of m. Let P be the plane determined by ¢ and ph, i.e.
P := Plane(y, tr,,(ph)),

cf. the upper picture in Figure 272. Let £ € Obs be such that m sees that k passes
through 0 with nonzero speed and lies in Plane(t, %), i.e. 0 € tr,, (k) C Plane(t, %)
and v, (k) # 0. Such a k exists by Ax5. Without loss of generality we can assume
that f,,,(0) = 0 because of Ax(Triv;)~. Let

gk = fkm[S] N P,

i.e. in the world-view of m ¢, is the intersection of k’s space part with plane P.
Clearly, 4, € Eucl and 9y, 5, tr,,(ph) are pairwise distinct, since k lies in Plane(t, ),
is of nonzero speed as seen by m and since in the direction of movement clocks get
out of synchronism. Without loss of generality, by Ax(Triv;)~, we can assume that
the g-axis of k as seen by m is y;, formally

frm [g] = Y-

Let us switch over from the world-view of m to the world-view of k. We claim
that k sees ph moving in the spatial direction orthogonal to 7 (in the Euclidean
sense). To prove this claim, let P’ be the f,; image of P, cf. Figure 272. Then
g C P'. Since f, takes LightCone(0), P, tr,,(ph) to LightCone(0), P’, try(ph),
respectively and since LightCone(0) N P = t¢r,,(ph) we get that

LightCone(0) N P’ = try(ph).
This and §y C P’ imply that § L. ¢rg(ph), proving our claim.
Then, by Ax(Triv,)™, we can assume that k sees ph in Plane(t, Z), i.e. tri(ph) C
Plane(t, 7).

Then
wp[y] LE € and  wi[y] L1 4,

see Figure 272. By this, by w,[yx] = wg[g] and by 7, Jx C P, we have

(%) 012 w,[y] and £ 12 wy[gk] and  wy,[7], walTk] C wal[P).

See the upper picture in Figure 272. By item 5b of Prop.6.2.79 (p.889), we have
Plane'(win[9], wim[9x]) = wim[P]-

This, () and ¢ C w,,[P] imply ¢ 12 ¢, which completes the proof of (a).
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Proof of (b): Assume Basax + Ax(Triv,)~ + Ax(y/ ). It is easy to check that 1’
has properties 1, 2, 4 in Def.6.2.17. So it remains to prove that L] has property 3 in
Def.6.2.17. To prove this we will use Minkowskian orthogonality L, C Eucl x Eucl
which will be introduced in Def.6.2.58 (p.859). Now, by (I)—(IT) below and item 5b
of Prop.6.2.79, it can be checked that L. has property 3 in Def.6.2.17; where (I)
holds by item (d) in the proof of Claim 6.2.11 (p.816) and by the def. of L., and
(IT) can be checked by the definition of Minkowskian orthogonality.

(I) Let £,¢' € L. Then (1.0 < (Vm)(w,'[¢] L, w,'[¢]).

(IT) Minkowskian orthogonality has property 3 in Def.6.2.17, i.e. if lines ¢, ¢1, /5
(€ Eucl) concur at point p (€ "F), with ¢; # £y and ¢ is Minkowski-orthogonal
to both ¢; and /5, then ¢ is Minkowski-orthogonal to every line through p in
Plane(¢y, £5), cf. Figure 270.

At this point Thm.6.2.19 is fully proved. 1

Question for future research 6.2.21 The definitions of L,, L/ 17 1" 1% do
what we have in mind only if we assume the axiom Ax(diswind) of disjoint-
windows. It would be nice to refine these definitions such that they work without
this axiom, too.

<

Let us recall that eq is a 4-ary relation on the set of points Mn of an observer-
independent geometry &gy and was defined in item 12 of Def.6.2.2(I) (p.793). Fur-
ther, eq was defined to be the transitive closure of the relation eq, which was
first-order logic defined (in the expanded frame-model 9™ defined in Remark 6.2.8
on p.807); and eq; was defined to be the “i-long-transitive closure” of eq,. As we
have already said in Remark 6.2.8, each one of eq,’s is first-order defined (in 9tT).™°

The next two theorems (6.2.22 and 6.2.23) say that eq is first-order definable in
M under certain conditions.

THEOREM 6.2.22 Assume Basax + Ax(Triv,)~ + Ax(v/ ). Then eq, = eq,
therefore eq is first-order definable™®.

"5First-order definable is the same as first-order logic definable (which in turn is the same as
definable, at least in the present work).

"6 we mean, definable over Mod(Basax +.. .), of course. First one defines Mn over 9t € Mod(. . .)
and then eq over 9 and Mn.
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A proof will be given in §6.2.6 on p.906.

To formulate our next theorem, we introduce a weakened version Ax(||)™ of
Ax(]])-

Ax(|])” (Ym,k € ObsN Ib)

[trm(k) =1 = (fx = holI, for some expansion h and isometry I)].74"

Assuming Bax, Ax(]|)” is equivalent with the following: If two observers,
say m and k, have the same life-line (i.e. ¢r,,(k) = ¢) then they agree on
the speed of light (i.e. ¢,;, = ¢x) and the world-view transformation f,,; is an
affine transformation, i.e. there is no field automorphism involved in f,,; (cf.
Fact 4.7.7).

The essential feature of Ax(||)” is that it does not exlude the “ant and the elephant
version of relativity” mentioned in Remark 4.2.1, while Ax(||) does.

Let
Th*™ := Bax® + Ax(||)” + Ax(Triv,)~ + Ax(v ) + Ax(diswind).

This theory Th™™ will play an essential role in the following theorems and propo-
sitions: Thm’s 6.2.23 (p.829), 6.2.44(iii) (p.847), 6.6.13 (p.1031), 6.6.114 (p.1130),
and Prop’s 6.2.88 (p.895), 6.2.92 (p.901). Because of this, we point out a few in-
tuitive and helpful properties of Th™~ (which eventually will be proved as parts
of various later theorems). We collect these properties in items 1-4 below. In 1-4
below n > 2 is assumed.

1. The reduct
(Mn,L; LT L 15 €, Bw, 1,)

of Ge(Th*™) is a disjoint union™® of (the similar reducts of) Minkowskian
749

geometries’®.

2. eq behaves well in Th* | in the following sense. Whenever a, b, ¢ in Fig.273
exist then d also exists. Further the arrangement in Fig.274 cannot happen.
Formal statements of these are in Prop’s 6.2.88 (p.895), 6.2.92 (p.901).

™7Though Ax(]|)” is not a first-order formula in its present form, it can be easily reformulated
in the first-order frame language cf. footnote 316 on p.350.

T48Cf. pp. 870, 873 for disjoint union of geometries.

T49Cf. Def.6.2.58 (p.859) for Minkowskian geometries.
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Figure 273: (Va,b,c)(3d as in the figure).

cd 0 Eo,e

Figure 274: This cannot happen.

3. The space-like hyper-planes of the (Mn, L; €, Bw, L, eq) reducts™? of the el-
ements of Ge(Th'~) are Euclidean geometries, assuming Ax(eqtime), cf.
Thm.6.6.114 (p.1130).

4. This theory Th*~, despite of having all the nice properties in items 1-3 above,
is not too strong e.g. we will see that even a strengthened version of Th™ ™ does
not imply Flxbasax, i.e.

Th*™ + “extra axioms”  Flxbasax
cf. Prop.6.2.101 (p.912) and the intuitive text below it on p.912.

THEOREM 6.2.23 Assumen > 2 and Bax®+ Ax(||) ™ +Ax(Triv,)~+Ax (V).
Then eq, = eq, therefore eq is first-order definable™!.

A proof will be given in §6.2.6 on p.906.

In connection with the theorem below, cf. Proposition 6.2.96 on p.907.

750We will call these reducts Goldblatt-Tarski reducts or GTsx’s on p.923.
"5lwe mean, definable over Mod(Bax® +...), of course. First one defines Mn over M € Mod(...)
and then eq over 9t and Mn.
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THEOREM 6.2.24

(i) Theorem 6.2.22 does not generalize from Basax to Bax® (and the assumption
Ax(||])” cannot be omitted from Thm.6.2.23). Moreover:

For any n > 1, there is M € Mod(Bax® + Ax(Triv) + Ax(v/)) such that eq
is not first-order definable in the expanded frame model M := (IM; Mngy, €).

(ii) Theorem 6.2.23 does not generalize to n = 2. Moreover:

There is M € Mod(Bax®(2) + Ax(||) + Ax(Triv) + Ax(v/ )) such that eq is
not first-order definable in the expanded frame model N := (IM; Mngy, €).

Proof:

Outline of the proof: We choose 9 € Mod(Bax® + Ax(Triv) + Ax(v/ )) (for the
case of (ii) M € Mod(Bax®(2) + Ax(||) + Ax(Triv) + Ax(v/)) such that 9 has
properties (a)—(c) formulated below.

(a) §™ is a real-closed field.
(b) (9M; Mn, €) is first-order definable (in the sense of §6.3.2) over F™.
(c) The subset {2¢ : i € Z} ™2 of F™ is first-order definable over (90t; Mn, €, eq).

Since (9; Mn, €) is definable over ™, a subset A of F™" is definable over (90t; Mn, €)
iff it is definable over ™ (cf. Thm.6.3.26, p.962). If eq was definable over (90t; Mn, €)
then by property (c) the set {2 : i € Z } would be definable over F™. We will prove
that the set {2 : i € Z} is not definable over ™ as a corollary of Lemma 6.2.28
way below. Hence, eq is not definable over (9%; Mn, €).

Details of the proof:

Case of (i): Let § be a real-closed field. Let 9t be the frame-model over §
obtained from the Minkowski model”®3 Emé/[ as follows. Intuitively, for each observer
m of Smé/[ we include a new observer k such that clock of £ runs twice slower than that
of m and in all other properties m and k agree (i.e. wp,(p) = wi(Po/2,P1,- - Pn_1),
for all p € "F). The speed of light for new observers is 22, while the speed of light
for the old observers is 1. Formally, 91 is defined over

ﬁ)ﬁgl = ((B; Obs, Ph,1b),5, G; €, W) as follows:

m L (B Obs,PH,IV),§,G; €, W'), where

752Recall that Z denotes the set of all integers.
753¢f. Def.3.8.42 on p.331 for Minkowski models
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Obs' ‘= Obs x {1,2},
PH & Pphx{1,2},7%
B ¥ ¥ obs'uPH,

W { <(m, i), p, (b,j>> € Obs' x "F x B' : W(m,ipo,P1,---,Pn_1,b) }

We note that the speed of light for observers of the form (m, 1) is 1 while for
observers of the form (m, 2) is 22.

It can be checked that 9 = Bax® + Ax(Triv) + Ax(v/ ).

Further, it can be checked that the Minkowski model i)ﬁg/[ is first-order definable
over § in the sense of §6.3.2. Hint: The observers of smg can be identified with spe-
cial Poincaré transformations of "F, namely with elements of PT* (cf. Prop.3.8.63
on p.346 and Def.’s 3.8.38, 3.8.42). Since all these are affine transformations, they
can be represented by matrices together with a vector. But a matrix together with a
vector can be identified with a sequence (of length n-n+n) of elements of §. The rest
of defining imé/[ over § goes in the style of §6.3.2 using the “concrete construction”
given for 9" in Def.3.8.38 (p.325) and Def.3.8.42 (p.331).

Since 9M was first-order defined (in the sense of §6.3.2) over 92!, we conclude
that 90t is first-order definable over §. Therefore, by Prop.6.3.18 (p.957), (9t; Mn, €)
is first-order definable over §.

By these 9 has properties (a) and (b) (formulated on p.830). Next we turn to
proving that 90t has property (c).

Let

H {z € F:3me Obs)(cm=1 A {win(0), wm(1:)) eq {wm(0), wm(z - 1;))) } .
Claim 6.2.25 H={2" : i€ Z}.

Proof: The proof of {2¢ : i€ Z} C H is depicted in Figure 275. In the figure
m, k € Obs' are such that the speed of light for m is 1, while the speed of light for &
is 22, m and k are “brothers” in the sense that m = (h,1) and k = (h, 2), for some
h € Obs.

The proof of H C {2' : i € Z} goes as follows. We will use the Minkowski
distance g, :"F x"F — F which will be defined in Definition 6.2.58 (p.860). It
can be easily checked, e.g. by the proof of Claim 6.2.84 (p.892), that

(Vm € Obs')(Vp,q,7,s € "F) ((cm =1 A (wm(p), wn(q)) €qo (Wm(r), wn(s))) =

(gu(p,q) = 2°g,(r, s), for some 1 € {—1,0, 1}))

"54We defined Ph' as Ph x {1,2} only for technical reason.
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22.1,
2-1%
(0, wm(2- 1))
(0, we(1))
_ €qg
(0, wh 1))
<()a Wi (1z))
€qo
2.1, (0,w¢_n(1t))
1% 5l
(0, we(5 - 14))
B €qo
(0, wi(5 - 12))
_7wm 9 x
1 0, win(3 - 1z))
%.1f €qo
1 <G,U}m(% ]-t)>
3 Lt
) .
5 - 1f
0 1, L 2-1, 2.1,
L.k 1k 2.1k 22.1k

Figure 275: Proof of {2° : i € Z} C H. The right-hand side column illustrates the
computational part of why m thinks that (0, 1;) is “eg-related” to (0, 2" - 1;) (which
means 2° € H by the definition of H).
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Since eq was defined to be the transitive closure of eq, the above implies that
(Vm € Obs)(Vp,q,r,5 € "F) ((cm =1 A {wn(p), wm(a)) eq (wn(r), wm(s))) =
(9u(p,q) = 2°g,(r, s), for some i € Z))

By this, it can be easily checked that H C {2’ : i € Z } indeed holds.
QED (Claim 6.2.25)

By Claim 6.2.25 (and by the definition of H), we have that property (c) holds
for M. To complete the proof for item (i) it remains to prove that the subset
{2" : i€ Z} of F is not first-order definable over §. This will be an immediate
corollary of Lemma 6.2.28 way below.

Case of (ii): The proof of item (ii) is similar to that of (i). We will construct
a model M € Mod(Bax®(2) + Ax(||) + Ax(Triv) + Ax(v/ )) such that O has
properties (a)—(c) formulated on p.830. Let § be a real-closed field. Let 90t be a
model over § obtained from the 2-dimensional Minkowski model smg as follows.
Intuitively, for each observer m of img[ we include a new observer k such that

fem(1z) =1y and  fip(1y) =2-1,, see Figure 276.

The speed of light for new observers is 22 while for the old ones it is 1. Further, the

Figure 276: The picture represents the world-view of observer m.

new observers are FTL observers relative to the old ones. Formally, 9 is defined
over ﬁﬁgf = ((B; Obs, Ph,Ib), 5§, G; €, W) as follows:

m & (B'; Obs, PH,IV),5,G; €, W'), where

Obs' & Obs x {1,2},
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Phl = PhX{l,Q},
B ¥ & obsuPH,
W :d:ef {<<m,i>,p0,p1,(b,j>> € Obs' x Fx Fx B : W(m’pl’ipo’b)}.

We note that the speed of light for observers of the form (m, 1) is 1 while for observers
of the form (m, 2) is 22.

It can be checked that 9 = Bax®(2) + Ax(||) + Ax(Triv) + Ax(v/ ). The
rest of the proof goes similarly to the proof given for item (i), i.e. we define H
exactly the same way as in the proof of item (i); it can proved that H coincides with
{2" : i € Z}, etc. The details of this part of the proof are left to the reader.

To complete the proof it remains to prove that { 2° : i € Z } is not definable over
. A generalized version of this will be proved as Lemma 6.2.28 below. Thus the
theorem is proved modulo Lemma 6.2.28. 1

For stating Lemma 6.2.28 we need a convention and a definition.

CONVENTION 6.2.26 From now on QQ denotes the ordered field of rational num-
bers. Throughout we identify Q with its universe. Q is embeddable in a natural
way into every ordered field §. When discussing an ordered field § we will pretend
that Q is a subfield of §. I.e. we identify Q with its unique isomorphic copy sitting
inside §.

By an algebraic element of § we understand an element which is algebraic over

Q.75
<

Definition 6.2.27 Let § be an ordered field. Let H C F. We call H gapy in § iff
(H #0 and (Valgebraica € H)(3bce F)la<b<c AbgH A ce H)),

see Figure 277.

Ezamples: Z,w and {2¢ : i € w} are gapy subsets in §, for any ordered field .

LEMMA 6.2.28 Assume § is a real-closed field. Then no gapy subset H C F in
§ is definable over §.
755For completeness we recall that an element of § is algebraic over Q iff it is a root of a nonzero

polynomial with coefficients in Q. (A root of a polynomial p(z) is the same as a solution of the
equation p(z) =0.)
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a is algebraic ac H b¢g H ceH

Figure 277: H C F is gapy in § iff it is nonempty and
(V algebraic a € H)(3b,c as in the figure).

Proof: Assume § is a real-closed field. Throughout the proof we will use the following
fact from field theory.

Fact 6.2.29 Let p(x) be a unary term in the language of § extended with the unary
operation symbol “—”. Then (i) and (ii) below hold.

(i) Assume that p(z) = 0 is a nontrivial™®® equation. Then this equation has only
finitely many solutions. Further, the solutions of p(z) = 0 in § are algebraic
elements of §.

(ii) The intermediate value theorem holds for the function defined by p(z), i.e. if
p(a) - p(b) < 0 then p(c) = 0 for some c strictly between a and 5.7°7

Proof: Assume p(z) is as above. Item (i) follows by the fact that p(z) is a nonzero
polynomial with coefficients in Z. Hence p(x) has finitely many roots™® and the
roots of p(x) are algebraic over Q. For item (ii) cf. [136, Fact 8.4.5, p.386].

QED (Fact 6.2.29)

Now we turn to proving Lemma 6.2.28. The proof goes by contradiction. Assume
that H C F is gapy in § and that H is definable over §. Then there is a first-order
formula ¢(z) in the language of § such that H = {a € F : § = ¢[a] }. By Tarski’s
elimination of quantifiers Theorem for real-closed fields, i.e. by Thm.8.4.4 on p.385
of [136] and line 9 on p.376 of [136], ¢(x) is equivalent in § with a quantifier free
formula ¢(z), i.e. § = Vz(p(z) > ¢¥(z)). Then ¢(z) defines H, i.e.

H={acF : §FE=ya]}.

Since v is quantifier free, it is a Boolean combination of atomic formulas. It is not
hard to see that 1) is equivalent with a disjunction of formulas of the form™?

(+)  po(x) =0 A ... A pe—1(z) =0 A go(z) >0 A ..o A g-1(z) >0,

756p(x) = 0 is called trivial in § iff § = p(z) = 0.

"7This can be memorized by e.g. thinking of the Bolzano Theorem from elementary calculus.

758That each nonzero polynomial in § has only finitely many roots is a well known property of
ordered fields.

"9using facts like 7(z) < o(z) & o(z) —7(z) > 0,0r ~(1<0) & (T=0Vo <T) etc.
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where m, k € w and p;(x), ¢;j(z) (i € k, j € m) are unary terms in the language of
§ extended with the operation symbol “—”. Warning: here we include the unary
operation “—” in the language of §. But then H is a finite union of sets definable by
formulas of the form (+). Then one of these sets must be gapy in § since H is gapy
in §.7° Therefore there is H' C H such that H' is gapy in § and H' is definable
by a formula of the form (+). We may assume that this formula is exactly the one
displayed in (+).

If one of the (p;(x) = 0)’s is a nontrivial equation, then it has only finitely many
solutions in § and these solutions are algebraic elements of § (by Fact 6.2.29(1)),
hence H' is a finite set of algebraic elements of § which contradicts the fact that H'

is gapy in §. Therefore we may assume k£ = 0. Thus
(%) H={a€F : qg(a)>0A ... A gn_1(a) >0}.

We may assume that none of the (g;(x) = 0)’s is trivial. Therefore the set

Sol ‘£ {deF : (3i € mag(d) =0}

(of solutions) is finite by Fact 6.2.29(i).

Claim 6.2.30 (V algebraic a € H')(3b,c € F)
((c is algebraic) A a<b<c Abg H' A c€ H').

Proof: Let a € H' be such that a is an algebraic element of §. We have to prove
that there are b,c € F such that a <b<¢, b¢ H', ¢ € H' and cis algebraic. Let
b, € F besuchthat a<b<, b¢g H and ¢ € H'. Since H' is gapy in § such
b and ¢ exist. To prove the claim it is enough to prove that there is an algebraic
¢ € H such that b < ¢. Clearly,

¢(c) >0, foralliem

by (¥) and by ¢ € H'. See Figure 278. Further, by b ¢ H' and (x), there is
j € m such that ¢;(b) < 0. Let such a j be fixed. Thus, by Fact 6.2.29(ii) (and

76%In more detail: H = |J,.,, H; for some n € w and each H; is definable by a formula of the form
(4). Then one of the H;’s is gapy in § because of the following. Assume that none of the H;’s is
gapy in §. Without loss of generality we can assume that each H; is nonempty. Then, for all i € n
(3 algebraica; € H;))({y : y>a; } CH; V {y:y>a;} CF\H).
But then, for a := max{a; : ¢ € n} we have that a € H and a is algebraic, further
{y:y>a}CHV {y:y>a}CF\H.
This contradicts our assumption that H is gapy in §. Therefore one of the H;’s is gapy in §.
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Figure 278:

by b < ), there is d € F such that b < d < ¢ and ¢;(d) = 0. Therefore the set
{d € Sol : d <} is nonempty (and is finite), and

b<max{de Sol : d<}.

Let

¥ ¥ max{deSol : d<c}.

Let

n def [ min{d e Sol : d> ¢} if (3d € Sol)d > ¢
T © otherwise.

Clearly, b < ¥ < ¢’ < ¢’ and none of the equations ¢y(z) =0,...,¢n_1(z) = 0 has a
solution in the open interval (b',c") :={d € F : b/ <d < "}, cf. Figure 278 (recall
that ¢;(¢') > 0, for all i € w). By this, by Fact 6.2.29(ii), by (%) and by ¢ € H’,
we conclude that (0, ") C H'. Further (by Fact 6.2.29(i)) b’ is an algebraic element
of § and ¢” is either an algebraic element of § or is co. Thus there is an algebraic

element c of § such that ¢ € (¥, ") C H'. For this choice of ¢ we have b < ¢, c € H'

and c is an algebraic element of §.
QED (Claim 6.2.30)

Let a',b° € F (i € w) be such that for all 4 € w, a’ is an algebraic element of F,
at€ H', b ¢ H', and
at < b o< gt < bl
By Claim 6.2.30, such a*’s and b%’s exist. By (x),”®! there are j € m and an infinite
subset I of w such that

(VieI)(q(") <0 A g(a’)>0).

Let such j and I be fixed. Let h:w > I be an order preserving bijection.
Then clearly,

(Vi € w)(g;(@"P) >0 A ¢;(0"D) <0 A "D < D < gh(FD < phEFD))
"6land by o' € H', b' ¢ H'
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Thus, by Fact 6.2.29(ii), for every i € w there is ") € F such that a*®) < ch() < ph()
and g;(c*®) = 0. By the above we conclude that the equation g;(z) = 0 has infinitely
many solutions, and this contradicts item (i) of Fact 6.2.29.

At this point all parts of the proof of Thm.6.2.24 has been taken care of.

One of the reasons for looking at the alternative notions like L], L7 eq, is that
they can behave better from the point of view of definability issues. (There are of
course other reasons, too, for experimenting with alternative concepts.) Similarly,
we will look at alternative definitions of the topology part 7 of our geometries.
Namely 7" will be based on Bw while 7" will be based on causality <.

Definition 6.2.31 (Alternatives 7'/, 7" for topology T)

Assume n > 1. Let 9T be a frame model of dimension n. Mn, Bw, < are defined in
items 3, 8, 7 of Def.6.2.2(I). We define the topologies 7' and 7" on Mn in items (i)
and (ii) below, respectively.

(i) Intuitively, first by using Bw we define interiors of simplexes,’s? cf. the left-
hand side of Figure 279. Then by using these (as a subbase) we define the
topology 7" on Mn the natural way, formally:

For every H C Mn the convex hull Ch(H) of H is the smallest subset of Mn
having properties 1 and 2 below."3

1. H C Ch(H).
2. (a,b € Ch(H) N Bw(a,c,b)) = c¢¢€ Ch(H).

We define the collection simplexes C P(Mn) as follows.
simplexes : 2 {HCMn : |H =n+1, (I3m € Obs) Plane(H) = Rng(w,) } .

Let H € simplexes. Then, intuitively, the neighborhood S’(H) is defined to be
the “interior” of the convex hull Ch(H) of H; formally:
S'(H) = Ch(H) \ | Plane(H \ {e}),

ecH

see the left-hand side of Figure 279. Now, the topology 7' C P(Mn) is the

762We note that if n = 2 the simplexes are the triangles and if n = 3 the simplexes are the
tetrahedra.
763The usual notation in the literature is “co(H)” for our Ch(H).
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H = {a,b,c,d} € simplexes

(ii)

S"(a,b)

eQ

Figure 279: In the figure n = 3.

one generated by 7 below, i.e. T is a subbase for 7.
T! & {S'(H) : H € simplexes } .

We note that, assuming Bax™ + Ax(v/ ), Ty is a base for T', cf. Figure 279
(and the proof of Thm.6.2.34).

For every a,b € Mn with a < b we define the neighborhood
S"(a,b) :d:ef{ce Mn:a<c<b},

see the right-hand side of Figure 279. Now, the topology 7" C P(Mn) is the
one generated by 7§ below, i.e. T} is a subbase for 7.

T (5" (a,b) : a,b€ Mn, a<b}.

We note that, assuming Bax~" + Ax(11o) + Ax(v ) and [(Vm €
Obs) (m thinks that there is an upper bound for the speed of light )™ or
§=R], T} is a base for T", where Ax(11o) is defined below, cf. Figure 279
(and the proof of Thm.6.2.34).

"64formally: (IX € F)(Vd € directions) c,,(d) < .
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Theorems 6.2.34, 6.2.41 and 6.2.42 below say that topologies 7, 7' and T" co-
incide, under some assumptions. For stating these theorems we introduce weakened
versions Ax(11o) and Ax(11e0) of our axiom Ax(11) saying that each observer
sees any other observer’s time flow forwards. The reason for introducing Ax(11o)
is that Ax(11) blurs the distinction between Basax and Newbasax, while the
reason for introducing Ax(1190) is that Bax™ + Ax(119) + Ax(v/ ) excludes FTL
observers already in two dimensions, cf. Prop.6.2.32. Recall from Def.4.2.6 (p.460)
that m STL k means that m sees k moving slower than light.

Ax(T1o) (Vm, k € Obs)(m Sk — m1 k).

Intuitively, if m sees k then k’s clock runs forwards as seen by m.

Ax(T1o0) (VYm,k € Obs) (m STLk — m 1 k).

Intuitively, if m sees &k moving slower than light then £’s clock runs forwards
as seen by m.

PROPOSITION 6.2.32 For anyn > 1
Bax™ + Ax(T™o) + Ax(v ) = “ A FTL observers”.

Proof: The proof goes by contradiction.

Assume that there is 9 € Mod(Bax™ + Ax(11o) + Ax(v/ )) with m, k € Obs
such that m sees k& moving FTL. Without loss of generality we may assume that
0 € tr,(k) by Ax4 and Thm.4.3.17 (p.488). Let k' € Obs be obtained from m and
k exactly as in the proof of Thm.4.3.24 (p.497), cf. Figures 153, 154 (p.499). Then
m sees k' moving with infinite speed, cf. the right-hand side of Figure 154 (p.499).
So —=(m 1 k'). This contradicts Ax(11p). 1

Question for future research 6.2.33 In which ones of the theorems involving

Ax(11) or Ax(11o) can one replace Ax(11) or Ax(11o) with Ax(1100)?
<

THEOREM 6.2.34 Assume Bax~" + Ax(11o) + Ax(v/ ). Assume that
(Vm € Obs) (m thinks that there is an upper bound for the speed of light)™  or
§ =R. Then (i) and (i) below hold.

(i) The topologies T' and T" coincide.

(ii) The topology T' = T" is a Euclidean one in the following sense:
"65formally: (I € F)(Vd € directions) ¢, (d) < A.

840



(a) For any m € Obs, {w,'[H] : H € T'} is the usual Euclidean topology
on "F, i.e. the one with base { S(p,e) : p €"F, e € tF}, cf. p.189 for
S(p,¢).

(b) T is homeomorphic to a sum topology (i.e. a coproduct)™® of usual Eu-
clidean topologies on "F.

Proof: Assume the assumptions of the theorem. By Thm.4.3.11, we have that: the
visibility relation % is an equivalence relation when restricted to Obs, and if m Sk

then Rng(w,,) = Rng(wy), otherwise Rng(w,,) N Rng(wy) = 0.

Let O C Obs be a class of representatives for the equivalence relation S 767

Then
()
It is easy to check that for every m € Obs

(xx)  Rng(wn,) €T  and  Rng(w,) € T",

Mn is the disjoint union of the family ( Rng(w,,) : m € O)
(and the members of this family are mutually disjoint).

i.e. Rng(w,,) is an open set w.r.t. both topologies. For every m € Obs, let
T'" | Rng(w,,) and T" | Rng(w,,) be the subspace topologies of 7' and 7" on
Rng(w.,,),"® respectively, i.e.

T' | Rng(w,) 4 {HN Rng(w,,) : HeT'}={H €T : HC Rng(wn) },
T" | Rng(w,y,) 4 {HN Rng(w,,) : HeT"}={H e€T" : HC Rng(wn) };

further let 7,) and 7, be the topologies on the coordinate system "F defined as
follows.

T 4 {w'H : HeT'}.
T 4 {w.'H : HeT"}.
It is easy to see that for every m € Obs

Wy, : "F — Rng(w,,) is a homeomorphism between 7, and
T' | Rng(w,,) and between T and 7" | Rng(w,,).

(% * *)

To prove item (i) of the theorem, by (%), (#*), (% * %) above it is enough to prove
that for each m, 7, and 7, coincide. This holds by Claim 6.2.35 below.

766 Cf. p.870 for coproduct of topological spaces. Cf. also Engelking [83] under the name “sum of
spaces”.

67Le. (Vm € Obs) |0 Nm/S | = 1, where m/S3 is the equivalence class of m w.r.t. 3, as usual.

768 e. they are the restrictions to Rng(w,,) of 7' and T", respectively
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Claim 6.2.35 Let m € Obs. Then (a) and (b) below hold.

(a) 7, is the Euclidean topology on "F), i.e. the one with base
{S(p,e) : pe™F, e € TF}, cf. p.189 for S(p,¢).

(b) 7} is the Euclidean topology on "F.

Proof:
Proof of (a): A set H C "F is called a simplez iff |H| = n+ 1 and for each

pe H,{q—p:q€ H, q#p}isa basis™ for the vector space "F, cf. the left-hand
side of Figure 279.77°

Clearly, a subbase for 7, is

T, 4 w'[H) : HeTy, w,' [H #0};

where recall that 7] is the subbase of 7". Since the world-view transformations are
betweenness preserving collineations”"! it can be checked (by item 1f of Prop.6.2.79)
that 7] consists of the interiors of the convex hulls of the simplexes, where interiors
of sets are defined via the Euclidean topology, and convex hulls of sets are defined
in Def.4.3.28(iii) (p.509).

T! is a base for the Euclidean topology (on "F) because of the following. Let
H be an open set of the Euclidean topology. Then for any p € H, there is a
“neighborhood” of p in 7], which is contained in H. Hence H is a union of members
of T .

But then, 7, is the Euclidean topology on "F.

Proof of (b): Let <,, be a binary relation on ™F defined as follows.

<m E {{(p,q) €"F X"F 1 wn(p) < win(g)}-

For every p € "F, let
Future, 4 {g€™F : p=<maq},

f n
Past, & {qe™F : ¢g<mp}
Clearly, a subbase for 7,” is
" & LWV H]  HeT!, w'[H #0},

where recall that T} is the subbase of 7”. It is easy to see that

769

i.e. a minimal set of generators

7T0This is practically the same notion as “simplexes” in Def.6.2.31, the only difference being that
now we are in "F while there we were in (Mn,...).

" by Thm.4.3.11 (p.481), Fact 4.7.7 (p.617) and Remark 3.6.7 (p.268)
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(349) T, = {Future,NPast, : p,g €"F, p <y q}.
By item 1h of Prop.6.2.79 (p.884), we have that

(350) p<mq & [pe<q A (3k € Obs)p,q€ try(k)].
There are no FTL observers, by Prop.6.2.32. Thus, by Thm.4.3.29 (p.510), by (350)
and by Ax5gps, we have that for any p € "F

(351) Future, is the interior of the convex hull of {q € Cone,,, : pr < ¢: }, and

(352) Past, is the interior of the convex hull of {gq € Cone,,, : pr > ¢ };

where interiors of sets are defined via the Euclidean topology, and convex hulls of
sets are defined in Def.4.3.28(iii) (p.509). By (349), (351), (352) and Thm.4.3.29
(p.510), we conclude that 7)” is a base for the Euclidean topology (on "F'), cf. the
right-hand side of Figure 279. Hence, 7, is the Euclidean topology.

QED (Claim 6.2.35)

By this item (i) of our theorem is proved. Item (ii) follows by (x), (%), (* * *)
and Claim 6.2.35. Namely by (x), (%) we have that 7 is the sum topology (i.e. the
coproduct) of the family (7' [ Rng(w,,) : m € O) which in turn, by (x * ), is
homeomorphic to the sum topology (i.e. the coproduct) of the family (7! : m € O);
while by Claim 6.2.35 we have that each 7, is the Euclidean topology on "F. 1

PROPOSITION 6.2.36 Assume Bax™ + Ax(v/ ). Then the topology T' is the
FEuclidean one in the sense of Thm.6.2.34(ii), i.e. it has properties (a) and (b) in
the formulation of Thm.6.2.34(ii).

Moreover T} is a base for T'.

Proof: The proposition is a corollary of the proof of Thm.6.2.34. 1

Recall that we have introduced a strong symmetry principle Ax(w) in §3.9 (cf.
p.351). Below we introduce four weak variants Ax(w)’, Ax(w)”, Ax(w)*, Ax(w)"
of Ax(w), where Ax(w)” and Ax(w)* can be considered as natural weakened ver-
sions of Ax(w); while Ax(w)* and Ax(w)™ can be considered as natural weakened
versions of Ax(w) + Ax(Triv,)~ + Ax(v/ ). Le.

[Ax(w) + Ax(Trivy)™ + Ax(v)] > Ax(w)" > Ax(w)”
V V \%
Ax(w) > Ax(w)’ > Ax(w)”.

We will use these axioms in formulating some of our theorems.
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Definition 6.2.37

Ax(w)’ is defined to be the disjunction of the following symmetry axioms:
Ax(sytp), Ax(symm), Ax(speedtime), AxAl+Ax(eqtime), AxA2,
AxO1+Ax(eqtime), Ax02.772

Ax(w)" is defined to be Ax(w)’+Ax(Triv,)~+Ax(v").

Ax(w)" is defined to be the disjunction of the following symmetry axioms: Ax(w)’,
Ax(eqgspace), Ax(eqm)+Ax(Triv,)~.""

Ax(w)¥ is defined to be Ax(w)™ + Ax(Triv,)~ + Ax(v/).
<

The following three propositions and Theorems 6.2.59 (p.861), 6.2.60 (p.862)
show that our weak symmetry axioms Ax(w)’, Ax(w)”, Ax(w)’, Ax(w)* are
strong enough”™ under assuming Basax. In connection with the following proposi-
tion recall that gz :"F x"F — F is the square of the Minkowski-distance defined

in Def.2.9.1. In the next proposition we use the notation g,(p,q) := 1/g2(p,q). ™

PROPOSITION 6.2.38 Assume 9 € Mod(Basax + Ax(w)’+ Ax(v")), or that
n > 2 and M € Mod(Basax + Ax(w)” + Ax(v")). Then for any e,e’ € Mn and

m € Obs
(e, ¢) = gu(wt(e), w () ife="¢€ ore=t"¢e ore=5¢
I\ = s undefined otherwise.

The proof is available from Judit Madarasz. R

Our next two propositions are not about geometry. They are here to help us
become familiar with the (basic properties of the) new axioms introduced above.

"2We note that, assuming Flxbasax® + Ax(Triv;)~ + Ax(110) + Ax(v/" ) these symmetry ax-
ioms are equivalent to one another, cf. Thm.6.2.98 (p.910), cf. also Thm.3.9.11 (p.356), Thm.2.8.17
(p.138) and [174].

"3We note that, assuming n > 2 and Flxbasax® + Ax(Triv;)~ + Ax(110) + Ax(V ) the
symmetry axioms involved in Ax(w)° and Ax(w)® are equivalent to one another.

"Tin that they ensure that our g is (the square of) the usual Minkowski distance

"SIn connection with this definition we note that our symbol g7 (introduced on p.152) is not
the square of something denoted by g,, but instead it is a basic symbol, like, say . Then, g,

counts as a brand new symbol unrelated to gﬁ and our definition g,(...) = 1/g2(...) should be

understood like g, (p,q) = /7(p,q). (The reason for treating g7, as basic symbol [instead of e.g.
9,] is explained in footnote 61, p.46.)
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Recall that Poincaré transformations were introduced in Def.2.9.1 (p.152) and
that generalized Poincaré transformations were introduced in Def.5.0.67 (p.728).

PROPOSITION 6.2.39

(i) Basax + Ax(w)’ + Ax(v') = (the fyu’s are Poincaré transformations),
and

Flxbasax® + Ax(w)’ + Ax(V ) + Ax6 =
(the fux’s are generalized Poincaré transformations)

(ii) Assume n > 2. Then the statement in (i) remains true if we replace the
assumption Ax(w)° with Ax(w)”.

The proof is available from Judit Madarasz. R

Recall from §3.8 that for any Euclidean §, the axiom system BaCo admits
exactly one model whose ordered field reduct is §, up to isomorphism, and this
model is the standard Minkowskian one.

PROPOSITION 6.2.40
(i) Basax + Ax(w)" 4+ Ax(11) + Ax(ext) + AxQ == BaCo + Ax(V ).
(ii) Assume n > 2. Then (i) remains true if Ax(w)" is replaced by Ax(w)™ in it.
The proof is available from Judit Madarasz. I
In connection with the following theorem recall that
Basax = Newbasax = Flxbasax?.
Let Th™ be the theory
Flxbasax® + Ax(w)" + Ax(diswind)

which will occur in Thm.6.2.41 below. This theory or its variants with Basax
or Newbasax in place of Flxbasax® will often occur in our subsequent theorems.
Therefore we note that by our previous 3 results (items 6.2.38-6.2.40), Th* is almost
equivalent with “official special relativity” with disjoint windows allowed.”"

"T6By “official special relativity” we refer to Specrel.
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THEOREM 6.2.41 Assume Flxbasax® + Ax(w)’+Ax(diswind). Then (i) and
(1) below hold.

(i) T and T' coincide.

(ii) Assume Ax(t1o). Then T, T' and T" coincide.”™
Further the topology T = T' = T" is the Fuclidean one in the sense of
Thim.6.2.34 (ii).

The proof is available from Judit Madarasz. R
Since Ax(w)ﬂ was designed to be weak, Theorems 6.2.41, 6.2.42 say that
Flxbasax® + (some mild assumptions ) suffice for 7= 7" = T".

The next theorem says that if n > 2 then in the above theorem we could use the
weaker Ax(w)™ in place of Ax(w)".

THEOREM 6.2.42 Assume n > 2 and Flxbasax® + Ax(w)” + Ax(diswind).
Then (i) and (i) in Thm.6.2.41 hold.

The proof is available from Judit Madarasz. R

Theorems 6.2.10 (p.813), 6.2.22 (p.827), 6.2.23 (p.827), 6.2.34 (p.840) and 6.2.41
motivate the following definition.

Definition 6.2.43
(Alternatives &[,, &, and Ge'(Th), Ge"(Th) for Gon and Ge(Th))

(i) Assume 9 is a frame model. Then we define B to be the geometry obtained
from &gy = (Mn, Fyq,...) by replacing L,, eq with L], eq,, respectively, i.e.

Oy *= (Mn, Fy, L; L, L™, I, €, <, Bw, 1, eq5,9, T ).

We define &g, to be the geometry obtained from &gy, by replacing the topology
T with 77, i.e.

&l X (Mn,Fy, L LT, LP" LS €, <, Bw, 1!, eq,, 9, T ).

7TTA physical consequence of Thm.6.2.41 is that for the various definitions of our topology (i.e.
T,T',T") the so called measurable sets remain the same (under the assumptions of the theorem).
The reason for this is that the measurable sets are usually derived from the topology. In principle
results like this might be relevant for recent theories of physical measurement (where the notion
of measurement is related to measurable sets) cf. Attila Andai personal communication. Cf. e.g.
Misner-Thorne-Wheeler [196, p.1184 (lower part of the page)]. Cf. also Andai [8, Chap.4, §5] and
Pulmanové [216].
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(ii) Let Th be a set of formulas in our frame language for relativity theory. Then
the classes of relativistic geometries Ge'(Th) and Ge"(Th) associated to Th
are defined as follows.

Ge'(Th) £ I{® : M e Mod(Th)},
Ge"(Th) & I{®!, : M € Mod(Th)},

where for taking isomorphic copies of our geometries we apply Convention 6.2.3
(i.e. we stick with the “real” membership relation “€”). <

Our next theorem says, roughly, that our class Ge(Th) of relativistic geometries
is definable over the corresponding class of observational models.

In Theorem 6.2.44 below instead of definability of the topology part we claim de-
finability of only a subbase for the topology. An exception is item (ii) of Thm.6.2.44,
because there a base T} will be definable, too. The content of Thm.6.2.44 below will
be presented (discussed etc.) in a greater detail in §6.3 (cf. the proof of Thm.6.2.44).

THEOREM 6.2.44

(i) The class Ge'(Th) is uniformly first-order definable™® over the class Mod(Th),
for any set Th of formulas in our frame language.”™

(ii) Ge"(Th) is uniformly first-order definable over Mod(Th), assuming

Th = Bax™ + Ax(V ).

(iii) Ge(Th) is uniformly first-order definable over Mod(Th), assuming n > 2 and

Th E Bax® + Ax(||)” + Ax(Triv,)~ + Ax(diswind) + Ax(v/" ).

(iv) Ge(Th) is uniformly first-order definable over the class Mod(Th), assuming

Th = Basax + Ax(Triv,)~ + Ax(v ).

Proof: The theorem is restated and is proved in §6.3 as Theorems 6.3.24 (p.962),
6.3.22 (p.961) and 6.3.23. &

718¢f. (x) in Remark 6.2.8 on p.807 (or for greater detail §6.3)
"9With the exception of §6.3 Th is in our frame language (i.e. Th denotes an arbitrary set of
formulas in our frame language).
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We will see that more is true, namely Mod(7Th) and Ge(Th) are definitionally
equivalent™’, in symbols
Mod(Th) =a Ge(Th),
assuming Th is strong enough™!, c¢f. Thm.6.6.13 (p.1031).
On the conditions of Thm.6.2.44(iii): The assumption n > 2 cannot be omitted
by (the proof of) Thm.6.2.24(ii) (p.830). The assumption Ax(||)” is needed because

of (the proof of) Thm.6.2.24(i). Further we conjecture that Ax(diswind) cannot
be omitted, cf. Conjecture 6.6.15 on p.1033 and Fig.316 on p.1033.

6.2.3 On the intuitive meaning of the geometry &gy

Recall that Ax(Triv,)~ is a weakened version of Ax(Triv;) and Ax(Triv), and
it was introduced on p.812 in the present section. We will need Ax(Triv;)~ and
Ax(Triv) quite often for the following reason. We defined, roughly speaking, the
set L of lines such that something is a line if it “coincides” with a coordinate axis
of some inertial observer. Therefore we have rather few lines, i.e. to have enough
lines we need Ax(Triv;)~. We could have defined lines as sets “parallel” either
with the time-axis ¢ or with a Euclidean line in the space part S of our space-time
for some inertial observer. In that case we would not need Ax(Triv;)~ so often.
The only reason why we did not include Ax(Triv;)~ into our basic theories like
Basax or Basax+ Ax(symm) is that we could derive our main theorems (e.g. no
FTL observers, Twin Paradox) even without Ax(Triv;)~. But whenever we need
Ax(Triv;)~ for something, we will assume it without a second thought.™?

We will also need Ax(eqm) often, where Ax(eqm) was defined on p.796. The
reason for our needing Ax(eqm) is the following: Without Ax(eqm), g could easily
become degenerate because g was defined via “min”. Further, failure of Ax(eqm)
can produce strange things, e.g. (eq(a,b,c,d) = g(a,b) = g(c,d)) can fail even

780The notion of definitional equivalence will be discussed in §6.3.

"81The conditions of Thm.6.2.44(iii) together with AxQ + Ax(ext) + Ax(eqtime) are sufficient.

"20mitting (or weakening) certain axioms of a theory (like Basax + Ax(w)ﬁ) of special rela-
tivity lead to exciting questions (such an axiom is e.g. AXE) but for some other axioms (like e.g.
“trm(m) = t” or the other axiom [Vp(p € £ & p € £1) — £ = {4]) this does not seem to be the
case. It is our impression that Ax(Triv;)™ might belong to this second kind of axioms (though
we did not think much about this, so we may be wrong).
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in Basax without Ax(eqm). (Connections between Ax(eqm) and some earlier
introduced axioms will be discussed in §6.2.7.)

Discussion of the intuitive meaning of the geometry ®&gy: Intuitively, the
points of Bgy are the events. The L’-lines are the life-lines of inertial observers.
The L2 lines are the life-lines of photons. Intuitively, one could say that the set of
space-like lines L® consists of the life-lines of the potential faster than light inertial
bodies (which are called tachions in the literature). However, these bodies need not
exist in our model 9. But certainly, if there exists an FTL ¢nertial body b in a
model 9, then the life-line {e € Mn : b€ e} of bisin L®, under some assumptions
on M, ™3 cf. Prop.6.2.55 (p.858). Two events are =" -related if there is an inertial
observer, whose life-line contains both events. This is equivalent to saying that
there is an inertial observer who sees them happening at the same place, under mild
assumptions™*, cf. Prop.6.2.56(i) (p.858). Two events are =-related if they are
connected by a photon. Two events are =°-related iff there is an inertial observer
who sees them happening at the same time, if we assume Ax(Triv)+Ax(v/" ), cf.
Prop.6.2.56(ii) (p.858). Assuming Ax(Triv)+Ax(v )+Ax(eqm)+Ax4+Ax6p,
the g-distance g(e, e;) between two events e, e; is (i) the Euclidean distance between
them if they are simultaneous for some inertial observer, is (ii) the time elapsed
between e, e; if they are on the life-line of some inertial observer, is (iii) zero if a
photon connects them and is (iv) undefined if no inertial observer can see both of
them (under some mild assumptions).

Remark 6.2.45 We have seen in earlier sections that (assuming Ax1, Ax2, Ax3,,
Ax4, AxEg;, Ax6qg) the irreflexive parts of =7 and =" are disjoint because no
observer moves with the speed of light,”™ hence (e Ze; A e="¢) = e #£Me;.

For completeness, we note that there is a tradition in the literature which codes

, =T =Ph up into one complex-valued (pseudo-metric) function

g(e,er) if e =T e, or g(e, e;) is undefined

gt(e,er) =< 0 if e =Fh ¢
i-g(e,e;) otherwise.

Here i = /=1 and g% : Mn x Mn — C(F), where C(F) = §(¢) is the field of

complex numbers over §.

"83)ike e.g. Bax® + Ax(Triv;)™ + Ax6 + Ax(v)
"8e.g. Ax(Triv)+Ax4+Ax6g suffices
"85More precisely, no observer has the same life-line as a photon.
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However, in the present work we will not need g™ because the information carried
by ¢g* is recoverable from our structure (Mn,Fy; g, =T, =Ph).786

<

Below we continue the discussion of the intuitive meaning of the parts of our ge-
ometries. Intuitively, two lines ¢,¢; are orthogonal in the relativistic sense (i.e.
1 ,-related) if there is an inertial observer m who thinks that they are parallel with
two different coordinate axes. There is a slight problem with this intuitive definition
because in most of our models 9 no line will be orthogonal to photon-like lines.
To help this we introduced a limit construction in our definition of 1,. We refer
to Remark 6.2.6 (pp. 802-805) for intuitive motivation (and cosiderations) for our
using limits in the definition of L,. If we assume Bax® and some mild assumptions
then our relativistic orthogonality gets very close to the usual Minkowskian orthog-
onality, cf. Thm.6.2.64 (p.866). On the other hand if we do not assume Bax?, then
the relativistic orthogonality L, can behave in quite interesting, unusual ways. E.g.
in NewtK geometries two lines are orthogonal iff at least one of them is space-like.
Further, there is a Bax~ " geometry with two parallel space-like lines which are
1 ,-orthogonal, see Figure 280. (The “meanings” of 1, L7 1% =T =5 ... will be
discussed in items 6.2.48-6.2.57 below, pp. 854-858). Betweenness Bw and equidis-
tance eq are the usual geometric relations used e.g. by Hilbert [133, 134]. Bw(a, b, ¢)
means that some inertial observer thinks that event b is between events a and c. In-
tuitively, eq(a, b, ¢, d) means™ that segments (a, b) and (c, d) have the same length,
for some inertial observer (and this observer sees these segments on coordinate axes).
Further, eq(a, b, ¢, d) means that there is a finite chain of inertial observers such that
they together (in a kind of collaboration) think that segments (a, b) and (c, d) have
the same length, see Figure 266 on p.795. Further, a < b means that there is an
inertial observer who thinks that a happened earlier than b and who sees both a
and b on his life-line.

The reader may ask what the role of the constant 1 € F; is in the geometry Bgy.
Clearly the role of Fy is to represent the range of g as a special sort (or universe),
but for this purpose the additive group Fg := (F; 0, +, <) would be sufficient. The
answer is the following. Later, in §6.6, we will experiment with reconstructing the
“observational-oriented” models 91 from the observer-independent geometries Sgy.

"861n the relativity book d’Inverno [75, pp. 107-108], our g7 is called a Minkowski metric (and
is denoted as 7,5). More precisely, the square (g7)? of g* is called there a Minkowski metric, we
guess that this is done there in order to avoid complex numbers. (It is important to note that a
Minkowski metric is not a metric [in the usual sense] cf. footnote 669 on p.797.)

"8TRecall that eq was defined as the transitive closure of eq,. Hence eq, can be considered as a
kind of “core” of eq.
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(S

0,0 €L, 01, ¢ and £ || ¥

Figure 280: Bax~ " geometry with two parallel space-like lines which are L,-
orthogonal.

The role of the constant 1 is to help us to reconstruct the “units of measurement”
or in other words “the size of a hydrogen atom” (cf. p.139) in 9 from Bgy, at
least to some extent (and under some conditions). E.g., under assuming Ax(eqm),
we can reconstruct the units of measurement of 9 from Ggy, cf. e.g. Thm.6.6.12
(p-1030). In passing we note that as “patterns” (A)-(E) on p.1009 suggest, there
will be stronger results of “recoverability” than the just quoted one, in later parts
of §6.6.1. We will return to the present subject (the role of “1” etc) in more detail
in §6.6. (Cf. e.g. Remark 6.6.51, p.1065.) In particular, we will discuss how much of
N is recoverable from &gy without using 1 in the form of a “duality theory” called
in 6.6.4 (p.1069) (Go, Mo)-duality.”®

Summing up, the role of 1 € F; is to help us to recover the units of measurement
(in 9) from the geometry Goy. (Referring back to the intuitive explanation using
hydrogen atoms in §2.8 on p.139 [about justification of Ax(symm)], we could say
that the constant “1” helps us to remember in gy what the “size of a hydrogen
atom” was in 9.)

Let us turn to discussing why we “celebrate” the observer-independent character

"88Forgetting 1 from ®gy is related to what we called in Remark 4.2.1 on p.458 “ant and elephant
version of relativity” which we plan to outline in some future work.
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of Ggn. In answering this question we will deliberately mix talking about gy and
its (first-order logic) theory Th(®gy).™?

(1) Much of what we should say about this was already said in the introduction
§6.1 (of this chapter). We will not repeat those thoughts here, the reader is asked
to have a look in §6.1.

(2) Clearly &gy is the same for all observers.

(3) By the duality theory to be developed later in §6.6, all the information
available in 90 is also available in ®gy,"° so we do not loose information when
switching to &gy.

(4) &gy satisfies certain important, desirable philosophical principles (e.g. the one
saying that all our concepts should be definable from observational ones, associated
to Occam’s razor™!). These principles were already satisfied by 9, and Gy inherits
from 90 because Gyy is first-order logic definable over 9t (under some conditions).™?

(5) We will see around the end of this chapter that &gy admits mathematically
elegant streamlined versions (cf. e.g. the time-like-metric geometry (Mn, Fy; g=) in
§6.7.3 p.1169 as an example). These streamlined versions of Bgy provide us with a
simple, mathematically elegant and transparent picture of the world (which in many
regards is simpler and more elegant than 90).

(6) By provides us with a stepping-stone towards theories admitting accelerated
observers and beyond that towards general relativity. Cf. e.g. §6.8 on geodesics.

(7) In some sense one feels that Bgy represents “deeper” more essential aspects of
the world than 9 does. One could say that the ingredients of 971 are the things one
sees on the “surface” of the phenomena or reality being studied while &gy contains
ingredients which make these surface phenomena “tick”. In some sense one could
say that &gy contains something which could be regarded as “explanation” for 9t
(where explanation is understood in the sense of Friedman [90]). Cf. footnote 627
on p.776.

(8) The various reducts of &gy provide us with aspects of the world which we can
contemplate. So for a while we may decide to concentrate on one aspect (represented
by one reduct) and ignore the others. Then we can experiment with how far we
can get by concentrating on this aspect. Later we may concentrate on some other
aspect (reduct). Eventually we can compare the results (and try to obtain insight
into what aspect is responsible for what effect). In other words this provides us

"90r more precisely Th({ &gy : M = Thy }) for some fixed Th;.

70ynder some mild conditions

"™1For further desirable philosophical principles satisfied by &gn we refer the reader to the intro-
duction of the present chapter (§6.1).

20f. Thm.6.2.44 (p.847). (In this respect we do not gain over 9t but we do not loose either.)
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with the machinery of “abstraction”.” For more on this (“decomposing” the world
into reducts etc.) cf. the first 5 lines of §6.6.4 (p.1069), pp. 1134-1135, and p.1124.
(Notice, that the same kind of “decomposability” is not available in the original
structures the 9s.)

(9) &gy may be helpful in comparing the various observers, seeing their rela-
tionships with each other. We feel that this is so because in &gy when, say, we
are thinking about e.g. 3 inertial observers simultaneously we are not forced to do
this from the world-view of some particular observer, instead we can look at our
3 observers from, so to speak, the “objective” perspective of Ggy. As a contrast
when working in 901 we always have to choose an observer and we have to describe
things from his particular perspective. This may make e.g. proofs longer (because
we might have to switch perspectives).

(10) For more on why we celebrate the observer independent character of ®gy
we refer to the book Matolesi [190].

At this point we stop listing values of &gy.™*

Remark 6.2.46 (On the philosophy of our using inertial and not neces-
sarily inertial observers in the definition of &g, above.)
Before starting, we note that later we will have so called windows in Ggy. Roughly
a window is a part of Mn visible for one observer.

Now, what we want to say about the “philosophy ...” is the following: (i)
Everything that is “measured” (like e.g. g or L) (by observers of course) is defined

2

793Decompose the world into aspects, study the aspects separately and in their interaction and

then put together the results.
74For completeness we note the following:
Many of the so called thought experiments can be translated to the language of Ggy, and the
outcome of the thought experiment can be predicted by knowing &gy, cf. “laws of nature” part of
the introduction to the present chapter (p.778). An example for this is the so called twin paradox,

assuming e.g. n > 2 and Bax~ % + Ax(eqtime). For the case Basax+Ax(w)'+Ax(11), 7 the
importance of ®gy is further elaborated in e.g. Misner-Thorne-Wheeler [196, pp. 347, 163-175].
The usefulness of Bgy will be especially apparent when we will turn to discussing non-inertial

observers. As an illustration, let us assume, that we have a body b whose life-line is not in LT
Assume, we would like to raise b to the level of being an observer. For simplicity, assume n = 2.
Then b would like to coordinatize the “events” Mn. That is we would like to define a function
wy : 2F — Mn. Using ®gy, there is a natural way for doing this,”®® cf. e.g. Misner-Thorne-
Wheeler [196, pp. 163-175].

5We note that (for n > 2) the members of Ge(Basax + Ax(w)* + Ax(11)) are the Minkowskian
geometries, up to isomorphism, cf. Def.6.2.58 (p.859) and Thm.6.2.59 (p.861).

76This does not contradict what we will say in §6.6(V) on pp. 1111-1120 (... Gddel incomplete-
ness) about undefinability of non-inertial bodies. (The reason for this is that these two claims
about definability “live” on two different levels of abstraction.)
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via Obs N Ib. As a contrast; (ii) windows, existence of events (ontology of Mn) are
defined via Obs (i.e. all observers).
(iii) Cf. also the definition of &}y in §6.6.9 p.1111.
<

We will discuss the connections with the standard Minkowskian geometry begin-
ning with p.859 in §6.2.4.

Remark 6.2.47 (On Figure 281 [view from the black hole]) Later, in gen-
eralizations towards general relativity, our geometry & will be more sophisticated
than the present &gy. E.g. life-lines of photons (and other inertial bodies) will be
so called geodesics instead of Euclidean lines. Geodesics will be discussed in § 6.8,
pp.1177-1209. Figure 281 on p.855 represents some spectacular effect caused by
geodesics being curved by a black hole.

<

In items 6.2.48-6.2.57 below we continue discussing the meanings of
L LT L5 =" =5 1, etc. (These items can be considered as warm-up exercises
for later work.) The reader may safely skip the remaining part of the present sub-
section. Our next sub-section (§6.2.4) begins on p.859.

The proposition below says that a pre-image of a line along a world-view, say
W, 18 a Euclidean line in "F' or empty, under some assumptions. l.e. it connects
lines of Mn to lines of "F.

PROPOSITION 6.2.48 Assume 9 € Mod(Bax™). Let ¢ € Loy and m € Obs.
Then w,'[{] € (Euc U{0}).

On the proof: Cf. item la of Prop.6.2.79 (p.884) and the proof of Prop.6.2.79
(p.889). 1

The following proposition says that the lines of "F' correspond to lines of &gy
(along all world-views).

PROPOSITION 6.2.49 Assume
IM € Mod(Bax + Ax(Triv,)~ + Ax(v' ) + Ax(diswind)). Then

(Vm € Obs)(Vl, € Eucl) (3¢ € Loyg) wp[le] =¢ and

(V¢ € Lon) (3m € Obs) (3L, € Eucl) wy,[l.] = £.

Therefore  (Ve,e; € Mn) (e ~e — (e=Te Ve=ste ve=s el)>.
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View fi'ﬂ’;:! ..‘lifi]_}

Figure 281: The starship hovering above the black-hole horizon, and the trajectories
along which light travels to it from distant galaxies (the light rays). The hole’s
gravity deflects the light rays downward (“gravitational lens effect”), causing humans
on the starship to see all the light concentrated in a bright, circular spot overhead.
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Proof: By the beginning of the second proof given for Thm.6.2.10 on p.815, to
prove the proposition it is enough to prove its conclusion for Basax + Ax(Triv,)~ +
Ax(v/ ) models. We leave this to the reader. B

The next proposition says that two lines of &gy are parallel iff each observer who
sees them thinks that they are parallel.

PROPOSITION 6.2.50 Assume 9t € Mod(Bax™). Let
L, 0' € Loyy. Then

Clet <= (vme0obs)((wi'[0#0 A w01 #0) = w0 ]| wy'[¢])-

On the proof: Cf. item 5a of Prop.6.2.79 (p.884) and the proof of Prop.6.2.79 on
p-889. 1
Cf. item 5a of Prop.6.2.79 in connection with the above proposition.

Let us recall that S := {0} x®~! F is the space-part of our coordinate system
"F.

In connection with Proposition 6.2.51 below let us recall that 1, was the key
part in the definition of L, cf. item 11 of Def.6.2.2 (p.790). Therefore in order to
characterize 1, it is enough to characterize L.

PROPOSITION 6.2.51 Assume 9 € Mod(Ax(Triv) + Ax(v")). Let
0,0 € Loy. Assume £NL #D. Then £ 1o €' iff (x) below holds.

(3m € ObsN Ib) [m thinks that
(%) (E and ' are Fuclidean lines such that they are orthogonal in the
Euclidean sense and (£ ||t Vv £|| S) and (€' ||t Vv £ | S)) 797].

We omit the easy proof. I

797Formally, we want to say that
(3,20, € Eucl) [w[le] =L N wpl[ll] =0 A b Lol N (L ||tV L ||S) ATV LS,
where for each £, € Eucl, £ || S means that £, is parallel with a line in S.
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PROPOSITION 6.2.52 Assume
IM € Mod(Bax® + Ax(Triv,)~ + Ax(v/ ) + Ax(diswind)). Let £,/ € Loy. Then

L0
0
(34, € Loy) (5 les &1 A (one of (i)-(iii) below holds)).

(i) There is m € Obs and i,j € n with i # j such that
W [Zi] = b and wp[z;] = 1.

(i) £, € L and there is a 2-dimensional plane™® P tangent to a light-cone™®

such that ¢1,¢' C P.
(11i) Same as (ii) but with £, ¢ interchanged.

On the proof: A proof can be obtained by Thm.6.2.10 (p.813) and by the proof
of Thm.6.2.19 (p.823). Cf. Figure 272 (p.825). 1

PROPOSITION 6.2.53 Proposition 6.2.52 remains true if we replace (i) in
Prop.6.2.52 with (x) of Prop.6.2.51.

We omit the proof. 1

We suggest that the reader compare items 6.2.51-6.2.53 with items 6.2.9, 6.2.10
(pp. 810-813).

PROPOSITION 6.2.54 Assume 9 € Mod(Ax(Triv)). Let £ € Lon. Then (i)
and (i1) below hold.

(i) Assume Ax4 4+ Ax6q9. Then

(e Ly &
(3Im € Obs N Ib) (m thinks that ¢ is parallel with the time azis t ).

(ii) Assume Ax(v/ ). Then

(e Ly, < (3m € ObsNIb) (m thinks that £ is parallel with S)%°'.
We omit the easy proof.

78 The notion of a 2-dimensional plane is defined as follows. P is a 2-dimensional plane iff there
are distinct a,b,c € Mn such that they are pairwise connected (i.e. ~-related), —coll(a, b, c), and
P = Plane({a,b,c}).

799This property of P can be formalized as follows:

@AeIlPjecP A Vel CcP - s )]
800Formally, (3¢, € Eucl) (wm[le] =€ A L. || ).

801Formally, (3¢, € Eucl) (wm[le] =€ A L. ]| S).
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PROPOSITION 6.2.55 Assume 9M € Mod(Bax® + Ax(Triv,)~ + Ax(V)).
Assume b is an FTL inertial body of M, i.e. v, (b) > ¢, for some observer m. Let
this m be fized. Then (i) and (i) below hold.

(i) wp[trm(b)] € Lyy.

(ii) Assume Ax6 or that our fired m and b are such that
(Vk € Obs) (k3 b = m 3 k). Then

{e€ Mng : bee} € Ly,

We omit the easy proof. I

PROPOSITION 6.2.56 Assume M € Mod(Ax(Triv)). Let e,e; € Mngy. Then
(i) and (ii) below hold.

(i) Assume Ax4 + Ax6o9. Then

e="e <

(3m € ObsN Ib) (m sees e and e, happening at the same place )%

(ii) Assume Ax(v/ ). Then

e=%e; & (Im € ObsN1Ib)(m thinks that e and e, are simultaneous ).

We omit the easy proof. I

The following is a corollary of Thm.3.4.19 (p.221), which says that Bax does not
allow FTL observers, assuming n > 2. The corollary says that, assuming Bax®, the
time-like lines, the photon-like lines and the space-like lines do not run “together”
anywhere.

COROLLARY 6.2.57 Assume n > 2. For every & € Ge(Bax?®), we have
that L”, L™ L® are pairwise disjoint. Therefore the irreflexive parts of relations

=T =Ph =5 are pairwise disjoint.

Cf. item 4e of Prop.6.2.79 (p.889) in connection with the above corollary.

802Formally: (3p,q € "F) (wm(p) = e A wn(q) = e1 A space(p) = space(q)).
803Formally: (3p,q € "F) (wm(p) = e A wn(q) =e1 A time(p) = time(q)).
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6.2.4 Connections with the standard Minkowskian geometry

The style of our above definition of Bgy followed a certain kind of intuition e.g. (i)
events e,e; are defined to be spatially separated iff some inertial observer thinks
that e and e; happened at the same time; and (ii) for events e and e; the relation
e < e; is defined to hold iff some inertial observer thinks that e precedes e; in
time (and sees e, e; on his life-line); etc. In general, we tried to achieve the effect
that, intuitively, some relation holds between given objects iff some inertial observer
thinks this is so (sometimes we had to take “min” or limits to complete the picture,
but this was the general intuition).

As a contrast, in Definition 6.2.58 below, for every Euclidean §, we define a
geometry on "F in a “computational” style. According to the literature®%*
this geometry the Minkowskian geometry over §.

In Thm.6.2.59 below (p.861), we will see that our “intuition-oriented” definition
of Bgy is equivalent with the standard Minkowskian definition mentioned above,
under some assumptions on 9. Further, if n > 2, the observer-independent ge-
ometries (in our sense®®) of the Minkowski models (the latter is defined in §3.8)
will turn out to coincide with the Minkowskian geometries, up to isomorphism, cf.
Prop.6.2.62, p.865. (In §6.2.5 we will see that relativistic geometries corresponding
to many of our theories can be obtained as “unions” of Minkowskian geometries if
we concentrate on a reduct of our geometries, only. Cf. Figures 282, 283, pp. 863,
864.)

we call

Definition 6.2.58 (Minkowskian geometry)
Assume § is Euclidean. Then the n-dimensional Minkowskian geometry over § is
defined as follows.

Mink(n, §) <= Mink(§) <= ("F,Fy, Ly; LT, L% LS, €, <., Bw,, Ly, ed,, g, T,);

where:

I (F; 0,1,+, <), as defined in Def.6.2.2.

o L, e Eucl(n, F) := Eucl.

def
° LZ = SlowEucl.

804cf. e.g. Kostrikin-Manin [155], cf. also Goldblatt [108]
805in the sense of Def.6.2.2
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o LM% PhtEucl.
o L€ L,\ (LT UL
e <, is a binary relation on "F defined as follows. Let p,q € "F. Then

pP=<uq 4% (pe <q. N PG € SlowEucl).

e Bw, = Betw.

e The Minkowskian orthogonality L, C L, x L, is defined as follows. Let
0,0 € L,. Then

01,0
def,

(V distinct p, g € £)(V distinct p', ¢’ € £')
(Po = 90) (P — 46) = (XoienPi — @) (i — 47)) = 0.

If ¢ 1, ¢ then we say that ¢ and ¢ are Minkowski-orthogonal.

e Let us recall that gZ :"F x"F — F is the square of the Minkowski-distance
defined in Def.2.9.1.

We define the Minkowski distance g, : "F X "F — F as follows®®. Let
p,q € "F. Then
def
9u(0;9) = £/ 920, 0).>"

e eq, is a 4-ary relation on "F defined as follows. Let p,q,p’,¢' € "F. Then

eq,(p,¢,7,q)
def
R

(gu(p,Q)Zgu(p’,q') A lgupg) =0 = (p=q A 10'211’)])-808

806exactly as we did above Prop.6.2.38 on p.844

807Cf. footnote 775 on p.844.

808We need the subformula “g,(p,g) =0 = ...” only because in our definition of eq by some
accident we had the side effect that photon-like separated pairs of points are not eg-related even
to themselves, cf. footnote 660 on p.793. Further, because we want to make our definition (of Bgy)
comparable with the Minkowskian definition (i.e. with Mink(%)).
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e 7, is defined by g, as described in item 14 of Def.6.2.2 (p.797).

We will sometimes omit the subscript p from L, etc. because the vocabulary or sim-
ilarity type of Minkowskian geometries is the same as that of relativistic geometries.
<

Assume 9t = Basax. Then for each m € Obs, the bijection w,, : "F — Mn
can be used to “copy” the geometry Mink(F™) to Mn (as its new universe, i.e. as its
new set of points), yielding a geometry Minkgy,. However for different observers m,
this geometry might be different (though isomorphic), because different observers
might copy Mink(§™) differently to Mn. Assume further 9 = Ax(w)" + Ax(11).
Then the observers will agree on how to copy Mink(g™). Formally,

(Ym, k € Obs)Mink3, = Minkky,

assuming 9N satisfies the mentioned axioms. This is essentially what Thm.6.2.59
below says.3%

Assume now 9 k£ Basax + Ax(w)’ + Ax(11). Then we could define a
Minkowskian geometry on Mn as follows:

Minkgy := Minkgy
for an arbitrary but fixed m € Obs. Our Thm.6.2.59 below says that
Minkgy = Gy,

assuming n > 2. To keep the number of defined symbols in this work relatively
small, we will not rely on the notation Minkgy in the rest of this work (at least not
without recalling it).

THEOREM 6.2.59 Assume 90 € Mod(Basax + Ax(w)’ + Ax(11)). Then (i)-
(i1i) below hold.

(i) Let n > 2. Then
Gogn = Mink(g™),

cf. Figures 282, 283.

Moreover, for every m € Obs, w,, : "F — Mngy induces an isomorphism
between Mink(F™) and Ggy the natural way.8'°

809 A ctually, this idea of somehow identifying F with Mn via some observer’s world-view can be
pushed through even in Bax™, since we have seen that the world-view transformations are line
preserving, cf. Def.6.2.76 (p.880) and Prop.6.2.79 (p.884).

810Making this precise: Let m € Obs. Let w,, : Eucl — Mngy be defined by wy, : £ — wy,[f).
Then {wy,, Id [ F, w,,) is a (three-sorted) isomorphism between Mink(F™) and ®gpy, cf. item (II)
of Def.6.2.2 (p.798) for the notion of an isomorphism between geometries.
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(ii) Letn = 2. Then the conclusion of (i) remains true with the exception of eq, i.e.
instead of Bgn we have to talk about the eq-free reduct of Bgn. The conclusion
of (i) will not remain true if we do not exclude eq from our geometries.

(iii) The statement in item (i) remains true if we replace the assumption
Ax(w)’ with Ax(Triv,)~ + Ax(V" ) + Ax, where Ax is any one of Ax(w),
Ax(w)’, Ax(w)”, Ax(w)”, Ax(syto), Ax(symm), Ax(speedtime),
AxA1+Ax(eqtime), AxA2, AxO1+ Ax(eqtime), AxO2, Ax(egspace),
Ax(eqm).

The proof is available from Judit Madardsz.5! 1

The following theorem says that, if n > 2, the <-free reduct of any
Basax+Ax(w)" geometry coincides with the similar reduct of a Minkowskian ge-
ometry. In connection with the conditions of Theorems 6.2.59 and 6.2.60 we recall
that Ax(w)" is weaker than Ax(w)’. In Thm.6.2.59 we needed the assumption
Ax(w)" for the n = 2 case only; for the n > 2 case Ax(w)™ was sufficient.

THEOREM 6.2.60 Assume n > 2. Then (i) and (ii) below hold.

(i) Assume ® € Ge(Basax+Ax(w)™). Then the <-free reduct of & coincides with
the similar reduct of a Minkowskian geometry, up to isomorphism, i.e. there
18 a Fuclidean § such that

(<-free reduct of ) = (<-free reduct of Mink(g)),
cf. Figures 282, 283.

(ii) The statement in item (i) remains true if we replace the assumption
Ax(w)™ with Ax(Triv,)~™ + Ax(v" ) + Ax, where Ax is any one of Ax(w),
Ax(w)’, Ax(w)®, Ax(w)ﬁ, Ax(syto), Ax(symm), Ax(speedtime),
AxA1+Ax(eqtime), AxA2, AxO1+ Ax(eqtime), AxO2, Ax(egspace),
Ax(eqm).

The proof is available from Judit Madarasz. I

Roughly, the following proposition says that, assuming Basax + Ax(w)lj +
Ax(11), the world-view transformations f,,;, are exactly those automorphisms of
the observer independent geometry &gy which leave the sort F' pointwise fixed, cf.
items (iii) and (iv) of the proposition. Let us notice that this means, basically, that
the world-view transformations of 9t coincide with the (nice) automorphisms of &gy.
In connection with the proposition below cf. §6.2.8.

811Tn connection with item (ii) of Thm.6.2.59 cf. the first 8 lines of the proof of Thm.6.2.22 on
p-906.
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<-free reduct of
Ge(Basax + Ax(w)ﬁ)

(=,9,T)-free re- N
duct of Ge(Basax
+AX(’1}‘1'V,5)_)

Ge(Basax + Ax(w)’ + Ax(11))|= Ge(BaCo)
(g, T)-free reduct
of Ge(Basax+
Ax(Trive)™ + Ax(T1))
Ge(Newbasax+

Ax(w)* + Ax(110))

<-free reduct of

)

g9, 7T, Ax(<,u)ﬁ

Ge(Newbasax + Ax(w)Ii
N\
(eq, g, T)- free reduct of N
Ge(Bax® 4 Ax(Trivy)~
()

(<, eq, g, T)-free reduct O
Ge(Bax® + Ax(Trivy)™ +

:

AN

(g, T)-reduct of
Ge(Newbasax+

Ax(Trivy)™ + Ax(T™o))

(<, g, T)-free reduct of

Ge(Newbasax + Ax(Trivy) ™)

(eq, g, T)-free reduct
of Ge(Bax®+
Ax(Trivy)™ + Ax(Mo))

Ge(Bax® + Ax(Trivy)™)

(=, eq, g, T)-free reduct of

relativistic
incidence
geometries, p.1175

Figure 282: Reducts of geometries agreeing with the corresponding (reducts of)
Minkowskian geometries. Ax(y/ ) and n > 2 are assumed. Nodes are of form
Rd, (Ge(Th)) determined by the choice of Th and geometric sublanguage L. For
detailed explanation cf. p.879. Cf. also Fig.283. For =4 cf. p.970.
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Ge(Basax + Ax(w)" + Ax(11))

~<-free reduct of
Ge(Basax + Ax(w)")

(g, T)-free reduct
of Ge(Basax+
AX( Th'vt) -

+ Ax(11))

Thm.6.2.60 (p.862)

(=,9,T)-free re- N \

+Ax(Trivy) ™)

Thm.6.2.65(ii)

Thm.6.2.59 (p.861)

Examples 6.2.69 (p.875)

Exmp.6.2.69.5 (p.877)
Ge(Newbasax+
Ax(w)' + Ax (1))

duct of Ge(Basax
Thm.6.2.65(i) (p.867)

<-free reduct of

Ge(Newbasax + Ax(w)ﬁ)

N\

(eq7 9, T)_
Ge(Bax® }

ree reduct of

Ax(Trive)™

(=, eq, g, T)-free reduct O
Ge(Bax® + Ax(Triv;)~ + AX6)

Thm.6.2.64(ii)

AN

9, T, Ax(w)"

hm.6.2.74(ii), Thm.6.2.75(ii)
(g, T)-reduct of
Ge(Newbasax+

Ax(Trivy)™ + Ax(T10))

Thm.6.2.64(i) (p.866) \4

(<, g, T)-free reduct of
Ge(Newbasax + Ax(Trivy)™)

Thm.6.2.74(i

Thm.6.2.75(i) (p-39)

(eq, g, T)-free reduct

of Ge(Bax®+
Ax(Trivy)™ + Ax(T10))
Thm.6.2.71(ii), Thm.6.2.73(ii)

(<, eq, g, T)-free reduct of
Ge(Bax® + Ax(Triv,)™)

Thm.6.2.71(i) (p.877)
Thm.6.2.73(i) (p.878)

Figure 283: This is Fig.282 enriched with the names of theorems involved.
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PROPOSITION 6.2.61 Assume 9 = (Basax + Ax(w)’ + Ax(11)). Assume
m, k € Obs. Then (i)—(iv) below hold.

(i) The world-view transformation fn, induces an automorphism of the
Minkowskian geometry Mink(F™) the natural way.%*?

(ii) For every automorphism o of Mink(F™) which is the identity function on the
sort F, there are m!, k' € Obs™ such that o and foy coincide on ™F.
(iii) wo,

—L o wy, induces an automorphism f/@\ﬁ of the geometry ®gn, the natural

way,3 where the formal definition of f,; comes on p.914.

(iv) For every automorphism o of oy which is the identity function on the sort F,
there are m', k' € Obs™ such that o and w7 0wy coincide on Mn. Le. fp
agrees with .

On the proof: Items (i) and (iii), for the case n > 2, are corollaries of Thm.6.2.59.
In the case n = 2, by Thm.6.2.59, we conclude that items (i) and (iii) hold for the eq-
free reducts of the geometries. Checking that f,,;, and w ! o wy are automorphisms
of the geometry reducts (*F; eq,) and (Mngy; eqqgy), respectively, is easy and is left
to the reader. The proofs of items (ii), (iv) are available from Judit Madarasz.

Items (iii) and (iv) of the above proposition can be summarized, roughly, by
saying that Aut(®gy) can be identified with the group {f:n\k : m,k € Obs }, which
in turn can be identified by {f,x : m,k € Obs}. Cf. p.779 and §6.2.8 (p.913).
Items (i) and (ii) say basically the same about Mink(F™) in place of Ggy.

Let us recall that in Definition 3.8.42 (p.331), for every Euclidean §, the
Minkowski model ﬁﬁgf over § was defined. The proposition below says that the
observer-independent geometry of the Minkowski model over § is the Minkowskian
geometry over §, up to isomorphism.

PROPOSITION 6.2.62 Assume § is Fuclidean and n > 2. Then
Qﬁgmgf = Mink(g).

Moreover, for every m € Obsgmlﬁw, Wy ¢ "F — Mn induces an isomorphism
between Mink(§) and Sopu the natural way.8™

812Making this precise: Let fmp : Eucl — Eucl be defined by fmp : £ — fme[f]. Then
(fmi, I [ F, £ ) is a (three-sorted) automorphism of Mink(3™), cf. item (II) of Def.6.2.2
(p.798).

813Cf. footnote 812.

814Gee footnote 810.
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