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4.1 Newtonian kinematics as a special case of axiomatic spe-
cial relativity

Newtonian kinematics is a precursor of special relativity.?3® Therefore, it is natural
to ask ourselves how the two theories are related. The usual, informal answer to
this question is that the natural evolution of science represents a movement from
first describing a “smaller world” and later, in the more advanced theory, describing
a “bigger world”. Accordingly, Newtonian kinematics describes the smaller world
of slow relative motion while special relativity describes the broader world of both
slow and fast relative motion. Since in the present work we are involved in the
logical analysis of relativity theories, it is natural to ask ourselves whether the above
quoted informal answer (concerning the relationship between the two theories) can
be incorporated into our picture based on mathematical logic, in particular, whether
the above informal answer can be made more tangible.3* In the present section
we will see two affirmative answers, i.e. we will see two ways of elaborating the
connection between the Newtonian and the relativistic theories. In the first approach
we treat the speed of light as a constant ¢ which can be chosen independently of
the theory, i.e. ¢ can be regarded as a kind of parameter of our theory. Choosing
this parameter amounts to choosing between the Newtonian and the relativistic
theories. The second approach is connected to nonstandard analysis and is more
ambitious than the first one in the respect that it integrates the two theories into a
single consistent formal theory (i.e. it makes the two theories consistent even in the
rigorous sense of mathematical logic).

The above already indicates that in the present section we will speak about con-
nections between different theories (of first order logic, of course). In later sections
of the present chapter this will be even more so. Therefore at the end of this section
we recall from textbooks of logic what is known as the lattice of first-order theories.

In the first part of the present section we show that Newtonian kinematics is a
special case of a very natural, slight generalization of special relativity. We get this
generalization of special relativity by separating out a mere notational convention,
namely that the speed of light, ¢, is 1, and we replace this with the axiom saying
that the speed of light is the same for all observers. After this, we get, basically,

339More precisely, the kinematics of special relativity, but that is what we call specrel here.

340The logically minded secondary school student is often puzzled by the statement that Newto-
nian kinematics is valid for slow motion. The source of puzzlement is the question of how to draw
the line between slow and fast. Is, for example, “slow + slow = slow” true?
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Newtonian kinematics when ¢ = 0o, and we get special relativity when ¢ < co. Next
we elaborate this idea in a little more detail.
In this section we will use

Specrel = Basax + Ax(symm)’

as our central version of special relativity theory.?*! Consider the speed of light
axiom AXE of Specrel. We will decompose AXE to an essential part and to an
aziom of convenience. The essential part Ax(F,ss) says that the speed of light is
the same for all observers and all photons. IL.e. it says that

(Vm, k € Obs)(Vph, ph, € Ph)v,,(ph) = vx(ph;).

Hence there is a “constant” ¢ € FU{oo} such that VmVph(v,,(ph) = ¢). The second
part of AXE concerns only notational convenience, namely we agree that we will
choose our units of measurments such that this constant will have 1 as its value.
Formally,

c=1.

There is an essential consequence of our convention ¢ = 1, namely that
¢ < 0.

This is something which is hard to eliminate by changing our units of measurements.
But, for the duration of the present introduction, let us forget about this “essential”
consequence of ¢ = 1, and after having postulated Ax(FE,s;), let us treat ¢ = 1
as a mere convention of notational convenience. Then in this spirit we will obtain
the essential part Flxspecrel of Specrel by replacing AxE with the essential part
Ax(E.,) in Specrel.**?> The name Flxspecrel intends to abbreviate “flexible
version of Specrel”. Then we will find that Newtonian kinematics is a special case of
our (flexible version) Flxspecrel of Specrel; namely we get Newtonian kinematics
by assuming ¢ = oo (and two natural simplifying assumptions). In other words,
Newtonian kinematics will be seen to be equivalent with Flxspecrel + ¢ = oo +
sitmplifying axioms. We will introduce our formalized version NewtK of Newtonian
kinematics by using the axiom ¢ = oo, but later in this section we will discuss the
relationship with more traditional formalizations of Newtonian kinematics where
the speed of light is not mentioned at all.

It is not surprising that the theories NewtK and Specrel admit a least common
generalization. Namely, any two first order theories, say, Th, and Thy admit a least

341 More precisely, we treat Specrel as a representative of the strong ones of our relativity theories.
342We will also have to modify Ax5 in Specrel.
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common generalization in the form Th(Mod(Th;) UMod(Thy)). What is interesting
in the present section is the fact that if we separate the “essential part” Flxspecrel
of Specrel from a mere notational convention concerning the value of the constant
¢, then we arrive at a natural, very slight generalization of Specrel which contains
all the essentail ideas®**? in Specrel and which admits the Newtonian theory as a
special case.

At this point it is tempting to draw up the following alternative history (i.e.
things could have happened in the following order). Assume, Newton summarizing
the results of all the experiments made before (together with some principles of
aesthetics like Occam’s razor) arrives at the theory Flxspecrel® = Flxspecrel +
the simplifying assumptions we mentioned above.3** This leaves the value of ¢ open.
Then he makes experiments trying to figure out this number. Suppose that he finds
that the only thing he can determine is that c is bigger than all the speeds he can
measure. After a long while he makes the decision to assume ¢ = oo as a simplifying
axiom of default. L.e. he says that until somebody finds evidence against it, let us
assume ¢ = oo only in order to make our theory about what the world is like simpler.

This way Newton arrives at the (tentative) theory

NewtK = Flxspecrel™ + ¢ = co.

In the meantime, better instruments of measurement were developed, and (Roemer
and) Michelson and Morley discover that the assumption ¢ = oo has to be with-
drawn, hence the “world” arrives at Flxspecrel’ as the current theory. By the
results of the just quoted people, the extra assumption ¢ < oo is added. This leads
to the notational convention ¢ = 1 (at least in the works of certain people). This
brings our alternative history to its end.?%

Newtonian kinematics NewtK and flexible version Flxbasax of special
relativity

As a first step (in carrying out the above programme), below we formalize the
theory NewtK (which we call Newtonian kinematics). Since in the present section
we will rely on Newbasax and Bax, we recall the following facts about them (in
comparison with Basax). In Newbasax we allow that different observers observe

343except for the idea of ¢ being finite

344FIxspecrel™ def Flxspecrel + Ax(11) + AxO1. We note that Flxspecrel™ is just as good
a representative of the stronger relativity theories studied here as Flxspecrel is. Cf. §3.8.
345We note that the above alternative history is different from the way things actually happened.
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different events,?*® and in Bax in addition to this we allow that the speed of light

be different for different observers (in the same model) but for a fixed observer the
speed of all photons is the same and nonzero. Further, in Bax for each observer
m a constant ¢,, € F U {oc} was defined such that for m the speed of all visible
photons is ¢,,.

The notation m 1 k was introduced in §3.8 (p.296), and it denotes that the time
of k flows forwards as seen by m.>*" Ax(11) introduced below expresses that each
observer sees any other observer’s time flow forward:

Ax(T1) (Ym,k € Obs)m 1 k

Recall that the axiom Ax(symm) was introduced in §§2.8, 3.9. Ax(symm)
expresses that observers see each other the same way, modulo perhaps a coordinate-
transformation. The formula Ax(symm)’ denotes Ax(symm) + Ax(]|) +
Ax(Triv), where Ax(]|) and Ax(Triv) are axioms expressing “trivial” properties of
the collection of world-view transformations, they are introduced in §2.8. The axiom
Ax[O1 is a very natural axiom, it is a kind of symmetry axiom. It is introduced in
§3.9 and it says that any two observers m, k are equivalent in the sense that if m
sees an observer in a certain way, then & also sees an observer in the same way, i.e.

Ax0O1 (Vm, k,m' € Obs)(Ik" € Obs)f,, = fop

Now, we define the axiom system NewtK as follows:

NewtK~ & Bax + Ax6 + Ax(symm) + (Vm € Obs) (¢, = c0).38
NewtK % NewtK~ + Ax(11) + AxO1.

In the next part of this section (on p.435), we will check that our formaliza-
tion NewtK of Newtonian kinematics agrees with the traditional (say, “secondary
school”) version of Newtonian kinematics.

Remark 4.1.1 (On the style of our formalization of NewtK.)
We axiomatized Newtonian kinematics the way we did, i.e. by postulating c,, = oo,
only for reasons of convenience. A more traditional axiomatization would have

346 Als0 recall that Newbasax models are basically disjoint unions of Basax models, cf. Figures 65
(p.195) and 307 (p.1001).
347Formally, m 1 k denotes that fim, (1;) ¢ — frm (0)¢ > 0.

348 et us recall that ¢,, = co abbreviates the formula (Vph € Ph) [m S ph = wv,,(ph) = 0],
since we assumed Bax.
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taken up more space here, — we give such traditional axiomatizations in the part
beginning with p.435.

The most distinctive feature of Newtonian kinematics is that events do not get
out of synchronism, and the role of postulate ¢ = oo in NewtK is to ensure this.
The role of Ax(11) is to ensure absolute time, and the role of AxO1 is to ensure
absolute space. Cf. Propositions 4.1.15 and 4.1.16 on p.443.

We will see that the usual principles of Newtonian kinematics are indeed derivable
from NewtK, e.g. it is derivable that the paradigmatic effects discussed in § 2.5 do
not occur. In more detail, moving clocks do not slow down, clocks in the rear and
front of a moving spaceship do not get out of synchronism (i.e. “time is absolute”),
moving meter sticks do not shrink, see Prop.4.1.12. More on the connection between
the present and the traditional formalizations of Newtonian kinematics can be found
in the part beginning with p.435. <

PROPOSITION 4.1.2 (i)-(ii) below hold.
(i) Specrel == Bax+ Ax6 + Ax(symm)’ + (Ym € Obs)c, = 1.
(ii) NewtK~ == Bax+ Ax6+ Ax(symm)'+ (Vi € Obs)c, = .

We omit the easy proof.

Proposition 4.1.2 above suggests that we take Bax + Ax6 + Ax(symm)T as
our theory Flxspecrel. Indeed, this is very close to it. We only need to add one
more axiom.?*® Because we will use Bax as our basic axiom system, we introduce a
formalization AxEgy of Ax(E,,,) which matches Bax better.>®® Since we will use
the axiom AxEgs only when Bax is already assumed, in writing up AxEgs we can
use the convenient abbreviation c,, available in Bax. This way we can make the
axiom shorter.

AxEg2 (Vm, k € Obs) ¢ = ¢y, in more general form3°! :

(Vm, k € Obs)(Yph, ph; € Ph) [(m 3 ph A k3 ph;) = vn(ph) = vg(ph,)].
Intuitively, AxEgs says that the speed of light is the same for everyone.

349 And we only need to add this for the case n = 2, see items 3.9.37, 3.9.40 on pp.386, 387.
350Tn §3.4.2 the last axiom of Bax was AxEg;. This is why we call our new axiom AxEgs.
351 e. without assuming Bax
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Definition 4.1.3 We define our flexible versions of Newbasax and Specrel as
follows.

Flxbasax © Bax + AxEos .
Flxspecrel & Bax + Ax6 + Ax(symm)' + AxEy,.

<

Definition 4.1.4 Assume Flxbasax. Then there is a definable constant ¢, namely
we choose ¢ = ¢,,, for some m € Obs. Since for all observers m and k, ¢,, = ¢; holds
in Flxbasax, we consider ¢ to be well defined. We note that c is the speed of light,
in models of Flxbasax.3%?

<

As a curiosity, we note that while AxEg> can be used without Bax, the defined con-
stant ¢ cannot be used without Flxbasax. (Actually instead of Flxbasax AxEgs
is enough if we agree that if no observer sees any photon then ¢ := oco.)

In connection with Definition 4.1.3 above see Figures 123, 124 and 126. Figures
123 and 126 use the lattice style representation. In them, the theories further up are
stronger theories in the sense that they prove more theorems. The labels ¢4, ..., ¢,
on a line connecting a lower theory Th; with a theory Ths which is further up
indicate that we get Thy from Thy by adding ¢4, ..., ¢, to it, i.e. The == Thy U
{¢1,---,9n}. More on the lattice of theories and on how to draw lattices of theories
is said in the part beginning with p.451, especially on p.453. Figure 124 is an
alternative way of illustrating the relationship between the theories in this section.

PROPOSITION 4.1.5
(i) NewtK~ = Flxspecrel + (c= 00).
(ii) Specrel = Flxspecrel + (c=1).
(iii) Newbasax = Flxbasax + (c=1).

We omit the easy proof. I

3521t is interesting to note that in different models of Flxbasax the speed of light ¢ may be
different. We note that, actually, ¢ is the square of usual speed of light, cf. the definition of v,, (k)
in Definition 2.2.2(ii) on p.46.
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NewtK
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Ax0O1
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Ax6
Ax(symm)Jr

® Flxbasax

Cm = Ck (AxEog)

® Bax

Figure 123:

At this point we suggest the reader to have a look at Figure 126 on p.433.

Below we show that Flxbasax can be considered as a version of Newbasax
where we relaxed the postulate “c = 17 (to “c # 07). Flxbasax then will have
two kinds of models: one kind in which ¢ < oo, we will argue that these are very
close to models of Newbasax, and in the other kind of models ¢ = oo, these are
generalizations of models of NewtK.

In Newbasax, the only axioms which involve the speed of light are Ax5 and
AxEy. In the formulas Ax5°... AxEf below, c is a free variable, ranging over
elements of the quantity sort. Let Ax5° and AxXE{ be the versions of Ax5 and
AxEqy where we change 1 to c:

Ax5° ang’({) < ¢ = (3k € Obs) tr,(k) =¢ and
ang?(¢) = ¢ = (Iph € Ph) tr,,(ph) = ¢.
AXE§  tr,(ph) #0 = vn(ph) =c.

In connection with the contents (i.e. meanings) of Ax5f and AxEf we note that ¢
was defined to be the unique speed of light in models of Flxbasax, cf. Def. 4.1.4.
Define
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Figure 124: An alternative illustration of the relationship between the theories in
this section.
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Ax5f  [(3my)(3ph,) ¢ = vy, (phy) = Ax5°] A Ph# ) and
AXEf  [(3my,)(3phy) ¢ = vy, (phy) = AxXE§] A Ph# 0.

Then it is easy to see that AXEL is equivalent to AxEgy and Ax5' is equivalent to
(3my)(3phy) ang®(¢) < v, (phy) = (Ik € Obs) £ = tr,,(k)  and
(3my)(3ph,) ang®(¢) = v, (phy) = (Iph € Ph) £ = tr,,(ph)| .

The next proposition says that we can get Flxbasax from Newbasax by chang-
ing Ax5, AxEg to Ax5f, AXEf and adding the axiom ¢ # 0 (i.e. AxEq;). This is
what corresponds to relaxing the postulate ¢ =1 to ¢ # 0. We can get Flxspecrel
from Specrel similarly. Thus, Flxspecrel is indeed the axiom system we talked
about in the introduction to this section: Flxspecrel is the system we get by leav-
ing out AXE from Specrel, and adding AxEgs. Of course, we had to change those
axioms, too, which mentioned 1 as the speed of light (i.e. Ax5).

PROPOSITION 4.1.6 The two statemens below hold.

Flxbasax =/ (Newbasax \ {Ax5, AxEq})U {Ax5", AxEf, AxEq,}.
Flxspecrel =/ (Specrel\ {Ax5, AxE})U {Ax5f, AXxEf AxEg;}.

We omit the easy proof. I

Now, we turn to discussing the connection between Newbasax and
(Flxbasax + ¢ < o).

Remark 4.1.7 (Flxbasax is equivalent with Newbasax in a certain sense)
We feel that Newbasax is extremely close to the theory (Flxbasax + ¢ < o).
They are not equivalent in the usual sense since

(Flxbasax + c¢<o0) £ c=1.

I.e. ¢ =1 is not provable from the new theory, while of course Newbasax = c = 1.
However, we feel that all theorems of Newbasax not involving the exact value of
¢ (like ¢ = 1) will turn out to be provable from (Flxbasax + ¢ < o0), and vice
versa. But, this statement is not very easy to formalize because a formula (theorem
of Newbasax) might involve the value of ¢ implicitly. One way of making the
meaning of the above statement precise is to compare the models of the two theories
in question. Now, it can be shown® that every model of (Flxbasax + ¢ < oo0)

353We have to assume Ax(v/ ). See Madarész [172] and Madar4sz-Németi [175].
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can be obtained from a model of Newbasax by changing the unit of measurement
for time®>*; and vice versa. (The models of Flxbasax + ¢ = oo cannot be obtained
from models of Newbasax this way.) Thus, structurally the models of

(Flxbasax + ¢ < oo) are exactly like those of Newbasax, except that a fairly
innocent “ratio” in them may vary (representing the value of ¢). Figure 125 intends
to represent such a model.3%

Figure 125: A model of (Flxbasax + ¢ < o0)

In connection with the question of how close (Flxbasax + ¢ < o0) is to
Newbasax (i.e. to Flxbasax + ¢ = 1) we feel that the geometry chapter (§6)
contains substantial useful information, cf. §6.6.

We think that the above comparison of models of (Flxbasax + ¢ < oo) and
Newbasax is a way of making precise that the theorems provable in
(Flxbasax + ¢ < o00) are exactly those theorems of Newbasax which do not
use the exact value of ¢, i.e. which do not exploit the convention ¢ = 1 (which
was made for convenience only). This supports our claim that, in many respects,

354Making this precise: Let 9T = ((B; Obs, Ph, Ib), &, G; €, W) be a frame model and let ¢ € T F.
Define g : BXx"Fx B — Bx™F x B by g(b,po,---,Pn_1,h) = (b,1/\/c-po,p1,---,Pn_1,h), and
let 9 = {(B; Obs, Ph,Ib), 3§, G; €,g[W]). Then we can consider 9 as the model 9 such that
we only changed the unit of measurement for time.

355Cf. also the models of Bax illustrated in Figure 75 and discussed on pp. 233-243 in the present
work (the point here is that understanding the models of Bax is relevant [though not necessary]
for understanding the models of Flxbasax).
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(Flxbasax + ¢ < 00) is a better®® version of special relativity than Newbasax (or
Basax) is because it does not dwell on inessential issues like the convention ¢ = 1.
Clearly, ¢ = 1 is only a convenient convention and is not essential conceptually.

<

NewtK @
Ax(11)
AxO1
NewtK™ Specrel
Ax(symm)T Flxspecrel Ax(symm)Jr
Ax(symm)Jr
Basax
& e=1 Ax6
Ax6 ® Newbasax
c=1
Ax6
Flxbasax + ¢ < x
C=00 c<
Flxbasax
Cm = Cg
® Bax

Figure 126: The lattice (or poset) of the theories in the present section. (We assume

Ax(V').)

In the present work we do not continue the discussion of Flxbasax much further,
but we note that we feel that Flxbasax might reflect the essential ideas of special
356

we mean, more focused on the essential ideas
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relativity more faithfully than e.g. Newbasax or Basax do (at least for the purposes
of e.g. conceptual analysis). In some cases, e.g. in the part beginning with p.446, this
flexibility turns out to be very useful, though. On the other hand, in other cases,
the difference might turn out to be not very deep, since at any point of studying
Flxbasax one may decide to introduce the simplifying assumption ¢ < o0 = c =1
(this way excluding the irrelevant cases of ¢ = 2, ¢ = 3 etc). However, it might be
useful to keep in mind that ¢ =1 is only a simplifying assumption.

Remark 4.1.8 Instead of Newbasax, we could have chosen Flxbasax as our
generic (or central) axiomatization of special relativity, in this work. Then we would
develop (and analyze) special relativity in the form of Flxbasax. This would lead
to an alternative version of the present work. This alternative version would look
rather similar to the present one with two exceptions (i) our relativity theory would
be a generalization of Newtonian kinematics, and (ii) in addition to Ax(symm),
we would have a second “axiom of choice” namely “c < 00”.3%" The latter means
that, from time to time, for certain theorems we would have to assume the extra
potential axiom ¢ < oo the same way as we did with Ax(symm) in §2.8 for proving
Ax(Twp). But, for example, for the “no FTL observers theorem”s we will not need
the “axiom of choice” Ax(symm).

Although this would be a very natural way of developing the logical analysis
of relativity, we do not carry it through in the present work. However, since the
changes would be small and natural, the interested reader is invited to “build up in
his minds eye” this variant of the present work (centered around Flxbasax, such
that relativity comes out as a generalization of NewtK).

<

In connection with the above remark we also note the following. In a sense,
Flxspecrel is “the” natural common generalization of NewtK and Specrel, be-
cause of the following. Consider the intersection of the theories generated by NewtK
and Specrel. We could call this intersection their least common generalization. This
theory can be axiomatized by Flxspecrel extended with the extra axiom

(%) c=1 V (c=o00 + Ax(T1) + Ax0O1).

Since axiom (%) seems artificial for us, we throw it away and call the remaining
part, Flxspecrel, the natural common generalization.?8

357Recall from the introduction of §2.8 that sometimes we refer to Ax(symm) as our “axiom of
choice” (because of an analogy with set theory). Sometimes half-jokingly we call it axiom of choice
because you may choose to assume it or you may choose not to.

358There are many analogous situations to this, let us pick one e.g. from geometry. In geometry,
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Connections with traditional formalizations of Newtonian kinematics

The question arises why we formulated Newtonian kinematics with the postulate
¢ = oo instead of using the traditional terminology of Newtonian kinematics like
“absolute time”, “absolute space”, Galilean transformations. Below we give an
alternative formulation which does not mention photons at all, and we state some
propositions which indicate an answer to the question of why we say that NewtK
is a formalization of Newtonian kinematics.

In Specrel, the axioms that mention photons are Ax2, Ax5, and AXE. Below
we change these axioms to Ax2", Ax5" and AxE", where the upper script “n”
stands for “no photon version (i.e. traditional version)”.

Definition 4.1.9 (traditional version NewtK")
Ax2®  Obs C Ib.
Ax5"  ang’(f) < oo = (Jk € Obs) try,(k) = L.

AxE" (vpa qc€ nF) [pt =q = fmk (p)t = fmk(Q)t]

NewtK" ¥ (Specrel \ {Ax2, Ax5, AxE}) U {Ax2", Ax5", AXE"}.
Thus,
NewtK" = {Ax1, Ax2", Ax3, Ax4, Ax5", Ax6, AXE", Ax(symm)T}.
<

The proposition below says that NewtK~ and NewtK" imply the same theorems
in the language which does not mention photons. Well, there is exactly one photon-
free formula in which they differ:

(v) (Vm € Obs)(V¥¢)[ang®(£) = co = (3b € Ib)tr,,(b) = {].

(v) says that each line £ with ang®(f) = oo is the trace of an inertial body.

“Absolute Geometry” is a natural common generalization of Euclidean Geometry and Bolyai-
Lobachevski Geometry. So Euclidean Geometry would correspond to NewtK, Bolyai-Lobachevski
Geometry to Specrel and Absolute Geometry to Flxspecrel. As a second example consider
the theory BA of Boolean Algebras without the operation of complementation. Now, a common
generalization of BA and the theory of linearly ordered sets may be the theory of distributive
lattices.
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PROPOSITION 4.1.10 Let ¢ be any formula in the frame-language in which the
unary relation symbol Ph does not occur.

(i) NewtK~ E ¢ iff NewtK"+vE .

(i) NewtK™ =v while NewtK" p~v.
Proof: It is easy to check that NewtK~ = NewtK" + v and that NewtK" = v.
This also proves direction <= in (i). Let ¢ be as in the hypothesis, and assume

NewtK~ E ¢. We want to show NewtK" + v = . So let 9@ be frame-model
such that 9 = NewtK"” + v. Define

Ph ¥ {belb: (Im e Obs) ang®(trm(d)) =0},  and
m < ((B; Obs, P, Ib), 5, G; €, W).
Then 2 and M’ differ only in the interpretation of the unary relation symbol Ph.
Therefore MM = ¢ iff M' = ¢, because Ph does not occur in . It is not hard to
check that 9 = NewtK~ by 9 = NewtK" + v and by the definition of Ph'.
Thus M’ = ¢ by NewtK~ = ¢, and so 9 = ¢. This proves direction = of (i). 1
Now we turn to see what paradigmatic effects hold in NewtK.

Below we recall some formalizations of the paradigmatic effects from §§ 2.5, 2.8.
(clock), (meter), (asynch) will denote, respectively, that “clocks slow down”,
“meter rods shrink”, and “clocks get out of synchronism”, cf. Thm’s 2.8.7, 2.8.8.
We copied these formulas from §2 except that we replaced 1 with ¢, where 1 denoted
speed of light.

(clock)  (Vm,k € Obs) [0 < vm(k) < em = [fom(Le)s — Fiom(0)e] > 1].

(meter)  (Vm, &,k € Obs) [(o < vm(k) <em A 0E trp(k) C Plane(f,z) A
t # trp(k1) C Plane(t,z) A tri(k) || 1) =
trm(1) (O)] < lir(k1) 0)]],
see Figure 38 on p.101 (in §2.5).
(asynch) (Vm,k € Obs) [0 < vp(k) <cen =

Gra € F) (e=a A fuilo)h # fla)s)].
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Recall that we proved in §2.8 that

Basax + Ax(symm) + Ax(v/ ) | (clock), (meter), (asynch).

All these will fail in NewtK. Now we turn to paradigmatic effects that are true in
NewtK. The next formula (vel) formalizes that “velocities add up”, see Figure 127.
Observers m and k are in strict standard configuration means that all their spatial
unit vectors point in the same direction, cf. Definitions 5.0.42 on p.709 and 2.3.16
on p.71.

(vel) (Vm,k € Obs)(Vb € Ib) ( [ m and k are in strict standard configuration
andmtk] =  [vm(k), vp(b) < 00 = T (b) = T(k) + ﬁk(b)]).

Figure 127: Velocities add up in NewtK

The principle of absolute time is formulated in d’Inverno [75, p.17], as: if two
observers synchronize their clocks (at one event), then they will agree about the time
of all events, regardless of their move relative to each other. The formula (abstime)
is a formalization of this:

(abstime) (Ym,k € Obs) [(3p € "F) frx(p): = ¢ = (Vp € "F) frur(p)e = o).

437



Next we give a formulation of “space is absolute”. The formula (abspace) below

expresses that the spatial distance between two simultaneous events is the same for
all observers.

Notation. For any p € "F, we define space(p) dof (P1y- - Pn)-

(abspace) (Vm, k € Obs)(Vp,q € "F) [pp = ¢ =
|[space(p) — space(q)|| = ||space(fmi(p)) — space(fmi(q))]l-

See Figure 128.

fmk (p)

Figure 128: Illustration of (abspace).

Let (meter)”, (meter)>, (meter)* denote the formulae we obtain from
(meter) by changing the last < in it to “=", “>" and “<” respectively. Similarly,
let (clock)™ denote the formula we get from (clock) by changing > in it to “=".
Now, (meter)~ expresses that moving meter rods do not change their length, and
(meter)> expresses that no moving meter rod shrinks. Thus, (meter)~, (meter)>
imply the negation of (meter), while the meaning of (meter)= is very close to that
of (meter), and it holds in Specrel. Similarly, (clock)™ implies the negation of
(clock), hence it fails in Specrel. We note that none of (meter)~, (meter)=,
(vel), (abstime), (abspace) holds in Specrel.
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We also note that —(asynch) expresses that “simultaneity is absolute (i.e. is the
same for each observer)”, and (clock)™ expresses that “time-distance is absolute”.

Definition 4.1.11 A transformation f : "F — "F is called a Galilean
transformation if it is an affine transformation which preserves Euclidean distance
in the space-part S = {0} x "7'F (i.e. ||f(p) — f(q)|| = ||p — ¢| for all p,q € S), and
there is a € F such that f(p); = p; + a for all p € "F. See Figure 129. We call f
a generalized Galilean transformation if in addition it possibly reverses the flow of
time, i.e. f is a generalized Galilean transformation if either f is a Galilean transfor-
mation or else € o f is a Galilean transformation where ¢ : "F — "F' is defined by

ef
€(p) d: (_pOapla cee apnfl) for all pE "F. <

In other words, f is a generalized Galilean transformation if it is an affine trans-
formation which is distance-preserving in the space-part S of "F, and also on the
time-part in the sense that ||p; — ¢/ = ||f(p): — f(q)4||, for all p,q € "F. See Figure
129. We note that Galilean transformations form a group (under composition of
functions as operation), and every element of Triv is a Galilean transformation.

Proposition 4.1.12 below states that NewtK has the usual properties of Newto-
nian kinematics.

PROPOSITION 4.1.12 Assume Ax(v/ ).
(i) NewtK E= {(abstime), (abspace), (vel)}.
(i) NewtK = {—(clock), ~(meter), ~(asynch)}.
(iii) The world-view transformations in models of NewtK are Galilean.

We will prove Proposition 4.1.12 together with the next propositions, the proofs
start on p.443 and end on p.446.

At the end of §2.4 we talked about Minkowski-circles. For n = 2, the Minkowski-
circle of a model of NewtK is as in Figure 130. This follows from Proposition 4.1.12.

At this point we note the following difference between NewtK and Specrel.
Let ¢ € FU{oo}, ¢ # 0 and let : "F — "F be a linear mapping. Consider the
following property of f:

(x) f=f"!and (V£ € Eucl)[ang®(¢) = ¢ = ang®(f[{]) = c].
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[ [ ][]
[ L]
| /]

Coordinate-system
of k as seen by m

World-view of m.

(1,0)

@

(0,1)

Two-dimensional world-view transformation in NewtK(2).

Figure 129: f,,; is a Galilean transformation in models of NewtK.
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Figure 130: Minkowski-circle of a model of NewtK(2).

If f satisfies (x) then in principle f can be a world-view transformation in a
model of Flxspecrel with ¢ as speed of light. Now, if ¢ = 1, then indeed f is a
world-view transformation in a model of Specrel, because if a linear transformation
f satisfies (x) with ¢ = 1, then f is a Lorentz-transformation. However, for n > 2
there are linear transformations satisfying (x) with ¢ = oo which are not generalized
Galilean. Then by Proposition 4.1.12(iii), f cannot be a world-view transformation
in a model of NewtK. The following is an example of such an f. Let f : 3F — 3F
be any linear mapping such that

f()e=1, f(1z) = -1 and f(1,), =1, f(1,);=0.

See Figure 131. We do not know whether the above f can be a world-view trans-
formation in a model of NewtK™ or not. See Question 4.1.18.

Proposition 4.1.13 below gives characterizations for NewtK and NewtK~™
within Flxspecrel in terms of paradigmatic effects. It says that, within Flxspecrel,
NewtK can be characterized with “time is absolute and space is absolute”, while
NewtK™ can be characterized with either one of the following: “velocities add up”,
“simultaneity is absolute”, “time-distance is absolute”.
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|

Figure 131: A linear transformation f with the property that f = f=1.

PROPOSITION 4.1.13 Assume Ax(v ).

NewtK == Flxspecrel + (abstime) + (abspace),
NewtK =|= Flxspecrel + (abstime) + (meter)~,
NewtK~ = Flxspecrel + (vel),
NewtK~ =k Flxspecrel + (clock)~,
NewtK~ =k Flxspecrel + —(clock),
NewtK~ = Flxspecrel + —(asynch).

We give the proof of Proposition 4.1.13 beginning with p.443.
The next three propositions show the roles of axioms ¢ = oo, Ax(11) and AxO1
in NewtK. Proposition 4.1.14 below deals with ¢ = oc.
PROPOSITION 4.1.14 Assume Ax(v/ ).
Flxspecrel E c=o00 < (vel),
Flxspecrel = c=o0 < (clock)™,
Flxspecrel = c¢= o0 < —(clock),
Flxspecrel = c¢=o00 < —(asynch).
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We give the proof of Proposition 4.1.14 beginning with p.443.
Propositions 4.1.15, 4.1.16 below talk about the roles of axioms Ax(11), AxO1.
Note that NewtK~ == (Flxspecrel + ¢ = c0).

PROPOSITION 4.1.15 Assume Ax(v/ ).

NewtK~ | Ax(11) « (abstime),
NewtK™ + Ax(?1) E Ax0O1 « (abspace).

PROPOSITION 4.1.16 Assume Ax(v/ ). In NewtK—, statements (i) and (ii)
below are equivalent.

(i) Ax(11) + AxO1
(ii) The world-view transformations are Galilean.

The next proposition and the question below deal with the connections between
NewtK and NewtK™.

PROPOSITION 4.1.17 Assume Ax(v ). In NewtK—, statements (i) — (iii)
below are equivalent with each other.

(i) (abspace)
(ii) (meter)™
(iii) The world-view transformations are generalized Galilean.
We give the proof of Propositions 4.1.15 — 4.1.17 beginning with p.443.

QUESTION 4.1.18 Assume Ax(v ). Is NewtK =|E (NewtK~ + Ax(11))
true? Equivalently, is NewtK—+ Ax(v/ ) = (abspace) true? Still in other words,
is AxO1 needed in (i) of Proposition 4.1.177

We now turn to proving Propositions 4.1.12 — 4.1.17.

Proof of Propositions 4.1.12 — 4.1.17.

Throughout the proof we assume Ax(v/ ). First we will prove statements (1) -
(11), the propositions will follow easily from these.
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(1) The world-view transformations in models of NewtK ™ are affine transforma-
tions.

Proof of (1): The world-view transformations in models of NewtK~™ are
collineations by Bax C NewtK™ and Theorem 3.4.36. Then to show that they
are affine (i.e. no field-automorphism is involved in them) the proof of Proposition
2.9.5 on p.155 goes through by Ax(v/ ) and Ax(symm) € NewtK~. &

Let a € F. Define ot
S(a) = {p€"F:p, =a}.
We call S(a) the a-simultaneity. We say that the distance between S(a) and S(b)
is |a — b|.

(2) The world-view transformations in models of NewtK~ take simultaneities to
simultaneities so that they preserve the distance between simultaneities.

Proof of (2): Assume M = NewtK~+Ax(v/ ), m,k € Obs and f L f . Byc=o00
we have that f takes a simultaneity to a simultaneity, i.e. (Va € F)(3b € F) f[S(a)] =
S(b). Then b = f(a-1;);. Since f is affine, it either enlarges the distance between any
two simultaneities, or else it decreases the distance between any two simultaneities,
and then f~! behaves just the opposite way.**® By Ax(symm) + Ax(]|) we have
that f = 0o f ! o4 for some isometric world-view transformations o, d which take
t parallel to t. Then o, § also take simultaneities to simultaneities and they preserve
distance between simultaneities because they are isometries. Thus f = oo f~ 1o
can hold only if f both enlarges and decreases the distance between simultaneities,
i.e. if f preserves these distances. 1

(3) In models of NewtK ™, the world-view transformations are generalized Galilean
for observers in standard configuration.

Proof of (3): We may assume n > 2. We have [f,x(1;):] = 1 and f,,x[S(0)] = S(0)
by (2). Let 1 < i < n. Now we can prove f,(1;) = 1; by an argument using
Ax(symm) + Ax(||) similar to one in the proof of (2), and using that f,.x[Z;] = Z,
frmk(1;) = A - 1; for some A > 0 hold since m, k are in standard configuration. W

(4) The world-view transformations in a model of NewtK are Galilean.

359This is so because e.g. if f(1;); > 1,f(0) = 0 and a,b € F, then |f(a-1;); — f(b-1;)| =
[f((a=0)-1¢)¢| = [(a—=b) - f(1¢)e| > [a—b].
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Proof of (4): Theorem 5.0.49 on p.713 (§5) states that standard configurations
work in Relnoph,. That means that (Ym,k € Obs)(3Im', k' € Obs) [tr,(m') €
Triv, tri(k') € Triv and m', k" are in standard configuration]. The only axiom in
Relnoph, which does not occur in NewtK + Ax(y/ ) is AxA1, but it is easy to
check that AxA1 is not used in the proof of Theorem 5.0.49. Now (3) finishes the
proof of (4). 1

The following three statements are not hard to check, we leave them to the
reader.

(5) If the world-view transformations are all generalized Galilean in a model 90,
then (vel), (abspace), (meter)™ hold in 9.

(6) If the world-view transformations are all Galilean in a model 9, then Ax(11),
(abstime) hold in 9.

(7) In models of NewtK™, the statements (abspace), (meter)™, and “all the
world-view transformations are generalized Galilean” are equivalent.

(8) In models of Flxspecrel, either one of statements (vel), (abstime), —(clock),
—(asynch) implies ¢ = oc.

Proof of (8): Let ¢ be any one of the statements (vel), ..., =(asynch) and let
9 be any model of Flxspecrel + Ax(v/ ). We will prove 9 |= (¢ # 0o = ).
Assume I = ¢ # oo. Then, as we stated in Remark 4.1.7, 9t is like a model 9 of
Newbasax, except that the unit of measurement of time may be different. One can
check that MM’ = Ax6+Ax(symm)+Ax(]|), by M = Ax6+Ax(symm)+Ax(||).
Then — is true in 9’ by the theorems in §2.8. One can check that then —1) will
be true in 9 also. N

(9) Flxspecrel = (abstime) — Ax(11).

Proof of (9): First we prove (abstime) — Ax(?1). Assume t¢r,,(k) =t and m | k.

We will derive a contradiction. Let a & fem(0);. Now by Ax(eqtime), m | k,
and tr,,(k) =t we have that both m and k’s clocks show a/2 at a/2 - 1;, and this
contrdicts (abstime) and m | k.

Assume now that m, k € Obs are arbitrary. Let k' € Obs be such that try(k") = ¢
and fg,, (£); = 0. Then m 1 k' by (abstime), and £’ 1 k& by the above. Hence m 1 k.
|

The next statement, (10), is not difficult to check, we leave it to the reader.
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(10) In models of NewtK~ + Ax(11)+ (abspace) the world-view transformations
are Galilean.

(11) NewtK~ + Ax(1™)  (abspace) — AxO1.

Proof of (11): Assume 9 = NewtK~ + Ax(11) + (abspace), and let m,k,m’ €
Obs. We may assume 0 € tr, (k). Let k' € Obs be such that tr,, (k') = tr,(k).
Then by (10), both f,,; and f,/x are Galilean. Let 0 and o denote f,,; and f,,
restricted to S(0), respectively. Then 0,0 are isometries of S(0). Let k" € Obs
be such that 0 € try (k") = ¢ and fyyr restricted to S(0) is 07! o 6. Such a k"
exists by Ax(Triv). Now, f,, and f, . agree on S(0). Since both are Galilean,
trm(k) = troy ("), and Ax(11) holds, they are equal by the definition of a Galilean
transformation. B

Now, it is not difficult to check that Propositions 4.1.12 — 4.1.17 follow from
statements (1) — (11). By this, we finished the proofs of Propositions 4.1.12 —
4.1.17.

Newtonian kinematics is true for small velocities

In the introduction we mentioned the “view” that Newtonian kinematics de-
scribes a smaller world (world of small relative velocities) while special relativity
describes a bigger world extending “Newton’s smaller world”. This brings up the
question: Does the old theory of the small world remain true as a part of the new
theory or is the old theory completely inconsistent with the new one? Below we
will show that it is possible to formalize special relativity such that Newtonian
kinematics will remain a part of it (in a precise sense of mathematical logic).

To carry out the above, we use non-Archimedean fields.

Definition 4.1.19 An ordered field § is called Archimedean if the “integers are
cofinal in § 7, i.e. if
(Vz € F)(3n € w)z < n.

<

We note that we consider integers (elements of w) and rational numbers (n/m
for n,m € w) as elements of any field: n € F denotes the element of F which we
obtain by adding the unit of §, 1, to itself n — 1 times. lL.e.

n=14+...+1.
—_——

n times
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It is known in algebra that the Archimedean fields are exactly the isomorphic
copies of subfields of the reals R. Note that being Archimedean is not a first-order
expressible property.3%°

Assume that § is non-Archimedean. Then there is x € F such that = > n for all
n € w. This means that the reciprocal y &y /x of x is smaller than each rational
number. Thus, y is an “infinitely small number” (or element). We axiomatize the
notion of “small” as follows.

Definition 4.1.20 Let § be an ordered field and let I C F. We say that I is an
“ideal of infinitely small numbers” if I satisfies the following:

(i

(ii) z,yel = zxz+yel.

)
)
)
)

(zeland |yl <|z]) = yel.

(i) ze ] = 1/z ¢l
(iv) (reland1l/y¢l) = z-yel.

We say that x is infinitely small if x € I. We say that x is infinitely large if
1/z € I. We say that x is finite (or small) if 1/z ¢ 1. <

Figure 132 represents these notions.

Assume that I is an ideal of infinitely small elements of §. Then each nonzero
rational number is a finite, not infinitely small element of §.

Let 9 be a model of Flxspecrel, let § be the field-part of 91, and let ¢ be the
(square of) speed of light in 9. (Cf. Def. 4.1.4.) Let I be an ideal of infinitely
small elements in §, and assume that 1/c € I. We are going to define a new model
Mo/ from 9N such that we keep only observers with finite speed, and we consider
everything only up to infinitely small quantities. We turn to defining 9%,/1 now.

Set

Fo¥P\{1/z:2 €I}

Fy is the set of finite elements of F. For all z,y € F we define

r=ry<—= (v —y) €l

360F.g. no nonprincipal ultrapower of a field is Archimedean.
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{1z : z €1}
- infinitely big numbers

infinitely small numbers ® I finite (small) numbers

(A

Figure 132: A non-Archimedean field in which [ is an ideal of infinitely small ele-
ments.
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Then 22, is an equivalence relation determined by the ideal I the usual way. Now, F,
(together with the operations of §) is not a field but only a ring. However, §o/; o

So/1 is a field already. We note that the universe of §o/I is Fy/I o {lz]r : € Fo},

where [z]; oo {y € Fy : y =, x} denotes the equivalence class of =, z is in.

Let my € Obs be arbitrarily fixed. Define

Obs; & {m € Obs : vy, (m) € Fy},

Go & Eudl(n, §o/1),

W/Id:ef{<ma [pO]Ia-a[pn—l]Ia b) : <m7p0a-'7pn—17 b) € Wa Po,-,Pn—1 E1?0}a

Mo < (B, Obsy, Ph, Ib), §o/I, Go, ¢, W/I).

By the above, the model 9%/ has been defined. The next proposition says
that this model is a model of NewtK ™. Proposition 4.1.21 below expresses, to our
minds, that in special relativity, Newtonian kinematics is true for small velocities,
with negligible error. Here “small” means “finite element of §”, and “negligible”
means “element of 1”.

PROPOSITION 4.1.21 9M,y/I = NewtK~.

On the proof: First we show that the speed of all photons is infinite in the new
model M,/I. The proof is illustrated in Figure 133. Let m € Obsy, ph € Ph. Then
Um(ph) = ¢ in the original model 9. This means that in one time-unit (minute),
ph travels ¢ space-units (kilometers). Let x € Fy. Then it takes x/c minutes for ph
to travel z kilometers. Now, x/c € I by our assumptions x € Fy,1/c € I and by
condition (iv) in the definition of an ideal of infinitely small numbers. Thus, ¢r,,(ph)
is a straight line with infinite slope in 9%, /I. See Figure 133.

To show that Ax6 holds in 91, we use that f,,; is continuous in 9%, and thus
pi =1 ¢; for all i < n implies that foe(p); =1 fmr(q); for all ¢ < n. We omit the rest
of the proof. I
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Figure 133: It takes infinitely small time for a photon ph to travel a finite distance:
the speed of photons is infinite in M/ 1.
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On the lattice of first order theories

As Tarski wrote (cf. [250]), deductively closed theories are those “organic units”
which, among other things, are at the center of the investigations in logic. Therefore,
“larger” structures like e.g. the lattice of theories whose elements are these organic
units are important for studying logic.

Recall that FM = Mod(()) is the class of models of our frame language for rela-
tivity, cf. §2.1, p.35. Let

TH & {Th(K) : K C FM}

be the class of deductively closed theories in our frame language. Similarly,

ECy & {Mod(T") : T is a set of formulas in our frame language}

is the collection of axiomatizable classes of models (in our language).?! Set theo-

retical inclusion “C” makes these two collections partially ordered structures:

def

THO = <TH, g) and

ECao & (ECa, D).

Such structures are called posets (for partially ordered sets). Our operator Mod
is a dual 1somorphism between these two structures

Mod : THy >—= ECap ;

in particular,

Thy D Thy <= Mod(Th;) C Mod(Th,).

Recall that in a partially ordered set sup(x,y) and inf(z,y) denote the supremum
and infimum of two elements z, y if these exist. L.e. sup(z, y) exists if z and y have a
least upper bound in the poset, and then sup(z,y) denotes this least upper bound.
Similarly, inf(x, y) denotes the largest lower bound of z,y if this exists. Thus sup
and inf are partial binary operations on posets.

FACT 4.1.22 Posets THy, ECa o turn out to be lattices, i.e. the binary operations
sup and inf are definable in them (and they always exist). <

361 Officially, “axiomatizable classes” are called “elementary classes” and they are denoted as ECa
where “A” indicates that the classes in question need not be finitely axiomatizable.

451



This way we obtain the lattices

TH & (TH, sup,inf,C)  and

ECA & (ECa, inf, sup, D).
Mod : TH > ECx is a dual isomorphism between these two lattices, e.g.
Mod(Thy sup Ths) = Mod(Th,) inf Mod(Ths).

PROPOSITION 4.1.23 In ECA inf and sup coincide with the usual set theoretic
operations ‘N” and “U”. Hence

ECA = (ECa,N, U, D).
[ |

PROPOSITION 4.1.24 In the lattice TH, we have Thyinf Thy = Thy N Tho,
while Thy sup Thy = Th(Mod(Thy U Thsy)). 1

Summing up:

Mod
(TH, sup,N, C) — (ECa,N,U, D)
Th
represents the structure(s) associated to the lattice of first order theories (elaborated
for our frame language®%? ).

We can think about EC = (ECA,N,U, D) as a representation of our lattice TH
of theories in the sense that in EC all the operations are concrete, set-theoretic
ones. However, ECA is more important than just a representation for TH, namely
EC A is the semantic form or semantic version of our lattice of theories.

This lattice helps us in working with several theories at the same time. E.g.:

the least common generalization of two deductively closed theories Thq, Tho is de-
fined to be

Thy inf Thy = Thy N Thy = Th(Mod(Th1) U Mod(Th,)).

CONVENTION 4.1.25 If we apply this notion to theories which are not de-
ductively closed, then what we mean is the least common generalization of their
deductive closures. Then

least common generalization(Thy, Ths) o Th(Mod(Thy) U Mod(Ths)).

362The same ideas work for any language of (many-sorted) first order logic.
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CONVENTION 4.1.26 Whenever we discuss theories which are not deductively
closed, as soon as we discuss their place in the lattice of theories, we automatically
switch over to the deductive closures of the theories in question. Further, suppose

we are discussing theories Thy, ..., Thy. Then by the lattice of these theories, we
understand the sublattice of TH generated by the deductive closures of Thy, ..., Thy.
<

For more on the lattice of theories (and on its generalizations, e.g. the cate-
gory of theories) we refer to [12], [105]. In this connection we note that in stan-
dard logic books the lattice TH is usually introduced via discussing the so called
Galois connection induced by the binary relation “E” (C FM x Fm) between the
posets (P(Fm), C) and (P(FM), C).363 This Galois connection induces the two func-
tions Mod : P(Fm) — P(FM) and Th : P(FM) — P(Fm), connecting the “world
of models” with the “world of formulas” and vice versa. The theory of this Galois
connection is called “syntaz-semantics duality”. Other source books discuss EC A
first and might only briefly mention¢* that it represents the lattice TH of theories.
Besides the above references, we also refer to P. M. Cohn [60], Bell & Slomson [45,
Chap.7, pp.140-160], Henkin, Monk, & Tarski [129].

On drawing the lattice TH of all theories: Several figures in this work rep-
resent sublattices of TH. Such figures are e.g. on pages 429, 433, 552, 583, 593,
653. Although occassionally we refer (intuitively) to these figures as representing
sublattices of TH, in reality they represent only subposets of TH, because e.g. in
Figure 180, Bax™ ™ is the largest theory indicated which is lower than both Bax3 ™
and Bax_T__T_, yet we do not want to claim that Bax™~ would be the infimum of
Bax; ~ and Bax;;.365 In these figures, the theories further up are stonger ones,
and the theories lower down are weaker ones (we call a theory the stronger the more
theorems it proves). In accordance with our Convention 4.1.25, in the figures the ax-
iom systems represent their deductive closures. Thus, if Th; and Thy are connected
with a line and Thy is further up, then this means that Thy = Th;.

Sometimes we say that in the figure we assume, say, AX(\/_ ). By this we mean
that if in the figure we add Ax(v/ ) to all the theories, then we get a subposet, of
TH, the above way.

363Here FM is the class of our models and Fm is the set of our (frame) formulas, cf. §2.1.

36450me books forget to mention this explicitly

365This should create no confusion since each subposet generates a unique sublattice (so a figure
representing a subposet indirectly represents a sublattice, too). Our preference for the expression
“sublattice” (over subposet) comes only from our impression that sublattices are more broadly
known than subposets.
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4.2 Weakening the symmetry principle Ax(symm) corre-
sponding to Einstein’s Special Principle of Relativity
(SPR)

The present section (§4.2) is a kind of continuation of §2.8 (“Some symmetry ax-
ioms”) and of §3.9 (Symmetry axioms).

In the present chapter (§4) we want to investigate weak sub-systems of Basax
(such as e.g. Bax). Some of these will be of philosophical significance connected
either to the Reichenbach-Griinbaum version of relativity or to Friedman’s concep-
tual analysis of relativity. As we indicated earlier, when investigating a sub-system
(like e.g. Bax) of Basax, we also want to investigate what happens if we add to
the sub-system in question a symmetry principle like Ax(symm) corresponding
to Einstein’s Special Principle of Relativity, SPR.3®¢ E.g. when investigating Bax
as a possible relativity theory, we also intend to investigate Bax+Ax(symm) or
something like this as say, the “symmetry-enriched” version of Bax.

So far, in earlier parts of the present work, we have introduced the theories
Basax, Newbasax, Bax, Flxbasax. In a similar spirit we will introduce a theory
Reich(Bax) in §4.5. Reich(Bax) will be what we call the Reichenbach-Griinbaum
version of Bax, and we will write about it in the present section without recalling3¢”
it from §4.5 (Def.4.5.3, p.562). The above theories form a hierarchy

(%) Basax > Newbasax > Flxbasax > Bax > Reich(Bax).

Since we introduced the symmetry principle Ax(symm) in §2.8, we can study
the symmetric versions

Basax+Ax(symm), Newbasax+Ax(symm),
(%)
Flxbasax+Ax(symm),

etc. of all these theories.

In the pattern “Th + Ax(symm)” we call Th the core theory part, and
Ax(symm) the symmetry principle part of the “symmetrized” theory Th +
Ax(symm).

366 This is why we compared Ax(symm) to the axiom of choice of set theory (namely you may
choose to add it to your system or you may choose not to).

367Explaining the philosophy of Reich(Bax) would take up quite some space and for the present
purposes it is enough to know that Reich(Bax) is much weaker than Bax.
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Our general strategy (concerning symmetry principles) is the following. We intro-
duce core theories Thy, Ths, ..., Thy, ... analogously to the ones listed in (x) above.
Then for each core theory Th, we want to define and study its symmetric version
Thy, + “symmetry principle” analogously to the symmetric versions listed in (xx)
above. The intuitive motivation why we use this dichotomy (or decomposition)

(% % *) “core theory” + “symmetry principle”

and how we choose the symmetry principle for a given core theory will be discussed
in Remark 4.2.18 around the end of this section (§4.2). For the time being, it is
enough to know that we want to build up (or decompose) our theories according to
this pattern (cf. (xx*) above) and that we want to do this in a systematic way. We
hope that the example of the symmetric version Basax+Ax(symm) introduced in
§2.8 of Basax will provide sufficient intuition for what we want to do next.

Ax(symm) is suitable for defining the symmetric versions of Basax,
Newbasax, and Flxbasax in the style of (x x x) above. However, for many of
our weaker theories Thy,..., Th,,... to be introduced in later parts of the present
chapter (§4), Ax(symm) will turn out to be too strong for defining the symmetric
version of Th, in the style of (x % x). What do we mean by saying that Ax(symm)
might be too strong for Th,? A more careful answer will be given in Remark 4.2.18
way below, but the basic idea is the following.

Ax(symm) might “blur” the distinction between Th, and Th, ;. A strong
form of “blurring” this distinction is the case if

Th, + Ax(symm) == Th,,_; + Ax(symm).

If this happens, if Th, < Th, i, and if the distinction between Th, | and Th,
was important in introducing Th,, then we say that Ax(symm) is too strong for
studying Th,, or equivalently too strong for defining the symmetric version of 7Th,,.
Further, if

Th, + Ax(symm) + “some auxiliary axioms” = Th,_,

would turn out to be the case where Th,, was intended to be a subtheory of Basax
strictly weaker than Th,_; (in some subtle but essential respect), then we will again
say that Ax(symm) is too strong for studying Th,, (since it blurs distinctions be-
tween Th,, and other theories), and in such cases we will use “more refined” symme-
try principles like e.g. Ax(syt), to be introduced soon, in place of Ax(symm).3%®
We will also use the expression that a symmetry principle is not adequate for Th,,

368for creating the symmetric version of Th.

455



meaning that it is too strong or that it blurs some important distinction in the
above indicated sense.*® Indeed, in Thm.4.2.4(ii) below we will find that under
mild conditions

Bax + Ax(symm) = Flxbasax.

In view of the above discussion, this means that Ax(symm) is too strong for Bax.
This also means that we consider Ax(symm) as not suitable for defining the sym-
metric version of Bax, hence Bax+Ax(symm) is not the symmetric version of
Bax (in our terminology).3™

This leads us to the following research task.
We look at our weak theories

Bax, Reich(Bax),..., Th,

and we search for a symmetry principle which is adequate for the weak theory in
question, say, Th,. Roughly, this means a triple task: The principle, call it sym, is
adequate for Th,, if

(i) is weak enough so that it does not blur distinctions important in the definition
of Thy,

(ii) is strong enough for proving interesting theorems from Th, + sym, and
(iii) is formulated in a “spirit” compatible with the spirit of the definition of Th,,.>"

As an illustration of (i)—(iii) above we note the following. For the choice of
Th, = Bax, and symmetry principle Ax(syt) to be introduced soon, part (i) of
adequateness is “achieved” by Thm.4.2.2, part (ii) by Thm.4.2.9, and part (iii) by
the discussion at the end of Remark 4.2.3.

As the reader might already guess on the basis of the above example, in the
present section we will carry out the above outlined “triple task” for the case of the
theory Bax. Le. we will seek out a symmetry principle Ax(syt) adequate for Bax.
After defining Ax(syt), we will prove that Ax(syt) is indeed adequate for Bax (i.e.
that it satisfies conditions (i)—(iii) above, when they are made precise in a certain
way>"?). Then, we study the relationship between Bax and its symmetric version

369Roughly speaking, “not adequate” is the same as “too strong” (the difference is only in what
aspect or “intuition” we want to emphasize).

370 Again, we refer to Remark 4.2.18 for motivation.

3" Goals (i)-(iii) above may look vague at this point, but they will be made more tangible in
Remark 4.2.18 way below and in §4.7.

372E.g. to prove (ii), we show that under mild assumptions, the symmetric version Bax+Ax(syt)
of Bax proves the twin paradox Ax(TwP).
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Bax+Ax(syt). After this we briefly discuss related questions, e.g. how the new
symmetry principle Ax(syt) relates to the things that we have studied before, for
example that it can be considered as a weakened version of Ax(symm), in the sense
that under mild assumptions Bax E Ax(symm) — Ax(syt), cf. Thm.4.2.13 and
Bax = Ax(syto) — Ax(TwP), see Thm.4.2.9. This will complete our discussion
of the case of the core theory Bax.

Finding the symmetry principles adequate for our further weak theories like
Reich(Bax) will be addressed in later sections, cf. e.g. Remark 4.2.18 and §4.7.
However, we emphasize one thing already here; namely that Basax > Bax > Th,
does not necessarily imply that the symmetry principle, call it sym,, adequate for
Th,, should be weaker than, or even comparable with, the principles Ax(symm) or
Ax(syt) adequate for Basax and Bax respectively.3"

Let us turn to introducing Ax(syt), the symmetry principle which we will con-
sider to be adequate for Bax. We note that the “name” Ax(syt) intends to refer
to “symmetry of time”. First we recall Ax(syto) and Ax(||) from §2.8.

Intuitively, Ax(syto) says that

“as I see your clocks slowing down (because of your speed relative to me) so do you
see my clocks (because of my speed relative to you) slowing down”.

Ax(syto) m3k = (e [fur®)i — fk(0)e] = [Fem(P) — fam(0)e]-

The above will be the first part of Ax(syt). The second part of Ax(syt) will
be the auxiliary axiom Ax(||) to be recalled below.

Ax(|])  trm(k) ||t = (faux is an isometry3™).

Now we are ready to define our weak symmetry principle.

Ax(syt) & Ax(syto) + Ax(]]) -

373The only thing that we can expect on this level of generality is that sym,, will be “more subtle”
or “more refined” than Ax(symm) or Ax(syt), assuming that Ax(syt) is not adequate for Th,,.
The reason for this is that if Ax(syt) is not adequate for Th, then it presumably blurs some
distinctions. Hence for sym, not to blur these distinctions, we guess, that sym, will have to be
more refined (or subtle) in some sense.

3741.e. fk preserves (square of) Euclidean distances, i.e. (Vp,q € "F)||lp—q|| = ||fmr(p) — fmr ()]],
cf. Def.3.9.3 on p.349.
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Remark 4.2.1 (On the intuitive content of Ax(||).)
Ax(||) is a very natural axiom which is always assumed in all theories of motion like
e.g. relativity theory. The only reason why we did not assume it already in Basax
is that we did not need it yet. We plan to elaborate a variant of relativity called the
“Ant and the elephant version” where we will not assume Ax(||), but that will be
a different story.®™ Till then, Ax(]|) counts as one of those auxiliary axioms which
from the intuitive physical point of view count as trivially true.

<

THEOREM 4.2.2
(i) Bax + Ax6 + Ax(v/ ) + Ax(syt) # Flxbasax, moreover
(ii) Bax + Ax6 + Ax(v ) + Ax(syt) + (cm < 00) ¥ ¢ = .

On the proof: For the idea of the proof we refer the reader to the proof-idea given
for item 3.9.42 in §3.9. 1§

The above theorem points in the direction that Ax(syt) does not “kill” the
typically interesting “unorthodox” or “nonstandard” models of Bax.

Remark 4.2.3 The above theorem can be interpreted as implying that Ax(syt)
is a symmetry principle?”® adequate for Bax in the sense that it does not blur
the distinction between Bax and the stronger core theories Newbasax or even
Flxbasax. Le. Ax(syt) is weak enough to be adequate. Thm.4.2.9 way below
will point in the direction that Ax(syt) is also strong enough i.e. has interesting
consequences (when added to Bax of course). Therefore part (i) of adequateness (as
described in the introduction) is satisfied by Ax(syt) for Bax. To see that part (iii)
is also satisfied, we make the following observation. The essential feature of Bax,
permitting different observers “believing” in different speeds of light is not removed
(and is not even “restricted”) by adding Ax(syt) (even in the presence of auxiliary
axioms). Therefore Ax(syt) seems to be adequate for Bax, even from the point of
view of part (iii) of adequateness as described in the introduction.

<

THEOREM 4.2.4 Assume n > 2. Then
(i) Bax + Ax(]|) + Ax(symm) = (m > k) = ¢, = cx. Therefore,
(ii) Bax + Ax(]|) + Ax6 + Ax(symm) = Flxbasax.

375There we will look into “shrinking observers” like in Asimov’s book “Fantastic voyage”.
376 e. instance of Einstein’s special principle of relativity, SPR
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On the proof: This is fully proved in §3.9 as Prop.3.9.37. 1

We conjecture that Thm.4.2.4 above remains true without the condition n > 2.377

PROPOSITION 4.2.5 Bax + Ax6 + Ax(v' ) + Ax(Triv) + Ax(symm)
Flxbasax. Le. Ax(]||) is needed in Thm.4.2.4 above.

On the proof: Let M = ((B,Obs,PhIb),F,G,€, W) be a model of
Basax+Ax(v )+Ax(Triv)+Ax(symm). Let 9* be a frame model obtained from
M the following way. (The formal construction of 9t* will be given at the end of
the proof.) For every observer m of 9t we include a new observer m* such that for
every p € "F, fom= (p) = (po, %pl, %pQ, cee %pn—1>- Then for every m € Obs:

e The life line of m™* coincides with that of m.

e The same events are simultaneous for m and m*; moreover m and m* agree
on the time coordinates of the events.

e The meter rods of m* are twice as long as those of m.

It is not hard to check that 901" = Bax+ Ax6+ Ax(v/ )+ Ax(Triv) + Ax(symm).
For every m € Obs, ¢,,» = i while ¢,, = 1. Hence 9" (= Flxbasax. Checking all
these are left to the reader. For completeness we include the formal definition of
M-,

m* = ((B*,Obs*, Ph* Ib*),§, G €, W*), where

B* = Bx/{1,2},

Obs* = Obs x {1,2},
Ib* = Ibx{1,2},
we & { <<m, i), p, (b,j)> € Obs* x "F x B* :

<m, <p057;p157;p21---aipn71>,b> € W}. ]

All the same, by Thm.4.2.4, Ax(symm) is too strong for studying Bax.

377 On the idea of a possible proof for this conjecture: The intuitive content of Ax(symm) is that
(%) “as I see you, so do you see me”
(of course the formalization slightly distorts this idea). Now, assume m sees that the speed of k
causes k think that the speed of light ¢y is smaller than m’s speed of light ¢,,. Then by (*) above
k should think that the speed vg(m) of m causes m to think that the speed of light ¢,, is smaller
than k’s speed of light ¢;. But then ¢ < ¢, < ¢ implies ¢ = ¢, We did not check whether this
idea works.
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We interpret Thm.4.2.4 above as pointing in the direction that Ax(symm) as a
symmetry principle is not adequate for studying Bax. Namely, Ax(symm) is too
strong for Bax as it blurs the distinction between Bax and the theory Flxbasax,
under relatively mild assumptions.

Summing up, by items 4.2.4, 4.2.2, and 4.2.9 Ax(symm) is not adequate for
Bax while Ax(syt) is such (as this was “predicted” in the introduction of the
present section).

To formulate theorems to the effect that Ax(syt) is also strong enough3™ (for
Bax) first we need some definitions.

Definition 4.2.6 The twin parador Ax(TwP) is defined as in §2, p.140, with
the only change that the subformula m STL k pronounced as “m sees k moving
slower than light” is re-defined the following, more general way.

Below we will use the notation ¢,,(d) to be introduced later (cf. §4.3, p.490).
Intuitively, c¢,,(d) is the speed of photons moving in direction d as observed by m.

m STL k <% [(vm(k) < oo and vy, (k) < ¢ (Tn(k))) or vy,(k) = 0].

Le. m STL k holds if the speed v,,(k) of k is smaller than that of light in the
direction @, (k) in which & is moving as observed by m.

<

Remark 4.2.7 At the present level of generality we could have written c,, in place
of ¢, (U, (k)) but in later sections we will have theories which allow the speed of
light to be different in different directions.

<

Definition 4.2.8 Next we define the existential version Ax(3ITwP) of the twin
paradox as follows. First, let us recall that Ax(TwP) is a formula of the pattern

(vm...)(vp...)([...] ;»\...|>\...\);

cf. p.140, above Thm.2.8.18. Let 1,1, be formulas such that Ax(TwP) is the
formula
(Vm, k1, ko € Obs)(Vp, g, € "F)(¥1 = 1a).

Now we define Ax(3ITwP) as follows.

378This was part (ii) of adequateness in the introduction.
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Ax(3ITwP) (Im, ki, ky € Obs)(Vp,q,r € "F)[thy A 1a).

Intuitively, instead of saying that for each pair of twins the clocks of the
accelerating twin runs slower, we say only that there exist twins such that
the clocks of the accelerating twin runs slower. Cf. also Ax(Twinp) and
Ax(Twinpy) in the geometry chapter (§6) around p.?? (see the whole text
between items 7?7 and 77).

<

Theorem 4.2.9 below says that under mild conditions (i.e. under assuming ¢, <
oo +Ax(v)), Bax | Ax(syto) — Ax(TwP). This is an analogon of Thm.2.8.18
saying that Basax + Ax(symm) + Ax(v/ ) E Ax(TwP).

THEOREM 4.2.9 Bax + (c,, < 0) + Ax(v' ) + Ax(syte) E Ax(TwP).

On the proof: First, one proves that the assumptions of the theorem imply that
moving clocks slow down, i.e.
Bax + (¢, < 00) + Ax(v ) + Ax(syto) =

0< Um(k) <Cm — (Vp,q € trm(k)) ‘Qt _pt| < |fmk(Q)t - fmk(p)t|
Then it is not hard to check that this implies Thm.4.2.9. &

QUESTION 4.2.10 Under what weaker assumptions (than the ones in Thm.4.2.9)
is Ax(ITwP) provable ? See also Proposition 4.2.14.
<

In view of the above results, conjectures and discussions,

we define a®™ symmetric version of Bax to be Bax+Ax(syt).

QUESTION 4.2.11

(i) Investigate the models of Bax + Ax(syt).

(ii) Look briefly into the models of Bax+ Ax(symm), but cf. Thm.4.2.4 in this
connection.38

379We wrote “a symmetric version” instead of “the symmetric version” because other symmetric
versions (of Bax) are also possible, and we do not want to go into discussing them, here.

380We already decided that they are not important, so this is only a question of mathematical
curiosity.
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(iii) Study the models of Flxbasax + Ax(symm) and those of
Flxbasax + Ax6 + c<oo + Ax(symm).

<

QUESTION 4.2.12 At the end of each one of §§ 4.3—4.5, we suggest that the
reader spend a little time for figuring out what the symmetric versions of the sub-
theories of Basax introduced in that section look like and how they behave. (Also
try to figure out what the adequate symmetry principle for the subtheory of Basax
in question might be; is it Ax(symm), Ax(syt) or perhaps something else.)

<

Before turning to related issues, let us look at the connection between our symmetry
principles Ax(symm) and Ax(syt).

THEOREM 4.2.13 ! Bax + Ax(]|) F Ax(symm) — Ax(syt).

Proof: Assume Bax+ Ax(]|) + Ax(symm). Since Ax(]|) is assumed, it is enough
to prove Ax(syto). Let m,k € Obs. Let m', k' € Obs such that tr,,,(m') = tri(k') =
t and fx = fgrpr. Such m/, k' exist by Ax(symm). Let M :=f,,, and N := fy.
Then, we have that f,x = N ofg,, o M. N and M are isometries by Ax(||). At this
point we ask the reader to consult Figure 134 and to see for himself that Ax(syto)
is true for m and k. For completeness we include the proof of this.

Let p € t. Since N is an isometry with N[t] =t we have that

Ipll = IN(p) = N(O)| and  N(0), N(p) € .

Since f,, is a bijective collineation and segments Op and N(0)N(p) are of the same
length and lying on the same line (i.e. on the ¢ axis) we have that fg,, takes these
two segments to the same line and to segments of the same length, i.e.

(3¢ € Eucl) f5m(0), fxm (), frm (N(0)), frm (N (p)) € £ and

[[fkm (P) — frm (O] = [Ifem (N (P)) — frm (N (0))]I-

By these, we have

(283) [fem () = frm (0)e] = [fem (N (p))e — frm (N (0))4]-

Since M is an isometry preserving ¢, we have

|fkm(N(p))t - fkm(N(G))t| = ‘M(fkm(N(p))t - M(fkm(N(O))t‘

381 This theorem remains true for the theory Bax™ in place of Bax; where Bax™ will be intro-
duced in Def.4.3.7, p.479.
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Figure 134:

By this, (283) and f,,x = N o fk,;,, o M we have

[fiem ()t = fim (0):] = [fmk ()e — fim (0)e.
Thus Ax(syte) holds for m and k.
In connection with Thm.4.2.13 above, we note that
Basax + Ax(v ) + Ax(Triv;) = Ax(symm) > Ax(syt),
c.f. items 2.8.13 (p.135), 3.9.47 (p.391).

Below we will state that even the existential twin paradox Ax(3TwP) cannot
be proved without assuming some symmetry principle. Then we ask some ques-
tions about the connections between the twin paradox and the symmetry principles
discussed in this section.

PROPOSITION 4.2.14 Basax + Ax(v )+ Ax(Triv) + Ax(||) ¥ Ax(ITwP).

On the proof:

It is not hard to construct a model 9t of Basax+Ax(v/ )+Ax(Triv)+Ax(||) such
that there is an observer mg € Obs such that for every k € Obs and p, q € try,, (k)
the time elapsed between events w,,(p) and w,,(q) for k is exactly the Euclidean
distance between p and ¢, that is

fmok () — fmok(P)| = |lg — pI.
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Then it is easy to check that for such 9, 9M = Ax(3ITwP) since in Euclidean
geometry the sum of the lengths of two sides of a triangle is always greater than the
length of the third side of this triangle. W

QUESTION 4.2.15 Find an interesting theory proving Ax(ITwP) but not
Ax(TwP). Le. is Ax(3TwP) useful?
<

QUESTION 4.2.16 Assume Basax + Ax(v/ ) + Ax(eqtime).

(i) How much weaker is Ax(TwP) than Ax(syte). I.e. how big the gaps are in
the hierarchy

Ax(ITwP) < Ax(TwP) < Ax(sytp) < Ax(symm)?

(ii) What is the answer to the above question if we assume Ax(Triv) (in addition
to Basax +etc.)?

<

Question for future research 4.2.17 Is Basax + Ax(v ) + Ax(TwP) [
Ax(syto) true?
<

Remark 4.2.18 (On symmetry axioms, principles of parsimony etc. in
weak theories of relativity)

Let us recall that Ax(symm) is an axiom of different status than the rest of
axioms collected in Basax (or in its weaker versions like e.g. Bax or Reich(Bax)).
Namely, axioms in Basax like e.g. AxE can be called “experiments-motivated” in
that we assume them because we think that some experiments conducted in the
past can be interpreted as suggesting that they might be true; while Ax(symm)
can be called “aesthetics-motivated” in that Ax(symm) is a simplifying principle
which we assume if and when we want to make our mental model of the world
simpler. Therefore, we could call Ax(symm) a principle of parsimony®*?, and the
same applies to the similar symmetry axioms discussed in §3.9. In the literature,
the expression Occam’s razor is often used when referring to such principles of
parsimony. (We could quote here e.g. Webster’s Dictionary or Friedman [90] which
in turn also mentions Leibniz and Mach in the present connection).?®3

38

%j.e. a principle of economy in terms of theoretical concepts.

38 The just outlined distinction between simplifying axioms like Ax(symm) and experiment-
motivated axioms like AXE is only of a heuristic value, and is not an absolute distinction. (In
§2.8 we show how some parts of Ax(symm) can be made testable, and in §4.5 we will argue that
parts of AXE might not be testable, after all.) More on the “relative” status of this distinction
will be said in Remark 4.2.19 following the present remark.
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As we saw in §2.8 and in the introduction to the present section (§4.2), a relativity
theory like e.g.
Basax + Ax(symm)

can be decomposed to a core part Basax and to a simplifying principles part
Ax(symm).

In the present work, we begin our studies with the core part and then, having
gained some understanding of the core part, we study the question of which sim-
plifying principles fit our core theory the best way. For example §3.9 is entirely
devoted to the issue of simplifying assumptions (these are often called “symmetry
axioms” in the present work). For more on this subject we refer the reader to the
introductions of §§2.8, 4.7, 3.9.

To distinguish the core part of a theory Th from its simplifying assumptions part,
in the present work we use the following rule of thumb. Given Th, the core part of
Th consists of those axioms of Th which are provable from Basax + Ax(Triv) +
Ax(v/ ).38 The rest of Th is the simplifying part of Th. There are exceptions when
this rule of thumb does not work, such an exception is NewtK (introduced in §4.1).

Because of the above rule of thumb, we develop the hierarchy of our core theories
as a hierarchy of sub-theories of Basax, cf. Figure 180 on p.552. Then later, for
each core-theory Cth < Basax we ask ourselves which simplifying assumptions (or
equivalently symmetry axioms) would be the most adequate if and when we want to
apply a principle of parsimony (i.e. Occam’s razor) to the theory Cth in question.
For the core theories Cth > Bax which are strong enough we usually find either
Ax(symm)?® or its weaker version Ax(syt) adequate. Hence the parsimonious
version of

Basax is Basax + Ax(symm), that of
Flxbasax is Flxbasax + Ax(symm), that of
Bax is Bax + Ax(syt), etc.

However, in the present chapter (§4) we will study theories which do not contain Bax
(i.e. in which Bax is not provable). An important such theory is the Reichenbach-
Griinbaum version of special relativity introduced and discussed in §4.5. (This
theory is extensively studied in the literature and is of remarkable philosophical sig-
nificance). To each one Th of our theories containing Bax, in §4.5 we will associate

3841t is debatable whether Ax(Triv) and Ax(yv/ ) should count as core. Perhaps we should
introduce a third category called auziliary azioms. Then Ax(Triv), Ax(v/ ), Ax(||) etc. would
count as auxiliaries. However we do not go into this here any further, since it does not seem to
be an important issue. All the same, sometimes we will refer to “auxiliary axioms” meaning the
above indicated group.

385and its variants studied in §3.9
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its Reichenbach-Grinbaum version Reich(Th). This way we will obtain new core
theories Reich(Basax), ..., Reich(Bax).

Finding adequate symmetry principles for core theories Reich(Th) will turn out
to be a more delicate matter (than the cases of Basax, Flxbasax, or even Bax).
In more detail:

As we already experienced in the case of Bax, for core theories weaker than
Flxbasax, Ax(symm) might be too strong, it might be no longer adequate.3®
Similarly we will see that for some important theories weaker than Bax, the sym-
metry principle Ax(syt) will be no longer adequate (though it was adequate for
Bax). Therefore a new research topic appears, namely searching for that principle
of parsimony which is adequate to a weak theory, say, Reich(Th), (Th > Bax). Af-
ter we found the principle of parsimony, call it Ax(symm)g_;.,, Which is adequate
for Reich(Th), we can define the parsimonious version (or symmetric version) of
the core theory Reich(7h) to be Reich(7Th)+Ax(symm)g.:..- The just outlined
research task (i.e. finding Ax(symm)g ;. etc.) is the main subject of our section
84.7.

<

Remark 4.2.19 In this work we often emphasize that Ax(symm) is a principle of
different nature than e.g. the axioms of Basax or Newbasax. In explaining how
Ax(symm) differs from the rest of the axioms we usually say that it is a principle
of parsimony, or a principle of aesthetics, or a “simplifying principle” as opposed
to being motivated by the outcome of past experiments like e.g. AxE. In this
remark we would like to explain that while the above distinction is a useful guiding
light for understanding the “logic” or a philosophy of the present work, it contains
an element of oversimplification. We hope that this oversimplification will cause
no misunderstandings. The oversimplification is the following: The “simplifying
principle” contra “experiment-motivated axiom” distinction might suggest that we
consider Ax(symm) as something completely subjective (or conventional). This is
not so, namely in §2.8 we explained that by bringing hydrogen atoms into our picture
of the world, some “part” of Ax(symm) becomes experimentally testable. Indeed,
such testable “parts” of Ax(symm) will be identified in®*" §4.7, an example for
these is the testable symmetry principle R(Ax sytg) introduced in that section.3%®
Having explained what might be confusing or misleading in our calling Ax(symm)
a simplifying principle, we will go on using this distinction because (i) we hope

386 As an example for this we refer to Thm.4.2.4(ii).

387 Actually, finding these can be considered as one of the main goals of that section.

388The reason why we call R(Ax syto) a “part” of Ax(symm) is that Basax + Ax(symm) =
R(Ax syto) will be proved in §4.7, moreover R(Ax sytg) is the “testable version” of a weaker
version Ax(syto) of Ax(symm).
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that the above explanation ensures that the reader does not misunderstand our
intentions, and (ii) we hope that this distinction helps to understand why (and in
what sense) we treat the symmetry principles differently from the rest of the axioms.

<
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4.3 Relaxing isotropy; connections with Friedman’s concep-
tual analysis

In §1.1 (introduction of this work) we indicated that we intend to investigate a
hierarchy of weak subsystems (or subtheories) of the axiomatic theory/theories of
relativity we are developing in the present work. For motivation to do this cf. e.g.
§1.1 items (VI), (I), (II), (III), (V), (X). Have we started looking into weak systems?
The answer is yes, but only a little bit. Namely, to study why there are no FTL
observers in Newbasax, we introduced the weak subtheory Bax of Newbasax,
in §3.4.2 (p.219). Up to this point, Bax has been the weakest axiom system stud-
ied in this work. In the present section we introduce a weakened version Bax™
of Bax. Let us recall that Bax was obtained from Newbasax by permitting the
speed of light to be different for different observers. At the same time Bax re-
tained the requirement of Newbasax that for any fixed observer photons moving
in different directions must have the same speed.’®® The latter requirement was for-
mulated as AxEgg, and AxEgq is the key axiom of Bax. In what follows we will
introduce a weaker (than AxEgg) axiom AxP1 which®*® will allow the speed of
light to be different in different directions (in contrast with AxEgg where this is
not allowed). Then (among other changes) we will replace the speed-of-light axiom
AxEqy in Bax with the new axiom AxP1.3°! The key axiom of our new axiom
system Bax~ to be introduced below will be AxP1.3%2 Roughly, AxP1 will say
that for an observer m, the speed of a photon ph may depend only on the point
p € "F where m sees ph and on the spatial direction in which ph is moving. (As
a contrast, in Bax this speed was not allowed to vary either with p or with the
direction.)

389The property that something does not depend on spatial directions is called isotropy, cf.
Remark 3.4.15.

390The name AxP1 originates from Friedman’s conceptual analysis of relativity (cf. e.g. §1.1 item
(V) and Remark 4.3.40 on p.522), where he introduced a principle (P1) concerning the speed of
light, and that principle corresponds roughly to our AxP1. Friedman’s (P1) will be recalled in
Remark 4.3.40.

391 After we replace AxEgp with AxP1 in Bax, we will have to adjust the remaining axioms to
the change, since they were designed to be companions of AxEgg and not of AxP1.

392We will see that a key difference between Bax and Bax™ is that Bax postulates a kind of
isotropy while Bax™ does not, cf. item (i) in the discussion of WPI on p.219. (As we said, isotropy
means that certain things do not depend on spatial direction.)
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With introducing Bax™ we have purposes 1-4 below in mind.

1. To seriously begin the study of weak systems (which will be more fully devel-
oped in §4.4 below) in order to answer the “why” type questions.

2. The goals in §1.1 items (I-V), (X), in connection with weak systems.

3. To prepare the ground for developing a first-order logic study of the
Reichenbach-Griinbaum version of relativity (cf. e.g. Szab6 [244], Fried-
man [90]) mentioned in the introductions of §§ 3, 3.4. The first-order ax-
iomatizations, e.g. Reich(Basax), Reich(Bax), of this version of relativity
are so different from the “Einsteinian” theories that they cannot be based on
Bax. However, Bax™ will be flexible enough to serve as a common core of
both kinds of theories e.g. both of Reich(Basax) and Newbasax (or Bax
etc). Therefore Bax™ will also serve as a common “platform” for comparing
the Einsteinian and the other (e.g. Reichenbachian) versions.

4. To prepare the ground for elaborating a logically precise version of
conceptual analysis of relativity where (the original, informal version of) the
latter was briefly recalled from the literature in §1.1 (V), p.8. A detailed
discussion of how Bax™ and AxP1 are used (in the present work) for the
purposes of conceptual analysis is given in Remark 4.3.40 (pp.522-524). Here
we only mention that Friedman [90] systematizes the various principles con-
cerning the speed of light which can be found in the literature of relativity into
three principles which he calls (P1), (P2), and (P3). We will recall (P1)—(P3)
in Remark 4.3.40, where we will briefly recall Friedman’s conceptual analysis
and will discuss how we formalize it here. We will see that our AxP1 can
be considered as a possible formalized version of Friedman’s (P1), and we will
elaborate on the connections between our axiom systems and Friedman’s prin-
ciples, in Remark 4.3.40. We will return to discussing the question of how

careful or how faithful our formalization of Friedman’s principle (P1) is, in
§4.4.

In passing, we note that at the present point we already have the axioms which
we will need to formalize Friedman’s (P2) in our frame language. What we
will have to work for below is elaborating the axioms using which we will be
able to formalize Friedman’s (P1), too, in our frame language. These axioms
will be collected into Bax™.

As we said, the key axiom of Bax™ will be AxP1. To introduce AxP1, we
need to formulate some definitions and a convention on terminology. (These will be
Items 4.3.1-4.3.3.)
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CONVENTION 4.3.1 (On terminology:) As we emphasized in §2, we call "F
the coordinate-system of our model 9t and not space-time. Space-time of 9t will be
introduced in §6 and it will be something else; namely a structure (Mn,...) whose
universe Mn is a subset of P(B). Cf. Item 6.2.5 in §6. Cf. also Matolcsi [190,
§I1.1.2, p.151]. Despite of this, occasionally we use the word “space-time” for "F,
for reasons of convenience. Namely, "F contains a time-axis and n — 1 space axes.
Therefore it is handy to speak about the space-part S = {0} x ""'F, the time-part
t (= F x"{0}), of "F and to call the rest of "F space-time part (since it involves
both space and time coordinates). We hope, this will cause no confusion, and that
the reader will remember that we do not intend to regard "F' as space-time.

Sometimes, "F'is called “relative space-time” because the observer “splits” space-
time to a space-part and a time-part as in "F. Cf. Matolcsi [190], e.g. bottom of
p-154, p.165, and §II.1.7.

<

Below, we will define two functions time and space such that for any point p in
our coordinate-system time(p) and space(p) are the time coordinate and the space
“coordinate” of p, respectively.

Definition 4.3.2 We define functions time : "F — F and space : "F — "~ 'F
as follows.

d:ef<

n . def
(Vp € "F)(time(p) := py A space(p) := (p1,P2,---,Pn_1))-

Definition 4.3.3 (direction, moving forwards, backwards)

(i) By a spatial direction or simply by a direction we understand a space-vector
d €™ 'F, with d # 0.

(ii) directions ‘% {d € "'F : d # 0}.

(iii) Let 9 be a frame model. Then body b is said to move in direction d (as seen
by observer m) iff

(Vp, q € tr,(b))(3X € F)(space(q) — space(p) = A - d).

Body b is said to move forwards in direction d (as seen by observer m) iff
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space(q)

b moves forwards in d b moves backwards in d

Figure 135: Illustration for Def.4.3.3.

([b moves in direction d and
[(Vp, g € trm(b))(30 < A € F)
(time(p) < time(q) = space(q) — space(p) = A - d)]), see Figure 135.

Body b is said to move backwards in direction d (as seen by observer m) iff

([b moves in direction d and
[(Vp, g € trm(b))(30 < A € F)
(time(p) > time(q) = space(q) — space(p) = A - d)]), see Figure 135.

(iv) When d € S,d # 0, we say that body b moves in direction d (forwards,
backwards), if b moves in direction space(d) (forwards, backwards).

(v) We extend the notion of being parallel to directions, and in more general, to
space-vectors as follows. If d,d; € ""'F, then d || d; denotes that d = \-d; or
di = A-dfor some \ € F. <
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We note that “b moves in direction d” means that if we look only at the space-
part of b’s trace, then this is a straight line ¢' parallel with ¢, = {A-d: A € F}; b
moves along ¢ but maybe with different speeds at each moment, and backwards or
forwards in each moment. If we look at the trace of b in the whole space-time, then
“b moves in direction d” means that tr,,(b) lies in a plane parallel with Plane(z, £3);
tr,(b) will be a straight line in this plane if b moves with a constant speed.

Up to this point, when we said that body b moves in a certain direction, then we
meant to say that b moves forwards in that direction. From the present point on we
will indicate whether b moves forwards or backwards in a certain direction, except
when there is no danger of confusion. (We note that an inertial body b moves both
forwards and backwards in a given direction d iff [v,,(b) = oo or v,,(b) = 0]. We
also note that if v,,(b) = 0 then b moves in all directions.)

Now, we are ready to formulate the key axiom of Bax™.

AxP1 (VYm € Obs)(Vph,, phy, € Ph)(Vd € directions) ((ph1 and ph, are moving
forwards in direction d as seen by m and tr,,(ph;) N tr,,(phy) # 0) =

trm(phy) = trm (ph2)> :

Intuitively, photons “emitted” at a point of space-time3? in the same direc-
tion (forwards) have the same speed (as seen by observer m, of course). In
other words: Starting out from one point p of space-time, in every direction
(forwards) there is at most one “speed of light” (i.e. photon-trace). Yet in
other words: photons moving forwards in the same direction do not race with
one another.

93

In an intuitive language, AxP1 says that the speed of a photon may depend
only on the point p of space-time where it was emitted, and on the direction
d in which it was emitted (forwards).3%*

AxP1 in itself allows that the “speed of light” at point ¢ € ® 'F of space in
direction d varies with time. E.g. it allows that at a time ¢ the speed of light in
direction d is 1, while 5 minutes later at the same point of space this speed of light
is bigger. However, if we assume that the traces of photons are straight lines, then
this cannot happen: the speed of light at point p of space-time in direction d does
not depend on the time-coordinate of p. Moreover, the other axioms of Bax™ will
imply that the speed of a photon depends only on the direction d it was emitted

393In reality ™ F is not “space-time” but only our coordinate-system, so here we should say “point
of the coordinate-system "F”. We wrote “space-time” above only because in the present context
it sounds more suggestive.

394Here “ph is emitted at p” means only that p is on the trace of ph.
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in, and it does not depend on the point p of space-time where it was emitted. See
Thm.4.3.17, Figure 146.

Definition 4.3.4 (light-cone)

Coney, p == U{trm(ph) : ph€ Ph & p € tr,,(ph)}.

We call Cone,, , the light-cone starting at p as seen by m. <

Remark 4.3.5 (On AxP1 and light-cones)

If we think a little more on the intuitive content of AxP1, we will see that it
postulates the existence of a partial function ¢, : "F X directions — F  to
each observer m in such a way that (i) ¢, (p, d) is defined iff m sees a photon at
point p moving forwards in direction d, (ii) ¢, (p, d) is the speed of every photon
m sees at p moving forwards in direction d,>*® and  (iii) for equivalent directions
Cm(p, d) is the same.3%

Now, if we try to visualize this ¢, (p,d) function, then we will see that this
means that to every point p of "F, we associate a so called light-cone (representing
the speeds of photons at that point going in all the possible directions). For example
pictures like in Figure 136 become possible.

Looking into e.g. d’Inverno [75, pp.216-224 or pp.259-262] or Friedman [90,
pp-186-187] or Penrose [213, pp.221-223] we notice that associating light-cones to
points of space-time is an essential and powerful tool of general relativity. At this
point we do not discuss this connection any further; but it is interesting to notice
that AxP1 says that, for every m, there are light-cones glued to each point of "F
and the motion of photons is regulated by these light-cones. Let us assume for a
moment that AxP1 is used in a context where our “no F'TL observers theorem” is
true.?®” Then, AxP1 together with this “no FTL principle” says that the movement
of both photons and observers is regulated by the light-cones glued to the points of
"F (from the point of view of some observer m).

But then this gives us quite a nice, pleasantly visualizable road-map of “space-
time”. The road-map is defined by gluing light-cones to the points of space-time and
by postulating the “rule” that observers can move only inside of these light-cones.

In the above intuitive discussion we tacitly assumed properties of the light-cones
which are not provable from AxP1 alone; so, in principle, we should return to the
above outlined intuitive picture later, when we have more information on the light-
cones etc. An adequate place for this seems to be the part of our next section §4.4

395We will return to discussing this ¢, (p, d) function in §4.4 on p.535.
396Formally, (iii) says the following:(VA € T F)[c,,(p, d) is defined = ¢ (p,d) = cm(p, A - d)].
397This means that the traces of observers are inside the light-cones.
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(53]

| 7

Figure 136: To every point p of "F, we associate a so called light-cone.

beginning with p.535 (cf. e.g. the discussion of ¢, (p, d) there). Till then, interpreting
AxP1 as an axiom postulating that there is a light-cone “road-map” of space-time
remains an informal idea about the intuitive meaning of AxP1 (and of similar
axioms coming in the next section).
We will return to discussing the function ¢, (p,d) and drawing light-cones etc.
close to the end of §4.4 beginning with p.535 (cf. e.g. principle (*) on p.535).
<

At this point (and also in connection with the above remark) it might be of interest
to note the following. While AXE (or even AxEgg) will not survive the transition
from special relativity to general relativity, AxP1 (or a variant of it>*®) does. This
can be already anticipated by looking into Chapter 8 on accelerated observers where
AXE will have to be restricted to inertial observers while AxP1 (in a slightly refined
form) will remain true for all observers.

Let us recall that
Bax = {Ax1, Ax2, Ax3j, Ax4, Ax59%% Ax5P" Ax6¢9, Ax6¢1, AxEqg, AXEg; } .

Of these axioms Ax5°P%, Ax5F" and AxEgq will be of special importance for us.
(They all contain an element of the principle of isotropy.) Recall that our purpose
is to define a system Bax™ weaker than Bax by using AxP1.

398That variant of AxP1 is the following. (Vm € Obs)(Vp € Dom(w,))(Vph;, ph, € Ph)
[(m sees ph; and ph, at point p moving in direction d forwards) = ., (phy) = trm,(ph,y)].
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Next we start looking into the (somewhat technical) question of how we can
weaken Bax by using AxP1 in place of AxEgg and adjusting (to the change) the
rest of the axioms. The following proposition states that the theory generated by
Bax remains the same if we simply replace AxEgq with AxP1.

PROPOSITION 4.3.6
(i) Bax 9= (Bax\ {AxEg}) + AxP1.3%
(ii) Assume Ax1-Ax3q, Ax5F", Ax(v ). Then AxEg == AxP1.

Proof:

Proof of (ii): The proof of “direction =" is obvious. To prove “direction =” let
M = {Ax1, Ax2, Ax3y, AxP1, Ax5°" Ax(v/ )}. We have to prove that 9 =
AxEqyg. To see this let m € Obs, d € directions, and ph,, ph, € Ph such that

m 3 ph; and ph, moves forwards in direction d as seen by m. Let ph € Ph such
that ph moves forwards in direction d as seen by m, tr,(ph) N tr,(phy) # 0, and
Um(ph) = vm(ph,). Such a ph exists by Ax5°® and Ax(yv/ ). Since ph and ph,
move forwards in direction d as seen by m and tr,,(ph) N tr,,(phy) # 0, we have
trm(ph) = tr,(phy) by AxP1. But this implies v,,(phy) = v,,(ph) = v,,,(ph,), and
this completes the proof of (ii).

Outline of the proof of (i): Throughout the proof of (i) the reader is asked to consult
Figure 137. We will prove “direction =", because the proof of the other direction is
straightforward. To prove direction = let 9t be a frame model of (Bax\ {AxEgg})U
AxP1. We have to prove 9 E AxEge. In the proof of (ii) we have seen that
M = AxEgp holds under assuming Ax(y/ ). Now without assuming Ax(v/ ) the
proof is not so obvious. Let m € Obs. Let ph € Ph such that

(284) m S ph A (V€ Eudl)(ang?(f) < vn(ph) = (3k € Obs)tr, (k) = ¢).

Such a ph exists by Ax59Ps. Let ph' € Ph be arbitrary. To prove 9 &= AxEqy it
is enough to prove that v,,(ph) = v,,(ph’). Let

LightCone & U{E € Eucl : 0 € ¢ & ang*(¢) = vim(ph)},

LightCone’ € | J{¢ € Eucl : 0 € £ & ang?(£) = va(ph')}.

To prove v,,(ph) = v,,(ph') it is enough to prove that LightCone = LightCone’. The
proof of this goes by contradiction. Assume LightCone # LightCone’. It is not hard

399We think that this is also true without AxEq;.
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612 trm (k) LightCone

LightCone’

Figure 137: Illustration for the proof of Prop.4.3.6(i).

to check that there is a plane P such that 0 € P, P N LightCone = ¢; U {5 and
P N LightCone' = ¢} U #,, for some pairwise different ¢y, ¢y, ¢}, ¢, € Eucl. Let such
Pty 0y, 0% ¢, be fixed. Now by Ax5F" there are ph,, phy, ph}, ph), € Ph such that
trm(phy) = £y, trpy,(phy) = lo, tr,(ph}) = ¢, and tr,,(ph,) = ¢,. Now by (284),
there is k € Obs with 0 € tr,,,(k) C P. Checking the details is left to the reader.
fmr : "F — "F is a bijection taking lines to lines by Thm.4.3.11 way below. But
then

tri(phy) N tre(phy) N tr(phy) N tri(phy) # 0,
(3d € directions) ph,, ph,, ph', phy move in direction d as seen by k, and
tri(phy), tri(phy), tri(ph), tri(phy) are pairwise different.

But this contradicts AxP1. Hence LightCone = LightCone' and v,,(ph) = v,,(ph’).
This completes the proof. R

The reason why the above proposition is true is that the Weak Principle of
Isotropy (Ax5F") was included into Bax and is so strong that it makes AxP1
equivalent with AxEgo (under assuming Ax(y/ ) and that the traces of photons
are straight lines [or empty]). Moreover, according to our plans, the difference
between the philosophies of Bax and Bax™ is that Bax™ will not assume isotropy
(while Bax does, via Ax5%"). Therefore we first have to fine-tune the axioms in
Bax \ {AxEqo} and only then try to use AxP1.
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By looking at Prop.4.3.6(ii) above, we notice that we have to weaken Ax5Fh.
This weakened version of Ax5F® is Ax5py below. We will also change Ax59Ps

to Ax50ps below, because Ax5°P% does not fit the “philosophy” or paradigm of
(P1).400

tr o, (ph)

! T
7 /Nace (p)

Figure 138: Illustration for Ax5py,.

Ax5py, (Vm € Obs)(Vp € "F)(Vd € directions)(3ph € Ph)
[p € tr,(ph) A (ph is moving forwards in direction d as seen by m)].
See Figure 138.

Intuitively, from any point p of space-time in any direction there is a photon
moving forwards in that direction.

We use the convention that oo is bigger than any element of F, i.e. that A < oo for
every A € F.

Ax50ps (Ym € Obs)(Vp € "F)(Vd € directions)
([(Elph € Ph)(p € tr,m(ph) A (ph is moving forwards in d as seen by m)] =

[(Elph € Ph) (p € tr,(ph) A (ph is moving forwards in d as seen by m) A

400 A kind of isotropy is somehow implicit in the formulation of Ax5°%PS. This is why we have to
replace that axiom with a more careful version.
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traces of observers
limiting photon

limiting photon
photon

time(p) + 1

any direction

Figure 139: Illustration for Ax5ops.
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(VA e F)(0 <A< vn(ph) = (Fk € Obs)(p € tri(k) N vp(k)=X A

(k is moving forwards in direction d as seen by m)))] ) A0l See Figure 139.

Intuitively: Let us fix an observer m, a direction d, and a point p of space-time.
We will speak about things moving forwards in direction d through point p
as seen by m (without mentioning all this data). Assume there is a photon
moving in direction d. Then there is a photon in the same direction which is
limiting in the following sense: For all speeds slower than this limiting photon,
there is an observer moving with this speed.

Now, we are ready to define our weak system Bax™.
Definition 4.3.7 We define
Bax~ & (Bax \ {Ax5PE Ax50Ps AXEOO}) U {Ax50bs, Ax5pn, AxP1},

where Ax50ns, Ax5pn and AxP1 are defined above. Therefore
Bax™ = {Ax1, Ax2, Ax3y, Ax4, Ax5pp, AX50bs, Ax600, Ax6¢1, AxEq;, AxP1}.

<

Next we state that (under assuming Ax(v/ )) Bax™ is indeed strictly weaker
than Bax (as we wanted).

PROPOSITION 4.3.8
(i) Bax+ Ax(v ) = Bax™ + Ax(v ) £ Bax.%?
(ii) Assume n < 3. Then Bax = Bax™.

Proof:

(i) Bax + Ax(v/ ) = Bax™ is not hard to check, we leave it to the reader. We
prove here Bax™ + Ax(v/ ) ¥~ Bax. To prove this, we have to show the existence
of a model M = Bax~ + Ax(v/ ) in which Bax is not true.

The idea of constructing 9 is the following. We start out of the world-view of an
observer m in a model, say, of Basax. Then we define the worldview-transformations
frm to be Galilean transformations. See Figure 140.

In more detail: Let " be any Euclidean field. Then Ax(v/ ) will hold in .
Define

4017t is a task of future research to find natural (and short) versions of Ax5gps and AX5pp

which are provable from Bax.
4021 e. Mod(Bax + Ax(v )) € Mod(Bax™ + Ax(v )).
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Figure 140: An anisotropic model of Bax™, the f,;’s are Galilean.

B ¥ Eucl(n, F),

Obs & SlowEud,

Ph % PhtEucl.

As in §2.4, let m %' 7 and define the world-view of m such that trm(b) = b, for
all b € B. We now only have to define f;,, for & € Obs. We define f;,, to be an
affine transformation with the following properties:

fkm(O) €k and fkm(o)t =0,
fk)m(]-t) - k and fkm(]-t)t = ]_,
fkm(lz) =1+ fkm((_))z for 0 <12 < n.

It is not difficult to check that the model we have just defined is a model of
Bax™, and it is not a model of Bax, because for any k¥ € Obs, k # t there is a
direction d such that the speed of light as seen by k£ is not the same in directons d
and —d.

(ii) For n < 3, the proof is easy. Assume n = 3. In the proof of Thm.3.4.19 for
n = 3 beginning with p.233, we transform each Bax(3)-model 9 to a Newbasax(3)
model. By Thm.3.6.17 (in §3.6 way below), we conclude that Ax(y/ ) is true in these
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Newbasax models. Since the construction did not change the field ™, we conclude
that

(285) Bax(3) = Ax(V ).

Remark 4.3.9 One might wonder why Ax(v/ ) is needed in (i) of the above propo-
sition. The reason for this is that in Bax we did not assume Ax(yv/ ) and therefore
in certain models of Bax there may exist (spatial) directions, say d, in which no
photon moves.*%> This may happen despite of Ax5F" because in some direction d
there need not exist a line £ with ang?(¢) = “speed of light”.*** On the other hand
Bax™ does postulate that in every (spatial) direction there is a photon moving.
Hence we do not know whether there is n > 3 with Bax(n) = Bax™ (n).

<

CONVENTION 4.3.10 In the present work when comparing refinements of Bax
we will almost always assume Ax(y/ ). E.g. if we say that Bax™ is weaker than Bax
then we really mean to say that Bax™ + Ax(y/ ) is weaker than Bax + Ax(v/ ).

<

The following theorem is an analogous counterpart of Thm.3.1.1 (§3.1).

THEOREM 4.3.11  Bax~ = (Vm,k € Obs) (m Sk = (f: "F —> "F

is a bijective collineatz’on)).

We will prove a stronger theorem, namely we will prove that in Theorem 4.3.11
we can replace Bax™ with a much weaker axiom system Pax. Let Ax5ops~ ~ be
the following axiom:

Ax50bs~~ (Vm € Obs)(Vd € directions)(Vp € "F)(3\ € TF)
(Vg € "F) [space(p) — space(q) =6 -dforsome § € F = (V0 <e <))
(3k € Obs)(k moves forwards in direction d with speed ¢ and ¢ € tr,,(k))|.

Intuitively, Ax50ps~ ~ says that for each direction d there is a A such that
through any point there are observers moving forwards in direction d with all speeds
smaller than A. Ax50ns~ ~ allows that these A’s be different for points of different
planes parallel with ¢.

403We do not know if there are such models of Bax.
404The same applies to Basax and Newbasax in place of Bax.
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LEMMA 4.3.12 Bax™ = Ax50ps -

Proof. Assume Bax™. Let m,d,p be as in Ax50ns~ . There is a unique photon

ph going through p and moving forwards in direction d, by Bax™. Let A &f Um (ph).

Let ¢ be as in Ax50bs” , and let ph; be a photon going through ¢ and moving
forwards in direction d. Assume that v,,(ph) # v,,(ph;). Then ph and ph, would
meet in a point ¢;, because tr,,(ph) and tr,,(ph,) are both in the plane P parallel
with ¢ and containing p, ¢ (by our assumptions). But then tr,,(ph), tr,,(ph;) would
be two photon-traces going through ¢; forwards in direction d, and this contradicts
AxP1. Thus v,(ph)) = v,(ph) = A. Let 0 < e < A. By Bax™ then there is an
observer k going forwards in direction d with speed ¢, and going through ¢. 1

Let Pax denote the axiom system we obtain from Bax™ by replacing Ax5¢ps in
it with Ax50ps~~ and omitting all axioms mentioning photons (except for Ax2).
Le.

Pax & {Ax1, Ax2, Ax3g, Ax4, Ax50ns~ , Ax6gg, Ax6; }.

THEOREM 4.3.13 Pax = (Vm,k € Obs) (m 4k = (f:"F —"Fisa

bijective collineation)).

Proof. In the proof we use the methods of the proofs of Thm.3.1.1 (p.160) and
Lemma 3.3.16 (p.198).

Assume MM = Pax, m, k € Obs and m k. If p € Dom(fx), then we say that
k sees p.

Claim 4.3.14 Assume v,,(m') = 0. Then if k sees at least one point on tr,,(m’),
then there is at most one point on tr,(m’) which k& does not see.

Proof of Claim 4.3.14. Assume that p € tr,,(m') N Dom(f,x). Let P be a plane
parallel with ¢ which contains tr,,(m'). We will “work” in P. See Figure 141. Let
S be a neighbourhood of p such that p € S C Dom(f;x). Such a neighbourhood
exists by Ax6g;. Let d be a direction such that all straight lines lying in P move in
direction d. Let A\ belong to p and d according to Ax50ps~ . l.e. from all points
q € P and for all € < X there are observers moving through ¢ forwards in direction
d with speed «¢.

Assume that ¢, r € tr,,,(m'), ¢ # r such that k sees neither ¢ nor r. Let us choose
observers my, ..., my according to Figure 141. This is possible by Ax50ps~ @ we
choose these observers so that they all go forwards in direction d and their speeds
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are sufficiently small. The important thing is that all the indicated meeting points
are inside S, i.e. k sees all these meeting points (except for ¢, which k& does not
see). Then k sees all the observers m/, my, ..., m4 with those meeting points which
are inside S. Thus in k’s worldview, the traces of the observers m',mq,...,my
are all in one plane, i.e. they are coplanar. On the other hand, we will show that
q ¢ Dom(f,;) implies that in k’s worldview, m; does not meet m'. Indeed, assume
that m; and m’' meet in k’s worldview, say in point s. Then by Ax6y9, m' sees
the event wg(s), say wi(s) = wp(s1). Also by Ax6gg, m' sees the event w,,(q),
say wm(q) = wpy(s2). But both m' and m; are present in both events wp(s)
and wyy(s2), S0 s; must equal sy, since the traces of m’ and m; meet only in one
point, since they are different in m'’s worldview (also by Ax6qo, since e.g. in m’s
worldview there is an event on m/'’s trace in which m; is not present). Since s; = so,
we then have w,,(¢) = wg(s1), which contradicts our assumption ¢ ¢ Dom(fx).
Similarly, in k£’s worldview, my does not meet m' because r ¢ Dom(f,,;). Thus, in
k’s worldview both tri(m;) and try(ms) are parallel with trg(m'), though m; and
ms meet. This contradicts the fact that in a plane to each line ¢ and point u there
is only one line parallel to ¢ which goes through u. This finishes the proof of Claim
4.3.14. 1

We say that an observer m; € Obs is slow if, in m’s worldview, m; moves
forwards in direction d in a plane with less speed than the A belonging to this plane
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according to Ax50ps~ - The following claim is analogous with Lemma 3.3.16.

Claim 4.3.15 Assume that m; is a slow observer. If k£ sees a point on tr,(m1),
then £ sees all points on tr,,(m;).

Proof of Claim 4.3.15. Let p € tr,,(m;)NDom(f,,;) and let S be a neighbourhood
of p such that S C Dom(f,,x) N Dom(f,m, ). Such a neighbourhood exists by Ax6¢;.
Let ¢ € tr,,(my) be arbitrary. See Figure 142.

mo| [T
m
|
|
|
|
|

S C Dom(fmr) N Dom(frm, ) my

Figure 142:

Let msg, m3, myq be as in Figure 142: my meets m; at ¢, and ms, ms meet my
and my and each other inside S. Further, m.,..., m4 have diffferent traces in m’s
worldview. Such observers exist by Ax50ns~ ~ as in the proof of the previous claim.
Let r be a point on tr,,(ms) inside S, but different from the meeting points with
ms, m4. (This is the fat point in Figure 142.)

Let us move into the worldview of m;. m; sees all the meeting points that are
inside S, because S C Dom(fpm, ). Thus, the traces of ms, my, my, my are all in one
plane in m;’s worldview. Let m) be an observer such that ¢r,, (m/}) is a straight

line parallel with £ in this plane, which goes through r’ & mmy (7). Such an observer
exists by Ax50bs™
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Let us move now into the worldview of k. By r € S C Dom(fm,) N Dom(fx),
k sees the event on m;’s trace which is at r’. In m;’s worldview, the meeting points
of ms and my4 with m/} are different from each other and from 7', because the traces
of m}, ms, my are all different in m;’s worldview. Therefore, by Claim 4.3.14, k does
not see at most one of these points, and thus & sees one of the meeting points of m/
with ms or my4. Therefore, the trace of m/ in k’s worldview is also coplanar with
the traces of my,...,m4. Also, m} and m; cannot meet in k’s worldview by Ax6qo,
because they do not meet in m;’s worldview. Now, in k’s worldview, the traces of
my and m) meet, they are coplanar with the trace of m;, and m; and m/ do not
meet. Thus my must meet m; (as before, because on a plane through a point there
is only one straight line parallel with a given one). Let us assume that my and m;
meet in k’s worldview at ¢'.

It remains to show that the event e in m’s worldview at ¢ is the same as the
event €' in k’s worldview at ¢'. To show this we will go back to m;’s worldview. By
Ax649, m; sees both events e, e’ and he must see them on his own life-line, because
m; € eNe. On the other hand, also my € eN¢€’, and on m,’s life-line there is
only one point where msy is present, namely in the meeting point of m; with ma,
because the traces of m; and my are different (e.g. by Ax6g9, because these traces
are different in m’s worldview). Thus e = e; and this finishes the proof of Claim
4.3.15. 1

Claim 4.3.16 If Dom(f,;) # 0, then Dom(f,,;) ="F.

Proof of Claim 4.3.16. We are in the worldview of m. We will connect any two
points of "F' with traces of slow observers. Let p,q € "F be arbitrary. See Figure
143.

If space(p) = space(q), then there is an observer with speed 0 whose trace
connects p and g. Assume therefore space(p) # space(q), and let d = space(q) —
space(p). Then d € directions. Let m; be any slow observer moving forwards in
direction d with nonzero speed, and through p, and let ms be another observer
which is at rest at point space(q). Such observers exists by Ax5ops~ - Then my
and my will meet, say in point . Then by Claim 4.3.15, p € Dom/(f) implies
q € Dom(f,,). This finishes the proof of Claim 4.3.16. 1

From here on the proof is basically the same as the proof of Theorem 3.1.1.
One of the changes we make is that we replace “slow lines” with “traces of slow
observers”. For completeness, we briefly include the rest of the proof.

Assume that m, k € Obs, m S k.

First we show that f,,; takes midpoints on the trace of an observer to midpoints,
this is an analogon of Lemma 3.1.10, see Figure 144.
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Let m; € Obs and let p,q,r € tr,,(m;) be such that ¢ is the midpoint of p and
r. In m’s worldview, let us choose slow observers ms, ..., mg as in Figure 144: the
traces of mq, ..., ms are coplanar, mo and mgs do not meet, and similarly m4 and msj
do not meet, my and ms5 meet at r, m3 and m4 meet at p, mg and m; meet at ¢ and
Mo, Mg, My all meet in one point, and mgs, mg, ms all meet in one point. Informally,
my, ..., mg form a paralelogram as in Figure 144. Since f,,;, is everywhere defined by
Claim 4.3.16, k also sees all these meeting points. Thus, in £’s worldview my, ..., mg
also form a paralelogram. Since the diagonals of a paralelogram bisect each other,
fmk(¢) is the midpoint of f,(p) and f,.x (7).

Assume that ¢ € Eucl and p, ¢, € £. In m’s worldview we choose slow observers
my,...,my as in Figure 145.

m / fmk

Figure 145:

From here on the proof is practically the same as on pages 169-170. Also the
proof of f,;x being an injection is the same as that of Claim 2.3.7 on p.60, because
in that proof we used only the consequence of Ax5 that through each point there
move at least two different observers, and Ax50ns~ ~ also implies this fact. By this,
Theorem 4.3.13 has been proved. B

The next theorem says that in models of Bax™, all light-cones are alike in the
world-view of an observer m. See Figure 146. This means that the “speed of light”,
according to m, depends only on the spatial direction d in which the light particle
was emitted, and it does not depend on the point of space-time p where it was
emitted. Using the notation ¢,,(p, d) introduced in Remark 4.3.5, this means that
cm(p,d) = cm(g,d) for any p,q € "F. Yet in other words, this means that if £ is
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parallel with the trace of a photon, then £ itself is the trace of a photon. (We note
that the same is true for “observer” in place of “photon”, in models of Bax™.)

-

Np ’

Figure 146: All light-cones are alike in a world-view of a model of Bax™.

THEOREM 4.3.17 (light-cones are alike) Assume Bax™. Then

Cm(pa d) = Cm(Qa d)
for all observers m, points p,q € "F and directions d.

Proof. Let ph; and ph, be photons moving forwards in direction d as seen
by m, and p € tr,(ph;), ¢ € tr,(phy). Such photons exist by Ax5pp. Assume
that v,,(ph;) # vm(phy), say v, (phy) < v,(phy). Let k be an observer moving in
direction d, through ¢, and with speed v,,(ph;). See Figure 147. Such an observer
k exists by Ax5ops and AxP1. Then tr, (k) is parallel with tr,,(ph;) because
k and ph; move forwards in the same direction and with the same speed. But
this implies that ph; is at rest in k’s world-view, because f,,; is a collineation by
Theorem 4.3.11 and collineations take parallel lines to parallel ones. This contradicts
AxEg; € Bax™. 1

Since in models of Bax™, the speed ¢, (p, d) does not depend on p, we introduce
a notation which reflects this:

cm(d) ¥ (0, d).
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Figure 147: Illustration for the proof of Thm.4.3.17: if ph, and ph, move forwards
in the same direction but with different speed, then there is an observer & who sees
one of them at rest.
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Recall that one of our symmetry axioms is AxO1, and it says that
(Vm, k,m")(3k")fux = fww. The following theorem states that if we assume this
symmetry principle (together with mild auxiliary axioms), then we can derive
Flxspecrel from Bax™. In natural words this means that AxO1 together with
mild axioms and Bax™ imply that there is a uniform speed c of light such that for
each observer, in each direction, light moves with speed ¢ (and also all observers see
the same events).

THEOREM 4.3.18 Assume n > 2. Let Ax & Ax(v/ ) + Ax(Triv) + Ax(||) +
Ax6. Then
Bax~™ + Ax0O1 + Ax = Flxspecrel.

A proof outline for Theorem 4.3.18 is given on p.759, where this theorem is re-stated
as Theorem 5.2.17. 1

The following considerations add interest to the above theorem. Bax™ says very
little about photons, it contains only two very natural assumptions about photons
(AxP1 and Ax5pp). The point of the above theorem is that these two natural
postulates together with finiteness of speed of photons are sufficient for deriving
special relativity (if one is willing to use the symmetry principle AxO1, together
with some simple and very convincing axioms). (We refer to Remark 4.1.7 where
we argued that Flxbasax + ¢, (p, d) < oo is very close to Basax.)

Questions for future research 4.3.19
Partial answers to the questions below can be found in Thm.4.3.29 at the end of
this section.

1. Investigate the models of Bax™(n), for various choices of n. E.g. what kinds
of models does Bax™ have? In this connection see Theorems 4.3.17, 4.3.29,
4.5.8, and the proofs of Theorems 4.3.21, 4.3.25, 4.5.8.

2. Assume Bax ™ (3) and that v,,(ph) # oo. Are then the light-cones “coherent”
surfaces in the following sense? Let Cone,,; be the light-cone starting in the
origin 0 (as seen by an observer m), cf. Def.4.3.4 on p.473. Cf. also Figure 175
on p.539.

Consider the simultaneity P ={qg€"F : ¢, =1}.

(a) Is then Cone,,5 N P a curve in some sense?

(b) If yes, is then it a closed curve? Is it strongly continuous in the sense of
Definition 4.4.87
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(c) Is PN Cone,, 5 homeomorphic to a circle?
See Theorem 4.3.29 in this connection.

3. The same as in item 3 above but for Bax™ (4).

Bax™ and the paradigmatic effects of relativity, e.g. FTL.

Notation 4.3.20 ¢,,(p,d) < oo abbreviates the formula stating that the speed of
light is finite for all observers m, at all points p and in all directions d.
<

Since Newtonian Kinematics is a special case of Bax ™, i.e. since Mod(NewtK) C
Mod(Bax ™), we cannot expect any relativistic effect to be provable from Bax™
(except perhaps the “/A FTL observers” effect), c.f. Thm.4.1.12. E.g. let ¢ be a
relativistic effect like “moving clocks slow down” or “meter-rods shrink”. Then we
can be sure that

Bax™ (£ .

However, we may ask ourselves, which relativistic effects are provable from

(Bax™ + c¢n(p,d) < oo). Newtonian Kinematics is excluded by ¢, (p,d) < oo,
hence we may think of (Bax™ + ¢,,(p,d) < 00) as the “purely relativistic part” of
Bax™.

Still, the paradigmatic effects in §2.5 are not provable from (Bax™ + ¢, (p, d) <
00). The reason is that Bax™ has models 90t in which the speed of light is finite in
each direction, yet 9 is basically a model of NewtK. In fact, all models of NewtK
can be made to satisfy (Bax™ + ¢, (p,d) < oo) with extremely little change, as
follows. Let us start out from any model of Newtonian Kinematics and postulate in
each direction a finite speed of light (satisfying some mild requirements) in the world-
view of an observer m. After this, we “throw away” the observers that so became
faster than light (according to m), and we keep the old world-view transformations.
This way we arrive at a model of Bax™ + ¢,,(p,d) < co. The model that we gave
in the proof of Proposition 4.3.8(i) is of this kind, so its construction also proves
Theorem 4.3.21 below. We give a slight modification of that construction in the
proof below because the general construction will be interesting for us later, too.
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THEOREM 4.3.21 (no basic paradigmatic effects hold in Bax™)

(i) Bax™ + cp(p,d) < oo = (some of the) moving clocks slow down,
i.e. Thm.2.5.2(i) becomes false if we replace Basax in it with
(Bax™ + cn(p,d) < 00).

(ii) Bax™ + cp(p,d) < oo [ (some of the) moving meter-rods shrink,
i.e. Thm.2.5.9 becomes false if we write (Bax™ + c¢p(p,d) < 00) in place of
Basax.

(iii) Bax™ + c¢p(p,d) < oo [~ (moving clocks get out of synchronism),
i.e. Thm.2.5.6 is false for (Bax™ + c¢;,(p,d) < 00).

Proof. Let K be a convex, open, bounded subset of S; dof {1} x "7'F in the
sense that for any ¢ € Eucl such that ¢/ C S;, /N K is a bounded open interval,
i.e. there are two “bounding” points on ¢ such that the points of £ which are in K
are exactly those that are strictly in between these two points,*% formally: (3p,q €
O)(Vr € {)[r € K iff Betw(p,r,q)]. Assume further that 1; € K. Let C C S be
the boundary of K, i.e. C consists of these bounding points. Formally:

C={pesS;:(3ekuc)(FgetnS,q#p)(Vr € £)[r € K iff Betw(p,r,q)l|}.

For any ordered field there is such a set K. E.g. if n = 3, then we can choose K to
be the interior of a square. See Figure 148.
We will use K and C for defining the observers and photons of our model.

Obsy & {¢ € Eucl: 0 € 4,4 N K # 0},

Pho & {¢ € Eucl: 0 € £,NC # 0},

Obs & {¢ € Eucl : (3¢ € Obsy)? || ¢'},

Ph¥ {¢ € Eucl: (3¢ € Pho)¢ || ¢}.

B Y 15 % Obs U Ph.

Let m &7 € Obsy. We define the world-view w,, of m such that (V¢ € Obs U
Ph)t = tr,,(¢). It remains to define the world-view transformations fy,, for £ € Obs.
For k£ € Obsy we define f.,, to be a collineation of "§ such that

405Betw(p, r, ¢) means that p,r,q are collinear points of "F and r is strictly in between p and g,
formally: r # p,q and r = p+ X - (¢ — p) for some 0 < A < 1. Cf. Figure 161 on p.510.
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Figure 148: A convex subset K of S; and its boundary C.
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fem(1) =p  where {p} =kNK,
fem(0) =0 and
fkm(]-z) =1, for 0 <i < n.

Thus fy,, is a Galilean transformation taking ¢ to k. See Figure 149.

|

S1

Figure 149: f;,, takes the unit vectors to the bold-face ones.

Assume now k£ € Obs \ Obsy. Let k' € Obsy be such that k£ || &', and let
p € S(= {0} x ""'F) be such that p € k. We define fy;s to be the translation of "F

which takes 0 to p, and we define fy,,, = fipr © i, see Figure 150.

By these, our model M & (B, Obs, Ph, Ib), §, Eucl(n, F), €, wy)rcoss has been

defined. Tt is not difficult to check that 9t = Bax™ + ¢, (p,d) < oo. (We use the
properties of K in proving that 9 = {AxP1, Ax50bs, AX5pn, cm(p, d) < 00}.)

Also it is not difficult to check that the following three statements are valid in
M for all m, k € Obsg and k' € Obs, k' || k:
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Figure 150: Galilean transformations.
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(1) frm(1e)e — fkm((_))t =1,

(ii) events e, e’ are simultaneous for m implies that e, e’ are simultaneous for k,
too,

(iii) m thinks that the distance between k, k' is ||p|| implies that k& thinks that the
distance between &k and k' is ||p||. See Figure 151.

kl

Figure 151: m and k see spatial distances to be the same.

But then, using the definition of ¢rg (k') for k£ || &', we obtain that (i)-(iii) are
true for any m, k, k' € Obs, k || k'. Now (i)-(iii) are just the negations of the three
basic paradigmatic effects in §2.5. 1

The next theorem states that the twin paradox fails in a strong form (i.e. even
Ax(3TwP) fails) under assuming Ax(symm). However, we will see that if we re-
place Ax(symm) with other symmetry axioms, then Ax(TwP) becomes provable.
Cf. Theorems 4.3.23, 4.7.15 on pages 497, 622.
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THEOREM 4.3.22 Let Ax & Ax(V ) + Ax(Triv) + Ax(]|) + Ax6. Then
Bax™ + c¢p(p,d) < oo + Ax(symm) + Ax [ Ax(3ITwP).

Proof. Let us take a model 90t of Bax™ +c¢,,(p, d) < co+Ax(y/ ) as constructed
in the previous proof of Thm.4.3.21. Add observers to 9% such that in the so enlarged
model MM | Ax(Triv) will be true, and still all the world-view transformations are
Galilean. (This amounts to including all “brothers and sisters” of observers as in the
proof of Thm.2.8.2 on p.127 (§2.8).) Since this model M is still basically a model
of Newtonian Kinematics (i.e. since the world-view transformations are Galilean),
Ax(symm), Ax and the negation of Ax(3TwP) hold in 9. ]

There are some paradigmatic effects which remain true in our weak system.

THEOREM 4.3.23 If we replace Ax(symm) with AxO1 in Theorem 4.3.22
above, then Ax(TwP) becomes provable. Le.

Bax™ + cu(p,d) <o + AxO1 + Ax = Ax(TwP).

Proof. Bax™ + Ax0O1 4+ Ax implies Flxspecrel by Theorem 4.3.18. It is not
difficult to check that Ax(TwP) holds in Flxspecrel + ¢,,(p,d) < oo. To check
this, one can use Remark 4.1.7 where we argued that Flxbasax + ¢,,(p,d) < oo
is very close to Newbasax. Thus Flxspecrel + ¢, (p,d) < oo is very close to
Basax + Ax(symm), and in the latter Ax(TwP) holds. &

We will see later that Theorem 4.3.23 above remains true if we replace AxO1 in
it with the symmetry axiom R(Ax sytg). Cf. Theorem 4.7.15 on p.622.

THEOREM 4.3.24 Assume Ax(v/ ) and n > 2. Then

(i) Bax™ + cu(p,d) <oo = “AFTL observers”,
and therefore

(ii) Bax™ + cnu(p,d) < oo = “there is a speed limit for moving observers, in
some sense” .

(iii) Bax™ + cn(p,d) < oo E “velocities of observers do not add up the usual
Newtonian way”.
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Proof. The main idea of the proof of Basax = “# FTL observers” (i.e. Thm.3.4.1
on p.203) can be pushed through to prove (i). The rest, (ii), (iii) follow from (i).

We give the proof for (i) in more detail. We will prove that if m sees an FTL
observer, then m sees also a photon with infinite speed. Assume that &k is an FTL
observer in m’s world-view, i.e. k’s speed is bigger than the speed of the photon
going in the same direction as k. See Figure 152.

Figure 152: £ is a faster than light observer as seen by m.

Let P denote the (2-dimensional) plane containing m and k, ie. P =
Plane(t, tr,,(k)). Look at P in m’s world-view! See Figure 153.

Then in P there are two photon(trace)s, say phy, phy, € Ph (by Ax5py,). Let £ be
the intersection of P with the space-part (i.e. with S = {0} x*~'F). Then ¢ € Eucl.
In m’s world-view, there is no photon-line between £ and /, so in k’s world-view there
is no photon-line between ¢ and ¢ def fk[l], because . is betweenness-preserving
(here is where we use Ax(y/ )). But then ¢ is an observer-trace by Ax50ps, i.e-
¢ = tri(k') for some k' € Obs. Now let us move into the world-view of k'. See
Figure 154.

Let P’ be the f,,-image of a plane P, in S = {0} x ""'F containing £. Then P’
is a plane going through ¢ in the world-view of &', because £ is in P;. Thus there is
a photon(line) in P’ by Ax5py, say ph;. But then m will see phy in S, i.e. m will
see phs as having infinite speed. See Figure 154. [

We also tend to conjecture that for some of our “group axioms” in §3.10.1 we
will have Bax™ + cp(p,d) < oo + “group axioms” | “the paradigmatic effects
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Figure 154: m sees a photon ph; with infinite speed.

499



in §2.5”. At this point we do not discuss which of the “group axioms” are needed
for this conjecture.

Next we investigate the “limits” of the “no FTL theorem” (cf. Thm 4.3.24).
Our next theorem states that if we allow photons with infinite speed at least in one
direction, then we can have observers k moving faster than light (the speed of light
in direction of k’s movement will be finite, of course). We note that, independently
of us, Attila Andai obtained similar results, see Andai [7].

THEOREM 4.3.25
Bax~ £ “A FTL observers”, for all n.

Le. existence of FTL observers is consistent with Bax™.

Intuitive idea of the proof: Let n = 3. The intersection of “the light-cone” with

a simultaneity is usually like this:

Cf. Figure 178 at the end of §4.4 on p.548. According to Figure 178 (or with the
proof of Thm.4.3.21) the following light-cone section?% is consistent with Bax ™.

Y

Now, let us make the y-sides of this light-cone section grow to infinity. We obtain
the light-cone section:

406By a cone-section we understand the intersection of a cone and a plane, which is usually called
a “conic-section”. Similarly for a light-cone section.
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This seems to be consistent with Bax™, the only peculiarity being that the speed
of light in the 1, and —1, directions is oo while in all other directions it is finite.
Therefore the light-cone (starting from the origin), in this model of Bax™, will look
like this:

t

Y

Le. the light-cone (starting from 0) consists of two intersecting planes.

But then the inside of the cone and the outside of the cone are not so extremely
different as they were in the case of Bax. Indeed, if these two planes contain the two
lines in Plane(t,z) with angle squared 1 (ang? = 1), then interchanging the axes ¢
and x will leave the light-cone fixed and will interchange the inside with the outside
of this cone. We now turn to giving the proof.

Proof of Thm.4.3.25. Based on the above ideas, we give a concrete model of
Bax™ in which there are FTL observers. Let § be any ordered field, and let n > 2.

B ¥ Ib & Eucl(n, F),

Obs def {£eB:0€land (3p € l)|p # |p:|},
Pho® {teB:0etand (3pe £\ {0})|p| = [psl},
def

Obs & {0 e B: (3¢ € Obsy)¢' || £1,
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Ph¥ {0 e B: (3¢ € Pho)t' | £}.

Then, of the lines going through 0, the ones that lie on the two planes in Figure
155 are photon-traces, all the others are observer traces.

Sl

Figure 155: The photon-lines going through 0.

Let m % . We define the world-view of m so that £ = tr,, (¢) for all £ € B. Now,
in m’s world-view, a line £ € Obsy is a faster-than-light observer iff (Ip € £)|p;| <
Ipz|- These are exactly the lines (of the ones going through 0) that lie outside the
two “photon-planes”. See Figure 156.

We will define fi,, for k& € Obs to be (bijective) affine transformations. Thus it
will be enough to define f;,,, on 0 and on the unit-vectors 1;, ¢ < n.

Assume that k € Obs, is not an FTL-observer, i.e. that k lies inside*®” the two
photon-planes. Then we define f;,, so that

frm(1:) € &k \ {0},
frm(0) = 0,
fkm(lz) =1, for0<i<n.

Assume that k£ € Obs, is an FTL-observer, i.e. that k lies outside the two photon-
planes. Then we define f;,, so that

fim(12) € £\ {0},

407Here “inside” means that “in the same part where £ lies”.
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fkm(lz) = 1t>

flcm(]-z) = 1z for1 <i<n.

See Figure 157.

If £ € Obs is parallel with k; € Obsy, then we define fx, to be a translation as in
the proof of Thm.4.3.21, and we define fy,, = fxx, © fx;m- It is not difficult to check
that the model so obtained is a model of Bax™. |

We note that Thm.4.3.24 is in contrast with Thm.4.3.25.

We will discuss how the paradigmatic effects behave in some important theories of
Bax™ in §4.8. We close this part by asking some questions concerning the symmetric
version of Bax™, in accordance with our section §4.2.

Questions for future research 4.3.26

(i) What is the theory Th, o (Bax™ +c¢p,(p, d) < co+Ax(symm) + Ax(Triv) +
Ax(||) + Ax(v")) like? Does it prove any of the potential theorems (or
axioms) discussed in this work? We note that this theory still admits “Galilean
models”, cf. the proof of Thm.4.3.22. The proof of Theorem 4.3.22 also shows
that Th; = Flxspecrel.

203



k’s world-view

k1’s world-view

Figure 157: World-view transformations in a model with F'TL-observers.
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(i) What is the answer if we add some of the symmetry principles in §2.87 In
connection with this see Thm.4.3.18 (or Thm.5.2.16 on p.759 in §5), which
states that if we replace Ax(symm) in Th; with AxO1, then the so obtained
theory already proves Flxspecrel.

Shapes of light-cones in models of Bax™.

Definition 4.3.27 (Photon-sphere, or light-sphere) Assume 90 is a frame-
model and m € Obs,t € F. We define

Cont o Cone,,, 5 N ({t} x ""'F)
= {p€"F:p,=tand (3ph € Ph){0, p} C trn(ph)}.
c, ¥ Cm,1- See Figure 158.408
<

The photon-sphere has an intuitive physical meaning: if we flash on a light at
time 0 (and place (0,...,0)) for a very short time, then at a later time the photons
created at time 0 will form a so-called photon-sphere. This photon-sphere at time
t is Cp 4. Observer m, at time ¢, will observe the photons created at 0 exactly at
places space[Cy, 1.

Examples. (n = 4) In models of Basax and Newbasax, the photon-sphere C,,
is a (3-dimensional) sphere with center 0 and radius 1. In models of Flxbasax and
Bax, C,, is still a sphere but with an arbitrary radius, or the empty set. So far, in
models of Bax™ we have seen two kinds of light-spheres. In the proof of Thm.4.3.21
we gave Bax™-models where the light-sphere can be the boundary of any bounded
convex set. In the model 9 we gave in the proof of Thm.4.3.25, the light-sphere (of
t) is two parallel planes, see Figures 155, 157 (for n = 3), Figure 159 (for n = 4).
We note that in 9, if m = ¢ flashes on a light at 0, then m will see the following:
at moment 0 the whole zy-plane will flare up, then it will separate into two “walls”
of light moving left and right with speed 1.

108C,, is denoted by C,, 5 in the next section, in the definition of Ax(ii) after Def.4.4.9.
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Figure 158: The “photon-sphere” at time ¢ (n = 3). See also Figure 175.
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Bax Bax™ + ¢ < Bax™ if ¢ = 0o allowed

Figure 159: Shapes of light-spheres in models of Bax™.
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We note that the photon-sphere C,, represents the (partial) function c,,(d) as
follows. Let p € C,,,. Then
Ispace(p)|| = cm(d),

where d is the direction of the line 1;p. See Figure 160.

Figure 160: C,, represents the function c,,(d).
We note that C,, also determines the light-cone:
Cone,,, 5 = U{@ :p € Cpl.
We are going to prove that, in models of (Bax™ + ¢,,(p, d) < 00), the light-cone
is smooth to the extent that the photon-sphere is not broken, i.e. if the speed of light

changes with direction, then it changes gradually, with no sudden change. But the
photon-sphere still can have sharp “edges”, i.e. there can be sudden changes in the
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above rate of change.**® Combining Thm.4.3.29 below and the proof of Thm.4.3.21,
we have that (for n = 3) the following photon-spheres do occur in some model of
Bax™ + ¢, (p, d) < oo:

However, the following cannot occur as photon spheres (in Bax™):

D O

Next we recall some definitions from geometry.

Definition 4.3.28 (convex, boundary, interior) Let p,q € "F and K C "F.

(i) int(p,q) denotes the open interval determined by p and ¢, i.e.

. def __
int(p,q) = {r € pq : Betw(p,7,q)}.
See Figure 161.
(ii) We say that K is convez if (Vp,q € K)int(p,q) C K.

(iii) The convez hull of K is the smallest convex set containing K, i.e. it is
{int(p,q) : p,q € K} UK.

(iv) We say that K is bounded if there is A € TF such that any coordinate of any
point of K is between —A\ and A.

109 Axiom Ax(consm) at the end of this section will exclude such sudden changes in the rate of
change.
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int(p, q)

Figure 161: int(p,q) denotes the open interval determined by p and gq.

(v) We say that p is a boundary point of K if every neighbourhood of p intersects
both K and its complement; i.e. if NN K # () and N\ K # ) for every
neighbourhood N of p. The boundary of K is the set of all boundary points
of K. The interior of K is the set of non-boundary elements of K.

<

Let p € "F be any point distinct from 0. We say that p is a light-point if Op is
the trace of a photon, and we say that p is an observer-point if Op is the trace of an
observer (as seen by m). Now, Cone,, 5\ {0} is the set of light-points. In some sense,
the light-points and the observer-points of a simultaneity determine the world-view
of m. See Figure 149. In models of Bax™ + ¢,,(p, d) < oo, the photon-sphere itself
determines the world-view, see the no FTL-theorem, Thm.4.3.24.

THEOREM 4.3.29 (light-cones are continuous and convex)  Assume
M = Bax™ + cu(p,d) < 0o+ Ax(v/' ), and let m € Obs. Then (i)-(iii) below
hold.

(i) The boundary of C,,’s conver hull is C,,, the interior of Cp,’s conver hull is
the set K of observer-points in S; = {1} x ""'F. Thus K is a convez, open
set with boundary C,,.

(ii) cn(d) is a continuous function of d, in the sense of Def.4.4.8(i),(ii). In this
sense, C,, is a continuous surface.

(iii) C,, is bounded, if § = R, the ordered field of reals.

Proof. Let K denote the set of observer-points in S;. We want to prove that
K is convex, open, the boundary of K is C,,, C,,’s convex hull is C,, U K, and c,,
is continuous.

In the proof we will use the following simple statements. We call a point p # 0
empty if it is neither an observer-point nor a light-point.
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LEMMA 4.3.30 (light-points and observer-points on a line) Let { be any
straight line.

(a) If there is an observer-point on £, then there are at most two light-points on £.

(b) Every observer-point on £ has a “neighbourhood” of observer-points on ¢, i.e.
if p € £ is an observer-point, then there are p,q € £ such that r € int(p,q) and
every point of int(p,q) is an observer-point.

(c) Between an observer-point and an empty point there is a light-point.

(d) Assume that p,q are distinct light-points on £, and r is an observer-point in
¢\ int(p,q). Then every point of £\ int(p,q) is an observer-point.

(e) Assume that there is a light-point between the two observer-points p and q.
Then every point of pq \ int(p,q) is an observer-point.

Proofsketch. (a). Assume that £ € ¢ is an observer-point on ¢, and
phy, phy, phy are distinct light-points on ¢. See Figure 162. Then in k’s world-
view, the traces of k and phy, phy, phy are in one plane (by Thm.4.3.11). Hence
phy, phy, phy are all moving (backwards or forwards) in direction d, for some d.
Thus at least two of them move in the same direction, with different traces. This
contradicts AxP1.

(b)-(e): Let £ be a line and let k& be an observer-point on ¢. Then in £’s
world-view, £ is a line intersecting t. Plane(t, fx(£)) looks like on Figure 163, by
M = Bax™ + cp(p, d) < 0.

One can check that (b)-(e) hold for every line ¢ in this plane which does not

contain the point fg,,,(0). &

Now we turn to proving Thm.4.3.29.
Proof of Thm.4.3.29.

K is convex: Assume that p,q € K and r € int(p,q). We have to show r € K.
Assume the contrary, i.e. assume that r is either an empty point or a light-point.
If r is an empty point, then there is a light-point between r and ¢. So in either
case, there is a light-point between p and ¢g. Thus by Lemma 4.3.30(e), all points of
pq — int(p, q) are observer-points. Let ¢ be such that 1, € £ and ¢ || pg. Let s be an
empty point on £. There is such by Thm.4.3.24. There is a light-point u between
p and s by Lemma 4.3.30(c). Let k be the intersection point of pg and 1,u. Then
k is an observer-point since k ¢ int(p, ¢). But then k is a faster-than-light observer
because k ¢ int(1;,u). This contradicts Thm.4.3.24. See Figure 164.
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Figure 162: On a line with an observer-point there are at most two light-points.

K is open: Recall that S(p, ) denotes the e-sphere with center p in "F. Let p €
K, we have to show that S(p,e) C K for some € € F. We use Lemma 4.3.30(b) and
convexity of K. Figure 165 shows the idea of the proof for n = 3,4. (¢, s, ¢35 C S;.)
We hope that Figure 165 is sufficient for recovering the proof.

C,, (and c¢,,) is continuous:*'°

Assume that p € C,,, and ¢ € F. We will show that there is a § such that for

every q € C,,, if the angle between 1,4 and 1;p is smaller than 4, then ¢ € S(p,¢).
See Figure 166.
(We work in Sy.) Let p’ € int(1:,p) and e; € F be such that S(p',e1) € KN S(p, e).
Such p',e; exist by the openness of K. Let ¢’ be the mirror image of p’ w.r.t. p.
Then every point in S(¢’, 1) is the mirror image of a point in S(p’,£;). Hence by
convexity of K and p ¢ K we have that no point in S(¢’, &) is an observer-point.
Now ¢ as on Figure 166 will do.

The boundary of K is C,,: Every point of C,, is in the boundary, because if
p € C,,, then every point in int(1,p) is an observer-point while every point in
int(p,r) is an empty point if p € int(1y, 7).

On the other hand, assume that p ¢ C,,. If p ¢ S;, then p has a neighbourhood

410The theory of convex sets is rather extensive, see e.g. Valentine [261], or any book by Victor
Klee. Most likely, it is a known theorem that the boundary of a convex, open set is continuous.
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Figure 163: Types of lines with an observer-point.

Figure 164: If every point of pq \ int(p, q) is an observer-point, then one of them is
an FTL observer-point.
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0 b

Figure 165: K is open.

Q the light-point
must be here

Figure 166: Tllustration for proof of continuity of c,,.
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disjoint from S; O K. If p € K, then p has a neighbourhood which is a subset of
K, because K is open. Assume that p is an empty point in S;. Look at the line
¢ = 1;p. There are ¢, € £ such that ¢ € K,7 ¢ K and r is the midpoint of the
segment ¢gp. Let S(q,¢) C K, r ¢ S(q,e). Then S(p,¢) is disjoint from K, as we
have seen in the proof of continuity of c,,.

The convex hull of C,, is K U C,,: This follows from the fact that K is convex
and C,, is its boundary, as follows. Let p,q € C,,, and r € int(p,q). Assume
r ¢ K, we will show that r € C,,. Since p, ¢ are in the boundary of K and K is
convex, every neighbourhood of r contains a point from K, see Figure 167. Since
r ¢ K, then every neighbourhood of r contains a point both from K and from its
complement, i.e. r is in the boundary of K. Thus r € C,, as was to be shown.

Figure 167: The convex hull of C,, is C,, U K.

K is bounded if § = R: We will use continuity of C,,. Assume that K is not
bounded. Let p € K. Then for each 7 € w there is ¢¢ € K such that |p — ¢*| > 1.
Then there is a direction to which the directions of pg’ , i € w come arbitrarily close,
because § = R.*! Let pg have this direction. But then, by continuity of C,,, no
light-point can be on the line pg. See Figure 168. 1

411This can be proved by induction on n € w, where p, ¢’ € "R for i € w.
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Figure 168: Illustration for the proof of boundedness of C,,.

Remark 4.3.31 It seems to us that the condition “F = fR” is necessary in Theorem
4.3.29(iii). I.e. if § is not isomorphic to MR, then one can construct a model of
Bax™ + ¢,(p,d) < oo with field-part § where C,, is not bounded for some m.
On the other hand, we conjecture that in models of Baxy + ¢,,(p,d) < oo to be
introduced soon, the condition “F = R” is not necessary for C,, to be bounded.
The key idea here is that an ordered field § is isomorphic to the ordered field R of
real numbers if and only if § is complete in the sense*'? that each bounded infinite
subset H C F has a density point (i.e. a point p € F which arbitrarily close contains
an element of H different from p). <

Question for future research 4.3.32 Isit true that the boundary of C,,,’s convex
hull is C,,, in models of Bax™, without the assumption ¢, (p, d) < co? <

Improving our theory Bax™ to Baxj, (smoothing out the light-cone)

We will base some of the (relatively important) future theories like Reich(Bax)
on Bax™, therefore, it is worthwhile to ask ourselves whether Bax™ is strong enough
in some natural respects. This will yield the reinforced version Bax, of Bax™ which

4121t can be proved that this notion of completeness is equivalent to Dedekind completeness.
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we will need e.g. in answering some of our why-type questions, cf. §4.8 (Thm.4.8.9
on p.649).

We already proved that c,, is continuous in models of Bax™ + ¢, (p, d) < oo, and
we mentioned that we did not know whether e.g. strong continuity*'® was provable.
Questions like this motivate the following definitions. Also, clearly ¢, (p, d) does not
have a derivative in some of the models of the above mentioned theory, cf. Figure
159. From the physical point of view, it is very natural to assume that ¢, (p,d)
is strongly continuous and has a derivative. This is, among others, what we will
require in Baxj .

First we need to spell out some (otherwise well known) definitions in first-order
logic, i.e. in our frame language.

Notation 4.3.33 f: A — B abbreviates A O Dom/(f) i> B, i.e. it abbreviates
that f is a partial function from A to B.

<

Definition 4.3.34 (derivative f’ of f.)

(i) Let 9t be a frame model and assume f : F — F' is a function (first-order)
definable in 9 with possibly using parameters. Then the derivative f': F —
F is another definable partial function, defined (from f) by the usual first-order
formula.*'* That is:

(vaye ) (f@)=y
(Vee TF)(F6 e T (VA e 0 < |Al <6 =
= y—¢< 8@ <y+5]).

(ii) The definition is extended to the case f : F — F U {oo} the natural way: we
let co — 2z = x — 0o = o0, and co/z = oo, further, co — co = 0, for z € F.
(But Rng(f') C F by definition.)

<

Let us recall that for m € Obs™ the function c,, : directions — F U {oc} was
defined by ¢, (d) = ¢, (0,d). Therefore ¢, : " 'F — F* is a typical n — l-ary
function (undefined on 0 but defined everywhere else).

This motivates our discussing k-ary functions ¢ : *F — F, with k¥ € w. For
simplicity, assume k& = 3. From category theory we borrow the notation g(—,y, 2)

413

strong continuity is defined in Definition 4.4.8 on p.536.
4140f the usual notions of a derivative, ours is only but one.
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for the unary function g(—,y, 2) ) (9(x,y,2) : © € F) which is obtained from

g by fixing its arguments y and z such that the resulting function has only one
argument z. The function g(—,y, 2) is specified by three data: g,y,z. Similarly,

g(x,—, 2) def (9(x,y,2) : y € F) etc. Thus, for any fixed g : 3F — F, and y,z € F,
we have g(—,y,2): F — F.

Definition 4.3.35 (partial derivative 0;f of f)

(i) Assume g :*F — F is definable (with parameters) in 9 (analogously with the
situation in Def.4.3.34). The partial derivative 01 g oo 0;9g is a partial function

(alg) : 3F —0) F

defined by (019)(z,y, 2) o (9(—,y,2)) (x). Le. for any fixed y,z € F we
have (019)(—, vy, z) = (9(—, y, z))’ which is the derivative (cf. Def.4.3.34) of the
unary function g(—,y,2) : F — F.

Similarly, (959)(,y,2) © (g(z, —, 2))'(y) etc.

Summing up, d;g : °F — F is a partial function defined by a first-order
formula in the style of Definition 4.3.34.

(ii) The generalization to g : *F — F, with k € w is the obvious one.

(iii) The reason that we write 0; for 0, (instead of writing dy) is that in §2, we num-
bered our “coordinates” ¢, z,y, z by 0, 1,2, 3 (so that the space part (x,y, z) of
a “space-time” vector (t,z,y, z) gets conveniently numbered by 1... [instead
of, say, something like 2...]).

<

Now we are ready for defining our axiom Ax(consm) stating that the light-
cone Cone,, 5 is of a reasonably smooth shape (i.e. is not “broken”, contains no
discontinuities etc).

Recall that c,, : directions — F' U {oo} is a function with domain directions =
n=1F\ {0}. Therefore, when we say things like c,, is everywhere “nice” (where nice
may be “continuous”, or “has a derivative” etc), then we do not claim that it is nice
at value 0 (since 0 ¢ directions).

Ax(consm) & Ax(cnsmg) + Ax(cnsm;) + Ax(cnsms,),
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where the latter are defined below.*®

Let us notice that “c,, is nice” as an axiom means “(Vm € Obs)c,, is nice”.
The notion of strong continuity is defined in Def.4.4.8 on p.536 (in §4.4).

Ax(cnsmy) ¢, is a strongly continuous function defined on directions.

Ax(cnsm;) For all 0 < i < n, the partial derivative (9;c,,) : directions — F
is everywhere defined on the domain directions*'® (of ¢,,).

Ax(cnsmy) For all 0 < i < n, d;cp, is strongly continuous on the domain
directions.

Intuitively, our new axiom Ax(consm) says that c, is a strongly continu-
ous function having a derivative which is also strongly continuous (on the domain
directions). This means that the “light-sphere” C,, cannot be like any of these:

O

But it may be anything like this:

>

415Tn naming this axiom, “consm” abbreviates the expression “cone-smooth”. The full name of
this axiom is aziom of cone-smoothness .

416Gince directions C "~ F and 0;c,, was defined to be a partial function on "~ F, the only special
thing about 0 here is that 8;¢,,,(0,0,0) is not defined. But this whole thing about 0 is only an
“administrative” issue here, since the important arguments d for ¢,, are vectors of length 1.
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Definition 4.3.36 (complete ordered field) Let § be an ordered field. § is said
to be complete iff for any ordinal «, all Cauchy sequences of elements of § indexed
by « have limits in §. Formally:

(Va € Ord)(Vs € “F)[s is Cauchy = l,iem s; exists in §].
<

We note that the above notion of completeness is strictly weaker than Dedekind
completeness, namely there is a proper class of non-elementarily-equivalent complete
ordered fields (this is not true for Dedekind complete ordered fields).

If our field ™ is incomplete (which is allowed even in Basax), then the light-
sphere in Figure 169 seems to be consistent with Ax(consm).

S]]

inside of light-circle

ya :

Figure 169:

In the figure, the direction d parallel with the sides of our light-sphere does not
exist in our " 'F. This can be imagined by embedding ¥ into a bigger §+ and
choosing d € ""'F* such that |d| =1 and d ¢ "' F.

Let us also notice that in Ax(consm) we do not require the existence of a second
derivative of c,, representing the light-sphere. Roughly, our axiom requires that at
every point on the light-sphere, there is a tangent-line touching the light-sphere
and that the “slope” of this tangent-line changes gradually as we move along the
“sphere”.

As we mentioned after Definition 4.3.27, the photon-sphere does have an intuitive
physical meaning: If we flash on a light at time 0 for a very short time, then at a later
time the photons created at time 0 will form a so called photon-sphere. Our axiom
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says that this photon-sphere is not “broken” and has no sharp “edges”. In other
words, if the speed of light changes with direction, then it changes gradually, with no
sudden changes, and moreover with no sudden changes in the rate of change, either.
As we said, we claim that this axiom is a very mild and reasonable assumption from
the physical point of view.

Definition 4.3.37 (The smooth versions of our theories)
(i) Bax, © Bax~ + Ax(consm).

(ii) Let Th be a theory in our frame language. Then

Thy < Th + Ax(consm)

is called the cone-smooth version of the theory Th.

THEOREM 4.3.38 Let n > 2. Then
(i) Bax™ %~ Bax,.
(ii) Bax™ + ¢u(p, d) < oo = Bax, .

Idea of proof. We saw in the proof of Thm.4.3.21 that the photon-sphere C,, can
be a rectangle in models of Bax™ + ¢,,(p, d) < oc. 1

Questions for future research 4.3.39

(i) How much of Ax(cnsmy), i < 3 follow from Bax™ + ¢,,(p, d) < co? We know
that continuity of c,, follows, but we do not know what the situation with
strong continuity is.

(ii) The theory Reich(Bax) will be introduced in section 4.5. What is the answer
to (i) with Reich(Bax) in place of Bax™?

521



We will see in §4.8 that axiom Ax(consm) can help in proving relativistic effects
for a theory. In particular, about the Reichenbachian theory Reichy(Bax), we will
be able to prove more relativistic effects than about Reichy(Bax).*'" See Thm.4.8.9
on p.649. Discussing the “why-type” questions in the framework of the lattice of our
distinguished theories (cf. e.g. Figure 180), we will find that Reichy(Bax), is the
first (or weakest) theory where real relativistic effects (in the sense of §2.5) begin to
appear. E.g. in Baxy + ¢, (p, d) < oo we have no paradigmatic effects (except for
FTL), because in the proof of Thm.4.3.21 we said that we can take any convex set,
and therefore here it is enough to observe that then we can take a very smooth one,
too.18

Conceptual analysis of relativity, connections with the literature

Remark 4.3.40 (Connections with Friedman [90])

Our introduction (and study) of Bax and Bax™ can be viewed as a continuation of
the conceptual analysis of relativity started in Friedman [90] p.159 §IV.6. Namely
Friedman [90, p.159] introduces informal axioms (P1), (P2) and (P3) for the pur-
poses of conceptual analysis of the usual axioms about the speed of light, showing
up in various versions of relativity theory. Let us recall Friedman’s principles (P1),
(P2) and (P3) concerning the speed of light.

(P1) The constancy of the velocity*!® of light: Light is propagated with a constant

velocity ¢ independent of the velocity of its source.

(P2) The invariance of the velocity of light: Light has the same constant velocity
c in all inertial reference frames.

(P3) The limiting character of the velocity of light: No “causal” signal can prop-
agate with velocity greater than that of light.

417However, this may be our fault only, i.e. we do not have a counterexample.

418 A more detailed study of the paradigmatic effects in terms of our hierarchy of theories comes
in §4.8.

419Friedman uses the word “velocity”. In certain contexts we will use the word “speed” instead
(cf. Gardner [98, p.7]) and cf. p.48 herein.
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(P1) says that photons move rather like sound moves and not like bullets (emitted
from guns) move: the velocity of the gun from which a bullet is emitted adds to the
velocity of bullet, while the velocity of sound depends only on the medium in which
it is propagated. When saying that the velocity of light is independent of the velocity
of its source, we mean that photons emitted at a point p of space-time, in direction d
by various sources of light, like e.g. by a moving light-bulb and another non-moving
light-bulb, have the same speed. By saying that this speed is “constant”, we mean
that all light bulbs at a particular point of space-time in a particular direction can
emit photons with the same single speed only.*?® Since we do not talk in our lan-
guage about “sources” of light, or “emission” of light, it seems that it is a good
formalization of (P1) if we say that at any point p of space-time in any direction
d, there is at most one photon trace. This is what AxP1 says. So, the velocity of
light-particles depends only on two data: (i) the point p of space-time where the
light-particle is emitted, and (ii) the direction d in which the light-particle goes (and
this velocity does not depend on other things, e.g. not on which light-bulb emitted
the photon). At the beginning of the present section, in Remark 4.3.5 we denoted
the speed of this photon as seen by observer m as ¢,,(p, d). We will start using this
notation again in the next section (§4.4) beginning with p.535 in item (x) there.
Then (P2) says that ¢, (p, d) does not depend on m, p or d. We consider Bax™ (cf.
Def.4.3.7) as the completely formalized*?! counterpart of (P1). We consider Bax
as the formalized counterpart of (P1 + Weak Principle of Isotropy), where Weak
Principle of Isotropy (WPI) is formalized as Ax5F" above 3.4.16 (on p.219). Fur-
ther we consider Flxbasax as the formalized counterpart of (P2).%22 We note that
(P1+WPI) B~ (P2). When one uses a principle like (P1), usually one takes as granted
some background axioms. In special relativity such a background axiom is e.g. that
the traces of inertial bodies are straight lines. We will take as background axioms
Ax1, Ax2, Ax3y, Ax4, AX5ppn, AX50ns, AX6gg, Ax6g;, AXxEq; which seem to be
implicitly assumed in all versions of special relativity in Friedman [90]. We will call
the collection of these “trivial” axioms SPRy, where the abbreviation SPRy refers
to “the trivial part” of the Special Principle of Relativity (SPR) in the sense of
Friedman [90, p.149, principle (R)]. Now the formalized version of (P1+SPRy) is
Bax™, the formalized version of (P1+WPI+SPRy) is Bax, and Flxbasax will turn
out to be the formalized version of (P2+SPRy) [cf. Propositions 4.3.41, 4.3.42]. For

420This is in accordance with [90, p.160], where it is said that one of the most important conse-
quences of (P1) is that we have a so-called light-cone (in each point). We will elaborate on the
light-cone aspect more in §4.4, but cf. also Remark 4.3.5 (p.473).

421in first order logic

122However, occasionally we will use Newbasax instead of Flxbasax as the counterpart of (P2).
We are allowed to do this because Newbasax is very close to Flxbasax. We will be motivated

to do this because Newbasax is one of the “main characters” of this work.
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completeness, we note that (P2+SPRy) = WPI. We admit that Bax is only one of
the possible formalizations of (P1+WPI+SPRg). Another possible formalization of
(P1+WPI+SPRy) is Reich(Bax) in §4.5 way below (at least in a certain sense).
We sum this up in the following table:

Bax™ is the formalization of (P1) + SPRy.
Bax is the formalization of (P1) + (WPI) + SPRy.
Flxbasax is the formalization of (P2) + SPR,.

Newbasax is very close to Flxbasax, therefore Newbasax is very close to being
the formalized counterpart of (P2+SPR;). We note this because Newbasax is one
of the “main characters” of the present work, while Flxbasax is not. Therefore if we
want the formal counterparts of Friedman’s principles in terms of main characters of
the present work then we get Bax™, Bax, Newbasax for (P1), (P1+WPI), (P2),
respectively, cf. the above table.

For completeness, we note that we never assume Friedman’s (P3) as an axiom for
the following reason: Part of (P3) turns out to be a theorem of our Newbasax (and
also of Bax) (hence of Friedman’s (P2) + Special Principle of Relativity, too) [cf.
Theorems 3.4.2, 3.4.19 herein|, while the other part of (P3) concerning bodies which
are not observers does not seem to be needed in any part of developing the theory.
Actually, we do have some philosophical reasons for not assuming this second part
of (P3).

We should emphasize that our principle SPRy is strictly weaker than Special
Principle of Relativity in Einstein’s 1905 paper. Therefore we do not call our SPRy
“Special Principle of Relativity” outside this remark. Our reason for not using the
original Special Principle of Relativity is that (it is so strong that) it would blur
the distinction between (P1) and (P2) (as indeed is pointed out in Friedman [90,
p.160]).4%

As we said, we will return to more careful (or thorough) considerations concerning
the first-order formalization(s) of Friedman’s principle (P1) in §4.4 way below.

<

Propositions 4.3.41, 4.3.42 below serve to illuminate parts of Remark 4.3.40
above. Principle SPRy (= Bax™ \ {AxP1}) was introduced in that remark.

423In the present work, we study formalized instances of Einstein’s SPR under the name “sym-
metry axioms”. An example is Ax(symm) in §2.8. Cf. also §§ 5, 3.8, 3.9. Usually, into these
symmetry principles we do not include the trivial part SPRy. The reason for not including SPRy
is the goal of “decomposability” of our theories into weaker subtheories formulated e.g. in §1.1.
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Whenever we state a proposition beginning with “assume Ax(y/ )” this means
that Thy | Thy abbreviates the longer statement

Th; + Ax(v') E Thy + Ax(v/" ).
PROPOSITION 4.3.41 Assume Ax(v/ ). Then (i)-(iii) below hold.
(i) SPRy + AxEq, = Newbasax.
(ii) SPRy + AxEg2 =/ Flxbasax.
(iii) SPRo + Ax57" + AxP1 == Bax.

On the proof: The proofs of items (i), (ii) are straightforward. Item (iii) follows
by Prop.4.3.6(ii). ®

PROPOSITION 4.3.42
(i) (SPRO \ {AXEOl}) + AXEO ): Newbasax.
(ii) SPRy + Ax5P" + AxP1 E Bax.

On the proof: The proof of item (i) is straightforward. The proof of item (ii) is
similar to the proof of Prop.4.3.6. 1

Remark 4.3.43 (On a possible more balanced formulation of our axiom systems
studied so far)

We could have chosen the speed-of-light-free part of Bax and of Newbasax to be
SPRy. In more detail, let

Basax’ := SPR, + AxE + Ax6,
Newbasax’ := SPR, + AxE,,
Flxbasax’ := SPR; + AxEg,,
Bax’ := SPR; + AxEg,
Bax™ := SPR, + AxP1.

These, “more balanced” versions are equivalent with the originals as Prop.4.3.44
below says. (We note that Prop.4.3.44 below is an organic part of the present
remark [Rmk.4.3.43].)

Proposition 4.3.44 For simplicity assume Ax(v/ ). Then (i)-(iv) below hold.

(i) Basax =E Basax'.

(ii) Newbasax == Newbasax'.
(iii) Flxbasax = Flxbasax'.
(iv) Bax = Bax'.
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We omit the proof. 1

Let us disregard Ax(v/ ) for a while. Then it would have been a possibility to define
Newbasax as Newbasax’ is defined now. Then the hierarchy

Newbasax — Flxbasax — Bax — Bax™

could have been developed (i.e. defined) by gradually weakening only the speed of
light axiom AxE, AxEy, ..., AxP1.

Another advantage of switching to the SPRy based systems Newbasax' etc.
would be that probably the new systems Newbasax', Flxbasax', Bax' would be
“logically independent in a greater extent” in the intuitive sense, that they would
be more “balanced” as the notion of being balanced*?* was explained in item (ii)
of the introduction to §3.3. However, to outline the above plan of “streamlining”
or “balancing” our hierarchy Newbasax — ... — Bax™ of axiom systems, we
had to ignore Ax(v/ ). This is so because Ax(v/ ) was needed in Prop.4.3.44.
However this need for Ax(v/ ) is not very deep, namely it was caused by a fairly
arbitrary decision we made when formulating Bax™ (namely we assumed that there
are photons moving in every direction).

It could be an entertaining experiment (for the future) to refine our axiom sys-
tems such that the above plan would be realized (i) in a natural fashion*?® and (ii)
without having to disregard Ax(y/ ). However, here we do not go into this experi-
ment any further.

<

424Balanced = “the proof theoretic power is evenly distributed among the axioms”. What we
mean by balanced here is the same what we call “having good decomposability” in footnote 423
on p.524.

425Tn their present form, Ax5pp and Ax50ps would look somewhat artificial for the reader who
would meet them when first seeing Newbasax at the beginning of §3.3.
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4.4 On the careful formalization of Friedman’s principle
(P1); a hierarchy of weak, general axiom-systems

Here, among other things, we will experiment with pushing the process of weakening
our speed of light axiom (AXE — ... — AxP1) to the extreme.*?® (For this of
course we will have to adjust those other axioms too which involve photons.) This
section has a slightly different nature from the previous ones. Much of what we do
in this section is of an experimental character and is less polished than the other
parts of this work. The reason for this is that the main purpose of this section is
to broaden the scope of our imagination. We will not use in later parts the axioms
and axiom-systems introduced here.

Bax™ contains only two very natural assumptions about photons, which seem
to be acceptable even if one knows nothing about the Michelson-Morley experi-
ment. These assumptions are: (i) Photons are not like bullets, in the sense that
photons moving in the same direction have the same speed (they cannot overtake
one another).*?” (ii) Photons are not like sound, in the sense that if an observer m
points his flashlight in a direction d, then the photons emitted by the flash-light will
move forwards in direction d (as observed by m, of course). le. no “ether-wind”
can “blow” all the emitted photons backwards (i.e. no “ether-wind” can “blow” the
light-cone completely off the time axis ¢ as illustrated in Figure 170).*?® In this
respect, light behaves differently from sound. In the previous section we saw that
these two natural weak assumptions on photons suffice to prove quite a lot, espe-
cially if we add the postulates of finiteness of speed of light, or a symmetry principle.
(E.g. the worldview transformations are collineations, light-cones are alike (at each
time and place), there are no FTL observers if the speed of light is finite, and we
can derive the flexible version of special relativity if we assume a symmetry prin-
ciple and finiteness of speed of light. Cf. items 4.3.11, 4.3.17, 4.3.18, 4.3.24.) In
this section we remove the second assumption on photons, and therefore we will
make many analogies with sound. One can also view this section as a discussion of
what the consequences of light being different from sound are.*?® Although it is not

4261n a sense, this process will culminate in our chapter §5 where we will not mention the speed of
light (or photons for that matter) at all. However, this way of connecting §5 to the present section
might be slightly misleading, because in the present section we are preparing our imagination for the
“patterns” which we might encounter in our chapter 8 (“Accelerated Observers”) and eventually
in general relativity while §5 has no such ambitions.

427 This is formulated as axiom AxP1.

428This is formulated as Ax5pp,.

4290ne can do this by comparing the theorems in the present section with those in the previous
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customary to compare light and sound, here comparing them will provide a useful
analogy.

In this section we will be more “thorough” in formalizing Friedman’s principle
(P1), arriving at axioms weaker than AxP1.%3% The main new idea is that, drawing
from the analogy with speed of sound, we allow that a photon supposed to move
forwards in direction d, actually moves backwards in direction d (in the analogy with
sound the reason may be either that there is a wind, or that our observer — e.g. a
supersonic airplane — moves faster in direction d than sound).** In §4.3 we already
had “tilted” light-cones, in the present section we will allow light-cones tilt so much
that the time-axis will no longer stay inside the cone. See Figure 170.

(S

t

QL
<

Figure 170: We will allow light-cones tilt so much that the time-axis will no longer
stay inside the cone.

In our previous formalization Bax™ of (P1), for any observer m, and for any
direction, say the direction marked by the vector 1,, there is a photon moving
forwards in direction 1,. If we keep the analogy with sound in mind, and if we do
not want to exclude FTL observers (at least not a priori), then one might imagine
that for some observer m a photon supposed to move forwards in direction 1, might
seem to be moving (slowly) forwards in the opposite direction —1,. Then m would
see two photons moving along the z axis, one moving forwards with speed say 0.1 in

one.
430(P1) was recalled in Remark 4.3.40 in §4.3.
431Tn the literature of relativity, this kind of hypothetical “wind” is often called ether-wind.
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direction —1, while the other moving forwards with speed say 1.1 also in direction
—1,.

In our first refined formalization of (P1), in AxP1", we will still require that
from any point p of space-time, in any direction there are at most two photon-traces
(moving forwards or backwards in this direction). This way we will arrive at a
very weak system Bax~~. Then we will add various restrictions concerning (i) the
shapes and “behaviors” of light-cones and (ii) the “local relationship” between the
light-cones and the observers.**? These additional restrictions (i.e. axioms) will lead
to a hierarchy of axiom systems stronger than Bax™~ but weaker than Bax. We
refer the reader to Figure 180 on p.552 for this hierarchy.

Let us turn to formulating the speed of light axiom, AxP1~ of Bax™~

AxP1~ (Vm € Obs)(Vp € "F)(Vd € directions)
(‘{trm(ph) : p € tr,,(ph) & ph is moving in direction*** d & ph € Ph}‘ < 2).

Intuitively: For any observer m and point p, in any spatial direction d, m will
observe at most two kinds of photons “starting out from p”, one supposed
to move forwards in this direction, while the other one supposed to move
backwards. See Figure 171. Thinking further on the analogy with supersonic
airplanes (and the velocity of sound), we conclude that in some directions there
might be only one photon, and still in other directions there might be none.
To illustrate this, consider Figure 171. Since the light-cone (or sound-cone for
airplanes) only touches the plane Plane(, i) there will be only one photon in
direction 1,. This corresponds to the case when the supersonic airplane moves
exactly with the speed of sound.*3* If the airplane goes a bit faster, then there
will be no “photon” (or sound wave) in direction 1,.

Our AxP1 is still a formalization of Friedman’s (P1) which says that the speed
of light does not depend on the velocity of its source. We turn to defining the
axiom system Bax™~, which could be considered as a careful (or almost finicky)
formalization of Friedman’s (P1). To do this we will replace AxP1 by AxP1" in
Bax™. We note that (Bax™ \ {AxP1})+{AxP1"} is equivalent with Bax™ under
the assumption that there are no photons with infinite speed.*® To obtain a weaker
axiom system than Bax™ we have to replace Ax5pp and Ax50ps by Ax5p,, and

432These type (ii) restrictions can be regarded as being motivated by features of general relativity.

43335 seen by m

434Here we disregard the fact that this might destroy the plane.

435This is so because {Ax5pp, AxP1™, AxEo;} | AxP1 under the assumption that there are
no photons with infinite speed.
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Figure 171: Illustration for AxP17: In some directions there might be only one
photon, and still in other directions there might be none.

Ax5,, below, respectively. (This is natural, since the mentioned axioms do involve
photons).

Ax5p,, Assume observer m sees photons ph; and ph, moving forwards in directions
d, and dy, respectively, through point p of space-time. Then for any direction
ds in between d; and ds, and distinct from d; and ds, m sees at least two
photons with different life-lines, one of which is moving forwards in direction
ds. Here we say that dj is between d; and d, iff there are p, A € TF such that
ds = p-dy + A+ dy. Every observer m at every point p of space-time sees at
least two photons, which are moving in different directions.

To formulate Ax5g,,, we will use Def.4.4.1 below.

Definition 4.4.1 Let /1, /5 € Eucl and p € "F such that ¢;N¢y = {p}. Let £ € Eucl.
Then ¢ is between ¢1 and £y iff p € £ and there is ¢ € Eucl such that ¢ || ¢' and there
are ¢ € £'N ¢y and r € £' N {4y such that ¢ # p and time(q) < time(p) < time(r), see
Figure 172.

<

Ax5(,,, Assume observer m sees photons ph; and ph, moving in direction d through
point p of space-time and ¢r,,(ph;) # tr,(phy). Assume ¢ € Eucl such that
¢ is between tr,,(ph;) and tr,,(ph,) . Then there is an observer k such that
trm(k) = £.
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Figure 172: Tllustration for Def.4.4.1: £ is between ¢; and /5.

Definition 4.4.2

Bax ~ & (Bax™\{AxEg1, Ax5ph, Ax50bs, AXP1})U{AXx55,, AX55,., AXP17}

<

Notice that we omitted AxEgy; which says that the speed of a photon is not 0.

Beginning with AxP1] below, and ending with item 4.4.5 on p.534, we will
experiment with adding to Bax™ "~ a particular kind of axioms which concern the
“local relationship” between light-cones and observers.*3¢ After this part (i.e. after
item 4.4.5) we will look into different kinds of axioms which concern the “shape” of
the light-cones. Since these two different kinds of axioms can be used independently
of each other, the lattice on p.552 will branch out above Bax™ ™. The left hand side
will represent the local relationship axioms while the right hand side, the shape of
light-cones axioms.

Next, we consider two potential axioms AxP1] and AxP1; which could be
added to Bax™~ to make it a stronger version of Friedman’s (P1).

436These “local relationship” restrictions are motivated by the following feature of general rel-
ativity. According to some space-time diagrams in general relativity, an observer far away from
point p might think that the light-cone at point p is tilted very-very much, but there will be a
“local” observer m, whose life-line contains p and who will “think” that the light-cone at p is not
tilted so much i.e. m, will think that the time axis is inside the light-cone in question. However,
these analogies with general relativity have to be treated with caution, cf. footnote 438 on p.533.
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AxP1] (Vm € Obs)(Vp € "F)(3k € Obs N w,(p))(Vd € directions)
(3ph € PhN w,,(p))(ph is moving forwards in direction d as seen by k).

That is, for every event E there is an observer £ € E such that k£ sees in any
direction d a photon ph € E moving forwards in direction d.

Intuitively, this means the following (when there is no photon with infinite
speed). In any event E there is an observer k which thinks that his life-line
15 inside the light-cone starting at event E. In other words, £ thinks that the
time-axis ¢ is inside the light-cone starting at event E.

By Planes = Planes(n, F) we denote the set of all planes of "F.
AxP1; (Vm € Obs)(Yp € "F)(3¢ € Eudl) ((vp € Planes)({ C P =

(3phy, phy, € Ph) (trm(phl), trm(phy) C P A trp(phy) Ntry,(phy) = {p} A
(£ is between tr,(ph,) and trm(th)))). See Figure 173.

“ | — photons

Figure 173: Hlustration for AxP15.

The reader may ask: what is the role of the line £ in AxP1,? The answer is
this: Let us think about the analogy with the speed of sound. If there is a
wind, then “against the wind” sound goes slower, while “with the wind” it goes
faster. Hence, in direction 1, speed of light ¢, may be small while in direction
—1, the speed c_, might be very large.*®” If we think of airplanes moving

437For simplicity, in this explanation we write ¢, instead of ¢, (p, 15).
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faster than the speed of sound, we realize that (in theory) it is reasonable to
allow ¢, to be a negative number. Imagine e.g. ¢, = —0.1 and ¢_, = 1.1.
Then, moving along the z axis we see two kinds of photons, one with speed
0.1, the other with 1.1 and both moving forwards in direction —1,. So, in
principle, the photon ph, moving in direction 1, might have a negative speed
(—0.1) and therefore ph, might appear to the observer as if it was moving
forwards in the direction —1,. All this is quite natural, if we think of sound
in place of light and if our observer is a supersonic airplane. If we push these
ideas further, we will arrive at the above formulation of AxP15: Here, the
role of ¢ is analogous with the role of observer £ in AxP1]. We can think of
¢ as the life-line of a leaf drifting in the wind.

We note that AxP1; = AxP1™ and, similarly, AxP1] £ AxP1". We turn
to defining axiom systems Bax]~ and Bax; ~ by adding AxP1;] and AxP1; to
Bax™ 7, respectively.

Definition 4.4.3

Baxl__ = Bax™™ + AxP1].

Bax,~ = Bax ~ + AxPI;.
<

We note that in Bax; ~, the two axioms AxP1" and AxP17 might have the fol-
lowing, natural, joint effect (when ¢, (p,d) # 0, 00 is also valid in the model).

For every event E, there is an observer k£ € E, such that for every
(+) direction d k sees ezactly one photon trace going through F
and moving in direction d forwards.

(The existence part of (+) seems to be coming from AxP17 while the uniqueness
part from AxP1".)

Next, we consider an axiom AxP13 which could be added to Bax] ™. The axiom
system obtained in such a way will be called Bax; . We note that in a certain
sense Baxy ~ is motivated, indirectly, by Figure 16.10 on p.220 of d’Inverno [75].%%

438ne has to be careful with these analogies, because in general relativity if a light-cone is tilted
too much (or is unusual in some other way) then that light-cone has to be far away from the
time-axis ¢ i.e. from the life-line of that observer whose world-view is being represented on the
space-time diagram in question.
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AxP13 (Vm € Obs)(Vp € t )(Vd € directions)(3ph € Ph)
(p € tr,(ph) and ph is moving forwards in direction d as seen by m).

That is, each observer m through any point p of its life-line in any direction
d sees a photon moving forwards in direction d. Intuitively, this means (when
there is no photon with infinite speed) that each observer thinks that he moves
slower than light (in the sense that his life-line is inside the light-cone).

Definition 4.4.4

— — def — -
Bax3 = Bax1 + AxP13.

<

Question for future research 4.4.5 Investigate axiom systems Bax™ ", Bax; ~,
Bax; ~, Bax; ™ in the same spirit as we investigated e.g. Bax or Basax. Further,
compare them with our weak axiom systems like Bax™ or Rel(noph), where the
latter will be introduced in § 5. In particular, it would be interesting to know
whether Bax; ~ = Bax™ holds or not. <

So far we studied what we call “local relationship between light-cones and ob-
servers” style axioms (AxP17 etc.). (In Figure 180 they appear on the left hand
side of the lattice.) Next we turn to discussing what we call the “shape of light-
cones” style axioms. (As we said, they can be used independently from the “local
relationship” axioms. This is why Figure 180 branches out above Bax™ 7).

To formulate these assumptions, first we make it explicit that the velocity of
a photon ph depends only on (i) the point p of space-time where ph was created
and (ii) on the direction d in which (according to m) ph is moving. The formal
version of this is condition (x) below. For formulating (x) we first need to formulate
items 4.4.6-4.4.8 below.

The axiom systems introduced in the rest of this section are of an experimental
character. They are not polished carefully, their translatability to our first-order
frame language is not double-checked (therefore some of them might need a minor
adjustment) etc. (All the same, the intuitive idea behind all of them should be
sound.)

Definition 4.4.6 (Directional speed) Let 9t be a frame model satisfying Ax1,
Ax2, Ax3y, i.e. in which traces of inertial bodies are straight lines (or empty). Let
m € Obs, b € Ib and d € directions such that body b moves in direction d (as seen
by m). Then the speed of body b in direction d (as seen by m) is v,,(b) if body b
moves forwards in direction d and is —v,,(b) otherwise. We note that the speed of
b in direction d may be co. We make the convention that —oo = oc. <
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Notation 4.4.7 Let § be an ordered field. Then

1. Recall from §2, p.46 that oo denotes an element not in §.

2. F* :=F U {o0},

the topology on F is the usual one, i.e. a sequence p = (p; : ¢ < A) with A an
ordinal has a limit in this new topology either if it has a limit in the natural
topology connected to §, or if p is cofinal in the sense that (Vr € F)(3In <
A)(Vn < i < A)p; > r (and in the latter case the limit is co). Hence F is not
a closed subset of F*. Also, {cc} is a closed set, but the interval (z, 00| is an
open (moreover a clopen) subset of F>.43

3. §* denotes the extension of § with the single element oo, where the operations
on oo are the usual ones, i.e. (Vz € F) x < 00, 0o = —o0, etc. We note that
$%° is not a field.

<

The formulation and discussion of (x) below will be a continuation of Re-
mark 4.3.5 “On AxP1 and light-cones” (p.473), in §4.3. The definition of ¢, (p, d)
below will be a little bit more general (or more flexible) than the definition of basi-
cally the same function in Remark 4.3.5 (§4.3). The reason is that in Remark 4.3.5
we had AxP1 which ensured, roughly, that a photon “emitted” in direction d for-
wards, would move forwards. Therefore, we were allowed to say that c,,(p,d) is
defined iff there is a photon moving forwards in direction d (at point p). Cf. e.g.
Figure 173. As a contrast, now, by Figure 173, a photon emitted forwards in di-
rection d might move backwards. Therefore, now ¢,,(p, d) might be defined and be
negative. This was not possible in Remark 4.3.5 (i.e. in Bax™). Now we turn to
formulating condition (%) promised way above.

To each observer m there is a partial function
Cm 2 "F x directions — F*°

such that (I), (II) below hold.
()

(I) ¢n(p,d) is defined iff there exists a photon ph moving in di-
rection d (as seen by m) and p € tr,,(ph).

II) cn(p,d) = max{s € F® : sis the speed of ph in direction**°d
(

(as seen by m), and ph € Ph is moving in direction d}.*4!

439We note that these conditions uniquely determine a topology on F*.

935



Note that ¢, (p, d) may be infinite, too.

We often refer to the function c,,, discussed above, as “the ¢, (p, d) function” to
indicate explicitly what the arguments of ¢, are. This is somewhat ambiguous since
¢m(p, d) should be a value in F and the function is just ¢,, but we hope context will
help.

Since we want to use (x) only in models of Bax™~, instead of calling (*) a
condition on our models we could regard it simply as a definition of the function c,,.
The reason for this is that in all models of Bax™ ™ there exists a unique function ¢,
satisfying (*). (But this is not true in arbitrary frame models, or even in Bax™~
without AxP1".)

Let us notice that ¢, (p,d) may be negative. Therefore observer m may see
(or have the illusion, so to speak) that a photon ph which was expected to be
moving forwards in direction d is actually moving backwards in direction d. This
is why in axiom AxP1~ we said only that there are at most two photon velocities
corresponding to a space-time point p and a direction d and did not require that
these two photons should move in opposite directions.

Summing up the “genesis” of (our principles and) Bax™~, principle () is derived
from Friedman’s (P1), and axiom AxP1" is in turn derived from (or justified by)
(). This way, we obtained Bax™~. However, Bax™ "~ is very weak because we
did not say anything about how ¢, (p,d) depends on its arguments p and d. This
motivates the definition of Bax, ™ below, where we will say something about how
¢m(p, d) depends on its arguments.

To define Bax_ ™, first we need Def.4.4.8 below (which is of an auxiliary nature).

Definition 4.4.8 (strong continuity)

(i) A function f: F — F* is called continuous iff it satisfies the usual first-order
formula defining continuity i.e. iff

(Vz € Dom(f))(Vneighborhood N of f(x))
(+) (3 neighborhood H of z) f[H] C N.*2

44045peed in direction d” (is not the same as “speed” and) was defined in Def.4.4.6.

441 et us notice, that condition (%) i.e. the existence of such a ¢, function implies that if there is
a photon moving in direction d (at p etc) then there is one whose speed in direction d is maximal.

442By a neighborhood of x we understand an open interval containing z, but cf. also e-
neighborhood S(p,¢) in item 3.3.1 on p.189. An open interval N contains co if N = {y : y > a}
for some a € F.
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(ii) In similar situations, when a natural metric is available on the domain and
range of f we use the same definition. E.g. let n,k € w. Then a function
f :"F — kF is called continuous iff it satisfies the natural counterpart of
condition (+), using the square of the Euclidean distance in place of |z — y|
in defining neighborhoods etc. In particular a neighborhood in "F' is an open
“ball” (i.e. sphere, cf. item 3.3.1 on p.189).

(iii) Let f : directions — §*°. Then, we consider f continuous if it is such in the
sense of (ii) above.

(iv)
[+ F — F* is called strongly continuous

0

it is continuous and (Vz,y € F)(Vz € F) (z is between f(x) and f(y) =
(Jw between z and y) f(w) = z)]

More formally, the second condition says,

(v) Let f : directions — F* be a continuous function. Then the definition of
strong continuity is analogous with the one in (iv) above, as follows. We
call f strongly continuous iff (Ve € TF)(Vd,d; € directions) [(the square of
the angle®? between d and d;)< ¢ =  (Vz between f(d) and f(d;))(3ds €
directions)(d, is between*** d and d; A f(do) = 2)].**

(vi) Let f : F —» F* be a partial function. Then f is called continuous iff
it satisfies formula (+) in item (i) above. To clarify this definition, we note
that the neighbourhoods N and H (quantified over in formula (+)) are un-
derstood in §. (Hence they need not be subsets of Dom(f).) Further, f

is strongly continuous iff [it is continuous and (Vz,y,z € F)([f(z) < z <

fy) A int(z,y) C Dom(f)] = z € flint(x,y)])|.*¢

443This can be defined analogously with our ang?(¢) on p.46, e.g. we choose to use the directed
line determined by d as we used the  axis and we use the directed line of d; as we used ¢ etc., cf.
the footnote for item (vii) below.

#44This was defined in the formulation of Ax5%, on p.530.

445this is expressible by a first-order formula,

446The only difference with the definition for total functions (in (iv) above) is the extra condition
“int(x,y) C Dom(f)”.
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(vii) The generalization of (vi) to partial functions of directions is the natural one,
as follows. Assume f : directions — F> is a partial continuous function.
Then f is called strongly continuous iff**” (Je € *F)(Vd,d € directions)

([ang2(d, d) < e A (Vd" € directions) (d"is between d and d" = d" €
Dom(f))] = (Vz € int(f(d), f(d')))(3d" between d and d')z = f(d")).

<

As an illustration, we note that in the case of ordinary functions f : F — F, with
§ not complete, continuity without strong continuity looks like in Figure 174.The
missing point indicated in the figure can be e.g. v/2 and § may be the field of
rationals. We then can define f e.g. by f(z) =2ifz > 2 and f(z) =1 if z < V2.
For complete fields “continuity” =“strong continuity”.

f(z)

-

a point missing from F

Figure 174: A continuous but not strongly continuous function

Definition 4.4.9 Let
Bax_ ™~ ' Bax~~ + postulates Ax(i) and Ax(ii) defined below.
<

447 A5 already indicated in a footnote for item (v), ang?(d, d') is the square of the (tangent of the)

angle between vectors d, d’ defined in the spirit of the definition on p.46. Indeed, let p,q € "F\ {0}.

Let H {llp=X-q|l : A € *F}. If min(H) exists, we define ang?(p, q) def min(H). Otherwise,

ang?(p, q) df . (This definition does not “grasp” angles greater than 90°, but we do not need
them. If later such “big” angles would be needed, the definition is easy to adjust.
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Coney, p

Figure 175: Hlustration for Ax(ii).
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Ax(i) There exists a partial function c,, satisfying (x) above such that the following
holds. ¢, (p, d) is a strongly continuous function of both its arguments (p and

d).

Ax(ii) First we formalize this condition for the case n = 3. Let P be the plane
P:={q+(l:+p) : g€ S}. Let Cy,, = PN Cone,,,. Now, we first postulate
that C,,, is homeomorphic**® with a circle in plane S which condition will be
translated to our first-order frame language in Remark 4.4.10 below.**® This
homeomorphism is defined via the usual topology inherited from the space "F.
Let us turn to the case of arbitrary n. Now, (Y, , is defined as above and we
postulate that Cy, , is homeomorphic with the (n—1)-sphere {g € S : |¢| = 1}.
See Figure 175. Further, we postulate that (3p € P)

Vline £ C P)[p € ¢ = [ intersects C,,, at most*° in two points].45!
7p

By some accident, the above homeomorphism condition excludes the case when
¢m(p, d) is infinite in some (or all) directions d. We did not want to exclude this, but
it would make the formulation of Ax(ii) too complicated to remove this undesirable
side effect (one possibility would be to add the line (or a circle) of infinitely distant
points to plane P etc.) Anyway, instead of “formal manipulations” we informally
declare here that we do want to allow ¢,,(p,d) = co. Indeed, the first-order version
of Ax(ii) in Remark 4.4.10 below will allow ¢,,(p,d) = oo (and will still require
that, in some sense, Cy,, is a “closed curve” like a circle is).

Remark 4.4.10 (First-order formulation or approximation of axiom Ax(ii)

in Bax ™)

1. On the intuitive idea of the first-order formalization of Ax(ii). If the light-cone
contains t like this:

448By a homeomorphism (between two topological spaces) we understand a continuous bijection
h whose inverse h~! is also continuous.

49This translation will be only an approximation which however seems to work in the most
important situations.

150We write “at most two” instead of exactly two in order to allow the speed of light to be infinite
in some directions.

4511f £ is inside the light-cone, then this condition follows from AxP1”. But if f is outside then
AxP1~ is not enough.
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<

then it is relatively easy to formulate in first-order language what we want.
However, if it is like in the case of a supersonic airplane, i.e. like this,

t

Q)

then formalizing what we want becomes harder. Therefore, we will first use
an affine transformation f which will rotate the light-cone around p such that
t gets inside the cone like this:

Then, whatever we wanted to say about the shape of the original Cone,, ,, we
will say about the f-image f[Cone,, ] of the cone. Since affine transformations
are homeomorphisms, if a topological property holds for the f-image of the
cone then it will hold for the original cone too. Well, this is the intuitive idea,
let us turn to implementing it.

. First we observe, that in the definition of ¢, (p, d) we did not use the observer
m in itself, instead we used the set

Pth,,, == { trn(ph) : ph€ Ph A p € trp(ph)}
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of life-lines of photons. Since Cone,,, = |JPthy,,, we can say that Pth,,, is
also the light-cone (at point p as seen by m) but in a different form.

So, in defining ¢, (p, d) we used Pth,,, (together with "§). Let f :"F — "F
be an affine transformation leaving p fixed. Then we define the binary function
¢l (p,d) the same way as ¢,,(p,d) was defined, but now using the f-image

fIPthy,] == { f[4] : £ € Pth,,,}

of the light-cone Pth,, , instead of the original Pth,, ,. Let us notice that the
speed v,,(b) of an inertial body b (as seen by m) was defined via the line
tr;(b). Therefore we may speak (if we want) about the speed of a line ¢.
Now, we define
ch(p,d) ==

max {s € F* : s is the speed of line ¢ in direction d and ¢ € f[Pth,,,] }.

3. The first-order version Ax(ii)" of (the second-order) Ax(ii) says the following.
Recall that the hyperplane

P={q+1;+p:qeS}
was defined in Ax(ii).

Ax(ii)* (Vm)(Vp)(3 affine transformation f of "F)[f(p) = p A f[P] =
P A (Vd € directions) ¢/ (p,d) is defined A ¢/ (p,d) (or more pre-
cisely {(c/ (p,d) : d € directions)) is a strongly continuous*? function

of d].**® This completes the definition of the first-order approximation
Ax(ii)* of Ax(ii).

4. Now, the purely first-order formulation of

Bax_ ~ is defined to be  Bax™” + Ax(i) + Ax(ii)".

We did not check how well the first-order axiom Ax(ii)* approximates the
second-order one Ax(ii) i.e. how the first-order version of Bax ™ approxi-
mates its original, second-order version. Throughout the discussion below we
assume Bax ™ \ {Ax(ii)}. We conjecture that if " = 9 then Ax(ii)*
& Ax(ii). We also guess, that whenever ™ is complete then Ax(ii)" is a

452Gtrong continuity is defined in Def.4.4.8.

453We note that without the condition f[P] = P we would get an interesting, very permissive
version of Ax(ii)* which can be considered as remotely similar to Swartzshild coordinatization of
black-holes in general relativity.
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reasonably good approximation of Ax(ii). We are not sure whether this ap-

proximation is good when ™ is an arbitrary Euclidean field. (We mean, we
did not check this).

5. Bax ™ is our first axiom system which has a second-order version (using
Ax(ii)) and a first-order version (using Ax(ii)"). It remains a research task
for the future to (i) figure out how well the first-order version of Bax ™ ap-
proximates the second-order version, and (ii) to improve the first-order version

of Bax ™ such that it would become as close to the original intuition as pos-
sible.

Following the rules of the game we set to ourselves in the present work, we

should consider the first-order version of Bax;_ the “official” one, and when-

ever we speak about Bax[ ™ we should mean its first-order version (using
Ax(ii)"). However, using the experimental character of the present section
as an excuse, when speaking about Bax;_, on the wntuitive level of thought,
we will have in mind the first (i.e. second-order) version. All the same, we will
try to avoid explicitly stating theorems which would fail for “the official” i.e.
first-order version of Bax ™.

Conjecture 4.4.11

(i) In Bax ™ something like a “light-cone” already exists. Indeed Cone,, , can be
visualized like a cone-like surface e.g. like in Figure 176.4%*

(ii) Bax}~ = {Cone,,, solidifies into something like a cone-like surface. For
n = 3 the horizontal intersections of this “cone” are closed curves but need not
be circles or even ellipses.}
1t us left to the reader to formalize this statement for n > 3.

<

454For this conjecture we might (or might not) need to make some assumptions on g™ (like
completeness or being Archimedian).
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Figure 176: Cone,,, can be visualized like a cone-like surface.

+_ a little more:

Let us strengthen Bax

Definition 4.4.12
Bax_ def Bax_ ™ + {cm(p, d) does not depend on time, i.e.
(VAL € t)(cm(p, d) is defined = ¢, (p, d) = cn(p + At, d))}
<

Now Bax | implies that the speed of light going in direction d is the same every-
where in the plane Plane(t, d) determined by ¢ and direction d.

Definition 4.4.13 Let
Bax(P1) def Bax | + {cm(p, d) does not depend on p, i.e.

(em(p, d) is defined = ¢, (p,d) = ¢, (P, d) for all p,p’ € ”F)}

We note that
Bax_} < Bax(P1) < Reich(Bax).
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That is, our Bax 7 is still compatible*>> with Reichenbachian relativity where our

formalization of the latter will be introduced in §4.5 of this work (cf. Friedman [90,
pp.165-176].)

We now show that Bax(P1) is weaker than Bax™ in the sense that while Bax™ +
cm(p,d) < oo does not allow faster-than-light observers, Bax(P1) + cp,(p,d) <
oo already allows the existence of faster-than-light observers. Thus, in a sense,
Proposition 4.4.14 below shows why Theorem 4.3.24 is true. It implies further that
the requirement that each observer sees photons in each direction moving forwards
is quite a strong requirement.

PROPOSITION 4.4.14 Assume n > 2. No paradigmatic effects hold in
Bax(P1) + ¢, (p,d) < 0o + the fur’s are collineations. In particular,

Bax(P1) + ¢, (p, d) < 0o + the fi’s are collineations = FTL observer.

Proof. To show that the three basic paradigmatic effects — i.e. clocks slow
down, meter-rods shrink, and events get out of synchronism — do not hold in
Th & “Bax(P1) + ¢,(p,d) < oo + the f,,;’s are collineations” , notice that the
model (in which these effects fail) constructed in the proof of Thm.4.3.21 is also a
model of Th if we choose the parameter K to be e.g. a sphere. The same idea shows
that Ax(symm) — Ax(3ITwP) fails in Th (but using the proof of Thm.4.3.22 in

place of Thm.4.3.21).

To show that the existence of faster-than-light observers is compatible with Th,
we have to give a separate proof, since in this respect Th behaves differently from

Bax™ + ¢, (p,d) < oo (cf. Thm.4.3.24).
Let § dof R,
BY¥ 1b ¥ By,
Ph ¥ {¢ € Eucl : ang?(¢) = 1},

Obs % B\ Ph.

As usual, let m % 7 and define the world-view w,, of m such that trm(b) = b for all
b € B. For any k € Obs we now define f,,;. Let P be any “space-like” hyper-plane,
i.e. such that (Vph € Ph)ph ¢ P; and also k¥ € P. We now choose f,,; to be a
collineation that takes S to P and ¢ to k. See Figure 177.

Then f,,; defines the world-view of k, and it is not difficult to check

that the relevant axioms of Bax(P1) are true in wy. Let M &

((B, Obs, Ph, Ib), R, Eucl(n, F), €, wn), . Opg- It is not difficult to check that 9 =
Th, and there are faster than light observers in 9. 1

45in the sense that Reich(Bax) is a special case of Bax ] .
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m’s world-view k’s world-view

Figure 177: Illustration for the proof of Proposition 4.4.14.

We consider Bax(P1) and Bax[ [ as the very “faithfully” (or carefully)

formalized?®® counterparts of Friedman’s (P1), while we consider our Bax™ as a
more “pragmatically” formalized version of (P1). It seems that Bax™ is an ade-
quate formalization of Friedman’s (P1) for the purposes of the present work, at least
for a first systematization of the subject. For a future, second (or third) refined sys-
tematization, the more “finicky” formalizations Bax(P1) and Bax T will probably
prove useful.

For the present investigation (for the time being) we will stick with Bax™ and
we will treat Bax™~, Bax(P1), Bax_T__T_ as potential future research subjects.

In the table below (i.e. in Figure 178), we summarize our hierarchy
Bax™™ < Bax™ < Bax < Newbasax

of theories from the point of view of the shape of light-cones and ¢,,(p, d). Expla-
nation for the table: Throughout the table n = 3. We are looking at a light-cone
starting out from point p of space-time. I.e. we are looking at Cone,,,. In col-
umn 3, we see the intersection of the light-cone with the “simultaneity” i.e. plane
P =S+ (p+1;), cf. Def.4.4.9 and Figure 175. The “circle” is the intersection of the

456if we disregard the fact that these axiom systems are in an experimental stage only and they
are not polished.
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cone with the plane P, i.e. it is Cy, ,, in other words it is the set of intersections of
photons (of finite speeds) starting from p with plane P. The shaded area is the set
of intersection points of observers going through point p (with P). As one can see, in
the first three rows, there is no shaded area outside the circles; this fact is caused by
our “no FTL observers” theorems. The “fat” point represents the intersection (with
P) of the coordinate-line parallel with ¢ and going through p. In the 3-rd and 4-th
rows (Bax™, Bax™ ") there are more than one figures some further up and some
lower down. The upward figures represent the “ideal” cases we have in mind while
the downward figures represent pathological cases which might*>” not be excluded
by the axioms.

We note that Thm.4.3.29 says that the shaded area in the Bax™-row is a convex
open set with a continuous boundary.

Figure 179 is a continuation of Figure 178. But while Figure 178 contains 3
columns, Figure 179 is a continuation only of the middle column of Figure 178.
(The reason is that we have more axiom systems in Figure 179 than in Figure 178,
therefore we had to “economize” somewhere. The interested reader is invited to
restore the missing columns.)

Questions for future research 4.4.15

(i) Investigate the axiom system Bax[ ™ in the same spirit as we investigated
e.g. Basax. Is Bax ™ = (fiu, preserves Euclidean lines) true? What are the

models of Bax ™ like? Do light-cones at each point look the same in them,
i.e. is it true that if a straight line ¢ is parallel with a trace of a photon, then
¢ itself is a trace of a photon (in an observer’s world-view)? Is Bax_ ™ = (¢ ||
trm(k) = (3K € Obs)t = tr,,(k')) true? What are the models of Bax] ™ +
Ax(symm) like? Compare Bax_ ™ with our other weak axiom systems like

Bax™ or Relnoph.
(ii) Elaborate and investigate Bax(P1) in the same spirit.

(iii) Do the above for all axiom systems introduced in this section.

457Perhaps some of these are excluded but we did not prove it yet.
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Newbasax Cm(p,d) = @ @
e >
Bax Cm (P, d) = cm @
Bax™ ¢m(p,d) >0 @
> <J
Bax—— | cnlnd) O-O ? /

and versions

(< 0 allowed)

.

/A

Figure 178: Shapes of light-cones in our theories.
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Newbasax

Bax

(2

O
Reich(Bax) ©
&>

Bax™

Bax3

&b
Baxl__

< may or may not be
concave ? (continuous?)

Figure 179: A continuation of Figure 178, shapes of light-cones in more of our
theories.
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On Figure 180: We collected (most of) the axiom systems introduced so far in
a lattice shown in Figure 180. We call a theory the stronger the more theorems it
proves. In the lattice, the theories further up are stronger ones, and the theories
lower down are weaker ones. This lattice represents a partial order on the theories.
Namely, if in the lattice Thy and Thy are connected with a line and Ths is further
up than Thi, then this means that Thy > Th;y in the sense that

Thy + cm(p, d) < 0o+ Ax(vV' ) = Thy.

See also the part on the lattice of theories beginning with p.451. Using the termi-
nology of that part, if we add ¢, (p, d) < co+Ax(v/ ) to all the theories represented
in Figure 180, then we get a subposet of the poset THj of all theories.

In the lattice we indicated one theory, Reich(Bax),, which will be introduced
later. We indicated this theory because of its central place in the lattice. In drawing
the lattice in Figure 180 we pretended that we know that Reich(Bax),+ ¢, (p, d) <
oo = Bax(P1). The only questionable part of this seems to be

(%) Reich(Bax), + ¢, (p, d) < oo = Ax(ii)*

where Ax(ii)™ is one of the axioms of Bax_ ™ (on p.538). We do not know whether
(x) holds, however, the following is our excuse. When formulating Ax(ii)*, we
intended to express a property of the light-cone which, in our opinion, is implied
by the axiom Ax(consm) of Reich(Bax), (together with the rest of the axioms of
Reich(Bax),). However, to formulate the intuitive idea of Ax(ii)* in first-order
language consizely required some compromises. Therefore, as an accident, now,
Ax(ii)* might be slightly stronger than what follows from Reich(Bax),+c,, (p, d) <
oo ; but then this is something which has to be “smoothed out” in the future.
Anyway, we guess that the original form Ax(ii) of this axiom will follow from
Reich(Bax), + ¢ (p, d) < oo (even if something would go wrong with the present
form of Ax(ii)").

On answering the “why” type questions discussed in the introduction: We
now indicate how we can use our poset of theories in answering why-type questions.
As an example, we will use paradigmatic effects. If we take a paradigmatic effect,
e.g. that “moving clocks slow down” and indicate on the poset in Figure 180 which
theories prove this effect and which do not, then with this we made a first step in
answering “why the paradigmatic effect in question is true”. This is what we do in
§4.8, see Figure 223 on p.653. Such an answer can have slightly more “structure” to it
than simply figuring out which axiom (or axioms) of Newbasax (or of Newbasax+
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Ax(symm)) is responsible for the effect in question. We note that for certain effects
(i.e. for certain predictions of relativity) this kind of search for an answer to the
“why” question may lead to enriching the poset on Figure 180 with new theories.
We also note that such an answer might be “multi-dimensional” in the sense that it
may say that the effect in question becomes provable iff we are both strictly above,

say, Bax™ and strictly to the right from, say, Flxbasax.

458

Questions for future research 4.4.16 (in connection with Figure 180)

(i)

(ii)

(iii)

Include the remaining axiom systems for relativity studied in this work into
the hierarchy in Figure 180.

In Figure 180 the symbol “Z” means that we know that the axiom systems
involved are not equivalent, while “? =" indicate that it could be interesting
to check whether they are equivalent (but we did not have time to think about
these).

Which ones of our theories in Figure 180 are “blurred” into each other
by adding Ax(symm) to them? In other words, what does the lattice
in Figure 180 look like if to each theory in it we add Ax(symm)? Are
there Thy, Thsy in the hierarchy in Figure 180 such that Th, # Thsy but
Thy + Ax(symm) = Thy + Ax(symm)? Or if they do not become com-
pletely equivalent, do then Th; + Ax(symm) and Thy + Ax(symm) become
very close to each other, in some sense?

Which theories imply Ax(symm) — Ax(3TwP)? What is the situation
with other symmetry axioms? In this connection see §4.2.

458We deliberately did not make it precise what we mean by being to the right from some element
of the poset.
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NewtK ® Basax

® Newbasax

Flxbasax

® Bax

Reich(Bax),

Bax
? = Bax(P1)
Bax; ™~ "
Z*
o Bax_T__T_
Bax;

Bax \ “photons” =
{Ax1, Ax2, Ax3p, Ax4, Ax6g9, Ax601 }

Figure 180: The lattice of our theories introduced so far, where Th; < Thy means
Thy + cm(p,d) < 0o + Ax(v/ ) = Thy. Some parts of this lattice represent conjec-
tures only (while others are theorems).
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4.5 Reichenbachian version of relativity (nonstandard si-
multaneities)

What we call the Reichenbachian version of (special) relativity theory starts out
with the idea that our speed of light axiom AXE (or even AxEgg) has never been
confirmed by experiment. Moreover, Reichenbach, Grinbaum, Salmon and others
argue that for logical or philosophical reasons, AXE cannot be tested by experiment
(not even in principle). The idea is the following.

We can send a photon to the Moon, bounce it back with a mirror and measure
the time when it arrives back to the Farth by a clock on the Earth. What we are
measuring this way is the time needed for the round-trip Earth— Moon— Earth.
Knowing the spatial distance between the Earth and the Moon, we can compute the
average speed c of the photon during the Earth+— Moon— Earth round trip. How-
ever, knowing the average speed does not tell us what the speed of the Earth— Moon
trip was. In principle, it is possible that during the Earth— Moon trip the photon
went faster than ¢ while backwards (during Moon — Earth) it came slower than c. In
other words, knowing that the time (duration) of the Earth+— Moon— Earth round
trip was At does not imply that the time of the one-way trip Farth— Moon was
At/2. Possibly, Earth— Moon lasted for At/2 — ¢ while Moon— Earth lasted for
At/2 +¢.

We could exclude this uncertainty by putting a clock on the Moon and synchro-
nizing it with the one on the FEarth etc. Howewver, to synchronize the Moon-clock
with the Farth-clock, the only reasonable idea seems to be to use light signals which
in turn amounts to assuming that we know something about the one-way (e.g.
Earth— Moon) speed of light. But the point is that it is exactly this one-way speed
what we are trying to measure, hence we cannot assume that we know it before
measuring it.

For simplicity, we will use the expression “two-way speed” for the average speed of
the round-trip like the Earth+— Moon — Earth round-trip. Given a spatial direction
d, by the “two-way speed of light in direction d” we will mean the average speed of an
Earth— Moon— Earth style round-trip of a photon where the spatial line connecting
Earth and Moon is parallel with d.

As we indicated above, Reichenbach, Griinbaum and their followers argue that
only the two-way speed of light is subject to experiment. The debate started more
than 50 years ago, and in 1977 Salmon [233] collected and investigated the ideas that
came up in the meantime to measure the one-way speed of light, and he concludes
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that none of them seems to work. (In particular, this applies to the Michelson-
Morley experiment too, of course.) Cf. also L. E. Szabd [244].

The above sketched ideas and developments led to the fact that today there
exists a fairly broad and well established direction in the literature which discusses/
promotes what we call the Reichenbachian version of (special) relativity, cf. e.g.
Salmon [233], Friedman [90, p.165-320], Winnie [275], L. E. Szabé [244] where further
references can be found.*>*

The key idea in the Reichenbachian version is that in AxE (or AxEgqy) we
should speak about the two-way speeds of photons only and keep silent about their
one-way speeds. Now, we can utilize the “lego-character” or “modular character”
of the logic approach to relativity by simply “pulling out” the axiom AxE (or its
variants like AxEg) from our theories and “plugging into their place” a version
of AXE which mentions only two-way speeds (cf. Remark 4.5.5). This way we
can obtain a theory Reichy(Basax) from Basax, Reichy(Bax) from Bax and in
general Reichy(Th) from theory Th where Th is any one of our relativity theories
(summarized in Figure 180).*° We will call Reichy(Th) the Reichenbachian version
of the (special) relativity theory Th.

There is a further motivation, independent of philosophical considerations like
the “Reichenbach-Griinbaum approach” outlined above. Namely, for studying the
world-views (or coordinate-frames) of so called rotating observers [cf. our chapter on
accelerated observers|, one needs a theory about inertial observers without gravita-
tion (i.e. one needs a special relativity) which is like Reichy(Basax) as opposed to
being like Basax. In particular, concerning the inertial observer which is co-moving
with (a spatial point of) the accelerated one, the one-way speed of light as measured
by the inertial observer k£ has to be allowed to be nonstandard. 1.e. our AXE will be
violated while its Reichenbachian version R(AxE) will remain valid. Cf. Matolcsi
[191] for more on this.

Throughout this section we will heavily rely on Ax(v/ ). The reason for this
is that some definitions will be much simpler and much more intuitive with using
Ax(v/) than without using Ax(y/ ). E.g. Def. 4.5.1 is even meaningless without

459The distinction between one-way speed and two-way speed of light and its connections with
what we call “nonstandard simultaneities” or “artificial simultaneities” below is also discussed in
Matolcsi [190] and in the references therein. (Matolcsi uses the expression “nonstandard synchro-
nization” for what is called a “nonstandard simultaneity” in e.g. Friedman [90].)

460More precisely, we will do this only for those choices of Th where Th > Bax. The subscript
“0” in Reichg(Th) indicates that we will have a “fuller” Reichenbachian version Reich(Th) of
Th.
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Ax(v/). For this reason, we will include Ax(y/ ) into the definition of our Re-
ichenbachian theories (cf. the definitions of R(AXE) — R(AxEgg)). Since we did
not include Ax(y/ ) into our earlier theories, e.g. we did not include Ax(y/ ) into
Basax, this will entail that in many places Ax(v/ ) will “pop up”, cf. e.g. Def.4.5.7.
However, we could have completely avoided the use of Ax(y/ ) in this section (on
the expense of simplicity). In Remark 4.5.2 we show how to formulate our axioms,
and thus our Reichenbachian theories, without using Ax(yv/ ). The general phi-
losophy behind all this is that in the present section §4 we want to concentrate
on the case when Ax(y/ ) is assumed everywhere (to avoid generating too much
“side-tracking”). At first reading, the reader is invited to assume Ax(y/ ) at the
beginning of the present section and then to ignore all references to Ax(v/ ) (in this
section).

Let us turn to obtaining the Reichenbachian version R(AXE) of AxE. Assume
Bax~ +Ax(v/ ). Recall that c,,(d) is the square of the speed of light in direction d.
Since “speed = distance/time”, for discussing round-trips it will be more convenient
to use its reciprocal “1/ speed = time/distance”.

Notation 4.5.1 Let m € Obs and d € directions. Then

o 1/\/ if 0 # ¢, (d) < o0,

Trm(d) = if ¢, (d) = 0,4
0 if ¢, (d) = o0.

<

Since we assume Ax(v/ ), T,,(d) exists. Intuitively, T,(d) is the time needed
for a photon moving in direction d to cover a distance of unit length. 7,,(d) is
illustrated in Figure 181.

Now, we are ready to define the Reichenbachian versions R(AxE), R(AxEgo)
etc. of our speed of light azioms.

To simplify the discussion, we treat the speed of light axioms of Basax and
Newbasax in a unified way. This is justified by noting that

(Basax \ {AxE}) + (AxE,) = Basax.

461Tn Bax ™~ we have ¢,,(d) # 0.
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Cone, 5

Figure 181: The function 7,(d). Consider the intersection of the light-cone Cone,, 5
with the cylinder of radius 1 around ¢. T,(d) is the height of this intersection curve
in direction d.
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R(AXE), which is defined to be the same as R(AxEy), says the following.
Ax(v/") and (Vm € Obs)(Vd € directions)T,(d) + T,,(—d) = 2.

Intuitively, the time 7,,(d) needed for a photon to cover a distance of length 1
together with the time 7,,,(—d) to come back is 2. Hence the average speed of the
photon-round-trip is 1. Figures 183 and 184 illustrate R(AxE).

Let us turn to the speed of light axiom AxEg, of Flxbasax (cf. p.428).
R(AXEog)

(Vm, k € Obs)(Vd, d; € directions)T(d) + Tpn(—d) = Ti(ds) + Te(—dy), and
Ax(V).

Intuitively, for all observers and all directions, the round-trip covering a distance
of length 1 takes the same time. Clearly, this is equivalent with saying that the
average speed of a photon-round-trip is the same for all observers and all directions.

The speed-of-light axiom AxEgg of Bax is “Reichenbachized” as follows:
R(AXEO())

(Vd, d; € directions)T,,(d) + Tn(—d) = Tpn(dy) + Tpu(—d;) and Ax(v/ ).

Intuitively, for any observer m, the two-way speed of light is isotropic in the
sense that it is the same in all directions.

Remark 4.5.2 (Reichenbachian versions without Ax(v/ )) Axioms R(AXE)
— R(AxEq) above can be formulated without assuming Ax(v/ ). We denote the
Ax(y/ )-free version of R(...) with R(...)".

R(AXE)"™
Ym(¥ph, phy € Ph)(%p, ) (Ip # F A g € E A Op = tru(ph) A BT = tr(ph)] =
lall/lIspace(p)| = 4).

See Figure 182. Let us notice that ||¢|| = (At)? and ||space(p)|| = (As)?, hence
what the axiom says is that (At)%/(As)? = (At/As)? =
(1/velocity, + 1/velocity,)? = (2/averagevelocity)? = (2/1)? = 4.

Similarly,
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Figure 182: Illustration for R(AXE) .
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R(AXE02) B

(3r € F)Vm(Vph, ph, € Ph)
(p#F2q A D€ truph) A b7 =tr(ph)] = lall/lIspace(p)]| = ).

R(AxEqy)~ is formulated analogously. We leave the details to the interested
reader. <

On the visual meaning of R(AxE). R(AxXE) says that if we first take the
intersection of the two light-cones Cone,, j and Cone,, (2,..), and then project the so
obtained set to the space-part S, then we obtain the sphere of radius one and center
0. See Figure 183. R(AxEq) says that the projection (to S) of the intersection of
the two light-cones is a sphere, but perhaps with radius different than 1, R(AxEg»)
permits that the radii of these spheres in the different world-views be different.

Cone,, o5

/ Cone,, 5

Figure 183: Illustration of R(AXE).

Another “visual formulation” of R(AxXE) says that the intersection of the light-
cone Cone,, 5 with the cylinder C of radius 1 around ¢ consists of two “curves” which
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are translations of each other (i.e. in some sense they are parallels), the translation
is made by a vector of length 2 and parallel to . See Figure 184.

If we do not assume Ax(v/ ), then the intersection 7 of the cone Cone,,; and
the cylinder C may be “partial” in the sense that 7 need not contain a point in each
direction (i.e. on each plane containing ). However, the Ax(y/ )-free formulation
R(AXE)™ can be visually formulated, too: R(AXE)™ says that for all r € F* if
we project the (earlier discussed) intersection 7, of the light-cone Cone,, 5 with the
light-cone Cone,; (2r0,..), then we get the sphere of radius r around 0.

On the physical meaning of R(AxE). Let us put a sphere around 0 with radius
1, such that the inside surface of this sphere is a reflecting one. Let us switch on a
light at 0 for a very short time. R(AXE) postulates that all the photons (i.e. the
photons from all directions) will arrive back (from the inside surface of the sphere)
at time instance 2. Thus, optically (i.e. via photons) the observer will see that after
switching on the light, for 2 minutes nothing happens, and then at time instance 2
the whole sphere flares up (lightens up). On the other hand, if the photon-sphere
C,, is not the sphere of radius 1 and with center 1; — we will see later that this is
possible — then the observer will “think” (or “observe”) that the photons reached
the inside of the sphere at different time-instances. Figure 185 illustrates this on a
concrete example (n = 3): In the figure, according to m’s world-view, the photon
that reaches C earliest is the one that reaches it at point A, then come the two
“neighbours” of A, and so on, while the photon that reaches C latest reaches it at
point B, and by this time all the other photons have reached C. Thus, according
to this world-view, m will “think” (or “observe”) that first A flares up, then two
luminous points go left and right from A on the circle, they both reach B at the same
time, and then these two luminous points blink out. But, as we said above, optically
m will see that the points of C flare up at the same time, because all the photons
come back to m’s eye at the same time (at time instance 2). This illustrates that
“seeing via photons” and “observing via the world-views” are different things.462

We note that in the above formulations of R(AXE)™ etc. we concentrated on
photons “emitted” at the origin 0 because we will use these axioms together with
Bax ™, and we already saw (in the section devoted to Bax™) that the speed ¢, (p, d)
of light does not depend on the point p where the photon is “emitted”. Now we can
turn to defining the Reichenbachian versions Reichy(7Th) of our theories Th.

462The Reichenbachian philosophy can be interpreted as saying that we should take seriously only
the facts “observable via photons”. Cf. also the definition of our later “view-function”, Def.4.7.5.
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Cone,, 5

parallel curves

Figure 184: R(AXE) states that the two curves constituting C N Cone,, 5 are trans-
lations of each other by 2.
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Figure 185: m will optically see all points of C light up at the same time. But m
will observe A light up earlier than B.
Definition 4.5.3 (Reichenbachian versions of our theories)

Reichy(Bax) & Bax™ + R(AxEqo),

Reichy(Flxbasax) “ Bax— + R(AxEy2),

(
Reichy(Newbasax) “ Bax~ + R(AXE),
Reich)(Basax) oo Reichy(Newbasax) + Ax6,
(

Reichy(Bax), & Bax; + R(AxEq).
<

For completeness we note that we could have introduced Reichy(7h), for any
Th € {Bax™,...,Basax}, but to save space, we did not go into this.

PROPOSITION 4.5.4 (isotropy “de-Reichenbachizes” theories)
Assume Ax(v/ ). Let Th € {Bax, Flxbasax, Newbasax, Basax}. Then

(ReichO(Th) + (Vd € directions)c,,(d) = cm(—d)) = Th.
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Let us notice that, at least in some sense, the idea of “Reichenbachizing” a
theory Th is to eliminate the (implicit) assumption c¢,,(d) = ¢,,(—d) from the theory.
Therefore, Proposition 4.5.4 above expresses something in the direction of saying
that, of all the possible theories, it is Th to which Reichy(Th) is connected in the
sense that if we “invert the process of Reichenbachization”, then we obtain Th from
Reichy(Th).*%3

In connection with Definition 4.5.3 above we note the following. If we
wanted to discuss the Ax(v/ )-free version Reichg(Th)”™ of Th, then we
could use the Ax(v/ )-free versions R(speed-of-light-axiom)™ of the speed-of-
light axiom of Th. E.g. we define Reichy(Bax)™ = Bax™ + R(AxEgg) .
Reichy(Bax),, Reichy(Flxbasax)~, Reich;(Newbasax) are defined analo-

gously. Reichy(Basax)~ &f Reichy(Newbasax) + Ax6. We do not plan to study
these Ax(v/ )-free versions in the present work, we included them for completeness
and also to support future research.

Remark 4.5.5 (On the style of defining Reich,(7h)) Intuitively, we think of
“Reichy” as a general operator which to any one of our relativity theories Th as-
sociates its Reichenbachian version Reichy(7Th). On this intuitive level, the general
“plan” of defining the operator Reich, is summarized in items (i), (ii) below.

(i) First we recall that in Remark 4.3.43 we reformulated our distinguished theo-
ries Th to the form

Th' = SPRy + (extra principles) + (the speed of light axiom of Th').
Then, under assuming Ax(v/ ), we proved the “equivalence-statement”
Th == Th

for our distinguished choices of Th, cf. Proposition 4.3.44. Here, the “extra
principles” do not involve the speed of light while “the speed of light axiom of
Th" might (in principle) be slightly different from that of Th (for technical
reasons). So, the common core of our (re-formulated) theories was SPRy in
Remark 4.3.43. In the present item, we choose Bax™ = (SPRy + AxP1) as
the common core of our theories, i.e. we use Bax™ in place of SPR(.%®* Then

463The reason why Proposition 4.5.4 has to be stated (as opposed to be completely self-evident)
is the style of our Definition 4.5.3 above. Cf. Remark 4.5.5 below.

464 Although AxP1 does involve one-way movement of photons, it is completely consistent with
what we call Reichenbachian philosophy, since it is testable by thought experiments, and it only
says that ¢, (p,d) is indeed the speed of light (at point p in direction d etc) as opposed to being
merely the supremum of the possible photon speeds at point p moving in direction d, cf. the
definition of ¢, (p,d) on p.535. Cf. also Remark 4.3.5, p.473 on the philosophical meaning of
AxP1.
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we imitate what happened in Remark 4.3.43, with Bax™ in place of SPRy.
So, first we re-formulate our distinguished theories Th to the form

(+) Th* =
Bax ™ + (extra principles of Th*) + (the speed of light axiom of Th*).

As it was implicit already in Remark 4.3.43, we define the speed of light axioms
of Basax, Newbasax, Flxbasax, Bax to be AXE, AxEq, AxEgs, AxEqg
respectively.*6> Then, the speed of light axiom of Th* is defined to be the same
as that of Th. (In Remark 4.3.43, these axioms were displayed as the “central
column”.) Analogously with Proposition 4.3.44, then, assuming Ax(v/ ) as
usual, we prove our new equivalence statement

(++) Th=E Th*
for the above four choices*®® of Th.

(ii) Next, we define the Reichenbachian version Reichy*(7h*) of Th* as follows.

(x) Reichy*(Th*) oo

(Th* \ {speed of light axiom of Th*})+ R(speed of light axiom of Th*),

i.e. Reichy*(Th*) is obtained by replacing (in Th*) the speed of light axiom
of Th* with its Reichenbachian version.*®” Then we prove

(**) ReiCho( Th) = Reicho*( Th*)

for our distinguished theories Th. (Recall that Reicho(7h) was defined in
Definition 4.5.3. So (xx) above means that our ad-hoc looking definition in
Def.4.5.3 is identical with the systematic definition in the present item.)

For completeness, we note that what we call the speed of light part of Th*
can be identified (without causing any harm) with the collection of those ax-
ioms of Th which were denoted as AxE;,qex Where “index” is some sub-
script including the empty subscript, too. (The only deviation from our def-
inition on p.564 above would then be that we would regard AxEg; saying

cm(d) # 0 as a speed of light axiom and would replace it with its two-way
def

form R(AxEp1) = (17,(d) + T, (—d) < 00).)
465We will return to discussing this definition soon (on p.564).
466 Th € {Basax, Newbasax, Flxbasax, Bax}
467which has been defined on p.557. The key idea in defining R(speed of light ...) is to replace
all references to the one-way speed of light with references to its two-way speed, cf. p.557.
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In the above plan, statement (%) represents the uniform pattern®®® of Reichen-
bachizing our theories. Before formulating pattern (x), we had to bring our the-
ories Th to the “normal form” Th* because of the following. Without switch-
ing to the normal form first, the “core part” of our theory could contain an
innocent-looking implicit assumption about the one-way speed of light as indeed
Basax \ {speed of light axiom of Basax} contains Ax5 (if we consider the speed
of light axiom of Basax to be AXE as we do both in Remark 4.3.43 and here). But
we do not want Ax5 (in its present form) in any Reichenbachian theory. Further, we
had to add AxP1 to the core part, because AxP1 is a one-way assumption which s
experimentally testable, hence it is included in the Reichenbachian versions. How-
ever, the “mechanical” Reichenbachization of, say, AXE described above would elim-
inate AxP1 from R(AXE), i.e. SPRo+ Ax6 +R(AXE) = AxP1. Hence we had to
include AxP1 into the core part of Reichy*( Th*) to ensure Reichy*(Th*) = AxP1.

Let us recall that Reichy(7h) is that formulation of the Reichenbachian version
of Th which was given in Definition 4.5.3. Hence statemens (%) and (xx) above
explain how we obtained the formulation of “Reichy” in Def.4.5.3. In other words,
(x) and (%*) show that the formulation in Def.4.5.3 is obtained in accordance with
the systematic, natural (and uniform) general plan?®® outlined in items (i), (ii) above.

<

In the present section we will not investigate Reich(Bax),. However, in section
4.8, Reichy(Bax), will become interesting because a certain interesting natural
paradigmatic effect (E5)™” becomes true at this point. See Thm.4.8.9.

4684r “algorythm”

469The key points of this plan are summarized in items (+), (++), (x), (%%) above.
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The class of standard models of Reich;(Basax), Reichy(Bax) etc.
Changing simultaneities in a model 9X.

Below we construct a large class of models for our Reichenbachian theories, e.g.
for Reichy(Basax). It remains an open problem to decide whether these are all the
models of Reich,(Basax).

Let 9 be a frame model and m € Obs. Consider a hyper-plane*™® P C "F with
0 € P. We call P m-space like iff

(V£ € Eucl)|[(0€£C P A ang*(f) < o0) =

¢ is not the life-line either of a slow observer or of a photon|. arl

Intuitively, a hyper-plane P is m-space like, if (in m’s world-view) P does not
contain the life-line of any slow observer or “slow photon” (where a photon is slow
iff its speed is not co.) We note that if 9t = Bax™, then the space-part S of "F is
an m-space like hyper-plane for every m € Obs.

We will prove that if we change the simultaneity in a world-view of an observer m
in a model of Reichy(Bax) to an m-space like hyper-plane, then in the so obtained
new model Reichy(Bax) will remain true. Now we describe the construction of
changing simultaneities in more detail. First we show the idea in figures for the case
n=2,3.

Let 97t be a frame-model and let m € Obs. We change the world-view w,, :
"F — P(B) of m to w; as described below.

The new world-view w}:

470 e. (n — 1)-dimensional plane in the sense of Def.3.1.8 on p.164.
iMie. (Vk € Obs)[(00 # vm(k) A vm(k) < cm(Tm(k))) = £ # trm(k)] A (Vph € Ph)l #
trm(ph).
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(1) Assume n = 2. We replace the old simultaneity represented by Z with a new
simultaneity T’ as represented in the figure below.

4
ph € Ph
ph\l Lt o ‘
N ’
N ;/"
N / ].zl i,l
N o

. ;/’
=0 I ’

The new coordinate-grid representing w;" looks like the following.

t
//
/
1y =1 —
t ty—| —
/‘ /
/
| 7
/
/:,/a%fg = = = — T
OI
1,
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(2) Assume n = 3. The new simultaneity is an arbitrary m-space like plane P:

light-cone

/

h(p)

/ i
g P = new simultaneity

Definition 4.5.6 (artificial-simultaneity models)
Let 9 be any frame-model and let n be arbitrary. Recall that S = {p €

"F : py = 0} is the space hyper-plane of "F. For all m € Obs, let P,, be an

m-space like hyper-plane containing 0, and let P dof (P : m € Obs). Let m € Obs

and let h,, : "FF — "F be the linear transformation taking S to P, such that
(Vp € "F)h,,(p) —p € t and h,,(1;) = 1;. Le. if p € S then h,,(p) is the point of P,
above (or below) p. (Hence (Vp € t)h,,(p) = p.) Now we define

+ e ow,,.
The new model is obtained from 91 by replacing all world-view functions w,, with
their new versions w,, defined via P, as above. We denote the new model by 9t/ P.
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We call /P an artificial-simultaneity version (art-sim for short) of 9. We also
call M/ P the model M relativized with artificial simultaneities P, or just the model
M relativized with P. <

On the intuitive (or physical) meaning of artificial-simultaneity models: Given m’s
world-view w,,, m can imagine that at each point s € "~!F of space®™ there is a
clock, and w,(t,s) = e means that event e happened at place s when this clock
showed time ¢. Assume that m re-sets each clock, i.e. he changes when they show
0, but does not change the rate of their ticking. Then m can base his new world-
view on these newly set clocks, and this way he obtains a new world-view function
w; (i.e. w}(t,s) = e means that event e happened at place s when the newly set
clock showed time ¢). It is this new world-view w;, what we got in Definition 4.5.6;
and the intuitive meanings of P, and h,, occurring in the definition are as follows.
For s € " 'F, let t, be the time what the old clock at s showed when m re-set it
to 0. Then h,,(0,s) = (t5,s) and this is the intuitive meaning of the function h,,
in Def.4.5.6. The intuitive meaning of P, in the same definition is that w,,|[P,]
is the set of events that became simultaneous with event w,,(0), according to the
new world-view function w,;. Thus one can conceive relativization as an act of re-
synchronization of clocks: at each place s € " 'F, m has a brother, and all these
brothers agree that they re-set their clocks so that the newly set clocks will show 0
exactly at events w,,[Py]-

The definition of 90t/P makes sense even when P, is an arbitrary surface in
the sense of Def.4.5.25, see p.594. The reason why we required P,, to satisfy further
properties is the following. We required P, to be a hyper-plane in order that the life-
lines of inertial bodies remain straight lines in the relativized model, cf. Conjecture
4.5.26. At the end of this section we discuss the reasons for wanting the life-lines
of inertial bodies remain straight lines, cf. Remark 4.5.29. We required F,, to be
m-space like in order that Bax™ be preserved by relativization, see the footnote 475
on p.571. On the other hand, we required 0 € P,, only for convenience (nothing
would change if we dropped this condition, only the definitions would get longer in
a trivial way).

We note that it is not difficult to see that the relation “art-sim version of” is
symmetric, i.e. if 9 is an art-sim version of 9™, then <M ™ also is an art-sim version
of M. Actually, “art-sim version of” is an equivalence relation.

Definition 4.5.7 (standard models of Reichy(Th)) Let Th be a theory in our
frame-language such that 7h > Bax.

472This is not really space, but see Convention 4.3.1.

269



(1) We say that 90 is a standard model of Reichy(Th) if 9 is an art-sim version

of a model of Th + Ax(v/ ).

(ii) Let K be a class of frame-models.

Then Asim(K) denotes the class of all

artificial-simultaneity versions of elements of K, i.e.

def

Asim(K) = {9M/P : M € (KN Mod(Ax(v/ ))) and
(Vm € Obs)[P,, is an m-space like hyper-plane containing 0]}.

Asim(K) is called the art-sim hull of K.A™
Note that KN Mod(Ax(v/" )) € Asim(K).

(iii) Asim(Th) & Asim(Mod(Th + Ax(v))).

The members of Asim(7h) are called both standard models of Reich(Th)
and art-sim (versions of) models of Th.  Occasionally we might call the
members of Asim(7Th) relativized (versions of) models of Th. The reason
for this is an analogy with algebraic logic which we do not discuss here; but
intuitively, we think of an art-sim version 9/P of the model 9t as being the
same as 9 except that it is “relativized” to the new, artificial simultaneities

P,,,m € Obs™.

THEOREM 4.5.8 (Changing simultaneities preserves Reichy(7h))
Let 9 be a frame-model, m € Obs™ and P : Obs — P("F) such that P,, is an
m-space like hyper-plane containing 0 for all m € Obs. Then

M = Reichy(Basax) =
M = Reichy(Newbasax) =
M = Reichy(Flxbasax) =
M = Reichy(Bax) =
M = Bax~ =

M/P = Reichy(Basax),

M/ P = Reichy(Newbasax),
M/ P = Reichy(Flxbasax),
M/ P = Reichy(Bax),

M/P = Bax ™.

Le. the transition M — M/ P preserves validity of all of our distinguished Reichen-

bachian theories.

43K C Asim(K) only if K = Ax(v/ ). Actually, Asim is a so called complemented closure
operation (cf. e.g. [129, p.38] or [30]). This means that for any classes K,L C Mod((Bax™ +
Ax(v"))) of models we have: K C Asim(K) = Asim(Asim(K)), Asim(K) C Asim(L) if K C L

and (K C Asim(L) iff L C Asim(K)).
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Proof. Checking 9/P = Bax™ is straightforward. It is here where one uses that
P,, is an m-space like hyper-plane. Actually, for 9t/ P to make sense, it is enough
to require that for all m € Obs, P,, is a hyper-plane not containing ¢.*™* This
more general relativization preserves Bax™ \ {Ax5pn, Ax50ns, AxP1}. To prove
that {Ax5pn, Ax50bs, AxP1} is also preserved by relativization, we use that P,
is m-space like (for all m € Obs).*”™ To see that the two-way speed of light was not
changed by switching from simultaneity S to simultaneity P,, (i.e. that A, leaves
this speed unchanged), one either consults the figures above, or equivalently, one
uses the fact that h,, leaves ¢ pointwise fixed (and that a “round-trip” begins and
ends on t) and that h,, leaves the 1-cylinders around ¢ fixed, too. See Figure 186.

(S

“two-way speed” of light

o IN

photons

Figure 186: Illustration for the proof of Theorem 4.5.8: two-way speed of light does
not change when relativizing a model.

The next corollary says that the art-sim models in Asim(7Th) of Th are suitable,
in some sense, for studying the Reichenbachian version Reichy(7h) of Th (whenever
Reichy(Th) is already defined).

47 Even less is enough. It is enough to require that P, is a surface in the sense of Def.4.5.25, cf.
p-594.

475 Actually, “m-space like” is the exact property we need here in the sense that for all 9 €
Mod(Bax) and P such that P, is a hyper-plane for all m € Obs, we have that
M/P = Bax™ iff (Ym)P,, is m-space like.
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COROLLARY 4.5.9
Assume that Th € {Basax, Newbasax, Flxbasax, Bax}. Then

Asim(Th) = Reichy(Th).
<

It remains an open question whether the above corollary holds “backwards” too,
in the following sense.

Problem 4.5.10 Let Th be as in Cor.4.5.9. Is then
Asim(Th) = Mod(Reichy(Th))

true? In other words, is there a model of Reichy(Bax) which cannot be obtained
from a model of Bax by relativizing? We note that the answer to this problem for
n = 2 is in the negative, i.e. every model of Reichy(Bax(2)) is an art-sim version
of a model of Bax(2). (Cf. p.577 in the proof of Thm.4.5.13.) <

We will see that it is possible to add a natural axiom (which does not contradict
the “Reichenbachian spirit”) to Reichy(7Th) which makes the answer to the above
problem positive, c¢f. Thm.4.5.13. (Of course, this does not answer the problem in
the mathematical sense.)

Do we have enough speed-of-light axioms in R(AxE)?

In formulating the observational version R(AXE) of the speed of light axiom
AxE, we used a mirror, put it on the Moon and then used the mirror to measure
the two-way speed of light talking about the Farth— Moon— Earth round-trip (cf.
p.553 in this section). Is this the only observational aspect of the speed of light?
Certainly not: instead of the two-way speed of light we could talk about its three-
way speed. Namely, we can put a mirror on the Moon, another one on the Mars,
and then measure the time needed for the Earth— Moon+— Mars— Earth round-
trip. We call this a three-way round-trip, and the average speed of this three-way
round-trip is called the three-way speed of light.

Then in a new axiom, say R3(AxE), we could do the same with the three-way
speed of light what we did earlier with its two-way speed. Indeed, this is what we
will do. In R3(AXE) we will postulate that the three-way speed of light is constant
(does not depend on the three chosen directions d;,ds, d3 etc). Before formalizing
R;3(AxE), let us see whether this will be useful for us. Instead of three-way speed,
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Figure 187: Three-way round-trip of photons.

we can discuss 4-way speed as well, as k-way speed, for £ € w. Should we add all
these axioms to our theories Reich(7h)? Fortunately, we will be able to formulate
a theorem to the effect that 3 is the largest number we need. Since we are on
an informal level, we call this theorem Statement (%) and will formulate its formal
counterpart later (as Theorem 4.5.11(i)).

() Reichy(Basax) + R3(AXE) = R;(AxE)

for any k € w.

We could define Rs(speed of light axiom of Th) for all our distinguished theories
Th analogously. Fortunately, we do not need to do this because we can choose
R;(speed of light axiom of Th) to be the same for all of our possible choices of Th.
We will denote this unified axiom as Ra(E).

Intuitively, Ra(F) says that if we take the time At needed for the
Earth— Moonw— Mars+— Earth round trip and divide it with the spatial distance
covered during the trip, then the so obtained average velocity is independent from
the “choice of the Earth, Moon, Mars” (i.e. choosing any three other inertial bodies
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at relative rest*”® would yield the same result). Formally:
RA(E) (Ym € Obs)(3r € F)(Vdy,ds, ds € directions) [dl +dy+dz3=0 =

=7T|.

The definition of Ra(E) is a special case of the following more general definition
of Ry(AXE), which states that the k-way speed of light is constant. Let k£ € w be
any nonzero number.

R.(AXE) (Ym € Obs)(3r € F)(Yd,,...,d, € directions) [d1+. A dy =0 =

|di| - Ton(dy) + - .. + |di| - Trn(di) _ T}
|dy| + ...+ |dg] '

We note that R;(AxE) is a vacuous statement (hence automatically true).
Ry(AXE) is equivalent to R(AxEgy) and R3(AXE) is Ra(E). The next theo-
rem states that R3(AxE) implies R, (AXE) for all £ € w, in models of Bax™. This
is why we gave it a special name (Ra(F)).*™"

THEOREM 4.5.11 Let k > 2.
(i) Bax™ E R3(AxXE) — R, (AXE).

(ii)) In models of Bax™ + R3(AXE), the k-way speed of light is the same as the
two-way speed of light.

Proof. Assume 9 = Bax™ and m € Obs™. We will work in m’s world-view. Let
Ay =0, A, Ay, A3 be four distinct points in the space-part. Let 4, j < 4. By AxP1
and Ax5py, for each time instant ¢ € F, there is a photon which starts at ¢ from
A; and reaches A; some time later. Let T;; be the time, according to m, needed for
this. By Theorem 4.3.17, this time is independent of the time-instant ¢ when the
photon starts from A,. Let d;; denote the (spatial) distance between A; and A;. Let
vy denote the k-way speed of light (if this is constant).

First we show 9 = R3(AxXE) — Ry(AXE). Assume 9 = R3(AxE), i.e. that
the three-way speed of light is constant in 9t (then it is denoted as v3).

Assume that Ay, Aq, Ay are collinear, Ay is between A; and Ay and dy; = dg, as
on the figure.

4T6For simplicity, we pretend that the Earth, Moon etc. are at relative rest (but this is not
important).

47"We will see that Problem 4.5.10 is equivalent to asking whether Ry(AXE) implies Ry (AXE)
for all k£ € w, too.
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Let us investigate the round-trip of photons Ay — A; — Ay — Ay. This is a
3-Way round-trip, soT d:ef T01 + T12 + T20 = V3 - (d01 + d12 + dgo) by Rg(AXE) Now

(by Thm.4.3.17) Tay = Ty and Typ = Tyg+Top = 2-Thg. Thus T = 2-(Ty; +To) and
d d:ef d01 + d12 -+ d20 =2 (d01 + d10). Hence T01 + TlO = U3 (dOI + le)a ShOWiIlg that

the average speed of the two-way round-trip Ag — A; — Ap is v3. Since A; # Ay
was chosen arbitrarily, this shows that 9t = Ro(AXE) and vy = vs.

Next we show 9 = R3(AXE) — Ry (AxXE) and v3 = vg. We give the proof for
k = 4, the case k > 4 is completely analogous. Assume 9 = R3(AXE).

To show R4(AxE) (i.e. constancy of v4) and vs = v3, consider the round-trip of
photons AO — Al — A2 — AO — A2 — A3 — Ao.

Ay ——m = A

N\

A3 =— Ay

Let T d:ef T01 + T12 + T23 + T30 and d d:ef d01 -+ d12 -+ d23 + d30. We want to show

that T'= d - v3. Now, by a similar argument to the previous one, by R3(AxE) we
have T+T20+T02 = (d01 +d21 +d20) "U3+(d02+d23+d30) ‘U3 = d'U3+2'd02"03. On
the other hand, by Ro(AXE) and v3 = ve we have Tog+Tpo = 2-dpg - vy = 2-dps - 3.
These yield T' = d - v3, as was to be shown. [ |

It is not difficult to check that Asim(Bax) = Ra(E). Moreover, we are going
to prove that Ra(E) together with Reichy(7h) axiomatizes Asim(7h) for our
distinguished theories Th (see Thm.4.5.13). This motivates our next definition of
the full Reichenbachian versions Reich(Th) of our theories Th.
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Definition 4.5.12 (full Reichenbachian version of a theory)
Let Th € {Basax, Newbasax, Flxbasax, Bax}. Then the full Reichenbachian
version of Th is defined as follows:

Reich(Th) & Reichy(Th) + Ra(E).
<

Theorem 4.5.13 below says that the full Reichenbachian version of a theory proves
exactly those formulas which are true no matter how we change the simultaneities (to
nonstandard ones) in the models of the theory. This says, in a way, that Reich(Th)
is that part of the theory Th which remains if we disregard simultaneities. One way
of disregarding simultaneities is allowing all the possible simultaneities in models -
which in principle is the same as leaving simultaneities out from the models.

Thm.4.5.13 is a so-called “axiomatization type” theorem, or “representation the-
orem” in logic. It gives an axiomatization for the class Asim(7h) of models*™® —
if viewed from the models’ side —, and it characterizes all models of the theory*™
Reich(Th) — if viewed from the theory’s side.

THEOREM 4.5.13 (axiomatization of Asim(Th))
Let Th € {Basax, Newbasax, Flxbasax, Bax}. The models of Reich(Th) are
exactly the art-sim versions of the models of Th, i.e.

Asim(Th) = Mod(Reich(Th)).

Proof. Let Th be as in the statement of the theorem. We have to prove
Asim(Th) = Reich(Th) and Mod(Reich(Th)) C Asim(Th).

Asim(Th) = Ra(F) is not difficult to check (cf. the proof of Thm.4.5.8). Thus
Asim(Th) = Reich(Th) by Corollary 4.5.9.

To prove Mod(Reich(Th)) C Asim(Th), we will construct suitable art-sim ver-
sions. First we will show that

(x) every model of Bax™+Ra(F) has an isotropic art-sim version (i.e. one in
which Bax holds).*8°

4781t says that 9t € Asim(Th) iff 9 = Reich(Th), i.e. Reich(Th) axiomatizes Asim(Th).
4791t says that 90t is a model of Reich(Th) iff M is an art-sim version of a model of Th+ Ax(v/ ).
4801 fact, for any 90t € Mod(Bax ™), 90 has an isotropic art-sim version iff 9 | Ra(E).
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(x) will imply Mod(Reich(Th)) C Asim(7Th) as follows. Assume M |=
Reich(Th). Then MM = Bax™ + Ra(E), so by (x), 9 has an art-sim version
M* = Bax. By Thm.4.5.8 M* = Reichy(Th) + Bax. By Bax = ¢,,(d) = cp(—d)
and Prop.4.5.4 then 9M* | Th. Since “art-sim version of” is a symmetric relation,
then 90t is an art-sim version of Mt € Mod(Th).

We now turn to proving (x). We will prove (x) for n = 2,n = 3, and then for
n > 3. For n = 2 we will prove a stronger statement:
Assume n = 2. Then Mod(Bax™) C Asim(Bax): The proof is represented in Fig-
ure 188, see also the later Fig.193.

Figure 188:

Assume 9 = Bax~ and let m € Obs. Let ' = 7, be chosen as in Fig.188
(i.e. 0 € 7' || AB). Then it is not difficult to check that after relativizing with 7',
the speed of the two photons ph,, ph, will be the same. Thus if we relativize with
(!, : m € Obs), then we get a model M = Bax. See also Lemma 4.5.21.

Assume n = 3. Then Mod(Bax™ + RA(E)) C Asim(Bax): The proof is repre-
sented in Figure 189. Assume 9 = Bax™ + Ra(F), and let m € Obs. Let 7’

and 7’ be constructed as in the case of n = 2 in Plane(t, ), Plane(%, §) respectively.

Let P, & Plane(z',3'), P oo (Pn : m € Obs) and 9" o 9M/P. It is not difficult
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to check that t ¢ P, for all m € Obs, thus Mt = 9/ P makes sense (see the proof
of Thm.4.5.8, or p.594). Instead of checking that P,, is m-space like, we will prove
directly that 9" = Bax.

Let m € Obs and d € directions be arbitrary. Let ph be a photon moving
forwards in direction d, in 9. We will show that in 9t* also, ph will move forwards
in direction d; and moreover with speed v, where vs is the two-way speed of light in
M. We may assume that no photon has infinite speed in m’s world-view in 90t (since
otherwise all photons would have infinite speed by 9 = Ra(E) and then P, = S

would be the case).

Let A & (0,—d), i.e. A = (0,dy,...,dn_1) where —d = (di,...,dn_1). Let

B € 7 be such that AB || §. Let ph,, ph,, phy be photons travelling the round-trip
0+ B+ A 0in M, see Fig.189. Let dop, dpa, dao denote the distances between
0, B; B, A; and A, 0 respectively, and let d % dop +dpa + dao. Then the round-trip
takes t = vy - d “minutes” in M, i.e. {t} = tr,,(phy) Nt.

Let us now move into 9", In 9", the time needed for ph; to cover the distance
dop is vo - dyp because we chose T’ so that this be true. Similarly, the time needed
for ph, to cover the distance dap is vy - dap, we chose ¢’ so that this be true. This
shows that in 9", the time needed for phs to cover the distance dao is d — (vs -
dop + v - dpa) = Vo - dag- Thus the speed of phs is ve, and phy moves forwards in
M in direction d. Since the traces of ph and ph; are parallel in 9, so they are in
M™, hence ph also moves in direction d with speed v, in M.

The case of n > 3 is completely analogous to the case of n = 3, we omit it. 1

Definition 4.5.14 (simultaneity-stable formulas, Th-simultaneity-stable formulas)

Let Th be a set of formulas. We call ¥ Th-simultaneity-stable if for all models
M of Th+ Ax(v/ ),

M= iff [ is valid in all art-sim versions of 90).

We call a formula v of our frame-language simultaneity-stable if ¢ is Bax™-
simultaneity-stable. <

Intuitively, “¢) is simultaneity-stable” means that validity of v is insensitive for
changing simultaneities in a model, or that validity of 1/ does not depend on simul-
taneities. We note that the property “p-simultaneity-stable” is stronger than the
property “Bax™-simultaneity-stable”, which is stronger than e.g. “Reich(Bax)-
simultaneity-stable”. Formulas to show this are as follows. Let 7/ denote the for-
mula ¢y, (p,d) = ¢m(p, —d). Then the formula -Bax™ — 1) is Bax ™ -simultaneity-
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Figure 189: phy goes in direction —d with speed vy in 9t*. Illustration for the proof
of Thm.4.5.13.
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stable but not ()-simultaneity-stable, and the formula =R (E) — 1 is Reich(Bax)-
simultaneity-stable but not Bax™-simultaneity-stable.

COROLLARY 4.5.15 Let Th € {Basax, Newbasax, Flxbasax, Bax} and let
@ be a formula in the frame language.

(i) Reich(Th) consists of simultaneity-stable formulas.
(ii) Reich(7Th) = ¢ iff [Th+ Ax(v ) | ¢ and ¢ is Th-simultaneity-stable].
(iii) Assume that ¢ is simultaneity-stable. Then
Reich(Th) = ¢ if Th+Ax(V ) E ¢.

<

To our minds, Corollary 4.5.15 indicates that Reich(7h) is the natural choice
for the Reichenbachian version of our theory Th € {Basax, Newbasax, Flxbasax,
Bax}. The weaker form Reichy(7h) discussed earlier is only a precursor for this
“real thing” Reich(Th). However, we do not know whether these two variants are
really different, see Problem 4.5.10.

We note that if we change “Th-simultaneity-stable” to “simultaneity-stable” in
Corollary 4.5.15, then we get a false statement e.g. if Th = Bax. The example given
after Def.4.5.14 shows this.

Corollary 4.5.15 above suggests a way of defining the Reichenbachian version
Reich'(Th) for any theory Th, as follows.

Definition 4.5.16 Let Th be any set of formulas. Then we define

Reich'(Th) Lo {o: Th+ Ax(V ) = ¢ and ¢ is simultaneity-stable}.

<
PROPOSITION 4.5.17
(i) For Th € {Basax, Newbasax, Flxbasax, Bax} we have
Reich'(Th) 5= Reich(Th).
(ii) Asim(Th) & Reich'(Th).
<
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We do not know whether inclusion C in Prop.4.5.17(ii) above can be changed to
equality =.

The above also shows that “simultaneity-stable” formulas are the ones adequate
for being possible additions (as possible new axioms) to our Reichenbachian theo-
ries. It would be interesting to know whether “simultaneity-stable” coincides with
“experimentally testable” (‘“verifiable”, or “observable”) in some sense.*®!

We already mentioned that the relation “art-sim version of” is an equivalence
relation. Now, Asim({90t}) is the equivalence class of 9 via this relation. Then
“1p is simultaneity-stable” means that for any equivalence class Asim({9}), v is
either true in all members of this class or else v is false in all members of this class.
We could represent the class Asim({9t}) with the model 9~ we get from 9% by
“removing all simultaneities from 9%”. The move 9 — 9~ represents a step in
abstraction, namely we abstract from simultaneities*®? while we keep the “essential
parts” of M. A more radical step of abstraction will be done in the geometry chapter
§6 where we will obtain a geometrical structure &(90) from the model 9. Again, in
some sense, &(9N) will retain all the essential information about 9t while abstracting
from the non-essential or “conventional”*8® data in 99t. Actually, our present step
M — I~ of abstracting from parts of I can be considered the first step of the
abstraction process 9 — &(9N) discussed in the geometry chapter.

Question for future research 4.5.18 Give a syntactical*® characterization of

“simultaneity-stable”. I.e. find a syntactical definition of, say, “simultaneity-free”,

481 This is a typical problem area of logic. The first task is to define “experimentally testable”
in an intuitively satisfactory way. The idea is that in an experimentally testable formula one is
not allowed to refer to the space-time coordinates of an event. Instead, one can use the view-
functions defined later in Def.4.7.5 together with the purely space-locations of the “brothers” (i.e.
observers whose life-lines are parallel to m’s one). These locations remain observable via thought-
experiments, e.g. we can use the so-called “radar-distance” between m and its brothers.

A further natural question comes up, namely whether the “observable formulas” (or observational
formulas) are exactly those which are expressible in the language of the observer-independent
geometry &(9M) associated to the models 91 in §6.

This train of thoughts is related to the similarly logic oriented idea of trying to identify those
formulas which are testable by thought-experiments. We do not discuss these ideas in more detail
in the present work.

482gince they are considered as conventional notions by the Reichenbach-Griinbaum school of
thought

483Cf. e.g. Friedman [90] for the definition of some part of 90t being conventional .

484We call a property of formulas “syntactical”, if the property involves only the “form” of the
formulas, i.e. if the property is defined by referring to the characters occurring in the formulas. On
the other hand, “semantical” means “meaning-oriented”, usually this means “formalized via the
models of the formulas”. The present definition of “simultaneity-stable” is “semantical”.
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and prove that in Bax™, every simultaneity-stable formula is equivalent to a
simultaneity-free one, and vice versa. <

We now turn to the relationships between our new and old theories.

THEOREM 4.5.19
(i) Reich(Basax) [~ Bax, therefore

Gy Reieh(Th) = Th and
"' Reichy(Th) [ Th

for Th € {Basax, Newbasax, Flxbasax, Bax}.
(iii) Reichy(Bax), + Reich(Basax) = Bax.

Proof. Using Def.4.5.6, one easily constructs standard models of Reich(Basax)
in which isotropy (hence Bax) fails. These models satisfy Reich(Bax),, too. This
proves (i) and (iii), of which (ii) is a corollary. 1

We represent the inclusion-relations between our new Reichenbachian theo-
ries and the old ones in the lattice in Figure 190. All inclusions between the
theories represented in the lattice are represented also. This means that no in-
clusion holds between these theories that is not represented in the lattice. E.g.
Thm.4.5.19 above implies that none of the inclusions Reich(Th) > Th for Th €
{Basax, Newbasax, Flxbasax, Bax} hold.

Connections with Einstein’s 1/2-simultaneity

We give another axiomatization of Reich(7h) in terms of Einstein’s 1/2-
simultaneity. To each observer m, Einstein introduced a definable simultaneity
traditionally denoted as Si2. We recall this definition below.

Definition 4.5.20 (Einstein’s simultaneity)

(1) Let p € "F. Then p is 1/2-simultaneous with 0 iff there is ¢ € ¢ for which
there is a photon round-trip (—t) — p — t.

Le. if we send a photon from —¢ € ¢ to p and bounce it back to ¢, then the
time needed for the round-trip is [¢|-2. Intuitively, the event on the time axis ¢
1/2-simultaneous with p is the one which happened half-time during the time
interval int(—t,t) needed for the round-trip.*®> See Figure 191.

485This is why the literature calls this 1/2-simultaneity. Of course, in the definition everything is
to be understood in an observer’s world-view.
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Figure 191: p is 1/2-simultaneous with 0
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(2)

SH? ¥ (penF:pis 1/2 — simultaneous with 0}.

(3) Let p,q € "F. Then p and q are called SH2_simultaneous (or 1/2-simultaneous
for short) iff (3t € t)[p+t,q+t € 571,1/2].

<

Clearly, being Syln/ ®_simultaneous is an equivalence relation on "F, if we assume
Bax~. Now we are ready for defining our new axiom AxR™ for our full Reichen-
bachian theories. AxR™1 is of a character which, in principle at least, is “experi-
mentally testable” or “observable”. So, assuming AxR* does not contradict Re-
ichenbachian philosophy (i.e. it is of a different status than, say, speaking about the
one-way speed of light is).

AxR*  (Vm,k € Obs)(trm(k) 17 =
[ p and ¢ are Sl *_simultaneous] < [fo(p) and fo(q) are S;/ 2—simultaneous]).

The Sn!’-simultaneity relation (which was defined on the set "F) induces an
equivalence relation Ex/* on the set P(B) of events via w,,. Now, AxR™* says that

Ey?=E,* if trp(k) || £. Still in other words, AXR* says that if m and k do not
move relative to each other, then they “see” the same events as 1/2-simultaneous
(1/2-simultaneity will be the same notion for them). We are going to see that, in
models of Bax™, AxR' is equivalent with each one of the following two, simpler,
statements:

AxR™ Let m € Obs. Assume p,q € Se? and p # q. Then pg C S
AxRY?2 §M2 s a(n m-space like) hyper-plane, for all m € Obs.

We will also see that, in models of Bax™, Ra(E) is equivalent to AxRT+R,(AXE).

The next lemma sheds light to the relevance of Sel* in our present investigations.

LEMMA 4.5.21 Assume 9 = Bax™ and let P = (P,, : m € Obs) be such that
P, is an m-space like hyper-plane containing 0 for all m. Then

M/P = Vd(cn(d) = cm(—d)) i Pn=SH>
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¢4 = P, NP

Figure 192: Illustration for the proof of Lemma 4.5.21.

Proof. Let m € Obs and d € directions be arbitrary. Let P? & Plane(t,{\-d: X €
F}) and let ¢¢ < P, N P?, see Figure 192.

Now Cp(d) = cpu(—d) in M/ P iff ¢4 € Se/?. this can be read-off from Figure 192.
This implies our statement. See also Figure 193. |

Lemma 4.5.21 shows that 9t can have an isotropic relativization only if S}n/ % s
an m-like hyper-plane in it for all m, i.e. if AxR'/2 holds in it. Thus in particular,
Asim(Bax) = AxR'/2. We are going now to investigate when Sy is a hyper-
plane. Consider the following weaker statement:

AxR™  (Vm € Obs)(Vp € Si{*)0p C S,

Clearly, AxR™ " is a weaker statement than AxR ™, which is a weaker statement
than AxR/2. We are going to show that AxR™" always holds in Bax™, and in
models of Bax~, AxR™~ does not imply AxR'/2? while AxR™ already implies
AxR'/2.
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Case ¢y (d) # oo:

S 3
531

0 S
; ,-"‘0P111
:i ols
—1; € -1
world-view of m in 9 world-view of m in 9T

Case ¢ (d) = oo

world-view of m in I world-view of m in 9+

Figure 193: Illustration for the proof of Lemma 4.5.21
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LEMMA 4.5.22 The following four statements are true.
Bax™ = AxR™™.
Bax™ = AxRT + AxR™.
Bax~ £ AxR* < AxRY2.
Bax~ = Ra(F) < (AXxRT + Ry(AxE)).

Proof. The proof of Bax™ = AxR ™~ is illustrated in Figure 194, we do not write
out a detailed proof.

Next we show that AxRT, AxR~, and AxR'/? are equivalent in Bax™. Let
us assume Bax™ from now on in the proof.

Proof of AxRt — AxR™: We have already seen that AxR™~ holds in Bax™.
AxR™ differs from AxR™~ in that in AxXR™", 0 is replaced with an arbitrary
q € Srln/ > AxRT will be used to transform the situation to a world-view where
g is on %, we apply AXxR™~ there, and then we use AxR™ again to transfer the

result back to m’s world-view. In detail: Let ¢,p € Srln/Q,q # p. Let k£ € Obs be
such that ¢ € tr,(k) || t. Such a k exists. Then ¢ o fmk(g) and p' &f frk (D)
are St/*-simultaneous by AxR*. Further, ¢ € £. Then, by the definition of S,i/ 2

simultaneity, p” &f p—q € S,i/ . Thus 0p" C S,i/ > by AXR™ ™, so any two ele-

ments of the line ¢ & q'p are S;/ ?_simultaneous. But since fmk 1s a collineation by
Bax ™ (Thm.4.3.11), we have that ¢ = f,,;[gp]. By AxR™ again, we get that any

two elements of gp are Srln/ ?_simultaneous. By q,p € Srln/ ? this implies that gp C Srln/ 2,
See Figure 195.

Proof of AxR™ — AxR'/2: Assume AxR ™. Then, it is known from geometry (and
it is not hard to see) that SM? s a j-dimensional plane of "F for some j < n. To

prove that S}n/ ’isa hyper-plane it remains to prove that Srln/ % is (n—1)-dimensional.
For every i € n \ {0} let

(293) p' € SH? N (Plane(t, z;) \ £).

Such p¥’s exist because of the following. Let ¢ € n\ {0}. Case 1: ¢,,(1;) = oo. Then
every p' € 7; \ {0} is such. Case 2: ¢,,(1;) # oco. Let phy, ph, € Ph such that
—1; € try(phy), 1; € try,(phy), ph, is moving in direction 1; and ph, is moving in
direction —1;. Then tr,,(ph;) N try,(phy) # 0 by ¢n(1;) # oo. Let p € try,(phy) N
trm(phy). For this choice of p¥, (293) above holds.

Now, vectors in the set {p’ : i € n\ {0} } are linearly independent since p’ €

Plane(t, z;) \ t. Therefore Sul? is at least (n — 1)-dimensional. It is easy to check
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|

Case when ¢, (space(q)) # oo:

Case when ¢, (space(q)) = oc: I

Figure 194: Illustration for the proof of Bax™ = AxR™~.
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Figure 195: Illustration for the proof of AxRt — AxR™.

that Se/> N = {0}. Hence Sp/” is at most (n — 1)-dimensional. Therefore Sy is
(n — 1)-dimensional.

It remains to show that S/? is m-space-like. To see this let £ € Eucl such that
0 € ¢C Si? and ang?(f) # oo. Let p € £ be such that p # 0. Such a p exists
because t € Si/2. Then for some ¢ € £ there is a photon round-trip —t — p — t.
But then, as it is illustrated in Figure 196, £ is not a life-line of a slow observer or
of a photon.

Proof of AxRY? — AxR*: Assume AxRY2, tr,,(k) | L,p € T and r is Sa>-

simultaneous with p. It is enough to show that 7’ o k(1) is S;/ ?_simultaneous

with p/ def fmr(p). Let ¢ € tr, (k) be such that p and g are SH2_simultaneous.

Such a ¢ exists. Let ¢’ o fmk(q). As one can see in Figure 197, then p’ and ¢’ are

1/2 .
Sk/ -simultaneous.

Let s be the fourth vertice of the paralelogram pgrs and let s def fmk(s). See

Figure 198. Then p'r'¢'s’ is a paralelogram in k’s world-view, too, because f,,; is
a collineation. As illustrated in Figure 198, one can see that s’ and ¢’ are 5,1/ 2
simultaneous, because r and p are Sp/%-simultaneous. By AxR/Z then every two

elements of the plane containing p’, ¢, s’ are S ,1/ ®_simultaneous. In particular, r’ and
p' are S,i/ 2—simu1taneous, as was to be shown.
Proof of RA(E) = (AxRT + Ry(AXE)): It is not difficult to check that
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life-lines of slow observers passing through
ph, A b g ghp ph,
\' A ‘/
" f ).
’
N, "
O\ o

Figure 196: Illustration for the proof of AxR™ — AxR/2.
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Figure 197: If p and ¢ are Sy 2—simultaneous, then they are also S,i/ ?_simultaneous

Asim(Bax) = AxRT. Thus Bax™ + Ra(E) & Reich(Bax) = AxR™, by
Asim(Bax) = Mod(Reich(Bax)), cf. Thm.s 4.5.11, 4.5.13. We have already seen
RA(FE) - Ry(AXE) (Thm.4.5.11).

Proof of (AxRT + Ry(AXE)) — RA(E): Assume 9 = Bax™ +AxR++R2(AxE).
Then M |= Reichy(Bax) and M = AxRY2 Let P o (S? ' m € Obs) and
M+ X 9/ P. Then M+ = Reichy(Bax) by Thm.4.5.8, and M+ = cpn(d) = cpn(—d)
by Lemma 4.5.21. Thus 9" = Bax by Proposition 4.5.4, i.e. 9 € Asim(Bax).

But Asim(Bax) = Ra(E) by Thm.4.5.13.
|

Consider the theories Bax~ + Ax where Ax is one of AxR™~, AxR~, AxR'/2,
AxRT, Ry(AXE), Ra(E). By Lemma 4.5.22, we get the lattice in Figure 199.
It is not hard to see that Bax™ = Ry(AxE) and Bax™ £ AxR™, these imply
the two #’s in the lattice. Two of the four questions indicated on the lattice are
equivalent to Problem 4.5.10 and amount to asking whether

Bax™  Ry(AxE) —» AxR™
holds; the remaining two questions are equivalent to asking whether

Bax~ = AxRT — R,(AxE)
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Figure 198: Illustration for proof of AxR™ — AxR™.

992



Bax~ + AxR7T + Ry(AXE)

Bax™ + RaA(F)
Reich(Bax)
?
Bax™ + AxR* '
ax +Ax > Bax~ + Ro(AxE)
Bax~ + AxR'/2 .
< Reichy(Bax)
Bax™ + AxR™ 9
+ +
Bax™ + AxR™~
Bax™
Figure 199:

holds or not. We do not even know whether the weaker statement below holds:

Bax™ + VmVd(c,,(d) = ¢ (—d)) = Bax.

The next corollary gives alternative axiomatizations for Reich(7Th) in terms of
Einstein’s 1/2-simultaneities.

COROLLARY 4.5.23 Let Th € {Basax, Newbasax, Flxbasax, Bax}.
Reich(Th) == Reichy(Th) + AxR* |
Reich(Th) == Reichy(Th) + AxR™
Reich(Th) == Reichy(Th) + AxR'/?
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Problem 4.5.24 Recall the definitions of the “differentiable” versions Bax, and
Reichy(Bax), from Def.4.5.3. Is

Reichy(Bax), = Reich(Bax)

or
(Reichy(Basax) + Baxj ) = Reich(Basax)

true?

Relativizing with arbitrary surfaces, connections with re-coordinatization

Definition 4.5.25 Let H C "F. Then H is called a (generalized) surface of "F iff
there is a function h : S — F such that H = {{(h(s),s1,..-,8,_1) : § € S}, where
S is the space part®®® of "F, cf. p.470. H is called continuous if h is a continuous
function; etc. <

Figure 200: H is a surface.

In Def.4.5.6 we used hyper-planes P for artificial simultaneities in obtaining the
relativized model 9t/ P from 9. We could repeat the same definition with arbitrary
surfaces H in place of P.

1869 = {0} x "1F.
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Conjecture 4.5.26

(i) Assume that 9M/H is obtained from MM € Mod(Basax) with relativizing to
surfaces H,,,m € Obs. Then

M/H = Bax~ = (Vm € Obs)[H,, is an m-space like hyper-plane|.

(ii) We conjecture the same if one assumes only M € Mod(Bax) in place of
Basax.

<

Actually, we guess that the above conjecture remains true if we replace 9t =
Bax™ in it with 9t = SPRy, or even with Bax; ~ in place of Bax™. However, we
did not think about this.

Our mentioning models obtained by arbitrary surfaces (as artificial simultane-
ities) is partly motivated by Friedman [90, pp.170-172] where Reichenbachian rela-
tivity via arbitrary surfaces is discussed.*®” Our Conjecture 4.5.26 above seems to
point in the direction that arbitrary surfaces are not particularly useful in studying
Reichenbachian versions of special relativity. On the other hand, in d’Inverno [75] on
pp.217-220, the transition from Schwarzschild coordinates to Eddington-Finkelstein
coordinates seems to suggest that in general relativity, using surfaces (instead of
hyper-planes) as “artificial simultaneities” is useful.

We mention the following only because it might interest the reader,
but it is not necessary for the rest of this work. Let us consider e.g.
the Schwarzschild-coordinatization of spacetime outside the event-horizon of a
Schwarzschild black hole as represented in Fig.16.7 (p.217) of d’Inverno [75]. That
coordinatization uses the 1/2-simultaneities of observers outside the event-horizon
and at relative rest w.r.t. the black hole (i.e. at rest w.r.t. the singularity). More
precisely, let m be such a “suspended” observer outside the event-horizon. Then
using Si? as our simutaneity (and using m’s internal clocks for measuring time),
one obtains a coordinatization like the one on Fig.16.7 in d’Inverno. Further, if we
want to obtain the (advanced) Eddington-Finkelstein coordinatization in Fig.16.10
of d’Inverno from the just discussed Schwarzschild one, then we can do this by rela-
tivizing to a space-like hypersurface P of the original Schwarzschild coordinatization
(or world-view). In this step, P is not a hyper-plane and it cannot be replaced by a
hyper-plane. I.e. we cannot choose P to be “flat”.

487 A further motivation is preparing “the ground” for our discussion of the question why it is
only AXE of the axioms of Basax about which we worry (from the testability point of view) when
defining Reich(Basax). Cf. Remark 4.5.29 way below.
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Concerning our earlier open question whether the two theories Reichy(7Th)
and Reich(7Th) coincide, the above conjecture implies the following. If
Reichy(Basax) = Reich(Basax), then the counterexample (i.e. a model M =
Reichy(Basax)) is not obtainable from a model even of Bax by relativizing to any
surface (as a new, artificial simultaneity). Hence, for any one of our four distin-
guished theories Th, if Reichy(Th) = Reich(Th) is the case, then this cannot be
proved by generalizing relativization to arbitrary surfaces as artificial simultaneities
(and starting from usual models in which at least SPRy or Bax™~ holds).

With this, we stop discussing surfaces other than planes as artificial simultane-
ities.

Remark 4.5.27 (continuation of the present subject in other sections and chapters
of this work) The subject matter Reich(7Th), Th > Bax of the present section will
be further discussed in sections 4.7, 4.8 and in the Geometry chapter (§6). Inside
§6, we would like to call attention to §6.6.10 where Reich(7h) will be especially
often investigated, cf. e.g. pp.1124-1128 and Thm.s 6.6.107-6.6.110. However, other
parts of §6 also study Reich(7Th), cf. e.g. Proposition 6.7.16 on p.1145. <

Questions for future research 4.5.28

(i) Clarify the connection between Reichy(7h) and our chapter on the (first-
order logic) theories of accelerated observers (§8). E.g. from the point of view
of rotating observers, is it better to base the theory of accelerated observers
on Reich(Newbasax) in place of Newbasax?

(ii) Investigate which one of our paradigmatic effects, collected in the last sections
of §2 as well as in §4.7 way below, hold in Reichy(7h), Reich(7Th) for Th €
{Basax, Newbasax, Flxbasax, Bax}. Actually, we will do part of this in
section 4.8.

Remark 4.5.29 (Why exactly these axioms for Reich(Th), e.g. for
Reich(Flxbasax)?) Reichy(Flxbasax) was obtained from Flxbasax by revising
one of its axioms AxEgy on the basis of the “Reichenbach-Griinbaum philosophy”
saying that the one-way speed of light is not “observable”. By a little abuse of
terminology we could say that the Reichenbach-Griinbaum-Winnie school says that
AxEy; is not observational, hence should be replaced with an observational version
like e.g. R(AxEg2). The question naturally comes up why we revise only the speed
of light axiom AxEge and not the rest of the axioms like Ax1 etc.

One can answer this on two levels.
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(1) The first, “easy-going” answer is that AxEgy is the “fancy” axiom or the
exotic, exciting axiom of Flxbasax, the rest of the axioms go back (more or less)
to the time of Galileo (let us ignore the photon-part of Ax5 %%8) so why should we
worry about revising them.

(2) To obtain a more thorough answer, let us recall the list of axioms.
Reichy(Flxbasax) = Bax™ + R(AxE¢2) = R(AxEg2)+
{Ax1, Ax2, Ax3p, Ax4, AX50ps; AXx5pp, Ax600, Ax601, AxEq;, AxP1}.

We claim that AxEg;, AxP1 are observational (for brevity, we do not discuss
the reasons which are available in the literature). We did discuss Ax6qg, Ax6¢; On
p-190, so let us concentrate on the rest, i.e. on Ax1-Ax5pp.

Ax1-Ax2 can be regarded as notational preparations for Ax3g, hence we ignore
them.*® Ax50ps, AX5py express properties of the logic of the present work, i.e. that
we can think in terms of thought-experiments. As we already indicated, this logic
can be made explicit by using first-order modal logic as an expansion of our present
frame language. We postpone the presentation of this modal logic (of Ax50ps,
Ax5py) to a future work (it was presented at the University of Amsterdam at a
series of lectures in 1998 spring; part of that can be found in Vilyi [262]). Since
the “Ax5 axioms” can be regarded as a kind of logical azioms, it does not seem to
be important to revise them from the point of view of observationality.’®® (They
do contain tacit assumptions about “important things” like the nature of the life-
lines of certain bodies, but these assumptions are only inherited from other (than
Ax5) axioms where they do appear explicitly, hence they can be addressed when
discussing those axioms).

Now, the only axiom which is left to revise is Ax3q. So let us turn to discussing
this axiom. The discussion of Ax3y is organized into items (i)-(iii) below.

(i) This is an observational axiom relative to the life-lines of photons. Namely,
Ax3g says that the life-lines of inertial bodies are straight lines. The part of
this which says that the life-lines of such bodies are straight relative to the life-
lines of photons is observational, hence it can be safely included in Reich(Th).
It remains to discuss the part Ax3pp, of Ax3¢ which says that the life-lines of
photons are straight.

4880 g because we always adjust it to the remaining axioms whenever a change is made

489their revision belongs to the revision of Ax3g, hence is postponed

490To be more precise, we note that Ax5gps does carry some implicit assumption which is more
than a “logical axiom”. Namely, it implies that all velocities which are “slower” than the velocity
of light are realizable by some potential observer. All the same, this assumption seems innocent
enough. We will return to the issue of eliminating this assumption e.g. around the end of §5.
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(ii)

(iii)

Ax3py, follows from assuming that ¢, (p, d) does not depend on p. The tempo-
ral part, (VAL € )cp(p, d) = c(p+ At, d) of this is an observational axiom?*9!,
hence it is safely includable into Reich(7h). What remains to be discussed is
Ax3pace,pn Which is a “fragment” of Ax3py, defined as:*%?

AX3space,Ph
(VA € F)em(p,d) = em(p+ A - d, d).

We claim that under the above discussed observational “fragments” of Ax3,,
we have that Ax3space ph implies Ax3y.

Throwing away Ax3space,pn Would amount to allowing that very far (in “pure
space”) from the Earth the speed of light is different but in such a subtle way
that this is impossible to detect by any kind of thought-experiment. There
are two things to be said about this.

(iii.1) By using the methods of the present work, we could introduce a new,
more radical version Reich? of our operator Reich, such that in the so ob-
tained hyper-Reichenbachian theories, Ax3spacepn is not included (but the
above mentioned observational fragments of Ax3, are included). The in-
terested reader is invited to carry through this procedure as a kind of exer-
cise. Completely analogously to our present development of the analysis of
Reich(Th), one could elaborate the analysis of Reich?(Th) and its relation-
ship to relativization with hyper-surfaces (in contrast to our relativizations
with hyper-planes). Since carrying this through on the basis of the present
work seems to be more or less deterministic, we do not include it here (to
improve coherence and compactness).

(iii.2) Studying Reich(Th) is well motivated by the literature*®®, and has in-
teresting applications in constructing the world-views of rotating observers*®*,
hence indirectly it might help someone in understanding the theory of rotating
black holes. As a contrast, the present authors are not aware of such moti-

vations for studying Reich?(Th). This is a second reason for not studying
Reich?(Th).

491The proof is available from the authors.

492

in writing p+ A-d we assume that first d is extended to an “n-vector”, i.e. we mean p+ A- {0, d).

193Cf. e.g. Matolcsi [191].
194Cf. e.g. L. E. Szab6 [244], Salmon [233].
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In view of all the above, we are under the impression that, for the time being,
Ax3,pace ph is a useful simplifying assumption in our thoeries Reich(Th).4%

Summing up: We went through the axioms of Reich(Basax) and investigated
whether some of them needs a revision similar to the one that was applied to AXE.
(L.e. we asked ourselves “why exactly [and only] AXE was revised?”) We found the
following. The only remaining axiom that could need such a revision is the rather
mild statement Ax3space ph. Then we discussed whether revising that axiom here
would be useful. We found that the nature of Ax3spacepn is different from that
of AXE to the extent that it seems better not to revise Ax3space pn in the present
work.

Remark 4.5.30 Theorem 4.5.13 shows that the models of Reich(7h) can be
reduced to Basax-models via choosing nonstandard simultaneities which are
“straight” hyper-planes, like this:

new simultaneity

or this:

495 There seems to be a big difference between the move Th — Reich(Th) and Reich(Th) —
Reich?(Th), as follows. Th — Reich(Th) has significant philosophical implications e.g. because
it implies things about the meaning of the English word “now”. These implications in turn induce
implications about our understanding of causality and determinism, cf. L. E. Szabé [244]. The
present authors are not aware of similar implications in connection with Reich — Reich?. (E.g.
what commonly used word would so profoundly change its meaning as “now” does in the Th —
Reich(Th) case?)
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If we want to have (models based on) curved nonstandard simultaneities like this:

\//—\ . .
new simultaneity

\/

\_///:\\ _

then we could achieve this by developing Reich’(Basax) as outlined in the “Ax3¢-
part” (i.e. second part) of Remark 4.5.29 above. In more detail, in Reich(Basax),
we could replace Ax3¢ by AX3re1,Ph; AX3time Ph ad AX3ph rest Outlined below.

Ax3,e1,pn says that life-lines of inertial bodies are straight relative to photon
lines as explained in item (i) of Remark 4.5.29. (We leave the formalization of
Ax3,e1pn to the interested reader.) Ax3iimepn Was outlined in item (ii) of the
quoted remark (it is the postulate involving ¢, (p + At, d).) Ax3pprest Would state
whatever properties of life-lines of photons we want to keep (after relaxing the
original condition saying that they are straight lines). Such a condition could be
that photon-lines are continuous and differentiable.

For more in this direction we refer the reader to the part beginning with item
4.5.25 and ending just before 4.5.27 (the title of that part is “Relativizing with
arbitrary surfaces...”).
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4.6 Generalizing standard configurations

In §§ 4.6, 4.7 we will use the set Triv of trivial transformations and also axioms
Ax(Triv), Ax(Triv,) which are introduced in §§ 2.8, 3.5, 3.8. For completeness we
recall the definitions.

Triv < Triv(n, §) & { f € Aftr : f is an isometry®®®, f[£] || £, f(1,): — f(0); > 0}.

As we explain in §3.5, the transformations in Triv involve no “relativistic effects”,
one could say that they are very non-relativistic or, so to speak, trivial.

Ax(Triv) (Vf € Triv)(3k € Obs) f = f.

Ax(Triv) says that every observer can “re-coordinatize” his world-view by
any trivial transformation. Ax(Triv,) below is a weaker form of Ax(Triv).

Ax(Triv,))  (Vf € Triv) ( fEl=T = (3ke Obs)fu = f).

Proposition 4.6.1 below can be regarded as the formalized version of what is
said about standard configurations in usual relativity books, cf. e.g. d’Inverno [75]
p.27, last 6 lines.*” Intuitively, it says that, in Basax + Ax(v/ ) + Ax(Triv) we
have that every pair m, k of observers can be replaced with ones m’, k' in standard
configuration such that the m — m' and k& — k' differences remain “trivial”, cf.
the definition of Triv above. In other words, m and m’ are the same observer up
to trivial differences in orientation (and the same for &, £'). We defined standard
configurations in Def.2.3.16, p.71.

PROPOSITION 4.6.1 Basax + Ax(v )+ Ax(Triv) =

Vm, k Im' kK" (fme, T € Triv. &  m' and k' are in standard configuration).
In particular:
Basax + Ax(v ) + Ax(Triv) =Vm, k (0 € tr,, (k) =

Im' K [trp(m') =t =tre(K') & m' and k' are in standard configuration)).

We omit the proof. 1

It seems to us that Prop.4.6.1 above is related to Thm.3.6.4(i) saying
“PT = {trivo o rhomb o triv : ...}” because the class Rhomb of transformations

496 f.nF s "F is an isometry iff it preserves the square of Euclidean distances, i.e.
(Vp,g € "F)|lp—qll = ||f () = f(@)]|, cf. p.134 in §2.8 and Def.3.9.3 on p.349.
497There, the word “boost” is used for f,,;, where m, k are in standard configuration.
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is related to standard configurations. The use of Prop.4.6.1 above is in that it says
that in Basax, the f,,;,’s can be reduced to the case when m and k are in standard
configuration. This proposition can be generalized to Bax (cf. Prop.4.6.2), but not
much further.

Proposition 4.6.2 Prop.4.6.1 above remains true if Basax is replaced with Bax
in the following sense.

Bax + Ax(vV' ) + Ax(Triv) = Vm,k (m Sk =

Am' k' (e, Teiy € Triv. & m' and k' are in standard conﬁgumtion)).

We omit the proof. 1

In weak theories like Bax™ or Reich(Basax), we cannot hope for the conclusion
of Prop.4.6.1 or Prop.4.6.2 because we cannot expect
(fae(0) = 0 A fui[t Uz] C Plane(t,z)) to imply that fx[y] € S where S is
the space-part of "F. Therefore we need a more flexible version of the notion of a
standard configuration. For completeness, we note that Prop.4.6.2 above was our
main motivation for discussing standard configurations.

PROPOSITION 4.6.3 Assume n > 2. Then
Reich(Basax) + Ax(Triv) + Ax(||) ¥ Vm,k ((‘) € trm(k) =
Im' K [tr,(m') =tre(kK') =t & m' and k' are in standard conﬁgumtion]).

On the proof: The proof uses artificial simultaneities as in the definition of
Asim(Basax) cf. Def.4.5.6, p.568. We leave the details to the reader.

Conjecture 4.6.4 Assumen > 2. Then
Reich(Basax) + Ax(Triv)
Im, k (m # k and m, k are in standard configuration).
<

If the above conjecture is true then in some models of Reich(Basax) + Ax(Triv)
standard configurations simply do not ezist (in nontrivial form).
These motivate our definition below.

Definition 4.6.5 Let m, k € Obs.

(i) m and k are said to be in pre-standard configuration iff
fe(0) = 0 and f,,x[Plane(%, z)] = Plane(t, 7). See Figure 201.
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Figure 201: Pre-standard configuration.

(ii) m and k are in pre-standard symmetric configuration (pre-standard-sym
configuration for short) iff in addition to the condition in (i) they also sat-
isfy (x) and (%*) below.

(%)

[m sees k moving forwards in direction 1, &
k sees m moving forwards in direction 1,].
See Figure 202.
(x)

<

Intuitively, if v,,(k) # 0, then m and k are in pre-standard configuration iff
they meet at 0 and if they both see the other moving in direction 1, (forwards or
backwards). If v,,(k) = 0 then the second condition is of course granted, and we
replace it by saying that they see each other’s z-unit vectors pointing in direction

x.

FACT 4.6.6 Standard configurations are also pre-standard ones. lL.e. if m, k are in
standard configuration then they are in pre-standard configuration too. (The other
direction is of course not true in general.) But some standard configurations are not
pre-standard-sym ones.

<

603



Figure 202: Pre-standard-sym configuration.

Let name-standard_confiquration be one of the variants of standard configuration.
Then we say that name-standard configurations work in 9 iff

m = vm,k(m%k N

Im' k' (fme, Ty € Triv. &  m' and k' are in name-standard conﬁguration)).

Further, they work in Th iff they work in every model of Th. E.g. Prop.4.6.1 says
that standard configurations work in Basax+Ax(v/ )+Ax(Triv).

PROPOSITION 4.6.7

Bax™ + Ax(v ) + Ax(Triv) = pre-standard-sym configurations work.**
Therefore

Reich(Bax) + Ax(Triv) = pre-standard-sym configurations work.

We omit the proof. 1

If we added the condition v, (k) = vi(m) to Def.4.6.5(ii) above, then the
so obtained pre-standard-strongly-symmetric configurations would not work in
Reich(Basax) + Ax(v/ ) + Ax(Triv) by Thm.4.7.31(ii) on p.629.4%

498T e. Vm, k (m S % = 3Im',k (... &m' k' are in pre-standard-sym conﬁguration)).

499This is so because of the following. If pre-standard-strongly-symmetric configurations
worked in Reich(Basax) + Ax(v/ ) + Ax(Triv) then Reich(Basax) + Ax(v ) + Ax(Triv) |=
Ax(sy) would hold, where Ax(sy) will be introduced on p.628. But then, by Thm.4.7.31(ii),
Reich(Basax) + Ax(v/ ) + Ax(Triv) |= Basax would hold. This would be a contradiction, since
there are models of Reich(Basax) + Ax(v/ ) + Ax(Triv) which are not models of Basax.
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Pre-standard configurations do not say anything about how & sees m’s ¢ axis.
(On the other hand, standard configurations require quite a lot from fy,,[7]).

Definition 4.6.8 Let m, k € Obs.

(i) Assume n < 4. We say that m, k are in gquasi-standard configuration iff they
are in pre-standard configuration and fy,,[y] L Z and fi,[2] L. 7.

(ii) Let n be arbitrary. Then the definition is the natural generalization of that in
(i). Le. we require (Vi,j > )i # j = fim[Zi] Le 7;]-

<

Definition 4.6.9 Let m,k € Obs. We say that m, k are in quasi-standard-sym

configuration iff (i)—(iii) below hold.
(i) m, k are in quasi-standard configuration.
(ii) m, k are in pre-standard-sym configuration.

(iii) (Vi >1) (fem(1))i > 0.

PROPOSITION 4.6.10
Reich(Bax) + Ax(Triv) = quasi-standard-sym configurations work.

Proof: The proof uses artificial simultaneities and Thm.4.5.13 (p.576). We omit
the proof. 1
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4.7 Which symmetry principles are suitable for our Re-
ichenbachian theories Reich(7Th)?

In §4.2 we discussed the motivation for the present section.

Thm.4.7.1 below says that, as we anticipated, Ax(symm) is a too strong symme-
try principle for studying e.g. Reich(Basax). Motivated by that theorem, first we
will introduce “gentle” symmetry principles R(Ax eqsp) and R(Ax syto) which
will be in harmony with the spirit of our theories Reich(Th).*® In particular, we
will see that R(Ax eqsp) does not blur the distinction between Reich(Basax) and
Basax. Then we will see the same about R(Ax sytg) too. We will define the sym-
metric version of Reich(Basax) to be Reich(Basax) + R(sym), where R(sym) is
R(Ax eqgsp) + R(Ax syto).

As we said above, to illustrate that we really need to search for new symmetry
principles adequate to (the philosophy of) our theories Reich(7h), we state one of
our theorems to the effect that our earlier symmetry principle Ax(symm) blurs the
distinction between Reich(Th) and Th.

THEOREM 4.7.1 Reichy(Basax) + Ax(||) + Ax(symm) = Basax.
On the proof: We will return to proving this theorem as Thm.4.7.31(i) later. B

So, clearly Ax(symm) is not adequate for studying Reich(7Th) because adding
it to the “Reichenbachian refinement” Reich(Th) of Th kills the result of all our
efforts to refine the theory (and implies e.g. strong statements about the one-way
speed of light which we wanted to avoid).

An analogous theorem can be stated which implies that already Ax(syt) is
non-adequate for Reich(Th), at least in some sense. Such “non-adequateness” state-
ments about Ax(syt) will be stated as Theorems 4.7.20 and 4.7.21 way below. Cf.
also Remark 5.0.61 on p.724.

Before going on, let us stop briefly to reflect on our usage of the word “adequate”.
From our above discussion it is clear that if ¢ is a potential symmetry axiom then
is either adequate or is not adequate for Reich(Basax). However, we did not give an
explicit definition of adequateness. Instead, “adequateness” was implicitly described

500The “names” R(Ax eqsp) and R(Ax sytg) intend to refer to the fact that we consider these
axioms as the “Reichenbachian” or “observations oriented” (i.e. testable) versions of our earlier
axioms Ax(egspace) and Ax(syto), respectively.
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in §4.2 and above (in the present section). Any simultaneity-stable formula counts
as adequate.’®* Also if

Reich(Basax) + Ax(Triv) + ¢ = Bax

then 1) is called non-adequate. If 1) would fall in between these two extremes then
the definition of adequacy remains implicit.

To see that Thm.4.7.20 points in the direction of non-adequateness of Ax(syto),
we recall that theorem. Thm.4.7.20 says that Ax(syte) is very far from being
simultaneity-stable. Indeed, it says that any nontrivial relativization 9t — 9t/P
makes Ax(syto) false in 9/P if it was originally true in 90, assuming M =
Bax + Ax(v/ ). We consider items 4.7.20, 4.7.21, and 5.0.61 way below as evi-
dence pointing in the direction that Ax(sytg) is a symmetry principle not quite
adequate for studying Reich(Basax).

Later we will introduce a very natural and mild-looking symmetry principle
Ax(sy), which is a consequence of Ax(symm)+Ax(]|). It says the following:

(Vm, k € Obs) v, (k) = v(m).

Le. “I see you moving with the same speed as you see me moving”. Then we will
see that even this very mild principle Ax(sy) is not adequate for Reich(Basax),
cf. Thm.4.7.31(ii). Moreover, Ax(sy) blurs the distinction between Reich(Basax)
and Basax.

Summing up, we found that none of Ax(symm), Ax(syt), or even Ax(sy) is
adequate as a possible symmetry principle for Reich(Th). This motivates our search
for new symmetry principles which are adequate for Reich(7h). In this search we
have two informal criteria for the new symmetry principles. These are (i), (ii) below.

(i) The principle should be in harmony with the philosophy behind Reich(Th)
e.g. it should not blur®® the distinction between Th and Reich(Th).

(ii) “Reich(Th) + the new symmetry principle” should yield something interest-
ing which is not provable from Reich(7h) alone, analogously to the results in
§2.8 (“A symmetry axiom”) which were provable from Basax+Ax(symm)
but not from Basax alone. An example of such statements is the twin paradox
(Ax(TwP)) but see §2.8 for more.

501This is so by an act of definition.
502in the sense explained above, cf. Thm.4.7.1 and the discussion preceding it.
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Motivated by the above discussed theorems, we turn our attention to search-
ing for symmetry principles adequate for studying our Reichenbachian theories
Reich(Th).

Before getting started, we note that we would like to have the new principles,
call them Ax(new), to be as much in harmony with the spirit of the “Reichenbach-
Griinbaum philosophy” as R(AxE) is, in contrast with AXE (which according to
the Reichenbach-Griinbaum philosophy is not testable). A possible way of doing
this is to make the new principles as testable by thought-experiments as R(AXE)
is. (We note that this may not be the only way.) We already said this in our
above discussion of adequateness and simultaneity-stableness. When we want to
emphasize the connection with Reichenbachian philosophy of relativity, we will write
Reichenbach-adequate for what we called adequate above.

Now, we can turn to our first new symmetry principle R(Ax eqsp).

The new axiom, R(Ax eqsp) is related to the paradigmatic effects in §2.5. In-
tuitively, R(Ax eqsp) says that moving spaceships do not change their thickness as
a consequence of motion cf. §2.5 for terminology. I.e. motion might cause spaceships
to get shorter, clocks to slow down etc., but it will not affect width or thickness of

these spaceships.

k’s view of k’s ship

OND S

m’s view of k’s ship

this does not change

In formalizing this “thickness does not change” principle, one has to be a little
bit careful, because in models of Reich(Basax) motion might distort spaceships
the following way:
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k’s view of k’s ship m’s view of k’s ship

To represent thickness of a spaceship, we imagine two (parallel) lines ¢;, £, attached
to the sides of the ship like this:

4

%)

Then, thickness of the ship is represented by the distance between ¢; and /5.
(The distance between ¢; and ¢y ismin{||[p —q|| : p€ ¢; and q € 45 }.)

In space-time, this will look like in Figure 203. In Figure 203 the spaceship is
sandwiched between two planes Plane; and Plane, both parallel with Plane(t, Z).
We have to apologize, because the picture in Figure 203 is a little bit misleading
(deliberately). Namely, the spaceship does not have a dimension parallel with ¢, or
if it does, then it looks like in Figure 204.

Anyway, on both figures Plane; and Plane, are represented. Now, thickness of
the spaceship is identified with the Euclidean distance between planes Plane; and
Plane,. Our axiom will state that the (shortest Euclidean) distance between Plane;
and Plane, is the same for both observers m and k where (k lives inside the spaceship
and) Plane;, Planey, m and k are as in Figure 204.

Definition 4.7.2 Let H, H; C "F be two sets of points. Then the (shortest Eu-
clidean) distance between H and H; is defined as follows.

Eudist(H, Hy) < inf{|lp—q|| : p€ H and ¢ € H }.
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Plane;

Planey =

Figure 203:

Sl

trm (k)

Plane; — |

Planey

S]]
Il

~
AN

_/ 2

Figure 204:
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We note that if H, H; are two parallel planes or lines then their distance always
exists (even without Ax(v/ )).

R(Ax egsp) to be introduced below is in some sense the Reichenbachian coun-
terpart of the idea coded by Ax(eqspace). Cf. items 4.7.10, 4.7.13. However,
R(Ax eqsp) is not obtained by a mechanical translation from Ax(egspace) e.g.
because the formulation of the latter heavily uses simultaneities.

R(Ax eqsp) Assume m and k are in pre-standard configuration. Let P be a (2-
dimensional) plane parallel with Plane(,Z). Then the distance between P
and Plane(t, Z) is the same as the distance between f,.x[P] and f,,x[Plane(t, Z)].
Formally,

(%) Eudist(P, Plane(t, 7)) = Eudist(f,x[P], fmx[Plane(z, 7)]).
See Figure 205.

¢ k
o/
P2 /
/
/
/
/
/
/
/
/
/
/
/
= !

_ q k’s spaceship at time
Y 0 as seen by m

Figure 205: Illustration for R(Ax eqsp).

We hope that consulting Figures 203, 204, 205 will convince the reader that
R(Ax eqsp) says what we promised to say, namely that the thickness of the space-
ship of k£ is the same for observers k£ and m. Cf. also the paradigmatic effect in item
2.5.12(ii)(b) and (iii) on p.101; and paradigmatic effect (E5) in §4.8.
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The reason why we consider R(Ax eqsp) a symmetry principle is the following:
It is not hard to see, that R(Ax eqgsp) says (at least in some sense) that m sees the
thickness of k’s spaceship the same way as k sees the thickness of m’s one (assuming
that both observers think that the thickness of their own ship is 1).°%

For completeness, let us see a bit more formally why our axiom says what we
claim to say. Clearly, P is the “life-line” of the right-hand side®** while Plane(Z, z)
is the life-line of the left-hand side of the ship as seen by k. But why is the dis-
tance between the two sides of the ship the same as the distance between these
two planes (in k’s world-view). Formally, thickness of the ship as seen by k is
Eudist(P N S, Plane(t,Z) N S), because thickness of the ship is a spatial distance
hence we have to intersect the life-lines involved with space = S. However, we are
lucky because we are discussing planes parallel with t. For such planes P, P, we have
Eudist(P, P;) = Eudist(PN S, P, N S).** In the world-view of m we also have f,,;[P]
and f,,x[Plane(t, Z)] = Plane(t, z) are parallel with ¢ since we assumed a pre-standard
configuration (between m and k). This argument shows, that in both world-views
the distance between our planes coincides with the distance between their space-
parts. This is why in (x) it was sufficient to write “Eudist(P,...)” instead of the
more complicated “Eudist(P NS, ...)".

With this we proved that R(Ax eqgsp) says indeed that thickness of ships do
not change (as it was claimed). In this connection cf. Matolcsi [190, p.158, items
11.1.3.7, 11.1.3.8].

We note that we cannot formalize our new axiom R(Ax eqgsp) in the form of
Ax(egspace) on p.136. The reason for this is the distortion effect of Reich(Basax)
models mentioned on p.608 above. Namely, in Reich(Basax) models, it may hap-
pen that m and k see k’s spaceship the following way in “pure space”:

503Besides the above reason, we also note that the original axiom Ax(egspace) was already a
symmetry principle since it is a consequence of Ax(symm) (under assuming Bax).

504We identify one side of the ship with an infinitely long stick (or rod) i.e. a line in space S.
Hence the life-line of this long stick will be a plane in space-time.

505This is so because £ L, S and the distances we are considering are Euclidean.
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thickness of ship

’ ‘iQ/ O
A I A/ z
k’s view of k’s ship m’s view of k’s ship

We identified two “corners” of the spaceship with bodies A and B. (It is important
here that A, B are not events but bodies extending through time.) Now, in m’s
world-view the thickness of the ship is not the distance between B and A but rather
the distance between B and line Z.

About the intuitive picture behind the new axiom: Instead of two bodies like A, B
above, imagine two (infinitely long) rods attached to the two sides of the spaceship.
In £’s world-view, at time ¢ = 0 one rod can be the Z axis, while the other rod can
be a line ¢ parallel with z. Then the “life-line” of the first rod is the Plane(t, )
plane. (The life-line of a rod is not a line but a plane.) The life-line of rod £ is the
plane P parallel with Plane(Z,z). This is why our new axiom talks about distances
between planes (instead of talking about distances between life-lines of bodies or
distances between events as we did e.g. on pp.133-136.)

We will discuss soon the suitability (and basic properties) of R(Ax eqsp) as
our first candidate for being a symmetry principle suitable (or adequate) for our
Reichenbachian theories beginning with Prop.4.7.6. Among others we will see (i)
(iii) below.

(i) R(Ax eqgsp) is true in the relativizations of models (of Bax) which we consid-
ered as “symmetric” before; e.g. Asim(Bax + Ax(symm)) = R(Ax eqgsp),
cf. Thm.4.7.18.

(ii) R(Ax eqsp) does not blur the distinction between Reich(Basax) and Basax
cf. Corollary 4.7.19.

(iii) R(Ax eqgsp) has interesting consequences when added to e.g. Reich(Th), e.g.
Reich(Flxbasax) + (¢, (d) < 00) + R(Ax eqgsp) = Ax(TwP),

if n > 2, cf. Corollary 4.7.25.
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Remark 4.7.3 (R(Ax eqsp) without involving standard configurations.) In the
formulation of R(Ax eqsp) we assumed that m, k are in pre-standard configuration.
The reason for this was only to simplify the formulation. For completeness we
include the following definition.

R*(Ax eqsp) Assume m,k € Obs such that m S k. Assume P,Q are parallel
planes of "F such that they are parallel with both ¢ and tr,, (k). Then

Eudist(P, Q) = Eudist (fu[P], £ [Q])-

Proposition 4.7.4
Bax~ + Ax(v ) + Ax(Triv) = R(Ax eqsp) +» RT(Ax eqsp).
Proof: The proof is straightforward and is available from Judit Madarasz. ®

When we use R(Ax eqgsp), we usually have to assume some auxiliary axioms
like Ax(Triv) too. The advantage of RT(Ax eqsp) is that when using it we do not
need these auxiliary axioms (this is somehow connected to Prop.4.7.4 above).

<

On temporal symmetry principles like Ax(syt)

Having studied the Reichenbach-adequate version R(Ax egsp) of our symmetry
principle Ax(egspace), we turn our attention to obtaining a Reichenbach-adequate
version R(Ax sytg) of our temporal symmetry principle Ax(syto). Besides the
pursuit of knowledge and understanding, we have a further motivation for looking
into R(Ax sytg). Namely, for n = 2, R(Ax eqgsp) does not say anything®®, but
R(Ax sytg) does have implications for n = 2 too.

The method of Reichenbachizing Ax(syte) remains the same as it was in the
case of Reichenbachizing AxE. Namely, we switch attention to those things which
can be checked by thought-experiments. More concretely, in the statement “as m
sees k so does k see m” we replace those things which an observer sees via his
coordinate system with those things which the observer sees literally i.e. optically,
via photons.®%”

50635 it was expectable since Ax(egspace) has this property, already.

507Compare with the remark on p.560 and Figure 185.
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Definition 4.7.5 Let m € Obs. Then we define the relation view,, C "F x ¢ as
follows.

view,, % {{p,q) € "F xt : p; < q; and (Iph € Ph) p,q € tr,,(ph) }.

Intuitively view,, intends to represent (the temporal aspect of) how observer m sees
literally i.e. optically (via photons) the events “happening” in its world-view. More
concretely, p € "F and g € ¢ are view,, related iff observer m literally sees, via
photons, event w,,(p) at time ¢. We note that under assuming Bax™, view,, is a
function view,, : "F — t, cf. Figure 206. Therefore, in formulas we will use view,,
as if it were a unary function symbol. The translation algorithm is analogous to
that given for the f,,;’s in Convention 2.3.10 (p.61).

<

Figure 206: Illustration for Def.4.7.5.

R(Ax sytg) (Vm,k € Obs)[f,x(0) =0 =
(Vp € ©)|viewn (fim (p))| = | viewk (fri (p))|]-

That is m and k literally see, via photons, each other’s clocks slowing down
with the same rate, see Figure 207. The main difference between Ax(syto)
and R(Ax syto) is that in Ax(syto) we use the the simultaneities of m and k
in formalizing how they “see” each other’s clocks while in R(Ax syto) we are
careful to use only what they literally see via photons (so as to avoid possible
tacit assumptions about simultaneities “creeping into the picture”).
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k’s clock
shows p;

m’s clock
shows p;

0= fem (6)

m’s world-view k’s world-view

Figure 207: Illustration for R(Ax syto).

For the time being, our “fullest” Reichenbachian symmetry principle R(sym) is
defined as follows.

R(sym) & R(Ax egsp) + R(Ax syto).

We note that Thm.4.7.11 below points in the direction that denoting R(sym)
by say R(Ax symm) seems to be justified. (However we do not do this here.) Le.
R(sym) could be considered as the Reichenbachized version of Ax(symm) since

under some assumptions the latter is the same as Ax(eqspace)+Ax(syto), cf.
Thm.4.7.11.

The axioms R(Ax sytg), R(Ax eqsp), RT(Ax eqsp) and R(sym) are all
testable by thought-experiments. The following proposition states that they are
simultaneity-stable.

PROPOSITION 4.7.6 Assume M € Mod(Bax™ +Ax(v/")). Then (i)-(iv) below
hold.

(i) MM = R(Ax syto) & Asim(9) = R(Ax syto)
(i) ME=ER(Ax eqsp) <& Asim(IM) =R(Ax eqgsp)
(iii) M E=RT(Ax eqsp) & Asim(M) = RT(Ax eqsp)
(iv) 9 = R(sym) & Asim(9M) = R(sym).



Proof: The proof is easy. We omit it. 1

By Thm.4.3.11 and Lemma 3.1.6 we have the following.

FACT 4.7.7 In models of Bax™, every f,,r can be obtained as a composition of an
affine transformation and a map @ induced by a field automorphism .
<

The next theorem says that assuming Bax™ (and some auxiliary axioms),
R(Ax sytg) implies that the f,,;’s are affine transformations, i.e. there are no field
automorphisms involved in the f,,;’s. As we already said in Remark 3.1.5 we do not
find it extremely nice (or inspiring) to state that the f,;’s are affine as an axiom,
but we are happy to have it as a theorem.

THEOREM 4.7.8
Bax~ + Ax(v ) + Ax(Triv) + R(Ax syto) = (Vm, k)f,. € Aftr.

On the proof: The proof is similar to the proof of Prop.3.9.50(i) (p.392) saying
that
Bax™ + Ax(V ) + Ax(syto) = (Ym, k), € Aftr. W

The next theorem says that R(Ax sytg) ezcludes FTL observers, even in di-
mension 2, under assuming Bax™ and some auxiliary axioms. As a contrast, it
is important to note here that Basax + Ax(v ) + Ax(Triv) + Ax(syto) allows
FTL observers in 2 dimensions, cf. Thm.2.8.2 on p.127, Thm.2.8.9 on p.132 and
Thm.3.9.8(iii) on p.352.

THEOREM 4.7.9
Bax™ + Ax(v ) + Ax(Triv;) + R(Ax sytg) = “ A FTL observers”.

On the proof: Assume Bax™ + Ax(v ) + Ax(Triv,) + R(Ax syto). Assume
m,k € Obs and that k moves FTL as seen by m. By Bax™ 4+ Ax(Triv,) we can
assume that f,;(0) = 0. Let p := view,,(fx;n(1;)). Then pfy,,(1;) = tr,,(ph), for
some ph € Ph. Let such a ph be fixed. See Figure 208. It is easy to check that
the “causal direction” of ph is the opposite for k£ as for m. In Figure 208 for £ it
is this , while for m is this X_. By this and by applying R(Ax sytq) for m
and k one concludes that 1, € tr,,(ph) N, i.e. that p = 1, (since by Ax(v" ), fox
is order preserving). Let m’ € Obs such that m' does not move FTL as seen by m.
Then applying R(Ax syto) for m’ and k one concludes that tr,,(ph) N tr,(m') =
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Figure 208:

{frwm (1) }- But then m and m’ see each other’s clocks by “view” differently, and
this contradicts R(Ax syto). 1

Intuitively, the next theorem says that in Bax the “Reichenbachian” symmetry
axioms are equivalent with their old versions, if n > 2 is assumed. For n = 2 this
is not so because by Thm.4.7.9, R(Ax syto) (under assuming Bax™ and some
auxiliary axioms) excludes FTL observers, while Ax(syto) does not exclude them.

THEOREM 4.7.10 Assume n > 2. Then (i)—(iv) below hold.

(i) Bax+ Ax(vV )+ Ax(Triv) = R(Ax sytg) < Ax(syto).

(ii) Bax+ Ax(v )+ Ax(Triv) = R(Ax eqsp) « Ax(egspace).
(iii) Bax + Ax(v) = R*(Ax eqsp) < Ax(egspace).
(iv) Bax+ Ax(v )+ Ax(Triv) + Ax(]|) E R(sym) + Ax(symm).

A~ N N

On the proof: Item (i) can be proved by using median observers as follows.
Throughout the proof we will tacitly use that both Ax(syto) and R(Ax sytg),
under assuming Bax+Ax (v )+Ax(Triv), imply that the f,,;’s are affine transfor-
mations by Prop.3.9.50(i) (p.392) and Thm.4.7.8. Assume m,k € Obs such that
f.x(0) = 0. Let h be a median observer for m and k. Such an h exists.’® Now, it is

508The existence of such an h can be proved as follows. By changing the lengths of meter-rods
each model of Bax + Ax(v/ ) can be transformed to a model of Newbasax+Ax(v/ ). Since
models of Newbasax are disjoint unions of models of Basax in the new Newbasax+Ax(v/ )
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easy to see that in the world-view of h the simultaneity of m and the simultaneity
of k are t-symmetric, formally f,,,[S] and fg,[S] are f-symmetric.5% By this one can
prove that Ax(syte) holds for m and k iff h sees the clocks of m and k slowing
down with the same rate, cf. the proof of Lemma 3.9.52 on p.395. But since the
light-cone is also t-symmetric, it is easy to see that R(Ax sytg) holds for m and &
iff h sees the clocks of m and k slowing down with the same rate. Thus Ax(syto)
holds for m and k iff R(Ax syto) holds for m and k. The rest of the proof of (i)
goes by using Ax(Triv).

In item (iii) the direction RT(Ax eqsp) — Ax(egspace) can be proved by us-
ing that in Bax if two clocks do not get out of synchronism then they are orthogonal
to movement, formally for every p,q € "F with p # ¢

Pe=a A fe®@)e =fmr(@)e) = (07 Le trm(k) A fre(D)fmi(q) Le tre(m)).

The direction Ax(eqspace) — R1(Ax eqsp) can be proved by using that in Bax
if two clocks are orthogonal to movement then they do not get out of synchronism
and remain orthogonal to movement, formally for every p,q € "F with p # ¢

(pt = G A p_q J—e trm(k)) = (fmk(p)t = fmk(Q)t A fmk(p)fmk (q) J—e trk(m))-

Item (ii) is a corollary of Prop.4.7.4 and item (iii).
Item (iv) follows from items (i), (ii) and Thm.4.7.11 below. &

Thm.4.7.11 below says that Ax(syto)+Ax(egspace) is equivalent with
Ax(symm), assuming Bax and some auxiliary axioms. We note that, assuming
Basax (and some auxiliary axioms), both Ax(syte) and Ax(egspace) are equiva-
lent with Ax(symm), cf. Prop.3.9.47 (p.391) and Thm.2.8.16 (p.137). For similar
equivalence theorems we refer the reader to §3.9.

THEOREM 4.7.11 Assume n > 2. Then
Bax + Ax(V ) + Ax(Triv) + Ax(|]) E
Ax(symm) < (Ax(syto) + Ax(egspace))

Proof: The theorem can be proved by using the “median observer” proof methods
from §3.9. We note that the proof of “direction —” uses Prop.3.9.37. The proof will
be filled in later. 1

In Thm.4.7.10 above we have seen that, for n > 2, Ax(syto) and R(Ax syto)
are equivalent. For n = 2 these two axioms are not equivalent, since R(Ax syto)

model there is a median observer h for m and k by Thm.3.8.25 on p.306. It can be easily checked
that this & will be a median observer for m and k in the original Bax + Ax(v/ ) model too.
509This can be seen by using the Newbasax+Ax(v/ ) model mentioned in footnote 508.
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excludes FTL observers,®® while Ax(syto) does not. The next theorem de-

scribes how FTL observers see each other’s clocks via photons in 2-dimensional
Basax+Ax(syto) models. (The way they see each other, according to our next
theorem, is only slightly different from what R(Ax sytg) says, namely at one place
“p” is replaced by “—p”.)5!

THEOREM 4.7.12 Assume n=2. Assume Basax+Ax(syto)+Ax(yv/ ). Assume
m, k € Obs and that k moves FTL as seen by m and that f,,;(0) = 0. Then

(Vp € t) [viewnm (fem(p))| = |viewk (frmr(—p))I;
see Figure 209.
Proof: The proof will be filled in later. R

The following is a corollary of Prop.4.7.6 and Thm.4.7.10. Roughly speaking,
it says that in a relativization of a Bax model, the “Reichenbachian version” of a
symmetry axiom holds iff in the original Bax model the original symmetry axiom

holds.

COROLLARY 4.7.13 Assume n > 2. Assume 9 € Mod(Bax + Ax(v/)). As-
sume that 9™ is an art-sim version of 9. Then (i)—(iv) below hold.

(i)

M+ =R (Ax eqsp) & M = Ax(egspace).
(ii) Assume M = Ax(Triv) or M = Ax(Triv). Then

M+ = R(Ax eqsp) & M = Ax(egspace).

(iii) Assume M* = Ax(Triv) or M = Ax(Triv). Then
Mt = R(Ax sytg) & M = Ax(syto).

(iv) Assume (M* = Ax(Triv) or M E Ax(Triv)) and (MT = Ax(||) or
M = Ax(]|)). Then
Mt = R(sym) & M = Ax(symm).

510Cf, Thm.4.7.9.
S Of course the conclusion of the next theorem has to be different from that of R(Ax sytg) by
the just quoted Thm.4.7.9.
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Figure 209: Ilustration for Thm.4.7.12.



Proof: The corollary follows from Prop.4.7.6, Thm.4.7.10 and Prop.4.7.14 below.
|

The next proposition says the following. Consider a relativization 9% — 9t/ P.
If this represents a move from Reich(Bax) to Bax (i.e. if 9t/ P = Bax) then truth
of Ax(Triv) and of Ax(||) are preserved. Further, this becomes false if “the move”
is in the other direction (i.e. from Bax to Reich(Bax)).

PROPOSITION 4.7.14 Assume M € Mod(Bax + Ax(v/ )) and that M+ is an
art-sim version of M. Then

(i) mt = Ax(Triv) = M= Ax(Triv) and
(i) mt = Ax(|]) = M= Ax(]]). But
(iii) M= Ax(Triv) #A Mt = Ax(Triv) and
(iv) M= Ax(]) 7 M = Ax(]]).

Proof: The proof will be filled in later. R

Thm.4.7.15 below says that R(Ax sytg) implies the twin paradox, under assum-
ing Bax™ + (¢ (d) < 00) and some auxiliary axioms. In connection with Thm.4.7.15
below we note that Ax(TwP) is simultaneity-stable.®'?

THEOREM 4.7.15

Bax™ + Ax(v ) + Ax(Triv) + (cm(d) < o0) + R(Ax syto) E Ax(TwP).
Therefore
Reichy(Bax) + Ax(Triv) + (¢, (d) < 00) + R(Ax syty) E Ax(TwP).

On the proof: Assume

M € Mod(Bax™ +Ax(v )+ Ax(Triv)+(c,(d) < co)+R(Ax syto)). Let m, k, k; €
Obs such that they satisfy the hypothesis of Ax(TwP). Then there is a plane P
such that ¢ U tr,,(k) U tr, (k1) € P. There is a 2-dimensional model 9t* which is
obtained from 9 by restricting w,, to plane P such that

M* = Bax™ + Ax(V ) + Ax(Triv) + (c,(d) < 00) + R(Ax syto).

512Moreover, Ax(TwP) is testable by thought experiments which property is reflected by the
fact that it is expressible in the language of the geometry &gy associated to I in §6. We will see
in §6 that the geometric structure ®gy associated to 9t can be considered as a reduct of the model
9. Therefore some of the formulas of 9 are expressible in the language of &gy while others might
be not such. We have reasons to believe that the ones expressible in the language of &gy are closer
to testability than the others. This is even more so in the language of the geometry &%, (cf. §6).
Cf. also footnote 481 on p.581.

622



The reader is invited to construct such an 9t*. Let such an 9* be fixed. Since I*
is 2-dimensional and since Bax™ (2) + Ax(v/ ) = Reich(Bax), we have that

M* = Reich(Bax). Thus 9t is an art-sim version of some Mt € Mod(Bax +
Ax(v')) by Thm.4.5.13. But then by Corollary 4.7.13, 9+ = Ax(syte). Since
Bax + Ax(syto) + Ax(v ) + cm(p, d) < co = Ax(TwP) by Thm.4.2.9 on p.461,
we have 9™ = Ax(TwP). By this, M* = Ax(TwP), since Ax(TwP) is
simultaneity-stable. But then Ax(TwP) holds for m, k, k; in 9, too. N

Questions for future research 4.7.16
(i) Is Reich(Basax) + Ax(TwP) = R(Ax sytg) true?

(ii) What kinds of consequences are derivable from Ax(TwP) if we assume
Reich(Basax) ?

<

We note that the question in (i) above, by Corollary 4.7.13(i) and Thm.4.5.13 (under
assuming Ax(Triv)) is equivalent with the following question.

QUESTION 4.7.17 Is Basax + Ax(v/ ) + Ax(TwP) & Ax(syto) true?
<

The following theorem says that our “Reichenbachian” symmetry principles are
not too strong. Namely they are true in a very broad class of “Reichenbachian”
models (i.e. models obtained by artificial simultaneities).

THEOREM 4.7.18 Assume n > 2. Then (i)-(iii) below hold.

(i) Asim(Bax + Ax(syto)) = R(Ax syto).
(ii) Asim(Bax + Ax(egspace)) E R(Ax eqgsp).
(iii) Asim(Bax + Ax(symm) + Ax(||)) = R(sym).

On the proof: Let n > 2. Ttem (i) follows by Corollary 4.7.13(i) since it can be
easily seen that every model of Bax+Ax(syto) is a submodel of a

Bax + Ax(syto) + Ax(Triv) model, and every sub-model of an R(Ax sytg)
model is an R(Ax syto) model. Similarly, items (ii) and (iii) follow by Corol-
lary 4.7.13(ii), (iii). W

The following is a corollary of Thm.4.7.18(iii). It says that R(sym) does not blur

the distinction between Reich(Basax) and Basax. (This information was already
implicit in some of the previous theorems.)
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COROLLARY 4.7.19
Reich(Basax) + Ax(Triv) + Ax(||) + R(sym) % Bax.

On the proof: By Thm.4.7.18 it remains to check that there are non-trivial
relativizations of models of Basax + Ax(yv/ ) + Ax(symm) + Ax(]|) validating
Ax(Triv) and Ax(||). This can be easily checked, but for completeness we include
some of the details.

Let M € Mod(Basax + Ax(v/ ) + Ax(symm) + Ax(]|) + Ax(Triv)). Let
P :Obs — P("F) be a function such that 1-3 below hold.

1. (Vm € Obs) P, is an m-space-like hyper-plane containing 0.
2. (3m € Obs) P, # S.
3. (Vm,k € ObS) (fmk € Triv = P, = mk[Pm])

Then /P = Reich(Basax) + R(sym) by Thm.4.5.13 and Thm.4.7.18(iii). By
condition 3 on P one can check that 9/P = Ax(||) + Ax(Triv). By condition 2,
we have 9/ P %= Bax. 1

The following theorem says that Ax(syto) does not hold in any non-trivial
relativization of a Bax+Ax(syto) model. Therefore Ax(syto) is very far from
being simultaneity-stable.

THEOREM 4.7.20 Assume 9t € Mod(Bax+Ax(v ) +Ax(sytg)). Assume M+
is an art-sim version of M such that Mt # M. Then M = Ax(syto).

On the proof: Assume M € Mod(Bax + Ax(v ) + Ax(syto)). Let IM* be a
non-trivial relativization of 9. For simplicity we will assume that n = 2. The proof
to be given for n = 2 can be easily generalized to arbitrary n. By w™, tr* we denote
the world-view and trace in 9", while in 90t they are denoted as w, tr. For every

m € Obs let Z,, be the artificial simultaneity of m in 9, i.e. Zp = (wh o wy,)[Z].
Since MM # M there is h € Obs such that T, # Z. Let this h be fixed. Let
m, k € Obs be such that h is a median observer for m and & in 99t. Without loss of
generality we can assume that w,,(0) = wy(0) = w,(0) and that h sees the clocks of
m and k ticking forward. Since we assumed 901 = Bax+Ax(v/ )+ Ax(syto), h sees
the clocks of m and k slowing down with the same rate in 9 by Lemma 3.9.52 on
p-395. This means that the time unit vectors of m and & in the world-view wy, of h are
f-symmetric, i.e. letting 1% := f;(1;) and 17 := f,,,;,(1;) we have that 1¥ and 1" are
t-symmetric. We will prove that if Ax(syte) holds for the observer pairs (h, m) and
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(h,k) in M then Ax(syte) cannot hold for (m, k) in 9™, and this will prove that
M+ = Ax(syte). By Prop.3.9.50(i) the f,,;’s are affine transformations both in 9t
and 9. Throughout the rest of the proof the reader is asked to consult Figure 210.
Assume that Ax(syto) holds for (h,m) and (h,k) in 9M*. Let M,M" € try(m),

artificial simultaneity of m

artificial simultaneity of k

Figure 210: Illustration for the proof of Thm.4.7.20.

K,K' € tr)(k), H,H' € ¢ such that in 9M* events wy(1;), wr(M) and wp(K) are
simultaneous for A, events wy(17*), wy(H) and wy(K') are simultaneous for m and
events wy(1¥), wy(H') and wy(M') are simultaneous for k. Since for (h, m) and (h, k)
Ax(syto) holds in 9™ and in M all the f,,;’s are affine, we have that

By this, by Z;, # 7 and by o7(17) = 1¥ it can be easily seen that
171k |y Mk’

But this implies that Ax(syto) does not hold for (m, k) in 9. 1

Thm.4.7.21 below is in contrast with Corollary 4.7.19 above. It says that
Ax(syto)+ R(Ax sytg) blurs the distinction between Reich(Bax) and Bax.
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THEOREM 4.7.21
Reichy(Bax) + Ax(Triv) + Ax(syto) + R(Ax syty) = Bax.

On the proof: Let

M € Mod(Reichy(Bax) + Ax(Triv) + Ax(syto) + R(Ax sytg)). Assume

M B~ Bax. Then 9M has a 2-dimensional slice M* such that M* %= Bax, but

M* = Reichy(Bax) + Ax(Triv) + Ax(syto) + R(Ax sytp). Since IM* is 2-
dimensional, we have that 9* = Reich(Bax). Thus, by Thm.4.5.13 there is
Mt € Mod(Bax) such that 9%* is an art-sim version of 9*. Let this 9" be
fixed. By Corollary 4.7.13, 9+ = Ax(syto). But then, by 9* = Ax(syte) and
Thm.4.7.20 we have that 9+ = 9M*. Hence IM* € Mod(Bax). This contradicts
M* ~ Bax. 1

In connection with Thm.4.7.21 above we note that by the following item Ax(syt)
does not blur the distinction between Reich(Basax) and Basax; this is despite of
the fact that Ax(syt) is not adequate for Reich(Basax). L.e. though Ax(syt) is
not Reichenbach-adequate, it is not so much “inadequate” as Ax(symm) is (cf.
Thm.4.7.31(i)).

Remark 4.7.22 Reich(Basax) + Ax(Triv) + Ax(syt) = Bax.
<

Question for future research 4.7.23 Does Ax(eqgspace) blur the distinction
between Reich(Basax) and Basax? Le. is

Reich(Basax) + Ax(Triv) + Ax(]|) + Ax(egspace) = Basax

true?
<

Item (i) of the next theorem says that the temporal symmetry principle
R(Ax sytg) is equivalent with the spatial symmetry principle R(Ax eqgsp), if
we assume Reich(Flxbasax) + (c,,(d) < o0) + Ax(Triv). Item (ii) is the non-
Reichenbachian version of item (i), we include it only for completeness. For similar
equivalence theorems we refer the reader to §3.9.

THEOREM 4.7.24 Assume n > 2. Then (i) and (ii) below hold.
(i) Reich(Flxbasax)+(c,,(d) < oco)+Ax(Triv) = R(Ax syte) <> R(Ax egsp).
(ii) Flxbasax + Ax(v )+ (c < o) + Ax(Triv) = Ax(syto) <+ Ax(eqspace).
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Proof: The proof of item (ii) will be filled in later. Item (i) follows from item (ii)
by Thm.4.5.13 and Corollary 4.7.13. 1

The following is a corollary of Thm.4.7.15 and Thm.4.7.24.
COROLLARY 4.7.25 Assume n > 2. Then

Reich(Flxbasax) + (c,,(d) < 00) + Ax(Triv) + R(Ax egsp) = Ax(TwP).
Proof: The corollary is an immediate corollary of Thm’s 4.7.15 and 4.7.24. 1

The following is a corollary of Thm.4.7.21 and Thm.4.7.24.
COROLLARY 4.7.26 Assume n > 2. Then

Reich(Basax) + Ax(Triv) + Ax(syto) + R(Ax eqsp) = Basax.

Proof: The corollary follows from Thm’s 4.7.21 and 4.7.24. 1

The following theorem says that R(sym) blurs the distinction between
Reich(Bax) and Reich(Flxbasax).?!?

THEOREM 4.7.27 Assume n > 2. Then
Reich(Bax) + Ax(Triv) + Ax(||]) + R(sym) & (m 3k = ¢mo = ck2),
where for every m € ODbs, ¢y denotes the two-way speed of light for m. Therefore
Reich(Bax) + Ax(Triv) + Ax(||) + Ax6 + R(sym) = Reich(Flxbasax).

Proof: The theorem follows from Cor.4.7.13, Prop.3.9.37 (p.386) and Thm.4.5.13
(p.576). 1

Based on the results stated so far, we consider®* R(sym) as the symme-
try principle adequate for Reich(Basax). Therefore, we define the symmetric
version of Reich(Basax) to be the theory Reich(Basax) + R(sym).

Recall that for any theory Th we defined Reich’(Th) as the set of simultaneity-
stable consequences of Th + Ax(v/ ).

513Therefore, in Reich(Bax), what R(sym) expresses is really a kind of symmetry, namely it
says that for everyone the two-way speed of light is the same.

514in harmony with the spirit of §4.2
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PROPOSITION 4.7.28 Let n > 2.
Reich'(Basax + Ax(symm)) D Reich(Basax) + R(sym).

Proof. Reich(Basax) C Reich’(Basax + Ax(symm)) because the former
theory consists of symultaneity-stable formulas which are all consequences of
Basax+ Ax(symm) by Thm.4.5.13, Prop.4.7.6, Thm.4.7.18, and because Basax +
Ax(symm) = Ax(]|) forn > 2.

QUESTION 4.7.29 Let n > 2. Is the following true?

Reich'(Basax + Ax(symm)) == Reich(Basax) + R(sym)?

A new symmetry principle for our non-Reichenbachian theories

We devote this last part of the section to proving that Ax(symm) is too strong
for Reich(Basax). We introduce a very natural and simple symmetry principle
Ax(sy). It says that “I see you moving with the same speed as you see me moving”.
Then we will show that Ax(sy) is a part of Ax(symm) which already is too strong
for Reich(Basax).

Ax(sy) (Ym,k € Obs) v, (k) = vg(m).

We note that Ax(sy) is almost true in Basax in the following sense.

FACT 4.7.30 Basax + (the f,, s are affine) = Ax(sy), cf. Thm.2.8.6.
<

We will see that this very innocent looking®?® axiom already blurs the distinction
between Reich(Basax) and Basax.

Besides discussing Ax(sy), Thm.4.7.31 below also says that Ax(symm) blurs
the distinction between Reich(Basax) and Basax, as we promised already a few
times way above.

515and sometimes very useful, too
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THEOREM 4.7.31 Items (i) and (ii) below hold.
(i) Reichy(Basax) + Ax(||) + Ax(symm) = Basax.

(ii) Reichy(Basax) + Ax(sy) = Basax.

For the proof of Thm.4.7.31 we will need some lemmas. Therefore the proof
comes after the lemmas.

LEMMA 4.7.32 Bax™ + Ax(||) + Ax(symm) = Ax(sy).
Therefore Reichyg(Basax) + Ax(]|) + Ax(symm) = Ax(sy).

Proof: Assume Bax™ + Ax(||) + Ax(symm). Let m,k € Obs. Let m', k' € Obs
such that tr,,(m') = trp(k') =t and f,x = fyre. Such m/, k' exist by Ax(symm).
Um(k) = vi(m') holds by fx = femy. By Ax(||) and tr,(m') = tre(k') = t, we
have vg (m') = vg(m). Hence v, (k) = vg(m). B

For formulating our next lemma we need to define a new symmetry principle
Ax(syo)-

Ax(syo) (¥m,k € Obs) [trm(k) Nt#£0 =
(3K € Obs)[tri(K) =T A trm(k) = trk:(m)].

The lemma below says that assuming Bax™ and some auxiliary axioms Ax(syo)
and Ax(sy) are equivalent.

LEMMA 4.7.33

(i) Bax™ + Ax(||) E Ax(syo) — Ax(sy). Therefore
Reichy(Basax) + Ax(||) &= Ax(syo) — Ax(sy).

(ii) Bax™ + Ax(v ) + Ax(Triv;) = Ax(sy) — Ax(syo). Therefore
Reichy(Bax) + Ax(Triv;) = Ax(sy) — Ax(syo).

Proof:

Proof of (i): Assume Bax™ + Ax(||)+Ax(syo). Let m,k € Obs. Let k' € Obs such
that trp, (k') = tri(m), tr,(K") Nt # 0 and tri(k') || t. Such a k" exists by Ax(syo).
Vm (k') = vg(m) by trp, (k') = tr(m). By Ax(]|), we have vy (m) = vi(m) and
obviously v, (k) = v, (k"). Hence v,,(k) = vg(m).

Proof of (ii): Assume Bax™ + Ax(v ) + Ax(Triv;) + Ax(sy). Let m,k € Obs
such that tr,, (k) Nt # 0. v,(k) = vi(m) holds by Ax(sy). By v, (k) = vg(m) and
vm(k) Nt # 0, we have that there is f € Triv such that f[t] = and f[try(m)] =
trm(k). Let such an f be fixed. By Ax(Triv;) there is k' such that fy, = f. For
this &', tre(k') =t and tr,, (k') = try(m) hold. N
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LEMMA 4.7.34 Assume M € Mod(Reichy(Basax) + Ax(sy)). Then 9 C N
for some 9 € Mod(Reichy(Basax) + Ax(sy) + Ax(Trivy)).

Proof: We omit the proof. 1

The following two lemmas use the set PT' of photon-preserving affine transfor-
mations. The set PT is defined in Def.3.6.2 on p.265.

LEMMA 4.7.35 Assume f € PT. Then
ang?(f[t]) = ang®(f~'[t]).
Proof: The lemma follows from Thm.2.8.6 on p.129 and Thm.3.6.16 on p.273. 1

LEMMA 4.7.36 Assume f,g € PT(2,5). Assume /ang*(f[t]) and \/ang®(g[t])

are rational numbers. Then \/ang?((f o g)[t]) is a rational number, too.

Proof: The proof will be filled in later. R
The following lemma is the 2-dimensional version of our Thm.4.7.31(ii).
LEMMA 4.7.37 Assume n = 2. Then Reichy(Basax) + Ax(sy) = Basax.

Proof: Assume n = 2. Assume 9 € Mod(Reichy(Basax) + Ax(sy)). Let
N € Mod(Reichy(Basax) + Ax(sy) + Ax(Triv;)) such that 9t C 9. Such an N
exists by Lemma 4.7.34. Clearly

N = Basax = 9 = Basax.

Thus to prove the lemma it is enough to prove that 9 = Basax. Since 9 is 2-
dimensional, 91 = Reich(Basax). Then by Thm.4.5.13, 91 is an art-sim version of
some N € Mod(Basax). Let this M+ be fixed.

By wt, trt, vt, f" we denote the “world-view”, the “trace”, the “speed” and the
“world-view transformation” in 91", while in 9 they are denoted as w, tr, v,f. For
every m € Obs let Z,, denote the artificial simultaneity of m in Mt i.e.

7 & (wm 0 (w7;))lal.

Clearly (Vm € Obs) 0 € 7, € Eucl. Now, if (Vm € Obs) Z,, = 7 then 91 = NT
and 91 | Basax. To prove (Ym € Obs) Z,, = Z, let m € Obs be fixed. By
Lemma 4.7.33(ii),

N = Ax(syo).
Let k,h € Obs such that 1-5 below hold. (1-4 are understood in 1, while 5 is
understood in 91). See Figure 211.
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1. k£ moves forward in direction 1, and slower than light as seen by m.

2. h moves forward in direction —1, and slower than light as seen by m.

w

. trm(k) = tri(m) and tr,(h) = try(m).
4. 0 € try, (k) N trp(h).

Vvt (k) and y/v;t(h) are rational numbers.

Such k and h exist by = Ax(syo).-

o

h t k t m b k m t
m k h
1, ¥ 1, . -1, —1,
Figure 211:

We claim that
(%) Tm = T = T

holds because of the following. First we prove that

vh (k) =vi(m) and ol (h) = vl (m).

m

Since M* = Basax, f!, = ¢ o f, for some ¢ € Aut(F) and f € PT by Prop.3.6.5
(p.267). Let this f and ¢ be fixed. Since y/v (k) is rational we have that
@ltrt (k)] = tr} (k). By Lemma 4.7.35, we have that ang®(f~'[t]) = ang®(f[t]).
So, v (k) = ang®(trf, (k) = ang?(@[try, (k)]) = ang®((f o §)[t]) = ang®(f~'[F]) =
ang’(f[t]) = ang®((Z o f[t]) = ang®(f,[t]) = ang’(tri(m)) = vi(m). By the
above computation v} (k) = v (m) holds. Analogously v}, (h) = v} (m).

Now, v (k) = v (m), try,(k) = tri(m) and MY € Asim(N) imply that tr) (k) =
trf(m) and Zj = Tp,. Analogously Z, = Z,,. Hence (x) above holds.

Claim 4.7.38 /v (h) is a rational number.
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Proof: Let us recall that fi, = ¢o f, ¢ € Aut(F) and f € PT. By Prop.3.6.5
and M = Basax, f;, = {ﬁvo g, for some g € PT and ¢ € Aut(F). Let this g
and v be fixed. In the following computation we will use that @[tr} (k)] = tr; (h).
This is so because (/v (h) is a rational number. So, vf(h) = ang®(trf(h)) =

ang”(fy,[tr, (h)]) = ang?((@ o f)[try,(h)]) = ang?(f[try},(R)]) = ang®((f5,,, o /)[E]) =

ang?((¢v o go f)[t]) = ang®((g o f)[t]). By the above computation

vi (k) = ang?((g 0 f)[t])

Further, f[t] = (g o f)[f] = [¢] = tr}, (k). Similarly g[t] = ¢r)} (m). Therefore
Vang?(f[t]) and \/ang?(g[t]) are rational numbers since /v (k) and /v (h) are
rational numbers and v (h) = v (m). This and v;(h) = ang?((g o f)[f]), b
Lemma 4.7.36, imply that /v (h) is a rational number.

QED (Claim 4.7.38)

Since v (h) is a rational number (by Claim 4.7.38), analogously to the proof of

v} (k) = vi (m) one can prove that
vi (h) = vy (k).
Now, by 1-4 above it is easy to check that

k sees h moving forward in direction 1, (both in 9+ and N) and

(ex) h sees k moving forward in direction —1, (both in 91* and N).

By 9 = Ax(sy),
Uk(h) = Uh(k).
Finally, (%), (), v{ (k) = v} (k) and vi(h) = vy (k) imply Z,, = Z, cf. Figure 212.
|

Proof of Thm.4.7.31: By Lemma 4.7.32, we have (ii) = (i). Thus it is enough to
prove (ii). Let 9 € Mod(Reichy(Basax) + Ax(sy)). Assume that 9t ~ Basax.
We will derive a contradiction from these assumptions.

Since M = Basax and 9 = Reichy(Basax) there is m € Obs, a plane P and
ph € Ph such that

tCP A trp(ph) CP A wvn(ph) #1

Let such m, P, ph be fixed.
We will construct a 2-dimensional Reichy(Basax) + Ax(sy) model, call it 9t*,
such that the world-views of m in 90 and 9t* will be basically the same. But then
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by Lemma 4.7.37, 9" = Basax will hold, and this will contradict v,,(ph) # 1.
Formally: Let

M = ((B*; Obs*, Ph*,Ib*),§, G; €, W*)
be a 2-dimensional model defined as follows. Let

Obs* &' {k e Obs : tr,(k) C P},

Ph* {ph’' € Ph : tr,,(ph') C P},
B* € 1 ¥ PhruObs*,
For every k € Obs® let g € Triv N Linb be such that gx[Plane(t,z)] = fux[P]-

Since for every k € Obs* t = fk[trm(k)] C fux[P] such g’s exist. Each gy

induces a function g, : 2F — f,,;[P] the natural way, i.e. (Vg € 2F) g,(q) &

or({q0,q1,0,...,0)). Let
W & L (k, q,b) € Obs* x 2F x B* : (k, d,(q),b) € W}.

By the above 99t* has been defined. Now, by

M = Reichy(Basax) + Ax(sy),
it is easy to check that

IM* = Reichy(Basax) + Ax(sy).
Now, by Lemma 4.7.37 (since 90t* is 2-dimensional) we get

9" = Basax.

Obviously m € Obs*, ph € Ph* and v,,(ph) in 9 is the same as v,,,(ph) in 9*. But
then v,,(ph) = 1 since 9* = Basax, and this contradicts v,,(ph) # 1.
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4.8 The paradigmatic effects and our lattice of relativity
theories

In the present section, we will map the lattice Basax > ... Bax™ "~ of our theories
represented in Figure 180 on p.552 from the point of view of the paradigmatic effects
of relativity introduced in §2. In this section we always assume n > 2 and Ax(v/ ),
for simplicity, without mentioning this.

Below, we will summarize the various paradigmatic effects in the form of state-
ments (E1) — (E7). Then we will look at the various theories like Bax, Reich(Bax),
Bax ™~ etc. and will ask ourselves which ones of the effects (E1) — (E7) are provable
in the theory in question. At the end of this section we represent the status of the
paradigmatic effects in the lattice of our theories, see Figure 223 on p.653.

Usually these statements (Ei) will have two free variables m, k. This will enable
us to state theorems like Th | (Ei) which automatically means Th = (Ym,k €
Obs)(Ei); and also to say that in some model 9t of Th, for some choices of m, k (Ei)
holds, etc. Thus, availability of the free variables m, k£ will give us a certain amount
of flexibility for stating our theorems.

First we state the three most basic paradigmatic effects (E1)—(E3). These corre-
spond to statements (I)—(III) on p.90 in section 2.5; and also to formulas (clock),
(meter), (asynch) on p.436. In their formulations, we will add the conditions
fx(0) = 0 and t¢r(m) C Plane(,Z) for convenience only; this way the formalized
versions of the effects will be simpler.

(E1) Relative motion makes clocks slow down. Formally:
[vm (k) #0 A i, (0) = 0] = [£’s clocks are slow as seen by m].

Here “k’s clocks are slow as seen by m” is formalized as |fg,(1:):] > 1, see
Figure 213, and also cf. Thm.2.5.2(iii) (p.92).

(E2) Relative motion makes spaceships (or meter-rods) in direction of movement
shrink. Formally: B B
[Vm (k) #0 A f,6(0) =0 A
k thinks that the direction of movement is parallel with z| =

[the z-meter-rod of k shrinks as seen by m®°'9].

516} e. is shorter than 1,
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(E3)

m
the time instant for m
when k’s clock shows 1 X
frm (1¢) 1§ = frm (1)
1

Figure 213: m thinks that k’s clocks are slow.

Here, “k thinks that the direction of movement is parallel to z” is formalized
as “tri(m) C Plane(t,Z)”. Then the z-meter rod represents the meter-rod in
direction of movement. Further, “the z-meter rod of k shrinks as seen by m”
is formalized as®? “1, € tri(k') || ¢ = |[tr.(K")(0)]] < 1”. Intuitively, &' is an
observer representing the nose of k’s spaceship, while £ itself represents the
rear of the ship. Then tr,, (k') is the life-line of the nose of the spaceship of
k as seen by m, and so ||tr,,(k")(0)|| represents the length of k’s spaceship as
seen by m. See Figure 214, and cf. Thm.2.5.9 (p.100), Fig.38 (p.101), and
Remark 2.5.11.

Moving clocks get out of synchronism. Formally:

vm(k) # 0 = (there are events ey, e; which are seen by both m and k£ and

which are simultaneous for m but not for k).

Intuitively, (E3) intends to say that the clocks in the nose and the rear of the
spaceship of m are seen by £ as being out of synchronism. Cf. Thm.2.5.5 and
Figure 35 on p.96.

We also call the next two effects basic paradigmatic effects.

517Here we use our earlier convention that tr,, (k) can be regarded as a function tr,, (k) : F — S.
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- the length of k’s z-meter
trm (k') (0) rod as seen by m

Figure 214: m thinks that £’s z-meter rods are short.

(E4) Relative motion causes either clocks slow down or meter-rods shrink. In more
detail: m sees that either £’s clocks slow down, or else k’s meter-rods in the
direction of movement shrink. Formally:

(E1) V (E2)

This effect was studied in §2.6.

The next basic paradigmatic effect states that “moving spaceships get fat”. It
is a natural version of (E2) saying that moving spaceships shrink, and, implicitly,
it was also studied in §2.5 and in §2.6 (and explicitly in §4.7). E.g. Thm.2.8.8(i)
says that moving spaceships shrink under assuming Basax + Ax(symm). The
variant we will formulate in (E5) below remains true in theories much weaker than
Basax + Ax(symm). The conclusions of Thm.s 2.8.8, 2.8.12 imply that mov-
ing ships get “fat”, that is their length becomes short relative to their width.
This new formulation saying “fat” instead of “shrink” is insensitive to what the
units of measurement used by the various observers are (while “shrink” is sensitive
to what the units of mesurements are, and that is why Ax(symm) is needed in §2.8
to prove “shrink”). See Figure 215.

14
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Q >

k’s view of k’s spaceship

Q_>

m’s view of k’s spaceship

Figure 215: The length of £’s spaceship gets short relative to its width as seen by
m.

(E5) Moving spaceships get distorted, intuitively, they get “fat” in the following
sense.

[V (k) 0 A £,.(0) =0 A tr,,(k) C Plane(t,z)] =
[the length of k’s spaceship gets short relative to its width as seen by m).

Here, the length of k’s spaceship is formalized as in (E2), i.e. it is represented
by ||trm(k')(0)|| where k" € Obs is such that 1, € tri(k') || ¢. On the other
hand, the width of k’s spaceship is represented as the distance of the straight
line parallel with the movement of k, as follows. Let P C "F be a plane such
that 1, € P | Plane(t,z).>"® Now the width of k’s spaceship as seen by m
is Eudist(fgm[P], fem[Plane(t, Z)]). See Figure 216. The reason why we had to
be more careful with the formulation of “width” (as seen by m) than with
that of “length” was explained in section 4.7, cf. p.608, in the definition of
R(Ax eqgsp). See also Figures 203-205 on pp.610-611.

Now we formalize “the length of k’s spaceship gets short relative to its width
as seen by m” as follows:

(x) Assume 1, € tr(k") || ¢ for &' € Obs, and 1, € P || Plane(t,z) where
P C"Fis a plane. Then

ltrm (") (0)]| < Eudist(fim[P], fem[Plane(t, Z)]).

We note that in Bax, the conclusion part of (x) above is equivalent with the
simpler statement

18P is the “life-line” of the straight line £ C S where 1, € £ || Z.
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width of k’s “spaceship”
as seen by m

x

4
.1\)‘\ direction of
T

movement of k
Tk as seen by m

Figure 216: The width of k’s spaceship as seen by m.
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()
[t m (K) (O] < Ilfim (Ly)]-
However, as explained in §4.7, in Reich(Basax) these statements are no longer
equivalent.
We will use three kinds of variants of the basic effects. Let i € {1,2,4,5}. We

will investigate the following variants of (Ei).

The disjunction-version:

(Ei)(or) & (Ei)(m, k) V (Ei)(k, m).

E.g. (E1)(or) states that relative motion makes at least one of the involved
clocks slow down. We will use these versions to make them insensitive to the
choice of the units of measurements. E.g., we have seen that Basax = (E1)

because in a model, an observer can choose one of his units of measurement
arbitrarily, but Basax = (E1)(or) is true. Cf. §2.6.

The “for fast-enough ovserver” version: (Ei)(fast) states that (Ei) holds if k£ is mov-
ing fast enough relative to m:

(Ei)(fast) is (Vm)(Vd € directions)(3v € F)(Vk)

[k moves in direction d with a speed greater than v as seen by m|**® = (Ei)].

The “distortion gets arbitrarily large” version: We have seen such versions in §2.5.
Here we state the “large-version” (E5)" of (E5). This is a natural variant of (E5)
which is both stronger and weaker, namely it is stronger because we can make the
distortion arbitrarily large, and it is weaker because we need to choose a fast enough
spaceship.

59T e. 7, (k) || d and v, (k) > v.
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(E5)"T The distortion effect in (E5) can get arbitrarily large, assuming we increase
the speed of & sufficiently. Formally:

(Vm)(Vd € directions) (VA € TRationals)(Jvg < ¢, (d))(VE, k')
([Um(k) >vg A (k) || d A frk(0) =0 A tri(m) C Plane(,z) A
1, €trg(k') ||t A 1, € P || Plane(t,z)] =
|7 () (O)I] < A~ Eudist (fin [ P], fom[Plane(Z, 2)]) )
Whenever we prove Th |= (E5), also Th = (E5)" will be true; and also for

suitable versions (E1)*, (E2)*. To save space, in this section we will not deal with
these “large-versions”.

We will also systematically investigate the following two additional paradigmatic

effects:

(E6) There are no faster than light (FTL) observers. Formally,
Vm(k) < em(0, Uy (k)) if [0 € try,(k) and v, (k) # 0, 00].5%

The formal version states that “k moves slower than the speed of light, as seen
by m”.

We note here that we decided to concentrate on the n > 2 case in this section
(for simplicity). If we wanted to deal with the case n = 2 also, then in (E6) we
should add “n > 2” to the hypothesis part, and in (E1) — (E5) we should include
vm(k) # 00 A vn(k) < en(0, v, (k)) into the hypothesis parts.

(E7) is the Existential Twin Parador Ax(ITwP), cf. Def.4.2.8 on p.460. We note
that in investigating any one of our theories like e.g. Basax, instead of (E7),
one uses e.g. the paradigmatic effect “Ax(symm) — (E7)”. By this we mean
to say that the twin paradox in itself is almost never provable, because to prove
it, one needs some symmetry principle like Ax(symm), or Ax(symm,) , or
Ax(syx). Therefore, when using (E7) as a paradigmatic effect potentially
true in one or another member of our lattice of theories, we will use it in the
form

(a symmetry principle) — (E7).
For example, Basax [~ (E7) but Basax = (Ax(symm) — (E7)). We will
choose the symmetry principle in accordance with §4.2.
520Compare the definition of STL on p.460.
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Let us turn to “mapping” our lattice of theories by using (E1)—(E7) i.e. to dis-
cussing the question which one of (E1)—(E7) is true in which one of our theories. We
note that exploring this issue is strongly related to exploring the “lego” character
(i.e. “modularity”) of our theories, and also to the idea of addressing the “why” type
questions as they were discussed in the introduction of the present work.52!

Let us start with the top (Basax) of our hierarchy.

(1) Basax and Newbasax: All the paradigmatic effects occur here in full form. We
have to use (E1)(or), (E2)(or) in place of (E1), (E2) if we do not want to assume a
symmetry principle. (The reason is that the symmetry principle Ax(symm) “fixes”
the units of measurements, and if we want to allow all possible units, we can use a
“disjunction-version” of the paradigmatic effect.)

THEOREM 4.8.1
(i) Basax + Ax(symm) = {(E1), (E2)}.
(i) Newbasax = {(E1)(or), (E2)(or), (E3), (E4), (E5), (E6)}.
(iii) Newbasax = Ax(symm) — (ET7).

On the proof: All these have been proved (explicitly or implicitly) in previous parts
of this material (mainly in §2). 1

The assumption Ax(symm) can be considerably weakened in the (E7), i.e. twin
paradox, part. The axioms Ax(syx), Ax(egspace), Ax(eqm), are introduced in
the present material. (cf. §6 for Ax(syx)).

THEOREM 4.8.2
(i) Newbasax + Ax(Triv) = Ax(syx) — (E7).
(ii) Newbasax = Ax(eqspace) — (ET7).

(iii) Newbasax + Ax(Triv) = Ax(eqm) — (E7).

521C f. also p.550.
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Idea of proof: Newbasax + Ax(syx)+ Ax(Triv) = Ax(symm) and similarly for
“equimeasure” and “eqspace”. 1

In investigating Basax and Newbasax, Theorem 4.8.2 above plays the role of an
interesting curiosity, but it will become essential in investigating weak systems like
Reich(Basax), where Ax(symm) is considered as a too strong symmetry principle
(to fit the philosophy of the Reichenbachian versions of our theories). Cf. §4.2 and
4.7.

(2) Newtonian Kinematics: It is natural to expect all our paradigmatic effects to fail
in NewtK, since they distinguish the pre-relativistic world view (say of Newton)
from the various relativistic world views (e.g. of Einstein or of Reichenbach). Cf.
e.g. Corollary 4.1.13 in §4.1. The only exception is the no-FTL principle (E6), which
simply does not make sense in the more “autenthical” no-photon version NewtK".

THEOREM 4.8.3 NewtK = {—(E1),...,~(E7)} \ {~(E6)}.

That is, effects (E1) etc. are not only not provable in NewtK, but they can be
proved to be false there. This follows from Thm.4.1.12.

Since all of our theories Th below Newbasax admit NewtK as a special case,
by Thm.4.8.3 above none of our theories will prove any®?? of the paradigmatic effects
for trivial reasons. Therefore, to avoid triviality, we introduce the following notation.
Let Th be one of our theories. Then

def

Th® = Th + cm(p,d) < oo.

(Recall that implicitly m, p, d are universally quantified here.) Now we can safely ask
ourselves for which one of our theories Th is Th® = (Ei) true for somei € {1,...,7}.

(3) Flxbasax and Bax: We will find that all paradigmatic effects, except for (E4),
hold for Bax. Effect (E4) becomes true just in the transition Bax — Flxbasax.

THEOREM 4.8.4
(i) Flxbasax? = (E1) v (E2).
(i) Bax® j£ (E1) v (E2).
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/ Cm:ck:22

Figure 217: Illustration of proof of Thm.4.8.4(i).

Proof. The proof of (i) is represented in Figure 217.

In the figure we represented how observer m sees the coordinate system of ob-
server k, in the Plane(Z, 7). In the picture®® c,, = 22, and we want to show that if
m does not think that k’s clocks are slow, then m will think that k’s spaceship is
short. “k’s clocks are not slow according to m” means that k’s 1;, i.e. fg,(1;), lies
between 0 and p, where p is the point on k’s life-line which is simultaneous with
1; according to m. Since we are in a Flxbasax-model, the speed of light ¢, in &’s
world-view is the same as that in m’s world-view, i.e. ¢; = ¢, = 22. Therefore 1,
of k, i.e. frn(15), has to lie between 0 and ¢ (for ¢ see the figure). But already if
q would be 1, of k£, m would see k’s spaceship shorter than 1, as illustrated in the
figure.

The proof of (ii) is similar, and is represented in Figure 218. 1

THEOREM 4.8.5
(i) Bax® = {(E1)(or), (E2)(or), (E3), (E5), (E6)}.
(i) Bax® = Ax(symm) — (E7).

(iii) Bax® = Ax(syto) — (E7).

522Well, in principle (E6) could be proved in these theories without adding the condition
¢m(p,d) < 00, because NewtK |= (E6). But this is not the case by Thm.4.3.25 and Thm.4.4.14.
523Recall that, actually, c,, is the square of usual speed of light, cf. Def.2.2.2(ii) on p.46.
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Figure 218: A model of Bax in which (E4) fails for m, k. Since ¢ # ¢, is allowed,
fem (1) does not prescribe the place of fp,(1z).

(iv) Bax® = Ax(sytq) —» Ax(TwP).

On the proof: One can obtain a proof for Thm.4.8.5 by using earlier theorems,
and by using the fact that every model of Bax can be obtained from a model of
Basax by (possibly) changing the time-units of each observer, or by changing the
space-units of each observer. See Figure 75 and pp. 233-243. See also footnote 354
on p.432. 1

Thm.4.8.5 above seems to suggest that from, say, the “philosophical” point
of view, Bax is a very strong relativity theory, since it proves the same but one
paradigmatic effects (as far as we looked) as Basax does. From Thm.4.8.5 above
we infer that in establishing the paradigmatic effects, it was not important to as-
sume that the speed of light is the same for all observers, it is enough to assume
that ¢, (p,d1) = cm(p,ds) for all m,p, d;, ds. Moreover, we conjecture that for the
paradigmatic effects to hold it is enough to use that the speed of light is the same in
direction d and —d, for all d (i.e. that ¢, (p,d) = ¢;n(p, —d)), which is a weak form
of isotropy. (Cf. the problem on p.593.)

Let us turn to our Reichenbach-style theories:
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(4) Reichenbachian theories Reich(Basax), ..., Reich(Bax). We will find that the
synchronism effect (E3) completely disappears here (as was to be expected), but the
other effects remain true in their “fast-enough observer” forms.

The next theorem says that the “synchronism effect” (E3) fails in Reichenbachian
theories just as strongly as in Newtonian Kinematics.

THEOREM 4.8.6 Reich(Basax)+ R(sym) [~ (E3), i.e. moving clocks need not
get out of synchronism. Moreover, there is a model 9 = Reich(Basax) + R(sym)
such that in 9N, every observer thinks that the other observer’s clocks are not out of
synchronism. Le. M = —(E3).

Proof. To prove the theorem, we have to construct a model of Reich(Basax) +
R(sym) in which all observers agree as far as simultaneity is concerned. In fact,
each model 9t has such a simultaneity-version: we simply choose (P, : m € Obs)

such that f,,,[S] = S will be true for all m,k € Obs. E.g., fix k € Obs, and define

P & 4, S] for all m € Obs. See Figure 219.

k € Obs fixed

Figure 219: Illustration for the proof of Thm.4.8.6. An art-sim version in which all
observers agree in simultaneity matters.

Now if we choose 9t € Mod(Basax + Ax(sym) + Ax(Triv) + Ax(]|)), then
M/P = Reich(Basax) + R(sym) by Thm.s 4.5.8, 4.7.6(iv), 4.7.10(iv).
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We note that the models we constructed in the present proof are similar to
models of NewtK in that f,,;[S] = S in them. However, the analogy stops here.
E.g., fuk is not the identity function on S. 1

The above theorem implies that the Reichenbachian relativity theories are drasti-
cally different from the usual ones (in some respects). On the other hand, this result
was to be expected, since Reichenbachian relativity theories consider simultaneities
as matters of convention only.

Next we show that the other two basic paradigmatic effects also fail in Reichen-
bachian theories in their original form. However, we will see that they do not fail
in such a strong way as (E3) does: clocks of fast-enough observers slow down, and
spaceships of fast-enough observers shrink.

THEOREM 4.8.7 Reich(Basax) + R(sym) (= (E1)(or) V (E2)(or). Moreover,
there are a model M of Reich(Basax) + R(sym) and observers m, k in 9 moving
relative to each other in pre-standard configuration such that both k and m think

that the other’s clocks are on time, and the other’s z-meter rods are precise. Thus
(E1)(or) V (E2)(or) fails for m, k.

Proof. The proof is illustrated in Figure 220.

Figure 220: The new simultaneities of m and k are the simultaneity of their median
observer h.

In the figure, we are in a model of Basax + Ax(symm). m, k, h are observers,
and h is the median observer for m and k. m’' and k' represent the “noses” of m’s
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and k’s spaceships, respectively. If we take the artificial simultaneities for m and k
to be fp,,[S] and fp,[S] respectively, then in /P, m, k will be as in the statement
of the theorem. 1

Next we state theorems to the effect that those versions of the basic paradigmatic
effects which we state for “fast enough” observers (i.e. (E1), (E2), (E4), (E5)), hold
in Reichenbachian theories.

THEOREM 4.8.8
(i) Reich(Bax)® = (E5)(fast).
(ii) Reich(Bax)® [ (E4)(fast).

(iii) Reich(Flxbasax)® = (E4)(fast).

Proof. (iii): To prove Reich(Flxbasax) = (E4)(fast), we will refine the proof of
Flxbasax | (E4), which was illustrated in Figure 217. Assume that 91 is a model
of Reich(Flxbasax). Then 9 is a relativized version of a model 90t of Flxbasax®.
For simplicity, in the drawing we assume that 9t = Basax, i.e. that the speed of
light in the model 9t is 1. Let m € Obs™ be arbitrary. Figure 221 represents m’s
world-view in M. Z,,(new) is the new simultaneity of m (in N). Let everything be
as in the figure. Particularly, 1,q is parallel with Z,,(new), and Op is parallel with

1.q.

To any r between p and ¢ define r’ as follows: Let r” be the symmetric image
(w.r.t. the line Og) of r in between 1, and ¢, and let 7’ be on Z,,(new) be such that
7', r'" is parallel with Or. See Figure 221. We can see that as r approaches ¢, so will
' approach 0, in a monotonic way. Thus there is r such that 7’ is in between 0 and
1z(new). Then we can choose v as the velocity of an observer whose life-line is Or,
because of the following. For simplicity, let £ € Obs be such that tr,,(k) = Or. If
m sees that k’s clocks are not slow, then k’s time unit is between 0 and r, and thus
k’s x-unit is between 0 and r”, in the original model 9 = Basax. Thus the life-line
of k' € Obs which represents the nose of k’s spaceship as seen by m in 9, will be
parallel with Or, and will intersect Z,,(new) between 0 and 7. In the relativized
model N, still &’ will represent the nose of k’s spaceship. This finishes the proof of
(iii).

We omit the proofs of (i) and (ii).

We have seen that (E5)(fast) is true in Reich(Bax). We can prove a version
of (E5) to hold already in Reichy(Bax),. Notice that we do not know whether
Reichy(Bax) is the same as Reich(Bax). Thus Reichy(Bax), may be situated in
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T (new)

Figure 221:

our lattice of theories like in Figure 222. Thus, if Reichy(Bax), # Reich(Bax),,
then this is a new place in our lattice where a paradigmatic effect appears. Apart
from this, we include the following theorem also because its proof contains interesting
ideas.

The version of (E5) which we prove to hold in Reichy(Bax), is obtained from the
“distortion gets arbitrarily large” version (E5)" of (E5) by replacing the quantifier
“(Vd € directions)” in it with “(3d € directions)”. We denote the so obtained version
by (E5)*". We claim that (E5)*7 is a “fully blown” relativistic effect, almost as
good®®* as (E2) is. It says that for any observer m there is a direction d such that
if you move fast enough in direction d, then your spaceship will be as distorted as
you want.

THEOREM 4.8.9
Reichy(Bax)? | (E5)"7,

i.e. there are directions such that spaceships moving fast enough in that direction get
distorted (and this effect increases with speed).

The proof can be found in [20]. N
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Bax

Reich(Bax),

Reich((Bax),
Reich(Bax)

Figure 222:

The next theorem is an analogon of theorems in section 2.8. It states that if we
assume some symmetry axiom, then the “clocks slow down” and the “meter rods
shrink” effects hold for fast-moving observers.

THEOREM 4.8.10
(i) Reich(Bax) + R(Ax syto) + Ax(Triv) = (E1)(fast).
(ii) Reich(Bax) + R (Ax eqsp) = (E2)(fast).
(iii) can be replaced with R(Ax eqsp) + Ax(Triv).
Proof. We omit the proof. 1

By the above theorem, beginning with Reich(Bax) we do have some non-
negligible basic paradigmatic effects.

We have already seen (in §4.3, §4.7) that the other two paradigmatics effects,
(E6) and (E7) hold in Bax™, so they hold in the Reichenbachian theories, too. We
want to point out that the twin-paradox effect holds under assuming the symmetry
principle R(Ax sytg), which is an adequate symmetry principle for the Reichen-
bachian theories. Cf. Thm.’s 4.3.24, 4.7.15.

(5) Weak theories Bax~, Bax(P1), Bax~~. We have seen in section 4.3 that the
basic paradigmatic effects fail to hold in Bax~? just as much as in Newtonian
Kinematics, because Bax~ " has models in which the world-view transformations
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are all Galilean. See Thm.4.3.21, and the text preceding it. We also saw that the
twin paradox effect (E7) fails in Bax~® + Ax(symm), ¢f. Thm.4.3.22. But there
are some paradigmatic effects which hold in Bax™ already: Thm.4.3.24 states that
there are no FTL observers in models of Bax~?, i.e. (E6) holds in Bax ™. Also,
Thm.4.7.15 states that under a special symmetry principle, the twin paradox holds
in Bax™. This shows that the assumption that in each direction there is a photon
moving forwards is a rather strong assumption. We summarize the status of the
paradigmatic effects in Bax™, as far as we know them, in the following theorem.

THEOREM 4.8.11

(i) The basic paradigmatic effects fail in Bax~® in a strong sense, namely there
are models I of Bax~ % such that

M = {~(E1), ~(E2), ~(E3), ~(E4), ~(E5)}.

(ii) Bax~" |= (E6), i.e. there are no FTL observers in models of Bax™".
(iii) Bax~® £ Ax(symm) — (E7), but
(iv) Bax~® + Ax(Triv) = R(Ax syto) — Ax(TwP).

Summing up, with the exception of (E6), (E7), Bax~" can prove no one of our
paradigmatic effects. So, Bax™ is much weaker than Bax or Reich(Bax), and
one could be tempted to say that (from the paradigmatic point of view), Bax and
Reich(Bax) are “relativity theories”, while Bax~ is not a “relativity theory”.5?°

However, adding innocent looking axioms like
(Vm, k, m") (3&") (frux = frnrir)

to Bax™ may change its behaviour in the direction of proving more relativistic
effects. The kinds of axioms we are having in mind are found in Té6ke [259].

We now turn to the theory Bax(P1). We proved the following in §4.4 as
Thm.4.4.14.

THEOREM 4.8.12 None of the paradigmatic effects (E1) - (Ax(symm) =
(ET7)) discussed in this section are provable from Bax(P1)®, for any n.

525in the sense that practically none of the paradigmatic effects distinguishing relativity can be

proved in it
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Question for future research 4.8.13 Use the results and conjectures in the
present section to obtain “philosophically substantial” answers to the “why” type
questions®?® involving one or more of (E1) — (E7). We note that one still has to do
some intellectual work to obtain satisfactory answers in this direction.??”

We sum up what we got in this section in Figure 223. In the figure we gave
names “slow”, “shrink”, “async”, “fat”, “noftl”, “twin” to effects (E1), (E2),
(E3), (Eb), (E6), (ET) respectively. If we indicate an effect (Ei) beside a theory Th
in the lattice, then we mean to say that Th is the “turning-point” for effect (Ei), i.e.
Th is the first place in the lattice where (Ei) appears. In more detail, this means
that effect (Ei) is not yet present in the theories weaker (i.e. below) Th, while (Ei)
is present in all theories stronger (i.e. above) Th. E.g. effect (E4) (“slow or shrink”)
is true in Flxbasax, Newbasax, ..., while it is not true in Bax, Reich(Bax), etc.

One can see in the figure that “noftl”, “twin” appear first in Bax™, “fat” ap-
pears (in some form) in Reich(Bax), “async”, “slow”, “shrink” appear in Bax.
These three theories seem to be main turning points in the lattice. We see that
in Bax™ there are practically no relativistic effects®®® while in Bax practically all
the relativistic effects hold. One could interpret this by saying that Bax™ is not a
relativity theory, while Bax is a fully grown typical relativity theory. One could say
that in Reich(Bax) half of the relativistic effects hold.

Reich(Bax) is a turning-point from the point of view of basic paradigmatic
effects, it is the first place where non-negligible basic effects (“spaceships get fat for
fast observers”) occur. Thus, one could say that the transition from “non-relativity
theories” to “relativity theories” is somewhere in between Bax™ and Reich(Bax).
However, already in Bax™ we have paradigmatic effects (“there are no faster than
light observers”, “symmetry principle implies the twin paradox”). Two other turning
points can be observed in Figure 223. Effect (E3) (“clocks get out of synchronism”)
appears first in Bax, and with it also appear effects (E1), (E2) (“clocks slow down”,
“spaceships shrink”). This shows that Bax is quite a strong relativity theory. We
can see from the transition Bax — Flxbasax that effect (E4) (“clocks slow down
or spaceships shrink”) is sensitive to whether the speed of light is the same for all
observers, while the other effects are not sensitive to this, they only require that the
speed of light be the same in all direction, as far as one observer is concerned.

526¢f the introduction

527Cf. p.550.
528110 basic ones
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slow(fast)

l shrink(fast)

slow

hrink Basax + Ax(symm)

Reich(Basax) + R(sym)
NewtK Basax
~
~
~ Reich(Basax)
~

‘ (slow or shrink) }/_XFI)E)asax

async
fat ——— = Bax

SIOWV
shrink(or)

Bax(P1)

noftl
symm — twin

Figure 223: Paradigmatic effects appear at the indicated places in our lattice of
relativity theories. (We assume Ax(v/ ) and n > 2).

Reich(Flxbasax)

- Newbasax \
S~
S~
> Reich(Newbasax)

Reich(Bax) fat(fast)
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4.9 Partial world-view versions of our theories

In the previous parts of this section we studied several weaker, more general versions
of our original theories Basax and Newbasax, in which we refined the central
assumption (AxE, AxEq, AXER etc) concerning the way observers see photons.
Other axioms also had to be relaxed in order to be compatible with the new axiom
of photons, and to preserve the distinction between the genearalized weak axiom
systems. In this section we shall relax our systems in a different way: we shall drop
our earlier assumption that every observer m associates some events to each point
of his coordinate system "F'. In other words, we no longer assume that any observer
can “see” (potential) observers and photons even at large distance.

Slightly more formally, we will have to replace our assumption Dom(w,,) = "F
with the weaker one Dom(w,,) C "F, where Dom(w,,) is the set of those points
where m can see some body. (Recall that in footnote 198 on p.188 we introduced the
notation w,, to replace w,, so that we could say more conveniently that Dom(w,, ) #
"F without having a contradiction with our conventions made in Chapter 2; cf. Fig.3,
p.34). Of course, we will need some new axioms on what Dom(w,,) may be like.
The first step in this direction was made when we introduced Newbasax, where
w'(Rng(wg)) € ™F is possible. Cf. pp. 187-193 (§3.3).

(We emphasize that “seeing” in this sense is not the same thing as observing by
means of photons. We only refer to the ability of assigning coordinates to events.
As we shall discuss (p.660), even if the domain of coordinatized events is bounded in
the coordinate space for some observer, there might be events the observer cannot
send photons to, or receive photons from.)

In the process of generalizing our theories towards general relativity we shall
have to make this step anyway. We will need Dom(w;,) C "F already for accelerated
observers®® (cf. e.g. the accelerated observers section of Andréka-Madarasz-Németi-
Ségi [24] or the accelerated observers part of Misner et. al. [196] or [127]).

First, we redefine the notions of a world-view, a world-view transformation and
speed so that they become suitable for observers with partial coordinate spaces. We
need to do this because in our earlier concepts Dom(w,,) = "F (even thought m
may see () at certain points), Dom(f,,) = "F, and v,, was only defined for bodies
whose traces are in Eucl (i.e. they are complete lines, not only subsets of lines).

Definition 4.9.1 Let 9% be a frame model and m € Obs.

(i) wjnd:ef (p,e) Ewy e #0}.

529Tn1 the Euclidean sense.
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Intuitively, w_ is the “true” or “real” world-view of m in the sense that if m
sees nothing, not even potential bodies at p € "F then the “real” world-view
w,,, of m is not defined at point p.

s —  def _ —\_

(ii) fox 1= (wp) o (wy)
Thus (p, q) € f,, means that m and k see the same, nonempty event at p and
q, respectively.

Notice that the only difference between f,; and f_, is that for p € "F, if
p & Dom(f,;) then p is f,-related to all those ¢’s for which ¢ & Dom(wy ).
So fk = T, U{—Dom(w;,)} x {—Dom(w, )}. Le. the “blind spots” of m are
fe-related with those of k.

But there is an essential difference. Namely the following: In Newbasax, f, ,

is everywhere defined i.e. Newbasax = [(m = k) — (f-, : "F — "F)].
However, in our partial domain theories (e.g. Loc(Bax™) introduced in Def.
4.9.3 on p.4.9.3) f_. is a partial function only (like in general relativity).

m

We shall see (cf. Prop. 4.9.4):
Loc(Bax™) E=f,, : "F = "F.

This is not helped if we try to work with f,; instead of f_,; namely
Loc(Basax) £ (fnx is a function), although Loc(Basax) will be a quite
strong partial world-view theory. Therefore, this is a point where we will
have to be careful when generalizing our “old” definitions, proofs etc.

We note that fr={{qe€"Fx"F : w,(p) =wi(q)}.

m

(iii) Let m € Obs and b € B and a € F. Let us recall from §2 that by definition
vm(d) =a <= [tr,(b) € Eucl and ang?(tr,(b)) = a].

In this sub-section we will have to refine the definition of v,,(b). The new
definition of v,,(b) is the following.

vm®) =a <L [|trm(®)] >1 A (3¢ € Eucl)(tr(b) C ¢ A ang?(f) = a)] 3

<

530Note, that if |tr,,(b)] <1 or (B € Eucl) tr,,(b) C £ then v,,(b) is undefined. Also note that
vm(b) = 0o is possible.
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Next, we would like to refine some of our theories Th (from e.g. Basax to
Bax™) so that the new version Loc(7Th) should permit Dom(w,,) C "F, and even
that Dom(w,,) be a bounded subset of "F (i.e. that Dom(w;,) fits into a finite
n-dimensional ball in "F'). This direction of generalization might be called “orthog-
onal” to our way of weakening the assumption concerning the speed of light earlier
in this section. By this we mean that it is possible to turn any of our earlier theories
to a partial version.

Recalling our relativity theories discussed so far, we think that, by and large,
their axioms can be classified as follows:

1. Ax1 and Ax2 (saying that G = Eucl and PhU Obs C Ib), which were always
assumed, merely fix the framework we work in within special relativity. These
axioms will have to be assumed in the partial domain theories, too.

2. A large part of the axioms characterize the world-view of any given observer.
They tell us where the observer in question can see himself/herself, where and
how it can see other observers and photons etc. For example, in the case of
Basax, Ax3, Ax4, Ax5 and AXE belong to this category. If one reviews our
weaker theories, one can check that the weakened versions of Ax3,..., AxXE
play a similar role in those theories.

3. There are axioms that establish or characterize the relationship between the
world-views of any two observers. To this category belong Ax6, Ax6q9, Ax6¢;
and all of our symmetry axioms.

Although this is not supposed to be a clear-cut classification, we feel that it is
informative, and even the less fundamental axioms (i.e. our auxiliary axioms) have
a well-defined place in it (mostly Class 3).

When generalizing our full-domain relativity theories to the case of partial world-
views we shall have to concentrate on Class 2. The reason is that in our earlier
theories the Class 2 axioms together with Class 1 (Ax1 and Ax2) imply Dom(w,,) =
"F or at least t C Dom(w,,). We shall have no reason to change Class 1, at least as
long as we deal with special relativity, because Ax1 and Ax2 do not describe what
observers can see. But allowing Dom(w;, ) C "F is an essential step towards general
relativity. Some changes to Class 3 will be necessary but straightforward, e.g. we
shall have to replace f,,; with f_, in Ax6¢;.

CONVENTION 4.9.2 For any full-domain theory Th we shall write Loc(Th) for
the new, partial-domain version of Th.
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We claim that there is a natural way to generalize the Class 2 axioms of any
full-domain relativity theory Th. We shall not give a fully specified algorithm for
this generalization, but we shall describe the procedure informally and demonstrate
its application in the switch from Bax™ to Loc(Bax™).

Given the Class 2 axioms of some theory Th (plus Class 1), one can “imagine”
what the world-view of some arbitrary observer m looks like is some model. By
this we do not mean a full specification of the models of Th as we had e.g. for
Basax, Newbasax, Flxbasax and Bax; one only has to consider what is required
immediately by the axioms. The following pictures depict how one can do this in the
case of our earlier theories: Fig.178 (p.548), Fig.179 (p.549), Fig.159 (p.507), Fig.11
(p.53). We proceed further by changing the Class 2 axioms so that they should
settle the same requirements as previously, but relativized to a domain Dom(w,,).
We shall see examples below for Bax™ and for several of our most distinguished
relativity theories. If necessary, one has to adjust the Class 3 axioms a little, too.
Additionally, one might have to introduce new axioms to prescribe some properties
of Dom(w;,,); but, as we shall see, some properties will already follow from the
modified axioms we will have at this stage. But one has to check carefully whether
the above process of relativization has or has not opened the way for too exotic
models. Should this be the case, then one has to fill in the gap by new postulates.

Let us recall that Bax™ (cf. Def.4.3.7 on p.479) was one of our weakest theories,
and it was the common root of both our relativistic and Newtonian theories. It
consists of the following axioms:

{ Ax1, Ax2, Ax3p, Ax4, Ax50bs, AXx5pn, Ax600, Ax601, AxP1, AxEq; }.

We shall concentrate on obtaining Loc(Bax ™) first. We note in advance that later
one can obtain the partial-world-views versions of other relativity theories by chang-
ing e.g. AxP1 and AxE(; to the stronger form known e.g. from Flxbasax or
Newbasax. (Some other axioms might need to be strengthened, too. We shall
return to this issue way below.) Alternatively, one can proceed by the same method
we shall use to arrive at Loc(Bax™).

From our present point of view, Ax1, Ax2, Ax6y9, AXP1, AxEq; are harmless.
They do not “pump up” the size of Dom(w;,) to be big (or unbounded). So, let us
turn our attention to Ax3g, Ax4, Ax50ps, Ax5pp, Ax6g;. Thus Loc(Bax™) will
be obtained from Bax™ by replacing Ax3g, Ax4, Ax50ps, Ax5pn, Ax6g; With
their partial versions Ax33", Ax4P* Ax57,., Ax5p,, Ax6p;". The latter axioms
are introduced below.
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Definition 4.9.3
Loc(Bax™) = {Ax(Frame), Ax1, Ax2, Ax3(", Ax4** Ax5%, , Ax5h,,
AX600, AXGB?, AXP]., AXEOI },

where Ax1, Ax2, Ax6qg9, AxP1, AxEg; are like in Bax™, and the rest of the
axioms are defined as follows.

Ax(Frame) Obs # ).

Actually, this axiom has always been assumed. We are planning to update the
text of this study accordingly. Thus Ax(Frame) is not new at all.

Ax35™ (Vh € Ib)((HE € G)[trm(h) = N Dom(w,) or  trm(h)=0] and
(Im € Obs) trm(h) £ (2)).

That is, Ax3j5" still asserts that the traces of inertial bodies are subsets of
straight lines, but it does not require that these lines themselves be complete
straight lines, but it does require that the traces of inertial bodies be straight

— %

lines “within the domain of w,,” (or empty).

Ax4”* (Vm € Obs) trim(m) = tN Dom(w;,) # 0.

Intuitively, m can see himself only on the ¢-axis. But there may be points on
the t-axis where m can see nothing.?¥! We changed Ax4 because it forced
Dom(w;) to be unbounded.

Ax50y . Intuitively, let us fix an observer m, a direction d, and a point p €
Dom(w,,). We shall speak about things moving forwards in direction d
through point p as seen by m (without mentioning all these data). Assume
there is a photon moving in direction d. Then there is a photon in the given
direction which is limiting in the following sense: For all speeds slower than
this limiting photon, there is an observer moving with this speed.

Formally: (Vm € Obs)(Vp € Dom(w;,))(Vd € directions)

([(Elph € Ph)(p € tr,,(ph) A (phis moving forwards in d as seen by m))] =
[(Elph € Ph) (p € tr,,(ph) A (ph is moving forwards in d as seen by m) A

(VA€ F)(0 <A< vn(ph) = (k€ Obs)(p € trm(k) N vm(k)=X A

(k is moving forwards in direction d as seen by m)))] )

531ntuitively, such a point may be [a point at “space” zero but] sometime after the “Big Crunch”.
Or for an observer falling into a Schwarzchild black hole the point (measured by his own clock i.e.
his proper time) on his life-line where his life-line intersects the singularity.
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Ax5p, Intuitively, from any point p € Dom(w,,) in any direction
there is a photon moving forwards in that direction. Formally,

(Vm € Obs)(Vp € Dom(w;,))(Vd € directions)(3ph € Ph)
[p € trin(ph) A (ph is moving forwards in direction d as seen by m)].

Ax63]" (Vm, k € Obs) Dom(f,,) € Open.

Le., we replaced f,,; with f_, in this axiom.

<
Recall that Bax~® = Bax™ + “the speed of photons in not co”. Bax~® was
our weakest theory from which some genuine relativistic effects follow. Similarly,

Loc(Bax‘®) = Loc(Bax™) + “the speed of photons is not co”
can be considered as our weakest theory of special relativity. <

A potential problem with this theory (as well as the other straightforward partial
domain theories derived below from their “full domain” ancestors) is that it might be
too permissive about what Dom(w, ) can be like. We shall see that a large number
of interesting propositions and theorems can be proven without making any further
restrictions on Dom(w,,). We introduce the following axioms as optional postulates,
which might be used or omitted according to our need. To our knowledge they are
fully compatible with the standard treatment of relativity, including the general
theory.?3?

We obtain Ax65]" = (Dom(w,,) is an open subset of "F) if we take m = k in
the axiom; thus we do not introduce a distinct postulate for this. At the formulation
of Ax6¢; (p-191), we already discussed how such a statement can be translated into
our first-order frame language, hence we do not discuss that problem here again.

As a contrast to saying that a definable set like Dom(w;,) is open, it is harder
to say in our first-order frame language that Dom(w;,) is connected. Therefore we
shall postulate a slightly stronger property, namely star-connectedness.

Ax(star) Dom(w,,) is a star-connected subset of "F. Formally,
(3c € Dom(wy))(¥p € Dom(w;) [p, ] C Dom(wy),

where [p,c| is the segment connecting p and ¢, ie. [p,c] = {q € Dpc
Betw(p, g, ¢) }.

532Tn this subsection we do not intend to introduce too many such axioms which will have to be
dropped or totally transformed for general relativity.
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Alternatively, instead of star-connectedness of Dom(w; ) one can postulate the

following:

Ax(clock-conn) (3k € Obs) ([trm(k) is connected in the usual sense
according to k’s clock]?®®* A (Vp € Dom(w,))3q € trn(k))[p,q] C

Dom(w;)).

Someone might claim that it is not realistic to let observers coordinatize events
that they cannot see by photons. Again others may think that it is a precondition
to coordinatizing events to introduce (conventional) simultaneities, and this requires
us to potentially send and receive photons to/from the events. The following two
axioms formalize these two possible restrictions.

Ax(photon) (Vp € Dom(w,,))(3ph € Ph) (p € try,(ph) A tr(ph) Nt #0).

In simple terms, Ax(photon) says that an observer can only coordinatize
those events from which it can receive a photon, or to which it can send a
photon.

Ax(simult) (Vp € Dom(w;,))(3phg, ph1 € Ph) (p € tr,(pho) N trm(phi) A
trm(pho) Nt # 0 # trp,(phy) Nt A (Vd € directions)
[pho moves forwards in direction d = ph; moves backwards in direction d]).

That is, Ax(simult) says that any observer should be able to send and receive
photons to/from the events to which it assigns coordinates.

Both of these axioms are optional. Those who feel that e.g. Occam’s razor re-
quires these restrictions, might assume either. Other might prefer to analyze simpler
and weaker axiom systems, and choose to omit these axioms. We feel that they do
not influence the models of our partial world-view theories essentially, although we
did not check this conjecture.

On the other hand, when we enter the realm of general relativity, Ax(photon)
and Ax(simult) (or suitably adjusted versions of these) will gain more significance.
Imagine an observer m who is located outside the event horizon of a black hole. Then
some will argue that m should be unable to coordinatize events within the horizon
because m cannot receive photons from the events within the horizon. Similarly,
thos who “live” within the horizon, cannot coordinatize events that are outside.
Further, those observers who fall through the horizon can assign coordinates to

533tr . (k) is connected &4 (Vp,q € D[ w,, (p), w,, (a) € Dom(w;,) = (Vr € t)(Betw(p,7,q) =
w(r) € Dom(w;;))] A fi,, | tis continuous (on its domain).
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both domain. Those who have this opinion will propose Ax(simult). But we feel
that Ax(simult) will be optional even in our general relativity theories.

The following axiom excludes certain exotic models. Recall that 5 used to be

an equivalence relation in (almost all of) our earlier full-domain theories. We doubt
that the same applies in the partial-world-views case.

Ax(mut) m 3k =k 3 m.

The next axiom postulates the continuity of f_,. We deem this axiom harmless,
and it is usually assumed both in the special and the general theories of relativity.

Ax(continuity) f_, is continuous. Formally,

(Vm, k € Obs) ( for every open ball S C Dom(f;,

) we have f_ [S] is also open) .

Our next candidate axiom says that f_, is a partial collineation on "F. Though
we had this as a theorem in Bax™, we conjecture that it is not provable in
Loc(Bax™) (not even in stronger partial domain relativity theores introduced way
below).

Ax(pcoll) f_, : "F — "F is a partial collineation on "F, i.e. for any ¢ € G,

f_clf] C 4 € G for some ¢;. In other words, assume p,q,r € Dom(f,) are
collinear. Then f,_,(p),f,..(q),f,,(r) are collinear, too.
<

Let us turn to the issue of how the other relativity theories can be turned partial.
The general schema of defining Loc(Th) from Th is that we replace Ax3qy, Ax4,
Ax5, Ax6o; (or its variants) with their partial-domain versions by the method
described on p. 657.

Basax and Newbasax contain the Ax5. This needs to be replaced by its
relativization to Dom(w,,,).

Ax5P* (VYm € Obs)(V! € G)
([(angz(ﬁ) <1 A nDom(w>) #0) = (3k € Obs) trp(k) = £Nn Dom(w>)]

and
[(ang?(£) = 1 A énDom(ws) #0) = (3ph € Ph) try,(ph) = EﬂDom(w;n)]).
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Now we can formulate our first approximation of Loc(Newbasax).?* Ax3p",
Ax4P* Ax6p]" can be reused.

Loc(Newbasax) o
{ Ax(Frame), Ax1, Ax2, Ax35", Ax4”* Ax5P* Ax6g9, Ax65; , AXxEg }.

<
Basax differs from Newbasax in that in Basax every observer has access to
the same events. Similarly

Loc(Basax) o Loc(Newbasax) \ { Ax6q } + Ax6

We shall see that Loc(Basax) still has partial models. We conjecture that keeping
Ax6y; is essential to have Loc(Basax) > Loc(Newbasax). The reader is invited
to check whether Ax657" is independent from the rest of Loc(Basax). On the other
hand, Ax6yo has been omitted because Ax6 is a stronger assumption. <

In a completely similar spirit, Ax(5°P%)P* and Ax(5FP)P* are obtained by

b

replacing ¢ with N Dom(w;,) in the atomic formulas of the pattern “¢ = tr,,(...)”.
Loc(Bax) is defined analogously.

Ax(59Ps)rar (V¢ € G) [¢N Dom(w,,) #0 =
((aph € Ph)(m 3 ph A vn(ph) > ang?(t)) = (3k € Obs)trm(k) C z)]

Ax(5FPh)Par (Ve e G) [¢N Dom(w,,) #0 =
((Elph € Ph)(m 3 ph A v,(ph) = ang?()) = (3phs € Ph)trm(phi) C z)]

Loc(Bax) def { Ax1, Ax2, Ax35", Ax4P* Ax(50bS)Par’ Ax(5Ph)par’
Ax6g9, Ax63;", AxEqo, AXEo; }

And finally,
Loc(Flxbasax) ¥ Loc(Bax) + AxEgy.5

<

534By a first approximation we mean that we might have to add some auxiliary axioms to
Loc(Newbasax) in order to exclude some particularly exotic models. In other words, some
auxiliary axioms might be needed to fill in the gap that might result from relativizing our earlier
postulates on Newbasax world-views to partial domains.

535Note that by the convention below the definition of AxEg wv,,(ph) is defined even if 0 #
trm (ph) is finite, hence AxEgg, AxEg; or AxEg2 do not force the life-lines of photons to be
complete lines.
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Now, for Th € {Loc(Bax™~), Loc(Bax~ "), Loc(Bax), Loc(Flxbasax),
Loc(Newbasax), Loc(Basax)} we have a much more flexible version Loc(Th)53
of Th which is much more suitable for generalizations in the direction of general
relativity. I.e. Loc(Newbasax), Loc(Flxbasax), etc. are much closer to the spirit
of general relativity than the original Newbasax etc. were. This list is not complete.
To generalize the less frequently used theories for the partial world-view paradigm
is left to the reader.

Let us examine the most basic properties of our partial-domain theories.?*”

PROPOSITION 4.9.4 Assume Loc(Bax™ ). Then the following items hold.

(i) (Vb € Ib)tr,,(b) C £ for some £ € G. Le. the traces of inertial bodies are (parts
of ) straight lines.

(ii) (Ym € Obs)Dom(w,,) # 0. Actually, Ax4** = Dom(w,,) # 0. Le. there are
no “blind” observers.

(iii) Obs N Ph = 0.

(iv) (Vp € Dom(w,)) (p € trm(k) N trm(ph) = vm(k) # v,(ph)). Le. no observer
can travel together with a photon, even locally.

(v) w;, is injective.

(vi) f,, is a bijection between Dom(f_ ) and Dom(f,,,) = Rng(f,.,)-

(vii) f,.=1d | Dom(w,), (f )t =f,, andf 1 D=1, of. where D={z €
"F:w, (z) € Rng(w,) N Rng(w,)}.
(viii) w,, [ Dom(f,,) =1, 0w, .

(ix) f.[trm(b)] C tri(b).

Assume Loc(Bax). Then the following two items hold.

536 Although Loc(Newbasax) is only one of a series of partial domain relativity theories, it
can be considered as a kind of standard: it does not share the non-classical permissiveness of
Loc(Bax_®), Loc(Bax) etc. about the speed of light, and it does not make the unreasonable
assumption Ax6, unlike Loc(Basax).

537Cf. Prop. 2.3.3 for the corresponding properties of Basax. Most of the statements of Prop.
2.3.3 were preserved by the weak full-domain systems analysed later in this opus.
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(x) [ang®(f) < cm A €N Dom(f,,) # 0] = (3¢ € Euchf_,[¢N Dom(f,,)] = ¢ N
Rng(f,)-
That is, f, maps “slow lines” (to be more exact, those points of slow lines
which are seen both by m and k) into straight lines, and the images are full in
the sense that no point of Rng(f,,) could be added to it. Notice that Loc(Bax)
allows us to speak about slow lines, i.e. lines that are slower than the photons
n a gwen world-view.

(xi) [ang*({) =cm A €N Dom(f,,) #0] = (3¢ € Euc)ang®(') = ¢, A
frel€ N Dom(fop)] = €0 Rng(f).
Le. f_, maps photon lines into photon lines in a sense similar to the previous
item.

Proof: The proofs are similar to those of Prop. 2.3.3. We omit them. |

Next, we introduce two different weakened versions of Ax(Bw). Without
Ax(Bw)P* one can have quite exotic models, as we shall see below. Recall that
Ax(Bw) was only rarely used, because the world-view transformations were bi-
jective collineations even in Bax™, and AX(\/_ ) was enough to ensure that they
preserve betweenness. However, this is not the case in the partial domain theories
anymore. We are not even sure if lines are preserved locally in Loc(Newbasax)
without Ax(Bw)P?" (although slow and photon lines are preserved by Prop. 4.9.4(x)-

(xi)).

Ax(Bw)P¥ Intuitively, if n > k then f . is locally betweenness preserving; for-
mally:

(Ym, k € Obs)(Vp € Dom(f,,))(3e € *F)[f_, I S(p,¢) is Betw preserving].

Ax(syBw)P* (Vm, k € Obs)(Vp € Dom(f,_,))(Je € TF)
[(Vq, r,s € S(p,€))Betw(q, r, s) < Betw(f,(q),f . (7), f;lk(s))]

In other words, Ax(syBw)P* is the “symmetric version” of Ax(Bw)P*". It
is straightforward to check that Ax(syBw)P*" > Ax(Bw)P?".
4.9.1 Characterizing f_, in models of Loc(Bax)

The key step in the analysis of models of Basax, Newbasax, Flxbasax, Bax etc.
was a theorem stating the the world view transformations are bijective collineations
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defined on "F. Clearly, we have to characterize the world-view transformations
differently for partial domain theories. We shall prove that f_, locally preserves
parallelism and planes (assuming Ax(Bw)P?"). Further, we shall show a theorem
analogous to Thm. 3.1.4, which characterized the world-view transformations in
terms of affine transformations and maps generated by field automorphisms.

PROPOSITION 4.9.5 The world-view transformations preserve planes locally.
Le. there is a neighbourhood around every point in their domain such that they
preserve the intersections of planes with this neighbourhood. Formally,

Loc(Bax) + Ax(Bw)P™ |= (Vp € Dom(f;,,))(3c € *F) (S(p,e) C Dom(f,,) A
(VP € Plane) [PN S(p,e) #0 = f,,[PNS(p,e)] is part of a plane]).

Proof: Actually, this is a corollary of Lemma 4.9.16 below. [ |

PROPOSITION 4.9.6 In models of Loc(Bax) + Ax(Bw)*> + Ax(v/ ), f,,’s
preserve parallelism locally. Formally:

Loc(Bax) + Ax(Bw)P |= (Vp € Dom(f,,)) (V6 € F*)(3e € TF)

(S(p,€) C Dom(f,,) A (Vlo, b1 € G) [N S(p,e) # 0 # LN S(p,e) A Lyl b A
ang?(lo) & (cm — 6, ¢m +0) = fru[lo N S(p, )] || Filla N S(p, €)]])-

For the proof of Prop. 4.9.6 we shall need the following two lemmas. We shall
include their proof after the proof of the proposition.

LEMMA 4.9.7 Assume Ax(\/ ). Let us fit some ¢ € F*. Let us call the line £
c-line if ang?(¢) = ¢, slow line if ang®(f) < c and fast line if ang®(¢) > c. Then the
planes of "F can be classified as follows:

1. Planes that contain to c-lines. Each line of such a plane is fast.

2. Planes that contain fast lines and c-lines, but no slow lines. Then each pair of
c-lines within such a plane are parallel.?8

3. Planes that contain slow lines, as well as c-lines and fast lines. Through each
point of such a plane there are two c-lines within the plane, and the c-lines of
the plane belong to two equivalence classes of ||

538Gyuch planes are known as Robb-planes in the literature, assuming that c is the speed of light.
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LEMMA 4.9.8 Assume Ax(y/ ). Let ¢ € F* and S = S(p,¢) be fivred. Let 0 <
§ < c. Let P be a plane that contains a line £ with ang*(¢) = 8. Then there is
So = S(p,~y) such that

(Vli, b, € G) (LN Sy #D# LN Sy A L1 ULy CP A ang’(ty) = ang®(fy) = ¢ A

Informally, if ¢, and 5 are non-parallel c-lines that intersect Sy, then they meet
within S.

Proof of Prop. 4.9.6: Assume Loc(Bax) + Ax(Bw)P® + Ax(v/ ). Let p €
Dom(f,,) for some m, k € Obs and let S = S(p,¢) be such that S C Dom(f,_ ), and
f . | S preserves Betw. Such an S exists by Ax6g;" and Ax(Bw)P".

We are defining a neighbourhood Sy C S such that f_, will preserve || within Sj.
Let S' = S(p,7) be the neighbourhood of p with the property of Lemma 4.9.8, i.e.
each plane P that contains a line £ with ang?(¢) = ¢, each pair of non-parallel lines
o, Uy with ang®(¢,) = ang?(£y) = Cm, S Ny # D # S N4y, we have O # £, N4, C S.
Let Sy = S(p, 3)-

Let £1,0 € G be such that £; NSy # 0 # £, NSy and £y || 5. We have to show
that ¢/, and /5 are mapped into a pair of parallel lines.

Case 1: If ¢1, ¢5 are photon-lines (i.e. ang®(¢;) = ang?(fs) = c¢,,), then we have
a relatively easy task. For the proof of this case the reader is asked to consult
Figure 224. We shall prove Case 1 for S instead of Sy, i.e. we shall assume only that
LNS#DH#LNS.

As 4y || ¢, they determine a plane P. By Prop. 4.9.5, f_, takes P into a plane
P'. Figure 224 shows both P in m’s world-view and P’ in k’s world-view. By Prop.
4.9.4(xi), f_, takes ¢; and £, into lines that have the same axis with ¢. Formally,

(34,4, € Q) [angz(ﬁ'l) =ang®(ly) =cp N, [6] CO A [ls] C K'Q] )

Of course, we still have to show ¢ || £,. By Lemma 4.9.7, through each ¢ € P
there are at most two photon-lines (i.e. lines with angle ¢,,) within the plane and
the photon-lines of P belong to at most two equivalence classes of ||.

Now, let /3 € G be such that ang®({3) = ¢, and /3 intersects both ¢; and 4,
within Sy. As f_, is injective, £, N €3, o N ly € Sy and ¢3 C P, the line #; containing
the image of /3 has to cross both ¢] and £, in P'. Consequently, ¢} |f ¢5 |f £5. As the
photon-lines of P’ belong to at most two equivalence classes of ||, we have £} || 4.

Case 2: Assume P contains slow lines, i.e. lines with an angle < ¢,,. Let us
choose a € /1 NSy and ¢ € ¢, N Sy arbitrarily. From this point the reader is asked
to follow Figure 225. Let 4,4, 4y, L., ¢y € G be chosen so that a € £, N 4y, c € £, N 4y,
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Figure 224: The idea of the proof of Prop. 4.9.6, Case 1. Dashed lines represent
potential photon traces, i.e. lines with an angle ¢, to ¢ in m’s world-view and ¢, in
k’s world-view.

m’s world-view k’s world-view

Figure 225: Illustration for Prop. 4.9.6, proof of Case 2. Again, dashed lines repre-
sent potential photon traces.
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ang®(¢,) = ang®(¢y) = ang?({.) = ang®(fy) = ¢, and these lines are pairwise distinct
and fall within P. By Lemma 4.9.7 such lines exist. Let e be the intersection of
{, and £., and by be the intersection of ¢, and ¢4. Next, let us translate the abyc
triangle in a direction parallel to #; (and £5), so that by is mapped onto some b € ac.
Let d, f € P be the points where a and ¢ are mapped to, respectively. It is easy
to check that b,d, f € S, i.e. they fall within the sphere where f_, is defined and
preserves Betw. We recommend the reader to have a look at Figure 225 again. We
note that ad || cf (because ¢, || £3), @e || bf (because they are parallel photon-lines),
and db || ee.

Now let us switch to k’s world-view. We have seen at Case 1 that parallel
photon-lines are mapped into parallel photon-lines within S, therefore, denoting the
f, . p-image by a prime, L .

ae | vf' and dV | e

Since f_, | S, we have Betw(a’,V,¢’) and Betw(d', €, f'). Then we can apply the
Pascal-Pappus theorem,*® and obtain a’d’ || ¢ f’. That is, £} || £,.

General case: For the general case (when P contains no slow lines)®?, we can
proceed as follows. Onme takes ¢y € G such that £y || 41 || £2, o NSy # 0, and
Plane(4y, 1) and Plane(¥y, ¢3) contain two photon-lines through each of their points.
We shall prove below that such an ¢, always exists. Then one can apply the proof
of Case 2 to show that f_,[¢o] || ¢} and f_,[¢o] || ¢,- Then ¢, || £, by the transitivity
of ||.

Why does such an /¢, exist? First, it is easy to check that the scenarios that do
not belong to Case 1 or Case 2 above are such that ang®(¢;) = ang?({2) > ¢,. Then
let us take a plane Py such that P, intersects both ¢; and ¢y within Sy, £; L Py L /5.
Such a P, clearly exists, e.g. the plane containing p and perpendicular to #; can be
checked to be such. Let us have a look at F, see Figure 226.

As ang®(¢,) = ang®*(¢3) > ¢, Py must also contain slow lines, and, consequently,
for each ¢ € P, there are two distinct photon-lines in P, going through ¢q. We shall
skip the easy proof of this step. Let p; o ¢1N Py and po o NPy Let by, bpn, € G
be such that py € Lpn,, P2 € Lpny, Lpny U bpny, € Py, and Cpp, |f pn,. There are two
pairs of such ¢,,, and /,p,, and it can be checked by Lemma 4.9.8 that for one of
the two choices £, and /., intersect within Sp. Let us assume that £,;, and £y,
are chosen so.

Now, lpn, and £y, divide Py N Sy into four domains; and one of them is such
that its points are connected with both p; and p, via slow lines. Let us choose
po € Py NSy from this quarter. We only have to take £, to be the line containing pg

539The Pascal-Pappus theorem can be applied in the ("F, Betw) geometry by Fact 6.6.25.
540Cf. Class 2 and 3 of Lemma 4.9.7.
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Figure 226: Illustration to the proof of the general case of Prop. 4.9.6. The second
picture focusses on the plane Py L ¢;. {,, and £, divide PN Sy into four domains.
If ¢ € A, then both p1g and p2g are slow lines.

and parallel with ¢;. ]

Proof of Lemma 4.9.7: Let P be an arbitrary plane. It is enough to show the
following items:

(a) If there is a slow line or c¢-line in P, then there are fast lines in P, too.

(b) If there is a slow line in P, then through each p € P there are two distinct
c-lines, and the c-lines of P belong to two equivalence classes of ||.

(c) If there is no slow line in P, then

(Vfl,ﬁg € G) [(51 U EQ CP A gl,gg are c-lines) = 31 || 52] .

To show (a), we first notice that if there is a slow line /; C P, then through each
p € P thereis an ¢, € G such that ¢, || {; and p € £, C P. Let {1, ¢ € G be distinct,
parallel, slow, and ¢/; U oy C P. Let p; € 1 C Space, and py € €y C Space. Then
pip2 C P and ang?(pipz) = oo, i.e. pip; is fast.
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For the proof of (c) the reader is asked to consult Figure 232. Suppose there is
no slow line in P, and /1, £y are distinct and non-parallel c-lines in P. Let p € 1 N¥s.
Let H be a horizontal hyperplane, i.e. H || Space, such that p & H. Let ¢ € /N H
and r € lo N H. Let s € H be the projection of p to H, i.e. space(s) = space(p),
and sy = qy = 79.

Now, by the definition of ang?(), we have

(297) llg = sll = cllp = sl| = [lr — s]|.

Let w € ™F be such that Betw(q, w, 7). Such a w exists by ¢; [ £5 and p € £; N 45.

It is easy to show ||w—s|| < |[¢—s||. We only have to consider m € [gr] for which
sm L gr. Such an m exists because grs is an isosceles triangle by (297). If w = m,
then ||w — s|| < ||g — s]|| follows by Pythagoras’ theorem. If w # m, then either
Betw(q, w,m) or Betw(r,w, m). In the former case one has to apply Pythagoras’
theorem to ¢gsm and qwm, yielding

[w = sl = lls = mll + |lw —m[| <|ls = m| +llg = m| = llg = s,

and similarly for the case Betw(r, w,m).
But if ||w — s|| < ||¢ — ||, then by (297),

lw = sl < cllp = s,

and hence ang?(wp) < ¢, contrary to the supposition that there is no slow line in P.
To show (b), consider a slow line £/, C P and p € ¢,. Let H be the hyperplane

such that H || Space, and ¢ d:efp + 1, € H. See Figure 231. Let £ € G be such that
¢ C PN H. Such an / exists because P cannot be parallel with H (as P contains a
slow line while H does not). Let s € £,N H. As ang®({;) < ¢, ||s —t|| < c¢. Then by
Ax(v/") there are p;, py € £ such that ||p; — p|| = ||p2 — pl| = ¢ and p; # py. Then
p1ip, p2p C P are distinct c-lines going through p.

Suppose there is a c-line ¢/ C P such that p € ¢'. Then ¢ has to intersect H in
some p'. Clearly, p’ must be on the (n — 1)-dimensional sphere (or, if n = 3, a circle)
S with a radius ¢ around ¢ within H. But as |S N £| < 2, either p’ = p; (and hence
¢ =pip) or p' = p; (and ' = pp).

We still have to show that the c-lines of P belong to two equivalence classes of
||. We have already seen that they belong to at least two classes.

Let us fix p € P. Let #1,/5 € GG be such that p € £1 N ¥y, {1 Uly C P, and £, 45
are distinct c-lines. See Figure ?7. Let ¢ € P and /3, ¢, be distinct c-lines through
q such that /3 U ¢4 C P. We have to show

(]| bs N Lo || Ls) V (€1 ]| s N Lo ]| £5).
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Assume e.g. £y |f l5. Let r € £,N{5. Let £, and ¢, be the bisector of the angle between
¢; and /5, and ¢3 and /s, respectively. Let £,, ¢, be such lines that ¢, || t || 4, p € £,
and r € {4,. As {4,003 are c-lines, angle(¢y,¢,) = angle(ls,¢,) = angle(ls,l,) =
angle(y,¢,). Then, as £; || ¢2 and £y # {3, we have ¢; || 3. By an analogous
argument, £ || £4. And if {5 || £3, then a similar argument yields ¢; || 44. |

Proof of Lemma 4.9.8: Filled in later. |

PROPOSITION 4.9.9 The world-view transformations can be characterized as
compositions of a translation, a relatively “harmless” map (to be specified below),
and an affine transformation.’*' Formally,

Loc(Bax)+Ax(Bw)P*+Ax(continuity)+Ax(v ) = (Vp € Dom(f,_,))(3e € TF)

[S(p.) € Dom(fry) A F [ S(p€) =70 G0 AT S(pe)],
for some A € Aftr and ¢ : (—¢,e) — (—¢,¢) with the following properties:
(i) @ is injective,
(ii) ¢ preserves addition,
(iii) ¢ preserves order,

(iv) ¢ has the following property:
3
(Vp, ¢, € S(p;¢)) (pq =15 = @p)ele) = w(r)—) :

Proof: Assume Loc(Bax)+ Ax(Bw)P* + Ax(continuity) + Ax(v/ ). Let m, k €
Obs be such that m > k. Let p € Dom(f,). Let S = S(p,e) be such that S C

mk

Dom(f,), and f,, | S preserves both Betw and || for lines {¢ : ang?(¢) & (%, 34=)}.
Such and S exists by Ax6p;, Ax(Bw)P* and Prop. 4.9.6.

Claim 4.9.10 f_, takes the S-long unit vectors around p to linearly independent
vectors. Formally, the vectors of

e _ 9 _ _ I3 _
EE {f 0+ e0) = @), A0+ Senr) = £ (0)}

are linearly independent. °42

541Gee Thm. 3.1.4 for the stronger form of this statement that applies in the full-domain theory
Basax + Ax(v/ ). By Thm. 3.4.40 we have the same in Bax + Ax(v/ ), and Bax + Ax(v ) =
Ax(Bw). Therefore Prop. 4.9.9 provides a characterization of f,,’s in a strinctly corresponding
case.

542 Actually, for Claim 4.9.10 we do not need that f,_, preserves ||.
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Figure 227: Idea of the proof of Claim 4.9.10. Notice that we did not use that f_,
preserves ||, only that it preserves Betw.

Proof of Claim 4.9.10: Suppose the members of E are not linearly independent.
Then {f_, (p),f . (p) + q : ¢ € E} generate at at most (n—1)-dimensional hyperplane

H. We are going to show that f_, has to map S into H by the supposition. This

will contradict Ax(continuity), by which f_,[S] must be an open subset of "F.

Let f; < 2, g; €6 (p+ eg) — o (p) for i € n.*® Let ¢ € S be arbitrary. For

=3 m

convenience, let p’ def x(p). Then

q:p+l‘0f0+---+xn—1fn—1

for some xy, ..., z,_1 € F. We shall proceed by induction. Let H; by the hyperplane
generated by {p, p+ fo,...,p+fi} fori € n. Thene.g. Hy=p,p+ foand H,_; ="F,
as {5e; : © € n} are linearly independent. Similarly, let H; be the hyperplane
generated by {p',p' + go,...,0' + 9i}

Assume ¢ € HyN S. Then f_,(¢) € H because both p and p + f are mapped
into H and f,_, preverses collinearity via Betw.

Assume f_, takes Hy into H for each k € ky. Let ¢ € Hy, N'S. Then

qg=p+(r—p)+(s—p),

for some s € Hy,_1NSand r € p,p+ fi,- See Figure 227. It is well-known from ge-
ometry that prgs is a parallelogram, and that the diagonals of a parallelogram bisect

543That is, E = {g; : i € n}.
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each other. Thus, letting y def % = =2 we have Betw(p,y,q) and Betw(r,y, s).

But then Betw(f,,, (r), (1), f(5)) and Betw(f,(p), £, (1), Fs (). Then, by the
former, y is mapped into Hy, and, by the latter, g is taken into Hy, as well.
Thus S= SN H,,_, is taken into H and f_,[S] cannot be an open subset of "F,

contrary to Ax(continuity). (Claim 4.9.10) n

Let us continue with the proof of Prop. 4.9.9. Let A € Aftr be such that A takes
0, fo, .-y fa1 top',p'+go, ..., p'+gn_1, Tespectively. Such an A exists and is unique,
and is a bijection of "F by Claim 4.9.10. We have to show that 7,0f 0 Al =¢
with ¢ having properties (i) to (iv) above.

Let g o mpof 0 A7l g is defined of S = S(p,¢), is injective and preserves
both Betw and parallelism, because each of 7, f,,, A~ were such. Further, g leaves
0, fo, ..., fn—1 and hence the axes Zo N S,...,Z,—1 N S fixed. We are going to code
+, -, < by parallel lines and Betw to show that g is a map generated by some ¢ with
properties (i) to (iv).>**

First, let us see how g behaves on ¢. Within this proof let us use the temporary

notation

2D 0.0, ,...,0).
—
(j — 1)-times

Let z = z + y for some z,y,z € (—¢,¢). Then there is an £ € G such that ¢ || ¢,
¢ #t, and there are a,b € £ N S such that

0a || z©b, and
y(o)a || bz(0)

See Figure 228. We do not restrict generality with assuming ang?(0a),
ang®(z(0b), ang®(y©a), ang®(bz(M) < <, as ¢ can be chosen “close enough” to
t.

As g leaves 0 and f, fixed, it takes £ N S into £. As g is injective and preserves
parallelism,

glensS) ¢ tand gld] | T,
9(0)g(a) || g(z©)g(b),
9(y@)g(a) [ g(b)g(2®).

544The procedure followed below to code +,-, < by parallel lines and Betw is very close to the
method we shall use in the geometry chapter (§6) below to define a field F,. from the structure
(Mn, Bw) where, roughly speaking, Mn will be the points of the observer-independent geometry,
corresponsing to "F' in our case, and Bw is the betweenness in Mn, corresponding to Betw in ™F'.
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9(z'") g(b)
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() 9(z®)
y© ; 9(y") 9(a)
£(0)

Figure 228: Illustration for the proof of Prop. 4.9.9. ¢ preserves addition on ¢.

Consequently, g(z(@), g(y), g(2(¥) € £ and g(z) = g(z) + g(y). In other words, g
preserves addition on £ N S.
It is easy to check that g preserves order (<) on ¢, too. It is straightforward that

>y < (Betw(z®@ — 9@, £,0) v 20—y = f; v Betw(fy,z¥ —4©,0)).

Since g preserves Betw, we have g(z(®), > g(y(?);, and hence z > y.

Let us turn to the problem of multiplication. Unfortunately, we cannot fix mul-
tiplication by parallel lines, because 1; ¢ S is possible (and it is also possible that no
point with a rational ¢-coordinate falls within S). But we can define the multiplica-
tion “as if” the unit were e.g. 5. This “as if” is responsible to the strange substitute
for multiplication in property (iv).

Let £z = zy for some z,y, 2z € (—¢,¢). Then there is an £ € G such that 0 € ¢,
¢ # t, and there are a,b € £N S with the following properties:

(298) a # 0#0D,

(299) az® || by®, and

(300) az® || bfo.

See Figure 229. We do not restrict
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fo

£

y©

g(fo) = fo

Figure 229: TIllustration to the proof of Prop. 4.9.9, property (iv). The relation
R(z,y, 2) LN ry = 25 can be coded by parallel lines, which are preserved by g.
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Befejezes:
hipersikok

generality with assuming ang?(az(©), ang?(by(®), ang?(az©®), ang?(bfy) < %, as £
can be chosen “close enough” to t.

As g preserves t,0, fo, Betw and || on S and is injective, it maps the scenario of
Figure 229 to a scenario where the images of (¥, y(© 2 ¢ b have properties

corresponding to (298)-(300), that is:

gléns ¢ t and
g(a) # 0=yg(0) # g(b),
9(a)g(z?) || g(b)g(y®), and
9(a)g(z®) I g(b)g(fo) = g(b) fo

One can check that this implies $g(2) = g(x)g(y).

Up to this point we have seen that g acts of ¢ just like it should, i.e. g [t =@ | T
for some ¢ : (—&,e) — (—¢,¢) with properties (i) to (iv). By exactly the same
argument g acts this way on all of the axes zg,...,Z,_1. That is,

(Vge S)((Fen)gex; = g(g) = (wolq), - Pn1(qn-1)))

for some ¢y, ..., @n—1 with properties (i) to (iv). We still have to show ¢; = ¢, for
any j,k € n, and that g acts the same way of the whole of S.

Let z € (—¢,¢). Let j # k, j,k € n. Then f;f; || @ z®). Since g preserves
parallelism and f;, fx, we have

Fife I 9(z9)g(z®).

But g(z) = ¢ (), and g(z®) = 3 (x). Hence ¢;(z) = x(@), ie. ¢; = pp. B

Remark 4.9.11 (i) It can be checked easily that the choice of § below is not
essential. It could be substituted by any number from (0,¢). If the interval
(0,¢) contains a rational number (i.e. if the sphere S(p,¢) is not infinitely
small), item (iv) can be turned to saying that ¢ preserves multiplication.

(ii) It follows from the proof of Prop. 4.9.9 that for any p € Dom(f_,), f . can
be extended from the neighbourhood S(p,e) where it preserves parallelism of
lines slower than ¢, to a betweenness-preserving bijective collineation on "F
iff a function ¢ with the properties (i) to (iv) above (see in Prop. 4.9.9) can
be extended to an order-preserving field automorphism.
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4.9.2 Some partial models

A simple but not exhaustive “algorithm” for building models for partial world-view
relativity theories is similar to the technique we used in e.g. §§2.4, 3.2, 3.5, 3.6 for
building models of Basax. We shall first deal with Loc(Basax). This method
serves as a simple tool for testing questionable hypotheses (about partial theories);
we shall apply it way below e.g. to prove that Loc(Bax_@) has models where f_,’s
do not preserve parallelism. By and large, one can proceed according to the following
pattern.

1. Let us fix an arbitrary “original” observer, say m. Define the domain of m, i.e.
fix Dom(w,,). Make sure that Dom(w;,) is an open subset of "F. Observer
m can be identified with Dom(w;,) Nt, in order to obey Ax4P*.

2. Let us inhabit the world-view of m by observers and photons so that
Ax1, Ax2, Ax3)", Ax5P*" AXE are obeyed in m’s world-view.

3. In Step 2 we obtained Obs an Ph so that (Vk € Obs)m > k and (Vph €
Ph)m 5 ph. Define f_, for each £ # m. Do this in a conservative way; by
this we mean that one should not take the risk that the axioms become invalid
in other observers’ world-views. For example, if Dom(w.) contains p and ¢
such that p — ¢ has rational coordinates, f,_, should be a composition of a
map generated by a field automorphism and a rhombus transformation. Let

Dom(f,) o Dom(w,,). This will make sure that Ax6 holds.

def
= fm

4. Let w, oW, . One has to check the axioms in any observer’s world-view.

To obtain models of Loc(INewbasax), Loc(Flxbasax), Loc(Bax) etc. one can
use the common techniques we used so far: use windows, change the speed of light,
either the same way for every observer or differently for each etc.

First, we shall show that Loc(Basax) has a model in which the world-views are

bounded. Let § be an Euclidean ordered field, and G % Eucl (Ax1 is fulfilled).
Further,

Obs {¢ € SlowEucl : £n S(0,2) # 0} x Trivy,
Ph % (£ e PhtEud : £ S(0,2) # 0},
Ib = ObsU Ph.
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For any k € Obs let k = (¢, gx). Let m = (t,1d) be fixed.

Dom(w,) = 5(0,2),
w,(p) = {ph€ Ph:peph}U{ke Obs:pe€l}.

By this choice of w,, Ax2, Ax35", Ax4**  Ax5P* AxE are true in m’s world-
view.

Next, let 0 : Obs — "F x "F x Poi be such that if o(k) = (o, t, poi,) then
ok, tr € £, N S(0,2), o # tx, and poi, takes 0 and 1; to oy and ¢, respectively. Such
a o exists, and it will be a parameter of the model. Now, having k = (¢, gx),

— def .

fk = gk © POIj.
It is easy to check that f_, is injective, thus Ax6 is fulfilled. f_ _ takes ¢ to tr,,(k),
thus ¢riy(k) C t and therefore Ax4P* is fulfilled. Ax3§™ holds because f_, is
affine. AxE holds because both gy and poi, take photon lines to photon lines.
Dom(f_ ) = Dom(w,,) is open, and Rng(f_,) is open because f_, is affine. Now,

mk
as fi ., = foum © fu, is also affine, Ax6g;" holds, too. Ax5P* can also be checked

easily by f,, being affine. In this model each observer’s domain is bounded because
it is an image of the sphere S(0,2) by an affine transformation. <

We are going to use the just outlined method to show that Loc(Bax~") +
Ax(Bw)Par35 permits models in which light-cones are tilted. This phenomenon is
not characteristic in special relativi’g, but it is common in general relativity. We do
not think that by weakening Bax™ " to Loc(Bax_@) we have entered the realm of
general relativity; clearly, a couple of other changes will be necessary, too. But we
find this result interesting because it demonstrates how weakening a theory from a
full domain version to a partial one can induce a qualitative change in the range of
models (in contrast to the less striking case when the observers of Loc(7Th) can see
fractions of a world which looks more or less like the world in models of Th). At the
same time, we shall see that Loc(Bax~") + Ax(Bw)P™ does not imply that f s
preserve parallelism, even locally.

Moreover, the following model construction demonstrates the fundamental dif-
ference between two ways of formalizing the “there are no FTL observer” statement.
Roughly, one can give a “local” and a “global” form. The global form will fail in the
following model, but the local form will still be valid. By contrast, in Mod(Bax™)
the global and the local form will be equivalent. We shall return to this issue in
§4.9.3 (p.4.9.3) below.

5450ne could easily add Ax(v/ ), Ax(star), Ax(clock-conn), Ax(photon), Ax(simult),
Ax(mut), Ax(continuity), Ax(pcoll), Ax(syBw)P?ar.
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Figure 230: To the definition of g and f, ., in the definition of the non-||-preserving
model of Loc(Bax~ %) + Ax(Bw)ra.

Let us start with a two-dimensional model (n = 2) 9t of Loc(Basax) obtained
above. Let us select an observer m whose domain contains 0, e.g. the “original”
observer (t,1d) we used for building the model. We are going to add a new observer
m’ to M so that Loc(Bax‘®) + Ax(Bw)P? is still obeyed in the new model 9t and
the world-view of m' contains tilted light-cones, and at the same time, f__, does not
preserve parallelism.

First we shall define an auxiliary function ¢ : PhtEucl — Eucl, which declares
how f_, , will act on photon lines. Next we shall define f__, in terms of g.

For the definition of g the reader is asked to have a look at Figure 230. Let
us work in m’s world-view. We know that Dom(w;,) is bounded. Now let us fix
two points, P and (), with the following properties. P and () are one another’s
mirror images to ¢, and |P,|, |P;| are outside of the bound for Dom(w;) (i.e. if
Dom(w;,) C S(0, K) for some K € F*, then |P,| > K and |P,| > K). This choice
is certainly possible. Let e.g. P, < 0 and @, > 0.

Let ¢ € PhtEucl. If £ moves forwards in direction +1 € directions, then let g[¢] be
the line going through @ and crossing = is £ N Z. (In other words, the intersection
point of £ and 7 is fixed, while g[¢] is expected to go through @.) If £ moves backwards
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in direction +1 € directions, then P should be used instead of ). See Figure 230.
Thus g is defined on PhtEucl and it can be checked that if £N Dom(w,,) # (0, then

(*) (£ moves forwards in direction +1) <= (g[¢] moves forwards in direction +1),

(%x) ang®(g[£]) > 0.

Now, let us define f_,, (and thereby w,_,) the following way. If p € Dom(w,,),
then there are ¢y,¢; € PhtEucl such that p € ¢, N ¢;, and ¢; moves forwards in
direction +1, while /; moves backwards in direction +1. Further, ¢/, and ¢; are
unique. See Figure 230. By (x) and (%*), g[fy] and g[¢;] are intersecting lines. Let
f . (p) be their intersection, i.e. f_ . (p) € g[lo] N g[¢:]. Thus f_, ., is a function
defined on Dom(w,,).

Claim 4.9.12 f__, has the following properties.

(i) f .. is bijective,

mm

(ii) f,,,, is continuous,

Y 546
(iii) f,,,, preserves Betw.

Let us postpone the proof of Claim 4.9.12 for while, and proceed with the proof
of N k= Loc(Bax™ ") + Ax(Bw)P*, where N is defined below.

Let £, < (F- )1 If M = (3;G; B, Ib, Obs, Ph, W), then

mm/’

N L (FGBU{MY,IbU{m'}, ObsU {m'}, Ph,IW') where

W WU {(k,p,m) : (k,p,m) € WHU{(m,p,b) : b€ (fr,, 0 wy,) (p)}.7

Clearly, t = {Ax(Frame), Ax1, Ax2}.

N = Ax35" follows by Claim 4.9.12(iii) and ¢r,,(m') # 0.

Ax4P" holds in 9 because by the above construction of f, ./, f ...
and @ are each other’s mirror images to t.

AxEy; holds because |P,| = |Q.| > K.

Ax6¢o holds because tri(m') = try(m), and Rng(w,,) = Rng(w,,,).

Ax63]" holds because Dom(f.,) = Dom(f,,) € Open, Dom(f ) =
Rng(fy,) = Rng(f,, of,.), and f_ ., is continuous by Claim 4.9.12(ii).

mm/!

[t] Ct, as P

546 Actually, Betw(z,y,2) <= Betw(f, .. (2),f, .. (¥),f, .. (2)) holds, too.
547The last item can also be written as {(m/,p,b) : (m,f_, (p),b)}. Intuitively, m' can see the

same events m can see, but moved by the function f, ., (p).
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Figure 231: Illustration to the proof of Claim 4.9.12(i).

AxP1 and Ax5%; hold by the construction of ¢ (and f_ ). In more detail, if
p € Rng(f,,,) = Dom(w,,) and ph € Ph goes through p in the +1 direction, then
tr (ph) C pQ, and if ph goes through p in the —1 direction, then tr,,(ph) C pP.
Cf. (x) above.

Ax5%; . follows by Claim 4.9.12(ii)-(iii) and AxP1.

Ax(Bw)P?* holds by 9t = Ax(Bw)P?" and Claim 4.9.12(iii). <

Proof of Claim 4.9.12(i): Assume f__,(p) = f_ .(¢) = r for some p,q¢ €
Dom(f, /). fr,=0,thenp =qg=rasf,_, [ Z=1Id | Z. Assume then e.g.
ry > 0. Throughout the proof of item (i) the reader is asked to consult Figure 231.

By the construction of g (and f,, ) above, there are two distinct ¢;, ¢, € Eucl
such that r € £, N ¥y, and for a € ¢, NZ and b € £, N T, {a,b} C Rng(f,,,. ). Clearly,
a and b are distinct and unique, and f,_, leaves them fixed.

Let us turn to the world-view of m. By the definition of f_, ,, p and ¢ must be
the intersections of some ¢,, ¢, € PhtEucl such that a« € ¢, and b € ¢;. As ¢, =1
and n = 2, there two such pair of lines, say (£}, £;) and (£2,¢2). It is easy to check
that only one of these pairs intersect in a point above Z. As f_ , maps the points

above Z to points above Z (this is easy to check), we have p = q. |
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m’s world-view world-view of m/

Figure 232: Illustration to the proof of Claim 4.9.12(ii).

Proof of Claim 4.9.12(ii): The reader is asked to consult Figure 232. It is enough
to show that f__, takes each “small enough” open sphere of Dom(f_ ) to an open
set.548

Let S = S(p,e) C Dom(f,, ) = Dom(w,,). Let ¢1,¢5,¢3,¢s € PhtEucl be the
lines that “project” S to Z. We are not going to formulate this, but follow Figure

232. Now, if ¢ is so small that ¢, N ¢, C Dom(f,, ), then the poligon enclosed by

m

01,0y, 05,0, is mapped to a poligon within Rng(f ;) by the construction of f_
above. As p will be an inner point of this poligon, there will be S' = S(f_ ., (p),)
such that S’ C Rng(f;,,) = Dom(w_,).

It is easy to check that ¢ can be chosen “small enough” in the above sense. For
example, if Sy = S(p,d) C Dom(w,,), then & = 2 (actually, % if § is Euclidean) is

suitable. 1

Proof of Claim 4.9.12(iii): Assume Betw(p, ¢, ) for some p,q,r € Dom(f_

)
mm
The case pr || Z is trivial. So let us assume pr |[{ Z. The reader is asked to consult
Figure 233 for the elements of the proof.

548Because each open set is the union of “small enough” spheres, and the union of open sets (the
f ..-images of these spheres) is open.
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Figure 233: Tllustration to the proof that in the definition of the non-||-preserving

model of Loc(Bax~") + Ax(Bw)P* is a collineation. (Part of Claim 4.9.12(iii).
The picture shows the world-view of the new observer m/'.
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Figure 234: To the proof of Claim 4.9.12(iii). The picture shows the world-view of
the old observer m.

Let p & frm (D), ¢ & e (@) and 7’ o f o (r). Let £ | Z be such that ¢ € .

Let s € {NpP,t € {NpQR,a € TNpP, b€ zNgP, c € ZNpq, d € TNqQ, e € TNPQ,
like in Figure 233.
As the abP triangle is similar to sq’ P, and de@ is similar to gt@, we have
|a—b\_Qt |d—€‘_Qt

= — and ==,
s—q¢| q ¢ -t q

and hence

—b d—
501 bl _li—¢

ls—q| g =t
On the other hand, as p, ¢ and ¢ were collinear, in the world-view of m we have

la—b| |p—q and d—e| |p—qd

la—cf Ip—¢ c—el |p—cf
and hence
(302) la — ¢ _ la — b|
lc—el |d—e|
See Figure 234.
From (301) and (302) one obtains
la—c _|s—{|

(303)

e—el g1
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As p'st and p'ae are similar triangles and their sides are parallel, (303) implies

p'q' || p'c. But then p'q’ = p'c. By exactly the same argument, p'r’ = p’c. Thus
P, ¢, r" are collinear. Checking Betw(p', ¢, ') is easy and is left to the reader. |

4.9.3 Faster than light observers

When discussing the possibility of faster than light travel in models of a partial
domain theory, one has to face a novel problem which did not come to light with
full domain theories. This problem is the difference between the local and the global
formulation of the FTL-relationship between two observers. Recall that by Thm.
4.3.17 (p.488) all light-cones are alike in Mod(Bax™). Ie., the speed of light in
direction d € directions does not depend on the space-time location: ¢, (p,d) =
¢m(q,d) forall p,q € "F. However, as we saw in the Loc(Bax_@) + Ax(Bw)P?*
model on pp. 678-685, in certain weak local relativity theories this is not the case
anymore. Thus the question arises naturally: To which photon should an observer,
say m, compare the trace of some observer, say k, to judge whether it travels faster
than light? It seems to us that there are two intuitively convincing (not arbitrary)
options:

1. Observer k travels faster than light for m at some point p € Dom(w,,) if
k’s trace for m is not contained “inside” of the light-cone around p in some
neighbourhood of p. In this case we shall say that k£ travels FTL for m locally
at p. See Figure ??(a). We shall give the formula of this relationship in
Def. 4.9.13(i) below. Notice that the possibility that k is FTL for m at some
p € trp(k) while it is not FTL (it is STL) for m at some other g € tr,,(k)
cannot be excluded beforehand.

2. Observer m can compare the speed of k to some light-cone on its own path
(trmm(m)). See Figure ??(b). Notice that one cannot exclude a priori the
possibility that the light-cones on m’s trace (as seen by himself) are different.
Therefore, this concept needs one more parameter; namely, the time when m
measures the speed of light. In this case it might be possible that at time
To € F m thinks that k£ travels FTL while at some other 7 #€ F m thinks
that & travels STL. The formal definition comes as Def. 4.9.13(ii) below. This
option will be called the global version of the FTL-relationship.

The above distinction (between the local and the global FTL perspective) will
gain more significance when we will be able to discuss general relativity. Imagine,
for example, that you are approaching the event horizon of a Schwarzschild black
hole. It is known from the standard books on relativity that in such a case you will
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observe the world outside of the black hole “speed up” as a whole. Eventually, you
will be able to observe the whole history of the outer universe before crossing the
event horizon. But this involves that the photons of the outside world have to speed
up too! It is possible (although at this point this is nothing but a fairy tale) that the
speed of ordinary observers (e.g. spaceships, planets etc.) of the outer universe will
exceed the speed of light in your neighbourhood. In other words, they will travel
FTL from a global perspective (option 2 above). On the other hand, they need not
travel FTL locally, i.e. the observers of the world outside of the horizon of the black
hole might still be slower than the photons in their neighbourhood.

On the other hand, the distinction between the local and the global FTL rela-
tionship will gain a cosmological significance when investigating inflationary universe
scenarios. In that case some observer m will experience that distant parts of the
universe escape with speeds greater than the speed of light in the proximity of m’s
life-line, while still slower than the local speed of light in the receding areas.

Although we shall not be able to discuss the phenomena indicated above ade-
quately in the realm of localized (or partialized) theories of special relativity, we can
explore these notions here due to the flexibility of our theory Loc(Bax_@). Let us
turn to the formal definitions.

Definition 4.9.13 (i)

LocFTL(m, k, p) < (3ph € Ph) [p € tru(k) N trm(ph) A
m can see k and ph move forwards in the same direction A v,,(k) > v,,(ph)],

JLocFTL(m, k)l FEIN (3p € Dom(w,,))LocFTL(m, k,p),

VLocFTL(m, k) Em Sk A (Vp € try,(k))LocFTL(m, k, p).

(ii) GlobFTL(m, k,p) << (3ph € Ph) [p € try(m) N trm(ph) A
m can see k and ph move forwards in the same direction A v,,(k) > v, (ph)],

JGlobFTL(m, k) FEIN (3p € Dom(w.,))GlobFTL(m, k, p),

VGIobFTL(m, k) <% (Vp € try,(m))GlobFTL(m, k, p).

By definition, LocFTL(m, k,p) V GlobFTL(m, k,p) = m S k. Itis easy to check
that

VLocFTL(m,k) = dLocFTL(m,k)
VGlobFTL(m,k) = 3GlobFTL(m,k)
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THEOREM 4.9.14 Assume n > 2. Then
Loc(Bax~ ) + Ax(syBw)?P™ = —(3m, k € Obs)ILocFTL(m, k).

As a contrast to Thm. 4.9.14, we would like to point out that an analogous conclusion
with dGlobFTL in the place of dLocFTL does not follow. This simply follows
by the model construction on pp. 678-685 above, where light-cones are tilted and
Loc(Bax™") + Ax(syBw)® holds. Although we worked in n = 2, that model
construction can be generalized to higher dimensions, too. This step is left to the
reader.

FACT 4.9.15
Loc(Bax™ ") + Ax(syBw)P™ }£ —(3m, k € Obs)3GlobFTL(m, k).
To prove Thm. 4.9.14 we shall need the following lemma.

LEMMA 4.9.16 (i) Assume that f is a Betw-preserving function on a sphere
S=S(p,e). If H is a k < n dimensional hyperplane such that HNS # 0, then
there is an H' k' < k dimensional hyperplane such that f[H N S| C H'.

(ii) Assume further that f is continuous in the sense of Ax(continuity) for f_,.
That is,

(for every open sphere Sy C Dom(f)) f[So] is an open subset of "F.

Then f[SN H| generates a k-dimensional hyperplane. In other words, there is
no ky < k dimensional hyperplane Hy such that f[SN H| C Hy.

We shall return to the proof of this lemma after demonstrating no-F'TL theorem.

Proof of Thm. 4.9.14: Assume Loc(Bax~ %) + Ax(syBw)P™ and let m, k €
Obs be such that m FTL k. Then there are p € "F and ph; € Ph such that
trm (k) N trp(phi) = {p}, m can see k move forwards in some d € directions, and
U (k) > vy (phy). Let d,p, phy be fixed. First, we claim the following:

Claim 4.9.17 There is an observer &£’ such that v,,(k") = co.
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Figure 235: Illustration of the main idea of the proof of Thm. 4.9.14, Claim 4.9.17.
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Figure 236: The world-view of observer £ in the proof of Thm. 4.9.14. The plane
P' is represented, which contains f, [P N Syl.

Proof of Claim 4.9.17: We can assume v,,,(k) # 0o, otherwise we are ready. By
Ax5%,, there is a phy € Ph such that p € tr,,(phe) and m sees phy move forwards in
direction —d. See Figure 235. Let phsy be fixed. Then m sees phs move backwards in
direction d. Let £y € G be a line with ang?({y) = oo going through p in direction d.
Then there is a P € Plane such that ¢ || P, and tr, (k)Utr,, (ph1)Utr,(phe)Uly C P.
(This can be checked by the definition of “m can see b move forwards/backwards in
direction d”.)

Let S = S(p,¢) be such that S C Dom(f,,) and f_, [ S preserves betweenness.
Such an S exists by Ax65; and Ax(Bw)P?. Let ¢; € G be such that ¢; || ¢ and ¢,
intersects each of tr,,(k), tr,,(phi), trm(phs), £o within S (in b, a, d, ¢, respectively),
but not in p. Such an ¢; exists by v,,(ph1), vm(phe) > 0 (by AxEg1), vy,(k) > 0
(by m FTL k), ang®({;) = oo > 0. We have Betw(a, b, ¢) by v,,(ph1) > v,,,(k) and
the definition of speed. Further, Betw(b, c,d) by the fact that m can see k move
forwards and ph, move backwards, respectively, in the same direction d.

Let us turn to the world-view of k. See Figure 236. As S C Dom(f, ), k can
see the events that m can see at points p, a,b, ¢, d at some p',a',0',c/,d" € Rng(f, ),
respectively. As f,_, is injective (cf. Prop 4.9.4(v)), o/,p',d are pairwise distinct
and o', p',d are not collinear. Thus d/,p’ and d' determine a plane P'. We have
V,c € P’ because f_, [ S preserves betweenness, and Betw(a, b, d), Betw(a, c, d).
Further, V' € t, because k € w,,(b) = wi(b') and Ax4P".

We would like to show ang?(p'c’) < wvi(phs), because we would like to find an
observer on p/c’. First, let us show that p'dN¥'d’ = {c'}. To begin with, ¢’ € pdNb'd’
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by Betw(b', ¢/, d'). Now suppose p'c’ = b'd’. Then {p’,b'} C £, and b’ # p', and hence
d epd=vd Ct By Ax3}", tri(phs) is a part of a line. But then ¢ry(phs) C £,
because phy € wi(p') N wi(d'), p',d € t, p' # d. But vi(phs) = 0 contradicts
Loc(Bax™").

Let us proceed with p’d Nb'd’ = {¢'}. Let x € £ be such that 2, = d}. If z =¥/,
we are ready, because b, = ¢, = d, and Betw(V',c,d’) imply ang®(p'c’) < v, (phs)
by definition. So let us turn to the case x # b'. Consider the b'zd’ triangle and the
line p/c’. p/c intersects the [0'd’] side at an inner point. Then by Pasch’s axiom®
we have that x € p'c/, or p'c intersects [b'z] or [zd']. In the first two cases (z € p/c’
or p'c’ crosses [b'z]), we have that p'c’ C %, by the fact that p/c’ intersects f twice,
and the intersection points are distinct because xz = p’ would imply vg(phs) = 0,

contrary to Loc(Bax_®). On the other hand, if p'c’ intersects b between x and
V', then ang®(p'c’) < vg(phsy) by the definition of speed.

We have shown ang?(p'c) < vi(phs). Then by Ax55y , there is k' € Obs such
that v, (k') = ang?(p'c’) and k can see k' move forwards in the same direction, say
e, in which it can see phy move forwards. It can be checked that tr, (k') = p'c’.

Returning to the world-view of m, m > k' follows by k' € wy(p') = wm(p).
Moreover, k' € wi(c') = wn(c) and ¢ € Dom(f,,), thus try(k') C 4. Finally,
vm (k') = ang?(£y) = oo. (Claim 4.9.17) &

Let us return to the proof of Thm. 4.9.14. Let H be the n — 1 dimensional
hyperplane containing p and parallel with Space. If £’ is the observer with infinite
speed whose existence is warranted by Claim 4.9.17, then ¢r,, (k') C H.

Let us turn to the world-view of k. See Figure 237. Let Sy = S(p, d) be such that
So € S (recall that f_, | S preserves Betw), Sy C Dom(f, ), and f_,, [ Sy preserves
betweenness. By Lemma 4.9.16, HN Sy is taken into some at most n— 1 dimensional
hyperplane H' or "F. We have t C H' because tr,,(k') C H. As H' is an at most
n — 1 dimensional hyperplane, there must be a direction, say e € directions, such
that the lines that cross ¢ and point in the direction e are not contained in H’.
(This is easy to check.) Let us fix such an e. By Ax5%,_, there is a limiting photon

ph going through p” dof ¢ w (p) moving forwards in direction e for £'. By AxEg;

m

vg (ph) > 0. Then there must be a h € Obs such that try (h) goes through p” and
moves forwards in direction e for &', and vy (h) > 0. Let h with these properties be
fixed. Because of the way e was chosen try (h) is not contained in H'; actually,

(304) triv(h)y N H' = {p"}.

Moreover, let us fix a phy € Ph such that p” € try (phy) C H'. It is not a trivial
question whether such a phy exists, and this is the point where we shall need n > 2,

549The Pasch’s axiom holds in ("F, Betw) by Fact 6.6.28.
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Figure 237: To the proof of Thm. 4.9.14. The picture shows the world-view of &'.
H' is the hyperplane that contains f_ ., [H N Sy).
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Figure 238: Illistration for the final step of the proof of Thm. 4.9.14. The picture
focusses on the plane Py & Plane(tr,(k), trm(pho))-

and that we assumed the “bidirectional” version Ax(syBw)P?" of the assumption of
local betweenness-preserving. If n > 2 then H is at least two-dimensional. We have
to show that H' is also at least two-dimensional, i.e. that H' is not contained within
a line. Suppose it is. As H is a least two-dimensional, there are a, b, c € HNSy which
are not collinear. But f_.,(a), f ., (b) and f_,.(c) are collinear by the supposition.
This contradicts Ax(syBw)P?'.

Let us return to m’s world-view. See Figure 235 again. We have phg,h €
w,.(p) = wy(p"). trm(phe) is not contained in H, because v, (phy) < oo by
Loc(Bax_@). Both phg are h are present “everywhere” in Sy, in the sense that
if trm,(pho) C Lyn, for some £y, € G (which must be the case by Ax33"), then
Loy N Sy C try,(pho); and similarly for hA. Consider the plane Py that contains both
trm(pho) and tr,,(h). It is easy to show that there is a line £* that intersect tr,,(h),
trm(pho) and H within Sy in f, g, h, respectively, that are pairwise distinct and also
distinct from p; see Figure 238. Since f,g,h € Sy and f_,, [ Sy preserves collinearity

(via betweenness), f’ oo fw(f), d & f .(g) and A/ o f . (h) are collinear, too.
Further, ¢', h' € H' as both H and tr,,(phy) are mapped into H'. But then f' € H’,
too. As f' # p" by f_,, being injective, we have tr,,,(h) C H'. Thus we have reached

a contradiction with (304). |
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Proof of Lemma 4.9.16(i): We shall proceed by induction. If £ = 1, the propo-
sition follows by f being Betw-preserving.

Assume that the lemma holds for k. For the present induction argument the
reader is asked to study Figure 227 again. Let H be a £k + 1 < n dimensional
hyperplane. I.e. H is a translation of a (k + 1)-dimensional subspace of "F. Then
there is a k-dimensional hyperplane Hy and some ¢ € G such that £N Hy = {p} € S
and

(Vz € H)(3g € £)(3r € Hy) 2 = (¢ —p) + (r —p) +p-

See Figure 227. Let y & 1%. It is straightforward to check Betw(q,y,r) and
Betw(p, y, ).

Now, f takes Hy to some at most k-dimensional hyperspace H| and / to a line
¢'. Let H' be generated by H|, and ¢'. Clearly, f(p'), f(r') € H{ and f(p'), f(¢') € 2.

As f preserves Betw, we have Betw(f(q), f(y), f(r)) and Betw(f(p), f(vy), f(z)). The
former implies f(y) € H', and then the latter implies f(z) € H'.

Proof of Lemma 4.9.16(ii): If H is a k-dimensional hyperplane, then there are
Dy fo, fis--y feer € HN Sand fy, ..., fo1 € S\ H such that the members of

E={fj—p:jen}

are linearly independent. By an argument similar to the proof of Claim 4.9.10 one
can check that the members of

{F(f;) = fp):j en}

are linearly independent, too. Then {f(f;) — f(p) : 7 € k} must be independent,
too. But then f[H N 9] generates a (k — 1)-dimensional hyperplane. [

Conjecture 4.9.18 We conjecture that our no FTL results generalize to
Loc(Bax_®), assuming n > 2 of course. (Some extra auziliary assumptions might
be needed like e.g. a partial-domain version of Ax(||) or of some of our other auz-
iliary axioms.)

Question for future research 4.9.19 It would be interresting to investigate
whether Lemma 4.9.16(ii) can be demonstrated without using continuity. If nec-
essary the symmetric version of Betw-preserving can be assumed, i.e.

(Vp,q,7 € S) (Betw(p, q,7) < Betw(f(p), f(q), f(r)))-

This question is purely of mathematical interest, because the cost of of assuming
Ax(continuity) in relativity is not really high and we shall do it whenever neces-
sary.
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4.9.4 Symmetry principles suitable for partial world-view theories

To prove “nice” or “classical” theorems in our partial world-view theories, we shall
need some kind of symmetry axioms. Just like in the earlier cases (cf. §§2.8, 3.9),
these will say that “the way you can observe my clocks, meter rods, etc. being
affected by my movement is the same way I can see your corresponding properties
being affected by your movement.” We have to update our symmetry axioms because
they usually assumed that f_, is defined everywhere (or, alternatively, that f,, is a
function defined on ™F'), or at least on the whole of {. For purely technical reason
it seems that Ax(syte) is the easier symmetry axiom to generalize. (The reason
is that Ax(sytp) does not work with the notion of “one of m’s brothers”, whose
generalization needs some careful analysis.)

Ax(syto)™ (m 3k A k3 m)= (Vp e Dom(f,) N)(Vq € Dom(f;,)NT)
(Je € TF) (S(p,e) C Dom(f,,) A S(g,e) C Dom(f,) A (V6 € F)
[l <& = [fue(p +ele), — fui(0),] = Ifenla +€10), — (@), ]])-
Informally, Ax(syto)"™ says that I can see your clock slow down in exactly the
same proportion you can see my clock slow down. Ax(syto)"™ says nothing
in the case the two observers cannot see one another’s clock.

Now we can define the generalized, partial-domain version of Specrel.

Loc(Specrel) & Loc(Newbasax) + Ax(syto)*™ + Ax(Bw)P +
Ax(continuity) + Ax(v" ).

<

The following theorem is the key theorem that opens the way to the general-

ization of most of our earlier results. Basically, it says that the f_,’s are the same

sort of transformations (Lorentz transformations) locally, as our earlier f,,;’s were
globally.

THEOREM 4.9.20
(i) Loc(Specrel) = (Vp € tr, (k) Nt)(Fe € TF)
[S(p,€) € Dom(f,,,) A fo I S(p,e) = A1 S(pe)], for some A € Aftr.

(ii) Moreover, the previous statement can be strengthened to assert f_, [ S(p,e) =
poi [ S(p,€) for some poi € Poi.
Notice that this theorem describes only the case when the two observers meet.
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Proof of item(i): Assume Loc(Specrel). Let m,k € Obs and p € tr,, (k) Nt. By

Ax6q0, p € Dom(f,_,). Let q dof f «(p). Then q € t by Ax4”*. By Prop. 4.9.9 there
is S; = S(p, 1) such that

fok f51=(tp06014) I S1,

for a translation 7, (by the vector —p), A € Aftr and ¢ having properties (i) to
(iv) described at Prop. 4.9.9. By Ax(syto)™ there is a Sy, = Sy(p, &2) such that if
|(5| < €9, then

(305) k(P +014), — . (0)| = (g +01), — e (@)y-

Let S= S(p,¢) L8NS, If |0| < &, then (305) holds.

It is easy to check that A = B o 7, for some linear bijection B. Then (305)
implies
[B(G(010))e| = [B7H(&(010)):l.

Then by B’s linearity,

0(0)B(Le)el =l *(0) B~ (Lo):l-

Then, for some «, 3 € FT,
(306) p(0)a = ¢ '(d)B.

Let us apply property (iv) to z,y = x5, z = z* for some = € (—¢,¢). We obtain

(307)  p()eles) = ¢l@’)s and ¢ (@) (@) = ¢ @)
By (306) and (307) one obtains
(308) ola)s = g7 (@)e " (a5) 2.

On the other hand, applying (307) first to ¢(z?), and then (306), one gets

(309) o) = o @)~ (@) (é) |
and ¢?(6) = 6.

By (308) and (309), a = 3. Then ¢(8) = ¢~'(9)
a < ¢(a) for some a € (—¢,¢). Then by

Now suppose ¢ # 1Id [ (—¢,¢). E.g. let
¢ preserving < and p? =1d | (—¢,¢),



We have reached a contradiction, therefore ¢ =1d | (—¢,¢). |

Proof of item(ii): |

Theorem 4.9.20 seems to imply that Ax(syte)”" is an adequate symmetry axiom
for Loc(Newbasax). It seems likely that it is adequate for Loc(Flxbasax) and
Loc(Bax), too. Nevertheless let us turn to formulating the partial domain version
Ax(symmyg)P?" of our symmetry axiom Ax(symm).Recall that

Ax(symm) = Ax(symmy) + Ax(eqtime).

Ax(symmy)P* will say (Vm,k € Obs)(Vp € Domf(f,.))(Fe € TF)[S(p,e)
Dom(f,,) A (3w, k" € Obs)(Dom(w,,) = Dom(w,) A Dom(wy)
Dom(wy) A trp(m')Utry(k") Ct A . [ S(p,e) =fomw | S(p,€)))].

N

A stronger possible version of Ax(symmyg)P*" would say

Ax(symmg)P*" (Vm, k € Obs)(Vp)(Ve € *F)
[S(p,e) C Dom(f_,) = here would come the rest of Ax(symmg)P>'.

mk

A shorter, helpful, equivalent form of Ax(symmyg)P*" is the following.

Ax(symmyg)P*’ (Vm,k € Obs)(Im', k' € Obs)[ Do~ (m) = Do~ (m') A Do™ (k) =
Do (k') A trp(m') U trg(k') C t and (3 affine transformation h : "F —»
"F) £, ChDf,]

The intuitive meaning of the partial-domain versions Ax(symmyg)P*’
Ax(symmg)P* of Ax(symmyp) remains the same as that of Ax(symmg)®?°, but
here we have to circumnavigate the difficulty that we have no reason to assume that
the domain Do~ (m) of m is the same as (or is similar to) that of Do~ (k) of k. Hence
we cannot assume that Dom(f, ) = Dom(f,,). So, we want to say that f_, does

the same kind of “distortions” to “space-time” as fy/,y» does (unit-vectors shrink,
grow etc) without claiming that their domains agree.

Warning 4.9.21

(i) At this point we did not carefully check whether our philosophy (in the new
partial-domain situation) permits something like Dom(f ,) = Dom(f,..)-
Perhaps it does, perhaps it does not. We leave it to future research to find

out. Until then, to be on the safe side, we do not assume it.

550 A5 T see you being affected by your motion so does a brother of yours see a brother of me.
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(ii) We did not check carefully whether in the new, partial-domain situation it is
still something like Ax(symmg)P?* which expresses that observers m and k are
equivalent (in the spirit of the Einsteinean-Machian philosophy of equivalence
of observers®!).

Let us turn to formulating the partial-domain versions of Ax(eqtime). (This is
the second part of Ax(symm).)

Ax(eqtime)P* (Vm,m' € Ops) [tri(m') Ct 2 trpy(m) =
(Vp,qg e tnDom(f, /) |p—q| =I|f .. (p) — ... (0)]]

Ax(symm)P* o Ax(symmyg)P* + Ax(eqtime)P?".

Question for future research 4.9.22 Is
Loc(Newbasax) + some auxiliary axioms = Ax(symmg)P* <+ Ax(symmyg)P>’

true?

Future research task 4.9.23

1. Find other symmetry principles (cf. e.g. § 2.8, 3.9) which are more adequate
to the new, partial-domain generalizations Loc(Newbasax), Loc(Flxbasax),
Loc(Bax™) of our relativity theories.

2. Investigate whether Ax(symm)P? is adequate to the philosophy of the new
theories Loc(Newbasax), Loc(Flxbasax) etc.

The symmetric versions of our new, partial-domain version relativity the-
ories are Loc(Newbasax) + Ax(symm)P*, Loc(Flxbasax) + Ax(symm)P*,
Loc(Bax) + Ax(symm)P* etc. The new theories are Loc(Newbasax), ...,
Loc(Bax), Loc(Reich(Newbasax)), Loc(Reich(Bax)), etc. or analogously with
Ax(syto)™™.

551

which, in our opinion intends to be a consequence of Occam’s razor i.e. trying to keep our
model of the world as simple as possible if there is no reason for doing otherwise
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4.9.5 Paradigmatic effects

We are going to demonstrate, roughly speaking, that the paradigmatic effects of
relativity (see §§2.5, 4.8) can be reformulated in such a way that they remain valid
in the partial domain version of our theories, in the cases their “ancestor” was true
in the original theory. For simplicity, we shall only work with those effects that
follow by a symmetry axiom (it is usually irrelevant which symmetry axiom one
chooses; in the partial domain case we shall work with Ax(syto)"™), a relativity
theory, and some auxiliary axioms. To generalize our theorems below to the case
without symmetry might be a future research task.

First, we are reformulating the paradigmatic effects of §4.8 to incorporate
the possibility of partial domains. Unlike in §4.8, we shall not use the conve-
nience assumptions f,,;(0) = 0 (or f_,(0) = 0) and tr,,(k) C Plane(t,7), because
Dom(f,,) C "F might make such forms of the paradigmatic effects vacuous for

mk
many observers.

(E1)P" (0 < v (k) < em A vm(k) # 00) = (Vp € trm(k) NE)(3e € FT)
(V6 € (—2, )l (p + 51); — (0] > 6.

That is, if m can see k move with a non-zero speed but slower than the speed
of light, and m and k meet (at some point p), then m can see k’s clock slow
down in the neighbourhood of their meeting point. Formula (E1)P*" does not
describe the case the two observers do not meet. If they meet, tr,,(k) Nt is
non-empty. Cf. the original formula (E1) on p.635.

(E2)Pa (Vp € trin(m))(3e € F) (S(p,e) C Dom(f;,,) A
[0 # tr. (k) NS(p,e) || trm(k) NS(p,e) B A p € trn(k) A
trm (k1) C Plane(t, trim(k)) A 0 < vp(k) < cem A vm(k) # o] =
[(Vq € trn(k) N S(p,€))(Vr € tryn(ki) N S(p,€))(Vs € tri(ki) N Rng(f,,,))
(@ =70 A 80=Tfi(0)g A frm(s) € S(p,€)) = la—r| <|s —fu(a)])-
Informally, the length of those spaceships m meets and can see with a non-zero
speed but slower than the speed of light shrink in the direction of movement,
at least as long as they are not too distant from their meeting point. The front
of the spaceship is ki, the rear if k. The spaceship’s length is |¢ — r| for m
and |s —f . (¢)| for k, who “travels” on the spaceship. See Figure ??. Cf. also
(E2) on p.635.

For completeness, we are also introducing (E4)P?| although we shall not use it
in this subsection, because (E4) is nothing but a weaker version of (E1) and (E2)
suitable for theories without a symmetry axiom.

(E4)per & (E1)par v (E2)Par,
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Notice that m is a free variable of both (E1)P*" and (E2)P>.

THEOREM 4.9.24 (Clocks slow down and spaceships shrink)
Loc(Specrel) = {(E1)P, (E2)Par} 552

Proof: |

On a semi-formal level, (E3)P?* will be the same as (E3), i.e. we have no reason
to change essentially the original form of (E3) as it was given on p.636. However, if
we want to turn the conclusion of (E3) into a precise formula, we have to take care
of Dom(f_ ), that is:

(E3)P* 0 < vp(k) < cm A vp(k) #00 =
[(Elp, q € Dom(f;)) (o =qo A f.()y # f;Lk(Q)o)}-

Moreover, in §2.5 we saw that this effect can be formulated somewhat more specifi-
cally, saying that the clocks that are separated by a vector that falls in the direction
of movement must get out of synchronism, while while those that are separated by
a direction orthogonal to it must not get out of synchronism. We are going to give
the appropriate formulae for both of these cases.

(E3)P*1 0 < v (k) < ey A vp(k) £ o0 A trp(k)NT£D =
[(Elp, g € Dom(f,))(po=qo N p— q € Plane(t, tri,(k)) = f_,.(p), # f;zk(‘I)o}'
Le. clocks falling in the direction of movement are not synchronous for k if
they were synchronous for m.

(E3)PL 0 < wp(k) < en A vp(k) # o0 A trpk)nt £ 0 =
[(3p,q € Dom(f.))(po = qo A p— g L Plane(t, tro(k)) = f.(0)o = Frk(@)o)-
Le. clock separated by a vector orthogonal to the direction of movement are
not affected by the movement. If they were synchronous, they remain so.

THEOREM 4.9.25 (Clocks get out of synchronism)
Loc(Specrel) = {(E3)Pa (E3)Pi, (E3)Pars }.553

Proof: |

Effect (E6) said that faster than light observers do not exist. Actually, we have
already seen a theorem (Thm. 4.9.14 above) saying this. Let us recall what was
stated there.

552Cf. Thms 4.8.1, 2.5.2, 2.5.9.
553Cf. Thms 4.8.1(ii), 2.5.5, 2.5.6.
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(E6)P* —=(3Im, k € Obs)m FTL k,
where F'TL comes from Def. 4.9.13.

Remark 4.9.26 Loc(Specrel) = (E6)** by Thm. 4.9.14.

The last one of our paradigmatic effects, (E7) by the notation of the previous
subsection, was the existential form of the twin paradox. As the partiality of the
world-view of observers may cause difficulties, we are going to reformulate the (E7)
below.

(E7)P>* (3Im, k1, ko € Obs)(3p, q,r € Dom(w,,,))
(p,r € trm(m) A p,q € trin(k1) A q,r € trp(k2) A m STL ky A m STL ko A
r = ql > [fr () = Fr (D] + [Frr (@) — F (r))-

THEOREM 4.9.27 (Existential twin paradox) Loc(Specrel) = (E7)P%.

Proof: |

Future research task 4.9.28 Try to push through the investigations, discus-
sions and results in the present work (Chapters 2-6) to the Loc(Newbasax),
Loc(Flxbasax) etc. like we did for the versions of our theories at the end of Chap-
ter 4. L.e. try to push through the present results to the partial-domain versions of
our theories. Compare the results with the old ones. E.g. what do the geometries
(cf. Chap.6) look like? Are there duality theories between the geometries and the
observer oriented 9-type models (cf. §6.6 in Chap.6).

How does the Reichenbachian-version contra Einsteinian version comparison
elaborated in Chapter 4 (§4.5) look like in the new partial-domains “paradigm”?

Remark 4.9.29 The generalization Th — Loc(Th) of our relativity theories is
analogous with what is called relativization in Algebraic Logic, cf. e.g. Németi [206],
Németi [?], , Henkin et al. [130], Németi [?], Németi [204], Marx [187], Mikulds [194],
Marx-Venema [189]. In algebraic logic, relativization made the structures under
investigation more flexible, and it had an effect of “decomposing” the large “square”
structures to many overlapping little “mosaics” cf. the so called mosaic method in
the above quoted works e.g. in Németi [?]. It is interesting to observe that in the
present relativity setting the same idea of relativization induces similar effects, e.g.
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our relativistic geometry will consist instead of big “square” windows (like in the
case of Newbasax, etc.) many small perhaps overlapping non-square windows in
analogy with the mosaics in the algebraic logic case.

It would be interesting to investigate the connections further, since in Algebraic
Logic the “mosaics and relativization” proved extremely useful. E.g. Venema [271]
emphasizes the advantages of the relativized non-square approach over the square
one. These advantages were further exploited in Andréka-Benthem-Németi [31].

<

Future research task 4.9.30

1. Recall the process of Reichenbachization Th — Reich(7Th) of relativity theo-
ries Th from §4.5 p. 553. Put Reichenbachization

Th +— Reich(Th)

in analogy with localization
Th +— Loc(Th)

Execute all the things we did with Th +— Reich(7h) for the new Th —
Loc(Th).

2. Try to characterize the f,,; transformations in the style we did in Fig.15 on
p.63. E.g. are the f,,;’s like in Figures 15, 16 on pp. 63-64? Of course we
mean this figures now restricted to the domain of observer e.g. to Dom(w;,).
In more detail take Fig.16 restrict the picture to Dom(w;,) and contemplate
wether the f,,;’s look like this in Loc(Th).

3. Try to push through what we did in §4.7 with, now instead of Reich(7h) for
Loc(Th).

4. How much of the axiom Ax(Bw)P?" (of betweenness preserving) is needed in
the no FTL proof for e.g. Loc(Newbasax)?

5. Is collinearity of the f,,;;;’s sufficient in the no FTL proof instead of Ax(Bw)P*"?

6. Can collinearity of the f,,;’s be proved from the rest of the axioms of Loc(Th)
perhaps under some extra mild assumptions like we proved in the case of
Basax etc cf. Thm.4.3.13?

701



4.9.6 Alternative, more flexible partial domain theories

As we have seen above, our localized theories Loc(Bax™), ..., Loc(Basax) of spe-
cial relativity are quite flexible. We have seen that Loc(Bax™") + Ax(Bw)P* has
models which presursor, is some sense, the “paradigmatic” phenomena of general
relativity. (Although we know there is still a long way to go.) However, Loc(Th)
(for Th € {Bax™,...,Basax}) is still unflexible in one important sense if one has
the switch to general relativity in mind. Namely, consider the scenario of Figure ?7?.
Let us have an object with a long history, e.g. a spaceship, a planet or a star. It
is natural to attempt—and it is a common practice in general relativity—to cover
the life-line of the object by many finite, overlapping “local” coordinatizations (i.e.
observers) my, my, m3 etc. Consider e.g. observer my. mo can see the traces of my
and mg overlap with its own trace. However, by Ax35™ m; and my cannot simply
“disappear” at some points within Dom(wy,,): if my S my and my > mgs, then
my and mo must be present in the whole history of the object within the entire
Dom(w,,,), i.e. in trpy,(ms). (The reader should not be disturbed by the contingent
fact that Figure 7?7 does not show the traces as straight lines.) But if m; and ms
are present in the whole of ¢r,,,(ms), then by Ax6go m; and ms must also see
(coordinatize) the events of w;,, [trm,(ms2)]. Thus the world-view of my, mq, ms etc.
are “pumped up” to cover the whole of the object’s life-line. We have basically the
same effect as by Ax4.

The solution we propose is to weaken Ax6qq in our localized relativity theories.
Our purpose is twofold: (i) to experiment with more flexible theories (where ob-
servers’ world-views can overlap in a less restricted way), (ii) to approach the spirit
of the usual treatments of the theory of general relativity. The following definitions
indicate a possible move in this direction.

Definition 4.9.31 [observer brothers]

m is a brother of k& <2 (Vmy € Obs)try,, (m) = try, (k).

Ax65y tr, (k) C U{trn(k) : his a brother of k }.

Informally, if m can see some event e 5 k, then some brother A of £ can see e.

Definition 4.9.32 Loc,(Th) & Loc(Th) \ {Ax6ge} U {Ax652}, for any partial
domain theory obtained by the operator Loc.
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Future research task 4.9.33

(i)

(ii)

Investigate the models of Loci(Th) for Th € {Bax™, ..., Basax} similary to
the way we investigated Loc(Th) above. Are FTL observers allowed? Can the
f . transformations be characterized in a streamlined way? Are the paradig-
matic effects true?

Check if Loci(Th) really serves its purpose. That is, build a model in which
each observer coordinatizes only a finite domain, while the union of their
views makes up some characteristic infinite special relativistic universe, in
some sense.
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