Proof: The proposition follows by Thm.6.2.59. &

The following theorem says that in Basax models the world-view transforma-
tions f,,r preserve Minkowskian orthogonality.

THEOREM 6.2.63 Assume Basax. Let /,¢' € Eucl and m,k € Obs. Then
14 J—/.L ! = fmk[g] J‘H fmk[ﬁ']
The proof is available from Judit Madarasz. R

Roughly, the following theorem says that the (<, eq, g, T)-free reduct of almost
any (Bax® + Ax6)-geometry coincides with the similar reduct of a Minkowskian
geometry. Further, the same holds for the (eq, ¢, T)-free reducts of (Bax® + Ax6 +
Ax(11))-geometries. Stronger forms of the following theorem, not involving Ax6,
will be stated in §6.2.5 as Theorems 6.2.71, 6.2.73.

THEOREM 6.2.64 Assume & € Ge(Bax® + Ax(Triv,)~ + Ax(v ) + Ax6).
Then (i) and (ii) below hold.

(i) Assume n > 2. Then the (<,eq,g,T )-free reduct of & coincides with the
similar reduct of a Minkowskian geometry, up to isomorphism, i.e. there is a
FEuclidean § such that

<MH, La LTa LPha LS’ €, BWa J—'I‘> = (nF’ Lua L,/Zja Lﬁha Lia €, BW[M J—u)a
cf. Figures 282, 283.
(The other direction also holds by Prop.6.2.62. )%

(ii) Assume Ax(™). Then the (eq, g, T )-free reduct of & coincides with the sim-
ilar reduct of a Minkowskian geometry, up to isomorphism, i.e. there is a Eu-
clidean § such that

(Mn,L; L', L"" | L% €, <, Bw, L) & ("F,L,; L, L,", L% €, <,,, Bw,,, L,,).
(The other direction also holds by Prop.6.2.62.)

Proof: The theorem follows by the first proof given for Thm.6.2.10 (p.813), by
Prop.6.2.62 and by Prop.6.2.32 (p.840). 1

Roughly, the following theorems says that the (<, g, 7)-free reduct of almost any
Basax geometry & coincides with the similar reduct of a Minkowskian geometry.
Further, the same holds for (g, 7)-free reducts of (Basax + Ax(11))-geometries.
Generalizations of the following theorem for Newbasax (in place of Basax) will be
stated in §6.2.5 as Theorems 6.2.74, 6.2.75.

8151 e. this reduct of any Minkowskian geometry is obtainable as a reduct of a (Bax® + ...)-
geometry (up to isomorphism of course).
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THEOREM 6.2.65 Assumen > 2 and ® € Ge(Basax + Ax(Triv,)~ +Ax(v")).
Then (i) and (ii) below hold. (Cf. Figures 282, 283.)

(i) The (<,9,T)-free reduct of & coincides with the similar reduct of a
Minkowskian geometry, up to isomorphism, i.e. there is a Fuclidean § such
that

(Mn,L; L', L™ L® €, Bw, L,,eq) = ("F,L,; L), L\" L}, €, Bw,, L, eq,).
(The other direction also holds by Prop.6.2.62.)

(ii) Assume Ax(11). Then the (g, T )-free reduct of & coincides with the similar
reduct of a Minkowskian geometry, up to isomorphism, i.e. there is a Fuclidean
§ such that

<Mn’ L; LT’ LPh’ LS, E, BW’ <’ J"r’ eq> g

. 7T yPh 1S
("F,Ly; L,,L,", L, € Bwy, <, Ly, eq,).

(The other direction also holds by Prop.6.2.62.)

On the proof: A proof can be obtained by the first proof given for Thm.6.2.10
(p.813), by Prop.6.2.62, by Claim 6.2.84 (p.892), by Prop.6.2.88 (p.895) and
Prop.6.2.32 (p.840). 1

Remark 6.2.66

(i) In Basax we know that if we are given a possible life-line ¢ then ¢ completely
determines the relation of simultaneity of observers living on ¢. (By relation
of simultaneity we mean a binary relation between events). This generalizes
to Bax® + Ax(v/ ), but it does not, generalize e.g. to Reich(Basax).

(ii) In Basax(4)+ Ax(Triv,)~ +Ax(v/" ) we have the following property. Assume
we are given four lines ¢, /1, {5, /3 € L intersecting at one point and mutually
1 ,-orthogonal. Assume exactly one of them is time-like. Then there is an
observer whose coordinate axes are exactly these four lines. The other direction
is also true: the coordinate axes of any observer behave like 7, ..., /5.

This generalizes to Bax® + Ax(Triv,)~™ + Ax(v/ ).
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Remark 6.2.67 (Connections between our sub-sections discussing reducts of &,
connections with the literature, interdefinability of parts of &, and streamlining of
&:)

Sub-sections 6.2.4, 6.2.5, 6.2.9, 6.6.10, 6.6.11, and 6.7 are strongly connected
with each other in that they are all involved with the subjects listed in the title of
the present remark. We do not discuss these connections here in more detail but
the reader is invited to compare these sub-sections and to combine their contents
from the point of view of the subjects mentioned in the title of the present remark.
Cf. Figures 282, 283 (pp. 863-864) for what is common in these.

<

6.2.5 Getting familiar with our geometries;
unions of geometries and models

In this section we will analyze how the geometries &gy are “put together” i.e. how
one can have a grasp on them. Roughly, we will see that &gy is obtained from
the world-views (now regarded as geometries) of inertial observers by gluing them
together in some way, cf. Fig.289 (p.887). For more on the intuition behind this (or
how these ideas will be implemented) see p.883 above Prop.6.2.79.

As a motivation for studying disjoint union of geometries (and generalizations of
this in items 3,4,5 below) we refer the reader to Remark 6.2.81 and Figure 290 on
p-888 on the connections with Penrose diagrams from general relativity.

We will use the concept of disjoint unions of Bax™ models as well as disjoint
unions of geometries similar to our observer-independent geometries &gy. In both
cases we will assume that the field reducts of the structures in question coincide.

1. Disjoint, generalized disjoint and photon-disjoint unions of models:
Let 901, M € Modz(Bax ™). Assume B" N B» = (). Then the disjoint union

MmUN-E(B"UBY,... 5 G e WRHU WY

is defined as in the statement of Theorem 3.3.12 (p.196). Then
M UN E Bax~.
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Actually, 9t U 9 to be defined and to be a Bax™ model, we do not need to
assume BN B” = since the “disjointness conditions”®® in the statement
of Thm.3.3.12 are sufficient. This more general notion (using the disjointness
conditions) is called generalized disjoint union and is denoted by 9t U M.

Instead of only two models, we can form the union of any class K of models
(satisfying some disjointness conditions) exactly as we did in Thm.3.3.12. In
particular let K C Modz(Bax™). Assume

(V distinct M, N € K) B? N B™ = 0.

Then the disjoint union U K of K is defined exactly as in Thm.3.3.12, i.e.

UK:d:ef< U B™,....3.6,¢, | W””>.

MeK MeK

Then (J K = Bax™. Again (for having |J K = Bax™) instead of complete
disjointness of B™ and B™ it is sufficient to require the milder disjointness
conditions (on K) in the formulation of Thm.3.3.12. This more general kind
of union is again called generalized disjoint union (as it was in the case of two
models above) and is denoted by [J K.

We note that if | JK is a generalized disjoint union then
(V distinct 9, 9 € K)Obs™ N Obs™ = 0,
while this does not necessarily hold for Ph in place of Obs.

Generalized disjoint union | JK is called photon-disjoint union iff
(V distinct 90, M € K) Ph™ N Ph” = 0.

Note that disjoint unions form a special case of photon-disjoint unions, and
photon-disjoint unions form a special case of generalized disjoint unions.

2. Disjoint unions of non-body-disjoint models:

Let 9, N € Modz(Bax™) be such that B™ N B" #£ ().817 The disjoint union
M U N of M and N is defined as follows. Let N' € Modz(Bax™) be an
isomorphic copy of D such that (a) and (b) below hold.

(a) There is an isomorphism between 9t and 91 which is the identity function
on the sort F.

816these conditions were Obs™ N B™ =, Ph™ n BM™ C Ph™, Ib™ n B™ C Ib™, together with
the same conditions but with 9t and 9 interchanged.

817The condition B™ N B # () is in principle superfluous but we did not want the present
definition of M U N overwrite the one in item 1 (approximately previous page).
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(b) M is body-disjoint from M, i.e. B® N B = .

Now,
def

mUn-Lon oo
where 99t U 9 has already been defined.

The disjoint-union of an arbitrary class K C Modgz(Bax™) of non-body-
disjoint®® models is defined analogously to the case of two models and is

denoted by | K.
We note that disjoint unions of (non-body-disjoint) models are determined

only up to isomorphism (but this should be no disadvantage, moreover this
can be easily avoided if someone wanted to).

3. Disjoint unions of geometries:

In the definition of disjoint unions of geometries we will use the following
notions from topology.

Topological spaces: By a topological space we understand a pair X = (X, O)
with O C P(X) closed under finite intersections and infinite unions, and such
that 0, X € 0. X is the set of points of X while O is the set of open sets of
X. IfY € O then (X\Y) is called a closed set. Hence the closed sets are
the complements of the open ones.

Coproduct of topologies: Assume Xy = (X, Op) and X; = (X, 0;) are dis-
joint topological spaces, i.e. Xo N X; = (0. Let us recall from topology that
the coproduct (i.e. sum)®® X, [[ X; of the topological spaces X, and X is
defined as follows.

def

Xo [IX; = (XoUXi1,00]] O1), where
00]_[01 :d:ef {U0UU1 B U()EO(), U1€01}.

Assume X; = (X;, O;) are topological spaces, for i € I with fixed set I.
Assume that X;’s are pairwise disjoint, i.e. that X; N X; = @, for i # j. Then
the coproduct ], ; X; of the family (X; : i € I) is defined as follows.

HXi def <UXi’HOi>’ where

el 1€l i€l
HOZ :d:ef {UUZ : <UZ : iEI)EPZ‘e[Oi},
i€l i€l

818K is non-body-disjoint if there are distinct 2,9 € K such that B™ N B™M # .
819Cf. Engelking [83] under the name “sum of spaces”.
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where P;c;O; is the usual Cartesian product of the sets O;, i € I. (P O; is
the generalization of the direct product Oy x O1). To help the intuition we

note that
[To: = {JUi : (vienUie0;}.

iel il
Note that the “coproduct” ], ., O; of O;’s has been defined, too.

Disjoint unions of geometries: Disjoint unions of geometries in Ge(()) are de-
fined similarly to the case of models (in item 1 above), as follows.

Assume, &; = (Mn;,Fq,L;; ..., 9, T;) € Ge(D), for ¢« € I with any fixed set [
and with a common “field” reduct F1.%° Assume, Mn; N Mn; = 0, for i # j
(i,7 € I). The disjoint union of &gy, &, is defined by

By U &, & (MnoU Mny,Fq,LoULy; ...,90U g1, T [ Th)-

For the general case, the disjoint union of the family (&; : i € I) is

U(’ﬁi :d=6f<UMn,-,F1,UL,~; ...,Ugi,H'ﬁ>.

1€l 1€l i€l i€l 1€l

4. Geometry &,? and the class Ge™°(Th):

For every frame model 9t we define Qﬁ;{’ to be the geometry obtained from Bgy
by replacing the orthogonality L, with the basic orthogonality L (cf. p.791
for 1y). Further, for any set Th of formulas in our frame language we define

def

Ge™(Th) := {& : (3M € Mod(Th)) & = &0 }.

A note to the reader: At a first reading, the reader may skip item 5 (“Photon-
glued ...”) below, in such a way that later whenever “photon-glued disjoint
unions” are mentioned then the expression “photon-glued ...” should be re-
placed by “disjoint unions” and Ax(diswind) should be added to the assump-
tions. This is possible because if we assume Ax(diswind) then photon-glued
disjoint unions become plain disjoint unions. l.e. in the remaining part of this
material using photon-glued disjoint unions can be avoided under the expense
of assuming Ax(diswind). (We are mentioning this only to help those readers
who do not have enough time to read the whole material.)

8207 e. the “field” reducts of &; and &, coincide, for all i, j.
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5. Photon-glued disjoint unions of geometries:

In the present item we concentrate on the | ,-versions of our geometries be-
cause of the following. The point is that in the 1 y-versions if two lines are
orthogonal then they are in L™ U L®. This enables us to define L1, in the
photon-glued disjoint unions to be the same as it was in the “ordinary” dis-
joint unions. (If we tried to extend this to L, then we would face the nontrivial
task of defining |, -orthogonality between the new lines obtained by “gluing”
photon-like lines.)

Assume &; = (Mn;, Fy, L;; ...) € Ge™(), for i € I with any fixed set I and
with a common “field” reduct Fy1. Assume Mn;NMn; =0, fori # j (i,j € I).
Then the disjoint union J;.; ®; is defined analogously to the case of Ge(()) in
item 3.

When forming a disjoint union J;.; ®; of geometries (&; € Ge*(})) some-
times we might want to glue certain photon-like lines together into a single,

new, longer photon-like line. The idea is the following. We choose a parameter
HCL? =;; L™ with |[HNL™ <1 forallie€ I Then

Gluey ( LEJI esz-)

is obtained from [J,.; ®; by adding the new, “long” line (JH to L' and
throwing away (all the “old” lines in the set) H from LF” and by adjusting
L,qg,7 to the new set of photon-like lines. In more detail: The new sets of
photon-like lines and lines are®?!

Lhk, ¥ (LM H)yu {UH}
Lone = LER ULTULS, where

L' = Uies Lj and ¥ = User L?; and, letting Mn = |J

metric and the topology (of the new geometry) are

;e Mn;, the pseudo-

Jome = gU {{e;e;,\) EMnx Mnx F : (I € LE: De,e1 €4, A =01,

821For the nonspecialist of set theory, we would like to illuminate the intuitive content of the
expression (L2 \ H) U {JH}. Assume LF" = {¢, {a}, {b} } and H = {{a},{b}}. Then JH =
{a,b}, {UH} = {{a,b} }. Hence (L'"\ H)U{JH} = {4, {a,b} }. Intuitively, this is what we
wanted, we wanted to glue together the photon-like lines {a}, {b} into a single new line {a, b}, and
then to replace the old “short” photon-like lines {a}, {b} with the single new line {a,b}. Summing
up: JH is the new long photon-like line obtained by gluing; and H is the set of the old short lines
which we want to throw away since they are replaced by their longer version | JH. Important: | JH
is a line, while H is not. (It is a set of lines.)
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TGlue is the topology on Mn determined by ggiue

as described in item 14 on p.797. The rest of the ingredients of the new
®i-822

We may glue together more than one sequence H of photon-like lines. Namely
let % C P(L*™) be given such that

geometry are the same as those of Uie I

(VH € H) (Vi e I|HN L < 1.
Now we apply the above outlined gluing procedure for each H € H. Formally,
we obtain _
Glueq.t ( U 61)
iel

which differs from Uie ; ®; only in L™ L, g and T, where the new sets of
photon-like lines and lines are

Lg}llue(ﬂ) = (LPP\UH)U{UH : HEH},
LGlue(’H) :d:ef Lglfue(m U LT U LS;

and the pseudo-metric and the topology (of the new geometry) are

ef
9Glue(H) g gU{{e,;e;,\) e Mn x Mn x F : (3 € Lg{’ue(m)e, ep €4, A=0},
TGlue(r) is the topology on Mn determined by gaiue(#)-

For a representation of this “glued” Uie ; ®; see Figure 307 (p.1001) and the
lower picture in Figure 289 (p.887). We call the above defined

Gluey ( U (’51-)

i€l

a photon-glued disjoint union of the family (®; : i € I) of geometries.

6. Disjoint and photon-glued disjoint unions of non-disjoint geometries:

Disjoint unions of non-disjoint geometries are defined analogously to the case
of non-body-disjoint models (in item 2 above), as follows.

822Let us notice that ;e; i = (£ Lo ¢ — £,¢ € LT ULY) by the definition of L.
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Assume &; = (Mn;,Fq,L;; ...) € Ge(D), for i € I with any fixed set I and
with a common “field” reduct F; and assume that &; ’s are non-disjoint, i.e.
Mn; N Mn; # @ for some distinct 4,5 € I. Let &} = (Mn},Fy,L};...) € Ge(0),
for i € I be such that (a) and (b) below hold.??

(a) There is an isomorphism beteen &; and &) which is the identity function
on the sort F.

(b) (V distinct 4,5 € I) Mn; N Mn; = (.

Now, the disjoint union of the family (&; : ¢ € I') is defined to be the
disjoint union of the family (®. : i € I) (Which in turn has already been

defined in item 3), and is denoted by Uze 7

Assume &; = (Mn;, Fq,L;; ...) € Ge* (@), for i € I with any fixed set I
and with a common “ﬁeld” reduct F; and assume that &;’s are non-disjoint.
Let &, = (Mn},Fy,L};...) € Ge™((), for i € I be such that (a) and (b)
above hold. By a photon glued disjoint union of the family (&; : i € I') we
understand a photon-glued disjoint union of the family (&, : i € I').

We note that disjoint unions and photon-glued disjoint unions of (non-disjoint)
geometries are determined only up to isomorphism (but this should be no
disadvantage, moreover this can be easily avoided, cf. footnote 823).

Remark 6.2.68 We note that unions commute with “geometrization” in the fol-
lowing sense.

Let M, 91 € Modgz(Bax™). Assume that they satisfy the disjointness
conditions®?* in Thm.3.3.12, i.e. that 9 U N is a generalized disjoint union.

Then

6%)3“)%) “a photon-glued disjoint union of (’5 and 6#”.

Intuitively, a generalized disjoint union in the “observational world” correspond to
a photon-glued disjoint union in the “geometry world”, cf. Figure 284.
Assume in addition that Ph™ N Ph™ = 0, i.e. that 9 U 9 is a photon-disjoint
union. Then
@(gmum) = @gm U @m

823Concrete construction of the family of geometries (&) : i € I') satisfying (a) and (b): Let
i € I. Let Mnj:= Mn x {i}. Let h;: Mn =~ Mn] be the bijection defined by h; : e — (e,).
Let h = (hi, Id | F, h;), where h;:L; — {h;[f] : £€ L;} is defined by h; : £~ h;[¢]. Now
we define &/ to be the isomorphic copy of &; along h; (i.e. it is the unique structure for which
hf : ®; ——= &' is an isomorphism).

824cf. footnote 816 on p.869
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Intuitively, a photon-disjoint union in the “observational world” correspond to a
disjoint union in the “geometry world”, cf. Figure 284.

<

closing up under closing up under
generalized disjoint unions photon-disjoint unions

Mod(Th) mmmm——= Mod(T'H')  Mod(Th) _L_>. Mod(Th' + Ax(diswind))

geometrization —= geometrization ——=
Gel0(Th) ———— Ge0(Th') Ge(Th) Ge(Th' + Ax(diswind))
closing up under closing up under
photon-glued disjoint unions disjoint unions

(Th, Th') € { (Basax, Newbasax), (Specrel, Newbasax + Ax(symm)'),
(Reich(Basax), Reich(Newbasax) ), (Bax™ + Ax6, Bax™ ) }

Figure 284: Generalized disjoint unions of models correspond to photon-glued dis-
joint unions of geometries, while photon-disjoint unions of models correspond to
disjoint unions of geometries. (Further, the above diagrams commute in the sense
of Remark 6.2.68.)

Examples 6.2.69

1. Let 9, M € Modg(Basax) with BN B = (). Then
M U N € Mod(Newbasax).

Similarly for any class K C Modg(Basax). This remains true for generalized
disjoint unions of Basax models.

Mod(INewbasax) is the class of all generalized disjoint unions of members of
Mod(Basax). Further, it is the smallest class which is closed under taking
generalized disjoint unions and contains Mod(Basax).
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Mod(Newbasax + Ax(diswind)) is the class of all photon-disjoint unions
of members of Mod(Basax). Further, it is the smallest class which is closed
under taking photon-disjoint unions and contains Mod(Basax).

2. The examples in item 1 above show up in the “geometry world” in the following
“shape”. See Figure 284.

Let &, ®, € Ge(Basax) with a common “field” reduct. Then

&, U &, € Ge(Newbasax).

Similarly for any family (&; : i € I') of Basax geometries. This remains true
for photon-glued disjoint unions of Basax geometries, i.e. the photon-glued
disjoint unions of geometries from Ge'°(Basax) are in Ge™°(Newbasax).

Ge°(Newbasax) is the class of all photon-glued disjoint unions of members
of Ge*(Basax). Further, it is the smallest class which is closed under taking
photon-glued disjoint unions and contains Ge'*(Basax).

Ge(Newbasax + Ax(diswind)) is the class of all disjoint unions of members
of Ge(Basax). Further, it is the smallest class which is closed under taking
disjoint unions and contains Ge(Basax).

(If we formed the non-disjoint union of two Basax geometries say &q, &; then
we could obtain a geometry &¢ U &; which is not even a Bax™ geometry.)

3. Examples similar to those given in items 1 and 2 are illustrated in Figure 284.

4. Let &g, ®; € Ge(Basax). Assume they are disjoint. Then in &y U &; the
parts Mny and Mn; are sometimes called windows. Cf. Figure 307 (p.1001)
and Figure 289 (p.887). Similarly for photon-glued disjoint unions of Basax
geometries (i.e. Ge™°(Basax)-structures).

More generally in a Newbasax geometry, say &, the maximal “Basax
subgeometries”®? are called windows. (Here we use the notion of a sub-
geometry in an intuitive sense only, but it could be formalized such that all
details would match.%2)

In & € Ge(Bax™) two points e,e; € Mn are in the same window iff they are
connected, i.e. e ~ e;. If & = Ggy, for some M = Bax™, then these windows
are exactly the Rng(w,,)’s, i.e. the subsets of Mn of the form Rng(w,,) (with
m € Obs). Cf. Remark 6.2.13 (p.819).

825Recall that any Newbasax geometry & is a photon-glued disjoint union of Basax geometries

say &;’s. These &;’s (more precisely the Mn;’s) are called the windows of &.
8260ne possibility is to add Ax(diswind) to Newbasax.
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5. Assume n > 2. Then every & € Ge(Newbasax + Ax(w)" + Ax(T1o) +
Ax(diswind)) is obtainable as a disjoint union of Minkowskian geometries.®?
Further, Ge(Newbasax + Ax(w)" + Ax(110) + Ax(diswind)) is the disjoint
unions closure of the class of Minkowskian geometries.

6. Mod(Flxbasax) is not closed under taking disjoint unions, but disjoint unions
of Flxbasax models are Bax models.

We did not have time to think about whether Ge(Flxbasax) is closed under
taking disjoint unions but we think it is not closed.

<

CONVENTION 6.2.70 Besides geometries in Ge(()) and in Ge™°(§)) we will also
discuss reducts of these (like e.g. Gon, Gop, etc.) and also slight variants of Ge(()
e.g. L or L7 in place of L,.

We extend the above defined notions of disjoint unions and photon-glued disjoint
unions to these kinds of geometries the natural (and obvious) way. (In the case of
generalizing photon-glued disjoint unions we restrict attention to such geometries
where relativistic orthogonality is Lg.)

<

Now, having disjoint unions etc. at our hands we can state a stronger form of
Theorem 6.2.64, not involving Ax6. Further, we will generalize Theorem 6.2.65 from
Basax to Newbasax. Roughly, the just quoted theorems say that certain reducts of
our geometries agree with the corresponding reducts of Minkowskian geometries, for
certain choices of Th. Very roughly the new theorems will say that our relativistic
geometries corresponding to many of our theories can be obtained as disjoint (or
photon-glued disjoint) unions of Minkowskian geometries if we regard a reduct only.

THEOREM 6.2.71 Assume & € Ge(Bax® + Ax(Triv;)~ + Ax(vV ) +
Ax(diswind)). Then (i) and (ii) below hold. (Cf. Figures 282, 283.)

(i) Assume n > 2. Then the (<,eq,g,T )-free reduct of & is a disjoint union of
the similar reducts of Minkowskian geometries (up to isomorphism,).

(The other direction also holds.)

(ii) Assume Ax(1o). Then the (eq, g, T )-free reduct of & is a disjoint union of
the similar reducts of Minkowskian geometries (up to isomorphism,).

(The other direction also holds.)
827This follows by example 1, Remark 6.2.68 (p.874) and Thm.6.2.59 (p.861).
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Proof: The theorem follows by Thm.6.2.64 (p.866), Remark 6.2.68 (p.874) and
by noticing that each Bax® + Ax(diswind) model is a photon-disjoint union of
Bax® + Ax6 models. 1

Theorem 6.2.73 below is the “photon-glued” version of Theorem 6.2.71 above.
For stating this theorem we define the | -versions of Minkowskian geometries.

Definition 6.2.72 Assume § is Euclidean. Then the lg-version Mink™°(5)
of the Minkowskian geometry Mink(F) is defined to be the geometry obtained from
Mink(§) by replacing 1, with (L), defined below.

(LoJuE {(t,0y e, : 6,0 € LTULS, tne #0}.

<

THEOREM 6.2.73 Assume ® € Ge™°(Bax® + Ax(Triv,)~ +Ax(v")). Then (i)
and (i1) below hold. (Cf. Figures 282, 283.)

(i) Assume n > 2. Then the (<,eq,q,T )-free reduct of & is a photon-glued
disjoint union of reducts of Lg-versions of Minkowskian geometries (up to
isomorphism).

(The other direction also holds.)
(ii) Assume Ax(T10). Then the (eq, g, T )-free reduct of & is a photon-glued dis-

joint union of reducts of Lg-versions of Minkowskian geometries (up to iso-
morphism,).

(The other direction also holds.)

Proof: The theorem follows by Thm.6.2.64 (p.866), Remark 6.2.68 (p.874) and
by noticing that each Bax® model is a generalized disjoint union of Bax® + Ax6
models. B

The following two theorems are generalizations of Theorem 6.2.65 (p.867).

THEOREM 6.2.74 Assume n > 2 and & € Ge(Newbasax + Ax(Triv,)™ +
Ax(v ) + Ax(diswind)). Then (i) and (i) below hold. (Cf. Figures 282, 283.)

(i) The (<,g,T )-free reduct of & is a disjoint union of reducts of Minkowskian
geometries (up to isomorphism).

(The other direction also holds by item 5 of Examples 6.2.69.)
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(ii) Assume Ax(110). Then the (g,T )-free reduct of & is a disjoint union of
reducts of Minkowskian geometries (up to isomorphism).

(The other direction also holds.)

Proof: The theorem follows by Thm.6.2.65 (p.867), Remark 6.2.68 (p.874) and by
noticing that each Newbasax + Ax(diswind) model is a photon-disjoint union of
Basax models. 1

Theorem 6.2.75 below is the “photon-glued” version of Theorem 6.2.74 above.

THEOREM 6.2.75 Assume ® € Ge™°(Newbasax + Ax(Triv,)~ + Ax(V ))
and n > 2. Then (i) and (i) below hold. (Cf. Figures 282, 283.)

(i) The (=<, g, T )-free reduct of & is a photon-glued disjoint union of reducts of
Lg-versions of Minkowskian geometries (up to isomorphism).

(The other direction also holds.)

(ii) Assume Ax(11o). Then the (g,T )-free reduct of & is a photon-glued disjoint
union of reducts of Lg-versions of Minkowskian geometries (up to an isomor-
phism).

(The other direction also holds.)

Proof: The theorem follows by Thm.6.2.65 (p.867), Remark 6.2.68 and by
Thm.3.3.12 saying that each Newbasax model is a generalized disjoint union of
Basax models. 1

Theorems 6.2.71, 6.2.73, 6.2.74, 6.2.75 above are all involved in Figures 282, 283
(pp. 863-864). Here we give an intuitive explanation for these figures.
Intuitive explanation for Figures 282, 283: The figures represent reducts of geome-
tries agreeing with the corresponding reducts of (possibly unions of) Minkowskian
geometries. Each node (in the figure) is of the form Rd, (Ge(Th)) for some relativity
theory Th (observational) and subvocabulary L of the vocabulary of our relativistic
geometries Bgy. Hence, each node is characterized by two pieces of data 7Th and
the “geometric reduct” (i.e. the geometric vocabulary) L. Ax(v/" ) and n > 2 are
assumed in the figures. If we disregard the “Rd; Ge”-part i.e. if we consider the Th-
part only then the figure becomes a subblattice of the lattice of our distinguished
theories discussed on pp. 451-453, cf. also Fig.223 on p.653 and Remark 6.6.4(III)
pp. 1020-1027. If we want to disregard Th, then we get a 6-element lattice of dis-
tinguished geometry-reducts of our relativistic geometries Ggy. At the bottom of
this lattice are the (Mn, L; L™, L™ L% €, Bw, L,) geometries which are basically
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the same what we call relativistic incidence geometries Ge™(Th) in §6.7.4 (p.1175).
More precisely Ge™( Th) is definitionally equivalent®?® with our “bottom” geometry,
with Th as indicated in the figure, assuming Ax(diswind), cf. Thm.6.7.31 (p.1164).
The top of the lattice represents the whole of Bgy’s, of course. Besides labelling the
nodes, we labelled some of the edges too in Fig.282. The labels on an edge indicate
(roughly) the changes that happen when moving along that edge, the same change
happens when moving along parallel edges. E.g. the label |unions, Ax6 | indicate
that, intuitively, we can move from the higher end of that edge to the lower one by
taking (possibly photon-glued) disjoint unions of our geometries and dropping Ax6
from our Th, loosely speaking.

To understand our observer-independent geometries Bgy (and their connections
with the original models 90t), below we introduce “observer-dependent” geometries
G, for each observer m € Obs™. After this we will introduce restrictions & | N of
geometries to subsets N C Mn of their set of points.

Our next definition may look, at first sight, somewhat longish, but at second
reading it will turn out to be just the natural thing, and it will turn out to be quite
useful. E.g. in Prop.6.2.79 we will see that &gy can be obtained from the world-
views of observers i.e. from the w,,’s by gluing them together (as we planned in the
first 2 sentences of §6.2.5). For this, first, the w,,’s have to be “geometrized”. The
geometrized versions of the w,,’s will be the &,,’s defined below.

Definition 6.2.76 Let 91 be a frame model and &y = (Mn,Fy,L; ...) be the
geometry corresponding to it. Then using the world-view function w,, each ob-
server m can copy the geometry &y to his coordinate system "F, obtaining the
observer-dependent geometry &,, defined below, cf. Figure 285. Let m € Obs. For
every ¢ € L, throughout this definition, let

U & w, ).
Now,
Qjm :d:ef <nFa F].’Lm; Lzﬂn’Lih’L;zL’E’_<m’BW’maJ—m’eqmagm;7;n>7
h
wihere def
Ly = {ly:l€Ll, b, #0},
L (g, el 0,#0)},
L& Ly re P g, #0),

828Cf. Def.6.3.30 on p.970 for definitional equivalence.

880



/ / W
w

= {

T
1 '\\“

A\ A\

- -
‘\\\ - OX( /

Figure 285: Using the world-view function w,, each observer m can copy the geom-
etry By to his coordinate system "F.

L5 {4, Lel® 6, #0},
€ is the membership relation between "F and L,,,

Zm X {(p,q) €"F x"F : wn(p) < wm(q)},

Bwm £ {(p,q.r) €*("F) : BW(wm(p), wm(a), wn(r)) },

Lo i {0 2 L L O by # 0, £, % 0},

edn £ {(pa,r5) € ("F) 1 eq(wm(p), wm(q), wm(r), wm(s)) },
g 2 {(p,q,N) €"F x"F X F : g(wn(p), wn(a)) = A},
I {w'lH : HeT}.

We define &0 to be the geometry obtained from &, by replacing 1,, with
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(Lg)m defined below.
(Lo)m % {0 1 0 Lol 0 #0, 0 £0},
cf. p.791 for the definition of L.

<

Definition 6.2.77 Let & = (Mn,Fy,L; ..., 7) be an observer-independent ge-
ometry. Let N C Mn. Then the restrictions & | N and & |[* N of & to NV are
defined in (i) and (ii) below, respectively. See Figure 286, cf. also Figure 288.

&N &t N

Figure 286: Illustration for Definition 6.2.77.

(i) 61N £ (N, Fy, LIN® ; LT [N, L™ | N, LS | N, €,
< rN830a Bw fN, J—Na €q rNa 9[2Na TrN831>a
where

Iy ELUnNIANY 6,0 el ¢L, 0}

(ii) We define & |™ N to be the geometry obtained from & [ N by replacing
LN, L" | N, L*® | N, L | N, Ly with Ly, L" N Ly, L**N Ly, LN
. f
Ly, L, I Ly, respectively, where Ly e {¢eLl:¢{NN#D}.
89, | N:= {f{NN : £ e L}. This is the natural restriction of “Lines” to N C “Points”.
Similarly for the topology 7 in place of lines L.
830We use the restriction symbol | for relations too the natural way. Le. < | N := <N (N x N).
Similarly for other relations of perhaps different ranks. (Since functions are special relations our
usage of | is ambigous. We hope context will help.)
BITIN:={HNN : HeT}, cf footnote 829.
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(iii) We extend the definitions of the restrictions & [ N and & [t N to similar
geometries like e.g. QS#{’ the natural way. E.g. Qj# [ N is defined the natural
way.

<

Remark 6.2.78 Let & be an observer-independent geometry and N € T, i.e. N C
Mn is an open set. Then & [t N is a strong submodel of &, in symbols (& [T N) C
®. & | N is not necessarily a submodel of &; moreover there is & and N € 7 such
that & | N is not isomorphic to any submodel of &. Such & and N are represented
in Figure 287 below, cf. also item 2f of Prop.6.2.79 (p.886) and footnote 837 in it.
<

5 Lo L= {001,650}
N . L= {{l ty), (l2,23)}
g LNN=0NN

Figure 287: & [ N is not isomorphic to any submodel of &.

Item 1 of our next proposition says that, assuming Bax™, any observer-
dependent geometry &,, is basically the familiar picture which we often called the
world-view of observer m; e.g., in &,,,, the set of points is "F', L consists of Euclidean
lines, L” consists of the traces (i.e. life-lines) of observers as seen by m, L™ is the set
of life-lines of photons as seen by m, two lines are | j-orthogonal iff they are two coor-
dinate axes of some observer as seen by m, etc. For a second, let us call these familiar
structures "F-geometries. Item 3 says that any observer-independent geometry &y
is a disjoint union of such familiar " F-geometries, assuming Bax™ + Ax(diswind).
Formally

meO

for some O C Obs. Ax(diswind) can be omitted if we use photon-glued disjoint
unions and _L,-versions of our geometries. Cf. Figure 289 (p.887).

883



PROPOSITION 6.2.79 (On Bax™geometries)

Let = Bax™. Consider the observer-independent geometry Bn. Then 1-5 below
hold.

1. Let m € Obs. Consider the observer-dependent geometry &,,. Then (a)-(h)
below hold.

(a) Ly, C Eucl. Hence, (V£ € L)w,'[¢] € EuclU {(}.83
(b) LT = {trn(k) : k€ Obs, m > k}.

(¢c) LE® = {tr,.(ph) : ph € Ph, m 3 ph}.

(d) LS = {fum|zi] : k€ Obs, m Sk, 0<icn}.

(¢) (Lo)m = { (fumlZi), fom[Z;]) : k€ Obs, m Sk, i#j}.
(f) Assume Ax(v/' ). Then Bw,, and Betw coincide.
(9) (V¥ distinct p,q,r € "F)

(Bwn(p,q,7) V Bwi(p,7,q) V Bwi(q,p,7)) < (p,q,7 are collinear).®*

(h) Assume Ax(1T1o) + Ax(V ). Let p,q € "F. Then
P =<mq = (pt <q N (k€ Obs)p,qe€ trm(k)>.

2. Let m € Obs. Consider the observer-dependent geometry &,,. Then (a)-(g)
below hold.

(a) Assume Ax6. Then
&, =By and Qﬁfn" = @#.

Actually, the world-view function w,, induces an isomorphism between
&,, and Gy (and between G50 and S5°) the natural way.®>

(b)
B 2 (B | Rng(w,y,)) and G- (Qﬁé{’ I Rng(wm)),
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Figure 288: &,, and &y [ Rng(w,,) are isomorphic.

see Figure 288. Actually, the world-view function w,, induces an isomor-
phism between &,, and Gx | Rng(w,,) the natural way.3

(c) (Ve L" UL®) (4N Rng(wy) #0 = £ C Rng(wy,)).

Intuitively, time-like and space-like lines do not stick out from the window
Rng(wy,), see Figure 288.

(d) Assume Ax(diswind). Then, intuitively, lines do not stick out from the

832Cf. Prop.6.2.48 (p.854).

833Cf. Prop.6.2.14 on p.819.

834Making this precise: Let wWp, : Ly — {wm[f] : £ € Ly, } be defined by wy, : £ = wy[l].
Then Rng(w,,) = Ly and (wpn, Id [ F, w,,) is a (three-sorted) isomorphism between &,
and &y (and between &0 and Qiéto). Cf. item (II) of Def.6.2.2 (p.798) for isomorphisms between
geometries.

835Making this precise: Let w,, be defined as in footnote 834. Then (w,,, Id | F, w,,) is an
isomorphism between &,, and Gy [ Rng(w.,)-
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window Rng(wy,), formally:
(Ve € L) (£n Rng(wm) #0 = £C Rng(wn) ),

cf. Figure 288 (in the figure some photon-like lines do stick out from the
window Rng(w,,) ).

Therefore
(G [ Bng(wim)) = (S |7 Rng(wm)),
cf. Figure 286 (p.882).

(e) Assume Ax(diswind). Then &, is isomorphic to a strong submodel of
&g (and Rng(w,,) € T ). In more detail:

®m = (6‘)'{ arg(wm)) - (691 f+ Rng(wm)) - 6‘)'{7

cf. Remark 6.2.78.

The world-view function w,, induces an embedding of &,, into Gy the
natural way.3® See Figure 288 and the the upper picture in Figure 289.

(f) The assumption Ax(diswind) is needed in item (e) above. Le. there is
M € Mod(Bax™~) and k € Obs™ such that &, is not isomorphic to any
submodel of &gyn.837

(g) Assume k € Obs is such that m < k. Then the geometies ®,, and &,
are isomorphic, i.e. &, = &. Actually, the world-view transformation
fok induces an isomorphism between &,, and &;, the natural way.®®

3. By Thm.4.3.11 (and Ax4), S is an equivalence relation when restricted to
Obs.83% Let O C Obs be a class of representatives for the equivalence relation

5890 Then (a) and (b) below hold.

(a) Assume Ax(diswind). Then &y is the disjoint union of the family
(Bxn | Rng(wy,) : meO).

836 et w,, be defined as in footnote 834, p.885. Then
Rng(w,) ={f € Ly : £ C Rng(w.,)} ={L€ Ly : £N Rng(wm,) #0};

and (wp, Id [ F, w,,) is an embedding of &,, itno &.

837E.g. let M be the generalized disjoint union of two NewtK models M, M, with Ph™ =
Ph™2. Then for each observer k, LEB N L7 # 0, while L2 0 L% = . Thus for each k, & is not
ismorphic to any submodel of Ggy.

838(Cf. footnote 812 on p.865.

839 3ssuming Bax ™~ of course

840 e, (Vm € Obs) |0 Nm/3 | = 1, where m/3 is the equivalence class of m w.r.t. 3, as usual.
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Assume Ax(diswind) and
O ={m,k,h,b}. Then
By 2 (&, U B U &, U By).

Assume O = {m, k, h,b}. Then

6#{’ is a photon-glued disjoint union of &0, 6,&0, Qﬁ,fo, 05,)“, up to isomorphism:

604
Wk =
) 7 e vy
&;° e \&‘\\ &;°
s Sy

Figure 289: Notice that a “photon-line” splits up to two in the lower picture.
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LY
vl \: _re < r=10
(singularity) \ !*‘; = r_ || (singularity)
"
m ¥ m e
f,-""_‘\‘ 4 —Canchy horizon
[ ; ; | for &
f,-’r = -.“p
¢ 1 i
5+ 4
{re= m:j .
e =
¥ = I';‘D"I "1-."" -
- o2 \-
Homogeneous =R\ /4
aurfaces R T
{r = constant} = "
r=0f"1
Orthogonal
surfanes
{# = constant)

Figure 290: The geometry of a rotating black hole (general relativity) represented
by a Penrose diagram.
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Therefore, by item 2b, & is the disjoint union of the family
(B, : m € O), up to isomorphism, i.e.

& = | &,

me0

see Figure 289.

(b) @,#to s a photon-glued disjoint union of the family
(&0 | Rng(w,,) : m € O).
Therefore, by item 2b, (’5;;0 15 a photon-glued disjoint union of the family
(&0 - m € O) up to isomorphism. See Figure 289.

4. (a)-(e) below hold.

(a) Assume Ax(diswind). Then two distinct lines meet in at most one
point; formally: (¥ distinct ¢,¢' € L) [¢n '] < 1.

(b) Assume we are given two distinct lines such that one of them is time-like
or space-like. Then the two lines meet in at most one point. Formally:

(V distinct £,¢' € L) (€ L"UL® = |[(n/d|<1).

(¢c) L nLF" = .
(d) Assume c,,(d) < co. Then L° N L™ = .

(e) Assume Ax(V )+ (cm(d) < o0) and (n > 2 or Ax(110)). Then i, ii
below hold.
i. L' LPP L5 are pairwise disjoint.

_T _Ph _§
,=

1. The wrreflexive parts of relations =", = are pairwise disjoint.

5. Assume Ax(diswind). Let m € Obs and £,0' € L be such that w,'[(] # ()
and w0l # 0. Then w,'[l], w,;}[¢'] € Eucl (by item 1a), and (a), (b) below
hold.

(a) Llle & <= wi'll] || wy'[€].
(b) Assume £,¢" are distinct and N ¢ # 0. Then

Plane (¢, ") = Plane'(¢,0') = wy,[Plane(w'[¢], w*[¢'])]-

On the proof: The proof is left to the reader as an exercise, but we note the

following. Items 1b, 1c hold for arbitrary frame model, i.e. the assumption Bax™ is
not needed in these items. The proof of the proposition is based on the following.
Assume Bax™~. Let m,k € Obs. Then (i)-(vii) below hold.
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