below we introduce axiom det in Tarski’s language.

det ( Col(a,b,c) — (Col(a,c,b) A Col(b,a,c) A Col(a,a,b))) %% A
([(Col(a,b,c) N Col(a,b,d) N a#b) — Col(a,c,d)] A
[Col(a,a,a) — (3b)(b#a A Col(a,b,b))]).

960this goes exactly as we explained in item (2.1) of item (2) entitled explicit definability of new
sorts on p.947

961We note that Col (definable from Lines) is slightly different from coll (which was defined from
Bw, on p.818 way above). Cf. Item 6.6.39, p.1052.

9%2We note that this part of det implies that for any function 7 : {a,b,c} — {a,b,c},
Col(a,b,c) — Col(w(a),w(b),n(c)).
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Intuitively, det says two things, the second part is basically a translation of
our axiom Det above, while the first part says that Col is invariant under
permutations and even “transformations” of its arguments.

Now, we can formally define Tarski’s class Ger, and ours Geyw, as we promised
way above.

Definition 6.5.2

Gep, = { (Points; Col) : (Points; Col) = det },
Gewe := {(Points, Lines; €) : (Points, Lines; €) = Det }.

The following theorem says that Tarski’s language and our language are defini-
tionally equivalent, under some mild assumptions.

THEOREM 6.5.3
(i) Ger, and Gewe are definitionally equivalent, i.e.

GeTa =A GeWe.

(ii) There are first-order definable meta-functions
We : Ger, — Gewe and Ta: Gew, — Gep,
such that for every A € Geq, and for every B € Gewe
WeoTa)A) =A and (TaoWe)(B) =B,

moreover there is an isomorphism between the two structures B and
(TaoWe)(B) which is the identity function on Points.

In the proof of Thm.6.5.3 we will use Lemma 6.5.4 below. Therefore the proof of
the theorem comes below Lemma 6.5.4.

We note that pairs of functions like (We, Ta) in Thm.6.5.3(ii) above will be
introduced and studied in our section on duality theory §6.6.

The subject matter of the following lemma belongs to definability theory, i.e. to
§6.3. For a similar lemma cf. Lemma 6.6.14 (p.1031).
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LEMMA 6.5.4 Let K, L be two classes of models. Assume that KT is a common
expansion of K and L. Assume further that IK" is closed under taking ultraproducts
and that KT is rigidly definable over K. Then (ii) below implies (i) below.

(i) K=a L, i.e. K and L are definitionally equivalent.
(11) KT is rigidly definable over L.

The proof of Lemma 6.5.4 is based on Thm.6.3.28 (p.969) and can be found in
Andréka-Madardsz-Németi [21]. N

Proof of Thm.6.5.3:
Proof of (i): Let the class Gejy, be defined as follows.
Ge iy, def { (Points, Lines; €, Col) : (Points, Lines; €) € Gey,

(Va, b, c € Points) [ Col(a,b,c) <> (3¢ € Lines)a,b,c € £]}.

Clearly, Gey, is rigidly definable over Gew,. Further, Ge{y, is an axiomatizable class,
since

Det + (VYa,b,c € Points) [ Col(a,b,c) < (3¢ € Lines)a,b,c € {]

axiomatizes Gejy,. Hence, Gejy, is closed under taking ultraproducts. Now, to prove
that Gewe =a Ger,, by Lemma 6.5.4 above, it is enough to prove that Geé’Ve is rigidly
definable over Ger,. We will prove this the following way. We will explicitly define
a class Ger, over Ger, such that (a)—(c) below will hold.

(a) Gert, is rigidly definable over Ger,.
(b) Gel, C Gefy,.

(c) (VU € Gefy,)(IB € Ger,)[there is an isomorphism i : A% such that
i [ Points is the identity function |.

Clearly, (a)—(c) above will imply that Gey, is rigidly definable over Ger, (and this
will imply that Gewe =a Ger,). Now, we turn to defining Ger, explicitly over Ger,.
First, for every 0t = (Points; Col) € Ger, we define M+ = (Points, Lines; €, Col)
as follows. Let 91 = (Points; Col) € Ger,. First we define

def

R := {{a,b) € Points x Points : Col(a,b,b), a #b}

as a new relation. Then we define the auxiliary sort U to be R together with the
projection functions pj,, pj; and we forget R as a relation (but we keep it as a sort
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named U). Then we define a kind of incidence relation E C Points x U as follows.
Let e € Points and ¢ € U. Then

e E L <% Col(pjo(f), piy(0), e).

We define the equivalence relation = on U as follows. Let ¢,¢; € U. Then

(=0 & (Ve € Points)(e E £ <> e E ¢y).

We define the sort Lines to be U/= together with €y pines C U X Lines. Finally the
incidence relation € C Points x Lines is defined as follows. Let e € Points and

¢ € Lines. Then
ectl S5 (30 €y pines e E 0.

By this, the structure 9" = (Points, Lines; €, Col) is defined. Now, we define
+ def +
Get, (= {M" : NeGen }.

To prove the theorem it remains to prove that for Gel, statements (a)—(c) above
hold. Statement (a) holds because in Ger, the axiom of extensionality holds for the
incidence relation €. Statement (b) can be proved by checking that

Get, = Det + (Va,b,c € Points) [ Col(a,b,c) +» (3¢ € Lines) a,b,c € £]%%3.

To prove statement (c), let A € Gefy,. Then, it can be checked that the reduct
(Points™; Col™) of 2 is a member of Ger,. Let B := (Points®; Col*)* € Gef,. One
can check that A = %8, moreover that there is an isomorphism 7 : A>——>B such
that ¢ | Points is the identity function. This completes the proof of item (i).

Proof of (ii): Let us notice that (ii) is equivalent with
Gewe = Gem,
cf. Def.6.4.5 for =%. Now item (ii) follows by Prop.6.4.6 (p.986) saying that
K=al = K=X

and by item (i). For completeness we give a direct proof.
Let (Points; Col) € Ger,. Then we define the new sort Lines and the incidence
relation € C Points X Lines exactly as in the proof of item (i) (in the definition

93and by the fact that Det + (Va,b,c € Points)[Col(a,b,c) <« (3¢ € Lines)a,b,c € ¢]
axiomatizes GeJ‘SVe
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of M* over N). By this, the structure Ta({(Lines; Col)) := (Lines, Points; €) is
defined, and it can be checked that this structure is a member of Geyy.

In the other direction let (Points, Lines; €) € Gewe. Then we define
T a({Points, Lines; €)) to be (Points; Col), where Col C 3Points is defined as
follows. Let a, b, c € Points. Then

Col(a,b,¢) <% (3¢ € Lines)a,b,c € 1.

It is easy to see that Ta({Points, Lines; €)) € Geye. Thus
We : Gep, — Gew and Ta: Gew — Gerp,

are first-order definable meta-functions; and it is not hard to see that they have the
desired properties. This completes the proof of Thm.6.5.3. 1

The following theorem says that the formulas of our language with free variables
involving only the sort Points can be translated, in a meaning preserving way, to
Tarski’s language and vice-versa. Cf. Prop.6.4.8 (p.987).

THEOREM 6.5.5 There are “natural” translation functions
Twe : Fm(Gewe) — Fm(Ger,) and Tr,: Fm(Ger,) — Fm(Gewe)

such that for every ¢(z) € Fm(Gewe), ¥(§) € Fm(Ger,) with all their free variables
belonging to sort Points, A € Gew. and B € Ger,, and evaluations a,b of the

variables T, 1, respectively (in the sorts Points of course), (i)—(iv) below hold, where
We and Ta are as in Thm.6.5.3(ii).%%*

(iii) A= @(7) ¢ (Twe 0 Tra)(9)(7)  and B = (7)< (Twe © Tra) (¥)(9)-
(iv) Gewe E ¢ & Gem ETwe(p) and Ger, Ev < Gewe = Tra(¥).

Proof: The theorem follows by Thm.6.5.3(ii) (p.993) and Prop.6.4.8 (p.987). Cf.
also Def.6.4.5 (p.986). 1

9%4We note that the formulas ¢ and Tyye(p) have the same free variables (therefore (i) below
makes sense). Similarly for T'r, etc.

996



Remark 6.5.6 Thm.6.5.5 can be generalized to formulas involving free variables of
arbitrary sorts by using Thm.6.3.27 (p.965), the end of Remark 6.3.31 (p.976) and
Thm.6.5.3(1) (p-993).

<

Remark 6.5.7 By Thm.6.5.5 and Remark 6.5.6 above formulas in two-sorted lan-
guage (Points, Lines; €) of our incidence geometries are abbreviations for formulas in
Tarski’s one-sorted language (Points; Col). Actually, we can introduce some further
useful abbreviations making our language more intuitive and more “compact”. For
our next definition, we need the expanded version (Points; Col, Bw) of Tarski’s lan-
guage also due to Tarski. Besides the new sort Lines we can extend Tarski’s language
with new sorts Planes, Half-lines and the incidence relations €p; C Points x Planes
and €p; C Points x Half-lines as follows. We define

R ¥ {(a,b,c) € *Poinst : ~Col(a,b,c) } and
R ¥ {(o,€) € *Points : 0o #e, Col(o,e,e)}

as new relations. Then we define the new sort U to be R together with the projection
functions pjg, pji, Pj, and the new sort U’ together with pjj, pj;. Intuitively, the
elements of U code the planes and the elements of U’ code the half-lines. I.e.
{(a,b, c) codes the plane containing a, b, ¢ while (o, e) codes the half-line with origin
o and containing e. We define the new incidence relations £ C Points x U and
E'" C Points x U' as follows. Let e € Points, P € U and £ € U'. Then

e EP & \/ (Ja € Points)[Co](a,pji(P),pjj(P)) A Col(e, a, pj,(P))] °°,
{4,5.k}={0,1,2}
def

e E'"t < —Bwl(e,pjo(£), pji(¢)) A Col(e, pjs(£), pji (£))-

The equivalence relations = and =" on U and U’, respectively, are defined as follows.
Let P,P' € U and ¢,/ € L. Then

P=rP & (Yae Points)(a EP < aE P,

¢t='¢ <L (Vo€ Points)(a E' ¢ < a E'0).

Now, the new sorts Planes and Half-lines are defined to be U/= and U'/=', respec-
tively, together with € C U x Planes and € C U x Half-lines. (For brevity we

V Yijk

{i,j,k}:{O,l,Z}
abbreviates the disjunction \/ { ¢;x : {i,4,k} = {0,1,2} }.

965Here the pattern
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omitted the subscripts of the € symbols.) Finally the incidence relations €p; and
€ are defined as follows. Let a € Points, P € Planes and ¢ € Half-lines. Then
aep P & @EP' eP)aEP,

aeml &L (3 el)aE 0.

By the above the many-sorted geometric structures (and language)
(Points, Lines, Planes, Half-lines; €, €p), € i, Bw, Col)

are definitional expansions of the one-sorted structures (and language)
(Points; Col, Bw).

We note that we do not have to stop with introducing Planes as a convenient
abbreviation. In the same spirit we can introduce the remaining geometric objects
like e.g. hyper-planes or 3-dimensional subspaces, or circles, spheres etc. All these
remain abbreviations only and we remain in the language (Points; Col, Bw, eq). In
other words the expanded language (Points, Lines, . . ., 3-dimensional subspaces, . . .)
remains a definitional expansion of Tarski’s original language (Points; Col, Bw, eq).

<

Convention: Throughout this convention we assume the axiom Det. Motivated
by Theorems 6.5.3, 6.5.5 above, we can identify our many-sorted geometry

GWI = <Mn’ L; LT’ LPh’ 6’ .<i BW’ J_"" eq>966
with a one-sorted structure
Ggp = (Mn; Col, Col", Col™, <, Bw, 1, eq)%"

where Col’ C Mn x Mn x Mn is T-collinearity, defined from LT the natural way, i.e.

Col* (a, b, c) JELN (3¢ € L") a,b,c € £, for a,b,c € Mn, cf. the definition of Col on

p.996.%% Similarly for Col™™ and Col®. In the other direction, in Gy, LT is a defined
relation and not a basic symbol, similarly L is a defined sort. Further in Gg;, L
is a relation between pairs of points, i.e. it is a 4-ary relation on Mn. Intuitively,
(a,b,c,d) € L iff the lines determined by (a, b) and {(c, d) are L,-orthogonal accord-
ing to Gop. We emphasize that, as it was explained in §6.3, from the point of view

966Ggy was introduced on p.787.

967For completeness we note that G,y is a legitimate structure even in the most classical and
most purist version of first-order logic.

968Here, Col is defined from L, cf. footnote 958 on p.991.
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of first-order logic (cf. e.g. in Monk [197] the section on many-sorted logic) there is
no real difference between Gy and Gg;,. More precisely, the difference between Goy
and Ggy is the same as that between a Boolean algebra

B =(B;V,A,—,0,1) and By =(B;V,—,0).

Let us include g into Ggy obtaining
Gj; = (Mn,Fq, L; LT, L™, €, <, Bw, L, eq,g).

Let us try to make Gf; one-sorted in the style of the above discussion. Then we
obtain the following structure

(GE,)~ = (Mn,Fy; Col, Col", Col™, <, Bw, L, eq, g).
This leaves us with two problems listed in (i) and (ii) below.

(i) (Ggy)~ remains many-sorted because it has two sorts Mn and F.

(ii) We can replace L with Col only when we assume axiom Det on our model 9t
from which the geometry is obtained. In special relativity (i.e. in the present
section) we are allowed to do this and this causes no loss of generality. However
in general relativity this is not allowed (because axiom Det would kill essential
features of the theory). Cf. Fig.308 on p.1002.

We will return to the difficulty outlined in item (ii) at the end of this sub-section
(p.1001)

We will extend the above identification of G§;, with (G;)~ to identifying &gy
with its variant &g, := (Mn, Fy; Col, Col", Col™", Col®, <, Bw, 1, eq,g,T). How-
ever, we will remain cautious with this identification in connection with generaliza-
tions toward general relativity because of item (ii) above.

We will return to the subject of identifying Gon, G, with Gy, (GJ;)~, respec-
tively, etc. in §6.7, but cf. also §6.3.

By the above, we will consider our geometries e.g. &gy as expansions of Tarski’s
geometries (Mn; Col, “extra relations”). Our reason for doing so is that we would
like to use the insights of Tarski’s school in our framework.

We note that Goldblatt [108, p.18] uses our notion (Mn, L; €) and calls it an inci-
dence structure (he uses the letters (P, £, Z) for “points”, “lines”, and “incidence”
for our Mn, L, “€”). As we already mentioned (on p.924), if (Mn, L; €) satisfies
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some axioms, then Goldblatt [108] calls it an affine plane etc. So our simplest
kind of geometry (Mn, L; €), together with its enriched versions (Mn,L; €, 1),
(Mn, L; €, Bw) and (Mn,L; €, Bw, L) are all studied in Goldblatt [108] in their
present form. For completeness we note that, Goldblatt in [108] uses our kind of ge-
ometries (Mn, L, Planes; €, €p;) and he denotes them by (P, L,6,Z) on p.112, where
0 is the set of planes and 7 is the incidence relation corresponding to our € and €p;.

We mentioned all these things about Goldblatt [108] and the notions (Mn, L; €),
.-y (Mn, L; €, Bw, L) of geometries in order to clarify the connections between our
notation and terminology and that of the literature. In particular, we hope that
besides our definability section (§6.3) and our Theorems 6.5.3, 6.5.5, Goldblatt [108]
will help the reader to see the connection between our language (Mn, L; €,...) and
that (Mn; Col,...) of the Tarski school.

In our theorems in the present section we used axiom Det. As we said, this
restricts the class of all frame models to the smaller class

Mpet := {9 € FM : B9y = Det}.

We note that Mpe; is axiomatizable in its original language too, this follows from
Prop.6.3.18 (p.957) and Prop.6.4.4 on p.985. The investigations in Chapters 1-6 in
this work do not change essentially if we restrict our attention to Mpe. E.g, the
properties of the theories Th € {Newbasax, Bax, Reich(Bax), ...} remain the
same if instead of Mod(Th) we investigate Modpe(Th) = Mpe, N Mod(Th).

Therefore, the geometrical counterpart of the theory developed in Chapters 1-6
of this work can be built up in the Tarskian one-sorted framework

Ggy = (Mn; Col, Col”, Col™, <, Bw, L, eq);

or if g plays an important role then in the metric version of the geometry Gy, i.e.
in &5, = (Gyy, F1, Col®, g, T).

To prepare the formulation of the next proposition we recall the axiom of disjoint
windows (Ax(diswind)) from p.812.

Ax(diswind) (Vm,k € ObsNIb)[(m 3 ph A k5 ph) = m 3 k).

PROPOSITION 6.5.8

(i) Ge(Newbasax) (= Det, moreover:

There is 9 = Newbasax and ¢, ' € Loy such that £N ¢ is an infinite set, but
LH£L.

1000



(ii) Assume M = Pax + Ax(diswind). Then &gy = Det, i.e.
Ge(Pax + Ax(diswind)) = Det.

Outline of proof: As a hint for the proof of (i) we include Figure 307. Item (ii)
follows by Remark 6.2.80 (p.890) and item 3a of Prop.6.2.79 (p.886). 1
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Figure 307: Illustration for the proof of Prop.6.5.8(i).

However, when we generalize our approach to general relativity theory then it
will be essential to use many-sorted geometries of the kind (Mn, L; €) for the follow-
ing reason. As we already said, we can add axiom Det to our presently discussed
relativity theories like Newbasax, Bax etc. without changing the essential, charac-
teristic properties of these theories. This will not be the case with general relativity
cf. Fig.308 (p.1002). See also Figures 355, 281 on pages 1208, 855. Namely, in gen-
eral relativity it is an essential feature for lines £, ¢’ that the number of intersections
of £ and ¢’ can be arbitrarily large. That is, in general relativity, for every n € w it is
possible to have £ # £’ such that |[¢N¢'| > n. Hence it is impossible to code lines with
n-tuples of points.?®® Therefore, the way Tarski represented (or coded) lines with
pairs (or n-tuples) of points does not seem to work in general relativity. Therefore,
it seems to be the case, that if, for general relativity, we want to carry through the
programme represented by “the geometry of Tarski’s school®™®”, Suppes [243], and
Goldblatt [108], then we will have to develop first-order logic of geometry in the
many-sorted style (Points, Lines; €) and not in the one-sorted style (Points; Col).
Of course, somebody in the future might have a new idea and reduce even general

969Roughly speaking, adding axiom Det to general relativity would basically reduce general
relativity to the level of special relativity, cf. Fig.308 (p.1002). Hence we do not want to add axiom
Det to general relativity.

970cf. e.g. [254, 251, 245, 237]
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relativistic geometry to an elegant one-sorted language; but we feel that this is not
worth the effort. Our feeling is based on the fact that many-sorted logic today is
very well developed and is well known to be reducible to one-sorted logic. There
seems to be a consensus that since we know how to reduce many-sorted logic to one-
sorted logic, theories which are in their intuitive form many sorted are more useful
when developed in many-sorted logic (as opposed to developing them in one-sorted
logic). For more on these feelings we refer to Monk [197], Barwise-Feferman [43],
Barwise [42, p.42 item 5.1] .

As we said before, we will discuss the interconnections between our basic relation
(and function) symbols Col”, Col™,...  eq, g (i.e. between the ingredients of Ggy)
in §6.7.

-
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Figure 308: A massive object such as a galaxy, or even a black hole, can act as a
giant lens. Light from a distant source (e.g. a quasar) is bent by the gravitational
space warp surrounding the object. This effect can produce multiple images of a
distant source.
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6.6 Duality theory: connections between relativistic geome-
tries (Bgy) and models (M) of relativity

Assume we have two essentially different ways of thinking about the world. As-
sume, we can establish some very strong interconnections between these two ways
of thinking.”! (Call this “duality theory” between the two ways.) Then such a
system of interconnections (i.e. “duality theory”) can be rather useful because then
we can use these two ways of thinking in a combined way, and ideas or reasonings
formulated in one of these ways of thinking can be translated to the other. One
could say, that such a duality theory enables us to reason about the world by using
the two ways of thinking simultaneously, achieving a kind of “stereo” effect.

Figure 309: A duality theory can be viewed as a bridge connecting two worlds of
mathematics, permitting two-way traffic. The bridge idea is explained in Andréka
et al. [30] so much that the title of §II there is “Bridge ...”. Cf. also [29] and
Mikulds [195, §1.3 (“Bridge between logics and algebras”)].

91 Later we will refer to this interconnection, in a figurative way of speaking, as a bridge, cf.
Fig.309.

1003



A second, equally important motivation for duality theories is the following. Du-
ality theories often establish two-way “translations”

T
World,  —  World,

Ts

between two “worlds”?"? of mathematics such that problems formulated in World; are

often easier to solve the following way: (i) translate “problem” to Worlds, then solve
T: (problem) in World, and translate the result back along 75 to World;. With certain
other problems (originating from Worldy) the other direction might sometimes work
better. See Fig.309. With this “pragmatic view” we do not mean to diminish the
importance of the intellectual pleasure and scientific value of integrating World; and
World; into a unified perspective, we only want to emphasize that this pragmatic,
problem-solving oriented motivation is there, too. An example is the

“proof theory”  “model theory”

duality built on Godel’s completeness theorem: some proof theoretic problems like
proving Th t/ ¢ are easier to solve in the world of model theory by constructing a
model M € Mod(Th) with I - . Cf. p.1019 (above item III), p.1096 (“Motivation
for ... equivalence of categories ...”), p.777 item (ii) in §6.1.

Before starting our particular application of this idea (i.e. of duality theories) we
note that we will list widely used examples of duality theories and motivation for du-
ality theories on pp. 1014-1027, in Remark 6.6.61 (p.1078) and in §§ 6.6.5—6.6.7 (pp.
1078-1107). Familiarity with the examples mentioned there or below is not needed
for reading and understanding this work. Further we note that such an example used
in mathematical physics is the duality between commutative C*-algebras and locally
compact topological spaces, cf. item (2) on p.1100. For C*-algebras in physics cf.
e.g. Rédei [218, p.62, Chapter 6 (von Neumann Lattices)], [219]. Cf. end of §6.6.6
p.1100 for an outline of what C*-algebras are. More motivation and examples for
the uses of duality theories in mathematics and theoretical physics are collected e.g.
in the books Mac Lane [168], Barr-Wells [40] under the name “adjoint situations”.
Cf. also the references on adjointness in item (4) of §6.6.6, pp. 1104-1107. Further
duality theories in physics are e.g. in Varadarajan [270], Lawvere-Schanuel [163].

Summing up: The present section (§6.6) contains a “distributed sub-section”
discussing the subject matter of duality theories (in general) throughout mathemat-
ics and mathematical physics. This distributed sub-section is spread out on pp.

9720ne world can be a branch like Boolean algebras while the other world can be another branch
of mathematics like topological spaces. But on p.1103 we will see that these worlds can be ar-
bitrarily far apart, e.g. one can be a part of analysis while the other a part of algebra (Laplace
transformation).
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1003-1005, pp. 1014-1027, pp. 1078-1081, pp. 1090-1093, pp. 1095-1107. (This
distributed sub-section does not contain the duality theories elaborated and used
in the present work, instead it intends to provide a perspective and background for
them.)

So much for duality theories in general. In the present section we will investi-
gate certain concrete duality theories. More concretely, the subject matter of the
present section concerns the connections between the “observation-oriented” models
Mod(7h) and the “theoretically-oriented” models Ge(7Th).°”® The investigation of
such connections has already been proposed by Reichenbach [223] and has been pur-
sued to some extent in a model-theoretic spirit (similar to ours, in many respects) in
Friedman [90] § VI.3 (p.236) under the title “Theoretical Structure and Theoretical
Unification”.?™ (In that title “theoretical structure” can be interpreted as referring
to the structures in Ge(Th),?™ while “theoretical unification” can refer to a unified
study of Ge(Th) and Mod(7h) and their interconnections [like e.g. what we do in the
present section].) Cf. also Mod(Th)* in Def.6.6.88 (p.1108). Cf. the introduction to
the present chapter, i.e. §6.1 (p.776).

Among others, in this section we will prove that our “observation-oriented” mod-
els Mod(Th) are definitionally equivalent with our relativistic geometries Ge(7Th),
assuming Th is strong enough. Formally,

Mod(Th) =a Ge(Th),

under some assumptions, cf. Thm.6.6.13 (p.1031). Besides this we will also elaborate
duality theories between the worlds Mod(7Th) and Ge(Th), cf. Fig.309 (p.1003) and
e.g. 88 6.6.1, 6.6.3, 6.6.6. We note that a duality theory between Mod(7h) and
Ge(Th) means a weaker connection than definitional equivalence. Hence, duality
theories (between Mod(Th) and Ge(7Th)) are more general in that they hold under
milder assumptions on Th. (Actually Mod(Th) =a Ge(Th) implies isomorphism
between the categories?”® Mod(Th) and Ge(Th) if we choose elementary embeddings
as morphisms; which seems to be the strongest possible form of duality, cf. item (5)
on p.971.)

973 As the reader might expect at this point, this connection will appear in the form of a duality
theory.

9741n passing we note that the emphasis on model theory (in connection with studying relativity,
of course), characteristic of the present work, is not without precursors, e.g. the relativity theory
book Friedman [90] puts quite a bit of emphasis on using model theory in a spirit similar to ours.
Cf. e.g. our reference to Friedman’s A and B on p.776 herein.

9750r more “literally” as referring to a common expansion (97, Bgx) of M and Bgy, but we are
closer to the spirit of the connections between [90] and the present work if we interpret “theoretical
structure” as gy or equivalently Ge(Th).

976 Categories will be introduced later, cf. §6.6.6 (p.1084).
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The following convention is made only to have a nicer duality theory between
the frame models and the observer independent geometries.

CONVENTION 6.6.1

(i) Throughout the present chapter (“Observer independent geometry”) we pos-
tulate that the empty model®”” similar to our frame models is a frame model
too (i.e. is a member of FM). Further we postulate that for any 9t € FM

Obs™ =0 = (M is the empty model).

In the present convention the definition of the class of frame models FM was
modified. The definition of Mod(7h) is modified accordingly, for any set Th
of formulas in our frame language.

(ii) Deviating from the convention usually made in Algebra, in the present chapter,
in accordance with item (i), algebraic structures with empty universes are
allowed, e.g. (0; +,-) with +, - binary operations on { is a field.?"

<

Let us recall that by a relativistic geometry we understand an isomorphic copy
of Bgy, for some frame model 9. Let us also recall that for any set Th of formulas
in our frame language for relativity theory we defined

Ge(Th) ‘X {& : (3M € Mod(Th)) & = Gy}
Let & = (Mn,...,L,€,...) € Ge()). Then we recall that we assumed that the
relation € between Mn and L is the, real, set-theoretic membership relation, and
that this does not cause loss of generality.

97TWe call a model empty if all its sorts (i.e. universes) are empty.

978The convention of allowing empty algebras and empty models comes from category theory cf.
e.g. Addmek et al. [2, p.15, item 3.3(2)(e)]. Also the motivation for allowing such structures comes
from category theoretic results; but cf. also the model theory book Hodges [136, §1.1, p.2] which
does permit empty models, cf. Exercise 10 on p.11 (§1.2) in [136].

979By the first version we mean the (M, G)-duality to be introduced soon while by the second
version we mean the (Mo, Go)-duality to be introduced in §6.6.4 much later.
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6.6.1 A duality theory between models and geometries (first part of the
first version®”)

Given a relativistic geometry & = &gy for a frame model 9, it is a natural
question to ask whether we can reconstruct 9 (up to isomorphism) from &.980 A
possible answer to such a question consists of elaborating a duality theory®! acting
between the geometrical world Ge(()) and the world Mod(() of our frame models.
This consists of two functions

G : Mod(0) — Ge(P) and M : Ge()) — Mod(0), %82

see Figure 310. We define G to be the function 9 — By (specified in Def.6.2.2

Geometries Geometries
\
I 'Y
M
g g M
Frame models Frame models

Figure 310: Connecting two worlds, namely the world of frame models and the world
of geometries.

980Here, the emphasis is on the case when & # &gy; cf. Remark 6.2.4 (p.801).

981For duality theories cf. pp. 1003-1005, Remark 6.6.4 (pp. 1014-1027), pp. 1078-1081, pp.
1090-1093, pp. 1095-1107.

982Despite of the fact that G and M are only proper classes of ordered pairs (as opposed to being
a set of ordered pairs) we call them functions.
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way above). The function M will be defined later, in §6.6.3. Sometimes we call
G and M functors because (i) they connect classes of structures, (ii) they preserve
certain connections between structures, e.g. isomorphims and embeddability, and
(iii) the corresponding “things” in Stone duality theory are called functors for cate-
gory theoretic reasons. (Cf. item (II) in Remark 6.6.4 on p.1015 for Stone duality.)
Actually, M and G will become “real” functors in §6.6.6 way below.

CONVENTION 6.6.2 If f is a function and H C Dom(f) then the notation
“f:H— K” means that f | H: H — K.
<

In the spirit of the above convention G : Mod(Th) — Ge(Th), for any set Th of
formulas in our frame language.

Besides defining M, a duality theory is supposed to prove some theorems stating
that the functors G and M behave nicely in some sense. In order to prove such
theorems we assume some axioms on our models 9. Therefore the duality theory
will be of the form:

G : Mod(Th) —» Ge(Th) and M : Ge(Th) — Mod(Th),

1.e.

Mod( Th) Ge(Th)

<[le

and our theorems will be of the form (A)—(1) below, and they will be stated for
certain choices of Th, see Figure 311. Motivation for discussing theorem schemas
(A)—(1) can be found in §6.6.6 (p.1084) and Remark 6.6.4 (p.1014). For formulating
items (A)—(1) we will need the following definition.

Definition 6.6.3 (Embeddability, weak submodel) Assume 2 and B are sim-
ilar models.

(i) We say that 2 is embeddable into B, in symbols A >—— B (or B +—<A)
iff there is an injective homomorphism A : A — 8. Cf. Convention 6.4.1
(p.983).

(ii) 2A is a weak submodel of B, in symbols A C,, B iff A C B and the identity
function Id4 is a homomorphism from 2A to 9B.%%® Hence weak submodels
are always embeddable. Further, the definition for the many-sorted case is

9839 is a strong submodel of B if every weak submodel € of 9B with the same universe as that of
A (i.e. with C = A) is a weak submodel of 2, too. In other chapters of the present work we write
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completely analogous. I.e. the existence of an identical embedding of say IN
into N is equivalent with 9N being a weak submodel of H.9%4

<

Assume 9 € Mod(Th). Then
9 is embeddable into (G o M) (M), i.e.

(&) M > (G o M)(IM),
of. Fig.318 (p.1035) and Fig.311.

In duality theories similar to our (G, M)-duality, in addition to item (A) it is
sometimes required that the embedding (or morphism) “>——" occurring in (A) is
the “shortest one” in some intuitive sense, cf. Fig.312 (p.1013). This will be made
precise in Definitions 6.6.78 (p.1090) and 6.6.79 (p.1091) in our category theoretic
sub-section §6.6.6. An analogous remark applies to item (B) below.

Assume & € Ge(Th). Then
(Mo G)(®) is embeddable into &, i.e.

() & < (MoG)(®),
cf. Fig.311.

We will have two kinds of dualities one represented by (M,G) and the other
represented by (Mo, Go). In the first case (i.e. in the case of M, G) the (B)-type
theorems will become degenerate in that they will be of the form (D) below.%®

G o M has a strong fixed-point property in the sense that for any
M € Mod(Th)

© (G 0 M) = %
cf. the right-hand side of Fig.315 (p.1031) and Fig.311.

simply “submodel” for “strong submodel”. Further, the definition (of weak and strong submodels)
for the many-sorted case is completely analogous with the above one. For more on the distinction
between strong and weak submodels cf. e.g. [53] or [27]. We note that if A C B, i.e. if A is a strong
submodel of B then 2 is also a weak submodel of B, i.e. A C,, B. The other direction does not
hold in general,ie. A C, B <« ACB but A, B A ACB.

984Using the notation Uv(9M) on p.929 (§6.3), we could say that 9 is a weak submodel of I if
the inclusion function of Uv(9) in Uv(N) is an embedding of 9 in N.

9851.e. as a side-effect of our choice M and G we will have (B)=-(D). This effect will disappear
when we turn to Mo and Go (i.e. to our second duality theory).
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this case is missing from
our first duality theory
Mod(Th)

(1)

Figure 311: Illustration for theorem schemas (A)—(H) for duality theory.
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M o G has a strong fixed-point property in the sense that for any
& € Ge(Th)

) (Mog)(®) =6,
cf. the left-hand side of Fig.315 (p.1031) and Fig.311.
The members of the range of G are fixed-points®®” of M o G, for-
mally: For any 9t € Mod(Th)

E

) (Mog)(G(m) = g(om)
cf. Fig.311.
The members of the range of M are fixed-points of GoM, formally:
For any & € Ge(Th)

F ~/

o (G 0 M)(M(®)) = M(6),
cf. Fig.311.

For any function f, f2 4o fof.

G o M has a fixed-point property in the sense that for any
M € Mod(Th)

©) (G 0 M)P() = (G 0 M)(W),
cf. the left-hand side of Fig.317 (p.1035) and Fig.311.

986i e. M is a fixxed-point up to isomorphism of G o M

987j.e. G(IM) is a fixed-point up to isomorphism of M o G.

988This is the typical form of basic statements of Galois connections?®®, e.g. Th(Mod(Th(K))) =
Th(K), or in the case of Galois theory of field extensions A(H(A(G))) = A(G), cf. items (I), (IV
of Remark 6.6.4.

989The definition of Galois connection is in Def.6.6.62 (p.1080) and motivation for Galois connec-
tion is in Remark 6.6.61 (p.1078).
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M o G has a fixed-point property in the sense that for any
& € Ge(Th)

(H) (MoG)(®) = (Mo 9)(®)
cf. the right-hand side of Fig.317 (p.1035) and Fig.311.

For any 9, 9t € Mod(7h) and &, $) € Ge(Th)

(1) M—N = GEN)——G(M), and®®
G——H = M(B)—M($H).9!

We will refer to items (A)—(1) above as theorem-schemas for our duality theories.
Figure 312 intends to illustrate our (M, G)-duality?®?, theorem schemas (A), (B),
and the idea of a shortest “>——" in the explanation below (A). The figure itself
uses the terminology of category theory which will be explained in §6.6.6 (p.1084).
It also intends to serve as a complement for Fig.311.
We note that in the case of (M, G), i.e. in our first duality theory,

(c) = (p) & (E) = (F) & (@) = (H)‘993
Items (c) and (D) above imply
Mod(Th) =R Ge(Th),

i.e. that Mod(Th) and Ge(Th) are weakly definitionally equivalent®®, for any Th in
our frame language, assuming M, G are first-order definable meta-functions®®® with

990 ater (e.g. on p.1015, p.1016) we will see that the functors like M, G can be arrow reversing.
This means that the M image of a pattern 2A>——% is of the form M ()<—M(B). For such
arrow reversing dualities schema (I) obtains the form

M—N =  GOM) =%— G(M)
M—-N = GON)+——=G(MN)

etc.

991(1) implies that

M—N = (Go M)I)>—(G o M)(MN)

which corresponds to closure operators (induced by Galois connections) being order preserving cf.
footnote 996 on p.1013 and p.1080 (§6.6.5).

992Gometimes we write (G, M)-duality for (M, G)-duality. They are the same thing.

993This is so because, if G : Mod(Th) — Ge(Th) then, Rng(G) is Ge(Th) up to isomorphism.

994cf. Def.6.4.5 (p.986) for the notion of weak definitional equivalence

995in the sense of Def.6.4.2 (p.983)
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Ge(Th)

Mod (Th)

Figure 312: (M, G) is an adjoint pair of functors, under certain conditions. For the
missing definitions (e.g. Mod(Th), Ge(Th)) cf. §6.6.6 (p.1084).

M : Ge(Th) — Mod(Th) such that the isomorphisms mentioned in (¢) and (D)
can be chosen such that they are identity functions on the sort F.

Further, if Th is strong enough, then Mod(7h) and Ge(Th) will turn out to be
definitionally equivalent, in symbols

Mod(Th) =a Ge(Th),

cf. Thm.6.6.13 (p.1031). For the intuitive meaning and methodological importance
of this cf. the text above Thm.6.6.13 on p.1030.

If for Th items (A) and (G) above hold, then we will say that G o M is a
closure operator®®® on (Mod(Th), C,,) up to isomorphism®" (and the values of GoM
are fixed-points up to isomorphism), assuming it preserves the partial order C,, up
to isomorphism, cf. Fig.313. In this case, we call (G o M)(9M) the closure (or the
(G, M)-closure) of 9. Further, if for Th items (B) and (H) hold, then we will say

996Let (P, <) be a partially ordered set (or class) and f : P — P. Then f is a closure operator
on (P, <) iff for all z,y € P, x < f(z) = f?(z) and (z <y = f(z) < f(y)). (In passing we note
that this notion admits a natural generalization to pre-ordered sets in place of partially ordered
ones.)

997The up to isomorphism part is important, because what we know of 9t € Rng(G o M) is that
it is a fixed point of G o M only up to isomorphism and for Mt € Mod(Th) “M C,, (G o M)(IM)”
holds only up to isomorphism.
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that M o G is a closure operator on (Ge(Th),,2) up to isomorphism, assuming it
preserves ,, 0 up to isomorphism, where &, D § iff § C,, &. In such situations,
sometimes, (M o G)(®) is called the interior, which means dual-closure, of &.

A
Qc

Figure 313: A possible closure operator.

Below our next item (Remark 6.6.4), beginning with p.1027 we will start devel-
oping such a duality theory.

Remark 6.6.4 (Galois theories, Galois connections, duality theories all
over mathematics, in analogy with the ones in the present work)

In connection with “theorem patterns” (A)—(1) above there is an analogy between
our present functors G and M and the various Galois theories, duality theories,
Galois connections in abstract algebra in the sense outlined below,**® cf. Def.6.6.62
(p.1080) for Galois connections and Remark 6.6.61 (p.1078) for motivation for study-
ing Galois connections.

(I) Analogy with Galois theory of fields: Let M|K be a field-extension, i.e. M
is a field and K is a subfield of M. Let us consider those automorphisms of M that
leave the universe of K pointwise fixed. These automorphisms form a group under
composition “o” and taking inverse “~!”. This group is called the Galois group of

the field extension M|K and is denoted by G(M|K). Let the functions

H:{L : Lisafield, KCLCM} — {G: Gisasubgroup of GM|K)},
A:{G : Gisasubgroup of GM/K)} — {L : Lisafield KCLCM}

be defined as follows.

998The reader not familiar with abstract algebra may safely skip this discussion of connections
with Galois theory.
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Let L be a field and K C L C M. Then we define H(L) to be the Galois group
G(M|L) of the field extension M|L.

In the other direction, if G is a subgroup of G(M|K) then we define A(G) to
be the greatest subfield L of M such that each member of G leaves the universe of
L pointwise fixed.

The above sketched ideas lead up to a branch of abstract algebra which is called
Galois theory of fields, cf. any textbook on abstract algebra e.g. Shafarevich [238].
We are recalling this because that theory®® is proved rather useful in various parts
of mathematics!% and now we want to point out an analogy between that theory
and our present duality theories.

Now, our functions G and M are in analogy with H and A. Further, Mod(7h)
and Ge(Th) correspond to {L : KCLCM} and {G : GC G(M|K) }, respec-
tively. In particular, we have L>——(H oA)(L) and G>——(AoH)(G) in analogy
with our theorem schemas (A) and (B). We call (H o A)(L) the (Galois) closure of
L and similarly (A o H)(G) is the closure of G. (If the reader feels that the arrows
go in the wrong direction when comparing G——(A o H)(G) with theorem schema
(B), then we note that the “functors” H, A are order-reversing. For more on this
cf. the explanation in item (II) below.)

(IT) Analogy with Stone duality theory: First we will introduce a duality theory
more general than Stone duality. Then, beginning with p.1019 we will introduce
Stone duality (relying on the more general one introduced first).

Let

S : lattices — topological spaces 10

L : topological spaces — lattices

be defined as follows.

Let L = (L; A,V) be a lattice.'%? Then we define S(L) to be the topological
space X = (X, O) such that the set of points X consists of the proper prime ideals
of the lattice L, and the collection of open sets O is generated by the following
collection of sets

{{PeX :a¢P}:aclL},

999 e. the Galois theory of fields

1000¢cf, e.g. p.1027 for applications in cylindric algebras.

1001Cf, p.870 for the definition of topological spaces.

1002For lattices, proper prime ideals etc. cf. any book on abstract algebra or universal algebra
e.g. McKenzie-McNulty-Taylor [192] or Addmek et al. [2] or Davey-Priestley [68]. A lattice is a
partially ordered set L in which any two z,y € L has a supremum!®®® 2V y and an infimum z A y.
1003gmallest upper bound
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i.e. the latter set is a subbase!%®* for the topological space X.
In the other direction, let X = (X, O) be a topological space. Then

def

£(X) € (0; n,u).

Now our functors G and M are in analogy with S and £. Further Mod(7h) and
Ge(Th) correspond to the class of lattices and the class of topological spaces, respec-
tively. In this connection we note the following. If Th satisfies certain conditions
then 90 is embeddable into (G o M)(9M), i.e. IM —— (G o M)(9M). Analogously in
the case of lattices L — (So L)(L), i.e. there is a homomorphism going from the
lattice L into its “closure” (So £)(L).}%% The existence of such a homomorphism is
analogous with our theorem schema (A). On the topology side for any topology X
there is a continuous function f : X — (£ 0 §)(X). In general this function need
not be injective or surjective. The existence of this function is analogous with our
theorem schema (B). (The reader may feel that the arrows go in the wrong direc-
tion when comparing our f with (B). However this is not a problem because our
functors S and £ are “contravariant”, i.e. arrow reversing; and this is why schema
(B) appears here in a reversed form.)

We note that members of Rng(L) are distributive lattices, i.e.

Rng(L£) C (distributive lattices).

The reason why we chose lattices in general instead of choosing just distributive
lattices is to make the analogy with our (G, M) duality stronger. In analogy with
Rng(L£) C (distributive lattices) we note that

Rng(S) C (T, topological spaces). 0

10046t X = (X, ) be a topological space. By a subbase for X we understand a set H C O such
that H generates O by finite intersections and infinite unions i.e.

O:={UY : YC{NH : H is a finite subset of H } }.

10051y passing we note the following. Let L be an arbitrary lattice. Let h : L — (So £)(L) be the
“canonical” homomorphism corresponding to our theorem schema (A). Then the range Rng(h) of
h is a sublattice of (S o £)(L). Rng(h) is the same as the so called reflection of L in the variety
of distributive lattices. This means that Rng(h) is that distributive lattice which is “closest” to L
in a sense which can be made precise by using category theory (cf. Def.6.6.78 on p.1090). Usually,
(S o £)(L) is bigger than Rng(h), e.g. (S o £L)(L) is a complete lattice while Rng(h) need not
be such. (As a curiosity we note that if L is infinite, then (S o £)(L) is bigger than Rng(h),
hence (S o £)"*t1(L) is different from (S o £)"(L).) We call (S o £)(L) the “closure” of L only to
emphasize the connections with closure operators discussed on p.1013 (below schemas (A)—(1)), in
Fig.313 and in item (I) above. Strictly speaking, we should call (S o £)(L) the (S, £)-closure of L
only if the following three conditions hold (1) L=——(S o £)(L), (2) (So £)?*(L) = (S o £)(L), for
all L € Dom(S), and (3) S o £ preserves embeddability, i.e. “>—".
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Therefore our (S, £) duality also yields a “stronger” duality

S

distributive lattices : T, topological spaces.
c

This duality too is analogous with our duality

g
Mod(Th)  —  Ge(Th)
M

elaborated in §§ 6.6.1, 6.6.3 cf. e.g. pp. 1007-1014. Hence Mod(Th) corresponds to
distributive lattices, G to S etc.

Boolean algebras: Boolean algebras, BA’s for short, are very important examples
of distributive lattices. Here we treat BA’s as special distributive lattices, hence
instead of (B; U,N, —) here a BA is of the form (B; U,N), i.e. we throw away com-
plementation as a distinguished operation.

Our above discussed (S, £) duality is too simple minded for working for BA’s.
Namely for any infinite distributive lattice L we have that (S o £)(L) is not a BA.
In particular for any infinite BA, B we have that (S o £)(B) is not a BA. So our
(S, £) duality does not automatically yield a

BA +—  some kinds of topologies

type duality. However, it is easy to modify our (S, £) to obtain a duality for BA’s.
For this we define

Lp : topological spaces — distributive lattices

as follows. Let X = (X, O) be a topological space. Those subsets of X which are
both open and closed (i.e. the members of @ whose complements are also in O) are
called clopen sets of X. Now, we define

Lp(X) o (clopen sets of X; U, N).

1006 For completeness we note that Rng(LoS) C (compact'®7 T, topological spaces), hence
L oS : (topological spaces) — (compact Ty topological spaces). Further (X, Q) is a Tq-space
iff (Vp,q € X)(3Y € O) such that Y distinguishes p from ¢ i.e. either p € Y & ¢ or vice versa.
1007For the notion of compact topological spaces cf. footnote 1008 on p.1018.
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It is easy to check that
Lp : topological spaces — BA

where BA denotes the class of BA’s.
Now we have a very general duality for BA’s and topologies, namely
S

BA : topological spaces.

Lp

This has the properties
(i) B= (S0 Lp)(B),
(i) X SN (Lp o 8)(X), for some continuous function f, and
(iii) (Lo 8)?*(X) = (Lp o S)(X).
So, our theorem schemas (B), (C), (H) hold for the present analogy where BA corre-

sponds to Mod(Th) etc.

Next, in order to obtain a “tighter” duality, let us look at S[BA] C topologies.
One can prove that S[BA] consists exactly of the so called Boolean spaces which in
turn are exactly the compact'®® T, (i.e. Hausdorff)!%% spaces having a clopen
base.'%% One can regard (£Lp o S)(X) as the Boolean space “closest” to the original
X (in some sense). Consider

X L5 (Lg 0 8)(X).1011

Then, very roughly speaking, what f does to X is that (i) it collapses those points
which cannot be distinguished by clopen sets, (ii) forgets those open sets which are
not unions of clopen sets, and (iii) adds new points to X to make the new topology
compact.'0?

1008 A topological space (X, ) is called compact if for any H C O, if X = |JH then there is a
finite Ho C H with X = [JHo. Cf. also footnote 1104 on p.1100.
1009 A topological space X = (X, ) is called Ty or equivalently Hausdorff space iff

(Vp,qe X)[p#q = (3A,Be0) (ANB=0and p € A whileqge€ B)].
1010For understanding the rest of this work it is not necessary to understand these topological
concepts.

0L ater, in the category theoretical part we will call (L5 o S)(X) or “s (£p o S)(X)” the
reflection of X in the subcategory “Boolean spaces”, cf. Def.6.6.78 (p.1090).
1012(3{i) is called compactification.
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Let Lga := Lp | Boolean spaces be the restriction of Lz to Boolean spaces.
Then we obtain a very strong duality:

S
BA : Boolean topological spaces
LBA
with the properties
B = (SoLg)(B),

X = (LgaoS)(X),

for all B € BA and X € Boolean spaces. The duality (S, Lga) is called Stone duality,
and it satisfies our theorem schemas (A)-(H).!°!® Later, in the category theo-
retic sub-section we will see that such dualities are called equivalences between cate-
gories. In particular, (S, Lga) is an equivalence between the categories of BA’s and
of Boolean spaces, cf. Def.6.6.82 (p.1094). (This notion is weaker than isomorphism
of categories, but this weaker, more flexible notion is generally considered more
adequate for studying categories and their natural properties.)
In connection with our category theoretic sub-section way below (p.1084) we
note that our functions

S : lattices — topological spaces and L : topological spaces — lattices

naturally extend from “objects” to “morphisms” (e.g. from lattices to lattice-
homomorphisms and from topological spaces to continuous functions). This ex-
tension ensures that our functions become functors in the category theoretic sense,
which in turn makes our duality theories more comprehensive in a way to be dis-
cussed in our category theoretic sub-section.

For more on Stone duality (for BA’s and Boolean spaces) we refer to e.g. Davey-
Priestley [68] and/or Burris-Sankappanavar [54].

Before continuing, we note the following. As we already mentioned in the in-
troduction of §6.6 (cf. Fig.309 on p.1003 and World; P Worldy on p.1004) one of
the main uses of duality theories is that they connect two “worlds” of mathematics
(like Mod(Th) and Ge(Th)) and they make it possible to translate problems from
one world to the other, obtain solutions in this second world and translate the re-
sult back. (The main idea is that some problems are easier to solve in one world,

10131 4 sense, it also satisfies (I) too but in a dual form, i.e. in an arrow-reversing form, cf.
footnote 990 on p.1012. (Recall that the functor S is arrow-reversing i.e. contravariant cf. p.1016
and p.1015 immediately above item (II).)
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while others are easier in the other world.) Indeed, several problems of BA-theory
have been solved by translating them to topological problems via Stone duality
theory (and then translating the result back, of course). Cf. also item in §6.6.6
entitled “Motivation for studying equivalences of categories, adjoint situations, etc”
on p.1096.

(III) Connections of Stone duality with the (syntazx, semantics)-duality in logic
and in particular with parts of definability theory discussed in §6.8 (p.928):

In connection with Fig.306 (p.984) and Fig.314 (p.1021), for the interested reader,
we note that the (syntax, semantics)-duality as discussed in this work is an organic
part of algebraic logic. Therefore if the reader wants to learn more about this
duality he can find more information in works usually classified as algebraic logic
(or sometimes as its category-theoretic oriented parts).

Notation: For any first-order theory Th,

Fm(Th) := Fm(Mod(Th)),

i.e. Fm(Th) is the set of formulas of the language of the theory Th. In this definition
we assume that the vocabulary of Th is somehow determined by Th. I.e. when
specifying a theory one has to specify its vocabulary, too. (We often leave this to
context).

Convention: In the present remark (explaining duality theories etc.), we treat
interpretations in a somewhat simpler way/form than in the definability section
§6.3. The difference is that in the duality item we consider only one-sorted theories.
L.e. the objects of the category Theories in Fig.314 are one-sorted theories. In the
definability section we concentrated on many-sorted theories. Hence there interpre-
tations were understood between many-sorted theories which made them slightly
more complicated objects than interpretations in the present part.'°** Cf. p.1023
footnote 1022, p.984, p.968 and footnote 936 (p.968).

Here the analogy is between two duality theories. One of them is Stone duality,
while the other duality acts between the category of first-order theories (and trans-
lation mappings between them as morphisms) and the category of axiomatizable
model classes (and first-order definable meta-functions i.e. interpretations between
them). (For the latter duality see Fig.306 on p.984, while for the analogy with
Stone duality cf. Fig.314.) In more detail, the category of Boolean algebras is put

1014 o in §6.3 an interpretation consisted of a function Tr together with something called “code”
(cf. p.968). In the present item we do not need “code” but only Tr.
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ﬁ
BA Boolean topological spaces
homomorphisms — =e————— continuous functions
Lga
semantics

Theories Mod Axiomatizable classes of models

translations Th first-order definable meta-functions
(interpretations) W (interpretations)

Figure 314: The analogy between Stone duality and (syntax, semantics)-duality.

into analogy with the category of (first-order) theories (in the syntactical sense)
whose objects are the (Fm(Th), Th) pairs. The morphisms of this category are the
translation mappings or interpretations like Tr; in Fig.306 on p.984 cf. also foot-
note 1022 on p.1023, Prop.6.4.4 (p.985) and Theorems 6.3.26, 6.3.27 (pp. 962, 965).
(These translation mappings are often called interpretations.'®®) E.g. we can con-
sider (Fm(Thy), Thy), (Fm(Ths), Thy) as two BA’s and any translation mapping Tr
from Thy to Tho will be a homomorphism between these BA’s. Let, now, K; and Ky
be two axiomatizable classes of models. Let f : K, — K; be a first-order definable
meta-function'®®. Then f induces a translation mapping Try : Fm(K;) — Fm(Ks)
satisfying the conclusion of Prop.6.4.4, p.985. Let us notice that Fm(K;) are theories
hence they correspond to BA’s (of equivalence classes of formulas) and Tr; turns out
to be a BA-homomorphism. Further Ky, K; are Boolean topological spaces'®'” and
f is a continuous function. The details of these claims will be given soon. Now

1015The choice between using “translation mapping” or “interpretation” depends only on which
aspects or which perspective/background we want to emphasize (and also on with which part of
the literature we want to emphasize the connections cf. footnote 1022 on p.1023).

1016¢f p.983, Def.6.4.2

1017if we collapse the elementarily equivalent models
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if we apply Stone duality to the BA-homomorphism Tr; then we will obtain the
continuous function f as its dual. See Fig.314.

In more detail the duality between classes of models Mod(7h) and sets of for-
mulas Fm(Th) of first-order logic'®*® (i.e. the duality at the heart of the theory of
translation mappings Tr : Fm(Th1) — Fm(Ths), or equivalently Tr : Fm(K;) —
Fm(Ky), cf. e.g. p.965 or Prop.6.4.4 on p.985) is, basically, a special case of our
above outlined duality

s
BA : Boolean topological spaces

LBa

(or more generally of our (S, Lg)-duality). The (syntax, semantics)-duality of logic
acts between the syntactical category { (Fm(Th), Th) : Th is a theory of our logic }
of theories and semantical category { Mod(7Th) : Th is a theory of our logic } of
axiomatizable classes of models. It is of the pattern

{(Fm(Th), Th) : Th is a theory } = {Mod(Th) : Th is a theory }.

It is important to emphasize that the vocabularies of different choices of Th may
be completely different. E.g. the vocabulary of that of Th; may be different from
that of Thy. In these categories the emphasis is on the possible interpretations
or translations between two different languages. Such a translation is of the form
Tr : Fm(Thy) — Fm(Ths) which we already encountered in Definability theory,
cf. Theorems 6.3.26, 6.3.27 (pp. 962, 965).

We claim that the above (syntax, semantics)-duality is very strongly related to
Stone duality of BA’s. Indeed, for any theory Th (of first-order logic) the set F'm(Th)
of formulas of Th forms a Boolean algebra if we identify semantically equivalent for-
mulas (modulo Th), while Mod(Th) forms a compact topological space having a
clopen base.!%'? Actually, Mod(Th) becomes a Boolean space if we identify elemen-
tarily equivalent models (obtaining (Mod(Th)/=.., O) etc.). The set of points of
the topology “Mod(Th)” is Mod(Th) while the set of its closed sets is the collection
of axiomatizable subclasses of Mod(Th).

We can view Mod(Th) as the dual S(Fm(Th)) of the BA of for-
mulas Fm(Th) and similarly we can view the BA Fm(Th) as the

1018 An analogous duality claim holds for any logic (in place of first-order logic), cf. e.g. Andréka et
al. [30], for the notion of an arbitrary logic, and see Marti-Oliet et al. [186] (in [94]) for a (syntax,
semantics)-duality for such arbitrary logics.

1019 A subclass K C Mod(Th) is clopen iff K is finitely axiomatizable.
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dual Lga({Mod(Th), “complements of axiomatizable classes”)) of the topology
(Mod(Th), .. .).1020

Recall that our duality functor & : BA — topologies is “contravariant”, i.e.
it reverses the directions of our morphisms.!%?! This corresponds to the fact that if
we have a (logical) translation mapping

Tr : Fm(Thy) — Fm(Ths)

between two theories Thy and Ths, then on the semantic side this will induce a

function
M’H : MOd(Thg) — MOd(Thl)

going in the opposite direction. Cf. e.g. Prop.6.4.4 (p.985), Theorems 6.3.26 (p.962),
6.3.27 (p.965), 6.5.5 (p.996), 6.6.16 (p.1033), 6.6.45 (p.1061), 6.6.59 (p.1075). Typ-
ical examples for such semantical functions M1, are the first-order definable meta-
functions on pp. 983, 1030, 1059, 1073, more concretely M, G, Go, Mo etc.

Let =75, be the equivalence relation on formulas defined by ¢ =g o iff
Th &= ¢ < . We write Fm(Th)/Th for Fm(Th)/=q,. Then, a closer analy-
sis of such situations reveals that, actually, Tr is a Boolean homomorphism from
the BA Fm(Thy)/Thy to Fm(Ths)/The, and that My, is a continuous function
(Mod(Thsy), O3) — (Mod(Thy),O;) where O; =“complements of axiomatizable
classes” acting between the classes of models (viewed as topological spaces).

In general, if we have an interpretation'®?? of Thy in Tho, then this interpretation
induces a Boolean homomorphism, of the kind Fm(Th;) — Fm(Thy) while!?? on

the semantical level of abstraction it induces a continuous function Mod(Ths) —
MOd(Thl)

1020Tg be precise we should write here Fm(Th)/=qy in place of Fm(Th), but this notation will be
introduced only a little bit later. Further, if we concentrated on the subalgebra Fmclosed(Th) /=1y,
of closed formulas (of Fm(Th)) then the formation of the dual S(Fm(Th)/=1y) of Fm(Th)/ ...
would even more closely correspond to our earlier definition of the Stone functor S. However we
stick with our original BA Fm(Th)/= 7, which we will sloppily denote as Fm(Th).

1021j 6. it sends f : A — B to S(f) : S(B) — S(A4).

1022We do not define “interpretations” carefully, but they are basically the same what we called
“translation mappings” e.g. on p.984, Fig.306 or Prop.6.4.4 on p.985. Cf. Goguen-Burstall [105],
Andréka et al. [11, 12], Henkin-Monk-Tarski [129, Part II, pp. 165-171, 176, item 4.368(4)] and
Gergely [100].

1023When referring to Fm(Th)/Th as a Boolean algebra we deliberately omit the “/ Th” part in
order to put the emphasis on the intuitive ideas.
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Our continuous function M ; is strongly related to the meta-function f : K — L
in item (5) of “Discussion of the definition of =5” on p.971 (definability theory) as
well as to the meta-functions G, M, Go, Mo, etc. as indicated above. Typical
examples of interpretations Tr : Fm(Th;) — Fm(Ths) are Try, Try, Ty, T on
pp- 973-976; Tye, 174 in Thm.6.5.5 on p.996; T, Tg in Thm.6.6.16 on p.1033; and

Tr in Thm.6.6.59 on p.1075.

For simplicity, assume that we are in one-sorted logic (and we do not define new
sorts). Then, the special case when

Moy : Mod(Thy) — Mod(Th,)

is surjective corresponds exactly to the case when Mod(7Th;) is being defined over
Mod(Ths) in the sense of §6.3. The translation mapping associated to this “definition
of Mod(Th;)” in Thm.6.3.26 is exactly the Boolean homomorphism

Tr : Fm(Thy) — Fm(Thy)
discussed in Thm.6.3.26 and Prop.6.4.4. Now, by duality theory we get that
Fm(Thy)/ Thy>——Fm(Thsy)/ Th,
is a Boolean embedding (on the algebras of formulas).

Interpretations Tr : Fm(Thy) — Fm(Thsy) are more general than definitions
since if Tr is an interpretation then My, : Mod(Thy) — Mod(Th;) need not be
surjective (while in case of definitions it is surjective, cf. item (2) on p.938). How-
ever, if Tr is an interpretation, then some axiomatizable subclass'®?* of Mod(Th)
is_definable over Mod(Thy). We do not need this level of generality here, so we do not
discuss interpretations in more detail, but for more on the theory of interpretations
cf. the references in footnote 1022. For completeness, we note that the interpretation
of the theory Th; of groups in the theory Ths of BA’s is a typical example of an
interpretation. Here the group operation + is interpreted as the derived operation
symmetric difference @ of BA’s (where &y & (xN—y)U(yN—=z)). The interesting
aspect of this example is that Mg : BA — Groups is neither surjective nor
injective. (Here groups are not defined over BA’s, but an axiomatizable subclass of
groups called Boolean groups is being defined over BA’s.)

E O S

1024this subclass is the class M [Mod(Thsy)], which is actually a closed set of the topology
Mod( Th)
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In the above discussion we had to put more emphasis on the “morphism” part
of Stone duality than we did in the presentation of Stone duality. This “gap” will
be filled in in §6.6.6 (1084). In connection with the above discussion (of theories
Th and their models Mod(7Th)) we also refer to item (IV) below and the lattice of
first-order theories in Chapter 4 beginning with p.451.

Summing up, what we tried to say in the above discussion is that Stone dual-
ity is, basically, the same thing as the (key idea of) (syntax, semantics)-duality of
logic which was used implicitly in §6.3 (and which, in particular, makes translation
mappings between formulas go in the opposite direction as they go between the
models).!9%

The translation mappings denoted in the above discussion'®?® as Tr

Fm(Thy) — Fm(Ths) are often called theory morphisms in the literature. Ac-
cordingly the category with objects of the form (Fm(Th), Th) is often called the
category of theory morphisms (this is on the left-hand side of the above duality).

Connections with physics: A closer inspection of the category of theory mor-
phisms (or equivalently of interpretations) is not only a category but also a so called
2-dimensional category cf. e.g. Zlatos [277]. Interestingly the categories applied in
physics are also 2-dimensional categories or more generally n-dimensional ones. Cf.
Baez-Dolan [36], Crane [63], Freed [87], Frohlich-Kerler [91].

In passing, we note that the Theories " Models duality outlined way
above (under the name (syntax, semantics)-duality) is more fully represented if we

1025Gtone duality concentrates on the category of BA’s. Syntax-semantics duality concentrates on
the category of theories. But a theory Th induces a Boolean algebra Fm(Th)/Th. This gives us
a connection ... etc.

Else: In passing we note that Fm(Th)/ Th is a slightly more complex object than a plain BA. There-
fore (in logical (syntax, semantics)-duality) when forming the dual S(Fm(Th)/Th) of Fm(Th)/ ...
we do not take all prime ideals of Fm(Th)/Th, but only those ones, say P, whose complements
— P form consistent theories of our logic. (To this end we have to view —P as a subset of Fm(Th).)
Equivalently, we could use the prime ideals of the subalgebra Fmclosed(Th)/ Th, but we think that
requiring —P to be a consistent theory is more helpful in building good logical intuition.

For completeness: To make the connection with Stone duality even closer, we have the following
extra option: We can stick with Fm(Th)/Th on the BA side (using all prime ideals) and on the
topology side use model-evaluation pairs (90, a) as points of our topology “Mod(Th)”. In this set-
ting the analogy with Stone duality is perfect. This train of thought when pushed to the extreme
leads eventually to cylindric algebras (CA’s) in place of BA’s, and to represented CA’s in place of
represented BA’s (which are nothing but Boolean spaces).

10264f the (syntax, semantics)-duality
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