6.1 Introduction (to the present chapter on geometries)

In this chapter we will see how observer-independent structures can be found in
our frame models of relativity theory, i.e. we will show that there is an observer-
independent “geometric” structure By inside every model 90T of our frame language.
We will consider the observer independent geometric structures ®gy (associated to
“observer oriented” models 901) as representing so called “theoretical” concepts,
while we will consider the original 9’s as representing so called more “observational”
concepts. Here, the expressions “observational”, “theoretical” are technical terms
explained and used in the relativity books Reichenbach [223], Friedman [90]'6, cf.
also §1.1(IX) on p.11 of the present work for a brief explanation and motivation for
the observational /theoretical distinction.

The key idea is that in some situations or at some level of the development of
our scientific theories, certain concepts can be considered more observational while
others can be regarded as being more on the theoretical side. For a more careful
description of this distinction (and its justification etc.) we refer to Reichenbach
[223]. We are aware of the fact that the observational/theoretical distinction is not
absolute®?, it may change during the development of our scientific theories, etc.
but, as Friedman [90] writes on p.4 and on p.31, if we are aware of its limitations
and its “tentativeness”, then it can be used rather fruitfully.6'8

Next we discuss a methodology about the role of theoretical/observational con-
cepts in scientific theories. The methodology and ideas we are going to sketch
below originate from an intensive and fruitful interaction between the originators
of relativity theory, e.g. Einstein, on the one side, and the logical positivists®!?, e.g.

616The words “observational” etc. come from Friedman [90]. Reichenbach used other expressions
with basically the same meaning. E.g. he writes about theory formation: “... it is advantageous to
approach the axiomatization in a different fashion. It is possible to start with the observable facts
and to end with the abstract conceptualization, cf. [223, pp. 4-5]. Later he writes “... start an
axiomatization with so-called empirical facts”, also “... this investigation starts with elementary
facts as axioms...”, cf. [223, p.8]. Cf. also p.174 in Loose [166].

617¢ g. a concept which is observational in one situation may appear as theoretical in another
situation

618 A ctually, Friedman [90, p.24, first 30 lines] writes that the birth of the modern form of the
observational /theoretical distinction can be credited to Einstein’s fundamental 1916 paper [81,
p.117].

619We are neither supporting nor attacking positivism, we simply want to use those of their ideas
which proved useful while avoiding their mistakes e.g. oversimplification.
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Reichenbach, on the other side. The key ideas go back to Kant®?® (1724-1804), Leib-
niz (1646-1716) and Occam (1295-1349).5% Cf. e.g. Friedman [90, §I (pp.3-31)].
(These ideas are also strongly related to ontology, i.e. to the field of research study-
ing the question of which ones of our theoretical entities exist and in what sense
they exist.)%22

The methodology (of the above origin) is the following:%?* Assume, we want to
study a part (or aspect) of the physical world. Then, first we build models, like 9t
in the present work, which involve observational concepts only. IL.e. we try to keep
the “ingredients” of 97 to be on the observational side as much as possible. Then
we study 9 and develop a theory Th in the language of 9% with 9t € Mod(Th).
After having studied Th and Mod(7h) long enough, we begin to see what kind of
new, theoretical concepts would be useful for understanding 7Th, 91 etc. even better.
The methodology of introducing such new theoretical concepts is the following.

By the principles of parsimony®® (i.e. refinements of Occam’s razor), we require
the new, theoretical concepts to be definable by means of first-order logic, over 9t
(or more generally over Mod(7h)). Cf. §6.3 way below for the theory of definability.
(The importance of definability is emphasized in the relativity book Reichenbach

620For the (positive) role of Kant cf. e.g. Friedman [90] p.7 lines 825 and p.18 lines 14—20.

621F.g. we mention Leibniz’s principle of identity of indistinguishable concepts, and what became
popularly known as Occam’s razor, c.f. e.g. Friedman [90], Hodges [136, pp. 9, 21]. Roughly,
Occam’s razor says: do not assume the existence of unnecessary theoretical entities. In passing we
note that Leibniz’s principle appears as axiom C7 in algebraic logic (called there Leibniz rule) cf.
Henkin-Monk-Tarski [129, Part I, p.172] and Andréka et al. [30]. Cy is the algebraic counterpart
of an axiom of first-order logic. (William Occam was a 14-th century logician from England. His
razor is usually summarized as “Do not assume the existence of more entities than you have to”.)

6221t is of interest to note how much philosophy influenced the development of relativity. E.g.
Mach’s philosophy influenced Einstein in developing general relativity, cf. e.g. Barbour [39] or
Friedman [90]. Further, Godel proved very interesting things about the so obtained general rela-
tivity. Godel’s main motivation came from Kant’s philosophy, he wanted to justify Kant’s views on
the nature of time.2% Gddel’s results lead up to one of the most exciting parts of modern relativity,
namely to the theory of rotating black holes (closed time-like curves, i.e. “time travel”), at least
in some sense. Further, (in a different direction) Godel’s results show that Einstein’s equations do
not imply Mach’s principle, after all (for seeing this in full form one uses Ozsvath’s and Schiicking’s
1969 paper [209]), cf. also Friedman [90, pp. 209-211]. This does not prove that Mach’s principle
would not be true, instead it proves only that it is not implied by Einstein’s axioms for general
relativity. Cf. e.g. Godel’s collected works [103, pp. 189-217], and [104, pp. 202—289], and Dawson
[73]. Cf. also footnote 637 on p.781. See Figure 355 for a visual representation of Gédel’s model sat-
isfyng Einstein’s equations but not Mach’s principle. This model usually is called Gddel’s rotating
universe.

623Tn this connection we recommend that the reader reads footnote 861 on p.912.

624We present it, here, only in a simplified form.

625 “principle of parsimony” =“economy of explanation”, cf. footnote 621
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[223] e.g. on p.3, pp.7-13.) Then we expand our observational model 9 with the
defined concepts obtaining something like 9+ = (9N, defined concepts) in the hope
that the theory of 9" will be more “streamlined”, more elegant and more illumi-
nating (than that of 9) in various ways. Indeed, in the present chapter, we will
define a streamlined theoretical structure &gy over the model 9, and we will call
&gn the “observer independent geometry” associated to 91.6%¢ First we will identify
what desirable theoretical entities we would like to put into gy, and then comes the
“hard work” of checking that these new entities are indeed first-order logic definable
over M, cf. §§ 6.2.2, 6.2.6, 6.3, and Theorems 6.3.22-6.3.24 (p.961) for the defin-
ability investigations, while considerations on what should go into &gy are in §6.2.3
(but cf. also §§ 6.2.1-6.2.5).

Having defined, over 9, our structure gy of theoretical entities, we expand
our observational structure 90U with these theoretical entities obtaining the richer
structure MM* = (M, o). Our theoretically enriched structure MM corresponds to
the structure A in Friedman [90, p.236] while our observational 9% corresponds to
the sub-reduct B of A on the same page in [90]. In the language of our enriched
structure 9" we have both theoretical and observational concepts, so we could go
on indefinitely studying the theory of our 9t*. However, this is not what we do,
because, so to speak, we become greedy in connection with improving our language,
our concepts. Namely, if we are lucky, then we will find that (not only &gy is defin-
able over 90t but) also our observational structure 9 is definable over the theoretical
Bgn. If this is the case, then we may forget our original observational structure 91,
and may stick with the more streamlined, elegant theoretical structure Ggy.5?" (The
reason for this is that if 901 is definable over gy, then in a rather concrete sense 9
is “present” [or available] in Bgy, e.g. all questions about 9% can be translated to
questions about Ggy.) Very probably, if we are permitted to concentrate on Ggy and
to forget about 90, then our investigations of the theory of &gy will be more efficient,
we will be able to reach deeper insights in a shorter time etc. Motivated by these
considerations, in the present work we will prove various results to the effect that
the observational “world” 9 is indeed first-order logic definable over the theoretical
world &gy. This will be one of the main themes of §6.6.

We will extend these definability results from individual models to axiomatizable

626 At the beginning of this chapter it will not be very obvious why we think that Gy is much more
streamlined than 9%, but around the end of this chapter, in §6.7, we will see that &gy admits rather
streamlined reformulations. Cf. e.g. Theorems 6.7.20 (p.1157), 6.7.30 (p.1164), 6.7.37 (p.1167).

627Tn the above sentence we want to refer to a kind of “tension” which regards 9 as being too
close “to the original thing being modeled”, detail oriented or “mosaic-like” or coordinate systems
oriented while &gy is regarded to be more “whole oriented” or more “essence oriented”. Cf. item
(7) on p.852.
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classes of models. E.g. if Mod(Th) is an axiomatizable class of observational models,
then we will write Ge(Th) for the corresponding class of theoretical models, i.e. the

corresponding class of geometries. Then we will prove that Ge(7h) is definable over
Mod(Th), and in the other direction, Mod(Th), too, is definable over Ge(Th).

Actually, we will do more than this in two respects:

(i) We will prove that Mod(Th) and Ge(Th) are definitionally equivalent®?® which
in some sense means that they are different “linguistic representations” of the same
theory. (Cf. Thm.6.6.13 on p.1031.%%)

(ii) We will also elaborate a so called duality theory between Mod(7h) and
Ge(Th) which is analogous with the various duality theories (adjoint situations,
etc.) playing important roles all over mathematics.%° We will make the connections
explicit with several distinguished duality theories in §§ 6.6.5-6.6.7, cf. also pp. 1014
1027, pp- 1096-1107. One of the uses of these duality theories is that they establish
strong connections between seemingly distant parts of mathematics, and they help
us to solve problems in one area by using the methods of a completely different kind
of area (where the solution for this particular problem might be drastically easier).

In §6.7 we will use the methods of definability theory for streamlining our “the-
oretical structure” &gy in the spirit outlined way above. Since definability theory
plays such a central role in our investigations (as well as in other parts of relativity,
cf. e.g. Reichenbach [223], Friedman [90]), we devoted §6.3 to recalling and further
elaborating this theory.

Potential laws of nature, characterization of symmetry principles:

Our theoretical structure &gy can also be used in identifying potential laws of
nature and in characterization of symmetry principles, as follows. Recall from the
introduction of §3.9 and from §2.8 that some of our axioms like Ax(symm) or
Ax(w) were called symmetry principles (and were regarded as special instances of
Einstein’s SPR). In earlier parts (e.g. in §3.9) we experimented with giving logical
or model theoretic characterizations for symmetry principles. Cf. the first theorem
in §3.9 which is based on Def.3.8.2 (p.298). The intuitive idea was, roughly, that
symmetry principles say that inertial observers cannot be distinguished from each
other by laws of nature. (An equivalent formulation says that the same laws of na-
ture hold for m and k if m, k are inertial observers.) So if ¢(x) is a potential law

628Cf. §6.3 (p.969) for definitional equivalence.

629Cf. also Remark 6.3.31 on p.973 and the intuitive text above that remark.

630This duality theory works under weaker conditions needed for (i) above. (Note that definitional
equivalence between Mod(Th) and Ge(Th) automatically implies a very strong form of duality.
[Actually what we will call weak definitional equivalence is sufficient for this.] However duality in
general does not imply definitional equivalence.)
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of nature then 9 = “symmetry principles” iff [9M = o(m) < ¢(k), for
all inertial observers m and k of 9t]. The problem with carrying this programme
through was that we did not know which formulas of our frame language Fm(90)
count as potential laws of nature and which formulas are of an “accidental” (or con-
tingent) character (e.g. making some random statement about the state of affairs
on the life-line of m, say, at the event where m sees the origin). For the distinction
between “accidental” statements and potential laws cf. e.g. the entry “lawlike gen-
eralization” in the Cambridge dictionary of philosophy [34]. So, the problem was to
provide a logical or model theoretic distinction between those formulas in Fm (90t)
which are regarded as potential laws from those formulas which count only as po-
tential “accidental facts”%!. In §3.9 we avoided this dilemma by assuming so many
axioms (called BaCo ) on 9 that these axioms ensured that all the remaining
possible statements (about observers in 9t) can be regarded as potential laws. This
way, it became possible to give a model theoretic characterization of Ax(symm)
(in Thm.3.9.2, p.348) but the price was that we had to make strong assumptions.

In the present chapter, we will be in a better situation. By associating an
observer independent theoretical structure Ggy to each model M, we will be in a
better position for doing both things mentioned above, namely

(i) to characterize Ax(symm) model theoretically by looking at the more ab-
stract (than 90t) model &gy and

(ii) to distinguish those elements of Fm(90t) which are closer to being potential
laws.

We will turn to doing (ii) in §6.6.8 (p.1107). There our intuition is the following. If
a formula ¢ talks about theoretical concepts only, then the chances are better for ¢
to be a potential law. In this chapter, from our observation-oriented model 91t we
define a theoretical super-structure®®? gy built up from more theoretical concepts
(than the parts of 9t). As a first approximation to characterizing potential laws,
we will postulate that a formula ¢ is a potential law if ¢ talks about theoretical
concepts only, i.e. only the Ggyp-part of 9. This makes sense because Bgy will be
definable over 9, which implies that the ingredients (or basic concepts) of gy
can be regarded as derived notions of 9. §6.6.8 is devoted to implementing and
elaborating the just outlined ideas. For more detail on these ideas we refer to §6.6.8
(p-1107).

631 Like, “the number of non-inertial bodies present at the origin is smaller than that at coordinates
(1,0,0,0)”.

632Cf. Friedman [90] § VI.3 (p.236) under the title “Theoretical Structure and Theoretical
Unification”.
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The goal (i) of characterizing symmetry principles will be addressed in The-
orems 6.2.106, 6.2.108 in §6.2.8 (cf. also Prop.6.2.61 on p.865) which will state,
roughly, that the symmetry principle Ax(w) 3 is equivalent with stating that the
world-view transformations coincide (in some sense) with the automorphisms of the
geometry &gy, under some assumptions. In more detail, we will state that

M = Ax(w) — (Vm, k € Obs) [ (w,,! o wg) induces an
automorphism on &gy the natural way |,5%4

(%)

under some assumptions®® on 9. Under the same assumptions the following

stronger form of (x) will also be stated:

M = Ax(w) <— the nice automorphisms of &gy are
exactly the mappings induced by some w ! o wy, with m, k € Obs.

Here an automorphism of ®gy is called nice if it leaves the elements of F fixed.53¢

Summing up, (**) says that our symmetry axiom is equivalent with saying that the
world-view transformations are exactly the automorphisms of the geometry &gy.

In this connection we invite the reader to explore possibilities of extending (x)
and (%) to e.g. the Reichenbachian versions of our relativity theories, where Goy
gets replaced with the Reichenbachian geometry &% and Ax(w) with a symmetry
principle adequate for Reich(Th), cf. §4.7 in particular pp. 607, 611. This might
yield a method for finding new symmetry principles adequate for Reich(7h).

Let us return to explaining in what sense we regard &gy as an observer indepen-
dent geometry (sitting in 9t). Originally, in the Newtonian world view, there was a
common “outside reality” for all observers. In our models 9, each observer has a
“kind of private world”, namely his world view (determined by w,, : "F — P(B)).
The f,,; transformations tell us how these worlds are connected. However, they do
not tell us which of these worlds is the “real one”. Moreover, by Einstein’s SPR
these worlds are of equal status. (Of course, one can live with this arrangement
forever, there is nothing wrong with it.) The question comes up naturally: Can one
find a single “monolithic” (or “fundamental”) reality behind all these “pluralistic”

633 Ax(w) and Ax(symm) are symmetry principles of the same kind and they are very strongly
related. Therefore in the intuitive text we sometime use them interchangeably (i.e. as if they were
synonyms).

634The points in the geometry Gon will be the events of 9 hence w,,' o wy, is a function on the
universe (set of points) of Ggy.

635]ike Bax~~ + AX6 -+ Ax(V' ) + Ax(Triv) + Ax(||)

636We note that F will be a sort of Bgy (similarly to F’s being a sort of 901).
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personal worlds? If yes, then we could call this “monolithic” reality the outside
reality (behind our experiences). All the personalized worlds (i.e. the world-views)
could be regarded as different projections of this single outside reality. The sit-
uation is analogous with descriptive geometry, where we have a spatial body (or
figure) which has a “front-view”, a “side-view”, etc., i.e. which can be viewed from
all possible angles or directions. That spatial figure corresponds to our observer in-

L LW~ L

b the connection between
Bgn and wy,,’s

- N : -

projection _ -
i \ G

] W, W, Wi

side-view top-view front-view

Figure 259: Descriptive geometry put into analogy with the connection between the
unique gy and the many world-views w,, in 9.

dependent geometry &gy while the views (or projections) of that body from possible
directions correspond to the “personalized” world-views of our observers m € Obs™.
Cf. Fig.259 for descriptive geometry put into analogy with the connections between
our single observer-independent geometry &gy and the many personalized worlds,
i.e. the wy,’s in 9.

Our observer independent geometry &gy is intended to serve as such a monolithic
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outside reality. Indeed, in our duality-theory section (§6.6) we will see that the
different personalized world-views (of form w,, : "F — P(B)) can be recovered
from the single geometry &gy, cf. e.g. the definition of functor M on p.1054.537

For further introductory thoughts on why we “celebrate” the observer indepen-
dent character of our geometries Goy we refer to items 1-10 on pp. 851-853. (That
is in sub-section “On the intuitive meaning of the geometry &gy”.)

On the contents of some of the sections (in this chapter). §6.2 contains the def-
inition of the observer independent geometry Ggy. §§ 6.3, 6.4 contain the basics of
definability theory we will need. §6.6 contains our duality theories between observa-
tion oriented models 99 and observer independent geometries Ggy. More precisely,
the duality theories act between axiomatizable classes of frame models and of geome-
tries. §6.7 studies interdefinability of the ingredients (sorts, relations, functions etc)
of Bgp, and via this it aims at simplifying and streamlining &gy as a mathematical
structure. §6.8 defines and discusses geodesics of ®gy. Geodesics play an essential
role in the theory of accelerated observers (to be discussed in the continuation of the
present work on accelerated observers [23])%% and in the theory of general relativity.

The figure representing Godel’s rotating universe (proving e.g. that Einstein’s
equations do not imply Mach’s principle), mentioned on p.775, is postponed to the
section on geodesics (Figure 355, p.1208) because the notion of a geodesic is essential
for understanding the picture.

637 There seems to be an analogy here with Kantian philosophy: Namely, gy corresponds to the
outside world in itself (“ding an sich”) and each observer creates his “own” world of phenomena
via perceiving (in the Kantian sense) the outside world, where Kant emphasizes that each observer
contributes to the creation of the world of phenomena (and not only the outside world contributes),
cf. Kant [151, 152]. In our case, the contribution of observer m is his coordinatization of Ggn.
Cf. Friedman [90, pp.286-287], Reichenbach [222]. In passing we also note that Kant’s philosophy
of science was continued by the logical positivists, e.g. Carnap [57], Reichenbach [222]. Logical
positivism began as a neo-Kantian movement whose central preoccupation was the content/form
distinction where the “content” is supplied by the outside world while the “form” is supplied by the
observer’s mind (e.g. by his logic). [Here, phenomenon = (content + form).] In Carnap’s works,
the “form” part or the part supplied by the mind is logic. (In this respect, our present approach is
positively related to those of Carnap and Reichenbach.) Reichenbach emphasizes that the content
part, e.g. the basic definitions of the concepts of a theory do change during the evolution (or
development) of the theory in question. In agreement with Reichenbach, we think that this is in
agreement with the modern view of Kant-oriented philosophy of science. Cf. also footnote 622 on
p.775.

638¢f. also the “Accelerated observers” chapter of [24]
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For the case the reader would not have time for reading the whole of the present
chapter the following is a possible minimalist reading of the backbone or most essen-
tial parts. (A possibility is first reading the backbone listed below and then reading
those of the remaining parts which interest the reader.) §6.2.1, §6.2.2 (without
proofs), §6.2.3 first 5 pages only i.e. up to Prop.6.2.48, (perhaps §6.2.4 and §6.2.8),
§6.3, §6.4, the introduction of §6.6, §6.6.1, §6.6.2, §6.6.3, §6.6.4, Remark 6.6.61 (pp.
1078-1080), §6.6.6, §6.6.8 (perhaps §6.6.9), §6.7.3 (perhaps the introduction of §6.7,
item (4) of §6.7.1 in particular Figures 340-343, and §6.7.2 [for this §6.5 might be
needed]), §6.8, §6.9. See Figure 260, where these sub-sections are boxed in. Fig-
ure 260 shows the structure of Chapter 6. Le. the figure shows which (sub-)sections
are needed for reading a given (sub-)section.

For the reader, who does not have time even for the above outlined minimalist
reading, the following is an even more radically shortened possible first reading of
a sample of the present chapter: §6.2.1, first 5 pages of §6.2.3, §6.3, (§6.4 without
proofs) the introduction of §6.6, §§ 6.6.1-6.6.3, (perhaps §6.6.6), §6.6.8, item (4) of
§6.7.1, §6.7.3 [for this some of §6.7.2 without proofs might be needed], §6.8, (perhaps
§6.9). For the readers convenience, we note that this last shortened reading involves
approximately only 182 pages.

782



(introduction)

6.9  (basic concepts)

6.2.7 <--{6.2.2 '
\X ' K
6.2.6=6.25<6.2.4<{6.2.3] | 6.3] (definability)
L= Y
6.2.9 6.2.8, y
165 <t
/// \\ \ * 6.6 (duality)
>6.6.1] — 6.6.7
o [6.62

. @7 (interdefinability)

(geodesics) g N
6.7.1 6.7.2
V
6.7.4

[P

Figure 260: a—b means that reading (sub-)section “a” is a prerequisite for “b”.
Further, the dashed (broken) arrows a—b mean that leafing through the definitions
and main ideas in (sub-)section “a” is desirable before reading “b”.
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Figure 261: Paving the road toward general relativity by gluing together locally
well behaved geometries yielding something globally strange, cf. §6.2.5 for gluing
geometries. This Escher picture shows a “paradigm for general relativity” which
locally behaves like special relativity: On the picture locally everything is normal,
globally it is like time travel via a rotating black hole, cf. Thorne [258] or O’Neil
[208] for the latter. Cf. also Fig.258 on p.770.
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6.2 Basic concepts

In this section we show how observer-independent structures can be found in our
frame models of relativity theory, i.e. we will show that there is an observer-
independent “geometric” structure Ggy inside every model 90 of our frame language.
We will also define the Reichenbachian version &%, of the geometric structure cor-
responding to a frame model 9 of relativity theory.3

Conventions, clarifying possible ambiguities:

The symbol L for orthogonality will be used in the present work in an ambigu-
ous way. Sometimes it denotes Euclidean orthogonality (as defined in §3.1) and
sometimes it denotes relativistic orthogonality as will be the case in the middle of
Definition 6.2.2 below. We hope that context will help. If somewhere we want to
emphasize the difference then we will write L, and L, (for the Euclidean and the
relativistic version, respectively). We note that the so called Minkowskian orthog-
onality is a special case of our relativistic orthogonality 1,. A further source of
ambiguity is the following (issue about where exactly our geometry lives). For a
second let Mn := P(B), where B is the set of bodies for our model 9. (Later we
will slightly change this convention but that is beside the point now.) In §2 we had
“Lines” C P(™F) while in the present chapter we will have “Lines” C P(Mn). That
is, now lines are understood on the set Mn of events, while at the beginning (when
we defined frame models) lines were understood on the vector-space "F. We hope,
context will help.

For a class K of models IK denotes the class of isomorphic copies of members of
K.

Warning 6.2.1 The word algebra is used in 3 different senses, both here and in
the literature. These are:

(i) Algebra is a branch of mathematics.
(i) An algebrab is a structure 2 = (A4; f;);csr in the sense of universal algebra.5*!

(iii) An algebra over a field F is a vector space over F with an extra binary op-
eration “” as indicated in footnote 1105, p.1101 (§6.6.6, sub-title “On ...
omnipresence ...” item (2)).542 <

639Cf. §4.5 for what we call the Reichenbachian approach to relativity.

640or equivalently an algebraic structure

641Here A is an arbitrary set and f; : "A — A is arbitrary too (for some n € w).
642The literature often writes simply “an algebra” for an algebra over a field.
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643 labjegyzetben
emlegetett
Mog(TH) =
IGeom(Th)
tipusu tétel nincs,
legyen valahol re-
mark

6.2.1 Definition of the observer-independent (or relativistic) geometry
Son

The reader may find that &gy defined below has too many components; however
there is no need to worry, our theory will be not as complicated as suggested by the
number of these components as it will be explained in §6.2.9 (Some reducts ...).
The reader is asked not to be disturbed by the complexity (or size) of the geometry
Gox. We include here the whole of &gy only for completeness: We will almost never
study the whole &gn. Most of the time, we will study simpler geometries, e.g. Gop
defined in the fifth line of Def.6.2.2 or some even simpler variant of this simpler
geometry like (Mn, L; €,eq) or (Mn, L; €, 1) or the streamlined time-like metric
structure (Mn,Fy; g~) on p.1170 (§6.7.3). Cf. also the beginning of §6.2.9 (p.923).

We would like to emphasize that we want to treat relativistic geometries
as abstract structures. An abstract structure is determined only up to
isomorphism.%*® Therefore it is important to emphasize that relativistic geometries
are defined up to isomorphism only, cf. Def.6.2.2(III) (p.798). That is, any isomor-
phic copy of the observer-independent geometry &gy counts as “the geometric coun-
terpart” of the frame model 9 (where recall, that ®gy is the observer-independent
geometry associated to ). In still other words this means that when studying &gy
we will concentrate on its isomorphism invariant properties only (as is usual in the
structuralist branches of mathematics like algebra). The reason why this is impor-

643By an abstract structure we understand a class K of structures such that (V% € K) K = I{2}.
Similarly an abstract class of structures is one which is closed under isomorphisms. As a contrast,
a concrete class is usually not closed under I. An example for the abstract/concrete distinction is
provided by Stone duality on pp. 1015, 1019. The class BA of Boolean algebras is an abstract class
(since BA = IBA). The class BSA of Boolean set algebras, i.e. algebras whose operations are the
real, set theoretic U, N, — is a concrete class of structures because if we know the universe A of an
algebra 2 € BSA then from A the rest of 2 is recoverable.®** Accordingly BSA # IBSA (= BA).
Stone’s representation theorem says that every member of the abstract class BA is representable
by (i.e. is isomorphic to) a member of the concrete class BSA. Cf. also p.799, Remark 6.6.87 (“On
representation theorems ...”) on p.1106. E.g. on p.799 Geom(Th) will be a concrete class while
Ge(Th) = IGeom(Th) will be an abstract class. The theorems later saying that for an axiomati-
zable class Mog(TH) of geometries Mog(TH) = IGeom(Th) are typical representation theorems.
Cf. e.g. items 6.6.57, 6.6.67, 6.6.70, 6.6.71 (pp. 1073-1083). Though these items are not exactly of
the desired form “Mog(TH) = IGeom(Th)” they (and the “tools” scattered around them) can be
used for obtaining theorems of the desired form. We leave it as a useful exercise for the reader to
carry this through. Cf. for more on “concrete”, “abstract”, “axiomatic-abstract” classes and their
connections with representation theorems in Remark 6.6.87 and also Németi [206].

644For the notion of concrete classes of algebras and for the importance of the concrete/abstract
distinction cf. Németi [206].
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tant is explained in Remark 6.2.4 (p.801). Treating ®gy as abstract structure will
make some of our results, e.g. the duality theory, stronger. The fact that we treat
isomorphic geometries as identical is important for the philosophy of the present
chapter, cf. Remark 6.2.4 (p.801).

More motivation for the definition below will come in §6.2.3 (“On the intu-
itive meaning of the geometry &gy”), we would like to, particularly, emphasize Re-
mark 6.2.46 on p.853.

Definition 6.2.2
(Observer-independent, relativistic geometry and related definitions)
Let 97 be a frame model.

(I) Then the observer-independent geometry Seon is a three-sorted structure to be
defined below.®*> But cf. also the improved geometry &3, in §6.6.9 (p.1111). (The
“simplified” geometries Ggy and Ggy will be only two-sorted.)

def
69}; =

<MH, Fla La LT) LPha LS? Ea _<, BW, J—Ta €q, 9, T>: and
Gy is the (g, L®, T)-free reduct

Gon :E (Mn, L; LT, L™, €, <, Bw, L, eq)

of Bgn, and Ggy is the (L7, L™ <, Bw, eq)-free reduct
Gon 4 (Mn,L; €, 1)
of Ggy; where:

1. The universes (or sorts) of gy are Mn, F (= universe of the structure F;)
and L, while the rest are the relations of @gy.546

2. 1 denotes L, to be defined in item 11 way below.

3. Mn:% (J{ Rng(w,,) : m € Obs} (C P(B)). Intuitively Mn is the set of all

events in our relativistic model 9. Mn is the set of points of our geometry

645Later, in Remark 6.2.4 we will define the geometric counterpart of the model 9t to be IGgy.

646The statuses of all the relations €, < etc. should be clear with the possible exception of the
topology 7. We can declare that T is a so called second-order relation on Mn. Equivalently, we
could declare that 7 is the 4" sort (or universe) of Bgy, and use the set theoretic membership
relation €7 € MnXx T to connect 7 with the remaining sorts. Cf. §6.3 for more detail on this.
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®gp. We also call Mn space-time, cf. Convention 6.2.5 (p.802). The acronym
Mn abbreviates the word manifold.%4"

4, F, M (F; 0,1,4+, <) is the ordered group reduct (F; 0,+, <) of the ordered
field ™ expanded with the constant 1, where 0 and 1 are the usual zero and
one of the field ™.

I % ({eeMn:mee}: meObsnIb} .5

L {{e€eMn : phee} : phePh}.

Le. L”, called the set of time-like lines, is the set of life-lines of inertial ob-
servers, and similarly LP", called the set of photon-like lines, is the set of life-
lines of photons. Here, life-lines are understood as subsets of Mn (C P(B)),
while in earlier parts of this work they were understood as subsets of "F.

L? consists of the space-like lines of 9 defined as follows:

L? :d:ef{wm[a_ci] :mée ObsNIb, 0<i€en}.

647We do not need the manifold structure on Mn yet. So, the reader may safely skip the following.
Mn is only the universe of a manifold Mn. Assume Mn comes from M € Mod(Pax + Ax(v/ )).
Then Mn := (Mn, §; Wm),,.Ops- (Here the wy,’s are called the maps and { w,, : m € Obs} is
called the atlas of Mn.) This structure looks like a manifold except that § may be different from
R and the topology induced on Mn by the coordinatizations { w,, : m € Obs} may be of an
uncountable base. In a generalized manifold we allow the base set to be uncountable but otherwise
we do require all the remaining usual properties. So if ™ = R and 9N satisfies some natural
conditions then Mn is a generalized manifold. In later generalizations to accelerated observers
and towards general relativity we will have to generalize Mn further, e.g. there will be maps
much more general than world-views of inertial observers. (Cf. also footnote 75 on p.55 where
we indicated generalizations such that w,, becomes a partial function w,, : "F — Mn, i.e. w,,
coordinatizes a subset of Mn with only a subset of "F. Cf. also Fig.3 on p.34, together with the
sentence on p.37 containing [reference to] footnote 50. Cf. also footnote 198 on p.188 and Fig.64
on p.191. This is of course only a first step in the direction of generalization we are discussing.)

648Tn our theories studied so far we always assumed Obs C Ib. The latter is implied by Ax2.
Therefore instead of inertial observers i.e. members of Obs N Ib we usually talked about simply
observers®4?, Obs only, for simplicity (since we knew that Obs = ObsN Ib was the case). However,
later when studying accelerated observers and other generalizations towards general relativity we
will need to pay special attention to Obs N Ib, since the Obs-part of Ax2 (i.e. Obs = ObsN Ib)
will not be assumed any more. This is why at the present point we start to pay attention to the
distinction between Obs and ObsN1Ib. (In some sense, in general relativity Obs N Ib will be a kind
of “backbone” of our theory.) Cf. in connection with these ideas Remark 6.2.46 on p.853.

649gince we knew that they were inertial anyway.
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Ie. L® consists of the w,,-images of the spatial coordinate axes (like z, 3, Z)
of "F for inertial m’s.

We note that, assuming Ax4 + Ax6qo,

L" ={wy[f] : me ObsnNIb},

i.e. L" consists of the w,,-images of the time axis for inertial m’s.55°

The set L of all lines of &gy is defined as

L:ETyLMyLs,

Cf. Figure 288 on p.885 for the spirit of working in Mn instead of "F' and for
the connections of the two.

6. € is the set theoretic membership relation between Mn and L.%°' In other
words € is the usual incidence relation of our geometry (Mn, ..., L; ...).

7. We define the binary relation, called causality pre-ordering,%*?> < on Mn as

follows.%3 Let e,e; € Mn. Intuitively, e < e; holds if there is an inertial
observer who is present both in e and e; (i.e. e and e; are on his life-line) and
sees that event e precedes event e; in time; formally:

e <ep
def,
<~

(I3m € ObsNIb) (meene A (Ip € w,'(e))(Iqg € w,!(e1)) pr < q).5*

650The difference between the style of definitions of LT and L* is connected to the fact (emphasized
e.g. by Reichenbach) that in relativity theory L® is somewhat less tangible than L7, cf. §4.5 (and
the definition of “Reichenbachian” geometries on p.799).

651Tn our many-sorted approach we encounter several situations where members of one sort Uy
act as sets of members of another sort, say Us. In such situations we use the set theoretical symbol
“e” as the relation connecting Uy and Uy, i.e. “€” C Uy x U;. We can add the names of the sorts
involved as indices of € like €, 1, but for simplicity we often omit these indices.

652The word “causality” in “causality pre-ordering” here is used only because we want to be
consistent with the literature. We emphasize that with this word we do not mean to imply that
we would have a theory of real causality around at this point. Cf. Remark 6.7.22 on p.1158.

653Under very mild assumptions on 901, < becomes a so called irreflexive pre-ordering, i.e. < U Id
is a pre-ordering, i.e. is transitive and reflexive. Note that e <e; = e,e; € L € LT, for some ¥£.

654We defined < in the “existential” style. The universal version <% of < is defined as follows.
(3m € ObsNIb)m € eNey A (Ym € ObsNIb)[m € eNe; = (Ip € w,,'(€))(Tg € w,,}(e1)) pt < qi].
Under mild assumptions <% is a (strict) partial ordering, moreover <* is the antisymmetric part
of < (ile.z <"y & [z <y AN yAz)).
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8.

10.

11.

The relation Bw C Mn x Mn x Mn of betweenness is a ternary relation defined
as follows: Let e, e;,eo € Mn. Intuitively, Bw(e, e, e2) holds if there is an
inertial observer who thinks that event e; is between events e and es; formally:

Bw(e, e1, e) LN ((Elm € ObsN Ib)(3p,q,r € "F)

[wn(p) =€ A wn(r) =1 A wnlg) = e A Betw(p,,9)]),
where, we recall from footnote 405 on p.492 that, Betw(p, r, ¢) means that p, r, ¢
are collinear points of "F and r is strictly in between p and ¢, formally: r # p, q
andr =p+ A-(¢—p) for some 0 < X < 1.

. In analogy with our notation “®gy”, if we want to indicate that Mn or L comes

from ®gy then we will write Mngy, Loy etc.5%®

Next we define the derived relation of parallelism in our observer-independent
geometries & = (Mn, L; €, Bw) = (Mngy, Lon; €, Bwsgy), where “=” is the
usual relation of isomorphism between structures (cf. Conventions 3.1.2, 3.8.4).
Let ¢,/ € L. Intuitively, £ and ¢; are &-parallel iff each inertial observer who
sees them thinks, they are parallel; formally:

e 4
def

(Va,b,ceMn)((BW(a,b,C) Na€l Nagly Ncely) =
[(3d € £)(Fe € t1)(Bw(d,b,e) AN d#a A
(Bf € £)(Bw(a,d, f) v Bw(a, f,d) v Bw(d,a, f))] )%

see Figure 262.
For the definition of (relativistic) orthogonality 1 = 1, we need first an
auxiliary definition.%57

Alternative (shorter) definitions of relativistic orthogonality (_L,) are available
in Definitions 6.2.9, 6.2.17 (pp. 810, 821) below, cf. Remark 6.2.8, too.

655Formally, Mn®™ would be the standard model theoretic notation. However, it is too
complicated.

656 The formal definition became so long because we have to take into account lines which are
present in several windows, for “windows” cf. the intuitive text above Thm.3.3.12 on p.196 (think
of photon-like lines).

657We would like to mention that on p.821 we will give an alternative definition (L%) for relativistic
orthogonality which is just as natural as the present one and is shorter. The only disadvantage of
1¥ is that it “works” only for n > 2.
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Figure 262: £ ||g ¢1.

Ordinals denotes the class of ordinal numbers in the usual set theoretic sense,
cf. e.g. Handbook of Mathematical Logic [42].

The definition of convergence given below agrees with what one would intu-
itively expect, cf. Figure 263.

Definition: Let o € Ordinals. Let S € ®L (i.e. S is an a-sequence of lines) and
¢ € L. Then we say that & converges to £ iff

(3Ip € Mn) [(w ca)peS@E) Nt A
(3¢ € L) (p ¢ ¢ A (3g € “Mn)(¥i € a) [q(i) € SEHNL A

(q converges to some g™ € ' N ¢ w.r.t. Bw) 58] ) ], see Figure 263.

First we define basic orthogonality 1o C L X L. Intuitively, two lines are
Lg-orthogonal if there is an inertial observer who thinks that these two lines
coincide with two distinct coordinate axes; formally: Let £, ¢ € L. Then

010 &L ((Elm € ObsnIb)(Fi,j €n)(i £ j AL = wp[z] Al = wm[gzj])),

see Figure 264.

6581.e., (3¢t € LN ) (Va,b € ¢') [Bw(a,qt,b) = (3B € a)(Vi € (a\ B)) Bw(a,q(i),b)].
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Figure 263: S € *L converges to ¢ € L.

The relation of relativistic orthogonality 1 = 1, is defined to be the smallest
subset of L x L containing 1, and closed under taking limits and parallelism,
i.e. 1, is the smallest subset of L x L having properties (i)—(iii) below.

(i) Lo C Ly, ie. £Lol = £1,0.
(ii) L, is closed under taking limits, i.e.
((Ela € Ordinals) (38, 8' € ®L)(¥i € a)(S(i) L, S'()) A
S and &' converge to £ and ¢ respectively)) = (1.7,

see Figure 265.9%° We note that this property (i.e. that L, is closed
under taking limits) can be formulated in the first-order language of the
structure (Mn, L; €, Bw, 1,), cf. axiom L on p.1077.

(iii) L, is closed under parallelism, i.e.
LLoly Nlel N U let) = € L. 0.

659Figure 265 is understood in the world-view of an observer, under assuming Bax~™+Ax(v/ ).
The 8 pictures represent all the possibilities as new “orthogonal pairs” (_L,-pairs) can be generated
by “old orthogonal pairs” (_Lo-pairs) by taking limits as described above. For that possible reader
who wants to see the “intuitive counterparts” of these pictures in, say, Basax + Ax(v/ ) models
we suggest concentrating on figures (a), (b), (¢). We note that we do not claim that all these 8
possibilities are realized in, say, Basax models. (Though, in passing we note that, (a), (b), (c),
(d), (f), (h) do occur, and we did not check with the rest.)
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Figure 264: Illustration for the definition of L.

In connection with Figure 265, it might be useful to have a look also at Re-
mark 6.2.6 (pp.802-805) and Figure 267 in that remark.

We refer to Remark 6.2.6 (p.802) at the end of §6.2.1 for intuitive motivation
(and considerations) for our using limits in the definition of L,. That remark
might also help in improving our intuitive picture of L, (and perhaps other
parts of &gy).

12. The relation eq C *Mn of equidistance is a 4-ary relation defined as follows.
Intuitively, eq(a, b, ¢, d) will mean that segments (a,b) and (c,d) are of equal
length (in some sense). First we define the relation eq, of basic equidistance.
Let e, e1,e9,e3 € Mn. Then

er(E, €1, €3, 63)
def
<~

(3m € ObsN1Ib)(3i,j € n)(3p, q € z;)(3r, s € ;)

(|p—q| =|r—s| A wn(p) =e N wy(q) =e1 A wy(r) =es A wp(s) = 63).660

660We could “improve” the definition of eq, by adding eq(e,e1,e,e1). This would perhaps
simplify some of our upcoming statements, but we did not explore this. Further, analogously to
the definition of L,, if we closed eq, under taking limits then perhaps the new eq, would behave
better (i.e. if e, e1, ea, e3 are on a photon-like line then eq(e, e1, €2, e3) would be the case).
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Figure 265: “Taking the closure of Ly under limits”.
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Intuitively, segments (e, e;) and (es, e3) are eqy-related if there is an inertial
observer m who “thinks” that the distance between e and e; is the same as
the distance between e, and e3 (and sees the segments (e, e;) and (e, e3) on
some [perhaps different| coordinate axes).

Now we define eq to be the transitive closure of eq, understood as a binary
relation between pairs of points (cf. Figure 266); in more detail: First for every
© € w we define eq, ., as follows.

eqis1 = {{a,b,¢,d) € *Mn : (3e, f € Mn) (a,b,e, ), (e, f,c,d) € eq; } .5

Now,
eq :(i:er {eq, : i€w}, see Figure 266.

Wy [‘i]

Win[7]

Figure 266: eq is defined to be the transitive closure of eq,.

Instead of eq(a,b,c,d) sometimes we write (a,b) eq (c,d). Similarly for
eqg, €qq, etc.

We note that eq is an equivalence relation (when understood on pairs of points)
on the set { {a,b) € Mn x Mn : (3m € Obs N Ib)(Fi € n)a,b € wy,[7;] }.
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13. g : Mn x Mn — F is a partial function defined as follows. Let e, e; € Mn.

Intuitively, the distance between events e and e; as measured by an inertial
observer, call it m, is A (where 0 < A € F) iff m sees both e and e; happening on
the same coordinate axis Z; with coordinate distance A. Further, the distance
between events e and e; as measured by a photon, call it ph, is A iff A = 0 and
ph is present both in e end e;.54? Now,

gle,er) Emin{\e F : (3h € (ObsNIb)UPh)

(the distance between e and e; as measured by h is \) };63

Formally:

gle,er) :dzefmin{)\ € F : (ph € Ph) [pheene; A A=0] or
(3m € ObsNIb)(Fi € n)(Ip,q € T;) [wm(p) =€ A wn(q) =e1 A X=|p—q|]},
if this min%% exists, otherwise g(e,e;) is undefined.

Under mild assumptions, the “min” part of the definition of g(e,e;) can
be omitted. (More precisely, the essential occurrence of “min” could be
omitted.%%) An example for such sufficient assumptions is the axiom of equi-
measure Ax(eqm) below. Intuitively, Ax(eqm) says that all inertial ob-
servers agree on distances (which they can measure).

Ax(eqm) (Vm,k € Obs N Ib)(Vi,j € n)(Vp,q € z;)(Vp', ¢ € Z;)

(lwm®) = we@) A wale) = wel@)] = lp—dl = ' =¢]) =

861We note that (Vi € w) eq; C eq,,, since eqq is “reflexive”, i.e. [(a,b,c,d) € eqy, =
<a7 ba a, b) € eq 0]‘

662We could have achieved the “photons measure zero distance” effect by first using inertial
observers only and then closing the concept of a distance under taking limits like we did in the
definition of L, (from Lg).

6631t is important in the definition of g that we required “h € Ib (unless h € Ph)” ie. we
used only inertial observers in measuring distances, because of the twin paradox cf. §2.8.4 (p.139).
Namely by the twin paradox to time-like separated events e, e; we can have accelerated observers
who see e and e; closer and closer%%* (and therefore g(e, e;) would not be defined etc).

664 This closeness would be not a property of e and e; instead it would only represent the extent
of acceleration of the “measuring observer”.

665 As usual, min H denotes the minimal element (or smallest element) of the set H taken in the
ordered set (F,<). Note that min H need not exist (even if § is complete).

666T.e. before trying to remove min we would reformulate the definition of g according to the
following pattern. g(e,e;) = 0 if e,e; are on a photon-like line, otherwise g(e,e;) = min{A € F :
(3m € ObsN1b)...}.
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Let us note that g(e,e;) can easily become undefined, since either (i) there
may exist no inertial observer m who sees e and e; on the same coordinate
axis and no photon ph who is present both in e and e; or (ii) there may exist
an infinity of inertial observers who measure smaller and smaller distances
between e and e;.

We will call ¢ the pseudo-metric®®® of Goy because it remotely does resem-
ble a metric (of a geometry) and because the elements of L will turn out to
be so called “geodesics” (cf. Def.6.8.2 on p.1179) w.r.t. g, under very mild

assumptions (like e.g. Bax~ " + Ax(eqm)). It is important to note that a
pseudo-metric g is usually not a metric because e.g. the “triangle inequality
axiom of metrics” fails for g.6%

14. T is the topology®™ on Mn determined by pseudo-metric ¢g. In more detail:
Let e € Mn, ¢ € TF. The g-neighborhood of e is defined as

S(e, ) X {e; € Mn : gle,e1) <} 5T

See Figures 340-343 (pp. 1149-1152) for how such neighborhoods can look
like (there we use the word g-circle instead of neighborhood). Cf. also Fig.29
on p.88.

Now, the topology 7 C P(Mn) is the one generated by®"

Ty :d:ef{S(e,s) :e€Mn, e TF},

667Cf. footnote 663 on p.796.

668Tn the relativity book Rindler [224] p.62 footnote 1 the expression “pseudometric” is used the
same way as we use it here. For completeness we note that several other relativity works use a
slightly different terminology. Namely, our g : Mn x Mn —> F is a variant of what, in certain
relativity works, is called a Lorentzian metric cf. e.g. Naber [201, p.83, line 8] or Wald [274, p.23,
line 20] or Hawking-Ellis [126] (where a “metric” is really a bilinear function on a vector-space,
like our "F; however this difference does not effect what is important for the present work).

669Under very mild assumptions on 9, our g does satisfy the axioms g(a,a) = 0 and g(a,b) =
g(b,a) but it does not satisfy the remaining axioms usually required from metrics cf. e.g. James &
James [141, p.232]. One of the axioms which fail for g is the triangle inequality g(a,b) + g(b,c) >
g(a,c), another one is g(a,b) =0 = a=0.

670i.e. (Mn, T forms a topological space in the usual sense, cf. p.870 for a definition

671Note that, by our convention on equations involving partial functions, g(e,e1) <& = (g(e,e1)
is defined ). Cf. Convention 2.3.10 on p.61.

672Where, “topology generated by T,” means taking finite intersections first, and then infinite
unions as usual. So 7 :={{JY : Y C {NX : X is a finite subset of Tp} }.
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i.e. Ty is a subbase®™ for the topology 7.6

Alternative definitions for the topology part of &gy are available in Defini-

tion 6.2.31 (p.838).
(IT) Structures with the same similarity type®™ as that of &gy are called struc-
tures stmilar to Bgy. By an isomorphism between &gy and By we understand an
isomorphism in the usual sense which is a homeomorphism®”® w.r.t. the topologies
Ton and Tn.5"" Since Bgy is a three-sorted structure (with sorts Mn, F and L) an
isomorphism is a usual three sorted isomorphism, i.e. it consists of three functions,
one defined on Mn, one on F, and one on L, cf. Convention 3.8.4 on p.298. The
definition of an isomorphism for structures similar to &gy, is the same, but as we
will see in Convention 6.2.3 (p.801) the membership relations € of our structures
similar to &gy always have to coincide with the standard, set theoretic membership
relation.6®

(III) By a relativistic geometry we understand an isomorphic copy of Ggy, for some
frame model 907.67°

Let Th be a set of formulas in our frame language for relativity theory. Then
the classes of relativistic geometries Geom(Th) and Ge(Th) associated to Th are
defined as follows.

Recall that, for a class K of models IK denotes the class of isomorphic copies of
members of K.

Now,

Geom(Th) := { &g : M e Mod(Th) }, and
Ge(Th) 4 I1Geom(Th), i.e.
Ge(Th) = {& : (IM e Mod(Th))® = Goy }.

673For the definition of a subbase for a topology cf. footnote 1004 on p.1016.

674Tn the “standard” literature the members of 7 are called the open sets of the topology 7. Cf.
p-870.

675Recall that similarity type = vocabulary.

676We note that a homeomorphism between topologies is what the category theorist (or a naive
outsider) would call an isomorphism.

677Because of the presence of g, the homeomorphism condition is automatically satisfied, but in
reducts from which g has been omitted this condition will become nontrivial.

678When looking at structures similar to &gy we always assume that they satisfy the axiom of
extensionality for €.

679 Therefore a relativistic geometry is nothing but the observer-independent geometry of some
model M.
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We will use the just introduced notation Ge(Th) in the spirit of Convention 6.2.3
(p.801) below.

In the terminology of algebraic logic Geom(Th) is a concrete class while Ge(Th)
is an abstract class of structures. The distinction between the two becomes impor-
tant in duality theories (cf. §6.6 way below) and “representation theorems”. Cf.
Remark 6.6.87 (p.1106), footnote 643 on p.786, and e.g. Andréka-Németi-Sain [30]
the Remark below Def.42.

By a Th geometry we understand a member of Ge(Th). E.g. we will talk about
Basax geometries. In the same spirit when in a theorem we discuss relativistic
geometries then by writing “assume 7h” we mean that the geometries in question
are in Ge(Th).

IV) &gy is definitionally equivalent (in first-order logic
( y 8
o2, def (Bom; =7 —Ph _S

where we define the relations =7, =" =% C Mn x Mn as follows.

680 with its expansion

e=Te & (FeLl) ee €l

f
=Phe, L e L) ee et
def

e=Se; & (Hel’) ee €l

Intuitively: e =7 e, that is e and e; are time-like separated, iff there is an inertial
observer m which is present both in e and e;. e =" e, that is e and e; are
photon-like separated®®' iff there is a photon ph which is present both in e and e;.
Further, e and e; are called space-like separated iff (3m € Obs N Ib) m thinks that
e and e; are simultaneous.%®?

Since Goy and Bg; are definitionally equivalent, we will not distinguish between
them (except when explicitly stated). E.g. we will say that (Mn,=") is a reduct of
Boy.

(V) Let = Bgy. Then the relation || of parallelism in & is defined in item (I).10
above (p.790).

(VI) We define the Reichenbachian version of the geometric structure correspond-
ing to 9N as follows:%83

&8 X (Mn,Fy, LR L7, LP" €, <, Bw, g%, T%),

680Cf. §6.3 (p.969) for definitional equivalence.

681Tn the literature this is often called null-separated. The word null comes from the fact that (if
e# ey then) e =PP ey & g(e,eq) = 0.

682The connection between = and space-like separatedness will be discussed in Prop.6.2.56(ii),
p-858.

683Cf. §4.5 for motivation.
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where Mn, Fy, LT P2 < Bw are as defined in item (I), € is the set theoretic mem-
bership relation between Mn and L® := LT U L*" and ¢®, T® are defined in items 1
and 2 below.

1. gf(e, ) :d:efmin{/\ € F : (dph € Ph) [ph€ene; AN A=0] or
(3m € ObsNIb)(dp,q € t) [wm(p) =€ A wn(q) =e1 AN X=|p—q|]},
if this min exists, otherwise g%(e, e1) is undefined.

2. T*!is the topology on Mn determined by the pseudo-metric g%. In more detail:
Let e € Mn and € € TF. Then

S(e, ¢) 4 {er € Mn : g%(e,e1) <e, e#er }.
Now, the topology 7% C P(Mn) is the one generated by
TE def{SRe e) : e€ Mn, e TF},
i.e. T is a subbase for the topology 7 7.8
We define the expansion,
(B5)= = (85 =",="")

=Ph are defined in item (IV) above.

of 8%, where =" and

We note that a somewhat richer, improved version of the geometry &gy will be
defined in §6.6.9 on p.1111, it will be denoted as &gj.

END OF DEFINITION OF &g AND RELATED DEFINITIONS.
<

A discussion of the intuitive meaning of (parts of) &gy will be given on pp.
848-851. Connections with the literature will be discussed beginning with p.923
(§6.2.9).685

684We note that under some assumptions the topology 7 agrees with the usual Euclidean topol-
ogy. E.g. Reich(Basax) + R(sym) + Ax(Triv) is enough for this. Further we note that the alter-
native topologies 7', 7" (basically equivalent with 7) defined in Def.6.2.31 (p.838) (see Fig.279,
p-839) can be used here in the Reichenbachian approach too as alternative possibilities for defining
&L

685In passing, we note that Busemann [56] obtains very attractive results by using a geometric
structure similar to the following version 5, of our 8%. &5, := (Mn,Fy, L7, L"; €, <, g%, TH).
More prec1se1y, but still very roughly speaking, Busemann uses only (a version of) the G&, :=
(Mn,Fq; <, g%, TE) reduct of &5, and recovers LT as geodesics in the sense of §6.8 way below

(LP b is definable in Busemann’s structures &%:.) Then he introduces the local version of G5, with
which he obtains very attractive insights into the problem of obtaining transparent axiomatizations
of (aspects of) general relativity. Cf. §6.7.3 (p.1169).
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The following convention is only a matter of convenience and does not have far
reaching consequences. It is motivated by the fact that the axiom of extensionality
holds in &gy (for € connecting Mn and L), therefore it holds in any isomorphic copy

in of ®gn. Therefore we do not loose generality if we assume that “€” is the real
set theoretic membership in &g, too. To make € the real one in g, the only change
we have to make is renaming the lines. Cf. Convention 2.1.2 (p.35), footnote 651 on
p-789 and the text below Axs on p.31.

CONVENTION 6.2.3 Let & := (Mn,...,L; ...,€,...) € Geom(()). By an iso-
morphic copy &' of & we understand an isomorphic copy in the usual sense as it
was explained in item (IT) of Def.6.2.2, but with the restriction that €' of &' is the
real, set theoretic membership relation,%¢ cf. Convention 2.1.2 on p.35.

The definition of Ge(Th) is understood accordingly. Hence Ge(Th) = { &’
(36 € Geom(Th))® = &' and €' of &' is the real set theoretic membership
relation }. Throughout we understand isomorphism closeness of classes of struc-
tures in this sense. In this chapter we concentrate on isomorphism closed classes
of structures (with the above restriction on €). It is important to emphasize that
isomorphism closed classes of models are more important for us than the rest. We
also emphasize that the restriction on € does not contradict our philosophy of con-
centrating on isomorphism closed classes. In particular we consider Mod(Th) and
Ge(Th) as being closed under isomorphisms. I.e. we consider Mod(7Th) = IMod(Th)
and Ge(Th) = 1Ge(Th).

Our conventions concerning the symbol €® (or € of &) can be summarized
and clarified by postulating that we are working in an extremely weak version of
higher-order logic where € is considered as a logical symbol. This applies to our
frame language as well as to our various geometric languages. For more detail on
this (i.e. “€” and higher-order logic reduced to many-sorted one etc.) we refer to
the Appendix (“Why first-order logic?”). In order to keep things simple we leave
it to the reader to elaborate the logical machinery of treating our various € symbols
as logical symbols. Cf. e.g. 9M* on p.807 for a case when there are more than one
incarnations of the € symbol in the same language. In such cases one uses € with
appropriate subscripts.

<

Remark 6.2.4 Our convention that we regard isomorphic relativistic geometries
as identical is important for the philosophy of the present chapter. Without this

686We note that this does not cause loss of generality.
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convention it would be easy to cheat. Namely, it would be too easy to “geometrize”
relativity (or any other theory, for that matter) so that from the geometry say (153}
associated to an observational model 9 all properties of the original model 9t would
be recoverable. E.g. let & be obtained from &gy (in Def.6.2.2) by replacing the
universe Mn = Points®” of Sgy with Mn x {91} in such a way that &g, = Gy
holds. But now, it is a trivial matter to recover 9 from the “concrete” geometry
&4 since 9N is sitting inside the elements of &5, (we can find it if we are willing to
“dig” deep enough along the set theoretic membership relation). Actually 9t can
be obtained by applying the projection function pj; to any element e € Pointséz’rﬁ(z
Mn x {9}). Further®” 9 = | pj,[Points®™], since |J{z} = z, where pj, is the
projection function ({a,b) — b associating the 1% member of a sequence to the
sequence (cf. p.947 for pj,).

But, if we define®® I6gy (or equivalently I&4;) to be the geometric counterpart of
90t 689 then the above trick does not work (for reconstructing 90 from its geometric
counterpart in a cheap way). Defining the geometric counterpart this way is the
same as defining the geometry of 91 only up to isomorphism.

The presently discussed convention makes some of our theorems in the duality
theory section stronger. Moreover, it provides formal justification for Einstein’s
remark to the effect that it is interesting that relativistic physics can be fully ge-
ometrized, cf. e.g. Misner-Thorne-Wheeler [196].5%

<

CONVENTION 6.2.5 Throughout, by the space-time of a model 91 we mean
either the geometry &gy or a reduct of Bgy like e.g. Goy in Def.6.2.2.(I) (p.787).
<

Remark 6.2.6 (Intuitive motivation for our definition of L, )%!

For simplicity in the present discussion we are assuming Bax®(4) + Ax(Triv;) +
Ax(11) + Ax(v/ ) but most of these assumptions are not essential (i.e. they could
be eliminated on the expense of making the text longer). In particular ¢, is the
speed of light for m. Also, throughout the present remark we assume n = 4 (i.e.

6871t is not necessary to understand this formula, for understanding the rest of this work.

688 For any structure &, I& := I{®} is the class of isomorphic copies of &.

689 e. we insist on “geometric counterpart of 9” = I“geometric counterpart of 91”.

690Geometrizability of relativity (or any other theory) would be vacuously true without the con-
dition “geometric counterpart of 9MM” = I“geometric counterpart of I”.

891We note that for the case n = 2 Goldblatt [108] defines L, practically the same way as we do,
and he provides intuitive motivation which is also similar to ours (e.g. uses limits) cf. Goldblatt [108]
p-6 lines 9—6 bottom up and p.8 first 6 lines.
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we are in 4-dimensions) but, when it does not matter, we often talk as if we were in
3-dimensions e.g. this is what we do in the pictures.

We would like to base our definition of 1, on the intuitive observer-oriented
notions in 9. So, what corresponds to orthogonality in 9?7 Well, two coordinate
axes of any observer are considered “orthogonal”. So, we would like to say that two
lines are | ,-orthogonal if some observer thinks that they are parallel with two of
his coordinate axes. The problem with this is that then no photon-like line will be
orthogonal to any line because photon-like lines are not parallel with any coordinate
axis of any observer. The reason for this is, roughly, that no observer can move with
the speed of light, i.e. v,,(k) # ¢, for any m, k. But this can be circumnavigated
because we can have observers whose speed is arbitrarily close to ¢,,, i.e. we can
have a sequence kg, ky,... € Obs with lim;, o v (ki) = ¢,,.%9% Cf. the picture on
p-816. Let such m, kg, ky, ... be fixed. Assume

Vi (m and k; are in strict standard configuration and m 1 k;).

Now, we are working in the world-view of m. To ensure existence of limits let
us work with F'*° instead of F. We can try to construct an imaginary observer ks,
as the limit of the sequence ko, ky,...,ki,... (i € w) of “real” observers, in some
sense.%”  So the intuitive idea is to “define” ko = “lim;,00(k;)” and fp, =
“Nmyey 00 (frk;)” - We did not define what we mean by lim;, (k;), but we can define
at least “parts” of this imaginary observer ko, (= lim;,o(k;)). Cf. the picture on
p.816. E.g. we can choose the coordinate axes of ky to be

o lim (1 Ph\694 =~ . Tiro (7 = e— Tim (@ 5 .— lim (3
where we use the notation #; = fy,,(f) and 1¢ = fi,,,(1;), and similarly for z;, 4;, 2
and for 1%,17,1%. To ensure existence of the time unit vector 13° of the imaginary
observer ko, we define the limit of a growing sequence like (1,2,3,...,4,...) of
members of F' to be co. Further for the sake of (nice behavior e.g. convergence of)
the unit vectors we assume Ax(symm)f. However, at the same time we would
like to emphasize, that for the present argument about L, we do not need the unit
vectors, hence Ax(symm)T is not really needed here (we assumed it only for
making our “picture prettier”). Then we can define
= lim (1Y), 1% := lim(1%), 1%°:= lim(1%).

11— 00 Yy 100 Y 11— 00

1= lim (1), 1%
dee)

6921t is possible that we need sequences longer than w for this limit to exist but that does not
change anything essential.
693For a similar train of thought (or construction) cf. Figure 254 on p.749 and §5.1 (pp. 744-750).

694For simplicity we write L for {trm(ph) : ph € Ph}, in the present remark.
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This way we will obtain

foo = Too € L™, Uoo = U Zoo = %

1°=1,, 1 =1, further

1° = 12° = “the infinitely long vector pointing in the photon-like direction ¢,”.

More formally,

19° =12 = (00, 0, 0, 0).
See Figure 267. As the figure shows our imaginary observer k., has some exotic
features. E.g. its space Space, C "(F*) is a Robb hyper-plane®® i.e. Space,_
is a hyper-plane tangent to the light-cone. It contains y, z and a photon-like line
too = Zoo- Though k. is only an imaginary observer, studying its mathematical

o0 100
00 1t _la:
w [ ]
_ozt_
m koo
t_oo::Eoo
—— > o o o o0
1; z
oo
1%° =1,

Figure 267:

structure can give us insight e.g. to the structure of &gy. k., does not satisfy our
axiom Ax6qq, i.e. ky,, does not see most of the events m sees, but k,, does see

895Cf. e.g. Robb [225] or Goldblatt [108] for the Robb hyper-plane (called in [108] Robb threefold)
cf. also p.1163 herein.
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the events on Plane(y, z) since 13° and 13° are finite (and agree with 1, and 1,
respectively). In the direction (1,1,0,0) however ko, is “blind”: of the events on
his life-line t, = tr,,(ks) he sees only the event at the origin 0 because ky’s unit
vectors (19°, 1°) in this direction®®® are too long.

Let us return to relativistic orthogonality 1,. Our k. thinks that his axes
toos Too, Yooy Zeo are orthogonal, therefore according to our philosophy for defining
1, it is natural that we wish to have

too = Too Lrtoo Lr L 2 ete

How could we achieve this (e.g. o, L, 7) in a natural way? Well, k,, was obtained
from real observers k; by taking a limit. Parts of £, (e.g. the coordinate axes of k)
were also obtained by the same limit procedure. Therefore, all this suggests that
we should close our relativistic orthogonality L, up under taking limits and then
probably this will yield for us those orthogonal pairs (like oo L, teo, too Lr 7 etc.)
which are coordinate axes of imaginary observers which in turn were obtained by a
limit procedure analogous to the one with which we obtained k.

In passing, we also note the following. k., thinks that his time axis 4, is or-
thogonal to his space, Space, , which in turn is the hyper-plane generated by
{Zoo = tx,T,Z}. Hence ko, will think that t., is orthogonal to any line in this
hyper-plane.®®” Thus, any photon-like line in a Robb hyper-plane is expected to be
1 ,-orthogonal to all lines in that hyper-plane.

Summing up, on a very-very informal level we could say the following. Of course
speed-of-light observers cannot exist. But if they existed they would behave like
koo does.®¥® In claiming this we are relying on the “rule of thumb” that in physics
everything is continuous (i.e. is preserved under taking limits). We emphasize that
the above train of thought is not a precise mathematical argument, and it should
not be taken too seriously®®, it only serves to help the intuition about some parts
of &gy (especially about L,.).

Concerning the above intuitive remark we also refer to Goldblatt [108] in the
middle of page 13 for an analogous argument.
<

Besides discussing definability issues and alternative definitions, the next sub-
section can also serve to improve our intuitive understanding of certain parts of
Bon.

696i e. in the direction of (1,1,0,0)
697Cf. Proposition 6.2.51 (p.856).

698Practically the same argument is found in Goldblatt [108] p.8 lines 4-7.
699¢.g. it uses “rules of thumb” which are not axioms in our theories.
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6.2.2 On first-order definability of observer-independent geometry over
observational concepts; and alternative definitions for 1., eq, 7

The parts of our observer-independent geometry &gy can be considered as “theo-
retical” concepts as opposed to the parts of 9 which in turn can be considered
as “observational”. Here we use the observational /theoretical distinction as intro-
duced and discussed e.g. in Friedman [90]. The observational/theoretical distinction
is known to be relative, hence we are aware of the fact that someone might chal-
lenge the observational status of 9T, but let us consider observational-ness of 9 as
a working hypothesis only. There is a long tradition (going back e.g. to Mach, Car-
nap) in theoretical physics where people try to restrict attention to such theoretical
concepts which are definable in terms of observational ones’®, cf. the introduction
to the present chapter (§6.1, p.774), cf. also e.g. Friedman [90]. This (among other
things) motivates our asking ourselves’®! whether parts of &gy are definable in first-
order logic over 9, and more generally whether Ge(Th) is definable over Mod(Th).
Indeed, e.g. in Theorem 6.2.44 (p.847) we will see results in the direction that Ge(7Th)
is first-order definable over Mod(Th), under mild assumptions. Of course, we begin
studying definability of gy (over ) by discussing definability of parts of Ggy over
9. In passing, we also note that the above sketched ideas serve as part of the
motivation for our section 6.3 on definability (and for our concern for definability
issues throughout the present §6).

We will use the notion of (first-order logic) definability of a new structure say
M+ in™2 an “old” structure, say, M. Here 9* is an expansion of 9 possibly both
with new sorts and new relations. Intuitively, D+ looks like

N = (MU, ... U™ R, ... Ry

where U™ are new sorts and R"" are new relations. Such a definition of 91" in N
induces an interpretation of the language Fm(M") of M* in the language Fm(I) of
<N,73 like

intrp : Fm(N*) — Fm(MN),

cf. Theorems 6.3.26 (p.962) and 6.3.27 (p.965) (in those theorems we will write “Tr”
instead of “intrp”). In more detail, the basic concepts of “definability theory” (also

700in our opinion “definable” should almost always mean definable in the language of (many-

sorted) first-order logic.
T0Lef. p.775
702¢Definable in” means the same as “definable over”.
703 Fm(M) is the set of formulas in the “language” of N, cf. Convention 6.3.25 (p.962).
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called “the theory of definability”) elaborated for the case of many-sorted first-order
logic (i.e. definability of a new sort) will be discussed in §6.3 beginning with p.928
way below. For even further details (for a level of generality somewhere in between
the traditional one-sorted case and our present many-sorted case) we refer the in-
terested reader to the logic textbook Hodges [136, Chapter 5] (“Interpretations”),
but we note that §6.3 herein is sufficient for understanding the present work (i.e.
the present work is intended to be self contained in connection with “definability
theory”).704

CONVENTION 6.2.7 By definability we automatically mean explicit definabil-
ity throughout the present work, cf. §6.3.2. Similarly first-order logic definability
also means explicit definability. The adjective “first-order logic” is there only to em-
phasize that our explicit definitions of new relations will be formulas of first-order
logic as one would expect. Similarly “definition” means explicit definition in the
sense of §6.3.2.

<

Remark 6.2.8 (On first-order definability of gy in 91.)

Let 9 be a frame model and let &gy be the observer-independent geometry cor-
responding to M (defined in Def.6.2.2(I) above). We will look into the question
whether the ingredients of gy are definable in 9% using first-order logic (i.e. using
our first-order frame language) or, more boldly, whether &gy is first-order definable
in 9. In the present remark, for simplicity, instead of 9t we will use its expansion

m+ = <£Uta MH, La 6Mm EL>

where events Mn and lines L are new sorts as defined in items 3, 5 of Def.6.2.2(I)
and €, €1, are the restrictions of the usual set theoretic membership relation € to
B x Mn and Mn x L, respectively. We will see in Proposition 6.3.18 (p.957) that

(%) M+ is first-order definable™ in 9N, moreover this definition is uni-
form for the whole class FM of frame models.

This justifies our decision of studying definability in 9t instead of definability
in 9. Whenever below we say that something is definable in 9" then by (x)
above this automatically means that that thing is also definable in 9. So, we ask
ourselves which parts (ingredients) of the geometry gy are first-order definable in

704We will return to defining (but only informally) interpretations on p.984 Fig.306 and on p.1023.
Cf. also p.968 and footnote 936 (on p.968). [The above intrp : Fm(Mt) — Fm(MN) is only a
special kind of interpretations (involving only one of the many possible ways of using this concept).]

705Te. M™ is rigidly definable over M in the sense of §6.3.2.
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the expanded frame model 9. Let us notice that the definitions of all ingredients
of Bgn, given in Def.6.2.2(I) above, are indeed first-order definitions in 9" ezcept
for the relation L, of relativistic orthogonality, the relation eq of equidistance, and
the topology 7. Therefore, it is sufficient to discuss here definability of L,, eq and
T in 9. Let us turn to doing this.

On _L,: The relation L is first-order definable. This gives us a promising start
(for checking definability of L,.), but disappointingly, the definition of relativistic
orthogonality L, (item 11 of Def.6.2.2.(I) on p.790) involves closing 1, up under
taking limits, then closing up under parallelism, and then iterating this two step
procedure arbitrarily many times. Clearly this definition in its present form is not
a first-order one. As we indicated we can translate the step of closing up under
limits and the step of closing up under parallelism to our first-order frame language,
cf. pp. 792, 1077, but it is not completely obvious how to translate iteration to
first-order logic. (The iteration comes into the picture when we say that L, is the
smallest set with certain properties [this happens above item (i) in the definition of
1,].)™ In Definitions 6.2.9, 6.2.17 below we give three alternative definitions for
1,, which are (i) in the (first-order) language of 9+, and (ii) they are equivalent
with the original definition of 1, under some assumptions on I, like e.g. n > 2 and
Bax® + Ax(v/ ) + Ax(Triv;) + Ax6 (cf. Theorems 6.2.10, 6.2.19). Therefore L,
becomes first-order definable in 9™, under some assumptions on 9. Another use
of exploring alternatives for 1, (and proving equivalence) is that we obtain some
insights into “how L, works”.

On eq: The relation eq of equidistance (item 12 of Def.6.2.2.(I) on p.793) was
defined to be the transitive closure of the relation eq, of basic equidistance, so it
uses the set of natural numbers w. Being a natural number is usually not first-
order definable in 9M*. Hence™’ the definition of eq is not a first-order definition
in 9. Let us recall that for every i € w eq,; was defined to be the “i-long-
transitive closure” of eq,. Let us notice that the definition of each one of our
relations eq, is indeed a first-order definition in 9. In Theorems 6.2.22, 6.2.23 we
will see that eq, coincides with eq under some assumptions on 9, like e.g. n > 2
and Bax® + Ax(Triv;) + Ax(]|) + Ax(v/" ). Hence the relation eq of equidistance

706Tn theory it is possible that one could prove that the above mentioned iteration (of taking
limits and parallels) terminates in a bounded finite number of steps, under certain assumptions.
If that is the case then the original definition of L, will get translated to our first-order frame
language. However we did not have time to think about this direction. Instead of pursuing this
direction (i.e. checking whether iteration stops) we explore alternative definitions for relativistic
orthogonality.

707 Anyway, transitive closure is a typical example of (usually) not first-order definable concepts.
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becomes first-order definable in 90*, under some assumptions on 1.7

On T: Let us recall that the topology 7 was defined from the subbase
To={S(e;e) : e€ Mn, e € TF }.
We will see in Proposition 6.3.19 (p.959) that

(3%) the subbase Ty for T is first-order definable’™ in 901, and that this
definition is uniform for the whole class FM of frame models.

By (%), we consider the topology 7 as first-order definable in 9%, however we
do not discuss here which basic concepts of topology are first-order definable, e.g.
we do not discuss whether the set of open subsets of T (i.e. T itself) is first-order
definable.

(*x* %) To be honest, we should call 7 first-order definable only if a base™ , say T,
for T is first-order definable. (This is so because then standard notions of topology
like e.g. continuity would become expressible by using 7" which in turn is definable.)
To pursue this direction we should investigate the question, under what conditions
(axioms) does definability of a subbase T imply definability of a base 7. However,
in the present work we do not want to investigate this direction. Therefore (perhaps
slightly misleadingly) we call 7 definable if a subbase T; for T is definable. Inves-
tigating the question of under what assumptions is a base T for T definable (over
FM) remains a task for future research. For a similar notion of explicit definability
of a topology T we refer to the model theory book Barwise-Feferman [43, p.567,
lines 5-8, §3.3 (Definability) of Chap.XV].

We will introduce alternative versions 7' and 7" for the definition of the topology
part of our observer-independent geometry in Definition 6.2.31 (p.838). From the
point of view of first-order definability over 9%, 7" will behave just as nicely as
T does (cf. Prop.6.3.20, p.960) while to ensure nice behavior of 7' we will assume
Bax™ + Ax(v/") (cf. Prop.6.3.21, p.961).

As a corollary of (x), (xx) above and Theorems 6.2.10, 6.2.19, 6.2.22, 6.2.23 below
we obtain that under reasonably mild assumptions Th on our models 9t € Mod(Th),
the geometry ®gy is definable in first-order logic in the structure 9. Moreover this

7081f we make no assumptions then eq becomes undefinable in some frame models 9, cf.
Thm.6.2.24 (p.830).

799More precisely Ty together with “€-relation” acting between Mn and T are first-order defin-
able, where definable here means rigidly definable in the sense of §6.3.2.

TI0A set T C T is called a base for topology 7T iff each member (i.e. “open set”) of 7 can be
obtained as a (possibly infinite) union of sets from 7.
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definition is uniform for the whole class Mod(Th), see Theorems 6.3.22 (p.961) and
6.3.23, cf. also Theorems 6.3.24 and 6.2.44. Hence Ge(Th) is uniformly definable
over Mod(Th).
As we have already said, more on definability theory can be found in §6.3 way
below.
<

In Definition 6.2.9 below we give two alternative definitions L] and L for the
relation L, of relativistic orthogonality. The advantages of the definitions of L and
1" over the definition of L, will be that (i) they will be first-order definitions (in
the expanded frame models 9™ defined in Remark 6.2.8, p.807) and (ii) they will
be easier to understand. However, we consider the definitions of L] and 1! less
natural than that of L,, because they (i.e. the definitions of 1! and L!') use case-
distinctions, i.e. they distinguish photon-like lines from the rest of the lines, cf. items
(iii) and (iv)’ of Def.6.2.9 below. In Definition 6.2.17 (p.821) way below we give two
further alternative definitions 1" and 1% (for relativistic orthogonality) which we
consider just as natural as the definition of L, is. The definition of 1" will be a
first-order one (in the expanded frame models ™). In Theorems 6.2.10, 6.2.18 and
6.2.19 below we will see that, under some assumptions, all versions of relativistic
orthogonality, i.e. L,, LI 1" 1" 1% coincide, cf. Corollary 6.2.20. These theorems
imply that L, is first-order definable (in the expanded frame models 9" mentioned
above), under certain conditions.

Definition 6.2.9 (Alternatives L/, L for relativistic orthogonality 1,)

Let 9 be a frame model. L, L and the relation of parallelism (||¢) on L are defined
in items 5, 10 of Def.6.2.2.(I) (pp. 787-790). We define L C L x Land L7 C Lx L
as follows.

Intuitively, two lines are L;-orthogonal if they are parallel photon-like lines or
there is an inertial observer who thinks that one of the lines coincides with a co-
ordinate axis, call it z;, and the other line lies in the subspace determined by two
(possibly coinciding) coordinate axes different from z;, see the left-hand side of
Figure 268. Formally: Let ¢,/ € L. Then

1 ¢ &L (one of (i) (iii) below holds), cf. Figure 268.

In the formula in item (i) below, if j = [ then Plane(Z;,Z;) denotes the coor-
dinate axis Z; (i.e. Plane(Z;,Z;) = Z;, as one would expect).
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I GNE (i) Gy
T T;
4 14
L
z
!
world-view of m 0,0 ¢ LP?| |world-view of m  world-view of m ¢ ¢/ ¢ LPh

Figure 268: Illustration for the definitions of L] and L.

(i) (3m € ObsN Ib)(3i, 7,1 € n)
(j £i#l A b=wn[i] A £C wm[PIane(ij,a‘cl)]).

(ii)) The same as (i) but with ¢, ¢’ interchanged.
(iii) (6,0 € L™ A L) £).

Now we turn to defining 1”. Intuitively, two lines are L”-orthogonal if they are
parallel photon-like lines or there is an inertial observer, call it m, who thinks that
the two lines are parallel with two different coordinate axes or m thinks that one
of the lines coincides with a spatial coordinate axis, call it Z;, and the other line is
the trace of a photon and this photon moves in the (spatial) direction determined
by a spatial coordinate axis different from Z;, see the right-hand side of Figure 268.
Formally: Let ¢,¢' € L.

01" &L (one of (i)’ (iv) below holds), cf. Figure 268.

(i) (3m € ObsN Ib)(3i,j € n)
(#7 A wnlElunlmleL™ A Lo waln] A Lo wal]).

(i) ¢ e L™ A (3m € Obs N Ib)(Fi,j € n)
(o £iA5£0 A L=wn[z;] A € C wnlPlane(, jzj)]).

(iii)” The same as (ii)’ but with ¢, ¢ interchanged.

"We note that, assuming Ax4 + Ax6qg, (Ym € Obs)(Vi € n) wy,[Z;] € L.
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(v) (L0 eLPh A £]ef).
<

For stating the next theorem we introduce two new axioms. The first one is called
axiom of disjoint windows (Ax(diswind)) formulated below. We note that there
is a model of Newbasax in which Ax(diswind) fails (see Figure 307 on p.1001 or
Figure 289 on p.887).

Ax(diswind) (Vm,k € ObsN1Ib) [(m S ph A kS ph) = m S k.
The intuitive meaning of Ax(diswind) is the following. In models of Bax™

the visibility relation — is an equivalence relation on the set of (inertial)
observers,”'? cf. Theorem 4.3.11 (p.481) and the intuitive text above Theo-
rem 3.3.12 (p.196). The “windows” correspond to the equivalence classes of

5. Now, Ax(diswind) says that there is no photon connecting the windows.
Cf. also Figure 289 on p.887 for the intuitive idea of a window. Very roughly,
one could say that the window of an observer m is that part of space-time
which “unquestionably exists” for m.™'3

The second new axiom is the auxiliary axiom Ax(Triv,)~ which is a weakened ver-
sion of Ax(Triv;) (p.135). The advantage of the axiom Ax(Trivy)~ over Ax(Trivy)
is that Ax(Triv;)™ can survive the transition from special relativity to general rel-
ativity, while Ax(Triv;) might probably not survive this transition. Recall from
p.135, that Ax(Triv;) postulates the existence of certain very simple f,,; transfor-
mations not involving motion (or even changing the time axis ¢ ). Recall that

Triv ={ f : fis an isometry of "F and f(1;) — f(0) =1, }.
Our new, weaker axiom will say less than Ax(Triv;), namely it will prescribe only
what the required f,,;’s do with the spatial coordinate axes, i.e. what they do with
spatial directions x,7vy, ... but it will not prescribe what they do with e.g. the lengths
of the unit vectors 1;,1,,1,,....

Ax(Trivy)~™ (Vm € Obs)(Vf € Triv) [ f[t] =t =
(3k € Obs)(Vi € n) (fym|Z:i) = flZi] N m7Tk)].
That is, assume we are given an observer m and a Triv transformation f that
leaves the time-axis fixed. Then m has a brother, call it £, such that m thinks
that (i) the coordinate axes of k are the f-images of the original coordinate
axes T;, and (ii) the clock of k runs forwards.

712We note that in Bax™ all the observers are inertial ones.
30ne could also say that a window is such a part of Mn which can be obtained in the form
Rng(wy,), for some m (i.e. which can be “coordinatized” by m).
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Intuitive motivation explaining why we will need Ax(Triv;)~ often can be found on
p.848 (beginning of §6.2.3).

THEOREM 6.2.10 1, coincides with both 1! and 1!, ™ therefore 1, is first-
order definable™®, assuming Bax® + Ax(Triv;)~ + Ax(diswind) + Ax(v/ ). (The

assumption is needed for all parts of the statement, e.g. for L, = 1! of course.)

We will give two proofs for this theorem (which appeal to slightly different “tastes”).

First proof: Assume n > 2. A sketch of the idea of the proof is illustrated in
Figure 269.

Let 9T, 904, ..., 95 be as in the figure. We start out with 9 and by gradually
changing it we arrive at 95.71® What is invariant during this process is that the

(Mn,L; L") L™ L® €, Bw, 1y, L,, L., 1")

generalized reducts of geometries corresponding to all these models”” are isomorphic

(actually with the exception of 95 these reducts are identical). It can be proved™?®
that
M5 = Newbasax + Compl + Ax(v/ ) + Ax(diswind).

Therefore 915 is a disjoint union™? of models of BaCo+Ax(v/ ), i.e. it is a disjoint
union of Minkowski models.”°

Since the above indicated “geometry reducts” of 99 and 9915 are isomorphic, to
prove the theorem, it is enough to prove its conclusion for Minkowski models. I.e. it

"4Recall that L, is defined in Def.6.2.2 (p.790) and L/ and 1! are defined in Definition 6.2.9
above.

"5we mean, definable over Mod(Bax® + ...), of course. First one defines 9+t = (M, Mn, L; €)
over MM € Mod(...) and then L, over 9. (The point is that for defining L, first we need to have
lines.)

716GQee Figure 269. Step M — My goes exactly as step M — N in the proof of item 6.2.89 on p.895.
Step My — Mo goes as follows: Assume M; = ((B; Obs, Ph,Ib),§F, G; €, W). Let mgo € Obs be ar-
bitrary, but fixed. For every k € Obs let ¢, € Aut(F) be such that f,,,,x, = fo@g, for some f € Aftr.
Such ¢y’s exist by Fact 4.7.7 (p.617). Let W' := {(k,p,b) € Obs x "F x B : W(k,or(p),b) } and
My := ((B; Obs, Ph,Ib),§, G; €, W'). For the step MMy — M3 we refer the reader to Figures 96,
97 (p-324) and to the intuitive model construction on pp. 322-325. In step M3 — M, we change
the direction of flow of time for some observers so that Ax(1) + Ax5" becomes true, and in step
My — M5 we throw away some bodies so that AxQD + Ax(ext) becomes true.

TN, ., My

8hy Thm.3.3.12 (p.196), by Prop.2.8.15 (p.136), by noticing that Ax(||) + Ax(Triv;)~
Ax(Triv,) and by Thm.2.8.17 (p.138)

"9For disjoint unions of models cf. pp. 868-869.

720Cf. Def.3.8.42 (p.331) for Minkowski models.
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changing the units of
measurement for time

getting rid of field
automorphisms
from the f,,;’s

changing the units
of measurement

changing the direction

of flow of time for
some observers

throwing away
superfluous bodies

M = Bax® +Ax(Trivy)~ + Ax(v ) + Ax(diswind)

E + Ax(Trivy)~ + Ax(v ) + Ax(diswind)

- [ Al +

Newbasax + Ax(Triv;)™ + Ax(v ) + Ax(diswind)

- [l +

Newbasax + Ax(Triv;)~ + Ax(v/ ) + Ax(diswind)

E Ax(syto)+ |Ax(1) + Ax5T |+
Newbasax + Ax(Triv;)~™ + Ax(v ) + Ax(diswind)

E Ax(syto)+ Ax(1) + Ax5T + ‘Ax@ + Ax(ext) ‘ +
Newbasax + Ax(Triv;)~ + Ax(v/ )+ Ax(diswind)

Figure 269: By gradually changing 91 we arrive at 9;. For explanation cf. foot-

note 716.
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is enough to prove that in Minkowski models L, L], 1 coincide. We leave checking
this to the reader; but we note that a generalized version of this will be proved as
Claim 6.2.11 in the second proof.

Assume n = 2. Then we use the first part of Figure 269 involving 90, ..., Ms.
For this part the proof is the same as in the n > 2 case (e.g. we use the same
geometry reduct). It is not hard to prove that 95 is a disjoint union of models
of (Basax+Ax(syt)+Ax(Triv,)+Ax(v")), cf. footnote 718. Then it is enough to
prove the conclusion for (Basax+Ax(syt)+Ax(Triv;)+Ax(v/ )). Since n = 2 this
is not too hard. We leave this step to the reader; but we note that a generalized
version of this will be proved as Claim 6.2.11 in the second proof. I

Second proof: Let M € Mod(Bax®+Ax(Triv;)~+Ax(v/ )+Ax(diswind)). Let
N be a model of Newbasax obtained from 9 by changing the units of measurement
for time, i.e. 9t is obtained from 90 exactly the same way as in the proof of item 6.2.89
on p.896. (This corresponds to the first step in Figure 269.) Then, the generalized
geometry reducts

<MH7 L7 LT, LPha LS7 €, BW7 LOa J—Ta L:-: J—Z)
of M and N coincide. Further,
M = Newbasax + Ax(Triv;)~™ + Ax(v/ ) + Ax(diswind).

Therefore 91 is a photon-disjoint union”' of models of (Basax + Ax(Triv,)~ +
Ax(v/)). Since the above indicated “geometry reducts” of 9t and O coincide, to
prove the theorem, it is enough to prove its conclusion for (Basax + Ax(Trivy)~ +
Ax(v/)) models. This is proved as Claim 6.2.11 below.

Claim 6.2.11 Assume Basax -+ Ax(Triv,)”+Ax(v/ ). Then L,, L’ 1" coincide.

Proof: In the proof we will use Minkowskian orthogonality L, C Eucl x Eucl which
will be introduced in Def.6.2.58 (p.859). We will prove items (a)—(d) formulated
below. Then, by (a)—(d) below, it is clear that L,, 1! 1" coincide. Namely by
(a) and (b), LI =17 C 1,, and by (c) and (d), L, C L!. For every m € Obs and
tel, let
= w1,
Let ¢,¢' € L. Then (a)—(d) below hold. (The proofs of (a)—(d) will be given below
(a)=(d).)
(a) (1"¢ = (1,7,

"1 For disjoint and photon-disjoint unions of models cf. item 1 on p.868.
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(by (L0 & 177
(¢c) (L, 0 = (Vm)l, L,20,.
(d) (L0 < (Ym)lm L, L.

Proof of (a): Assume ¢ L” ¢'. Then one of (i)’—(iv)’ in the def. of L hold, cf. the
right-hand side of Figure 268 (p.811). For the case (i)’ it is clear that £ L, ¢'. So we
can assume that ¢ and ¢ are parallel photon-like lines or there is an observer who
thinks that ¢ coincides with spatial coordinate axis Z; and ¢ is a trace of a photon,
and this photon moves along a spatial coordinate axis Z; different from z;, cf. the
right-hand side of Figure 268. We note that at this point we are discussing cases
(ii)’—(iv)’. To see that £ L, ¢' we include the following intuitive explanation:

Intuitive explanation for the photon-like part of LI, i.e. to our saying among
others that any two parallel photon-like lines are L,.-orthogonal:

Consider a sequence kg, k1, ko, - . ., k;, - . . of faster and faster observers converging
to the speed of light. Cf. Figure 267 on p.804 and Remark 6.2.6 on pp. 802-805.

tko

tht

L=yl =gk = ko
Clearly tho 1o xko ... ¢k 1 2% etc. So, the faster t* moves the “closer” it gets to
x¥ while tk 1y z¥i. Now, if we stretch our imagination and imagine, for a second
only, that there is an observer k., moving with the speed of light (which is impossible
of course, but at the present point is an useful “metaphor”) then we find tke = gke
and at the same time tF>~ |, z¥= hence the 1, ¢k,

This gives us intuitive motivation for declaring that photon-like lines are self
orthogonal. Since 1, was obtained from 1, by closing up under taking limits and
parallelism, this finishes the idea of proof for case (iv)’. When elaborating this proof
one may need limits “longer” than w. Similarly, we arrive at the further conclusion
that th= 1, y*>~ =y, yielding a proof for cases (ii)’, (iii)’.
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Proof of (b): Direction “«<” can be easily checked by Ax(Triv;)~+Ax5 and by
the fact that in Basax models “parallel” observers’?? agree on simultaneity and on
Euclidean orthogonality. The proof of direction “=” uses Ax(Triv;)~ and some
basic properties of Basax (e.g. clocks orthogonal to movement do not get out of
synchronism and remain orthogonal to movement). E.g. assume item (i) in def. of
1! holds for ¢, ¢'. Now, if £ € L* then (ii)’ in def. of 1” holds for ¢, ¢, while if
¢ € L¥ U L® then item (i)’ holds for £, ¢, cf. Figure 268. The details are left to the
reader.

Proof of (c): Item (c) follows from items 1-4 below. Item 1 follows by Thm.6.2.63
on p.866 (saying that in Basax models the f,,;’s preserve Minkowskian orthogonal-
ity) and by the fact that any two distinct coordinate axes are Minkowski-orthogonal
(and from the def. of L); item 2 follows by items 1f and 2a of Prop.6.2.79 (p.884);
item 3 follows by item 5a of Prop.6.2.79; and item 4 is easy to check by the def. of
1,

1. (V0 eLl)(t Lol = (Ym)b, L, 2,).

2. Let a € Ordinals, § € *L and ¢ € L. Then
(S converges to £) & (Vm)({S(i)m : i € a) converges to £, w.r.t. Betw),
cf. Figure 263 (p.792).

3. VLU eLl)(L|lel & (Ym)ly | 4,).

4. Minkowskian orthogonality is “closed under taking limits and parallelism”
(and L, was obtained from L, by closing up under these two).

Proof of (d): Assume that (Vm € Obs) £, L, ¢,,.
First, assume that both ¢ and ¢ are photon-like lines. Then, by the def. of L,
it can be checked that

(Vm € Obs) (b, £, € PhtEucl and £, || £,,).

But then ¢ ||g ¢' by item 5a of Prop.6.2.79 (p.889). Hence ¢ 1! 7'.

Now, assume that one of £, ¢ is space-like or time-like, e.g. assume that £ €
L® UL". Let m € Obs such that m sees £ on some coordinate axis, i.e. £ = w,,[T;],
for some 7 € n.™ Fix this 7;. Then Z; and ¢ are Minkowski-orthogonal, i.e.

"2(0bservers m and k are called parallel if their life-lines are parallel, i.e. tr,,(k) || £.
723Guch an m exists since we assumed that £ is space-like or time-like.
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z; L, £,. By the definition of L, it can be checked that if a coordinate axis z; is
Minkowski-orthogonal to a straight line, then Z; is orthogonal to that straight line
in the Euclidean sense, too. Hence, z; L. ¢ . But then, by Ax(Triv,;)~+Ax5,"*
there is an observer m' such that wp,[Z;] = wn[Z;] = ¢ and item (i) in definition
of 1! holds for m/,¢,¢ i, cf. the left-hand side of Figure 268. So ¢ L! ¢'. This
completes the proof of Claim 6.2.11 and the proof of Theorem 6.2.10. 1

Before defining the third and the fourth versions )" and 1% of our relativis-
tic orthogonality relation we need the definition of the “plane generated by a set
of points H C Mn”. To explain certain technicalities in this definition we include
Proposition 6.2.14 below. To improve readability we will use the following abbrevi-
ations.

Notation 6.2.12 Let & be a relativistic geometry.

(i) We define the binary relation ~ of connectedness on points Mn as follows.™®
Let e,e; € Mn. Then

e~ e LN (e =e; V (Jdes € Mn) Bw(e, 61,62)).

(ii) Let a,b,c € Mn. Then

coll(a, b, c) PN <a~b~c~a A

(Bw(a,b,c) V Bw(a,c,b) V Bw(b,a,c) V a=bV b=c V a=c)).

“coll(a, b, c)” abbreviates “a,b, c are collinear”.

Warning: The “real” collinearity relation of our relativistic geometries & (to
be denoted as Col) will be defined later by using the set L of lines and (e.g. in
Ge(Bax™)) it will not necessarily coincide with the recently defined coll. How-
ever, the two collinearity relations (coll and Col) will coincide in the geometries
of models of Bax + Ax(Triv;)~ + Ax(v ) + Ax(diswind). More generally,
coll C Col, assuming Pax + Ax(diswind), cf. Item 6.6.39 on p.1052.

"24and since “parallel” observers agree on simultaneity and Euclidean orthogonality

725We note that the present notion of connectedness is a completely different thing than the
topological notion of connectedness.
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Remark 6.2.13 Assume 9 € Mod(Bax™). Then two events e,e; € Mngy are
connected iff there is an observer who sees both of them. I.e.

e~e <= (Im e Obs)e,e; € Rng(wy,). ™

PROPOSITION 6.2.14 Assume Bax™. Then (VYa,b,c € Mn)

coll(a, b, c)

0

(there is an observer who sees that events a,b,c are collinear

0

(each observer who sees events a,b,c “thinks” that they are collinear and some
observer sees all of a,b,c)™8.

)727

Proof: The proposition follows by Thm.4.3.11 (p.481) (and by the definition of
Bw). 1

We note that the directions “f}” in the above proposition hold for any frame
model (i.e. the assumption Bax™ is not needed for these directions).

In Def.6.2.15 below, the first definition we give for Plane(H) is short, but is
not in the first-order language of our geometry (Mngy; Bwgy). This is why, still in
Def.6.2.15 we continue discussing alternative definitions for Plane(H). A similar
remark applies to Def.6.2.17 (the definition of L¥).

Definition 6.2.15 Let 9 be a frame model. Let (Mn; Bw) = (Mngy; Bwoy).™
Let H C Mn.

(i) By Plane(H) we denote the “plane generated by H”, i.e. Plane(H) is the
smallest subset of Mn having properties 1 and 2 below."°

1. H C Plane(H).
2. (a,b € Plane(H) A coll(a,b,c)) = c € Plane(H).

726This holds by the definitions of Bw and ~.

TFormally: (Im)[a,b,c € Rng(wm,) A (wy;(a), w;l(b), w,l(c) are collinear)].

8Formally: (Vm)[a,b,c € Rng(wn,) = (w,l(a), w, (), w,l(c) are collinear)] A
(3m)a,b,c € Rng(wp).

729 Mgy, Bwoy are defined in items 3, 8 of Definition 6.2.2.(I).

730What we denote by Plane(H), is usually denoted as Span(H), in the literature.
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As we already said, the above definition of Plane(H) is not formulated in
first-order logic. (In passing we note, that actually, it is in second-order logic.)
Next we prepare for making the definition of Plane(H) a first-order logic one
(under some mild assumptions). An equivalent definition for Plane(H) is the
following. First, for every i € w we define Plane’(H) as follows.

Plane®(H) & H,

Plane’t'(H) ) {ce€ Mn : (3a,b € Plane'(H)) coll(a,b,c) } .

We note that .
Plane'(H) C Plane'"'(H), for any i € w.

Now we observe, that
Plane(H) = U { Plane'(H) : i € w}.™!

(ii) Below we introduce the “first-order version” Plane’(H) of Plane(H) which will
be defined in the first-order language of the structure (Mn; H, Bw). Let us
recall that n > 1 is the dimension of our space-time. We define

Plane'(H) ) Plane™(H).
We note that Plane’(H) = Plane(H), assuming 9 = Bax ™, cf. Prop.6.2.16.

(iii) We write Plane(¢y,...,¥¢;) for Plane(¢;U...U¥;), where £y,...,¢; € L.

PROPOSITION 6.2.16 Assume Bax~. Then Plane(H) = Plane'(H).

On the proof: A proof can be obtained by items 1g (p.884) and 3b (p.889) of
Proposition 6.2.79 way below, cf. also Prop.6.2.14 (p.819). &

Now, we are ready for defining our third and fourth versions 1;” and 1% of
relativistic orthogonality.

731We leave the very simple proof to the reader.
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Definition 6.2.17 (Alternatives 1!, 1% for relativistic orthogonality L,)
Let 9 be a frame model. Mn, L, €, Bw, ||g, and the basic relation 1Ly C L x L
of orthogonality are defined in Def.6.2.2.(T). In the present definition we define two
alternatives 1% and " for the relativistic orthogonality. The definition of L!" will

be a first-order one over (Mn, L; €, Bw)™? while that of 1% will not be such.
(i) L¥ is defined to be the smallest subset of L x L having properties 1-4 below.
1 Lo C 1%, qe €lgl = (190"
2. 1% is a symmetric relation, i.e. £ 1% ¢ = ¢ 1% ¢ 73

3. If lines ¢, ¢, {5 concur at point e, with ¢; # ¢y and ¢ is L¥-orthogonal
to both ¢; and ¢, then ¢ is 1¥-orthogonal to every line through e in the
plane determined by ¢; and /s, see Figure 270;73* formally: Let e € Mn
and Z, El, EQ, ¢ € L. Then

P]ane' (31 y 62)

e

21

Figure 270: ™°

[€€€ﬂglﬁgzﬁ€’ N 617522 A
0190 A £1°¢ A € CPland(t,6)] = (190

In such situations we may also say that ¢ is 1 ¥-orthogonal to the plane
Plane' (¢, 45).

732Recall that the relation of parallelism || was first-order defined over (Mn, L; €, Bw).

733We note that in Goldblatt [108, p.115] this is an axiom for a metric affine space called OS1.

734We note that in Goldblatt [108, p.115] this is an axiom for a metric affine space called OS4.

735In Figure 270, the little “diamonds” around point e indicate that lines £ and ¢; are orthogonal,
for i € {1,2}.

821



4. 1% is closed under parallelism, i.e.

(0190 A b |lols) = €190, 7

Next we prepare for making the definition of 1% a first-order logic one (under
some assumptions). An equivalent definition for 1¥ is the following. First, for
every i € w we define 1 C L x L as follows. For easier readability, we note
that the formulas %, %, %% below correspond to “taking the closure of L% in

one step3™ to properties 2, 3, 4 above, respectively.
10 %
1ot 2o {0 0yeLxL:¢svyivyi}, where
vy = L1,
¢§ = (3&,62)(36) [eEEﬂEl ﬂﬂgﬂf’ N Kl #62 VAN
J4 J_; El Al _L:, EQ N El g Plane'(ﬁl,fz)],
Yio= (3) (Ll A b le ).

We note that 1% C 1% for all i € w.

Now we observe, that
Le=J{Liiew}.™

Let us notice that, for every i € w, L¢ is a first-order definition in
(Mn, L; €, Bw, 1g).

(i) L” 4 1% So the definition of 1" is a first-order definition in
(Mn, L; €, Bw, Ly). Therefore the definition of 1" is a first-order one in the
expanded frame model 9" defined in Remark 6.2.8 on p.807.

<

THEOREM 6.2.18 Assume Bax® + Ax(Triv;)~ + Ax(v ) + Ax(diswind).
Then 1¥ = 1" therefore 1% is first-order definable™.

736 This property is called axiom OS5 (for metric affine space) in Goldblatt [108, p.116].

737 e. to “making one step only in the process of taking the closure”.

738We leave the very simple proof to the reader.

"39we mean, definable over Mod(Bax® + ...), of course. First one defines L over 9t € Mod(...)
and then 1, over 9 and L.
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Proof: The proof for the case n = 2 is easy. Namely, if n = 2 then both L1¥
and 1" coincide with 1,. For the case n > 2, the theorem follows by the proof
of Theorem 6.2.19 below. Namely, in the proof of Thm.6.2.19 we will prove (a)
1! C 1" and (b) 1-4 of Def.6.2.17 hold for 1/, i.e. 1-4 hold when L is replaced by
1! in them. Since L] C 1¥ and 1% is the smallest subset of L x L having properties
14, (a) and (b) imply that L) = 1" = 1% #

THEOREM 6.2.19 Assume n > 2 and Bax® + Ax(Triv,)~ + Ax(v/ ) +
Ax(diswind). Then L, and 1" coincide, therefore 1, is first-order definable™®.
The proof will be given below item 6.2.20.

The following is an immediate corollary of Theorems 6.2.10 (p.813), 6.2.18 and
6.2.19.

COROLLARY 6.2.20 Assume n > 2 and Bax® + Ax(Triv,)~ + Ax(v/ ) +
Ax(diswind). Then L1, 1. 1" 1" 1% coincide (and are definable’™?). u

Proof of Thm.6.2.19: Assume n > 2.

Let 9t € Mod(Bax® + Ax(Triv;)~ + Ax(v )+ Ax(diswind)). By Thm.6.2.10
(which says that L,, L/ 1" coincide) it is enough to prove (a) and (b) below, as it
was shown in the proof of Thm.6.2.18.

(@) L. C L™ je. (118 = £1M¢.

(b) L! has the properties 1-4 in Def.6.2.17, i.e. 1-4 in Def.6.2.17 hold when 1% is
replaced with L in them.

Let 9t be a model of Newbasax obtained from 9 by changing the units of
measurement for time, i.e. 9 is obtained from 9 exactly the same way as in the
proof of item 6.2.89 on p.896. The generalized geometry reducts

(Mn,L; L" L*" 15, €, Bw, L', L")
of 9 and N coincide. Further,
M = Newbasax + Ax(Triv;)~ + Ax(v ) + Ax(diswind)

Therefore 91 is a photon-disjoint union™? of models of (Basax + Ax(Triv,)™ +
Ax(v/)). Since the above indicated “geometry reducts” of 9t and 9 coincide, it

"0For disjoint and photon-disjoint union of models cf. item 1 on p.868.
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is enough to prove (a) and (b) for (Basax + Ax(Triv,)~™ + Ax(v/ ))-models. Now,
we turn to proving these two statements.

Proof of (a): Recall that 1% (i € w) is the “i-long closure” of 1, to properties 2, 3,
4 in Def.6.2.17 and that 1"”'=1% cf. Def.6.2.17 (p.821).

Assume Basax + Ax(Triv;)~™ + Ax(v/ ). Let £,¢' € L be such that £ 1’ /' see
the left-hand side of Figure 268 (p.811). Then one of (i)—(iii) in the definition of L.
on p.810 hold for £,¢'. By Ax(Triv,)~," in cases (i) and (ii) ¢ 1 ¢ holds, cf.
Figure 268. Actually, in case (i) ¢ 12 ¢ and in case (ii) ¢ 12 ¢, see Figure 271.

El ||6 ell j']

0 1% wy[z), €12 w,[Z;] by 1in Def.6.2.17
¢ 1} 2" by 3 in Def.6.2.17 ™2

£12¢ by 4 in Def6.2.17 ™3

world-view of m

Figure 271: In case (i) £ L2 ¢".

So it remains to prove (a) for case (iii).

Assume (iii) holds for £, ¢, i.e. £,/ € L™ and ¢ || ¢, cf. Figure 268. To prove
¢ 1 ¢ it is enough to prove £ 13 ¢ because ¢ 13 ¢ and ¢ ||¢ ¢ imply £ 12 /', i.e.
ey

Now, we turn to proving ¢ 13 £. There is m € Obs and ph € Ph such that

Wi [trm(ph)] = £. ™

Fix such m and ph. Without loss of generality we can assume that 0 € tr,,(ph) C
Plane(Z, Z) because of Ax(Triv;)~ and Ax5. Throughout the remaining part of the
proof of (a) the reader is advised to consult Figure 272. We are in the world-view

741and some basic properties of Basax
"2and by 5b of Prop.6.2.79

"3and by 5a of Prop.6.2.79

744(f. items 1c and 2a of Prop.6.2.79 (p.884).
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world-view of m:

Plane(t, z)

space part of k

world-view of k:

Figure 272: Illustration for the proof of Thm.6.2.19.
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