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Introduction to Chapter 3

In this chapter we investigate Basax itself as well as variants of Basax designed
for various purposes. Further, in chapter §4 we will study a hierarchy of weak
subtheories of Basax and of related theories. More precisely we will do things listed
in items (i)—(iv) below.

(i) In §8§ 3.1, 3.2, 3.4.1, 3.5-3.7 we continue the investigation of our axiomatic
(special) relativity theory Basax started in §2. E.g. we will prove theorems an-
nounced but not proved in §2. As a contrast with §2, the emphasis here will be on
the case n > 2, but the n = 2 case will not be ignored either.

(ii) In §3.8 we will continue experimenting with making Basax stronger (by
adding e.g. further symmetry principles to it), which was started in §2.8, and even-
tually extending it to a complete theory (BaCo 4+ Ax(rc)) axiomatized by a finite
schema of axioms. This complete version BaCo + Ax(rc) of our axiomatic theory
will agree with the most traditional version of Einstein’s (special) theory of relativ-
ity, and its models will be seen to be the same as the usual Minkowski models over
real-closed fields (cf. p.331 for Minkowski models).

(iii) In §3.3 we will use our experience (obtained so far) with Basax for devel-
oping a new, refined, more flexible version Newbasax of Basax.!%® Roughly, the
motivation for Newbasax is twofold: (1) To prepare ourselves for developing a the-

163This procedure of studying a “logical approach”, say Basax, for relativity for a while, and
then using the experience so gained to develop a more refined, more advanced and (in some sense)
more subtle new logical approach (e.g. Newbasax) to the same subject is a typical part of the
methodology (or philosophy) of this work, and will be repeatedly applied. E.g. after studying
Basax and its variants (e.g. its Reichenbachian variant) in chapters 2, 3, we will use again the
so obtained experience (and intuition) to develop an even further logical theory, more precisely
a further logical “angle” to the subject matter which in §6 will be called “observer independent
geometry” (and “duality theory” etc). This “stepwise refinements” architecture (or style) of the
present work gives it a kind of “bottom-up” character and is strongly tied up with the goals
connected to the observational/theoretical duality in items (I), (X) of §1.1. At this point we also
note the following, which builds on item (IX) of §1.1.

By “bottom up” character we mean that we do not want to start out with the full and finalized
mathematical machinery from which everything can be computed efficiently, and which then would
have to be accepted by the reader as an article of faith (and which then would necessarily be on the
theoretical side of the observational/theoretical duality), but instead we want to reach that theory
as a result of a series of insights and (hopefully) deep understandings (of something) which series
begins with a relatively simple theory on the observational side. Certainly, a top down approach,
beginning with the mathematical apparatus of the final theory would give us knowledge (perhaps
more quickly than the present bottom up approach). However, in the present work we are seeking
understanding as opposed to mere knowledge.
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ory in which accelerated observers (hence a kind of gravity etc.) are permitted!®*
and via this (and similar improvements) to prepare our intuition for understanding,
eventually, some of the basic ideas of general relativity. (2) To improve Basax from
a certain logical point of view (which might help us achieving some of the goals in
item (III) of §1.1).

(iv) In §1.1 (“Introduction”)'®® we mentioned several goals, all of which require
“breaking up” our theory Basax (and also Basax+Ax(symm)) into smaller, more
flexible sub-theories (and study how they relate to each other, which “paradigmatic
effect” of relativity is the consequence of which sub-theory etc.). Among these
goals was a continuation of the “conceptual analysis” of relativity started by e.g.
Reichenbach and Griinbaum, Friedman [90], Gyula David and others. §§3.4.2, 3.4.3,
4 will be devoted to these goals. E.g. we will see that some of the exotic predictions
of relativity remain true even in extremely weak versions of Basax (and we will
also see what axioms to change if we “desperately” want to get rid of some of these
predictions cf. pp. 222-226). Also, in §4.5 we will formalize the often discussed (e.g.
in the philosophy of science) Reichenbachian version of relativity theory, and we
will see that its connections with the Einsteinian version can be made quite explicit
by means of logic (parts of this comparison are postponed to §6, because there
we will have the right tools for doing them). As we already mentioned in §4 we
study a hierarchy of weak theories (opening up new perspectives the exploration of
which remains a promising opportunity for future research). We will also look into
modifying Basax such that it will admit Newtonian Kinematics as a special case.
We will also look into a possibility of deriving special relativity without mentioning
photons (or the speed of light).

Section 3.1 below is a direct continuation of §§ 2.3, 2.9. It contains proofs of
results stated in §2 as well as some further considerations related to these results.
The reason why this material is in §3 and not in §2 is that in §2 we wanted to include
things which are intuitively interesting (from the point of view of relativity) without
slowing down the reader with checking too much of the “technical detail”, while,
from this point on, we want to include the “details” too. Further, the material in
§3.1 will be needed in later parts of §3 in the form in which it is presented in §3.1.

164Gych a first-order theory called Acc will be elaborated in §8 (“Accelerated observers”).
165in items (V), (X), (II) cf. pp. 8, 12, 7.
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3.1 Some properties of the world-view transformation

In this section we prove that Basax implies that every world-view transformation
f takes all straight lines to straight lines. I.e. that the f,,;’s are collineations. We
will do this in Thm.3.1.1 below. Later we will see that the f,,;’s will be provable
to be collineations in axiom systems weaker than Basax too, e.g. in Newbasax,
Bax and Bax™ to be introduced in §§ 3.3, 3.4.2, 4.3. We note that Bax™ is much
weaker than Basax (under assuming Ax(y/ )). Actually we will introduce in §4.5
an axiomatization Reich(Basax) of the Reichenbachian version of relativity the-
ory, cf. Friedman [90, §IV.7]. This Reichenbachian version has some non-negligible
philosophical significance cf. e.g. [90] and Szabé [244]. We mention this because
Reich(Basax) will be weaker than Basax; and Bax™ will be a common weakening
of Reich(Basax) and Basax (all these are understood under assuming Ax(v/ )),
cf. Figure 180 on p.552. Hence the f,,;’s will be collineations in e.g. Reich(Basax)
too.

After proving Thm.3.1.1 we discuss some corollaries of the proof and also some
further properties of the world-view transformations.

On the philosophical significance of these “f,,,-theorems”, in connection with e.g.
items (III) and the second half of (I) of §1.1, we will write in Remark 3.1.5 below.

THEOREM 3.1.1

(i) Basax [ (Vm,k € Obs)(V¢ € Eudl) f,.x[¢] € Eucl.
(ii) {Ax1,Ax2,Ax3,Ax5, Ax6} = (Vm,k € Obs)(V{¢ € Eudl) f.[¢] € Eucl.

We will give the proof of Thm.3.1.1 on p.169. We will start working on the prepa-
rations for the proof of Thm.3.1.1 below Lemma 3.1.6 on p.163.

Before proving Thm.3.1.1 we state one of its corollaries in Thm.3.1.4 below. But
first we include Conventions 3.1.2 and 3.1.3 below.

CONVENTION 3.1.2 Throughout we use the unifying terminology (and nota-
tion) of universal algebra (and model theory). E.g. a subalgebra of a vector space is
automatically a vector space,'®® a subalgebra of a group is automatically a group,
and we need not call it a subgroup, etc. Homomorphisms, automorphisms etc. are
defined for any kind of algebraic structures in a uniform way. For example let 2 be
any algebraic structure or model. Then

166Instead of calling it a sub-vector space or subspace we call it a subalgebra; we emphasize that
our using the expression “subalgebra” has nothing to do with the special algebraic structures called
“algebras” in classical and linear algebra.
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Aut(A) denotes the set of automorphisms of the structure 2.

Another example for universal algebraic notational conventions which we will use is
the following. For any one-sorted structure denoted as 2 or A, its universe is denoted
by the corresponding “plain” capital A (we emphasize that this does not apply to
many-sorted structures, for the obvious reason). Returning briefly to subalgebras,
assume O and N are two similar'®” (possibly many sorted) algebraic structures,
i.e. models. Then

9t C N means that 9N is a strong submodel (or a strong substructure'®®) of N,

i.e. all relations and sorts of 90 are restricted to the universe'®® of M, cf. e.g. Chang-
Keisler [59, p.21] ([59] writes submodel for strong submodel). So, to simplify the
discussion, we rely on the fact that universal algebra unifies the terminology of a
large part of mathematics (including practically all parts of algebra). Cf. e.g. [54].
The reader not familiar with the terminology and “spirit” of universal algebra is
asked to look briefly into a universal algebra book e.g. Burris-Sankappanavar [54] or
Henkin-Monk-Tarski [129, Part I, Chapter 0] or McKenzie-McNulty-Taylor [192] or
Grétzer [112].170
Cf. also Convention 3.8.4 on p.298.
<

CONVENTION 3.1.3 Usually “E” is used with a first-order formula on its right
hand side. A typical example is

Basax | (f,,x is a bijection).

Sometimes however we use “=” in a more general way, as follows. Whenever A is a
meaningful statement about frame models then

ThiE A means that (V9T € Mod(Th)) [statement A is true for 9],

167Two structures are similar if they have the same language, cf. the Index.

1680r a subalgebra if there are no relation symbols involved

169WWe want to define the universe of many sorted structure M. Recall that for each sort s of 9 there
is a universe Us of 91. Now, the universe of 9 is defined to be the union |J{Us : s is a sort of 91}.
In the case of frame models the universe of 9 is B® U F U G™.

1707t js (easily) possible to understand this material without familiarity with the language of
universal algebra, but that familiarity can be achieved in a very short time, and then it will “pay
back” to the reader in rendering the present material simpler and more transparent for him.
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where Th is any axiom system (like e.g. Basax) in our frame language. An example
is Thm.3.1.4 below.'"™* We will use this convention throughout the present work, and
not only for frame models, e.g. in the geometry chapter (§6) we will use it for the
structures (e.g. geometries) occurring there.

<

The following theorem states some useful properties of world-view transforma-
tions in Basax models. (Later we will see that these properties remain true in axiom
systems weaker than Basax, too).

THEOREM 3.1.4
(i) Basax = (Vm, k € Obs) (fmk =gof, for somef € Aftr and ¢ € Aut(F)).

(ii) Basax = (Vm, k € Obs) (fmk =fop, forsomef e Aftr and ¢ € Aut(F)).

(iii) Basax = (Vm, k € Obs) (fm,c =for, for somef e Aut("Fs) and T € Tran).

Proof: The theorem is a corollary of Thm.3.1.1 and Lemma 3.1.6 below. 1

Remark 3.1.5 (Philosophical significance of the “f,;”-theorems.)
Throughout this remark by an f,,;, we understand a O-preserving world-view trans-
formation f,,;, for simplicity.

The above theorem states that the f,,;’s are very close to linear transformations.
Later under some extra conditions we will see that they are actually linear transfor-
mations (cf. Prop.3.8.35 on p.317). In this connection, we would like to point out
some methodological considerations which were hinted at in §1.1 e.g. in items (III)
(“Searching for insight”) and the second half of (I). Namely, one could formulate a
potential axiom saying that the f,,x’s are linear. However such an axiom would be
undesirable because it is not clear what the intuitive meaning of the axiom is, why
would a “child” believe in it. Actually, we feel that our metaphorical child might
not even be able to grasp what such an axiom really means. In some sense, the
physical content of such an axiom would not be concrete enough. (On the other
hand having it as a theorem i.e. a consequence of “intuitively convincing” axioms

11Tn most of the cases these statements A will be translatable to our frame language, but there
may be exceptions. In the case of Thm.3.1.4 the formulas standing on the right hand side of “E”
are translatable to our frame language, but one needs a little extra effort for translating them. A
non-translatable example (for A) would be something like this:
M = (F has no nontrivial automorphism).
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is very nice and completely fits our philosophy.) Line preserving does not sound as
“bad” as linear!”, but even that is such that we are happy that we do not have to
state it as an aziom and are happy to have it as a theorem, instead (cf. Thm.3.1.1).
If we are already at this topic then we also note the following. If for some reason
we had to postulate that the f,,;’s are close to being linear, we would be more willing
to say that they are continuous, for example. So, continuity sounds a little bit more
“Intuitively convincing” cf. item (III) of §1.1. Saying that the f,,;’s are betweenness
preserving sounds even more acceptable as a potential axiom.'™ (Fortunately, we
will have that too, as a theorem, cf. Prop.6.6.5 on p.1028.)
<

The following lemma is known from algebra and geometry.Among others, it says
that a function f : "F' — "F'is a bijection taking straight lines to straight lines iff it
is an affine transformation composed with a map induced by a field automorphism.

LEMMA 3.1.6 Assume f : "F — "F is a function. Then (i)-(iv) below are
equivalent.
(i) f is a bijective collineations.
(ii) f=g@og, forsomege Aftr and ¢ € Aut(F).
(ili) f=go@, for someg € Aftr and ¢ € Aut(F).
(iv) f=gor, for somege¢€ Aut("Fy) and 7 € Tran.

On the proof: A proof for (i) = (ii) (or analogously for (i) = (iii)) can be ob-
tained using the coordinatization procedure described in Goldblatt [108, pp.23-27]
or Hilbert [134, §24] (cf. also §6.6 of the present work). The parts (ii) = (i),

(iii) = (i), and (iv) = (i) are obvious. We guess that a full proof of this lemma is
available in the literature. N

In connection with Lemma 3.1.6 ¢f. Remark 2.3.13.

Now, we turn to proving Thm.3.1.1. In the proof of Thm.3.1.1 we will use
Prop.2.3.3(v),(viii) (p.58) and two elementary propositions from “Euclidean geom-
etry” (cf. Prop.3.1.12, Prop.3.1.13 below) and Lemmas 3.1.9, 3.1.10 below. For
completeness, let us recall that Prop.2.3.3(v) states that f,; : "F — "F is a bi-
jection, and Prop.2.3.3(viii) states that f,; takes slow-lines to straight lines, i.e.
if £ € SlowEucl then f,x[¢] € Eucl (and both (v) and (viii) of Prop.2.3.3 assume
Basax). First, we need some notation and definitions.

172We mean stating line preserving as an axiom versus stating linearity as an axiom.

173We note that in Basax models if the f,,;’s are betweenness preserving then they are continuous
too. (This can be seen by Thm.3.1.4.) This remains true if we replace Basax with one of the
weaker theories like Bax™ to be studied in §4.3.
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Notation 3.1.7 Let p,q € "F such that p # ¢q. By pg we denote the Euclidean
straight line which contains both p and ¢. I.e. p,q € pq € Eucl. Whenever we write
Pq, we assume that p,q € "F and p # ¢. (This will be slightly different in the
geometry chapter, §6.)

<

Definition 3.1.8 Let F be a field.

1. Let j < n. We say that P is a j-dimensional plane iff there is a j-dimensional
subspace!™ W of "F and a vector p € "F such that P = W + p, where
WHpE{w+p: we W}l
By a plane we understand a 2-dimensional plane.

By a hyper-plane we understand an n — 1-dimensional plane.

2. Let 61,62 € Eucl.

(i) We say that ¢; and /¢, are in the same plane if there is a 2-dimensional
plane P such that ¢, ¢, C P.176

(i) If there is a unique 2—dimensional plane P such that ¢, ¢, C P, then we
denote this unique P by
Plane(fl, Eg) .

E.g. Plane(t,7) = F x F x " 2{0} and
Plane(t,y) = F x {0} x F x " 3{0}.

(iii) We say that £; and £, are parallel, in symbols ¢y || £, iff £; and ¢5 are in
the same plane and ¢; N ¢y = () or ¢, = 5.

(iv) Whenever we write ¢ || ¢ and we do not indicate what kinds of ob-
jects £ and ¢ are, then the symbol ¢ || ¢ abbreviates the formula
(¢]| ¢ and ¢,¢' € Eucl).'" (This will be slightly different in the geometry
chapter, §6.) N

174Let us recall from the literature that by a subspace of the vector space "F we understand a
subalgebra (in the universal algebraic sense, cf. Conv.3.1.2) W C "F; of the one-sorted vector
space "F1. Further a one-sorted vector space W is j-dimensional iff there is a j-element minimal
generator system G C W, i.e. G generates W but no proper subset of G generates W. (G generates
W if no proper subalgebra of W contains G'.)

175We use the universal algebraic convention that W denotes the algebra (vector space) and W
denotes its universe. (We also note that by a plane one understands a set of form W + p, where
W is 2-dimensional.)

176The standard geometry literature uses the expression “/; and /5 are coplanar” for this.

"7For completeness, we note that there will be situations when e.g. #' is a plane (in the formula
£ || £) but then this will be indicated explicitly.
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We note that P is a j-dimensional plane for some j < n iff p¢ C P whenever
pqgeEP.

The following lemma states that Basax implies that f,,; takes parallel slow-lines
to parallel straight lines.

LEMMA 3.1.9 (parallelism is preserved)
Basax = (Vm, k € Obs)(V{, ¢y € SlowEucl) (41 || 2 = foklli] || fuk[2])-

Proof: Let £1, ¢y € SlowEucl with ¢ || £5. We have to prove that f,,x[¢1] || fmk[le]- We
may assume that ¢; # fy. Let £3, £, € SlowEucl such that ¢, Nl = {p}, L1Nly = {q},
lyNly = {r}, bo Nty = {s}, b3 Nty = {t}, for some distinct p,q,7,s,t € "F (see
Figure 51). Let such p,q,r,s,t be fixed.

fmk:

Figure 51: Illustration for the proof of Lemma 3.1.9.
Obviously such /3 and ¢4 exist. Now by the above construction and by f,,; being

a bijection taking slow-lines to straight lines (cf. Prop.2.3.3(v),(viii)), we have that
(10)—(13) below hold (see Figure 51).

k€] N fklls] = {fux(@)},
k0] N fnk[la] = {fr(9)},
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(10) fmk [KQ] N fmkz [£4] = {fmk (T)} )
fmk: [EQ] N fmk[£3] = {fmk(S)} s and
fmk(ls) N flls] = {fk(t)}-

(11) fruk (D), Frk (@), Frre (1), Frie(5), Frie () are distinct points.
(12) fmk [61], fmk [[2], fmk[£3]7 fmk [64] € Eucl.

By (10)—(12), we have that f,,x[¢1] and f,,x[¢s] are in the same plane. This and (13)
imply that f.[01] || fmk[l2]. B

Let p,q € "F. Then, by the segment pg we understand the ordered pair (p, q).
Intuitively the segment pq is that part of the line pg which is between p and g. The
midpoint of a segment pq is that point r € pg which is halfway between p and ¢, i.e.

_1 _ ptqg 178
r= 2(p + q) - 92 -

The following lemma states that if pq is a slow-line then f,,,; takes the midpoint
of segment pq to the midpoint of segment f,,(p)frx(q)-

LEMMA 3.1.10 (midpoint goes to midpoint)
Basax = (Vm, k € Obs)(Vp,q € "F) (m € SlowEucl =

£ (p;q) _ fmk(p);rfmk(q)) |

(See Figure 52.)
We will give the proof below Prop.3.1.12.

For the proof of Lemma 3.1.10 we will use Proposition 3.1.12 below which is a
proposition in “elementary Euclidean geometry” and it says that the diagonals of a
parallelogram bisect each other.

178Gince p is a vector and 3+ € F 1 -p = 2 is defined. (Similarly for p + g in place of p.)
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Figure 52: Illustration for Lemma 3.1.10.

Definition 3.1.11 Let ¢,r,p,s € "F. We say that (g, r,p, s) is a parallelogram iff
the following hold. No three of ¢, , p, s are on the same straight line (i.e. collinear),
gr || sp, and @s || 7p. (Cf. Figure 53.) We write gqrps for {(q,r,p, s).

<

PROPOSITION 3.1.12 Assume q,r,p, s € "F such that qrps is a parallelogram.
Then the diagonals of parallelogram qrps bisect'™ each other, that is pg N 75 =
{Bf} = {"£2} (see Figure 53).

q

Figure 53: The diagonals of a parallelogram bisect each other.

Proof: The proof known from geometry uses only those properties of our geometry
("F,Eucl,...) which follow from the fact that it is a “usual”, Cartesian style geom-
etry over an arbitrary ordered field §. The reader is invited to check the details.

|

179We say that two segments bisect each other if they intersect and the intersection point is the
midpoint of both segments.
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Proof of Lemma 3.1.10: Let p,q € "F with pq € SlowEucl. We will show that
fmk(’%) = w. To prove this let 7, s € "F such that grps is a parallelogram

and 7s,qr,sp,qs,7p € SlowEucl (see Figure 54). (It is easy to see that such r
and s exist because of the following. Choose ¢ € SlowEucl such that ’% e/
and pq # £. Choose r,s € ¢ such that r and s are “near to” ’%, then the lines

since grsp is a parallelogram, f,,x(q)fmk(7)fmk (P)fme (s) Will be a parallelogram (see
Figure 54).

p /fk\ s (D)

q fmk: (q)

Figure 54: Illustration for the proof of Lemma 3.1.10.

By Prop.3.1.12 the intersection of the diagonals of the parallelograms ¢rps and

Fre (@) ke (7) Frnse (D) i (5) are 234, M, respectively. Since f,,; is a bijection

take the intersection (’%) of the diagonals of the parallelogram grps to the intersec-
tion (M) of the diagonals of the parallelogram o ()t ()i (5) i (5)-

Hence
£ <P+ Q> _ frk (p) + frr (@)

2
The following proposition is a proposition of “elementary Euclidean geometry”.
PROPOSITION 3.1.13 Assumep,q,r,s,t,u,v € "F are distinct points such that

PS # pt, u € Pps, v € pt, r € uv, st || uv, and q is the midpoint of segment st (see
Figure 55). Then

(r is the midpoint of segment uv) <= (p,q,r are collinear )'®.

180T e. there is a straight line containing p, g, 7.
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(See Figure 55).

\

Figure 55: Nlustration for Prop.3.1.13 and for the proof of Thm.3.1.1.

Proof: The proof known from geometry uses only those properties of our geometry
("F,Eucl,...) which follow from the fact that it is a “usual”, Cartesian style geom-
etry over an arbitrary ordered field §. The reader is invited to check the details.

|

Proof of Thm.3.1.1: We will present the proof only for (i) but it will be clear that
we never use Ax4 and AxE.

Let p,q,r € "F be collinear and distinct. To prove Thm.3.1.1, since f,; is a
bijection, it is enough to prove that f,,x(p), fuk(q), k() are collinear. Let s, ¢, u,v €
"F such that p, q,r, s,t,u, v satisfy the conditions of Prop.3.1.13 (i.e. p, ¢, 7, s,t,u, v
are distinct, ps # pt, u € Ps, v € pt, r € v, st || uv, and ¢ = ££*) and they satisfy
an extra condition which is ps, pt, st,uv € SlowEucl (see Figure 55). (It is easy to see
that such s,t,u, v exist because of the following. Choose st,uv to be parallel with
the time axis, and choose s and ¢ “very far” from ¢. Then clearly st, uv, ps, st will be
slow-lines). Then by direction “<” of Prop.3.1.13, we have that r is the midpoint
of segment uv. Since st,uv € SlowEucl and ¢ and r are the midpoints of segments
st and wv, respectively, by Lemma 3.1.10, we have that (14) and (15) below hold.

(14) fmk(g) is the midpoint of segment  f,,x($)frk () -
(15) k() is the midpoint of segment  f,. (u)fk(v) .
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Now by the above construction, by f,,,x being a bijection taking slow-lines to straight

lines, and by (14), we have that f,.x(p), frk (@), frk (1), ok (), Tk (2), Frnie (), Frnie (V)
satisfy the conditions of Prop.3.1.13 (see Figure 56).

fk (3)

fmk (p )

Figure 56: Illustration for the proof of Thm.3.1.1.

But f,,(7) is the midpoint of segment f,,x (u)fx(v) by (15), hence by Prop.3.1.13,
we have that f,.x(p), fruk(q), fmk(r) are collinear. By this,
Thm.3.1.1 18 proved. 1

Remark 3.1.14 In connection with the proof of Thm.3.1.1 which says that
(%) Basax [= (the f,,;’s are collineations)
we note the following two things.

(i) There exists a different proof using Desargues Theorem.'®! For the idea of
that proof we refer to Figure 344 on p.1162.

(ii) For n > 2, a proof for

(%x) (Basax + Ax(v/ )) k= (the f,,;’s are collineations)

can be obtained from the proof of the celebrated Alexandrov-Zeeman The-
orem, as presented in Goldblatt [108, Appendix B], cf. also Thm.6.7.23 on

181Cf. e.g. Hilbert [134] for Desargues Theorem.
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p.1159 of the present work. This proof for (%) (for n > 2) can be recovered
from the proof of Theorem 2 (i) in [16] (and uses only axioms Ax1, Ax5,
Ax6, AxE, Ax(v/ ) from Basax + Ax(v/ )). Let us notice that (xx) is a
slightly weaker form of Thm.3.1.1(i), i.e. of (x). There are two important dif-
ferences, which we would like to emphasize, between the two proofs. (1) In
the proof of Thm.3.1.1 we do not use AXE at all (cf. Thm.3.1.1(ii)), while
the use of the Alexandrov-Zeeman theorem does require AXE. (2) The proof
given in the present section goes through (with the obvious modifications) for
very weak axiom systems to be studied in this work, like e.g. for Bax™ (cf.
Thm.4.3.11, p.481), while we do not see how the proof using the Alexandrov-
Zeeman theorem could be generalized to prove the desired properties of these
weak axiom systems, too. For completeness, we note that the just outlined
proof for (%) via the Alexandrov-Zeeman theorem might go through without
assuming Ax(v/ ). This would yield a proof of (x) via the Alexandrov-Zeeman
theorem. We did not have time to check this.

COROLLARY 3.1.15 Assume f : "F — "F is a bijection such that
(V¢ € SlowEucl)f[¢] € Eucl. Then (V¢ € Eucl)f[{] € Eucl.

Proof: This is a corollary of the proof of Thm.3.1.1. (It can be checked that we did
not use more than the present conditions). B

COROLLARY 3.1.16 Assume j < n, and assume P is a j-dimensional plane.
Then
Basax = (Vm, k € Obs) (x| P] is a j-dimensional plane).

Proof: This is a corollary of Thm.3.1.1. 1

For completeness, in Items 3.1.17, 3.1.21, 3.1.22 below we formalize and prove
some of the properties of the world-view transformations which were already studied
in §2.3, but here we discuss them with a slightly different emphasis. (The main
reason for reformulating them here is that later we will use them in their present
form.)

PROPOSITION 3.1.17
Basax = (Vm, k € Obs)(V{ € Eucl)(¢ € PhtEucl < f,,.[¢] € PhtEucl).
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Proof: The proof is straightforward, but for completeness we mention that the
proposition follows by Ax5 and AXE. Cf. also Prop.2.3.3(ix), (v). 1

For Prop.3.1.21 below we will need the notion of a rhombus, and also the notion
of a subset of "F being the mirror image of another subset (w.r.t. a line). But for
these, first we need to define (Euclidean) orthogonality L.. This comes next.

Definition 3.1.18

(i) Assume p,q € "F. Then we say that p is orthogonal to g (in the Euclidean
sense), in symbols p L. q, iff pogo + p1g1 + +++ + Pu_1Ggn_1 = 0.1

(ii) Assume £ ={r+a-s:a€F}, ' ={r"+a-s : a€ F} € Eucl, for some
r,r’ € "F and s,s' € "F \ {0}. Then we say that £ is orthogonal to £’ (in the
Euclidean sense), in symbols ¢ L, ¢ iff s 1 s

<

Definition 3.1.19 Assume ¢,7,p, s € "F and assume that grps is a parallelogram.
We say that grps is a rhombus iff gp L. 7s. See Figure 57.
<

Figure 57: Illustration for Def.3.1.19 (rhombus).

Let us look at Figures 57, 58. Intuitively, we say that in Figure 57, points p and
g are mirror images of each other w.r.t. the line 7. Similarly, in Figure 58, f[t] and
f[Z] are mirror images of each other w.r.t. line ;. Below, we formalize the definition
of this intuitive idea of mirror images w.r.t. a line.

182For completeness we note that this is Euclidean orthogonality which is different from Minkowski
orthogonality (and also from the third kind of orthogonality [called relativistic orthogonality] to
be introduced in the geometry chapter [§6]). This is the reason why we use the subscript “e” in

the notation L,.
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Definition 3.1.20 Let F be a field, and n > 2.
Assume ¢ € Eucl.

(i) We define oy : "F — "F to be the reflection w.r.t. line /, i.e.
oy &f {(p,q) €e"Fx"F : pg L. ¢ A (the midpoint of segment pq is on ¢) } .

(ii) Assume p, ¢ € "F. Then we say that p and ¢ are mirror images of each other
w.r.t. £iff oy(p) = q. (E.g. in Figure 57, p and ¢ are mirror images of each other
w.r.t. the line 75.) Similarly for subsets of "F: Assume P, @ C "F. Then we
say that P and @) are mirror images of each other w.r.t. £ iff o,[P] = Q.

PROPOSITION 3.1.21 Assume M € Mod(Basax(2)). Let m,k € Obs and let

fLf v Then (i)-(iii) below hold.

(i) f(1;) and f(1,) are mirror images of each other w.r.t. a line £ with ¢ € PhtEucl

and ¢ > (0).

(ii) f[t] and f[Z] are mirror images of each other w.r.t. both of the lines
£1,£2 € PhtEucl with £1,€2 = f(()) and El 7é 62.

(iii) f(0O)f(1,)f({1,1))f(1,) s a Thombus such that f(0)f({1,1)), f(1;)f(1,) € PhtEucl.

See Figure 58.

Proof of Prop.3.1.21: Let 9 € Mod(Basax(2)), m,k € Obs and f .

Throughout the proof the reader is asked to consult Figure 58.

Throughout the proof we will use that f is a bijection (cf. Prop.2.3.3(v)).
By Thm.3.1.1 and Prop.3.1.17 we have that (18) and (19) below hold.

(18) (V¢ € Eucl)  f[{] € Eucl.

(19) (V¢ € Eucl) (¢ € PhtEucl < f[¢] € PhtEucl).
Now

(20) f(0)f(1,)f((1,1))f(1,) is a parallelogram,

since f is a bijection satisfying (18) above and since “01,(1,1)1,” is a parallelogram.
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Figure 58: Illustration for Prop.3.1.21.

We have
(21) f(0)f((1,1)), f(1;)f(1,) € PhtEucl,

since 0(1,1), 1;1, € PhtEucl and since f is a bijection satisfying (19) above.

Now by (20), we have that f(0)f((1,1)) # f(1,)f(1,) and
f(0)f((1,1)) N f(1,)f(1;) # 0. By this, by n = 2 and by (21), we have

(22) fO)((1,1)) Le fF(10)f(1a)
(20), (21) and (22) completes the proof of item (iii) of Prop.3.1.21.

Item (i) of Prop.3.1.21 follows from item (iii) for the choice £ = f(0)f((1,1)).

Item (ii) of Prop.3.1.21 follows from item (iii) of Prop.3.1.21 and from (18) above
for the choice ¢; = f(0)f({1,1)) and ¢, € PhtEucl with £, > f(0) and ¢, # ¢;. Clearly
such an /5 exists and is unique by n = 2.

This completes the proof of Prop.3.1.21. 1

COROLLARY 3.1.22 Assume f : 2F — 2F is a bijection such that

(V£ € Eudl) (f[é] € Eucl A (f]f] € PhtEucl & £ PhtEucI)) .
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Then f[¢] and f[Z] are mirror images of each other w.r.t. both of the lines
¢1,¢5 € PhtEucl with ¢, ¢, > f(0) and ¢; # (5.

Proof: This is a corollary of the proof of Prop.3.1.21(ii). (It can be checked that
we did not use more than the present conditions.) 1

Remark 3.1.23 At this point one could formulate a generalized version of
Thm.2.3.12 (p.65) which was a characterization of the f,;’s in Basax(2) models.
The generalization would consist of replacing n = 2 with “n > 2 is arbitrary”. Such
a characterization (of the f,,;’s in Basax models) will be stated as Thm.3.6.16 on
p-273.

<
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3.2 Intuitive outline of proof for consistency of Basax(3)

Remark 3.2.1 Of course, consistency of Basax is very far from being new. Fur-
ther, a “computational” proof for the consistency of Basax(n) is available e.g. by
taking the well known Minkowskian geometries recalled (from the literature) in §6
(“Observer independent geometry”) and translating them to models the way de-
scribed in that chapter. The purpose of the present intuitive outline is different:
It wants to give some intuitive, introductory, ideas to the non-specialist about why
Basax(3) has models, and how one can visualize these models, easily.

<

We will use the following (well known) definition and lemma from geometry.
These are understood in a Euclidean geometry over some Euclidean field §.183

Definition 3.2.2 By an ellipse we understand a subset C of "F such that C is the
image f[C1] of a circle’® C; by some bijective linear transformation f.
<

Notation: In the present section r stands for elements of F' despite of the fact that
in the rest of the present work r usually stands for elements of "F.

LEMMA 3.2.3 We are in three dimensions, i.e. in *F. Assume C is a “closed
curve” obtainable as an intersection of a cone and a plane.'® Then C is an ellipse.
Actually, then C is an intersection of a plane and a cylinder.

On the proof: Since the proof is available in geometry textbooks (cf. e.g.
Hajés [120, Chapt.5, §41]); we indicate only the key ideas.

(1) Assume C'is a “closed cone-slice” (as in the lemma). Then

C is a curve specifiable by two “focal-points” Fy, Fo and the length
(%) A of a “string” the usual way, i.e. C is the set of those points on
the plane of C' whose distances from F; and Fy sum up to A.

The proof of this is illustrated in Figure 59 below.!®

183For our present purposes, it is sufficient to concentrate on the “standard” case § = R.

184 A set C) of points is called a circle if there are a plane P a point p € P and 0 < r € F such
that C; ={q€P : |lp—qll=r}.

185Tn this context, by a closed curve we mean something like a circle or an ellipse as opposed to
a parabola or a hyperbola.

186For completeness, we note that Hajés [120] around Figure 395 therein contains a fully detailed
proof of (). However, we hope, our Figure 59 will satisfy the reader.
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Figure 59: The two spheres touch the plane in points F; and Fy respectively, and
they also touch the cone. Segments BF; and BA; are of equal length because both are
tangent to the small sphere. Similarly for segments BFy and BAy. Thus |FiB|+|BFy| =
|A1A2|; where for any p,q € °F, |pg| := |p — q|.
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(2) Assume (%) holds. ILe. C is specified by two focal-points F;, Fo and we know
the “shortest radius” r of C'. From this one shows that C' is the intersection of a
cylinder and a plane as follows.

Fo F1

We will construct a variant of Figure 59 above but with the two spheres having
the same size. Actually the spheres will have radius r. As illustrated in Figure 61
(p.179) let one sphere touch the plane of C' at point F; and the other at Fy. A
side-view of the situation is in Figure 60 below. In connection with constructing
Figure 61 we note that if we have a plane and point Fy in the plane and we have
a ball then we can put the ball on the plane such that the ball touches the plane
exactly at point Fs.

plane of C V

the cylinder determined

—

by the two spheres

Figure 60: Side-view of Figure 61 below.
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Now, the two spheres determine a cylinder, which by the proof in our step (1)
above!®” intersects with the plane of C in a curve C; satisfying (x) above. But the
focal-points of C; are the same as those of C'. Further the “smallest radius” of C
is r. Hence C, = C.

To prove the lemma, it remains to see that the intersection C' of a plane and a
cylinder satisfies Def.3.2.2, i.e. that it is a bijective linear image of some circle. This
is easy to see if one visualizes the situation (and thinks about it a little bit).

END of PROOF-IDEA for Lemma 3.2.3. 1

Now, we turn to proving the consistency of Basax(3). The structure of the proof
will be similar to that given for Basax(2) in §2.4.

(I) Assume, we are given a “partial model”
M = ((B; {m}, Ph,Ib),§, G, €, W),

which satisfies all the axioms in Basax ezcept for the observer-part of Ax5. (In
§2.4 m was called mg.) Let us use the notation Ax5 = Ax5(Obs) + Ax5(Ph).
Then

M = (Ax1-Ax4, Ax5(Ph), Ax6, AxE) .

Assume further § = R, and that
(V¢ € G)(3b € Ib) £ = trp(b).

Constructing such a partial model is easy, and is left to the reader.

(IT) Next, we would like to add new observers to 9 so that eventually Ax5(Obs)
would become true without destroying validity of the other axioms (hence Basax
would become true).

Clearly, in 9t we do have a world-view function w,, : 3R — P(B), to begin
with. From this world-view function we will construct world-views for new observers.
Let us pick randomly &k € Ib such that v,,(k) < 1. Now, we would like to raise k
to the level of being an observer. For simplicity, let us assume that m sees k£ in
Plane(Z, z) passing through 0.!%® Then, m will see this:

187The proof of step (1) goes through for a cylinder in place of the cone, without any change.

188For the case when k is not in Plane(f, Z) or is not passing through 0 the present construction
can be easily generalized by adding to observer m another one m' such that m' does not move
relative to m and that m' sees k in Plane(Z, Z) passing through 0.
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t k

m
"’ light-cone (set of photons)

Y

Our task is to choose the world-view wy : >R — P(B) of k such that
fruek = w,, © w,;l preserves all photon-lines (i.e. that AXE holds for k£ too). In
other words, we want to ensure that k observes that the speed of light is one in
all directions. For simplicity, let us choose f,,;, € Linb. Throughout this proof by
definition fi,, := fr_n}c. To determine f,;;, it is enough to choose the k-unit-vectors
fim(12), fem(1z), fem(1y) which we will denote as 1}, 17, 1;, respectively.'® Let
1, € try,(k) be fixed (but arbitrary) such that 1, # 0. It is easy to choose the
(rest of the) k-unit-vectors such that k observes the speed of light correctly in the
following directions: 1,, —1,, 1, and —1,. This is represented in the picture below:

t 7 = femlt]

light-cone

T = fgm|T]

18915 ...1) will be denoted as 1f...1% on p.325 (above Def.3.8.38); and they will be denoted as
Tk,0 - - - Th,2 ON P.235.
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Le. we choose 1/, to match 1} in the usual style of our rhombus transformations (cf.
§2 Figures 15-20 on pp. 63-70).1%0 This choice of 1/, will ensure that k sees the
speed of light correctly in directions 1, and —1,. We choose 1; to be in the y axis,
i.e. 1; € y. Further we choose the length [1]| of 1} such that & will see the speed
of light in direction 1, as desired (i.e. to be one). (This choice will ensure that the
speed of light will be right in the direction —1,, too.)

But, with these choices, f,,; is completely determined. Therefore if we choose an
arbitrary spatial direction, call it d, like this

1y /\d

then the question whether or not k sees the speed of light in direction d correctly
has already been decided. I.e. we cannot choose any new parameter freely to ensure
that k sees the d-photons correctly. So, it remains to check whether we were lucky
enough with our choice of f,,; from the point of view of d-photons.

First, let us notice that a simultaneity of k is a plane parallel with Plane(y’,z') =
fem[Plane(g, )] = Plane(g,z') where 7' = fi,[Z] and §' = fxn[7] = 7.

lg

Consider the photons coming from the origin 0 and observed by & at time instance
1 (and all this represented in the world-view of m); see Figure 62. These “photon-
instances” form the “curve” C), obtained as the intersection of the k-simultaneity-
plane Sj and the light-cone, as represented in Figure 62.1%1 By our Lemma 3.2.3 way
above,'%? (C}, is an ellipse. For our purposes, it is enough to prove that k& “thinks”
that the ellipse Cy is actually a circle with center 1}. In other words, we want to
prove that in k’s world-view Cy is a circle with center 1}. (Formally this means that
fk[Ck| is a circle with center 1;.) We already know that &k thinks that Cy is an
ellipse (formally that f,,;x[Ck] is an ellipse) because by our definition of an ellipse
(Def.3.2.2), we have that any bijective linear image of an ellipse is an ellipse.

Figure 63 below represents the same world-view of m as Figure 62 did, but with
points A, B, ¢, D and ¢ := 1} added. In Figure 63, the line AC is in Plane(¢, ) while
BD is in Plane(7, ") where t' = tr,,(k). In the present proof, we write [Ac] for the
segment AC and similarly [BD] for the segment BD. Thus in particular [Ac] C AC.

1907 e. we choose 1. to be the mirror image (w.r.t. an appropriate photon-line) of 1. For the
computationally minded reader, details are on p.252 (item 3.5.5 [case n = 3 sub-item (i)]).

1Rigure 62 still represents the world-view of m with the life-line of k and a simultaneity Sy, of
k as observed by m.

192C}, is a closed curve because of the choice of the unit-vectors 1, 1; on Figure 62 (i.e. the angle
between ¢ and 1), is bigger than the angle of ¢ and photons.)
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Figure 62:

Further, throughout this proof, f := f,;;, and we write fA for f(A). We will use the
notion of parallelism and the symbol || not only for lines, but also for planes in the
usual way.
The line tangent to C}, at point A is denoted as £,, and similarly for £, £, /5.
Now,

() [Ac] and [BD| are diameters of the ellipse C}, such that [AC] || 45 || 4o
and [BD] || 44 || £c;

hold because of the following. [BD| || ¥, because (by Sy || Plane(y,Z')) Sk || ¥
which by BD = Sy N Plane(y,t') yields that BD || §. The light-cone as-well-as Si
are symmetrical w.r.t. Plane(?,z) hence Cy is also symmetrical w.r.t. Plane(¢, z).
Since C is symmetrical w.r.t. Plane(t,Z) we conclude that £, || § hence ¢, || [BD].
Similary £, || [BD]. Since C}, is symmetrical w.r.t. Plane(t, Z) we have that [AC] is one
of the symmetry-axes of Cy. ¢ is a midpoint of both [Ac] and [BD] since k sees the
speed of light to be the same in the spatial directions 1,, —1,, 1, and —1,. Further,
AC L. BD because BD || § and AC || Plane(¢,Z) (and of course § L. Plane(t, Z)).
Since [BD] L, [AC] and they bisect each other, the other symmetry-axis of the ellipse
Cy is [BD]. Therefore ¢5 || 45 || AC.

A pair of diameters of an ellipse C}y satisfying (x) above is called a
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Figure 63:
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conjugated pair of diameters. A usefulness of this property is in that it is preserved
under linear transformations, i.e. for any linear transformation h, if (x) holds for
C, A, B, C, D then (x) will also hold for h[C], h(a), h(B), h(c), h(D).!* Therefore,
k will also think that (x) is true (in k’s world-view), i.e. &k will also “think” that
[Ac] and [BD] are conjugated diameters of ellipse C.!%*

Recall that we have [AC| L. [BD]. Now,

(xx)  k will also think that [AC] L. [BD]

because f,,; preserves both y and Plane(t, Z).
We have choosen the unit vectors 17, 13, 1} such that

(x %) k will think that the lengths of [AC] and [BD] are equal

(because |fB — fg| = 1 = |fA — fg| and because ¢ is the midpoint of both [Ac] and
[BD].) From (%), (xx), (x*x *) we want to infer that & thinks that C} is a circle. For
this we recall the following easy lemma from elementary geometry.

LEMMA 3.2.4 (geometry)
We are in two-dimensional Fuclidean geometry over an arbitrary Euclidean field
5. Assume C is an ellipse with a pair [AC|, [BD] of conjugated diameters of equal
length. Assume further [AC] L. [BD].

Then C is a circle.

Proofs of this are available in geometry textbooks, but for completeness, we include
one in a footnote.!®> 1

193This is true because the only basic concepts involved in (%) are parallelism, incidence, and the
center of an ellipse; and these are obviously preserved.

94 Formally this means that [fA,fc] and [fB,fD] are conjugated diameters of ellipse f[Cy].
Throughout this proof we use this figurative way of speaking; e.g. by saying that k£ thinks that
A, B, and C have a certain property “Prop”, we mean to say that f(A), f(B), f[C] have property
“Prop”. The intuitive reason for this is that in reality, instead of A, B and C' we are thinking
about the events w,,(A), w.,(B) and w,,[C]. For k, these events appear in k’s coordinate system
as w; (W (8)) = £(a), - ., w; [w[CT] = C].

195The proof consists of (I)—(III) below. (I) The fact that by definition, any ellipse C is an image
of a circle C1 by some bijective linear transformation h. (II) Conjugated diameters bisect each
other and are preserved under such transformations, therefore in particular under h=!. Therefore
the h~! images of diameters [AC] and [BD] are orthogonal, bisect each other and are of equal length
(they are diameters of circle C1). (III) Any two conjugated diameters of a circle are orthogonal
(and of equal length of course). Since [BD] and [AC] (in Lemma 3.2.4) are orthogonal and of equal
length (and bisect each other), h is a linear transformation taking a pair of bisecting orthogonal
segments (which are diameters of C7) of equal length to a pair of orthogonal and bisecting segments
of equal length. Therefore h takes the circle C into a circle. This circle is C.
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By (%), (%x), (x % %) the conditions of Lemma 3.2.4 are satisfied by
f[Cy], fA, fB, fc, fp. (Le. [fA,fC] is a diameter of ellipse f[Cy] etc.). Therefore
by Lemma 3.2.4, f[Cy] is a circle. 1.e. k thinks that Cy is a circle, hence & thinks
that the speed of light is the same in all directions. But this is what we wanted to
prove.

Now, we choose

def
WE = fkm O Wy -

From this point on, the rest of the proof is easy and goes exactly as in the case of
§2.4 (pp. 80-84), but for completeness we include it below.
One can check that for the extended model

M := ((B; {m,k}, Ph,Ib),§, G; €, WT)

we have Ax1-Ax4, Ax5(Ph), Ax6, AXE still valid. Here, W denotes the exten-
sion of W with the world-view function wy;, of the new observer k.

To complete the “intuitive” proof, one does the above extension not only with
a single k € Ib but with the class K = {k€Ib : v,(k) <1} of all potential
candidates for being an observer. This will make Ax5(Obs) true.

More computational model constructions for Basax(n) will be given in §§ 3.5,
3.6. (Actually the construction in §3.6 will have several parameters such that by
appropriately choosing these parameters [basically] all possible models of Basax
will be “constructible”.)

As we indicated in §2 whenever we investigate Basax from some point of view
then it is desirable to investigate Basax + Ax(symm) from the same point of view.
Therefore we note that a consistency proof for Basax(n)+ Ax(symm) will be given
in §3.8.2 (“Model construction ...”).

* % %

On rhombus, and Lorentz transformations

In the above intuitive proof of the consistency of Basax(3) we also constructed
an example fg,, of a 3-dimensional rhombus transformation. The reader is invited
to consult the sequence of figures beginning with the ones on p.181, and “meditate”
over their connections with the definition of rhombus transformations (Def.2.3.18,
p.72) and with Remark 2.3.19. Further if we choose the length 1} according to the
construction which will be given in §3.8 (cf. Figures 99, 100 on pp. 332-333) then the
above construction of fg, yields an example of a standard Lorentz transformation
(and hence also of a Poincaré one).
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3.3 Allowing different observers see different events: The
refined theory Newbasax

In this section we use our experience obtained so far with Basax, for elaborating a
refined version Newbasax of Basax. Among others we show that Newbasax is
strictly weaker than Basax and we characterize the models of Newbasax in terms
of models of Basax: the models of Newbasax are, roughly speaking, unions of
models of Basax.

Let us turn to discussing the motivation of introducing Newbasax as a refine-
ment of Basax (in this discussion we will also see how Newbasax should differ
from Basax). A disadvantage of Basax is that Ax6 in it is too strong. Namely,
Ax6 says that all observers see the same events.

(i) This sounds all right for beginning special relativity, but in our progress
toward preparing the road to general relativity'®® we will find Ax6 too strong. For
example we will see in §8 (“Accelerated observers”), that if we want to extend (a
variant of) Basax to the case when accelerated observers are permitted, then we
will need to allow the existence of events which exist for observer, call it, m but
not for another observer, call it, k. Therefore we will have Rng(w,,) # Rng(wy) for
some observers m and k.

In the case of approximating general relativity with “pushing accelerated ob-
servers to the extreme” like is done in the middle part of Rindler [224, §7.4, pp.114—
125], it will be even more apparent that not all observers see the same events. Fi-
nally, in the case of general relativity it is the typical case that Rng(w,,) # Rng(wg)-
Namely, in general relativity the notion of an atlas plays a central role. Now, an
atlas is by definition a set of maps (like in geography where the atlas of the Earth
is a set of overlapping maps of parts of the globe). One such map corresponds,
very roughly, to what we call the world-view, say w,,, of one observer, say m. The
part of space-time coordinatized by map w,, is basically Rng(w,,).'*" It is a key

196With this we do not mean that we could obtain general relativity as, say, a variant of Basax.
What we mean is that by studying more-and-more refined versions of Basax allowing accelerated
observers, rotating observers etc, we can prepare our intuition for eventually formalizing general
relativity in first-order logic, but maybe in a drastically different language (and different framework)
from our present frame language.

197Cf. Figure 3 on p.34 for a general idea of a collection { w,, : m € Obs} of maps coordinatizing
various parts of space-time which in that figure coincided with P(B). Cf. also approximately
the last 10 lines above “Summing up ...” on p.33 about the difference between the coordinate
system (which is used for mapping) and space-time (which is being mapped). We also refer to
Convention 6.2.5 in the geometry chapter (§6) for a definition of space-time (of a model 901).
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“thing” in general relativity that these “mapped areas” are different, i.e. that typi-
cally Rng(w.,,) # Rng(wg). Imagine for example m being an observer living inside
(the event horizon of) a huge black hole while observer k is on the outside, far away
from the black hole. Then there are events seen by m which need not exist for &
(actually they will not exist if we use the most natural coordinate system for k).
Similarly, if k9 is an inertial observer starting life outside the event horizon and then
falling into the black hole, then the event when ko enters the event horizon does
exist for k9 but it may not exist for k. Summing up, sooner or later we will have to
refine axiom Ax6 such that it will not state that all observers see the same events.
Indeed, this will happen in defining Newbasax below, where we will replace Ax6
with two weaker axioms Ax6go and Ax6¢;.'%

(ii) There is another (less important) respect in which Newbasax will be an
improvement of Basax. Namely, in Basax the proof theoretical power distributed
among the axioms is uneven, Ax6 is extremely strong, the rest are relatively weak
therefore it is hard to fine-tune Basax by omitting one of the axioms (i.e. if we
omit Ax6 than almost all power vanishes, while if we omit something else then
the change will be relatively small). The axioms in Newbasax will carry a more
balanced (more even) distribution of proof theoretic power. To explain why this is
useful, recall from the Introduction that we wanted to do the following: when we see
an intriguing prediction of relativity theory we planned to ask ourselves “which one
of the axioms is responsible for this prediction?”. If one axiom like Ax6 is too strong
then the answer to this question will be almost always “it is Ax6” which, after all,
is not too informative. In other words, if we omit Ax6 from Basax then suddenly
the remaining part becomes almost hopelessly weaker (than Basax), e.g. the f,,;’s
can be almost “anything”. As a contrast if we omit an axiom from Newbasax then
we may get a substantially weaker axiom system but it will not be absurdly weak
(i.e. not all of the proof theoretic power goes away when omitting a single axiom).!%

198 A further refinement analogous with the Basax — Newbasax change, and also pointing
in the direction of general relativity is the following. In the spirit of footnote 75 on p.55, let
w,, = {(p,e) € wy : e# D}, for every m € Obs. Now, in Basax we had Rng(w,,) = Rng(wy)
as well as Dom(w,,,) = ™F. Sometime on the road towards general relativity we will have to replace
Dom(w.,,) = "F with Dom(w,,) C "F. That is, presently Ax5 says that at every point of our
coordinate system "F observer m sees bodies (e.g. photons). But in general relativity there may
be points of "F (i.e. coordinate-values) where the world-view w;, of m is simply not defined (hence
m does not see photons there). However we will not implement this change soon; we will mention
it next in §3.4 (“FTL observers”) and in §8 (“Accelerated observers”).

199Tn Thm.3.3.10 below we will see that

(%) “visibility is an equivalence relation when restricted to the set Obst of those
observers which are seen by some observer”

is provable both from Newbasax and from Basax. In the case of Newbasax (x) is not provable

188



(iii) A further advantage of Newbasax is that it is weaker, hence more flexible
than Basax, while we will see that it proves all the paradigmatic predictions of
relativity which we proved from Basax. l.e. it is a step in the direction formulated
in item (X) of the Introduction, i.e. try to prove the paradigmatic predictions from
as few assumptions as possible. Newbasax is our first axiom system obtained
as a refinement of Basax. In later sections (especially §§ 3.4.2, 4.4, 4.5) we will
introduce even more flexible refinements of Newbasax some of which will have
kind of philosophical significance too.

* % %

The essential step in obtaining Newbasax from Basax is the following: As we
said, we replace Ax6 (saying that all observers see the same events) with much
milder assumptions Ax6g9 and Ax6g;. (The rest of the changes are only adjust-
ments to this one.)

Notation 3.3.1 Assume § is an ordered field.

(i) *F dof {z €F : x>0} .1Le TF is the set of positive elements of §.

(ii) Let p € "F. Then the square ||p|| of the Euclidean length of the vector p is
defined as follows.?%°

def
Il = p§+pi+...+ 5y

(iii) Let p € "F and € € TF. Then by S(p,e) we denote the g-neighborhood of p
defined as follows.2!

S(p,e) & {qe™F : |lq—pl <e}.

from Ax6p := Ax6go + Ax6p1 alone (we need the other axioms too for deriving (x)). As a
contrast, in the case of Basax, (*) is provable from Ax6 in itself.

Similarly, let (x*) be the conclusion of Thm.3.3.8. Then, Ax6¢ does not imply (xx), though
Newbasax does; while Ax6 in itself implies (xx).

We hope, that the above simple examples already illustrate our feeling that, in some sense, in
Basax the axiom Ax6 is “superfluously” strong and that this is not the case with Newbasax
and Ax6q (in place of Basax and Ax6). The reader is invited to browse through the proofs of
theorems proved from Basax, and try to collect more convincing examples.

200We use the square of the length instead of the length itself because we did not assume that F
is Euclidean.

201Tn the notation S(p,e) the letter S refers to the word “sphere”. Further we note that there
is a slight danger of confusion because S will denote the space-part of our coordinate-system ™F'.
We hope context will help.
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(iv) Let H C"F. We say that H is an open set iff
(Vg € H)(Je € TF) S(¢,e) C H.

The set of open subsets of "F is denoted by Open = Open(n, §).202

As it is indicated at the beginning of §2.2, we introduce a more refined system
of axioms, Newbasax. This comes next. Recall from §2.2 (Definition 2.2.3) the
axioms Ax1-AxE and the set Basax.

Below we postulate axioms Ax6qg, Ax6g1, Ax3g, AXEg.

Ax699 (Ym,k € Obs) wy[tr,(k)] € Rng(wg).

Intuitively, observer k sees all those events which are seen by another observer
m on k’s life-line. Even more intuitively, if someone sees k participating in an
event then £ should not be allowed to deny that that event happened at all.

Ax691 (Ym,k € Obs) Dom(f;) € Open.

Intuitively, if observers m and k see event e C B then k sees all those events
which m sees “very close” to e. Ax6g; wants to express our intuition that the
“world” of any observer £ is endless: No matter how far you travel from the
Earth, you can always go a little further (in any direction), cf. Figure 64.203
What is the world of k7 It is Rng(wg). So, we want to say that the set
Rng(wy) has no “edge”. This could be expressed by saying that Rng(wy) is
an open subset of space-time, say P(B). But on P(B) we do not yet have a
topology. Therefore instead of saying that the world of £ is an open subset in
P(B), we pull the whole situation back along all the possible w,,’s saying that
w, '[Rng(wy)] is open in "F. Since w,'[Rng(wg)] = Dom(f,x), this is exactly
what Ax6¢; says.

202The set Open is of course not definable (at least not as an entity on its own right) in our frame
language, but if we have a definable subset like Dom(f,,x) then Dom(f;,x) € Open counts as a
first-order formula of our frame language, i.e. is translatable to a formula of our frame language. A
similar remark applies e.g. to Eucl, Linb, Rhomb etc, and we will not repeat this remark each time
we introduce an abbreviation like Open, Eucl, Linb etc. Summing up, one could say that Open,
Eucl etc. are definable only as “predicate symbols” (but not necessarily as individual objects or
entities.)

203This explanation emphasizes the space aspect only, by it can be generalized to time etc.
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Figure 64: Nlustration for Ax6q;.

Ax3y (Vh € Ib) (tr,(h) € GU{D} A (Jk € Obs)trg(h) # 0).2%

That is, the life-line of any inertial body h as seen by any observer m must be
a line or the empty-set, and there is an observer k£ such that the life-line of h
for k£ is not the empty-set. Ax3q differs from Ax3 in that the life-line of an
inertial body seen by an observer can be the empty-set.

AxEqy (Ym € Obs)(Vph € Ph)(tr,,(ph) #0 = v,(ph) =1).
That is, if the life-line of photon ph is not the empty-set for observer m, then
the speed of ph for observer m is 1.

Definition 3.3.2 (Newbasax)

We define

Newbasax & (Basax \ {Ax6, Ax3, AXE}) U {Ax60o, Ax601, Ax39, AxEo},

where the axioms Ax6q9, Ax6g1, Ax3g, AxEq were defined above.
<

204The part “(3k € Obs)triy(h) # 0”7 of Ax3¢ is needed for technical reasons only: If we had
omitted this part from Ax3q then the formulation of Thm.3.3.12 on p.196 would have been more
complicated than it is in its present form.
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The reason for changing Ax6 in Newbasax was explained in detail in the intro-
duction to the present section (§3.3). Namely the main reason is a physical intuition
(connected to general relativity) saying that there may be observers m, k who do
not see the same events. The reason for changing AxXE to AxE, is basically the
same intuition, namely if m is inside a black hole and k is far away then there may
be a photon observed by m but not observed by k. A similar reason applies to
replacement of Ax3 to Ax3¢. (There is a technical difference though: we will soon
see theorems to the effect that we cannot weaken Ax6 without weakening Ax3,
while we could weaken Ax6 without changing AxE.)

Remark 3.3.3 In §2.3 e.g. on p.75 we announced that the axioms of Basax are
independent of each other (in the logical sense). In a future version we plan to
include the proof of this. Further, in a future version we plan to investigate whether
Newbasax is an independent axiom system in the same sense. In this connection
we strongly conjecture the following. Let Ax6y := Ax6g9 + Ax6g;. Then, in the
following form

Newbasax' := (Basax \ {Ax6, Ax3, AxE}) U {Ax6p, Ax3y, AXEq}

our new axiom system will turn out to be independent (for n > 1). (We did not
have time to think about this, though).
At this point, the reader is invited to decide whether in its original form (having
Ax6¢y and Ax6; as separate axioms) Newbasax(3) is independent.?
<

Remark 3.3.4 We note that Basax = Newbasax.
<

In definition below we will define a binary relation % between observers and

bodies. The intuitive meaning of m 5 b is that observer m “sees” body b, that is
the life-line of b seen by m is not the empty-set.

Definition 3.3.5 Let 90t be a frame model. We define the binary relation
N C Obs x B as follows.

(Vm € Obs)(Yb € B)(m 3 b <% tr,.(b) £ 0).

We call the relation = vistbility relation. <

205We are inclined to conjecture that Newbasax \ {Ax600} £ Ax6¢o, but we did not have time
to think about the other direction (i.e. the same thing but now about Ax6¢; in place of Ax6qg).
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Thm.3.3.7 below states that Newbasax together with Ax3 is equivalent with
Basax. Even if we had not had other (philosophical) reasons for replacing Ax3
with Ax3y, this fact alone would have forced us to do it. (However, as we said, we
had other reasons.) As a contrast, we will see that Newbasax + AxE is strictly
weaker than Basax, ¢f. Thm.3.3.13 on p.197.

Notation 3.3.6 Let Thy, Thy be sets of first-order formulas. Then
Th; =/ Th,
abbreviates the following longer statement
(Th; =Thy and Thy = Thy).

That is, Th; == Thy means that that Th; and Thy imply the same theorems (i.e.
formulas).
<

THEOREM 3.3.7 (i) and (ii) below hold.
(i) Newbasax + Ax3 == Basax.

(ii) Newbasax + {(Vm, k € Obs) m > k} == Basax.
We will give the proof after Thm.3.3.10 below.

By the above, if in Basax we replace Ax6 and AXE with Ax6q9, Ax6o; and
AxEy, we still could prove exactly the same theorems (as from “old” Basax). It
would be interesting to know if this generalizes to the case when we replace Ax6
with Ax6¢ only (in Basax, of course), i.e. if (Basax \ {Ax6}) + Ax6qo = Basax.
Cf. Remark 3.3.3 and footnote 205 in it.

Items 3.3.4 and 3.3.7 concern inter-derivability issues between Newbasax and
Basax. We will return to this inter-derivability subject on p.197 (cf. Thm’s 3.3.13,
3.3.14).

The following theorem states that two observers either see the same events or
they see completely different events. Using the terminology of the introduction to
the present section (p.187) this means, roughly, that the mapped areas in our atlas
are either disjoint or they coincide. When further generalizing our theory in the
direction of general relativity, we will have to allow these maps to overlap cf. e.g.
the chapter on accelerated observers (i.e. the theory Acc).
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THEOREM 3.3.8
Newbasax = (Vm, k € Obs)(Rng(w,,) = Rng(wg) V  Rng(w,)NRng(wy) = 0) .

We will give the proof after the proof of Lemma 3.3.16 way below. We will start
working on the preparations for the proof of Thm.3.3.8 below Thm.3.3.14 on p.198.
Between the present point and p.198 we will use Thm.3.3.8 as a “black box” in the
proofs of results stated before p.198. (We will be careful to avoid circularity, of
course.)

Intuitively, the next theorem says that if an observer sees another then they map
(or in other words they coordinatize) the same parts of space-time.

THEOREM 3.3.9
Newbasax = (Vm, k € Obs)(m 3 k < Rng(w,) = Rng(wy)).

Proof: Let 9 € Mod(INewbasax). Let m,k € Obs. Then
(Rng(wy) = Rng(wy) = m > k) is obvious (by Ax4), hence we will concentrate
on the other direction. To prove (m = k = Rng(wn,) = Rng(wy)) assume that

m 3k mS kand Ax6go imply that Rng(wm,) N Rng(wg) # (. By this and by
Thm.3.3.8, we have that Rng(w,,) = Rng(wyg). B

THEOREM 3.3.10
Newbasax = “S s an equivalence relation when restricted to Obs”.

Proof: The proof easily follows from Thm.3.3.9.

Poof of Thm.3.3.7: Direction = is obvious. Hence it remains to prove direction
E.

Let us notice that {Ax2, Ax3} = (Vm, k € Obs)m > k. Hence it is enough to
prove Newbasax U {(Vm, k € Obs) m 5 k} = Basax. Next we turn to prove this.

By Thm.3.3.9, we have Newbasax U {(Vm, k € Obs) m < k} = Ax6. Now it is
easy to check that Newbasax U {Ax6} = {Ax3, AxE}. &

Notation 3.3.11 Let X be a set of formulas in the frame language of relativity
theory. Then we define Modz(X) to be the class of all those frame models which are
models of 3 and the ordered field reduct of which coincides with §F, i.e.

Mod;(S) < {9 € FM(n,F) : M=} .

194



Thm.3.3.12 below says that 9 is a model of Newbasax iff 9t can be obtained
by taking a kind of a “disjoint union” of some models of Basax. Thus, a study
of models of Basax will also give a study of models of Newbasax, cf. §§3.2, 3.5,
3.6. As we said, Thm.3.3.12 below says that the models of Newbasax are certain
kinds of unions of models of Basax. For simplicity let us consider the union of two
models My and 9N, of Basax which differ only in their body sorts (By, B;). For
this see Figure 65. Now, their union will satisfy Newbasax if no common body?%

Figure 65: “Gluing” Basax models together to obtain Newbasax models.

is an observer in either one of the two models, and for each common body the two
models agree on

(i) whether it is an inertial body, and

(ii) whether it is a photon.

In the other direction, any Newbasax model can be obtained as such a union of
some Basax models. We suggest consulting Figure 307 (p.1001) at this point. That
figure represents a characteristic Newbasax model. In connection with that figure
we note the following. Intuitively, thinking in terms of world-views a “Newbasax-

206By a common body we understand an element of By N By.
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world” is a disjoint union of “Basax-worlds” which may be connected by photons
(or by other bodies) but not by observers. The visibility relation S isan equivalence
relation on the observers (cf. Thm.3.3.10). In the above quoted Newbasax picture
the “windows” (i.e. the constituent “Basax-worlds”) correspond to the equivalence
classes of this visibility relation. We note, that what we call windows here (and
subsequently e.g. in the geometry chapter, §6) are the same intuitive “things” what
were called maps or mapped areas in the introduction of the present section cf. e.g.
pp. 187, 193.

THEOREM 3.3.12 (characterization of models of Newbasax)

M € Modz(Newbasax)

<~
(3K C Modg(Basax))((V’ﬁo,‘ﬁl EK)M#N, =

(Obs>™NB™M =¢ & Ph™NB™ C P’ & Ib™nNB™ CIb™)) and
oM = ((B™, Obs™, Ph™, Ib™), 3, G; &, W™), where

pm & U B™.
mneK

Obs™ = | J Obs™,
mneK

" = | ™,
mneK

ppt U Ph™ | and
mneK

W ) W)

neK
(Cf. Figure 65.)

Proof:
(i) Direction <= goes by checking the axioms.
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(ii) Direction = follows from Theorems 3.3.8, 3.3.9, 3.3.10 as follows. Assume

M = (B,Obs,...) E Newbasax. By Thm.3.3.10 there is an equivalence re-
lation = C Obs x Obs (induced by 3). For simplicity assume Obs/ = =
{Obsy, Obs;}. For each Obs; (i < 2) we construct a Basax model ;. Let
N, = <(Bz; ObSi,Pbi,Ibi),S, G; E, Wz); where

Ph; % {prPh:(EImEObsi)mgpb},
I {her:(HmEObsi)mgh},

B, ¥ B\1,ulb; ({i,j}=1{0,1}), and

Now one can check that 91; = Basax and 90 is obtained from 9y, N, as described
in the theorem. 1

THEOREM 3.3.13
(i) Newbasax [~ Basax, moreover:

(ii) Newbasax + AxE # Basax.?"

Proof: Let 915, 9, € Mod(Basax) with BN B™ = (). Let 9 be the model which
is obtained by K = {,91;} as described in Thm.3.3.12. Then 9 = Newbasax
by Thm.3.3.12.

It is easy to check that if mo € Obs”™® and m; € Obs™ then trp,,(mi) = 0.
Hence 9 = Ax3. This completes the proof of item (i).

The proof of item (ii) is similar: First one takes two models, call them 9%, and 91,
of Basax such that they do not have common observers (i.e. Obs™ N Obs™ # ()
but they agree on the set of photons (i.e. Ph” = Ph™). Then one forms the union
of these two models as described in Thm.3.3.12. The so obtained model will be a
model of Newbasax + AxE but it will not validate Ax3. Checking the details is
left to the reader. W

THEOREM 3.3.14 Newbasax + Ax(symm) %~ Basax.

Proof: The proof is similar to that of Thm.3.3.13, and we leave it to the reader. R

207 Th £ ) abbreviates that “it is not the case that Th |= +”, as usual.
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The philosophical importance of the above theorem is that Newbasax remains
truly more flexible than Basax even if we assume the natural symmetry principle
Ax(symm) studied e.g. in §2.8 and to which we will return in §3.8 (BaCo).

The reader is invited to do the following. Whenever we introduce a new, refined
axiom system (like Newbasax was above), check whether adding Ax(symm) to
this new axiom system makes it equivalent with some old axiom system together
with Ax(symm).

Now we turn to the proof of Thm.3.3.8. Lemmas 3.3.15, 3.3.16 are needed for the
proof of Thm.3.3.8. Lemma 3.3.15 below is an analogous counterpart of Claim 2.3.6.

LEMMA 3.3.15
Newbasax = (Vm, k € Obs)(m S k = vn(k) £1).

Proof: The proof goes by contradiction. Let 9 € Mod(Newbasax). Let m,k €

Obs such that m > k and v,,(k) = 1. By Ax5 we have that there is ph € Ph
such that tr,,(ph) = tr,,(k). Let such a ph be fixed. Let p,q € tr,,(k) such that
p # q. Now ph,k € w,(p) N wy,(g) and Ax6ge imply that wy(p') = w,,(p) and
wi(q") = wi(q), and ph, k € wi(p') Nwi(q'), for some p', ¢’ € "F. Let such p’ and ¢’
be fixed. By p # ¢ and Claim 2.3.8(ii), we have that p' # ¢'. By k € wi(p") Nwi(q')
and Ax4 we have p'g =t & F x n=1{0}. Now p'q’ =t and ph € wi(p') N wi(q')
contradict AxEg. 1

The intuitive content of Lemma 3.3.16 below is the following. Assume
Newbasax. Assume that e and e; are events connected by a photon in the world-
view of some observer.2”® Then any observer who observes event e observes event
e1, t00.2% We note that the assumption that events e and e; are observed by a
common observer is needed in the following sense. There are a model of Newbasax
and events e and e; such that there is a photon ph which is present both in e and
e; but there is no observer who observes both e and e;. The illustration of this is
in Figure 307 on p.1001.

LEMMA 3.3.16 Newbasax = (Vm, k € Obs)(Vp,q € "F)

((angz(p_q) =1 A p€ Dom(fx)) = q € Dom(f, )) :

208Formally, (3m € Obs) e,e1 € Rng(w,,) A (3ph € Ph) ph€ eNey.
209Formally, (Vk € Obs) [e € Rng(wy) = e1 € Rng(wy)].

198



Proof: Let 9 € Mod(Newbasax). Let m,k € Obs and p,q € "F with ang?(pq) =
1 and p € Dom(f,,x). We have to prove that ¢ € Dom(f,).

By ang®(pq) = 1 and Ax5 we have tr,,,(ph) = pg, for some ph € Ph. Let this ph
be fixed. By Ax6q; and p € Dom(f,.x), we have that S(p,e) C Dom(f,), for some
e € TF. Let this ¢ be fixed.

Then it is easy to see that there are r, s, u,v € S(p, €) such that p,q,r, s, u,v are
distinct, ¢ € 75, ¢ € pu, pr Nsu = {v}, and ang®(7s), ang®(pr), ang*(su) < 1 (see
Figure 66). Let such 7, s, u, v be fixed.

Figure 66: Illustration for the proof of Lemma 3.3.16.

By ang?(Ts),ang?(pr),ang’(su) < 1 and Ax5 we have that tr,(m;) =

78, trm,(me) = Su, and tr,(ms) = pr, for some my, my,mg € Obs. Let such
m1, ma, m3 be fixed. By the above construction we have that

trm(ph) Ntry,(ms) = {p},

trm(my) Ntry,(ms) = {r},
(28) trm(my) Nitry,(me) = {s},

trm(ph) Ntry,(me) = {u},

trm(me) Ntry,(ms) = {v}.



Now by p,r,s,u,v € S(p,e) C Dom(f,x) by Ax3p, by Claim 2.3.8(ii) and by (28),
we have

tri(ph) N tre(ms) {fr(p)},
tre(my) Ntrg(mg) = {fuk(r)},
(29) tre(mi) Ntrg(me) = {fuk(s)},
tri(ph) Nire(ma) = {fr(u)},
tre(meo) Ntrg(ms) = {fmx(v)}.

frk (D), Tt (1), Frne (8), Frnk (), fri (v) are distinct points by Claim 2.3.8(ii) because
p, 7, s, u,v were distinct. Hence by (29) and Ax3¢, we have that try(m;) and try(ph)
are in the same plane. Now by this and by Lemma 3.3.15, we have trg(m;) N
tri(ph) = {w}, for some w € "F. Let this w be fixed. Now

(30) my, ph € Wy, (q) N wy(w) .
By (30) and by Ax6¢9, we have that there are ¢, w’ € "F such that

(31) Wiy (¢') = wm(g) and  wm, (w') = wy(w) .

Let such ¢’ and w' be fixed. By (30) and by (31), we have that mq, ph € wp,, (¢') N
W, (w'). By this, by Ax4 and by AxEg, we have ¢’ = w’. By ¢’ = w’ and by (31),
we have w,,(q) = wg(w). Hence ¢ € Dom(f,;). B

Proof of Thm.3.3.8: The intuitive idea of the proof is based on the following
property of Newbasax. If e, e; are events “seen” by a common observer, then there
is a finite “zig-zag” pass of photons connecting e and e;. Because of this we can apply
Lemma 3.3.16 to prove the theorem (cf. the intuitive text above that lemma). Below
comes the formalization of this idea: Let 9t € Mod(Newbasax). Let m,k € Obs
with Rng(w,,) N Rng(wg) # 0. We have to prove that Rng(w,,) = Rng(wg). To
prove this it is enough to prove that Dom(f,x) = "F and Dom(fy,) = "F. By
Rng(wy,) N Rng(wy) # 0, we have that there is p € Dom(f,). Let such a p be
fixed. Let ¢ € "F. We will prove that ¢ € Dom(f). It is easy to see that

(32) (37 € w)(F°,rt ..., €"F) ((Vz < fang(ririt) =1 & ' =p & 1/ = q) .
Let such j and 7%, ..., 77 be fixed. Now by applying Lemma 3.3.16 j times, by (32),
"F.

we get that ¢ € Dom(f,). Hence Dom(f,,x) = "F. Analogously Dom(fy,,) =
|
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Remark 3.3.17 Recall that in §2 we proved so called paradigmatic effects of rela-
tivity theory from Basax, cf. §§ 2.5, 2.8. We would like to point out that all these
paradigmatic effects are provable from the weaker system Newbasax t00.2!? The
interested reader is invited to check that this is true, moreover beginning with §3.4.2
(“Weakening ...”) we will introduce even weaker axiom systems and the reader is
invited to check whether the just mentioned paradigmatic effects remain provable
even from those.

<

a from j6-e?

210Gome re-formalization of these effects in our frame language might be needed for this. We do
not go into more detail about this.
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3.4 Faster than light observers

Contents of Section 3.4

3.4.1 Main stream investigations ........... ... .ot 203
3.4.2 Weakening the axioms (FTL observers) ............c.coocoiiiiiiiiia.. 217
3.4.3 Proof that Bax does not allow F'TL observers .......................... 229

In the first sub-section (§3.4.1) of the present section, we show that our relativity
theories (Basax, Newbasax) introduced so far imply the nonexistence of FTL
observers, for n > 2. (Let us recall that in §2 we saw that in some models of
Basax(2) FTL observers do exist. I.e. Basax(2) permits the existence of FTL
observers.) At this point, we would like to emphasize that the main theorem of
§3.4.1 is a theorem of purely logical nature and it does not involve concepts like
“mass”, “force” or “energy”. The theorem (and its improvement in §3.4.2) says
that a very small number of weak and natural assumptions already implies “logical”
impossibility of say “tachyons being observers”.

In §3.4.2 we investigate the reason for our “no FTL observer” result, by weak-
ening the axioms of Newbasax. We arrive at various rather weak axiom systems,
some of which are called Bax, Bax™, Relphax, and Reich(Bax). To be precise
Bax™ and Reich(Bax) will be reached only in the next chapter §4 (which will be
a direct continuation of §3.4.2). We will see that most (but not all) of these axiom
systems still prove the nonexistence of FTL observers (assuming n > 2, of course).
On the other hand, e.g. Relphax permits FTL observers for arbitrary n. The inter-
esting aspect of this is that Relphax is not too weak to be considered as a possible
(special) relativity theory.

These weak axiom systems (Bax, Relphax etc.) will lead us to the subject
matter of our next chapter §4 (“Weak, flexible axiom systems for relativity”). The
purpose of that chapter §4 is motivated by the literature and is twofold: (i) Friedman
[90] started a kind of conceptual analysis®'! of relativity theory which is taken up and
is further elaborated in §4 and especially in §§ 4.3, 4.4. (ii) Reichenbach, Griinbaum
and others (cf. e.g. Szabé [244]) initiated a variant of relativity theory which differs
from Einstein’s one in the treatment of simultaneity.?'? In §4.5 of the present work,
we will formalize the Reichenbachian versions (Reich(Bax), Reich(Basax) etc.)

211 Cf. also footnote 2 on p.8.
212For more on these purposes cf. the introduction of §4.3, p.469 (see items 1-4 there).
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of our relativity theories (Bax, Basax, etc. respectively), in first order logic. Of
course, besides formalizing these Reichenbachian versions, we want to study them,
among others in order to answer some problems raised in e.g. Friedman [90]. Sub-
section 3.4.2 contains preparations for this plan. As a continuation of §3.4.2, in the
next chapter §4 we introduce the weak theory Bax™ which will be flexible enough
to serve as a basis (or starting point) for developing the Reichenbachian theory
Reich(Bax) (which will be done also in the next chapter).

3.4.1 Main stream investigations

In this sub-section we prove that Basax implies that there is no FTL observer if we
assume that n > 3. In §2 we already saw that the assumption n > 3 is necessary.
Here we will see this in a somewhat stronger form. All these are formulated in
Thm.3.4.1 below.?!3

THEOREM 3.4.1 Let n > 3. Then (i)—(iii) below hold.
(i) Basax(n) = (Ym,k € Obs) v, (k) < 1.
(ii) Basax(2) ¥~ (Ym,k € Obs) v, (k) < 1.

(iii) Assume § is an arbitrary ordered field. Then
Modgz(Basax(2)) ¥ (Vm,k € Obs) v,(k) < 1.

213A more general form of Thm.3.4.1(i) below, is in Madardsz-Németi [177]. In that paper, we
weaken Basax(n) so that the new Partial(Basax(n)) will not imply Dom(w,,) = "F. Then we
prove in that work that FTL observers are not possible even in Partial(Basax(n)) if n > 2. Let
us recall from footnote 198 on p.188 that wy, is the partial function w;, = {(p,e) € wp, : e #0 }.
Now, in discussions like the present one whenever we write Dom(w,,) we really mean Dom(w,,).
That is, from now on, in contexts like Dom(w,,) # "F etc. Dom(w,,) denotes Dom(w;,). We note
that the axioms of Partial(Basax(n)) imply that Dom(w,,) and Dom(f,,;) are open connected
subsets of "F. The theory Partial(Basax(n)) could also be called “locally” Basax, because it
deviates from Basax in the direction of the “local” spirit of general relativity. Its axioms are
of the “flavour” like saying that (Vm € Obs)(Vp € Dom(w,,)) (there is a neighborhood of p in
which “Basax is true”). In this connection we note the following. The method of formalizing
the statement that “Dom(w.,) is a connected subset of "F” [and the same for Dom (f,,;)] in our

m
first-order frame language is discussed in §8 (“Accelerated observers”) in Item ?7.
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On the proof:?'* We will give the proof later in this sub-section, on p.206. We will
start working on the preparations for the proof of Thm.3.4.1 above Lemma 3.4.5 on
p-205.

Recall from §3.3 (Def.3.3.2) the axiom system Newbasax which is a refined ver-
sion of Basax. Thm.3.4.2 below says that Newbasax does not allow FTL observers
if n > 2. It is an immediate corollary of Thm.3.4.1 and Thm.3.3.12 (§3.3).

THEOREM 3.4.2 Let n > 3. Then
Newbasax(n) = (Vm, k € Obs) (m >k = v,(k) <1).

Proof: The theorem follows directly from Thm.3.4.1 and Thm.3.3.12 (§3.3). =

Remark 3.4.3 (Are FTL observers possible?) Do Theorems 3.4.1, 3.4.2 mean
that there are no FTL observers (if n > 3)? Of course, they do not. What they do
say is that if FTL observers exist then something must be different than is assumed
in these theorems. We will return to discussing this several times both in this work
and in Madardsz-Németi [176]. For a further discussion of Thm’s 3.4.1, 3.4.2, let
us assume we have two space-dimensions Z and 3. Then one way for making FTL
observers possible is assuming that we have two time-dimensions #; and %5, too
(orthogonal to each other). Both of #; and #, would be inside the light-cone starting
from the origin 0. This idea is suggested by the proofs of our “no FTL” theorems.
In general, if the number of space-dimensions is the same as that of time-dimensions
then FTL observers could exist. We do not discuss this idea further here (but
n = 2 is an example of number of space-dimensions = that of time-dimensions). Of
course, it is not clear what physical interpretation one should give to the second
time-dimension 3 (... but some ideas do come to ones mind).

In connection with “making F'TL observers possible” we mention two further ma-
terials: (i) the axiom system Relphax discussed on pp. 222-226 of §3.4.2 (“Weak-
ening the axioms (FTL observers)”) and (ii) a future section of the present work
entitled “Inner clocks (of bodies)”.

<

Remark 3.4.4 Our “no-FTL-observers” theorems would be relatively easy to prove
if we would restrict them to the standard Minkowski models?'® over the ordered field
R of the real numbers. However, the main point in our theorems is that they are

214We note that a stronger theorem will be stated and proved soon, cf. Thm.3.4.19 (p.221)
generalizing the present “no FTL” result to the weaker axiom system Bax \ {AxEq }.
215These will be introduced in Def.3.8.42 on p.331.
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much more general than this special case e.g. we do not require our ordered field §
to be Euclidean.?'® Further, in Basax we did not state anything to the effect that
fmr would be continuous. However, using the no F'TL theorem stated above we can
prove that the f,;’s are betweenness preserving (cf. Prop.6.6.5, p.1028) and that
this implies that they are continuous. Cf. also Remark 3.4.6, in this connection.

<

For the proof of Thm.3.4.1 we need Lemmas 3.4.5, 3.4.7 below. First we will
state the lemmas, after that we will give the proof of Thm.3.4.1. After the proof of
Thm.3.4.1 we will give the proof of the lemmas.

LEMMA 3.4.5 Assume n > 3 and § is Fuclidean. Assume f : "F — "F is q
bijection such that

(%) (V£ € Eudl) (f[z] € Eucl A (f]f] € PhtEucl & £ € PhtEucI)) .

Then f[t] € SlowEucl.

On the proof: We will give the proof of Lemma 3.4.5 on p.208.

Remark 3.4.6 We note that the following stronger form of Lemma 3.4.5 is also
true:

Assume n > 3 and that § is Euclidean. Assume f : "F — " F is a bijection such
that
(V0)(f[¢] € PhtEucl < ¢ € PhtEucl).

Then f preserves the set of slow-lines, that is (V£ € SlowEucl) f[¢] € SlowEucl.

We note that the proof of this stronger form of Lemma 3.4.5 is based on the
proof of the celebrated Alexandrov-Zeeman Theorem, cf. Thm.6.7.23 on p.1159.

216Indeed, the most natural ideas that come to mind to prove a no-FTL-observer theorem do not
work for the following reason. Let us assume that we wanted to prove our no FTL theorem via
Ttem 3.4.6 below. If we assume that § is Euclidean then this strategy will indeed work. However,
there exist an ordered field § and a photon-preserving collineation f of F such that f does not
preserve SlowEucl. (This means that there is § such that the reduct (*F, Eucl, PhtEucl, €) of the
usual Minkowski geometry over § [in the sense of Def.6.7.25 on p.1160] admits an automorphism
which does not preserve SlowEucl. As we will see, this geometry cannot be extended to a model of
Basax, but one has to prove this).
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Further we note that this proof (i.e. the proof of the stronger form of Lemma 3.4.5)
is basically the same as the proof of Theorem 3 in [16] which says that Basax(n) +
Ax(v/ ) does not allow FTL observers, if n > 3 is assumed.

<

LEMMA 3.4.7 Assume f € Aftr(n,§) satisfying (x) in Lemma 3.4.5. Assume
S+ is an ordered field such that § C §, .21 Let f, € Aftr(n,,) such that

f. | "F =f. Let us notice that such an f, exists and is unique. Then f, satisfies (x)
in Lemma 3.4.5 when f, and §. are substituted in place of f and §, respectively.

On the proof: We will give the proof of Lemma 3.4.7 on p.213.

Proof of Thm.3.4.1(i): Let n > 3 and 9t € Mod(Basax(n)). Let m,k € Obs.
We have to prove that v,,(k) < 1.

Intuitive idea of the proof: We want to prove that t¢r,,(k) is “slow”. We know
that fy,, = @ of, where f is an affine transformation satisfying () of 3.4.5. By 3.4.7
f will continue satisfying (x) in a larger field §., which, in turn will be Euclidean.
Looking at it from F,, f[t] must be “slow” by 3.4.5. Therefore f[¢] must be slow in
5, too, and then tr,, (k) = f[t] will complete the proof.

Formally: By Theorems 3.1.1, 3.1.4 and Proposition 3.1.17, we have that
fem = @ of, for some ¢ € Aut(F) and for some f € Aftr(n,§) satisfying (%) in
Lemma 3.4.5. Let such ¢ and f be fixed. By fi,, = @ of, by ¢[t] =t, by tri(k) =1t
and by fxp,[tri(k)] = tr,(k), we have

(34) f[£] = trm(k) -

Let 3. be an ordered field such that §, is Euclidean and § C §,.. Such an §, exists,
e.g. the real closure?'® of § is such. Let f, € Aftr(n,§.) such that f, | "F = f. Then
by Lemma 3.4.7, f, satisfies (%) in Lemma 3.4.5 when f, and §, are substituted in
place of f and §, respectively. According to our Convention 3.1.2, F, denotes the
universe of §,. Let ¢, :== F, x"'{0}. Then f,[t,] € SlowEucl(n, §.) by Lemma 3.4.5.
But f[t] C f.[t.] by f. | "F =f and ¢ C ¢,. Hence f[t] € SlowEucl. By this and by
(34), we have v, (k) < 1.

The following is a corollary of the proof of Thm.3.4.1(i) above.

217 According to our Convention 3.1.2, § C §, means that § is a strong sub-model of .. In the
present context this means that § is an ordered subfield of §.,.
218The notion of the real closure of an ordered field can be found e.g. in [92].
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COROLLARY 3.4.8 Lemma 3.4.5 remains true if we omit the condition that §
is Euclidean. 1

Proof of Thm.3.4.1(iii): Let § be arbitrary. Let P be a choice function that to
each ¢ € Eucl(2,§) associates two distinct points lying on £. Let the model 9 be
defined for § as it was defined in §2.4 for the case when § was R, the ordered field
of real numbers. There are FTL observers in the frame model 9tY. Analogously to
Thm.2.4.2 in §2.4 one can prove that 9 = Basax(2).

Proof of Thm.3.4.1(ii): Item (ii) directly follows from item (iii) of Thm.3.4.1. ®

Now we turn to the proof of Lemma 3.4.5. For the proof of Lemma 3.4.5 we
need the definition of the light-cone of p € "F. This comes next.

Warning: The following definition of a light-cone applies only to models of
Newbasax. A more general definition of a light-cone will be given in Def.4.4.9
(p.538) in §4.4.

Definition 3.4.9

(i) We define the light-cone of 0 € "F as follows:
LightCone(0) € {qe™F : =@+ +...+¢ ,}.
(ii) We define the light-cone of p € "F as follows:

LightCone(p) &' LightCone(0) + p & {¢+p : ¢ € LightCone(0) } .

Remark 3.4.10 Let us notice that for every p € "F

LightCone(p) = | J{ ¢ € PhtEucl : pe ¢} .
That is, in the world-view of an observer in a model of Basax, LightCone(p) is the
union of traces of photons going through p. This is where the name “light-cone”

comes from.
<
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Notation 3.4.11 We let S denote the “space” part of our coordinate-system "F,
ie.

S0} xIF.

Proof of Lemma 3.4.5: The proof goes by contradiction. Let f : "F — ™F be a
bijection satisfying (x). Assume that f[{] ¢ SlowEucl.

Intuitive idea of the proof: We will see that f[t] ¢ SlowEucl will imply that f[S]
will contain a straight line “inside” a light-cone. But then the intersection of f[S]
and this light-cone will contain a straight line. Clearly this straight line will be a
“photon-line” and its inverse image by f will be contained in S. See Figure 68. This
will contradict (x), i.e. the fact that the inverse images of “photon-lines” by f must
be “photon-lines”.

Formally: By (), we have f[t] ¢ PhtEucl. Therefore ang®(f[¢t]) > 1. Without
loss of generality we can assume (35) and (36) below.

(35) f[Plane(t,z)] = Plane(t,Z) and
(36) f(0) = 0.

We will explain at the end of the proof why we can assume (35), (36) above.
By f being a bijection taking straight lines to straight lines and by (36), we have

(37) f[S] is an (n — 1)-dimensional subspace of "F .2
Now by the assumption ang?(f[t]) > 1 and by (35), (36), we have
(38) flt] ={z{(a,1,0,...,0) : z € F}, for some a € F with |a] < 1.

Let this a be fixed.

Let £ be the mirror image of f[t] w.r.t. either one of the lines in
PhtEucl N Plane(%, Z) going through 0, i.e. let

Ed:ef{x-(l,a,o,...,O) cxeF}.
Let us notice that £ € SlowEucl by |a| < 1.

Claim 3.4.12 ¢ C f[S]. Actually, ¢ = f[z].

219For the visually oriented reader we note that f[S] is a, so called, hyperplane.
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Figure 67: Illustration for Claim 3.4.12.

Proof of Claim 3.4.12: Throughout the proof the reader is asked to consult Fig-
ure 67. By (35) we can define fy : >F — ?F as follows:

f
(Vp € 2F) fO(pO:pl) d:e f(p()apla 0) .. 70) .

Then f, : 2F — 2F is a bijection such that

(Ve € Eucl)(fo[ﬁ] € Eudl A (folf] € PhtEucl < £ ¢ PhtEucI)) ,

because f is a bijection satisfying (x) in Lemma 3.4.5. By Corollary 3.1.22 (§3.1),
and by f(0) = 0 (cf. (36)), we have that fy[t | and fy[Z] are mirror images of each other
w.r.t. either one of the lines in PhtEucl(2) containing 0.?2° Using this we conclude
f[Z] = £ by the definitions of ¢ and f.

QED (Claim 3.4.12)

Claim 3.4.13 There is p € "F such that 0 # p € LightCone(0) N f[S]. (See Fig-
ure 68.)

We will give the detailed proof of Claim 3.4.13 very soon. Claim 3.4.13 is true in
the case n = 3 and § = R, because the plane f[S] has a point inside the cone

LightCone(0), namely ¢ C f[S] and /¢ is inside the cone by ¢ € SlowEucl. Thus the

220 A ccording to our convention PhtEucl(2) denotes PhtEucl(2, §).
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Figure 68: Illustration for the proof of Lemma 3.4.5 and for Claim 3.4.13.

plane f[S] intersects the cone in a point different from 0. (See Figure 68.) We will
give the detailed proof for the general case (n > 3 and § is an arbitrary Euclidean
field) very soon. We note that if § is the ordered field of rational numbers, (in
which 1/2 does not exist), then the intersection of the plane Plane(,0(0,1,1)) with
the cone LightCone(0) is the singleton of 0, while the plane clearly contains points
that are inside the cone (e.g. 7 is inside the cone). This motivates the use of Ax(v/ )
in the proof of Claim 3.4.13.

Now we return to the proof of Lemma 3.4.5. Throughout the proof the reader is
asked to consult Figure 68. By Claim 3.4.13, there is 0 # p € LightCone(0) N f[S].
Let such a p be fixed. p € LightCone(0) \ {0} implies that Op € PhtEucl. Now we
conclude Op C f[S] by p € f[S] and by f[S] being a subspace of "F (cf. (37)). By this
we have [()_p} € S, hence f* [@} ¢ PhtEucl. Op € PhtEucl and f* [()_p} ¢ PhtEucl
contradict (x) in the formulation of Lemma 3.4.5. Hence f[t] € SlowEucl.

Lemma 3.4.5 is proved modulo Claim 3.4.13, and the explanation of why we can
assume (35) and (36) above. Now we turn to prove these.

Proof of Claim 8.4.13: Throughout the proof the reader is asked to consult Fig-
ure 69. Let £ be as defined above Claim 3.4.12, i.e. £ &f {z-{1,a,0,...,0) : z € F}.
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Figure 69: Illustration for the proof of Claim 3.4.13.

Let us recall that a € F was fixed below (38) and |a| < 1. By Claim 3.4.12, we have
that £ C f[S]. Let P be the plane parallel with Plane(Z, ) and with height 1, i.e. let

PY{1,2,94,0,...,0) : 2,y F}.

Let ¢ & (1,a,0,...,0). Then ¢ € f[S]N P by g € £ C f[S]. Since f[S] is an (n — 1)-
dimensional subspace, n > 3, and ¢ € f[S]N P, f[S] N P contains a straight line ¢,
such that q € ¢,.22

The intersection LightCone(0) N P is a circle, i.e.

c¥ LightCone(0) N P = { (1,2,y,0,...,0) : 2> +3y* =1} .
The point ¢ is inside this circle by |a| < 1. We will show that
(39) LNC#D.

This is true, because it is known from geometry that if § is Euclidean then inside
every plane, whenever a straight line has a point inside a circle, it intersects the
circle.?” For completeness, we give here a direct proof of (39), too.

221This is known from linear algebra; intersection of a (> 2)-dimensional subspace with a plane
contains a straight line through each point in the intersection.

222(f. Jones-Morris-Pearson[145] chapter 5 or Szmielew [246]. Actually, (i) and (ii) below are
equivalent in every two-dimensional geometry over an ordered field J:
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Since q € ¢y C P, we have that, for some b € F,
b={(,2,9,0,...,0) : x=by+a}.

Let this b be fixed. Then (1,z,4,0,...,0) € £, N C iff

24+9y*=1 and z=by+a.
By replacing x with by + a in the first equation we get

(b* + 1)y* + 2bay + (a®> — 1) =0.
This quadratic equation, by § being FEuclidean, has a solution iff

(2ba)? — 4(b* +1)(a* — 1) > 0.223
Carrying out some simplifications, this is equivalent to

¥+ (1—a*)>0.
By |a| < 1 this always holds. (39) is proved. ) )
Now, let p € £, N C. Then p € f[S] N LightCone(0) by £, C f[S], C' C LightCone(0).
Also, p # 0 because p € P while 0 ¢ P.
QED (Claim 3.4.13)

Ezplanation of why we can assume (35) and (36) above: Throughout this explana-
tion the reader is asked to consult Figure 70. Let us recall from the beginning of
the proof of Lemma 3.4.5 that f is a bijection satisfying (%) in the formulation of
Lemma 3.4.5 and f[t] ¢ SlowEucl. We also recall assumptions (35) and (36):

| = Plane(t,z) and
f(0) = 0.

Now we will explain why these assumptions can be made.

Let s := f(0). Let us recall that 7_; denotes the translation by vector —s.
Now let fs := fo7_ ;. We have f(0) = 0 and fs[f] ¢ SlowEucl by f(0) = s and
f[t] ¢ SlowEucl .

(i) If a straight line £ has a point inside a circle, then £ intersects the circle.
(ii) The square root of any z > 0 exists.
223We note that this means that the so called discriminant of the above quadratic equation is
non-negative.
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1] f[t]

Figure 70: Tllustration for explanation of assumptions (35), (36).

Let p; and g, be linear transformations such that p; and gy satisfy 1-3 below.
1. o1 and g leave ¢ (the time axis) point-wise fixed.

2. 1 and g, are distance preserving transformations (i.e. congruence transforma-
tions).

3. o1[Plane(t,Z)] = Plane(t,f; '[t]) and gy[Plane(,f,[t]) = Plane(t, 7).

By § being Euclidean, it is easy to see that such p; and p, exist, e.g. rotations
around time axis £ which take Plane(,Z) and Plane(,f,[t]) to Plane(t,f;'[t]) and
Plane(Z, Z), respectively, are such.??* See Figure 70.

It is easy to check that p; o f; o gy is a bijection satisfying (x) in Lemma 3.4.5
when p; of; 0 g is substituted in place of f, g; ofs 0 g5[t] ¢ SlowEucl, and g; of; 0 gy
satisfies (35), (36).22° By this it is clear that assumptions (35), (36) can be made.

|

Proof of Lemma 3.4.7: The proof below is somewhat “computational”’. We plan
to replace it, in a future version with an intuitive, “structuralist” proof.

A detailed proof will be given only for n = 3. After that we will outline how
to modify the proof for n = 3 to obtain a proof for n = 4. For the case n = 4,

224For a detailed proof cf. the proof of Lemma 3.5.3 in §3.5.
2259, o f, 0 gy satisfies (35) because both g1 o fs 0 g2 and (g o fs 0 g2) ™! take ¢ into Plane(t, 7).

213



0.K?

Lemma 3.4.41 in §3.4.3 is a generalization of Lemma 3.4.7. In §3.4.3 we will give
a detailed proof of Lemma 3.4.41, therefore we will not give a detailed proof of
Lemma 3.4.7 for n = 4.

Claim 3.4.14 Let §,,f,f, be as in the formulation of Lemma 3.4.7. Then

(xx) (V¢ € PhtEucl(n, §.)) f.[¢] € PhtEucl(n, §.).

We will give the proof of Claim 3.4.14 very soon. Lemma 3.4.7 follows from
Claim 3.4.14 because of the following. Intuitively: If f satisfies (x) in Lemma 3.4.5
then also f~' satisfies (x). Then applying Claim 3.4.14 to f and f', respectively,
we obtain Lemma 3.4.7. More formally: Let §.,f,f, be as in the formulation of
Lemma 3.4.7. Let ('), € Aftr(n,3.) such that (f'), | "F = f'. Obviously
(f", = (f.)~'. Now applying Claim 3.4.14 to §,,f,f, and §,,f ', (f"'),, respec-
tively, we get that

(V¢ € PhtEucl(n, ) (f.[¢] € PhtEucl(n,F.) A (f.) '[{] € PhtEucl(n,F.)).

Hence f, satisfies (x) in Lemma 3.4.5 when f, and §. are substituted in place of f
and §, respectively.

Proof of Claim 5.4.14: Let n = 3 and §,,f,f, be as in formulation of Lemma 3.4.7.
We have to prove that f, satisfies (%x) in Claim 3.4.14. Without loss of generality
we may assume that f(0) = 0.

On the structure of the proof: Ttem (42) below is a reformulation of saying that f
satisfies (%) of 3.4.14. Item (46) says the same for f,. Therefore our task is to prove
(46) from (42). This is done by the linear algebraic considerations given below. For
undefined terminology from linear algebra the reader is referred to any linear algebra
book, e.g. to Halmos [122].

By our assumption that f is a linear transformation we have that

(Vp e 3F) f(p) = (poaoo + P1a10 + P2a20, PoGo1 + P1a11 + P2aar, Poldoz + P1a12 + Padas)

for some a;; € F, where 4,5 € 3. Let these a;;’s be fixed. According to our
Convention 3.1.2, F, denotes the universe of §,. By f, € Aftr(3,§,) and f, | 3°F = f,
we have

(41) (Vp € *F)f(p) =
(Po@oo + P1G10 + P2a20, Poto1 + P1a11 + Pator, Poloz + P1a1a + Padsa) -
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By f satisfying (%), we have
(42)(Vp € °F) (pﬁ =pi+p; =
(Poago + pra1o + p2a20)2 = (poao1 + p1a11 + p2a21)2 + (Poo2 + pra1z + p2a22)2) .

2 2 2 2 2 2 9 2 2 ._
2a01a11 — 2002012, bs 1= 2ap0a20 — 2a01a91 — 2002022, bs 1= 2a19a20 — 2011021 — 2a12092.
By this and by (42), we get

(43) (Vp € °F) (pﬁ =pi+p; =
Dabo + pibi + Paba + pop1bs + Popaba + Pipobs = 0) -

But (43) is equivalent with (44) below.
(44) (b, by, b, b, by, bs) is a solution for the system of linear equations
E = { p§zo + piz1 + pixs + pop13 + PopaTs + P1p2xs 1 p € °F & py =pi +pj } -
To prove that f, satisfies (x*) it is enough to prove that
(45) (bo, b1, ba, b3, by, bs) is a solution for the system of linear equations
E, := { pizo + pia1 + P32 + Pop1%3 + Popats + pip2xs ¢ p € °F, & py =pi + 13 },

because (45) is equivalent with
(46) (Vp € °F,) (pﬁ =pi+p; =
(Poago + pravo + 272@20)2 = (poao1 + p1a11 + 272@21)2 + (potoz2 + pra1z + p2a22)2) )

and (41) and (46) imply that f, satisfies (xx). To complete the proof it remains to
prove (45) above. It is easy to check that the vectors in

B:= {<p%7p%:p37p0p17p0p27p1p2> :
p e {(1,1,0), (1,-1,0),{1,0,1),(1,0,~1), (5,4,3) } }
are linearly independent.?? Let W, denote the subspace of °F, generated by

A, = { (B}, P}, 03, Pop1, Pop2, P1p2) : P € F. & py =pi + 13 } .

2261 e. no element of B is generated by the others (in the universal algebraic sense) in the one
sorted vector space "F;. In this proof we will use that these vectors are linearly independent in the
bigger vector space ("F,); too. If we have a vector space "F and a bigger one "F, (such that F is
a subfield of F,) and p and ¢ are in the small vector space "F then p, ¢ are linearly independent
in the small vector space iff they are linearly independent in the big one. The same applies to a
set of vectors like B above (this is a theorem of linear algebra).
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W, is at most 5-dimensional because of the “condition” p3 = p?+p3 in the definition
of A,. Hence B is a basis??” of W, by B C A,. By this, we have that each equation
in E, (cf. (45)) is a linear combination of equations in

J = {pﬁxo + plxy + PiTe + Pop1T3 + PoPaTa + P1P2Ts

pe {(1,1,0),(1,—1,0),(1,0,1),(1,0,—1), (5,4, 3) }} .

By this, we have that (45) holds because (by, b1, by, bs, by, bs) is a solution for the
system of equations J by (44) and J C E. This completes the proof for n = 3. For
n = 4 the proof is similar. Analogously to the proof for n = 3 it has to be shown
that in the set

{ (3, D%, D5, D3> PoP1, PoP2, PoP3s P1P2, P1D3; Paps) P € “Z & pg = pi + pj + p3 }
8
[ |

can be found 9 linearly independent vectors, where Z denotes the set of integers.??

We will return to the possibility of (strongly) improving the result (Thm.3.4.1)
“there are no FTL observers” after Thm.3.4.22 at the end of §3.4.2 below.

22TBy a basis of a vector space V we understand a minimal (i.e. independent) generator set of
the one-sorted version of V.

228We note that for every ordered field the set Z of the integers is embeddable into the ordered
field in a natural way.
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3.4.2 Weakening the axioms (FTL observers)

To our minds, Theorems 3.4.1(i) and 3.4.2 are important and strong theorems.
They say that from our (deliberately weak) axiom systems of relativity theory it
already follows that no observer can move faster than light. Hence it is worth to
discuss which axiom is responsible for this. Therefore we have started a series of
investigations such that we weaken our axiom system (in several ways), and then
we check whether the new, weaker axiom systems allow FTL observers. These
investigations also make it possible to understand better why Theorems 3.4.1, 3.4.2
are true.??

In this sub-section we present several examples of these investigations. First we
present a very weak version (Bax) of Newbasax and show that this weak version
still excludes FTL observers. In the next chapter (§4) we also look at even weaker
versions of Bax. Then we present another weakened axiom system (Relphax), and
show that it allows FTL observers. In all these cases we weaken Einstein’s axiom,
AXE. Clearly, if we omitted AXE from Basax, then the new axiom system would
allow FTL observers. Besides the present F'TL motivation, we will have other kinds
of motivation for investigating weak systems like Bax; but these will lead us to the
next chapter §4 (“Weak, flexible axiom systems for relativity” ), where systems even
weaker than Bax called e.g. Reich(Bax), Bax™, Rel(noph) will be discussed.
Some of these other motivations will be discussed in the introduction of §4.3 way
below.

In the case of Bax we relax the condition that the speed of light is the same for
all observers (but we retain the condition that each observer sees photons moving in
all directions with the same speed). In the case of Relphax we relax the condition
(that now is built into the language) that all observers perceive the same bodies as
photons, i.e. being a photon becomes “relative” to observers.

229This kind of research is also about how the universe could look like from the logical point of
view.These investigations are also motivated by the existence of Tachyon—Theory. About tachyon—
theory we note that tachyons are hypothetical particles which move faster than the speed of light,
cf. e.g. [75], [52].
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The axiom system Bax (speed of light is observer-dependent) and con-
nection to the literature

Besides the purposes outlined above, investigating Bax also serves other pur-
poses e.g. a kind of continuation of the conceptual analysis started by Friedman [90].
We will write more about this beginning with Remark 4.3.40 way below.

Let us recall that Thm.3.4.2 says that Newbasax implies that there is no FTL
observer, and let us recall from §3.3 that Newbasax is a refined version of our
basic axiom system Basax where we allow that different observers observe different
sets of events. We now introduce a new axiom system Bax which will be a refined
version of Newbasax. As we said, we will fine-tune AxEqy of Newbasax in that
the speed of light will not be the same for every observer, but for each observer
photons moving in different directions will have the same speed. We will change
Ax5 only because AxEq will be changed. After that we will state a theorem which
says that Bax still implies that there is no FTL observer, if n > 3. More on this
subject is in Madardsz-Németi [175] and Madarasz [172].

We will discuss the connections between Bax and the Kennedy-Thorndike ex-
periment (cf. Taylor-Wheeler [256, pp.86-88] for the latter) in Remark 3.4.25 at the
end of the present sub-section.

Below we postulate axioms AxEgy, AxEg;, Ax5°P% and Ax5FP. Recall

from §3.3 the definition of relation 3 (Def.3.3.5) and the definition of Newbasax
(Def.3.3.2).

AxEyy (Vm € Obs)(Vph,, ph, € Ph)
((m Y ph; A m oY phy) = vn(phy) = vm(th)).

That is, if observer m sees photons ph;, ph, then the speed of ph; and ph, is
same for m.

AxEg; (Vm € Obs)(Vph € Ph)(m S ph = v,(ph) # 0).

That is, there is no photon at rest.

Ax5°% (Vm € Obs)(Iph € Ph)(V¢ € G)
(m S ph A [ang?(6) < vm(ph) = (3k € Obs)trm(k) = e]).

That is, every observer m sees some photon ph such that on every line slower
than this photon there is an observer.
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Ax5F® (Ym € Obs)(Vph € Ph)(V¢ € G)
(ang®(¢) = v, (ph) = (3ph € Ph)tr,,(ph) = ).

The intuitive content of Ax5F® will be quite important for us: Assume that
observer m sees a photon with speed v. Now if in some other direction speed v
can be realized by a line ¢, then in that direction too there is a photon moving
with the same speed v. We will call Ax5P® a Weak Principle of Isotropy
(WPI) because it can be interpred as follows: (i) all directions are alike as
far as speed of light is concerned, i.e. speed of light behaves the same way in
all directions; (ii) more carefully: Assume Ax(v/ ). Now Ax5FP says that if
observer m sees a photon ph with speed v in some direction, then in every
other direction m will see a photon with the same speed v.

Remark 3.4.15 For completeness, we note that, intuitively, a principle of isotropy
says that, from some point of view, all spatial directions are alike. E.g. saying that
for all m € Obs and p € "F, the speed of light is the same in all spatial directions is
an instance of the principle of isotropy. (It might be useful to notice that this is a
kind of symmetry principle; for observer m, the “laws of physics” will not change if
he rotates his coordinate system ™F around his time-axis . We note, that we have
not included this principle into our axiom system Basax.) We will use isotropy only
in intuitive discussions, therefore we do not formalize it in our frame language.

<

Definition 3.4.16
We define

Bax & (Newbasax \ {Ax5, AXEO}) U {Ax59Ps Ax5Ph AxEgg, AxEq; },

where Ax5°P%, Ax5FE, AxEy, AxEy; are defined above. Therefore

Bax = {Ax1, Ax2, Ax3g, Ax4, Ax59%% Ax5F8 Ax6¢9, Ax6g;, AxEqe, AXEq; },
where for completeness we summarize below the axioms.

Ax1 G = Eucl(n, F).

Ax2 ObsU Ph C Ib.

Ax3g trm(h) € GU{D} A (3k)tri(h) # 0.

Ax4 tr,(m)=1.
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Ax5°Ps (3ph)(V¥) (m% ph A [ang?(f) < vn(ph) = (3k)¢ = trm(k)]).

Ax5P" ang?(¢) = vm(ph) = (3ph)l = trp(ph).

Ax600 w,[tr(k)] C Rng(wy).

Ax601 Dom(f) € Open.

AxEqy (m 3 phy, phy) = v(phy) = vy(phy).

AxEqg; v (ph) # 0. g

Remark 3.4.17 We will see later in Prop.4.3.6 that in Bax we can replace AxEqg,
saying that photons move with the same speed in each direction, with a weaker
axiom AxP1 saying that in each direction photons can move with only a unique
speed (which speed may depend on the direction). This will lead us to investigating
connections with well-studied directions in the literature.

<

Definition 3.4.18 Let 9 € Mod(Bax \ {AxEq;}). For every m € Obs we will

define c,,, € F U {0} as follows. By Ax59%% m S ph, for some ph € Ph. Let this

ph be fixed. We define

em & U (ph) .
The definition of ¢, is unambiguous by AxEgg. Intuitively, ¢, is the speed of light
for observer m. AxEg; then implies that ¢, # 0.

<

Recall (from Thm.3.3.12 in §3.3) that the models of Newbasax are, roughly
speaking, unions of models of Basax. Now, the models of Bax are like those of
Newbasax, except that the speed of light can vary from world-view to world-view
in the model. Newbasax is equivalent then to (BaxU{c,, = 1}). Bax is consistent,
and is still weaker than Newbasax, i.e. Bax = Newbasax. (A model for Bax
which is not a model for Newbasax is given in Madardsz [172].)

Next we state an FTL-type theorem, i.e. that Bax implies that there is no FTL
observer. Clearly Basax = Newbasax = Bax. Therefore Thm.3.4.19(i) below
implies Theorems 3.4.1(i), 3.4.2.
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THEOREM 3.4.19 Assume n > 3. Then (i) and (i) below hold.
(i) Bax = (VYm,k € Obs)(m 3 k = vp(k) < n).
(i) Bax\ {AxEo:} & (Vm,k € Obs) (m Bk = (vm(k) < em A

(em 0 = vm(k) < cm))).

On the proof: We will give the proof for n = 3 in §3.4.3 on p.233, and for n = 4 in
§3.4.3 on p.242.

For n = 3 the proof will be given in the following way. To every model 9t of
Bax a model 9t of Newbasax will be associated, roughly speaking in such a way
that v, (k) < ¢p holds in M iff v, (k) < 1 holds in M. Then using Thm.3.4.2, which
says that Newbasax does not allow F'TL observers, we will conclude that Bax does
not allow FTL observers. The proof for n = 4 will be carried out analogously to
the proof of Thm.3.4.1(i), recall that the latter theorem says that Basax does not
allow FTL observers. To do this we will have to formulate and prove analogous
counterparts of theorems of §3.1 and §3.3 for Bax.

It remains an open question whether the proof for n = 3 can be generalized to a
proof for n = 4.

The theorem above stating that our no FTL theorem is still provable in the weak
system Bax belongs to exploring the limits of applicability of the no FTL theorem.
(At the same time we could interpret the same quest as trying to answer the “why
type question” about this theorem.) In a certain direction we will explore this
question in the next item (“The axiom system Relphax ...”). However a more
direct exploration of this question is to weaken Bax even further (and checking
whether our no FTL theorem can be proved). This will be done on pp.491-501. Cf.
also Items 4.4.14, 4.4.14, 4.4.15.
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The axiom system Relphax (being a photon is observer-dependent )23

In what follows we will introduce a new, refined version Relphax of Basax. We
will again fine-tune AXE, but in a different way as we did in the case of Bax. In
the new axiom system Relphax, being a photon will be relative, and it will depend
on the observer.

To refine (or weaken) AXE, we will introduce a new variant L™ for our language
of relativity theory.

Definition 3.4.20 The new language LT for relativity theory is the same as the
old one except that Ph is no more a unary relation. Ph is a binary relation of sort
(B,B).

More precisely B, Q and G are the same sorts as in the old definition of our
language, i.e. Def.2.1.1 of §2.1, and 9N is a model of language L™ iff

M = (B, F,G; Obs, Ph,Ib,+,-,<, E, W), where
B, (F,+,-,<), G, Obs, Ib, E, and W are as in Def.2.1.1 of §2.1, and
e Ph is a binary relation of sort (B, B).

Now, similarly as in Def.2.1.1 a model 9 of L™ is a frame model of L* iff

M = Axor U {Axc} U {W(m,p,h) — Obs(m)}, where

Ax,r and Axg were defined in Def.2.1.1. Now E°"¢ and Modgp(X) are defined
as at the end of Def.2.1.1; and (according to Def.2.1.1) for brevity we will write =
and Mod(X) for =°"¢ and Modgrs(X), respectively.

Let 9% be a frame model of L. Let m € Obs. Then we define

Ph,, © {b€ B : Ph(m,b)}.
Intuitively, Ph,, is the set of those bodies which appear as photons for m (actually
for m, they are photons). <

Now AxE; and AxE, below constitute a weaker version of AxE. We will change
Ax5 and Ax2 to Ax5; and Ax2;, respectively, only to fit our axioms to the new
language L*.

Below we postulate axioms AxE,, AxE,;, Ax2,, Ax5;.

230For related investigations concerning the case of n = 2 we refer to David [71], [69].
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AxE; (Vm € Obs)(Vb € Phy,) v,(b) = 1.
Intuitively, for each observer m the speed of light is 1.
AXE, (Vm, k € Obs)(vm(k) <1 = Ph, = Phk) .

Intuitively, if observer m sees observer k£ moving slower than the speed of light,
then m and k perceive exactly the same bodies as photons.

Ax2; Obs CIb A (Vm € Obs) Ph,, C Ib.

Ax5, (Vm € Obs)(V( € G)((angz(z) <1 = (3ke Obs)l=trn(k) A
(ang?(() =1 = (3ph € Phy,) £ = trm(ph))> .

Definition 3.4.21 We define
Relphax o (Basax \ {Ax2 A5, AxE}) U{Ax2;,Ax5;, AXE;, AxE,}.
<

The following theorem says that in Relphax FTL observers are consistently
possible.

THEOREM 3.4.22 Assume n > 2. Then (i) and (i) below hold.
(i) Relphax (£ (Vm, k € Obs) v, (k) < 1.

(ii) Assume § is Fuclidean or Modgz(Basax) # 0. Then there is
M € Modz(Relphax) such that

M = (Im, k € Obs) vy, (k) > 1.

On the proof: The main idea of the proof is illustrated in Figures 71 and 72.
Namely, these figures represent possible models of Relphax(3) in which FTL ob-
servers exist. The key idea is the following. Take two Basax models, call them 9t
and 1. Now turn 91 around such that its time axis will coincide with the z axis of
the first model 9M. Next, try to glue the two models together in this position, see
Figure 71. Figure 71 represents the world-view of an observer m; coming from the
first model 9. The observers coming from 91 live inside the vertical light-cone, while
the observers coming from 9 live inside the horizontal light-cone. The rest of the
details of the construction can be found in [175, 172] (available from J. Madarész),
we do not include them here. In Figure 72 we glue together three Basax models. 1
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Figure 71: The lines like “—---—--- =" are tachyons for my and m; but are photons
for my. Observer my moves FTL relative to my and m;.
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Figure 72: A Relphax model with an FTL observer going in the z direction and an-
other FTL observer in the g direction. These (together with a “time-like” observer)
are “responsible” for the 3 different light-cones.
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We suggest that the reader compare Theorems 3.4.1, 3.4.2, 3.4.19, and Theo-
rem 3.4.22.

We note that one can consider Relphax to be a weakened version of Basax,
namely Basax == (Relphax U { Ph,,, = Phy}).

The reader is invited to compare Relphax(3), Relphax(2) and Basax(2). Both
in Relphax(n) and Basax(2) FTL observers are possible. So, there are some
things which Relphax(n) and Basax(2) have in common. Further, Basax(2) and
Relphax(2) are essentially equivalent, though formally they are not quite equiva-
lent. It would be nice to think over to what extent (and in what sense) Relphax(2)
and Basax(2) are close to each other.

Investigations of FTL phenomena in Basax(2) were done in §2.7 as well as in
the 1998 early March version of the present work. Cf. also David [71], [69].

A brief return to Bax etc.

Now, we turn to the possibility of improving the “no FTL observers” theorem.
Let us discuss briefly how much of our assumption Basax is needed for proving the
nonexistence of FTL observers, in Thm.3.4.1(i). We will concentrate on the question
of how much of Ax5 was needed.

In the next conjecture we will use the notion of the angle between two lines ¢, ¢;.
Though we did not define this, we hope the reader will understand what we mean.
Since we will need this notion only in two conjectures, we do not define it.

Conjecture 3.4.23 Replace the photon part of Ax5 by the following weaker axiom.

(*) (Ve € TF)(VL € PhtEucl)(Vp € "F)(VYm € Obs)(3ph € Ph)
(the angle between £ and trp,(ph) is smaller than €, and p € trm(ph)).

Intuitively, (*) together with AXE means that the traces of photons passing
through p as seen by any observer are “dense” on LightCone(p), for every p.

Let Basaxg be obtained from Basax by replacing the photon part of Ax5 with
(*) above. Then we conjecture that for n > 3

Basax((n) = there are no FTL observers.
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The axiom system Bax is introduced in Def.3.4.16.

Conjecture 3.4.24 We conjecture that Conjecture 3.4.23 remains true if we re-
place Basax with Bax in it. I.e. we obtain Baxy by replacing Ax5F® with

(Ve € *F) (V¢ € Eucl)(Vp € "F)(¥m € Obs)(3ph € Ph) (angz(ﬁ) = tm =

(the angle between ¢ and tr,,(ph) is smaller than ¢, and p € trm(ph))).
Then we conjecture that for n > 3

Bax |= there are no FTL observers.

Remark 3.4.25 The Kennedy-Thorndike experiment (cf. Taylor-Wheeler [256,
pp.86-88]) seems to suggest that the reality (of special relativity) may be closer
to Newbasax than to Bax. All the same, we have motivation for studying Bax
(and even weaker systems) summarized in (i)—(v) below:

(i) Conceptual analysis (like the one in Friedman [90], cf. also the introduction
of this work).

(ii) We do not know what future experiments will say.

(iii) Applicability of the ‘“theory” of Bax to accelerated observers and other
general relativity situations where the flexibility of Bax renders it more applica-
ble than Newbasax. (E.g. certain structures are “locally Bax” but not “locally
Newbasax”.)

To formulate items (iv) and (v) below we will use Friedman’s principles (P1),
(P2), (P3) concerning the speed of light which will be recalled in detail in Re-
mark 4.3.40 way below (p.522). The interested reader is suggested to look them up
there. Here we only say that (P1-P3) can be considered as “fragments” of Einstein’s
speed of light axiom AxE.

(iv) Friedman [90] p.159 line 6 bottom up — p.160 line 2, writes that Maxwell’s
(classical) electrodynamics predicts Bax but not Newbasax (or using Friedman’s
terminology it predicts (P1 + something) but not (P2)).23!

231This is relevant because of the following. Consider the “dynamics of theories” as outlined
e.g. in Andréka-Gergely-Németi-Sain [12], [11], [203] (of which a more accessible continuation is
Jéanossy et al. [143]). In this “paradigm” one can reconstruct the development of special relativity
the following way. We take two pre-relativistic theories, (1) Newton’s mechanics and (2) Maxwell’s
electrodynamics. Then we form the so called amalgamated coproduct of the two theories where the
basis of amalgamation is the postulate saying that what is an electromagnetic wave in theory (2) is
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(v) A further motivation for looking at Bax is that Friedman suggests to study
the logical connections between (P1) and (P3). To do this in a logical framework, we
look at a logical counterpart called?*? Bax™ of (P1) [as opposed to the counterpart
Newbasax of (P2)] and study the (P3)-style aspects (or properties) of this theory
e.g. in the form of the “no FTL observers” theorems of this sub-section.

<

a particular case of inertial body in theory (1). For completeness, we note that the mathematical
mechanism (in algebraic form) of forming such amalgamations is studied in Madardsz [170], cf.
also Andréka-Németi-Sain [28]. If we amalgamate these two pre-relativistic theories (1) and (2),
we will arrive at a theory say Ths which turns out to be inconsistent. Then we use the usual
methodology of logic to weaken the axioms little-by-little until the so obtained version Th; of Ths
becomes consistent. Then this Ths is called a possible version of special relativity.

Later we repeat this act of amalgamating theories by putting together special relativity and
Newton’s theory of gravitation. Again the amalgamated theory will be inconsistent, and then
again we can try to apply the methods of logic to modify the axioms until it becomes consistent.

232Tn §4 we will refine Bax to several weaker, more flexible subsystems. The first of these will be
the theory Bax™ developed in §4.3.
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Németi olvassa el!

3.4.3 Proof that Bax does not allow FTL observers

In this sub-section we will prove Thm.3.4.19 (p.221) which says that Bax does not
allow FTL observers. In this work we try to make our proofs “structuralist” ones
as opposed to “computational”. The idea is that a well designed structuralist proof
should provide “instant” insight, i.e. it should make the reader see in his minds eye
the essence of the proof. The mathematical logic framework adopted for the present
approach should help us in achieving this aim (if we work hard enough on it). Two
of these examples are §3.2 (“Intuitive ...”) and most of the proofs in §3.1 (where
we guess we were not very far from achieving this aim). In most parts of this work
we have not yet completely succeeded in reaching this aim, but in later versions
we hope we will get closer and closer to realizing it. The proof in the present sub-
section is an example of exceptional cases when we did not try to achieve the above
outlined structuralist aim. L.e. the proof below (especially that of Lemma 3.4.42)
is a computational one, we include it only for completeness and we plan to replace
it with a more structuralist proof in a later version. The reader who would like to
avoid computational proofs may safely skip the proofs of the lemmas in the present
sub-section.

In order to prove Thm.3.4.19 for n = 3, we need Lemmas 3.4.26, 3.4.27, 3.4.28
below.

LEMMA 3.4.26 Assumen > 3. Then (i)-(iv) below hold.
(i) Bax \ {AxEo } = (Rng(wm) NRng(wg) #0 = (cn=00& ¢ = oo))

(ii) Bax \ {AXEq} = (m Sk = cm:oo<:>ck:oo)>.

(
(iii) Bax \ {AxEp} &= (Rng (wm) N Rng(wg) 20 = (cn=0& ¢ = 0))
(iv) Bax \ {AxEq} = (m Sk = (cn=0%cp= 0)).

Proof:
Proof of (i): Throughout the proof the reader is asked to consult Figure 73.
Let 9t be a frame model of Bax \ {AxEq; }. Let m, k € Obs with

Rng(wy,) N Rng(wy) # 0 and ¢, = 0.
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trm (th)

Figure 73: Illustration for the proof of Lemma 3.4.26(3).

We will prove that ¢, = oo.

Intuitive idea of the proof: We will see that there is a neighborhood S(p,e) C "F
such that k& “sees” all those events which m sees in S(p,¢). By ¢, = oo, observer
m sees three photons such that they “form a triangle” inside S(p,€). See Figure 73.
Since k sees all events which m sees in S(p, €), those three photons form a triangle
in the world-view of k, too. This can only happen if ¢, = oo, and this will complete
the proof.

Formally: Let p € Dom(f;). Such a p exists by Rng(w,,) N Rng(wg) # 0. Now
by Ax6¢; there is ¢ € TF such that S(p,e) C Dom(fk). Let such an & be fixed.
Let g,r € S(p,e) such that p,q,r are non-collinear and ang®(pq) = ang’(qr) =
ang?(pr) = oo. Such g,r exist by n > 3. By Ax5F" and ¢, = oo, there are
phy, phy, phy € Ph such that tr,,(phy) = pq, tr,(phy) = GF, tr,,(phs) = pr. Let
such ph;, ph,y, phy be fixed. We have

ph; € wy(p) N wm(q),  phy & wn(r),
(47) ph, € wm(Q) N wm(r)a phy & wm(p)a
phy € w(p) N wi, (1), phy & wi(q).
)

By p,q,7 € S(p,e) C Dom(fx), there are p', ¢, 7" € "F such that

(48) wm(p) = wi(p), wmn(g) = wi(¢) and wy(r) = wi(r').

By (47), (48) and Ax3g, we have that p’, ¢, ' are non-collinear and try(ph;) = p'¢’
tri(phy) = ¢'r" and try(phy) = p'r’. By this and by AxEqy, we have vy(ph,
vg(phy) = vi(phs) = 0o. Hence ¢ = oo.
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Proof of (ii): Ttem (ii) follows by item (i) because

Ax6g0 = (m 3> k = Rng(w,,) N Rng(wy) # 0).

Proof of (iii): Throughout the proof the reader is asked to consult Figure 74.

trm(phy) trm(phy)

Figure 74: Ilustration for the proof of Lemma 3.4.26(iii).

Let 9 be a frame model of Bax \ {AxEq; }. Let m, k € Obs with
Rng(wy,) N Rng(wy) #0 and ¢, # 0.

We will prove that ¢, # 0.

Intuitive idea of the proof: We will see that there is a neighborhood S(p,¢) C "F
such that k& “sees” all those events which m sees in S(p,e). Now by ¢, # 0, m sees
two photons intersecting each other in one point which is in S(p, ). See Figure 74.
But then £ sees these two photons intersecting each other in one point. See Figure 74.
But this implies ¢; # 0, and this will complete the proof.

Formally: Let ph,, ph, € Ph such that tr,,(ph,) # tr.,(ph,y) and p € tr,,(ph;) N
trm(phz). Such ph,,ph, exist because of the following. By Ax59PS we have m 8 ph,
for some ph € Ph. Let such a ph be fixed. Let A be the linear transformation which takes

1;,1,,1,,13,...,1,_1 to 1;, —1,,1;,15,...,1,_1, respectively (for n =3 A is the rotation around
t axis with 90 degrees). Now let £,y € Eucl such that p € ¢4 N {s, 41 || trp(ph), Lo || Altr,(ph)].
Obviously ¢; # 5 and ang?®(¢;) = ang?(f2) = v (ph). Hence by Ax5FP, there are ph,, ph, € Ph
such that tr,(ph;) = ¢; and tr,,(phy,) = f2. For such ph; and ph,, tr,(ph;) # trm(phy) and
P € trm(phy) N try(ph,) hold.
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p € Dom(f) and Ax6¢; imply that S(p,e) C Dom(f,), for some ¢ € TF. Let
such an ¢ be fixed. Let ¢ € S(p,¢) such that

(49) phy € w(q) and phy & wi(q).

By p,q € S(p,e) C Dom(f,x) there are p’, ¢' € "F such that

(50) wm(p) = wi(p') and wm(q) = wi(q).

p € try(phy) N tr,(phy), (49) and (50) imply that p’ € tri(phi) N tri(phs) and
tri(phy) # tri(phy). This means that observer £ “sees” two photons whose traces
are different and contain point p'. But tr(ph,), trx(phy) € Eucl by Ax1, Ax2,
Ax3,. By this, we conclude that ¢, # 0 because there is exactly one ¢ € Eucl such
that p' € £ and ang®(¢) = 0.

Proof of (iv): Item (iv) follows from item (iii) because

Ax6go = (m >k = Rng(wm) N Rng(wy) # 0). 1

Prop.3.4.27 below is an analogue of Prop.2.3.3(iv) (§2.3).
PROPOSITION 3.4.27
(i) Bax \ AxEq; = (VYm € Obs) (cm #0 = (wy, is an injection)).
(ii) Bax = (Ym € Obs)(w,, is an injection).

Proof: It is enough to prove item (i) because item (ii) follows from item (i). Let
M be a frame model of Bax \ {AxEq; }. Let m € Obs with ¢,, # 0. Let p,q € "F
with p # ¢q. We will prove that w,,(p) # w.,(q). By ¢, # 0, there is £ € Eucl such
that ang?(¢) < ¢y, p € £ and q & £. ang®({) < ¢, Ax59P% and AxEg imply that
there is k € Obs with ¢r,,(k) = £. For such a k, k € w,,(p) and k € w,,(¢). Thus

p#gq. 1
Lemma 3.4.28 below is an analogue of Lemma 3.3.15 (§3.3).
LEMMA 3.4.28
(i) Bax \ {AxEo:} & (Vm, k € Obs)((m Dk A em0) = (k) # cm).

(ii) Bax = (Vm, k€ Obs)(m 3 k = vp(k) # cm).
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Proof: It is enough to prove item (i) because item (ii) follows from item (i). The
proof goes by contradiction. Let 9 be a frame model of Bax \ {AxEg;}. Let
m, k € Obs with m > k, ¢, # 0 and v, (k) = ¢n. By Ax5P® and v,, (k) = ¢, there
is ph € Ph such that t¢r,,(ph) = tr,(k). Let such a ph be fixed. Let p,q € tr, (k)
such that p # ¢q. Then w,,(p) # wm(g) by Prop.3.4.27(1). Now by Ax6g9 we have
that

(51) wm(p) = wi(p') and wn(q) = wi(q),

for some p',q' € "F. Let such p/,¢' be fixed. By wp,(p) # wn(q) and (51), we
have p’ # ¢'. Further ph, k € wi(p') N wi(q") because ph, k € wy,(p) N wy,(q). By
k € wi(p') Nwi(q') and Ax4, we have p'q = 1. Now p'q’ = t, ph € wi(p') N wi(q')
and Ax3p imply that tr;(ph) = ¢. By this and AxEgg, we have that ¢, = 0. But

by Lemma 3.4.26(iv), it follows that ¢ # 0 because ¢, # 0 and m > k. W

Proof of Thm.3.4.19 for n = 3: It is enough to prove item (ii) because item (i)
follows from item (ii).
Assume n = 3. Let

M = ((B, Obs, Ph, 1b), §, G; €, W) = Bax \ {AxEq;}.

Let mg, m; € Obs with mqg 9 my. We have to prove the following. If ¢,,, # 0 then
Vmo (M1) < €y, and if ¢,,,, = 0 then vy, (M) = 0.

Case 1: ¢m, # 0 and cp, # co. Throughout the proof for Case 1 the reader is asked
to consult Figure 75.

Intuitive idea of the proof: For the beginning of the intuitive idea of the proof the
reader is referred to the formulation of Thm.3.4.19 in §3.4.2. Recall from there that
from the model 9t above we want to construct another model 9t € Mod(Newbasax)
such that certain connections between 9t and 91 hold. In particular we will have to
check that an observer say m is FTL in 9t iff it is FTL in 9. We will construct 9t
in the following way. For each observer m we will change the world-view w”' of m
in such a way that the speed of light (for m) becomes 1. See Figure 75. This change
will be implemented by using a linear transformation A4,,. We note that A,, will
leave the time-axis ¢ point-wise fixed, will take the vectors 1,, 1, to two orthogonal
vectors ({0, z,y), (0, —y,z)) of the same length.

Formally: Assume c,,, # 0 and c,,, # 00. Then we define a frame model
N = (B, Obs™, Ph”, Ib™), §, G; €, W™)
as follows.

Obs™ ¥ {m e Obs : cm #0 & cm # 00,
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Figure 75: Illustration for the proof of Thm.3.4.19 for n = 3.

Ph® ¥ {phePh: (3m € Obs™ (m > ph holds in M)},
I ¥ helb: 3me 0bs™)(m 3 bholds in M)},

Now we are going to define W”. For every m € Obs™ first we will define a linear
transformation A,, of *F and then we will define w2 as follows. Let m € Obs.

By Ax5°Ps and Ax5F® m 5 ph for some ph € Ph with 0 € tr,(ph). Let
such a ph be fixed. By v,,(ph) = ¢, # oo there is (1,z,y) € trp(ph). Let this
(1,z,y) be fixed. Let A,, be the linear transformation of *F which takes 1t,1,,1,
to 14, (0, z,y), (0, —y, ), respectively. By ¢, # 0, we have that A,, is bijective. Let

o def
m = Am 0 Wy

Now
W {(m, p,b) : m e Obs™ & p € *F & b € wl(p)}.

By the above 91 is defined.
We will prove that (I)—(III) below hold.

(I) (Vm € Obs™)(Vb € B) (tr2(b) = Ay [tr(D)] A tr2(b) = AL [trP(b)]).

(IT) (Ym € Obs™)(V¢ € Eucl)(ang?(£) = 1 < ang?(An[f]) = cp).
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(TIT) (Vm € Obs™) (V£ € Eucl)(ang®(¥) <1 < ang®(An[f]) < cm).
To prove (I) let m € Obs™ and b € B. Then

tr,(b) = {pe’F :beuwy(p)}
{p€3F : be A, ow™(p)}
{pe’F : bew)(An(p))}
= A [{pe’F : bewy(p)}]
= AL[trn(®)]-

Hence tr2(b) = A tr™'(b)] and tr™(b) = A, [tr(b)]. To prove (II) and (III) let
m € Obs™ and let £ € Eucl. We will prove that

(ang?(¢) =1 & ang®(An[l]) = cm) and (ang?(f) <1 & ang®(Am[f]) < cm).

Without loss of generality we can assume that 0 € £ and ang®(¢) # oo because A,
takes parallel lines to parallel lines and because

(V¢ € Eucl)(ang®(f) = oo & ang’(An[f]) = o0). By 0 € £ and ang®({) # oo,
we have / = 0(1 A, 1), for some A\, € F. Let this A, u be fixed. By the defi-
nition of A,,, A, takes 1;,1,, 1, to 14 (0, z,v), (0, —y, z), for some z,y € F with
(1,z,y) € try,(ph), for some ph € Ph with m S phand 0 € tr(ph). Let this z,y
and ph be fixed. By (1,z,y) € tr,,(ph), we have 2 + y* = ¢,,. Now

ang®(Anlf]) = cm

& ang?(0, (1, \z + py, ux — Ay) = ¢ (by £=0(1, \, ) and by the def. of A,,)
< (Az+py)? + (pr — A\y)? = o (by the def. of ang?)
S (M+ ) (@ +y?) = cm (by computation)
& N+pi=1 (by 2% + y? = cm)
& ang’(f) =1 (by £ = 0(1, \, u)).
(IT) is proved. The proof of (III) is analogous, but for completeness we write down

all the details.
ang®(Anlf]) < cm
ang®(0, (1, \z + py, pr — A\y) < ¢y (by £ =0(1, \, 1) and by the def. of A,)
Az + py)? + (pz — M\y)? < e (by the def. of ang?)
(A2 4+ 1?)(2? + ¥?) < cm (by computation)
(
(

T e

=
&S M4+ ul<i by 2% + y? = )
& ang’(d) <1 by £ = 0(1, A\, u)).
(III) is proved.
Now we will prove that 9 = Newbasax.

N = Ax1 by M = AxL1.
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M = Ax2 because of the following. Let m € Obs™. By m € Ib and by m S m
holds in 9, we have m € Ib™. Hence Obs™ C Ib™". Ph™ C Ib™ holds by
Ph C Ib and by the definitions of Ph™, Ib™. M = Ax2 is proved.

M = Ax3o because of the following. (Vb € Ib™)(tr2(b) € G U {0}) holds because
of (I), M = Ax3o and Ib” C Ib. By (I), we have that

(Vb € Ib™)(Vm € Obs™) ((m 2 b holds in M) < (m > b holds in m)).
Hence we have
(Vb € Ib™)(3m € Obs™)(m <> b holds in N)

by the definition of Ib™. 9 = Ax3, is proved.

M = Ax4 because M = Ax4, because of (I) and because
(Ym € Obs™) A [t] =1.

M = Ax5 because of the following. Let m € Obs™ and let 1,6, € Eucl
with ang?(¢;) = 1 and ang®(¢s) < 1. We have to prove that there are
ph € Ph” and k € Obs™ such that tr,(ph) = ¢ and tr,(k) = £
ang?(An[01]) = ¢ and ang®(An[f2]) < cm hold by (II) and (III). Thus by
M = {Ax59P Ax5PP AxEgo}, we have that

(52) tr™(ph) = A,[6] and trX (k) = A, [ls],

for some ph € Ph and k € Obs. Let such ph and k be fixed. By m 5 ph holds
in 9, we have ph € Ph”. By m € Obs”, we have ¢,,, # 0 and ¢,,, # co. Hence

by m S k and Lemma 3.4.26, we have that ¢ # 0 and ¢, # oco. Therefore
k € Obs™ by the definition of Obs™. Now by (52) and (I), we get

trX(ph) = £, and tr(k) = £y.
Hence 91 = Ax5.

M = Ax6g9 because
(Vm, k € Obs™) (wz[trm)] — w™tr™(k)] and Rng(w) = Rng(wgﬂ))

and because 9 = Ax6qo.
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M = Ax6g; because M = Ax6g;, because
(Vm, k € Obs™) (Dom(£),) = A, [Dom(f)])
and because A,, is a continuous function.
N = AxEqy by M = AxEgg, by the definition of ¢, and by (I) and (II).

By the above, 91 = Newbasax is proved.

Since my # 0, my # oo and my N my, we have ¢, # 0 and ¢,,, # o0 by
Lemma 3.4.26. Hence mg, m; € Obs”. By Thm.3.4.2, which says that Newbasax
does not allow FTL observers, we have ang®(tri (m1)) < 1. By this and by (III),
we get ang®(Am,[trin, (m1)]) < ¢my. By (I), this is equivalent with ang®(trin (mq)) <

m
Cmo- Hence v (m1) < cpy-

Case 2: ¢y, = 00. Assume ¢,,, = co. Then v,,,(m;) < ¢, holds by Lemma 3.4.28.

Case 8: ¢p, = 0. Assume ¢, = 0. Then we have to prove that v,,,(m) = 0. Since

Cme, = 0 and my N mq, we have ¢,, = 0 by Lemma 3.4.26. Then by Ax4 and
Ax5F there is ph € Ph such that tr,, (m;) = try,, (ph). Let this ph be fixed.
By Ax6q0, we have that w,,[trm,,(m1)] € Rng(wy,,). By this and tr,,, (m;) =
trm, (ph), we have (Vp € try,,(m1)) ph € wp,,(p). Hence tr,,,(mi) = trm,,(ph). By
this, we have v,,,(m;) = 0 since v,,,(ph) = ¢, = 0. 1

Now we turn to the proof of Thm.3.4.19 for n = 4. As we said, to do this we have
to formulate and prove analogous counterparts of theorems and statements of §3.1
and §3.3 for Bax.

Claim 3.4.29 below is an analogue of Claim 2.3.8(ii) (§2.3).
Claim 3.4.29 Bax = (., is a (possibly) partial one-to one function).

Proof: The proof follows by Prop.3.4.27(ii). 1
Lemma 3.4.30 below is an analogue of Lemma 3.3.16 (§3.3).

LEMMA 3.4.30
Bax = (Vm, k € Obs)(Vp,q € "F) ((angz(p_q) =c¢m AN p € Dom(fk))

= ¢ € Dom(f,, ))

Proof: The proof is analogous to the proof of Lemma 3.3.16. Checking the details
is left to the reader. 1

Thm.3.4.31 below is an analogue of Thm.3.3.8 (§3.3).
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THEOREM 3.4.31
Bax |= (Vm, k € Obs)(Rng(w,,) = Rng(wy) V Rng(w.,) N Rng(wg) = 0).

Proof: The proof follows by Lemma 3.4.30 as follows. Let 99 be a frame model
of Bax. Let m,k € Obs with Rng(w,,) N Rng(wy) # 0. We will prove that
Rng(w,,) = Rng(wy,). To prove this it is enough to prove that Dom(f,,;) = "F and
Dom(fy.,) = "F. We will prove that Dom(f,.,) = "F, the proof of Dom(fg,,) = "F
is analogous. To prove this let ¢ € "F. We will prove that ¢ € Dom(f.x).

Case 1: ¢y = 00. Assume ¢, = 00. Then ¢; = 0o by Lemma 3.4.26(i). First we will
prove that m > k. Let p € Dom(fgm). Such a p exists by Rng(wm) N Rng(wy) # 0.
Then there is r € % such that ang?(pr) = oo = c¢;. Let this r be fixed. Since
p € Dom(fy,,) and ang®(pr) = cx, we have that r € Dom(fy,,) by Lemma 3.4.30.
By r € t = try(k), we have that k € wg(r). This and r € Dom(fy,,) imply that
k € wy(r'), for some ' € "F. Hence try(k) # 0, i.e. m = k. By Lemma 3.4.28,
we have v,,(k) # ¢, = oo. Since v,,(k) # oo, there is s € tr,,(k) with ang?(5q) =
00 = ¢y Now we have s € Dom(fx) by s € tr,(k) and Ax6g9. s € Dom(f,y) and
ang®(3q) = ¢, imply ¢ € Dom(f,,;) by Lemma 3.4.30.

Case 2: ¢y, # 00. Assume ¢, # 00. Let p € Dom(f,,). We will show at the end of
the proof that

(563) (3 rt,...,r" €"F) (ro =p A 1" =q A (Vi € n)ang®(riritl) = cm).

Now by (53) and p € Dom(f,), by applying Lemma 3.4.30 n times, we get g €
Dom(f). Thm.3.4.31 is proved modulo (53). To prove (53) we need Claim 3.4.32
below.

Claim 3.4.32 Let ¢ € TF such that there are aq,ao,...,a, 1 € F with
c=a?+a%+...+ a2 ;. Then the vector-space "F is generated by
{(1,p1ap2:"'apnfl> : plap2a"'apnflEF&c:p%+p§+"'+p271}'

Proof of Claim 3.4.32: The proof goes via straightforward induction on n. For com-
pleteness we write down all the details.

Assume n = 2. Let ¢ € TF such that there is a; with ¢ = a?. Let such an a; be
fixed. Then (1,a1), (1, —a;) are linearly independent and

(1,a1),{1,—a1) € {(1,p1) : p1 € F & c=p?}.

Hence 2F is generated by {(1,p1) : p1 € F & ¢ = p?}. Thus Claim 3.4.32 holds for
n=2.
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Assume that Claim 3.4.32 holds for n = k, where k£ > 2. We will prove that
Claim 3.4.32 holds for n = k + 1. To prove this let ¢ € TF such that there are
a1,a9,...,a € F with ¢ = a} + a3+ ...+ a?. Let such ay,as,...,q; be fixed. We
have to prove that **'F is generated by

A= {<1aplap25"'apk> plapZa’pkEF&C:p%—i_pg'i_'i'pi}

By c=a?+a3+...+a2 and k > 2, there is a; (1 <4 < k) such that ¢ > a?. Without
loss of generality we can assume that ¢ > a2. Then we have c—a? = a?+a3+...+a:_,
and ¢ — a; € TF. Then by the assumption that Claim 3.4.32 holds for n = k, we
have that *F is generated by

{<1ap1’p23"'apk—1> S P,P2 -5 Pe—1 EF& c_a%:p§+p§++p%—l}

Hence the sub-space of **'F generated by

C:= {<1aplap23"'apk—laak> - P1,P25- -5 Pk—1 GF&C_az:p%_'_pg_{__‘_pi—l}

is k-dimensional.

Case I: ax # 0. Assume ay # 0. Then (1, a1, a9, ..., ax_1, —a) is not an element of
the subspace generated by C and it is an element of A. By this, by C C A and by C
generates a k dimensional subspace, we have that A generates a (k+ 1)-dimensional
subspace, i.e. *T1F is generated by A.

Case II: g = 0. Assume ap = 0. Then there is a; (1 < i < k — 1) such
that a; # 0. Without loss of generality we can assume ay_; # 0. Then
(1,a1,a9,...,a5_2,ax, ax_1) is not an element of the subspace generated by C and it
an element of A. By this as in Case I, it follows that **'F is generated by A. This
completes the proof of Claim 3.4.32.

QED (Claim 3.4.32)
Proof of (53): By Ax5F®, there is ph € Ph with v,,(ph) = ¢, and tr,(ph) > 0.
Let such a ph be fixed. By v,,(ph) = ¢, # oo there is (1,a4,...,a, 1) € try,(ph).
Let this (1,ay,ay,-..,a, 1) be fixed. By 0 € tr,,(ph) and v,,(ph) = ¢,,, we have
¢m=0at+ a3+ ...+ a2 ;. Then by Claim 3.4.32, "F is generated by

A:={{1,p1, P2, Dn1) : D1D2s-- P 1 EF & =0 +D5+...+ D> 1}

For every u € A we have angQ((_)_u) = ¢p,. By this and because "F is generated by
A, there is a basis u!, 12, ..., u™ of "F such that

ang?(0u') = ang®(0u?) = ... = ang?(0u™) = cp.
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Let such u', ..., u"™ be fixed. Recall that ¢ is a fixed element of "F and p is a fixed
element of Dom(f;).

g—p=Mu'+Xu®+.. +\u",
for some Ay, Ag,..., A\, € F. Let such Aj, Ao, ..., A\, be fixed. Let
r®:=pand (Vi € n) r't! =" + \u'".

Now for 7%, 7!, ... r" we have

r’ =p, " = ¢, and (Vi € n)ang?(riritl) = c,,.
Hence (53) above holds, and this completes the proof of Thm.3.4.31. &
Thm.3.4.33 below is an analogue of Thm.3.3.9 (§3.3).
THEOREM 3.4.33 Bax = (Vm, k € Obs)(m S k < Rng(w,) = Rng(wy)).
Proof: The proof follows by Thm.3.4.31. 1

Thm.3.4.34 below is an analogue of Thm.3.3.10 (§3.3).

THEOREM 3.4.34
Bax = “% is an equivalence relation when restricted to Obs.”

Proof: The proof follows by Thm.3.4.31. 1
Proposition 3.4.35 below is an analogue of Proposition 2.3.3(v) (§2.3).

PROPOSITION 3.4.35
Bax = (Vm, k € Obs) (m %k = (fup is a bijection fy : "F — ”F))

Proof: One could think that this proposition immediately follows from Thm.4.3.11
about Bax™. However in Bax™ we assumed that there is a photon in every direc-

tion. This is not assumed in Bax, therefore we include the proof here. The proof
follows by Claim 3.4.29 and Thm.3.4.33. 1

Thm.3.4.36 below is an analogue of Thm.3.1.1 (§3.1) and Thm.4.3.11 (§3.4.2).

THEOREM 3.4.36 Bax = (Vm, k € Obs)(V/ € Eucl)(m 3 k = f,.x[¢] € Eucl).
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Proof: One could think that this theorem immediately follows from Thm.4.3.11
about Bax™. However in Bax™ we assumed that there is a photon in every di-
rection. This is not assumed in Bax, therefore we include the proof here. Let 9t
be a frame model of Bax. Let m,k € Obs with m S k. To prove that f,,; takes
lines to lines we need Claims 3.4.37, 3.4.38 and 3.4.39 below which are analogs of
Prop.2.3.3(viii) (§2.3), Lemma 3.1.9 (§3.1) and Lemma 3.1.10 (§3.1), respectively.

Claim 3.4.37 (V/ € Eucl)(ang®(¥) < cm = filf] € Eucl).
Proof of Claim 3.4.87: The proof is analogous to the proof of Prop.2.3.3(viii).

Claim 3.4.38 (V/,, 4, € Eucl)((angﬂ(zzl) <em AL || 8) = Fulta] | fmk[€2]>.

Proof of Claim 3.4.38: The proof is analogous to the proof of Lemma 3.1.9.

Claim 3.4.39 (Vp,q € "F) (ang2(p_q) <lm = Fp(B9) = fmk(m;fmk(q))_

Proof of Claim 3.4.39: The proof is analogous to the proof of Lemma 3.1.10.

Now (V¢ € Eucl)fx[¢] € Eucl can be proved by Claims 3.4.37, 3.4.38, 3.4.39 as
Thm.3.1.1 was proved by Prop.2.3.3(viii) and Lemmas 3.1.9, 3.1.10. 1

Thm.3.4.40 below is an analogue of Thm.3.1.4 (§3.1).

THEOREM 3.4.40
Bax = (Vm, k € Obs) (m Sk = (fx = @of, for somef € Aftr and ¢ € Aut(F)).

Proof: The proof follows by Prop.3.4.35, Thm.3.4.36 and Lemma 3.1.6 (§3.1). 1
Lemma 3.4.41 below is a generalization of Lemma 3.4.5 (§3.4.1).

LEMMA 3.4.41 Assume n > 3 and § is Euclidean. Let c¢i,co € TF. Assume
f:"F —"F s a bijection such that

(%) (V£ € Eudl) (f[e] € Eud A (ang(f) = e & ang’(flf]) = 02)).

Then ang?(f[t]) < co.
Proof: Let ¢;,¢co € TF and f : "F — "F be a bijection such that (x) holds. Let fi,f,
be the linear transformations for which f;(1;) = 1;, (Vi € n\ {0})fi(e;) = /e1 - e,
fo(1;) = 1, and (Vi € n\ {0})fa(e;) = \/c2 - €;. Then for g :=f; ofof," we have

(Ve € Eucl)(g[ﬂ] € Eudl A (g[f] € PhtEucl < € PhtEucI)).
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By Lemma 3.4.5 we have that g[t] € SlowEudl, i.e. ang?((f, o fof;')[t]) < 1. But
this is equvivalent with ang?(f[t]) < cp. W

For n = 4 Lemma 3.4.42 below is a generalization of Lemma 3.4.7 (§3.4.1).

LEMMA 3.4.42 Assume ci,cy € TF such that ¢, = ang®({), for some £ € Eucl.
Assume f € Aftr(4,F) satisfying (%) in Lemma 3.4.41 above. Assume §. is an
ordered field such that § C §.. Let f, € Aftr(4,35.) for which f, | AF = f. Then f,
satisfies (%) in Lemma 3.4.41 above when f, and §. are substituted in place of f and
§, respectively.

We will give the proof of Lemma 3.4.42 after the proof of Thm.3.4.19 for n = 4.

Proof of Thm.3.4.19 for n = 4:
Proof of (i): Assume n = 4. Let 9 be frame model of Bax. Let m,k € Obs with

m 3 k. We have to prove that v, (k) < cp.

Intuitive idea of the proof: We want to prove that ang?(ir,,(k)) < c¢,. We will
see that fy,, = @ of where ¢ € Aut(F) and f is an affine transformation satisfying
(x) in 3.4.41 for ¢; = ¢(cx) and ¢z := ¢, By 3.4.42 f will continue satisfying
(x) in a larger field §., which, in turn will be Euclidean. Looking at it from §F,,
ang’(f[t]) < cm by 3.4.41. Therefore ang?(f[t]) < ¢, in §, too and then tr,, (k) = f[t]
will complete the proof.

Formally: By Thm.3.4.40, f,,, = @ of for some f € Aftr and ¢ € Aut(F). Let
this f and ¢ be fixed. We have fi,,[tr, (k)] = tr,,(k) because f, is a bijection. By
fem = @ of, by @[t] =1, by tri(k) =t and by i, [tri(k)] = tr,,(k), we have

(55) flt] = trp, (k).
By Ax5°% Ax5F" AxEg, and Prop.3.4.35 it is easy to see that
(56) (V¢ € Eucl)(ang®(£) = ¢, < ang®(feml[l]) = cm)-

By (56) and fy,, = @ of, we have
(57) (Ve Eucl)(f[ﬁ] €Eud A (ang®(t) = ¢(ci) & ang?(f[£]) :cm)).

¢t = vg(ph), for some ph € Ph. Let such a ph be fixed. Then @[tri(ph)] € Eucl and
ang?(p[try(ph)]) = ¢(ck). Thus

(58) (3¢ € Eucl)ang®(£) = p(cg).
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Let §, be an ordered field such that §, is Euclidean and § C §,. Such an §, exists,
e.g. the real closure of § is such. Let f, € Aftr(n,3,) such that f, | *F = f. By
AxEg; and (58), we have ¢(ck),cn € TF. According to our Convention 3.1.2; F,
denotes the universe of §,. By this, by (57), by (58) and by Lemma 3.4.42, we have
that

(59) (V£ € Eucl) (f*[e] € Eud A (ang?(f) = o(cr) < ang?(f.[4]) =cm)).
Let t, := F, x""1{0}. Then ang?(f,[t.]) < ¢, by Lemma 3.4.41. Hence ang®(f[t]) <

Cm- By this and by (55), we have v,,(k) < ¢p,.

Proof of (ii): Assume n = 4. Let 9t be a a frame model of Bax \ {AxEg;}. Let

mg, m1 € Obs such that mg 9 my. We have to prove the following. If ¢,,, # 0 then
Umo(M1) < €y, and if ¢,y = 0 then v,,,(m1) = 0. For ¢,,, = 0 or ¢, = 00 the
proof is analogous to the proof when n = 3. Assume c¢,,,, # 0 and ¢,,, # co. We
define a frame model

N = (B, Obs™, Ph™, Ib™), §, G; €, W™)
as follows.

Obs®™ = {m € Obs : ¢y #0 & cm # 0},
Ph™ {ph € Ph : (3m € Obs™)(m > ph holds in 9)},
I € {belb: (3me Obs™)(m S b holds in M)},
Wh L W (0bs™ x 4F x B).

It is easy to check that 91 = Bax by 9 = Bax \ {AxEp;} and Lemma 3.4.26.

Further mg,m; € Obs™, v™% (my) = vX (mq) and ¢ = ¢} . By item (i) we have
v (my) < e, hence vk (my) < ey .

Proof of Lemma 3.4.42:
Claim 3.4.43 Let cq,co, 3§+, f, f, be as in the formulation of Lemma 3.4.42. Then
(%) (V€ € Eucl(4,5.))(ang*(£) = c1 = ang*(f.[£]) = c2).

We will prove Claim 3.4.43 very soon. Lemma 3.4.42 follows from Claim 3.4.43
because of the following. Intuitively: If f satisfies (x) in 3.4.41 then f~' satisfies
(x) when f~ ! ¢y, c1 are substituted in place of f, ¢y, ¢, respectively. Then applying
Claim 3.4.43 to f,c1,co and to f~, ¢y, ¢1, respectively, we obtain Lemma 3.4.42.
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More formally: Let ¢, co, §s, f, f, as in the formulation of Lemma 3.4.42. Then by
Claim 3.4.43, we have

(61) (V€ € Eucl(4,3.))(ang®(f) = c1 = ang*(f.[¢]) = co).

Let (f 1), € Aftr(4,F,) such that (f '), [ *F =f . Obviously (f 1), = (f,)~".
By f satisfying (x) in Lemma 3.4.41 we have

(62) (V€ € Eucl(4,F)) (ang®(f) = c; & ang?(f'[{]) = c1).
(63) (3¢ € Eucl(4,F))  ang’(f) = ¢,
because there is £ € Eucl such that ang?(f) = c;, and ang®(f[¢]) = c, for that £ by

(x). By (62) and (63), Claim 3.4.43 can be applied to cy,c1, T, f 1, (F 1),. So we
have

(64) (V¢ € Eucl(4,3.))(ang?(f) = c; = ang®((f"').[€]) = c1)-
By (61), (64) and (f '), = (f,)~", we have

(V€ € Eucl(4,3.))(ang’(f) = c; & ang®(f.[f]) = ca).

Thus Lemma 3.4.42 follows by Claim 3.4.43.

Proof of Claim 3.4.43: Let c1, co, 8+, f, f, be as in formulation of Lemma 3.4.41. We
have to prove that f, satisfies (%x) in Claim 3.4.43. Without loss of generality we
may assume that f(0) = 0.

On the structure of the proof: Items (65) an (66) below are reformulations of say-
ing that f and f, satisfy (xx), respectively. Items (69) and (70) below are equivalent
forms of (65) and (66), respectively. Hence our task is to prove (70) from (69). This
is done by the linear algebraic considerations given below.

By our assumption that f is a linear transformation, we have that

3 3 3 3
(Vp € “F)f(p) = <Z Pitio, Zpiaila sz‘am, Zpiai:s),
i=0 i=0 i=0 i=0
for some a;; € F, where 7,5 € 4. Let these a;;’s be fixed. By the definition of f,, we

have
3 3 3 3
(Vp € *F,)f.(p) = <Zpiai07 sz'aﬂ, sz'aﬂ, Zpiai3>-
i—0 i—0 =0 =0

Since f satisfies (x), we have that (65) below holds, and to prove that f, satisfies
(xx) we have to prove (66) below.

3 23 3 2
(65) (Vp€F) apy =pi+p;+p; = (szﬂw) = Z (Z piaij)

=0
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3 2 3 2
(66) (Vp € “F.) apy=pi+p;+0; > © (sz'am) = Z (Z Ih‘%’j)
' i=0

1=0 j=1

Let (\V/Z,] S 4) dij ‘= C2G400450 — 22:1 ik Ajk, and let b() = d()(), bl = dlla b2 = dgz,
bz := d33, by := do1+dho, bs := doa+dag, bs := doz+dso, b7 := dio+da1, bg := di3+d31,
by := dgz + d3p. Then (65) and (66) above are equivalent with (67) and (68) below,
respectively.

(67) (Vp € °F) (61;03 =p? +ps+p5 = pibo + pibi + piba + Pibs+
+pop1ba + pop2bs + Popsbs + p1p2br + P1p3bs + Papsby = 0) .
(68) (Vp € 'F.) (01193 =p7+ 05+ 15 = Pybo + Piby + Pibo + byt
+pop1bs + Pop2bs + Popsbe + p1p2br + p1p3bs + papsby = 0) :
Let E and E, be the following sets of linear equations.

E := {pgmo + piz1 + pox2 + D3T3 + PoP1Z4 + PoP2Ts + PoP3Te + P1P2Tr+
+p1p3Ts + Papae =0 : p € 'F & apy = pi + p3 + 3}

E, := {pgmo + piz1 + ps2 + P3T3 + PoP1Z4 + PoP2T5 + PoP3Te + PiP2T7+
+p1P3Ts + Pap3ze =0 1 p € *F, & c1ph = pi + ps + p3).

Now (67) and (68) above are equivalent with (69) and (70) below.

(69) (bo, b1, b, b, by, bs, bg, by, bs, bg) is a solution for the system of equations E.
(70)  (bo, b1, ba, bs, by, bs, bg, b7, bs, bg) is a solution for the system of equations FE,.

Thus to prove Claim 3.4.43 it is enough to prove (69)=-(70). To prove (69)=>(70)
it is enough to prove that each linear equation from E, is a linear combination of
some equations from F, i.e. that each vector from A, is a linear combination of some
vectors from A, where A and A, are defined below.

A = {(p3, p3, P3, D3, PoP1, PoP2, PoP3, P1D2, P1P3, D2ps) : p € *F & c1py = p? + p3 + p3}.
A, = {(p?, p?, P%, D3, Pop1, Pop2, PoP3, P1P2, P1P3, P2p3) : p € *F. & cipt = pi+pi+pi}.

Both A and A, are at most 9-dimensional because of the “condition” cip3 = p? +
p3 + p? in the definitions of A and A,. Hence to prove that each vector from A, is
a linear combination of some vectors from A it is enough to prove that A generates
a 9-dimensional sub-space of 1°F because A C A,. Now to prove that subspace
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generated by A is 9-dimensional it is enough to prove that the subspace W of °F
generated by

C = {{p}, p3, D3, D1, P2, D3, P12, P1D3, P2P3) : D1, Do, p3 € F & ¢1 = pi +p5 + p3}

is 9-dimensional, i.e. W = °F. By (3¢ € Eucl)ang®(¢) = c;, we have that there is ¢
with ang?(¢) = ¢; and 0 € £. Let such an £ be fixed. Then (1, \, i, v) € ¢, for some
(1, \, p,v). Let this (1, A\, u,v) be fixed. Now ¢; = A2 + p? + v? by ang?(f) = c;.
We can assume that 0 # |A| # |u| # 0 (we checked that this is true, but we do not
include the details here). We have

vp o= (N VAN, w v, A, M, uv ) € C,
vg = (A%, P VA =N -, —v, A, v, uv ) € C,
vy = (A%, p? A =N ow, v, =, =M, uv ) € C,
v = (A%, P vE N —u, —v, —Au, =M, uv ) € C,
vs = (A%, p? ovE N —u, v, =My, M, —uv ) € C,
Ve (N2 w? v N ou, —v, A, =X, —uv ) € C,
v = (p? VAN o, v, N, upy, M, v ) € C,
vg = ( V3, N, Wt v, N, ow, A, ouy, M) € C,
vg = ( p? N, VA op N, v, A, ouy, M) € C.

For every 7 € 9, 1; denotes the i'th unit vector of the coordinate-system °F. It is
easy to check that 13 = ﬁ(vl — vg — v3 +v4). Hence 13 € W. Similarly 14,15 € W.
It is easy to check that 15 = ﬁ(vl — vy — V5 + vg) + v, for some v which is in the
sub-space generated by {13, 14, 15}. Hence 1¢ € W. Similarly 17,15 € W. It is easy
to check that 15+ 1; + 15 = m(vl + v7 + vg) + v, for some v which is in the
sub-space generated by {13, 14, 15,16, 17,1s}. Thus 1y + 1; + 1o € W. It is easy
to check that 19 — 1, = ﬁ(vl — vg) + v, for some v which is in the sub-space
generated by {13, 14,15, 1, 17, 13}. Hence 15 — 1o € W. Similarly 1y — 13 € W. But
lo+ 114+ 19,1 — 11,19 — 15 € W imply 19 € W. Similarly 1,1, € W. We proved
(Vi € 9)1; € W, and this completes the proof of Claim 3.4.43 and Lemma 3.4.42. 1
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3.5 Simple models for Basax

For n < 3 we proved that Basax(n) is consistent in §2.4 (“Models for Basax in
dimension 2”) and in §3.2 (“Intuitive ... Basax(3)”). In this section we show that
Basax is consistent for arbitrary n > 2 by defining a class of frame models, which we
call the class of simple models, in symbols SM, and showing that SM = Basax. The
consistency proof for Basax(3) in §3.2 was an intuitive, visualizable, structuralist
one. Although we do prefer such structuralist proofs to computational ones, the
proof given below is a computational one.?3® We plan to replace the computational
proof below with a structuralist one like the one in §3.2 for arbitrary n,?3* in a later
version.

In §2.4, first we gave an intuitive idea for a consistency proof for Basax(2); and
then in the second part of §2.4 we gave a concrete construction of models denoted
there as 9. The consistency proof below will be analogous with the construction
of ML in the second part of §2.4.23% This proof goes by first defining a class SM
of n-dimensional frame models, for arbitrary n (cf. Def.3.5.5), and then proving
SM = Basax in Thm.3.5.6 (the proof of Thm.3.5.6 will be presented only for n =3
and will be left to the reader to generalize it to n > 3).

For the definition of the class of simple models, first we single out some trans-
formations of "F. The intuitive meaning of these transformations will be discussed
below the definition.

Definition 3.5.1 We define Trivy(n,§) = Trivy and Triv(n,§) = Triv as follows.
Trive < {f€ Linb : f(1) =1, A (¥p € "F) [If(p)]| = Il }

Triv & {for : feTrivp N 7€ Tran} .

<

233The reason for this is that we do not have time to elaborate the 4-dimensional version of the
structuralist proof given in §3.2, while the computational proof below is very easy to generalize to
arbitrary n > 3. (To save space, we write up that proof for n = 3 only and leave the straightforward
generalization to the reader.)

234which in our case means n = 4, because we made a convention for not caring about the n > 4
case

235Let SM(n) denote the n—dimensional version of the class SM of models to be defined in this
section. The class SM(2) is almost the same as the class
{9 : P is an appropriate choice function (cf. §2.4, p.80) } defined in §2.4. The only difference
is that SM(2) is slightly bigger in the following sense: In SM(2) we have an extra parameter N,
which on the other hand cannot do too much for n = 2. Another difference is that in SM(2) §F is
allowed to be an arbitrary Euclidean field, while in ¥ it was fixed to be R.
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Trivy consists of linear transformations which are identity functions on the
time-axis ¢ and preserve the (squares of Euclidean) lengths (and consequently pre-
serve the squares of Euclidean distances and orthogonality L.). The intuitive im-
portance of Trivy comes from the fact that the transformations in Trivy involve
no “relativistic effects”, one could say that they are very non-relativistic or, so to
speak, trivial. The abbreviation Trivy refers to this. Typical examples for such
transformations, e.g. in the case n = 3 and § = R, are rotations around ¢ axis and
reflection w.r.t. Plane(Z, 7). Actually these two kinds generate all of Trivy(3, ). For
completeness, we note that an equivalent definition for Trivy would be the following.

feTrive &5 ((Ypef)flp)=p A (e S) () €S A )] =lol)),

where we recall that S denotes the space part {0} x " F of our coordinate-system
"F.

Triv consists of compositions of members of Trivy and translations. An equiv-
alent definition for Triv is represented in Figure 76. Since translations are also
non-relativistic, the members of Triv are non-relativistic, too.

t f(1:)
f T
1
t %w)‘/\??y)
1y 1, T

Figure 76: f € Triv iff f is an affine transformation taking the unit vectors into
pairwise orthogonal (in the Euclidean sense) vectors®7 of length 1, and leaving the
direction of the time-unit vector unchanged.

The members of Triv represent “changes” (e.g. actions, world-view transfor-
mations) which are sort of irrelevant from the point of view of relativity theory;
therefore we will be a little bit casual (or “careless”) in connection with situations
when only members of Triv make a difference.

237n this figure we use the word vector in an intuitive sense where a vector is represented by a
pair of points (instead of a single point as is done in the rest of this work).
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Remark 3.5.2 (Trivg,o0, 7 Id) and (Triv, o, ! Id) are groups.

Lemmas 3.5.3 and 3.5.4 below are needed for the definition of the class of simple
models.

The following lemma says that any line ¢ can be mapped into Plane(t,Z) by a
trivial transformation (taking any prescribed point on £ to 0). Somehow, this means
that any “configuration” (involving two observers) can be transformed to a standard
configuration by trivial transformations.

LEMMA 3.5.3 Assume § is Euclidean (i.e. “positive” square-roots exist*>® in §).
Assume ¢ € Eucl and p is a point lying on £. Then there is N € Triv such that
N[{] C Plane(t,Z) and N(p) = 0.

We will give the proof at the end of this section on pp.260-262.
LEMMA 3.5.4 Assume ¢ € Eucl and N € Triv. Then ang?(¢) = ang?(N[/]).
Proof: The proof is straightforward. We omit it. 1

In Def.3.5.5 below the class SM of simple models will be defined in the following
way. For each Euclidean ordered field § and for each function P that to each
¢ € SlowEucl associates two distinct points o, and ¢, lying on ¢ and N, € Triv with
N,[¢] C Plane(%,z) and N;(o;) = 0, a frame model 9t will be defined. We suggest
the reader to read the following definition only for n = 2 and n = 3, at the first
reading.

Definition 3.5.5 (Simple Models, SM)

Let § be a Euclidean ordered field (i.e. “positive” square roots exist in §). Let
P be a “choice” function that to each ¢ € SlowEucl associates two distinct points
o¢ and t; lying on £ and N, € Triv with N,[¢] C Plane(Z,z) and Ny(o,) = 0. By
Lemma 3.5.3 above, such a P exists. We will denote P () by (og,ts, Ny). To each
such § and function P, we will define a frame model img )

We define 90 & 9mE < ((B; Obs, Ph, Ib), §, G; €, W), where

def
G = Eud,

238 Throughout by this expression we mean that square roots of positive elements exist in §.
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Obs % SlowEudl,

Ph % PhtEudl,

B Y 1b% ObsUPh={¢€Eud : ang?(f) < 1} = SlowEucl U PhtEucl.

By the above, Ax1 and Ax2 are true in 90t. It remains to define W. Let

First we will define w,,, : "F — P(B) and fy,,, : "F — "F for all
k € SlowEucl, k # my. To define w,,,, let p € "F. Then

Woe(p) € {LEB :pel}.

By this, we have that for all £ € B,
trme(0) = £,

in particular, ¢r,,,(mg) = mg = ¢. Thus Ax3, Ax4, Ax5, AXE are satisfied when
m is replaced in them with my.

We turn now to defining fg,,-

Let us recall that for every k € SlowEucl, the parameter P of the model 91 dof

gives a triple (o, tg, Ni) such that oxty = k (ox # tx) and Ny € Triv with
Ni[k] C Plane(Z,7) and Ni(o;) = 0.

First we will define fy,,, for the case n = 2, after that for the case n = 3, and
finally for arbitrary n > 2.

ms

Recall that Id is the identical transformation of "F taking p to p.

Definition of fym, for the case n=2:

Assume n = 2. Let k € SlowEucl, k£ # my 7 be arbitrary and fixed. First we will
define f,,, for the special case when N = Id. This will be implemented in item
(i) below. After that in item (ii) we will define fy,,, for N, # Id. Of (i) and (ii)
only (i) i.e. Ny = Id case is “interesting” because the Nj # Id case has a kind of
book-keeping character. (The same remark applies to the cases when n > 3.)

(i) We define fy,,, for the special case Ny = Id as described below. The following
construction of fg,,, will be the same as the definition of a rhombus transfor-
mation was in Def.2.3.18 on p.72. The same remark applies to the cases of

250



n > 2 (when Nj =1Id) which we will discuss soon. In this connection we ask
the reader to consult first Figures 15-18 (pp. 63-67) as well as the intuitive
idea of “model-construction” on pp. 78-80.

Nj, = Id implies that o, =0 € k.

Let z; be the mirror image of ¢, w.r.t. the line 0(1,1). In more detail: If
tr, = (to,t1) then we define xy def (t1,t0).

Let fxm, be the linear transformation which takes 14, 1, to tx, , respectively.
Clearly such an fg,, exists and is unique. It is easy to check that this fgy,, is
a bijective linear transformation.?3

The reason why we chose z, exactly the way we did can be explained by
Prop.3.1.21 in §3.1.

(ii) We define fy,,, for the case Ny # Id as follows.

Let ¢, def Ng[tr]- Then ¢}, # 0 by t # o and 0 = Ni(ok)-

Let z), be chosen for ¢}, exactly as we chose xzy, for t in item (i). Let
def

T = N ().
We define fi,, to be the affine transformation which takes 0, 14, 1, to o, t,
x, respectively. Clearly such an fy,,, exists**® and is unique.

Definition of fy.,, for the case n=3:

Assume n = 3. Let k € SlowEucl, k& # my 7 be arbitrary and fixed. Let us recall
P(k) = (og, tg, Ni) (see at the beginning of Def.3.5.5). First we will define f,,, for
the case when N = Id. This will be implemented in item (i) below. After that in
item (ii) we will define f,,, for Ny # Id.

(i) We define fy,,, for the case N, = Id as described below. The construction
below is essentially the same as the one in §3.2 (“Intuitive ... Basax(3)”). At
this point, the reader is asked to compare Figure 77 below with the pictures
on p.181 (i.e. in the middle of §3.2) and also to consult Figures 19, 20 (pp.
68-70). Throughout this definition the reader is asked to consult Figure 77.

Nj, = 1d implies that o, = 0 and oyt = k C Plane(Z, T).

239This is so because t; # o, = 0, and by ang?(k) # 1 one can check that vectors ¢, and x; are
linearly independent.

240f, 1, exists because vectors tg — o, Tk — o, are linearly independent (this is so because vectors
t}., xj, are linearly independent and N, ! is the affine transformation taking 0, ty., ko, to ok, tg, Ty,
respectively).
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fkmo [é] t k

) 1t t/k

Figure 77: Ilustration for item (i) of def. of fy,,, for the case n=3.

In what follows we will define points z; and vy, and fg,,, will be the linear
transformation which will take 1;, 1,, 1, to g, Tk, Yk, respectively. (We note
that in §3.2, tx, 7k, yx were denoted by 13, 1}, 1) respectively.) The reason
why we will choose z; and ¥y, exactly the way we will do, can be explained
(and motivated) in a completely similar style as in the proof of Prop.3.1.21 in
§3.1. Such an explanation will be included in the present work at a later stage
of its development.

A more intuitive definition of the following choice of z; and y; was given
around p.181.

First we define the point x; as the mirror image of ¢, w.r.t. the line 0(1, 1, 0).
In more detail: Let ¢, = (to,%1,0) then we define z, & (t1,10,0).

Now, y is constructed from ¢, as indicated in Figure 77. In more detail we
project t; to LightCone(0) by a line parallel with the axis ¢, obtaining point
p.2*1 Then we project down point p to 7 along a line parallel with k. This way
we obtain y,. This completes the definition of f,,,. In a more computational
style yx and f,,, are defined as follows.

Let A € TF. We will use ) as a parameter. We define fy : 3F — 3F to be the
linear transformation for which f\(1,) = t, fA(1;) = ¢, and f5(1,) = A - 1.
Clearly, such an f, exists and is unique. It is easy to check that this fy is a
bijective linear transformation.242

241 This p exists since § is Euclidean.
242This is so because vectors ty, T, A - 1, are linearly independent.
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Let ¢ & 0(1,0,1). Let us notice that £ € PhtEucl. We claim that ang?®(f\[¢])

depends on the choice of A. If A is very big (e.g. A > 100 - |t¢|), then
ang®(f\[£]) > 1, while for small X (e.g. A < |tx|/100) ang?(fy([¢]) < 1, the latter
is so because 0t; = k € SlowEucl. Checking this claim is left to the reader.

Next we use our assumption that § is Euclidean, i.e. that “positive” square-
roots exist in §. Namely, we claim that between the two extremes (big and
small choices of \) there exists A € TF such that

(71) ang(A[6]) =1,

because A — ang®(fi[¢]) is a quadratic polynomial function (and “positive”
square-roots exist).?43

Let this A be fixed. Now, we define

Ye =— A 1y ’
fkmo - f)\ )
for the above choice of A. Let us notice that condition (71) above was needed

because ¢ € PhtEucl and because of Prop.3.1.17 in §3.1.

By this, fg, is defined for the case N, = Id, i.e. fg,,, is the bijective linear
transformation which takes 1;, 1., 1, to tx, Ty, Yk, respectively.

We note that, as we already indicated on p.250, f,,, turns out to be a rhombus
transformation (cf. Def.2.3.18 on p.72). To see this it remains to prove that
fem, takes photon-lines to photon-lines. An intuitive, structuralist proof of this
was given in §3.2 (for the case when § = R, but the same proof goes through
for arbitrary Euclidean §). A computational proof will be given as item (V)
in the proof of Thm.3.5.6 on p.256.

(ii) We define fy,,, for Ny, # Id as follows.?**

Let ¢, & Np[ty]. Then 0t} € (SIowEucI N Plane(t, :E)) by Ni(ox) = 0, by

oxty = k € SlowEucl, by Lemma 3.5.4, and by Ni[k] C Plane(Z, z).
Let z}, and y;, be chosen for ¢ exﬂly the way as we chose x and y;, for ¢ in
item (i). It can be done because 0t € (SIowEucI N Plane(t, i))

243 A5 a curiosity we mention that A\ = /2 — t2 is such, where t;, = (to,1,0). We will see this in
Claim 3.5.7, but it is irrelevant at the present point.
244The intuitive idea is the following: First we transform og,t; by Nj into Plane(,Z) (o}, goes to

0). Then we define fi,, to be the composition of a rhombus transformation taking 1; to Ny (tx)
with N . This applies also to the cases when n > 3.
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as was done
helyett is done!

Let xy o N, (%), and y; o N, (ys)-
We define fi,,, to be the affine transformation which takes 0, 1;, 1, 1, to o,
te, Tk, Yi, respectively. Clearly such an fy,,, exists®*® and is unique.

Definition of fyx.,, for the case of arbitrary n:

The definition of fg,,, for arbitrary n is analogous to the definition of fy,,, for n = 3.
(We recommend the reader to consult Figure 77 there. In the definition of fy,,, for
n = 3 we gave a more intuitive version based on Figure 77, and a more computational
version. Below we will generalize to arbitrary n the computational version. The
interested reader is invited to generalize the intuitive picture-oriented version.) Let
n > 2 be arbitrary. Let k € SlowEucl, £ # mg be arbitrary and fixed. Recall again
that P(k) = (o, tg, Ni). First we will define fy,,, for the case when Ny, = Id. This
will be implemented in item (i) below. After that in item (ii) we will define fy,,, for
Ny, # 1d.

(i) We define fy,,, for the case Ny = Id as described below.

We note that fg,, will turn out to be a rhombus transformation and this can
be checked exactly as is done in the case of n = 3. (It might be a good idea
for the reader to look up Def.2.3.18 [Rhombus transformations| before reading
on).

N, = Id implies that o, = 0 and oyt = k C Plane(t, ).

First we define the point x; as the mirror image of ¢, w.r.t. the line
0(1,1,0,...,0). In more detail: Let t; = (to,?1,0,...,0) then we define

Tk d:ef <t1,t0, O, ceey 0>

Let A € TF. We will use A as a parameter. We define f, : "F — "F to be
the linear transformation for which fy(1;) = tx, fa(1z) = z, and fy(1;) = A-1;,
for all 4 € n '\ 2.246 Clearly, such an fy exists and is unique. It is easy to check
that f) is a bijective linear transformation.

Let ¢; % 0(1; + 1;), for all i € n\ 2. Let us notice that ¢ € PhtEudl, for all

ien\2.
It is easy to check that ang?®(fy[(;]) = ang?(f\[¢;]), for all 4,5 € n \ 2.
245fkm0 exists because vectors ty — ok, Ty — 0k, Yy — o are linearly independent (this is so because
vectors t;, x%, y, are linearly independent and N, ' is the affine transformation taking 0, t,, z/,,

Y}, tO Ok, tr, Tk, Yk, respectively).
246Recall that n \ 2 = {2,...,n — 1}, cf. the notation list on p.26.
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We claim that ang?(f)[¢;]) depends on the choice of X\. Now if ) is very big,
then ang®(fy[4i]) > 1, while for small \, ang?(fy[£]) < 1, the latter is so

because 0t;, = k € SlowEucl. Checking this claim is left to the reader.

Next we use our assumption that § is Euclidean, i.e. that “positive” square-
roots exist in §. Namely, we claim that between the two extremes (big and
small choices of \) there exists A € TF such that

ang’(fy[4;]) =1, forallien)\ 2,

because A — ang®(fi[¢]) is a quadratic polynomial function (and “positive”
square-roots exist). Let this A be fixed.

Now, we define

def

Lk A 11’; and247

b
def
fk:mo = f)\ )

for the above choice of A, and for all i € n '\ 2.
By this, fy,,, is defined for the case Ny = Id, i.e. fy,,, is the bijective lin-

ear transformation which takes 1;, 15, 1o,...,1, 1 to &, Tk, Tk2,-- -, Thp-1,
respectively.

(ii) The definition of fy,,, for the case Ny # Id is obtained from item (i) in a
completely analogous way as we did this for the case n = 3. In more detail:

Let . % Ny[ts]. Then 0f, € (SIowEucI N Plane(Z, ;z)) by Ni(ox) = 0, by
ogly, = k € SlowEucl, by Lemma 3.5.4, and by Ni[k] C Plane(t, Z).

Let zj, 7}, (1 € n\ 2) be obtained from ¢} exactly as zx, zx; (i € n\ 2) were

obtained from ¢t in item (i). This can be done because

0t, € <S|owEuc| N Plane(t, 5:)) Then let z;, & N, () and zy; dof N H(@h,)-

Then fy,,, is defined to be the affine transformation which takes 0, 1;, 1,
1o, ..., 1h—1 to Ok, tk, Tk, T2, ..., Th,n—1, T€SpPectively.

Definition of W:
By the above, fi,,, is defined for all £ € SlowEucl, ¥ # my. Recall that w,,, was
defined below the definition of mg at the beginning of Def.3.5.5. We now define

f
wy, & femo © Wi, for all £ € Obs \ {my}, and
247y, will be denoted as 1¥ e.g. on p.325 (above Def.3.8.38).
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Wdef{(m p,h) : m € Obs,h € wy(p) }.

def

By this, the model 9 = ML oo (B,..., W) has been defined.

For fixed n > 2, the class of the above defined models is called the class of
stmple models, and we denote this class by SM.

END OF DEF. OF SM.

THEOREM 3.5.6 SM = Basax.

Proof: We will give the proof for the case n = 3. The proof for arbitrary n is an
easy generalization of the present one, and is left to the reader. (The proof for n = 2
is obtainable from that for n = 3 in the obvious way.) The organization of the proof
will be analogous with that of a similar proof given for n = 2 for Thm.2.4.1 in the
second part of §2.4 (“Models for Basax in dimension 27).

Let 9 € 9L be such that § is Euclidean. Recall that P(k) = (o, t, Ni) (cf.
the beginning of Def.3.5.5). We have already observed that 9t = Ax1, Ax2, and
that Ax3, Ax4, Ax5, AXE hold for the fixed observer my € Obs (cf. the first two
pages of Def.3.5.5, above “Definition of fy,,,”). Let k& € Obs\ {my} be arbitrary but
fixed.

We will prove that (I)-(V) hold for fg,,:
(I) fem, : °F —> 3F is a bijection.
(IT) frme[€] € Eucl, for all £ € Eucl.
(I11) fpm[F] = K-
(IV) fum,|€] € Ph iff £ € Ph, for all £ € Eucl.
(V) femolf] € Obs, for all £ € Obs.
Indeed, (I)-(II) hold because fy,y,, is defined to be an affine transformation. (III)

holds because of (II) and because we defined fi,,,, to take 0, 1;, respectively, to o,
tr, and k = ot,. We will prove (IV) and (V) at the end of the proof.

Now, in 9t we have for all £ € B that
(72) (= trk(fk:mo [ﬁ]) .
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(The proof of (72) is exactly like in §2.4, in the proof of Thm.2.4.1.) Since fgp,
is a bijection, by (II) we have that both fy,,, and f,;éo preserve Eucl. Using this,
together with (II)-(V), (72), and the fact that Ax3, Ax4, Ax5, AxE hold for

my dof t, we get that Ax3, Ax4, Ax5, AXE hold for k, too. From (I) and from the
definition®®® of wy, we get that Rng(wy) = Rng(w,,). Since k was arbitrary, this
proves M = Basax.

Thm.3.5.6 is proved modulo (IV) and (V) above. Now we turn to prove these.

Proof of (IV): For n = 3 an intuitive, structuralist proof is in §3.2. The computa-
tional proof included below is easily generalized to arbitrary n.
To prove (IV), by Ph = PhtEucl it is sufficient to prove (73) below.

(73) (V£ € Eudl) (e € PhtEucl & fim,[f] € PhtEucI).

Next we turn to prove (73). The proof of (73) will consist of two cases: (i) Ny = Id,
(i) Ny # Id.

Proof of (78) for case Ny, =1d:
Let us recall that for this case fg,,, was defined in item (i) of the “definition of fy,,,
for the case n = 3”. Let us recall that in that definition we have that

(74) o, =0 and oyl =k C Plane(,7),

and fi,, is the linear transformation which takes 1, 1, 1,, respectively, to
ty, = (to, t1,0), zx = (t1,t0,0), yr = (0,0, \), for fixed A € TF, where \ was fixed in
such a way that

ang? (femo[€]) = 1, where £ %< 0(1,0,1).

Claim 3.5.7 3 — 12 > 0 and A\ = /13 — 2.

Proof of Claim 3.5.7: We have t2 — t? > 0 because t; = (o, t1,0), because

k € Obs % SlowEucl and because by (74), Oty = k.
By fim, being a linear transformation taking 14, 15, 1, to t, 2k, yi, respectively,

it is easy to see that fy,,[¢] = 0{ty,?1,\). Now by this

T+ N
2

ang® (fym, [£]) = 1

By this and by A € TF, we have

ang () =1 & A=/8—8;

248Recall that wy, = frmg © Wiy, -
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where /12 — 2 exists because t3—t? > 0 and § is Euclidean. This proves Claim 3.5.7.
QED (Claim 3.5.7)

We have that fi,,, takes parallel lines to parallel lines because fy,, is a linear
transformation. Hence to show (73) it is enough to show (75) below.

(75) (VL € Euc|)(() €l = (£ePhtEud & fumll € PhtEucI) .

To show (75) let £ € Eucl with 0 € £. Without loss of generality we may assume that
¢ =0(1,a,d), for some a,d € F. Let these a,d be fixed. Now by using Claim 3.5.7,
we have that fg,, is the linear transformation taking 1, 1,, 1, to tx = (t,1,0),
zr, = (t1,10,0), yr = (0,0, /12 — t2), respectively (2 —t7 > 0). By this, it is easy to
see that

fkmo(laaa d) = <t0 + atla tl + CLt(), d\/ t% - t% > ’ hence
(76) frmo[€] = 0 (to + aty, t + aty, dy/t3 —13 ).

Now 2
o (b + ato)? + (dy/B— ) N
2 2 2 2 _ 42
(to + at1)® + (o + d* — 1)(t5 — 17) (by some computation).
(to + atl)Q
Now

ang®(frmold])) =1 &
(@+d*—-1)(t2—t)=0 <& (bytd—1t2>0)
a2+d>=1 <& (by def. of a,d)

ang?(¢) = 1.
By the above computation, we have fy,,[¢] € PhtEucl iff £ € PhtEucl. By this,
(73) is proved for case Ny = Id.

Proof of (73) for case Ny # 1d:

Let us recall that for this case fy,,, was defined in item (ii) of the “Definition of
fem, for the case n = 3”. Let t}, z}, y; be exactly those points which were defined
there and let fy,,, be the affine transformation which was defined there (in item (ii)
of the “Definition of fin, for the case n = 3”). Now, we define f},, to be the linear
transformation which takes 14, 1,, 1, to t}, x, v, respectively.
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Now we can prove that f;, satisfies condition (73) above in a completely analo-
gous way as we did for case Ny = Id for f,,, there (to see the analogy, consider the
definition of z}, v}, in line 4 of item (ii)).

It is easy to check that fp,, = i, 0 Ny '. Now by f,,. satisfying condition (73)
above, by fim, = fim, © N; - and by Lemma 3.5.4, we have that i, satisfies (73).
We proved (73) for case Ny # Id, too. This completes the proof of (IV).

Proof of (V): As we indicated at the beginning, we want the proof of Thm.3.5.6 to
go through for arbitrary 2 < n < 4. For n = 3, an intuitive, structuralist proof
of (V) can be recovered from the proof in §3.2 (“Intuitive ... Basax(3)”). That
intuitive, visualizable proof can be generalized for n = 4 too. As we indicated, in the
present work we prefer intuitive, visualizable (structuralist) proofs to computational
ones. Despite of this, for lack of time we include below a computational proof for
(V) which is easily generalizable to arbitrary n > 2. In a later version we plan to
replace it with a short, structuralist one like the one in §3.2.
To prove (V), by Obs = SlowEucl it is sufficient to prove (77) below.

(77) (V¢ € SlowEucl) fg, [¢] € SlowEucl.

Next we turn to prove (77). The proof of (77) will be similar to that of (73) in the
proof of (IV). The proof again will consist of two cases.

Proof of (77) for case Ny, =1d:
As we have shown at the beginning of the proof of (IV) (cf. Claim 3.5.7), for this case
we have that fy,, is a linear transformation which takes 1;, 1., 1, to t;x = (%o, 1,0),

T = (t1,10,0), yr = (0,0, /13 — t2), respectively (2 — ¢ > 0).
By fim, being a linear transformation, we have that fy,,, takes parallel lines to
parallel lines. Thus to prove (77) above it is enough to prove

km .
(V£ € SlowEucl) (0 €l = fumll € SIowEucI)

To see this, let £ € SlowEucl with 0 € £. Then it is easy to see that £ = 0(1, a, d), for
some a,d € F with a2 4+ d?> < 1. Let these a, d be fixed. Now it is easy to see that

(78) fkmo [E] = 6 <t0 + atl, tl + ato, d tg - t% > .

Now
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2
(t1 + ato)? + (d\/tg - t%)

ang®(fumo[€]) = (to + at,)? (by(78))

to +at1)? + (a® + d® — 1) (] — &
_ (to +at1) +(t(a+—;t 7 )(to — 1) (by some computation)
0 1

(by a®> + d* < 1 and
t t1)?
(to + at) 212> 0)

(t() + at1)2

= 1.

If we summarize the above computation we get ang?(fgm,[¢]) < 1, hence
femo €] € SlowEucl. By this, (77) is proved for case Ny = Id.

Proof of (77) for case Ny # 1d:

The proof of this will be analogous with that of (73) in the proof of (IV). Let us
recall that for this case fg,,, was defined in item (ii) of the “Definition of f,,, for
the case n = 3”. Let t}, x}, y;, be exactly those points which were defined there
and let fg,, be the affine transformation which was defined there (in item (ii) of
the “Definition of fy,, for the case n = 3”). Now we define f;,,, to be the linear
transformation which takes 14, 1,, 1, to t},, z}, Y}, respectively.

Now we can prove that f,, satisfies condition (77) above in a completely analo-
gous way as we did for case N = Id for fy,,, there (to see the analogy, consider the
definition of z}, v}, in line 4 of item (ii)).

It is easy to check that fym, = fp, o N; '. Now by f,,,, satisfying condition (77)
above, by fime = flm, © IV, - and by Lemma 3.5.4 we have that i, satisfies (77).
We proved (77) for case Ny # Id, too. This completes the proof of (V). By this,
Thm.3.5.6 is proved. 1

Proof of Lemma 3.5.3:

Definition: Assume § is Euclidean. By a congruence transformation h : "F — "F
we understand an affine transformation which preserves Euclidean distances, i.e.
(Vp,q € "F) |h(p) —h(q)| = |p — ¢q|- We note that in the present proof we will use
such transformations which preserve 0.

Let us turn to proving Lemma 3.5.3.

(1) Without loss of generality we may assume p = 0.

(2) The assumption that § is Euclidean (i.e. “positive” square-roots exist) is essen-
tial in proving this lemma (it is not true without this assumption).
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(3) We need a proof only for n < 4 because we mentioned earlier in this work that
we treat n > 4 only if no extra effort is needed for that. (All the same, the present
lemma is true for arbitrary n).

Sub-lemma: Let ¢ € /F, j € w arbitrary, and let § be Euclidean. Then there is a
congruence transformation f : /F — JF with f(0) = 0 and f(q) € z.

Proof of Sub-lemma:

We prove this only for 7 < 3 because that will be sufficient for n < 4, cf. item
(3) above. Let j = 3. Throughout the proof of Sub-lemma the reader is asked to
consult Figure 78.

t t
1g>h h* L
7 ¢/ 1/
L ht
/ . — = ht -
L, a— v n(hia) 1L
1 T i
7l 7 1,

Figure 78: Illustration for the proof of Sub-lemma.
Let ¢ def (0,q1,92) and A € F be such that 1/, ). q' is of length 1, i.e. 11| = 1.
Such a A exists because § is Euclidean.

Let 1, = (0,a,d) be arbitrary but orthogonal (in the Euclidean sense) to 1) with
1] = 1. This obviously exists.

Let h be the linear trasformation defined by 1;,17,1" + 1,,1,,1,. By the choice of

T
13,1, h exists and is bijective. Further, h(q) € PIaZe(f, T).

By a completely similar argument, there is another bijective linear transforma-
tion h* with h*(h(¢)) € . But then f = h o h* has the desired properties. Further
f is a congruence transformation because 13,1, had lenght 1, 1; L. 1; etc.

The proof for j < 3 is obtained from the above one the obvious way.

END of Proof of Sub-lemma.

Let us turn to proving Lemma 3.5.3. Throughout the proof the reader is asked to
consult Figure 79.
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X
\

Figure 79: Illustration for the proof of Lemma 3.5.3.

In the present proof by the space part S of our coordinate system "F we under-
stand "'F (while in the rest of this work S denotes {0} x "~'F).
Let £ € Eucl,0 € fand 0 # g € £. Let ¢ = {q1,...,q, 1) € S.

Clearly, any congruence transformation f : S — S of S preserving 0 induces an
N € Trivy as follows.

ef
N(pOa ce. apn—l) d: <p0a f(pla s apn—1)> .
By Sub-lemma (applied to ¢',S in place of ¢,’F), there is f : S — S with
0,f(q1,---,qn 1)) € Z.
The “N” induced by this f has the desired properties.

This completes the proof of Lemma 3.5.3 for n < 4, because we proved Sub-
lemma only for j < 3.

The generalization for n > 4 goes by proving Sub-lemma for arbitrary j. This
can be done via a straightforward induction. We omit it for the already indicated
reasons. 1
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pezsgo utan
szétvalasztani a
gyokvonasos részt
a modellekt6l,
kiilon fejezetbe!

3.6 Models of Basax

The purpose of the present section is to see?®® what the models of Basax(n) can
look like.?*® We understand this goal in the spirit of the three drawings in Figure 29
(p.88) representing 9y, My, M3 (as typical models of Basax(2)).

In this section we will characterize the models of Basax(3) and
Basax(n) + Ax(v/ ), for n > 3. We will construct a class of frame models as
concrete®®! structures which we call the class of general models, in symbols GM,
and we will show that GM = Basax. Let GM(n) denote the n—dimensional version
of the class GM of models to be defined in this section. We will show that the
class Mod(Basax(3)) coincides with GM(3); and more generally the class of mod-
els of Basax(n) + Ax(v/ ) coincides with GM(n), for all n > 2. Mod(Basax(2))
was characterized in an earlier version [25] of this work, but cf. also §§ 2.3, 2.4 in
particular Thm.2.3.12 of the present work. Concerning the n = 2 case, we note
that GM(2) C Mod(Basax(2) + Ax(v/ )) e.g. because of §2.7. On the other hand
GM(2) = Mod(Basax(2) + Ax(v/ ) + “ A FTL observers”).

We will also introduce an axiom Ax7 which is more natural from the physical
point of view than Ax(y/ ) and which implies Ax(y/ ), more precisely we will prove
that Basax(n) + Ax7 = Ax(v/ ), for n > 2. We will also prove
Basax(3) = Ax(v/ ). The generalization of this to arbitrary n > 3 remains an

249 e. to develop an understanding and ability to visualize and gain insights into the possible
structures of the models in question.

250 At the final reading, some parts of the present work seem to be unnecessarily computational
for the authors. An example is the present section (“Models of Basax”) whose purpose should be
to help the reader imagine, visualize, and see in a simple and clear way all the various kinds of
models compatible with Basax(n). Therefore we feel a strong temptation to rewrite the present
section in the structuralist (or “visualist”) style of the pictures on p.88 and of §3.2 (“Intuitive ...
Basax(3)”). We know that it is possible to write up a definition of GM(n) which is transparent,
suggestive, intuitive and simple. However, we also know that if we keep on re-writing the least
satisfactory part of this work then it will never be finished. Therefore we postpone writing up
a more transparent and more visual definition of GM(n) to a future time. In the meantime, the
interested reader is invited to write up his intuitive and more “pictures oriented” version.

251 By “concrete” we mean that they are “set theoretically built up” i.e. “constructively defined”
in the style of §2.4 pp. 80-84 or in the style of the definition of SM in §3.5. In passing, we note
that an example of an abstract class of structures is the abstractly given class BA of Boolean
algebras defined as complemented distributive lattices (i.e. they are defined by a set of axioms).
The “matching” example for a concrete class of structures is the class Sba of Boolean set-algebras
where the elements of an algebra are sets and the operations are the set theoretic intersection and
complementation. Then the representation theorem of Boolean algebras says BA = ISba. We will
return to representation theorems in §6 (“Observer independent geometry”).
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open question. The usefulness of these considerations about Ax7 comes from the
fact that we have several results using Ax(y/ ) and now in those one can replace
Ax(v/ ) with a physically more natural Ax7.

The theorems saying, Mod(Basax(3)) = GM(3) etc. provide a kind of charac-
terization of the world-view transformations, the f,,;’s. A different, more direct
characterization of the f,,;’s will be given in a separate theorem (analogous with the
one in §2.3).

The theorem saying, GM(n) = Basax(n) will imply that there are many dif-
ferent consistent extensions of Basax, which was one of our aims discussed in the
Introduction (§1.1.(X)). The application of (our investigating) GM(n) to some of
the “philosophical” goals formulated in the Introduction of the present work will be
discussed in Remark 3.6.15 (pp. 271-273).

Indirectly we will also obtain a characterization of the models of Newbasax.
Namely our characterization theorem (Thm.3.6.13) of the models of Basax will
give a characterization of the models of Newbasax too via Thm.3.3.12 connecting
models of Newbasax to models of Basax.

Below we formulate potential axiom AxT7.

AX7 (VYm € Obs)(V¢ € SlowEucl N Plane(t, z))(3k € Obs)

(trm(k) =€ A fim[7] | 9) -
See Figure 80.

S]]
8

Figure 80: Illustration for Ax7.
Intuitively, Ax7 says that there are observers moving in direction z whose y

axis remains parallel with the “original” y axis. This assumption is almost
always taken for granted in physics books (cf. e.g. Rindler [224]). Indeed, it
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sounds contrary to experience to assume that for some speed v < 1, if an
observer k is moving with speed v in direction Z then some “magical force”
would force k£ to point his y axis in some direction different from the original
Y axis.

Summing up, we consider Ax7 as a relatively weak and natural (“physically
convincing”) assumption. Actually we tend a feel that Ax7 is more natural
(in some sense) than e.g. Ax(v/ ).

Remark 3.6.1 We note that SM (= Ax7, where SM is defined in Def.3.5.5 in
63.5. However, we will see that the models of SM can be extended to richer models
validating Ax7 (cf. Prop.3.6.18).

<

In what follows we will introduce the set PT of so called photon-preserving affine
transformations which will be a subset of the set of all affine transformations. To
motivate this definition we recall Thm.3.1.4 and Prop.3.1.17 from §3.1.

Thm.3.1.4 Basax = (f,,, = pof, for some f € Aftr and ¢ € Aut(F)).
Prop.3.1.17 Basax = (V¢ € Eucl)(¢ € PhtEucl & f,.[¢] € PhtEucl).
By these two, we also have that the “f” occurring in Thm.3.1.4 preserves PhtEucl in
both directions. Next, we will collect these f’s into something called PT.

Definition 3.6.2 The set of photon-preserving affine transformations, in symbols
PT = PT(n, ), is defined as follows.

PT % {fe Aftr : (V/ € Eucl)(¢ € PhtEucl < f[¢] € PhtEucl) } .22

<

252Perhaps it would be more didactic to define PTy to be the set of all photon-preserving trans-
formations. Then we would define PT = PTy N Aftr. To keep the present work simple we do
not do this. In §6.7 we will mention the Alexandrov-Zeeman theorem a kind of generalization of
which are items 6.7.20-6.7.35 (cf. also Goldblatt [108, Appendix B]). By items 6.7.34 (p.1138) and
3.1.6 (p.163) if § is Euclidean and n > 2 then PT( becomes superfluous in the following sense:
PTo={fop : fe PT A ¢ € Aut(F)}.
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Remark 3.6.3
(i) (PT,o,~!,1d) is a group.

(ii) The distinguished classes Rhomb, Lor, SLor, Poi, Exp, Tran, Trivy, Triv of
transformations introduced so far are all contained in PT. For this as well
as for their relationships we refer to Lemma 3.7.1 (p.283). All of these classes
are groups (w.r.t. o, ~1 Id).

<

The set of rhombus transformations and the set of Poincaré transformations were
defined in Def.2.3.18 (p.72) and in Def.2.9.1 (p.152), respectively. The just de-
fined photon-preserving affine transformations are strongly related to rhombus and
Poincaré transformations. In the next theorem we make this relationship explicit.
Item (i) of the next theorem says that PT-transformations are basically the same
as rthombus transformations modulo trivial transformations. More precisely PT
transformations are rhombus ones composed with trivial ones.

THEOREM 3.6.4 Assume § is Fuclidean. Then (i) and (ii) below hold.

(i) PT =
{ trivg o rhomb o triv : trivg € Trivqy A rhomb € Rhomb A triv € Triv }.

(i) PT ={poioexp : poi € Poi N exp € Ezp}.

The proof of item (i) will be given on p.277, and the proof of item (ii) will be given
in §3.7 on p.283.

The next two propositions belong to the motivation of Def.3.6.2 above.
Thm.3.6.9 below them describes how the elements of PT look like. Prop.3.6.5(ii)
below also serves as a motivation for the definition of GM (Def.3.6.11 way below).

Intuitively, the following proposition says that f,,;, can be written both in the
form fop and pof for some f € PT and ¢ € Aut(F). Actually the following is true.
Fact: Assume Basax. The f,;’s can be written in the form f o ¢ iff f,,;’s can be
written in the form @ of.

Proof: Assurile the f,,;’s are of the form f o ¢. Then f;, = ffn}c = (fogp)! =
@ lof !t =¢ of with ¢ € Aut(F) and f' € PT. (Cf. also Remark 3.6.3.)
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PROPOSITION 3.6.5
(i) Basax = (Vm,k € Obs) (fm,c — Gof, for some f € PT with

f[t] = tre(m) and ¢ € Aut(F)).
The converse statement

(fx =fo @, for somef € PT and ¢ € Aut(F))
is also true in all Basax models.
(ii) Basax + Ax(v ) = (Vm,k € Obs) (1'”m,c = pof, for some f € PT with

f[t] = trr(m) and ¢ € Aut(&)).
The converse statement

(fmx =fo @, for somef € PT and ¢ € Aut(F))
is also true in all Basax + Ax(v/ ) models.

Proof: Item (i) follows by Thm.3.1.4 (p.162), by Ax4, by Prop.2.3.3(vii),(ix), and
by the following property (which follows by Lemma 3.6.22(iii) way below):

(Vo € Aut(F))(V/ € Eucl)(£ € PhtEucl & @[¢] € PhtEucl) .
Item (ii) is a corollary of item (i) and Remark 3.6.7 below. 1

The above proposition says that the f,,;’s can be obtained in a certain form, under
some assumptions. Actually the other direction of this statement holds too. This
way we will obtain a characterization theorem of the world-view transformations
(i.e. of the f;’s), see Thm.3.6.16 on p.273.

The emphasis in Prop.3.6.5(ii) above and Prop.3.6.6 below is on ¢ being order
preserving, i.e. on writing § in place of F.

PROPOSITION 3.6.6 Let n > 3. Then (i), (ii) below hold.

(i) Basax(n) + Ax7 = (Vm,k € Obs) (fmk = @ of, for some f € PT with
f[£] = try(m) and ¢ € Aut(g)).

(ii) Basax(3) E= (Vm,k € Obs) (fmk = gof, for some f € PT with
flt] = trr(m) and ¢ € Aut(&)).
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Proof: This proposition is a corollary of Prop.3.6.5(ii) above and Thm.3.6.17 way
below which says that both Basax(3) and Basax(n) + Ax7 for n > 3, implies

Ax(vV/ ).

Remark 3.6.7 Assume § is Euclidean, i.e. § = Ax(v/" ). Then Aut(F) = Aut(F)
because of the following. Aut(§F) C Aut(F) is obvious. To prove the other inclusion
let o € Aut(F) and let 0 < 2 € F. By Ax(v/ ), we have 2 = 42, for some y € F.
Let this y be fixed. Now ¢(z) = ¢(y?) = ¢(y)? > 0. Hence ¢ preserves the property
of being positive, therefore ¢ is order preserving, i.e. ¢ € Aut(gF).

<

The definition of the class GM of general models will consist of two steps. First
we define certain distinguished transformations called the 7},,’s (Def.3.6.8), and then
using this we will define GM if Def.3.6.11. More on the intuitive structure of the
definition of general models can be found imediately above Def.3.6.11.

In Def.3.6.8 below, to each p,q € "F we associate a PT-transformation 7, such
that it maps 0 and 1, to p and ¢ respectively. Prop.3.6.9 below says that two
transformations with this property can differ from each other only to the extent of
a Trivy-transformation.

Definition 3.6.8 (7))
Assume § is Euclidean.

Let N : "F x "F — Triv be a fixed function with the property (x) below.

def
Npg = N(p, Q)-

%) (g€ F)(p#q = (Npglpa] C Plane(t,7) A Npg(p) =0)).

Such a function exists by Lemma 3.5.3 in §3.5. Throughout, this function N is
fixed.?®3

For every distinct p,q € "F with pg € SlowEucl we define T}, exacly as fi,,, was
defined in the definition of SM (Def.3.5.5 in §3.5) but with (p, g, N,,) in place of

(0K, ti, Ni).
<

The following proposition describes how the elements of PT look like. (Cf. also
Thm.3.6.4 on p.266).

2531n some sense, N is also a “choice function” similarly to P in the definition of SM (Def.3.5.5
in §3.5).
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PROPOSITION 3.6.9 Assume § is Fuclidean. Assume p,q € "F with p # q and
pq € SlowEucl. For (i), (ii) below, we claim (i) < (ii).

(i) A € PT with A(0) =p, A(1;) = q.
(ii) A= M oT,,, for some M € Triv,.
We will give the proof later, after the proof of Lemma 3.6.21 on p.277.

Remark 3.6.10 (Connection between 7,, and Rhomb:) Assume § is Eu-
clidean. Let p,q € "F and let T}, as defined in Def.3.6.8 above. Then

T,q = rhomb o triv,  for some rhomb € Rhomb and triv € Triv.

More concretely 7,,, = rhomb o Np_ql, where N, is as in Def.3.6.8 above, and

rhomb € Rhomb taking 1, to Np,(q).

In the following definition we will define a class of frame models GM, so called
general models. This definition is motivated by Prop.3.6.5(ii) and Prop.3.6.9.

On _the intuitive structure of Def.3.6.11 (GM) below:

The definition of a general model below can be visualized from the point of
view of a distinguished observer, call in myg, (who is not explicitly indicated in the
formal definition) as follows. Each general model will be determined by choosing two
parameters o and [ (they are functions). To each observer k£ € Obs, « associates a
tuple (o, tg, x, M) whose role is the following. oy tells us where mg sees the origin
of k’s coordinate-system. %, tells us where mg sees 1; of k’s coordinate-system. My
tells us where the other unit vectors of £ are seen by my. Finally ¢y tells us how
fxm, differs from the affine transformation determined by oy and the images of the
unit vectors of k.2 The function A3 tells us where the distinguished observer my
sees the various bodies.

Definition 3.6.11 (General Models, GM)

Let § be Euclidean. Let B, Obs, Ph, Ib be sets and let

a : Obs — ™F x"F x Aut(F) x Trivy and

g : B — P("F)
be functions with properties 1-6 below. For all & € Obs we denote «a(k) by
{0k, thy 1, My).

254By the images of these unit vectors we mean the points (of »F) where my sees the unit vectors
of k.
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1. ObsuPhCIbC B.

[\)

. (Vk € Obs) oy # t;.

3. (Vk € Obs) B(k) = oxts.
4. B[Obs] = SlowEucl.

5. B[Ph] = PhtEucl.

=2}

. B[Ib] C Eudl.

For every such §, and for every such sets B, Obs, Ph, Ib and functions «, 3 satisfying
1-6 we define a frame model 9 as follows.

oM & (B, Obs, Ph, Ib),§, G; €, W), where G = Eucl.

It remains to define W. First we define a function wg : "F — P(B) as follows. Let
p € "F. Then

wo(p) E{be B : peB(b)}.
Let k € Obs be arbitrary. We define

def —

Wi =SDkOM1cOToktk0w0;

was defined in Def.3.6.8. (Let us notice that oy # 5 (by 2) and
is defined.)

where 15, 4,
oxty, € SlowEucl (by 3,4). Therefore T,

klk
Wdzef{(m,p,h) : m € Obs,h € wy(p)} -

By this 9 is defined.
For a fixed n > 2, the class of the above defined models is called the class of
general models, and we denote this class by GM = GM(n).

<

Proposition 3.6.12 GM = Basax.
We will give the proof later, after the proof of Lemma 3.6.23 on p.278.

In the following theorem we give “structural” characterizations for the models
of the theories Basax(3), Basax(n) + Ax(v/ ), and Basax(n) + Ax7, for n > 3.2%

255Thm.3.6.13 is strongly related to what are called representation theorems in algebraic logic
(and also in the Tarskian approach of first-order axiomatic geometry cf. Henkin-Monk-Tarski [129],
Schwabhéguser-Szmielew-Tarski [237]).
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THEOREM 3.6.13 Let n > 3. Then (i)-(iii) below hold.?*®

(i) Mod(Basax(3)) = GM(3).
(ii) Mod(Basax(n) + Ax(v)) = GM(n).
(iii) Mod(Basax(n) + Ax7) = GM(n) N Mod(AxT).

On the proof: We will give the proof of item (ii) later, on p.280. Items (i) and (iii)
directly follow by item (ii) and Thm.3.6.17 below.

QUESTION 3.6.14 Is Mod(Basax(4)) = GM(4) true?
<

We note that there are very special, extremely symmetric elements of GM which
have been thoroughly investigated in the literature for a long time. We call them
Minkowski models. They will be defined and discussed in §§ 3.8.2, 3.8.3.

In connection with Items 3.6.11, 3.6.12 above we include the following.

Remark 3.6.15 (On our “philosophical” goals formulated in §1.1 (X) con-
cerning proving many relativistic effects from few assumptions.)

In the introduction we indicated that we want to prove as many interesting predic-
tions of relativity theory as possible from as few assumptions as possible, cf. item
(X) of §1.1. Le. we want to make our axiomatic relativity theory far from being
complete (i.e. we want to make it logically weak or “flexible”) but strong enough to
get interesting theorems. In §2.5 we proved from Basax several of the typical pre-
dictions of relativity. (In other parts of §2 we proved some more such predictions).
This can be interpreted to say that Basax is strong enough for proving most of the
interesting results.?®”

Next, let us turn to seeing that Basax is not only “strong enough” but that it
is also “flexible enough” (in the above outlined sense). Prop.3.6.12 above can be
used to conclude that there are many non-elementarily-equivalent models of Basax.
This will be actually proved in §3.8, but till then the reader is invited to convince
himself by meditating over the definitions of GM and SM in the way outlined below.
We know that SM C GM = Basax.

256 A ccording to our Convention 2.1.2, we ignore those of our frame models in which “E” is not
the real set theoretic “€”. Therefore Mod(Basax(n)) denotes the class of only those models of
Basax(n) in which “E” is the real €. This is why our theorem is stated in the stronger form
Mod(...) = GM(...) as opposed to the weaker form Mod(...) = IGM(...).

25T At the end of §2 we indicated that there are some exceptional cases where we do need to
reinforce Basax (or Newbasax) with something like e.g. Ax(symm).
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First let us recall from the logic literature that 91 is elementarily-equivalent with
M, in symbols M =, N iff Th(IM) = Th(N). Cf. also Def.3.8.17 on p.303.

Let n > 1 be arbitrary. In the definition of SM we had a “parameter” P which
one could choose freely obtaining a model MM” = MY in SM. First we notice that
any one of the (n-dimensional versions of the) models 9%, 9M,, M3 in Figure 29
on p.88 can be obtained by choosing P appropriately. Clearly these models are
distinguishable from each other by first-order formulas i.e. 9, #. My etc. One
easily sees that there is an infinity of non-elementarily-equivalent models which
differ from each other the same way as the 90;’s do (i < 3) on p.88.

Further, the definition of GM gives us non-elementarily-equivalent models in
other ways too. (E.g. if we assume Ax(symm) then the above kind of multiplicity
of models gets ruled out, but there remain other respects in which we still can
get many non-elementarily-equivalent models as follows.) For example if we play
with the parameter § in the definition of GM, then we can have many members of
Ib\ (ObsUPh) on the same straight line?*®, or exactly one member of that set on each
slow-line and none on fast-lines, or no Ib\ (ObsU Ph) at all, or we can have them on
some fast-lines (i.e. we can have tachyons) etc. This again, gives us a multiplicity of
non-elementarily-equivalent models in a style (or regard) different from the above
outlined 90, 9, etc. oriented multiplicity. Let us notice that the ordered field
reduct F is the same for all these different models (both of the ones obtained by
“playing” with P and the ones obtained by playing with 3). We leave exploration of
further (kinds of) possibilities for constructing non-elementarily-equivalent models
of Basax(n) to the reader, but the above hints already show that there must be
many (even if we fix the ordered field reduct § to be the same). More detailed
investigation of this comes in Thm.3.8.18 (p.303) where we will see that there are
indeed extremely many non-elementarily equivalent models of Basax(n) in many
ways even if we add certain restrictions (like Ax(symm)) to Basax.??

The large number of non-elementarily-equivalent-models means that there is
a large number of different consistent (deductively closed) theories?® extending
Basax. But this means that our goal formulated in item (X) of §1.1 has been
achieved, because Basax is both flexible?! (i

i.e. has many different extensions), and
at the same time it proves the paradigmatic effects mentioned in §2.
At this point, we note that this

“flexibility 4+ proving most of the paradigmatic effects”

25835 their life-line

259We will also see that by adding further appropriate axioms one can cut down the number of
these models basically to one if one wants to for some reason.

2605ctually a large number of maximal consistent theories, too

261or in other words assumes little
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achievement can be improved a lot with the devices which we already have in the
present section. Namely, Basax can be replaced with the weaker (i.e. more flexible)
system NNewbasax, and that in turn can be replaced with the even more flexible
Bax and we still can prove all the paradigmatic effects mentioned in §2. Actually
in §83.4.2, 4.4, 4.5 we introduced even more flexible versions some of which are
philosophically more significant than say Bax, and it would be interesting to discuss
which one of these proves all or almost all the paradigmatic effects in §2. However,
here we do not go into this, instead we stick with Newbasax and Bax.

As we said, the paradigmatic effects of relativity collected in §2.5 are all provable
in Newbasax and even in Bax.26?

We note that even (x) below seems to be provable, but we did not check the
details.
(%) Bax = [Ax(symm) = “Twin paradox”].

Moreover even the following might be true
Bax = [Ax(syt) = “Twin paradox”].
This is made interesting by observing that?®3
Bax = (Newbasax + Ax(symm) + Ax(v/ )) # Basax

i.e. Newbasax + Ax(symm) is a genuinely more flexible system than
Basax + Ax(symm).
<

In Thm.3.6.16 below we generalize Thm.2.3.12 (p.65) to arbitrary dimensions.
Let us recall that Thm.2.3.12 was a characterization of the f,;;’s in Basax(2) models.
The reader is asked to have a quick glance at Thm.2.3.12 first.

THEOREM 3.6.16 (Characterization of the world-view transformations
in Basax + Ax(v/)) Assume § is Euclidean and f : "F — "F. Then (i)-(iv)
below are equivalent.

(i) f is a world-view transformation in some Basax model whose ordered field
reduct is §.

262Gome revision of how these effects are formalized in our frame language might be needed for
this, but we do not go into discussing that in the present version of this work. We plan to do that
in a future work.

263To make our formula more intuitive, we use “&=” in its reverse form where Th; = Th means
Th |= Th;y. Intuitively, the pattern of the above formula is the following
Bax < (Newbasax + ...) 7? Basax implying automatically
Bax + Ax(symm) + Ax(v/ ) # Basax.
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(i) f is a photon-preserving bijective collineation of "F.
(iii) f =go @ for some g € PT and ¢ € Aut(5).

(iv) f is a composition of a Poincaré transformation, an erpansion and a map
induced by an automorphism of §. That is, f = poi o exp o ¢, for some
poi € Poi, exp € Exp and ¢ € Aut(F).

Proof: We have already seen that (i) = (ii) = (iii), cf. Thm.3.1.1 (p.160),
Prop.2.3.3(ix), (v) (p.58), Prop.3.1.17 (p.171), Prop.3.6.5(ii). (iii) < (iv) follows
by Thm.3.6.4(ii) on p.266. (iii) = (i) follows from Thm.3.6.13 and Lemma 3.4.5
(p.205). ®

Theorem 3.6.17 below says that if n > 3, then both Basax(3) and
Basax(n) + Ax7 imply Ax(v/ ). We note that these implications do not hold
backwards, i.e. Basax(n) + Ax(v ) & Ax7, for every n > 3. However, Propo-
sition 3.6.18 on p.274 (below the proof of Thm.3.6.17) says that every model of
Basax(n) + Ax(v/ ) can be extended to a model of Basax(n) + Ax7, for every
n > 3. We also note that Thm.3.6.17(i) below does not generalize to n = 2, that is

Basax(2) = Ax(V ).

THEOREM 3.6.17 Assume n > 3. Then (i), (ii) below hold.
(i) Basax(3) E Ax(V).
(ii) Basax(n)+ Ax7 = Ax(V ).

On the proof: In order to keep the complexity of the proof of Thm.3.6.13 relatively
low we postpone the proof of Thm.3.6.17 to §3.7 (pp. 284-292).

The notation 2 C N was introduced in Convention 3.1.2 (p.160).

PROPOSITION 3.6.18 Assume n > 3. Assume I is a frame model such that
I = Basax(n) + Ax(v/ ). Then there is a frame model MM* such that M C M+
and M = Basax(n) + AxT.

Proof: Let n > 3. Let

oM = ((B, Obs, Ph, Ib), §, G; €, W) = Basax(n) + Ax(v/ ).

Let o+ & ((BT,Obs*, Ph"  Ib"),F, G; €, W) be defined as follows.

Bt ¥ B x Trivy, Obst ¥ Obs x Trivy, Pht % Ph x Trivy, Ib* % Ib x Triv,,
and for all (m, N) € Obs* and p € "F 'wZLm,N) (p) o (N o wy,(p)) X Trivy. By this
M is defined. Now 9t C MT assuming that we treat (b,Id) € B as identical with
b € B, for all b € B. We claim that 9+ |= Basax(n) + Ax7. Checking this claim

is left to the reader. 1
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QUESTION 3.6.19 Is Basax(4) = Ax(v/ ) true?
<

We note that Questions 3.6.14 and 3.6.19 are equivalent in the sense that the answer
to Question 3.6.19 is “YES” iff the answer to Question 3.6.14 is “YES”.

Now, we start preparations for proving Thm.3.6.13 (and some of the “lesser”
theorems).

LEMMA 3.6.20 {fePT : f(0) =0 A f(1,) =1,} = Trivo
Proof: {fe PT : f(0)=0 A f(1;) =1;} D Trivy holds by Trivp € PT (c

Lemma 3.7.1 on p.283). To prove the other inclusion let f € PT with f(0)
and f(1;) = 1;. First we prove that (80) holds.

f.
0

(80) (VO <ien)f(ly) Lel;.

While proving (80) we will use some simple notions from elementary geometry with-
out introducing them. Throughout the proof of (80) the reader is asked to consult
Figure 81.

Assume that 0 < ¢ € n. The f image (1;,f(1;), —1;, —f(1;)) of the square
(14,1;, —1;,—1;) is a quadrangle whose sides are photon-lines since the sides of the
square (1;,1;, —1;, —1;) are photon-lines and since f is an affine transformation tak-
ing photon-lines to photon-lines. Since in every plane containing the ¢-axis two
photon-lines are either parallel or orthogonal in the Euclidean sense, the state-
ment that the sides of quadrangle (14 f(1;), —1;, —f(1;)) are photon-lines implies
that (1;,f(1;), —1;, —f(1;)) is a rectangle whose sides are photon lines and one diag-
onal lies on the ¢-axis, which in turn implies that (1, f(1;), —1;, —f(1;)) is a square.
Hence f(1;) L 14, and this completes the proof of (80).

Since f is a linear transformation statement (80) implies that (Vp € S) f(p) € S.

To prove that f € Trivy, by having in mind that an equivalent definition for
Trivg is

fe Trive &5 ((Ypei)fp)=p A (e S) () €S A B = ll)),

it remains to prove that (Vp € S) [|p|| = [|f(p)]|- Let p € S. Assume first that §
is Euclidean. Then there is ¢ € ¢ such that pg is a photon-line, namely ¢ € ¢ with
llg|l = ||p|| is such. Let this ¢ be fixed.

Then f(p)g is a photon-line since pg is a photon-line and since f takes photon-lines
to photon lines and leaves ¢ fixed (by ¢ € ¢). This and f(p) € S implies that
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Figure 81: Illustration for the proof of Lemma 3.6.20.

If(®)l| = llgll = llp|l. Lemma 3.6.20 is proved for the case when § is Euclidean.
For non-Euclidean § a proof can be obtained by applying Lemma 3.6.20 to the
real closure?®* F, of § and by using Lemma 3.4.7 on p.206 which says that for a
transformation f € PT(§,n) there is f, € PT(F.,n) with f C f,. Checking the
details are left to the reader. W

LEMMA 3.6.21 Assume § is Fuclidean. Let p,q € "F with p # q and
pq € SlowEucl. Then for T,, defined in Def.3.6.8, (i)-(iii) below hold.

(i) Tp € PT.
(ii) T,,(0) =p and T,(l;) =q.
(iii) (V/ € SlowEucl) T,,[¢] € SlowEucl .

Proof: The proof of the lemma follows by the definition of 7}, (Def.3.6.8). This
definition says that T}, is defined exactly as fy,,, was defined in the definition of SM
(Def.3.5.5 in §3.5) but with (p, g, Np,) in place of (o, tx, Ni). Now in the definition

264The notion of the real closure of an ordered field can be found e.g. in [92].
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of SM, fy,,, was defined to be an affine transformation which takes 0, 1; to o, t,
respectively. Further, in the proof of Thm.3.5.6 in §3.5, which says SM = Basax,
we have the following propositions. In the “Proof of (IV)” (73) says that

(Ve e Eucl)(e € PhtEucl < fm|f] € PhtEucI) .

And in the “Proof of (V)” (77) says that
(V¢ € SlowEucl) fg,,[¢] € SlowEucl .
By the above, we conclude that (i)-(iii) hold for T,. 1

Proof of Prop.3.6.9: Assume § is Euclidean. Let p,q € "F with p # ¢ and
Pq € SlowEucl. By Lemma 3.6.21(i),(ii) we have that (81) and (82) below hold.

(81) T,q € PT.

(82) T,,0)=p and Ty(1l) =gq.
Proof of (i)= (ii): Let A € PT with A(0) = p and A(1;) = ¢. Then we have

(83) AoT ' e PT & AoT'(0)=0 & AoTi'(1)=1,

by (81),(82), and by Remark 3.6.3. Now we conclude that A o T, ' € Trivy by
Lemma 3.6.20 and by (83). Therefore A = M o T,,, for some M € Triv,.

Proof of (ii)= (i): Let M € Trivg and A = M oT,,. Then A € PT by Trivy C PT,
by (81), and by Remark 3.6.3. By M € Triv,, we have M(0) = 0 and M(1;) = 1;.
Therefore A(0) = p and A(1;) = ¢ by (82). &

Proof of Thm.3.6.4(i):

PT D {trivgorhombo triv : trivy € Trivg A rhomb € Rhomb A triv € Triv }
holds, since Trivy, Triv, Rhomb C PT (cf. Lemma 3.7.1 on p.283) and since PT
is closed under composition o. To prove the other inclusion let A € PT. Then
A = trivg o Tp,, for some p,q € F and trivy € Trivy by Prop.3.6.9. Let this T},
be fixed. By Remark 3.6.10, T, = rhomb o triv, for some rhomb € Rhomb and
triv € Triv. Let such rhomb, triv be fixed. Now A = trivy o rhomb o triv, and this
completes the proof of Thm.3.6.4(i). Item (ii) of Thm.3.6.4 will be proved in §3.7
on p.283. 1
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LEMMA 3.6.22 Let ¢ € Aut(F). Then (i)-(iii) below hold.
(i) @:"F — "F is a bijection.

(ii) (V¢ € Eucl) ¢[¢] € Eucl.

(iii) (V¢ € Eucl) ang®($[(]) = ¢(ang?(¢)) .

Proof: The proof is straightforward, we omit it. We note that (i) and (ii) follow by
Lemma 3.1.6 in §3.1. 1

LEMMA 3.6.23 Let ¢ € Aut(F). Then
¢ € SlowEucl < @[f] € SlowEucl, for all £.

Proof:

Proof of = : Let £ € SlowEucl. Then ang®(¢) < 1. By Lemma 3.6.22(iii), we have
ang®(p[f]) = p(ang®(¢)) . Therefore we have p(ang?(£)) < 1 by ang?(¢) < 1 and by
¢ being order preserving. Hence ¢[¢] € SlowEucl .

Proof of <= : The proof is analogous with the proof of direction =, because
ol e Aut(F).

Proof of Prop.3.6.12: The proof will be analogous with the proofs of
M = Basax(2) in §2.4 (Thm.2.4.1) and of SM = Basax(n) in §3.5 (Thm.3.5.6).
The essential novelty in the present proof is that we have to handle the field auto-
morphisms ¢ and the new Newtonian transformations M} too, for each observer k,
(because now they too belong to an observer k).6°

Let 9t € GM. We will show that 9 = Basax.

For every k € Obs, by Lemma 3.6.21, we have that (84)-(86) below hold.

(84) Toktk € PT
(85) Toti[t] = okt (by Tot, (0) = o and T4, (11) = tx)-
(86) (V¢ € SlowEucl) T, ¢, [¢] € SlowEucl .

For every k € Obs let
fi o proMyoT,

ktk *

265Tn the definition of SM, an observer k (more precisely k’s world-view) was determined by data
(0K, tr, Ni), while in GM it is determined by more data like {0k, tx, N, pr, M) .
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We will prove that (87)-(91) below hold for fy, for every & € Obs.

(87) fe :"F — "F is a bijection.

(88) (V¢ € Eucl) fi[¢], f;'[{] € Eucl.

(89) (V¢ € PhtEucl) f[¢], f,'[¢] € PhtEucl.
(90) (V¢ € SlowEucl) f¢[¢] € SlowEucl.

(91) filt] = oxti .

(87) holds by My o T, € Aftr and by Lemma 3.6.22(i).

(88) holds by My oT,,:, € Aftr, by Lemma 3.6.22(ii), and by (87).
(89) holds by M;, € Trivo C PT, by (84), and by Lemma 3.6.22(iii).
(90) holds by (86), by Lemma 3.5.4 in §3.5, and by Lemma 3.6.23.
(91) holds by @, o My[t] =t and by (85).

It is easy to see that for every k£ € Obs and b € B

Ktk

(92) wr = frowg,
(93) Bb) = filtre(d)],
(94) tre(b) = f,'[BO)],
by the definitions of wy and fy.

Now

M = Ax1, Ax2 by M € GM.

M = Ax3 because of the following. Let h € Ib and m € Obs. By (94),
we have tr,,(h) = f;'[8(h)]. By h € Ib and by item 6 in the definition
of GM (Def.3.6.11), we have 3(h) € Eucl. Therefore tr,,(h) = f; ' [3(h)]
and S(h) € Eucl imply ¢r,,(h) € Eucl by (88).

M = Ax4 because of the following. Let m € Obs. Then f,[t] = omtm
by (91). We have ont, = B(m) by item 3 in the definition of GM
(Def.3.6.11). By these two, we have f,,[t] = B(m). By (93), we have
B(m) = fu[trm(m)]. By this, by f,[t] = 8(m), and by (87), we have

trm(m) =t.

M = Ax5 because of the following. Let m € Obs, ¢; € SlowEucl,

¢y, € PhtEucl. By (90), we have f,,[¢;] € SlowEucl, and by (89), we
have f,,[¢s] € PhtEucl. Therefore by items 4,5 in the definition of GM
(Def.3.6.11), we have f,,,[¢1] = B(k) and f,,[¢2] = 5(ph), for some k € Obs
and ph € Ph. Let such k£ and ph be fixed. Now we conclude tr,,(k) = ¢,
and tr,, (ph) = £y by fu[l1] = B(k), fm[la] = B(ph), by (93), and by (87).
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M = Ax6 because (87) and (92) imply that (VYm € Obs)
Rng(wm) = Rng(wo) .

M = AXE because of the following. Let m € Obs and ph € Ph. By
(94), we have tr,,(ph) = f_'[3(ph)]. By item 5 in the definition of GM
(Def.3.6.11), we have 3(ph) € PhtEucl. By this, by tr,,(ph) = f.[3(ph)]
and by (89), we have tr,,(ph) € PhtEucl, hence v,,(ph) = 1.

By the above, 9t = Basax. Therefore,
Prop.5.6.12 is proved. 1

Proof of Thm.3.6.13(ii): Let n > 3. By Prop.3.6.12 and GM = Ax(v/ ), we have
that GM C Mod(Basax(n) + Ax(v/ )). To prove the other inclusion assume

M = ((B, Obs, Ph, Ib),§, G*: €, W) € Mod(Basax(n) + Ax(v/ )).

Now we will prove that 9t € GM. By M = Ax(v/ ), we have that § is Euclidean.
Let mg € Obs be arbitrary and fixed. We will define functions

a : Obs — "Fx"Fx Aut(§) x Trivy and

g : B — P("F).

Definition of a:
Let k € Obs. In what follows we will define (k). By Prop.3.6.5(ii), we have

feme = Pk 0 A, for some A € PT with A[t] = trpy,, (k) and ¢ € Aut(F).

Let these ¢ and A be fixed. Let

or AD) and t, ¥ A1),
By this and A[t] = try,,(k), we have o, # tx and oxty = try, (k). There is no
FTL observer in 9 by Thm.3.4.1(i) in §3.4, hence oxty, = tr,, (k) € SlowEucl. Now
Prop.3.6.9 implies that

A= MoT,, , forsome M; € Trivy,

because o # ty, oxly € SlowEucl, A € PT, A(0) = o, and A(1;) = t;. Let this M,
be fixed. Now o
Of(k) :e <0ka tk, Dk, Mk> .

By this function « is defined. We note that

(95) fk:mo = /SB; o Mk o To

Ktk
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by feme = proAand A= MyoT,

Definition of B:
Let b € B. Then

Ktk

def
B(b) = trp,(b) .
By this function § is defined.

Now we will check that 1-6 in the definition of GM (Def.3.6.11) hold for B, Obs,
Ph, Ib, o, and (.

1 holds by 91 € Mod(Ax2) .
In the definition of o we saw that 2 holds, i.e. for all £ € Obs oy # tx .

3 holds because of the following. Let £ € Obs. In the definition of o we saw that
ol = trm, (k) , and by def. of 8 we have B(k) = trm,,(k). Hence S(k) = oty .

4 holds because in 0N there is no FTL observer by Thm.3.4.1(i), because of Ax5,
and by the definition of 5.

5 holds by def. of § and by Ax5,AxE.
6 holds by def. of # and by Ax2 Ax3.

It remains to show that W defined in the definition of GM coincides with W™
To show this it is enough to prove w}' = wy, for all k € Obs. To see this let k € Obs.
By (95) above, we have

wy © (wp,)

_IZ%OM]‘:OTO

Ktk *

Therefore
(96) wy = Qo MyoT,,, o wzo

By the definition of 3, it is easy to see that

By this, by (96), and by the definition of wy, we have
wzt = Wg .

This completes the proof of Thm.3.6.13(ii). Therefore,
Thm.53.6.13 is proved. 1
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kell-e ide olyan,
hogy proof?

On the case n = 2.

As we said in the introduction of this section Mod(Basax(2)) was characterized in
an earlier version [25] of this work but cf. also Thm.2.3.12 in §2.3 herein where the
fk transformations occurring in models of Basax(2) are completely characterized.
(This does provide a kind of characterization of Mod(Basax(2)), from a certain point
of view.) We think it would be useful to elaborate at this point the extension of the
investigations in the present section to the case n = 2. Actually these investigations
were presented on the series of seminars (1997 fall) on which the present material is
based, but we did not have time to include them here. One example of those results
is the following:

THEOREM 3.6.24
GM(2) = Mod(Basax(2) + Ax(v/ ) + “ A FTL observers”).

The proof will be filled in later. R

Actually, in many parts of the present section (§3), the case n = 2 seems to be
somewhat neglected. If would be interesting to see just a little bit about how those
parts extend to n = 2. As it turns out from the earlier version [25] of this work, in
the case n = 2 the (non-order-preserving) automorphisms of the field F™ played a
much more dominant role than in the cases n > 2.
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3.7 Proofs of some earlier announced theorems

In this section we prove some earlier announced theorems.

Let us recall that Rhomb, Lor, SLor, Poi, PT, are the sets of rhombus, Lorentz,
standard Lorentz, Poincaré, photon preserving (affine) transformations (over an or-
dered field §), respectively, defined in Definitions 2.3.18, 2.9.1 and 3.6.2. Further,
Exp and Tran are the sets of expansions and translations, respectively, defined in
Def.2.9.1. Trivy and Triv are the sets of so called trivial (non-relativistic) transfor-
mations defined in Def.3.5.1.

LEMMA 3.7.1 Elements of Rhomb, Lor, SLor, Poi, Exp, Tran, Trivy, Triv are
all photon-preserving affine transformations (i.e. elements of PT ), and are contained
in each other in the following way:

Exp
N
SLor C Rhomb
M N
Lor C Poi C
U U
Trivy C Triv.
U
Tran

We omit the proof. 1

Proof of Thm.3.6.4(ii): Assume § is Euclidean. Then

PT D {poioexp : poi € Poi A exp € Exp} holds since (Poi U Exp) C PT by
Lemma 3.7.1 and since PT is closed under composition o. To prove the other
inclusion let f € PT. Then, by Thm.3.6.4(i),

(97) f = trivy o rhomb o triv,

for some trivy € Trivy, rhomb € Rhomb and triv € Triv. Let such trivy, rhomb,
triv be fixed. Now

(98) rhomb = slor o exp,

for some slor € SLor and exp € Exp by Thm.2.9.6 on p.156. Let such slor, exp
be fixed. It is easy to see that exp o triv = triv o exp, for any triv € Triv and
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exp € Exp. Now

f = trivg o rhomb o triv by (97)

trivg o slor o exp o triv. by (98)

trivg o slor o triv o exp by exp o triv = triv o exp

= poi o exp for some poi € Poi because of the following:

trivg, slor, triv € Poi by Lemma 3.7.1, and it is easy to check (by the definition of
Poi) that Poi is closed under composition o. By the above computation we have
f = poi o exp, for some poi € Poi and this completes the proof of Thm.3.6.4(ii).

Next, we turn to the proof of Thm.3.6.17. Let us recall that Thm.3.6.17 says

that
(i) Basax(3) = Ax(V ), and
(ii) Basax(n)+ Ax7 = Ax(v ), forn > 3.

Proof of Thm.3.6.17: First we give a proof for (ii), and then a proof for (i).

Proof of (ii):
The idea of the proof is in Figure 82. Let n > 3 and let 9 = Basax(n) + Ax7.
First we prove that (99) below holds.

(99) (Va € F) (1—a2>0 = (VI—a?eF, ie. (3d€F)d2:1—a2)>.

Throughout the proof of (99) the reader is asked to consult Figure 82. To prove

(99) let a € F such that 1 —a? > 0. Let ¢ o (1,a,0,...,0). Let P be the plane
parallel with Plane(Z, ) and with height 1, i.e.

PY{(1,2,4,0,...,0) : z,y e F}.
Let C & LightCone(0) N P. Then C is a circle with radius 1 and center o o 1;. Let
¢ € Eucl such that ¢ € £ and ¢ || §. Notice that £ C P.

Claim 3.7.2 /NC #0.

Proof of the claim: Let m € Obs. Let k € Obs such that tr,(k) = Og and fym[7] || 7.
By Ax7, such an observer k exists?®®. Figure 82 illustrates the world-view of m.
The intuitive idea of the proof of the claim is that we switch over to the world-view
of k; then in the world-view of k£ we prove what we want, and then we transform
back the result to the world-view of m.

2665ince Og C Plane(f, z) and ang?(0q) = a% < 1
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Figure 82: Illustration for the proof of Thm.3.6.17(ii).
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Let us turn to the details. Let ph € Ph such that

fmk(0) € tri(ph) C  Plane(t, 7).

Such a ph exists by Ax5.257 Then

0 € trp(ph) C  fi.[Plane(, 7)),
fem[Plane(t, 7)] is a plane (cf. 3.1.16). Then

¢ C fym[Plane(t, y)]

since 7y, (k) = femlt], £ || 7 || frm[y], and £ tr,, (k) # @. But then £ N tr,,(ph) # 0.
Let s € £N tr,,(ph). Then s € C (because s € £ C P, s € tr,,(ph) C LightCone(0),
and C = P N LightCone(0)). Hence s € £ N C, and this completes the proof of the
claim. QED (Claim 3.7.2)

Let s € /N C. Such an s exists by Claim 3.7.2. Let us consider the triangle ogs.
This triangle is rectangular, i.e. oG L. gs. The length of hypotenuse os (of triangle
0gs) is 1 since os is a radius of the circle C. The length of side og (of triangle ogs) is
a. Now, by Pythagoras’ theorem, the square of length of side gs, which is the same
as sy, is 1 — a”. So, for the choice d = s, we have d*> = 1 — a?, and by this (99)
above is proved.

Now, from (99) we prove Ax(y/ ), that is, (V0 < 2z € F)(Jy € F)y? = z. 268
This can be done by noticing that for every 0 < z € F

and by applying (99) for a := £=. This completes the proof of item (ii) of
Thm.3.6.17.

Proof of (i): The proof will be based on that of (ii), that is, we will eliminate the
usage of Ax7 from the proof of (ii). Let us notice that (in the proof of (ii)) Ax7
was used only in the proof of Claim 3.7.2. Thus to prove (i) it is sufficient to prove
Claim 3.7.2 using Basax(3) only. Let us recall from the proof of (ii) that a € F is
fixed such that 1 —a? > 0, ¢ = (1,a,0), P is a plane parallel with Plane(Z, %) and
height 1 (i.e. P ={(1,z,y) : x,y € F}), C = PN LightCone(0), and ¢ € Eucl such
that ¢ € £ || . Now, we recall Claim 3.7.2.

267This is so because e.g. { i (0) + A- (1 +1,) : X € F} is a photon-line in Plane(Z, §) passing
through fp,1(0).
268We note that “(99) = Ax(v/ )” is a property of ordered fields in general.

286



Claim 3.7.2 (N C # 0.

Let us turn to proving Claim 3.7.2 from Basax(3). Assume 9 = Basax(3). Let
m € Obs. Let k € Obs such that tr,,(k) = 0g. Such a k exists by Ax5. Figures 83—
87 represent the idea of the proof. The intuitive idea of the proof (as the idea of
that of (ii)) is that we switch over from the world-view of m to the world-view of
k; then in the world-view of k£ we prove what we want, and then we transform back
the result to the world-view of m.

Let us turn to the details. Let Sy C ®F be a simultaneity of k¥ (in the world-view
of m) such that q € S, that is, let Sy C 3F be such that

fmk[Slc] = {p+fmk(q) . p € Plane(i,gj)} y

see Figure 83.

frnke [Sk] \
Sk:
: Plane(z y)
,' k n Plane X\

Yy T

(S
(S

fmk (Q)

world-view of m world-view of k

Figure 83: Let Sy be a simultaneity of £ containing q.

Sk is a plane, cf. 3.1.16.
¢ C Sk

by Thm.2.5.6 saying that clocks do not get out of synchronism in direction orthog-
onal to movement.

0¢ S
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because ¢ € Sk, 0g = try, (k) and trp, (k) € S (since S is a simultaneity of k). Let

Ce ¥ 5, N LightCone(0).

Then
(NC = £NCy, 2%

see Figure 84. Thus, to complete the proof it is enough to prove that

¢NCy # 0. Now, we turn to prove this. Throughout the proof we will use some
basic theorems from elementary geometry (without recalling them) which are true
in all 3-dimensional geometries over arbitrary ordered fields. We will use the notion
of parallelism and the symbol || not only for lines, but also for planes in the usual
way.

Let ¢, {5, {3 € PhtEucl such that ¢; C Plane(t,z), /{2,435 C Plane(t,y), {o # {3,
and 0 € 1 N by N L3, Such ¢y, 0y, 05 exist (eg by = 6(1, —1,0), ly = 6(1,0, 1) and
¢3 = 0(1,0,—1) are such). See Figure 85. Let r € £{N Sy, u € £,N Sk and v € €3N Sy
(cf. Figure 85). Such 7, u, v exist because we are in 3 dimensions and because there
is no photon-line which is parallel with Sy since S is a simultaneity of observer &.?"
r,u,v,q are distinct points by the choice of r,u,v, g since 0 ¢ Sy and 0gq & PhtEucl.
Let us notice that

r,u,v € Cy, 2™

7q C Plane(t, ) N Sk and that wo C Plane(t, §) N Sk. Moreover 7q = Plane(t, Z) N Sk
and wv = Plane(Z,y) N Sy, since Plane(t, z) # Sy # Plane(t, %) by 0 & Sk. So

(100) tNnrgNuu = Plane(t,z) NPlane(t,y) NSy .
Further
(101) Plane(,Z) N Plane(, ) NSy, # 0

because of the following. Assume that (101) above does not hold. Then NSy, = 0, so
t || Sk,%™ which together with ¢ || £ C Sy, imply that Plane(Z,4) || Sk. Plane(Z, %) || Sk
contradicts uv = Plane(t, ) N S. Let

wEtNTgNUD.

Such a w exists by (100) and (101). Since ¢ || Plane(t, 7), £ C Sy, and
uv = Plane(t, ) N Sk we have that

(102) ¢ ww .2

269This is so because £ C Sy N P, Cy, = Sy N LightCone(0) and C = P N LightCone(D).

2107 e. if a photon-line parallel with Sj existed then, by Ax5, ph € Ph with tr,,(ph) || Sy would
exist. Then (for this ph) vg(ph) = co would hold and this would contradict AxE.

211 This is so by ¢, /s, €3 C LightCone(0), by Cy = Si N LightCone(0) and by the choice of r,u, v.

212Gince we are in 3 dimensions if a line is disjoint from a plain then they are parallel.
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Figure 84: /N C = £ N Cy. We will prove that £ N Cy, # 0.
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Figure 85: Let r,u, v, w be as above. Then w is a midpoint of segment uv.
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world-view of m:

world-view of k: LightCone(f,,x(0))

Figure 86: Let us switch over from the world-view of m to the world-view of k.
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Now, t L. uv by t L. 7 || £ || uww. Therefore, by u,v € LightCone(0) and w € £ Nuw,
we have that
(103) w is the midpoint of segment uv,

u+v

(i.e. w = ) since LightCone(0) is symmetric w.r.t. the time axis ¢, cf. Figure 85.

Let us switch over to the world-view of k, cf. Figiure 86. Throughout we
will use that f,;, : *F — 3F is a bijection without mentioning this. Let
s O U5, r',u' v’ w' be the f-images of Si, Cy, 4, q, 7, u, v, w respectively. See
Figure 87.
Then

qg €t

by Ax4 since q € trp,(k).

C}, is a circle with with center ¢' (lying in the plane S} which is parallel with
Plane(z, 7)) because of the following. Since 0 € tr,,(k) we have that f,,;(0) € ¢ by
Ax4. Further f,;[LightCone(0)] = LightCone(f,,x(0)) by f..x being a bijection with
the property (¢ € PhtEucl & f,;[¢] € PhtEucl), cf. 3.1.17. But then
C,. = LightCone(f,,x(0)) N S}, since Cy = LightCone(0) N Si. So C}, is a circle with
center ¢'.

Since f,,x, preserves Eucl (cf. 3.1.1) and w is the midpoint of segment uw, cf. (103),
we have that

w' is the midpoint of segment u'v'.2™
(Let us notice that triangle u'q'v" is isosceles triangle since segments ¢'u’ and ¢'v’
are both radiuses of circle C}.) But then ¢'w’ is the median line of isosceles triangle
u'q'v’ (cf. Figure 87). This implies that u/v’ 1, r'q’. Therefore, since ¢ || v/v' (by
(102) and f,,; being line preserving) we have that

0 1,r'q.
But then
(risry, =15 €L NC,

since ' = (ry,m,,7,) € Cy, ¢ € £'Nt, Cp is a circle with center ¢' lying in the
plane S, ¢ C S}, and S, || Plane(Z, 7). Hence £/’ N C), # 0. So £ N Cy # 0, and this
completes the proof. Therefore,

Thm.3.6.17 is proved. 1

273Here we used that if there are two intersecting planes such that there is a line in one plane
parallel with the other plane then this line is parallel with the intersection of the two planes.

2™ Any f : "F — "F preserving Eucl has the property that for any p,q € "F, f takes the
midpoint of segment pg to the midpoint of segment f(p)f(q), cf. the proof of Lemma 3.1.10.
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Figure 87: ¢' N C}, # 0, and this completes the proof of Thm. 3.6.17(i).
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3.8 Making Basax complete and “Einsteinian” (BaCo)

Very roughly speaking, this section is about the following. We will see that our
symmetry principle Ax(symm) makes Basax almost (but not perfectly) complete
(cf. also Figure 29 and Thm.2.9.5) and we will also show how to make it perfectly
complete (cf. Thm’s 3.8.7, 3.8.14).2"™ The main price of this “perfect” completion
is that for this, we will have to assume an axiom, called AxQ, which (among
others) excludes non-inertial bodies from our domain of discourse. Therefore in this
“perfectly” complete theory we will not be allowed to talk about accelerated bodies
(like e.g. the Earth circling the Sun). As we will see in the “Gédel incompleteness”
chapter, AxQ is a very restrictive axiom, which is extremely useful if we want
to do certain things, but at the same time it is important to be aware (of the
future theorem saying) that we have to pay a considerably big price for assuming
AxQ. In some sense to be explained elsewhere, AxQ amounts to deciding that
we want to formalize only the “heart” of our theory “of motion etc.” as opposed to
formalizing the whole of the theory, cf. §1.1.IV (item IV of “Broad introduction”).
More explanation of these thoughts will be included in a later version.

More precisely: In this section we will extend {Ax(symm), AxQ} to a finite
axiom system Compl that will make Basax categorical over any given Euclidean
§. That is, we will show that, for any Euclidean §, BaCo := Basax + Compl
admits exactly one model, up to isomorphisms, whose ordered field reduct is §. This
will imply that BaCo+ Th(g) is a complete theory,?”® for any Euclidean §, where
Th(F) is the first-order theory of §. E.g. BaCo+ Th(2R) is complete, where Th(2R)
is the first-order theory of the reals.2””

As a contrast to the above discussed completeness (of BaCo + Th(fR)) all the
axioms in Compl will turn out to have an interesting property except for the axiom
named Ax(1). This property is that if we omit the axiom in question from
BaCo + Th(R) then all of a sudden we will have the opposite of completeness. In
more detail: We will see that for any Ax € Compl\ {Ax(1)},

2751f we are interested only in the world-view transformations between observers then Basax +
Ax(symm) almost completely describes the situation. Namely, if we add some very simple aux-
iliary axioms together with Th(9R) + Ax(1) to be introduced soon, we get a complete description
of the world-view transformations, clocks, meter rods oriented aspects of the “world”.

276For the definition of complete theory cf. Def.3.8.13 on p.301.

27Tt happens to be the case that Th(fR) is the same as the usual theory of real-closed fields,
cf. Def.3.8.12 on p.301, Fact 3.8.15 on p.302 and e.g. Chang-Keisler [59] or Goldblatt [108]. An
important aspect of Th(R) is that it is axiomatizable by a finite schema of first-order formulas (cf.
Def.3.8.12).
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beleirni, hogy an-
nak Oriiliink ha
sok modell van!

BaCo \ {Ax} + Th(R) has 2“ (i.e. continuum) many non-elementarily-equivalent
models.?”®  Equivalently, there are 2* many?” different complete deductively
closed®? theories extending BaCo \ {Ax} + Th(R).

Further, we will see, that the effects of Ax(1) are different from those of the
remaining elements of Compl. Namely, for every Euclidean §, BaCo \ {Ax(1)}
has only a finite number of models, up to isomorphisms, whose ordered field reduct
is § (cf. items 3.8.8, 3.8.9).

The theory BaCo \ {AxQ} agrees with the “Einsteinian”, standard version of
special relativity, while BaCo is strongly related to Minkowskian geometry, cf.
§¢ 6.2, 6.6 in the geometry chapter.?®!

Our set of extra axioms Compl will consist of two groups: the essential ones
and the auxiliary ones. The essential ones will be Ax(symmyg), AxQ and Ax(1)
(where Ax(symmyg) was introduced in §2.8, while AxQ and Ax(1) will be intro-
duced below). The auxiliaries are the rest. We call Ax(symmyg), AxQ and Ax (1)
essential because it is worth to discuss versions of relativity theory both with them
and without them. For example consider AxQ. As we mentioned above, the choice
between adding or not adding AxQ to our theory might be interpreted as deciding
whether we want to develop an “only the heart approach” or a “not only the heart
approach”. And of course both of these choices make sense (i.e. they both are worth
of discussing). Therefore we call AxQ one of the “essential” axioms. As a con-
trast let us look at one of the auxiliaries, e.g. consider Ax(Triv;) to be introduced
below. This axiom is a very natural one, namely it says that every observer can
“re-coordinatize” his world-view by any trivial transformation.?®? The reason why
we did not include Ax(Triv;) into Basax is that we could derive our main theo-
rems (e.g. no FTL observers, clocks getting out of synchronism) without Ax(Triv;).
Nobody is extremely curious about the question what is the difference between rela-
tivity theory without Ax(Triv,) or with Ax(Triv,). (One could say, that whenever
one would need an axiom like Ax(Triv;) for something, one will assume it without
a second thought.)

Let us turn to discussing the axioms in Compl. As we said these axioms will
be divided into two groups: the essentials and the auxiliaries.

278For the definition of elementarily-equivalence cf. Def.3.8.17 on p.303.

219This is as much as possible for administrative reasons because of the following. In our frame
language there are w (i.e. countable) many formulas, hence there are 2“ many sets of formulas,
therefore there are at most 2¢ many different complete closed theories.

280 A theory Th is called deductively closed iff for any formula ¢ in the language of Th
(Th =9 = v € Th). As usual, by a theory we understand a set of (first-order) formulas.

281The duality theory in §6.6 makes BaCo match nicely with Minkowskian geometry.

282 And we guess, nobody would seriously doubt that it is true in the real world.
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Essential axioms

First, we recall the symmetry principle Ax(symmyg) from §2.8. Intuitively,
Ax(symmy) says that as m sees k so does some sister &£’ of k£ see some brother
m’ of m. (Two observers say m and m' are called brothers if they have the same
life-line.) For more on the intuitive meaning of Ax(symmyg) the reader is referred
to §2.8.

Ax(symmyg) (Vm,k € Obs)(3Im/, k' € Obs)
<trm(m’) = trp(K) =T A fop = fk,m,).
We also recall that the symmetry principle Ax(symm) was defined to be

Ax(symmgp)+Ax(eqtime), where we will recall Ax(eqtime) in the list of the
auxiliary axioms below.

AxQ below says that every body is an observer or a photon. (The main idea behind
AxQ is to exclude non-inertial bodies. As it happens, AxQ says slightly more than
this.)

AxQ© B = 0bsU Ph.

Our next axiom deals with the direction of flow of time. To prepare the formulation
of this axiom, we introduce the following definition.

Definition 3.8.1 We define binary relations 1,/ € Obs x Obs as follows. Let
m, k € Obs.

mtk S (1) — fim(0); >0, and
mlk & (1) — fum(0): < 0.

Intuitively, m 1 k£ means that m thinks that k’s clock runs forwards, while m | &
means that m thinks that &’s clock runs backwards, see Figure 88.
<

Intuitively, Ax(1) below says that for “observer brothers” time flows in the same
direction.

Ax(1) (Vm,m' € Obs) (trm(m') =t = m? m’).
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fim (1¢) fkm((_))
fkm(ﬁ) fkm(lt)
T z
m7Tk mlk

Figure 88: m 1 k means that m sees that k’s clock runs forwards.

Now, we turn to the auxiliary axioms.
Auxiliary axioms

In the axioms below we use the standard custom that free variables should be
understood as universally quantified; e.g. if ¢(z) is postulated as an axiom then it

means (Vz) ¢ (z).

Ax57 below is a stronger version of the “observer part” of Ax5, it says that any
speed smaller than the speed of light is realized by an observer whose clock runs
forwards (that is, every appropriate line is the life-line of an observer whose clock
runs forwards.)

Ax5%t (e SlowEucd = (k€ O0bs) ({=tr,(k) N m71Tk).

The next axiom says that every observer can “re-coordinatize” his world-view
by any trivial transformation.

Ax(Triv) (Vf € Triv)(3k € Obs) fe = f.

To “make Basax complete” it will be enough to use the following weaker form
Ax(Trivy) of Ax(Triv) (instead of Ax(Triv)).

Ax(Triv,))  (Vf € Triv) ( fEl=Ff = (3ke Obs)fu= f).

297



The next axioms say, intuitively, that of each kind of observers and bodies we
have only one copy (or in other words, according to Leibniz’s principle, if we cannot
distinguish two observers or two bodies with some observable properties, then we
treat them as equal). We also refer to this axiom as an axiom of extensionality.

Ax(ext) (Ym,k € Obs) [wy,, =wr, = m=k| A
(Vb,by € B\ Obs)(Vm € Obs) [try,(b) = trn(b) = b=0b].

Now, we recall Ax(eqtime) from §2.8. Intuitively, it says that time passes with
the same rate for “observer brothers” m and m’.

Ax(eqtime) (Vm,m' € Obs)
(trm(ml) = t_ = (VPv q € 7?) |p - Q| = |fmm’ (p) - fmm’ (Q)|> .

Definition 3.8.2

Compl o {Ax(symm), AxQ, Ax(1), Ax5%, Ax(ext), Ax(Triv,)}.

BaCo & Basax + Compl.

CONVENTION 3.8.3 By Compl\ {Ax(symmg)} we understand
{Ax(eqtime), AxQ, Ax(1), Ax5", Ax(ext), Ax(Triv;)} and similarly for
BaCo \ {Ax(symmy)}.

<

Let us start working in the direction of studying categoricity, completeness, and
similar properties of our theories. From this point on, in the rest of the present work
we will use the following two conventions.

CONVENTION 3.8.4 In the spirit of Convention 3.1.2 (p.160) we use the notions
of homomorphism, isomorphism, and automorphism of both one-sorted and many-
sorted structures in the usual sense. E.g. if 91 and 9 are similar many-sorted
structures then by a homomorphism A : 91 — 91 between them we mean the
usual, structure-preserving map as defined in textbooks on many-sorted universal
algebra or model theory, cf. e.g. Ehrig-Mahr [79] or Burmeister [53] or Lugowski [167]
or Barwise-Feferman [43]. Cf. also footnote 310 on p.342.

<
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CONVENTION 3.8.5 Throughout this work by a theory we will understand an
arbitrary set of first-order formulas in some fixed language of first-order logic (i.e.
we will not assume that it is closed under semantical consequence). E.g. Basax,
BaCo are theories.

<

Definition 3.8.6 Let Th be a theory in our frame language and § be an ordered
field. Then Th is said to be §-categorical iff Th has exactly one model with ordered
field reduct §, up to isomorphisms (i.e. iff any two models of Th with ordered field
reduct § are isomorphic).

<

THEOREM 3.8.7 Let § be Euclidean (and let n > 2 be arbitrary). Then there is
a unique model of BaCo with ordered field reduct §, up to isomorphisms. That is,
BaCo is §-categorical.

Proof: In §3.8.2 (p.322) for each Euclidean § we will construct a model 9,
validating BaCo, which we will call the Minkowski model over §. In §3.8.3 (p.341)
we will show that for each Euclidean § every model of BaCo “over §” is isomorphic
with the Minkowski model imé/[ to be constructed in §3.8.2. Summing up, §3.8.2 is
the proof of the existence part, while §3.8.3 is the proof of the uniqueness part of
the theorem. 1

In connection with the above proof, we note that §3.8.1, on median observers, is
included in the present section to motivate the model construction in §3.8.2.

THEOREM 3.8.8 Let n > 2 and let § be Fuclidean. Then there are exactly 2
models of BaCo \ {Ax(1)} with ordered field reduct §, up to isomorphisms.

The proof will be filled in later. R

Let us see how the conclusion of the above theorem changes for n = 2.

Conjecture 3.8.9 Let n = 2 and let § be Euclidean. Then there are exactly 4
models of BaCo \ {Ax(1)} with ordered field reduct §, up to isomorphisms.
<
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Remark 3.8.10 The reason for having more models for BaCo \ {Ax(1)} in 2
dimensions (cf. 3.8.9) than in n > 2 dimensions (cf. 3.8.8) is the following. For
n =2, BaCo \ {Ax(1)} allow FTL observers (cf. the proof of Thm.2.8.2), while
for n > 2 already Basax excludes FTL observers (cf. 3.4.1).

<

The above remark is in contrast with Thm.3.8.7 above. In view of the above
remark one may ask, why we have then the same number of models for BaCo for
all n, cf. Thm.3.8.7 above. In connection with this we state the following.

THEOREM 3.8.11
Basax(2) + Ax(symmy) + Ax(1) + Ax(v/ ) = “ A FTL observers”.

Outline of proof: The proof goes by contradiction. Assume m sees k moving F'TL.
By Ax(symmy), as m sees k so does some sister k' of k see some brother m' of m.
(Let such &', m' be fixed.) This implies that if m sees that the clock of k is running
forwards/backwards then k' sees that the clock of m' is doing the same, formally:

(104) (mtk = kK'1tm') and (mlk = K {m).

By Ax(7) we have that for observers brothers/sisters times flow in the same direc-
tion, i.e.

mtm’ and k1Tk.

Now, from this, from (104), and from the facts that the world-view transformations
(the f,,;,’s) are both photon-line preserving and betweenness preserving (by Ax(v/ )
and Prop.3.6.5(ii)), one can prove the following.?®? If m sees that clock of k is running
forwards/backwards then k sees that clock of m is doing the same, formally:

(mtk = ktm) and (mlk = klm).

This contradicts Thm.2.7.4 which says that if m sees £ moving FTL then m and &
see each others clocks differently. B

Now, we turn to formulating completeness type theorems. As usual, first we
need some definitions.

283We omit the proof of this step.
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Definition 3.8.12

(i)

(ii)

An ordered field § is called real-closed if it is Euclidean (i.e. every positive
element has a square root), and if every polynomial of odd degree has a zero.
The latter requirement can be expressed with the set { 9,11 : n € w } of first-
order formulas, where for every n € w, ¢, denotes the following formula

(dn) Vao.. . Ve,Jy [, #0 — (zo+2x1-y+...+z,-y" =0)].

The aziom system Ax(rc) of real-closed fields is defined as follows.

Ax(rc) oof Ax(V )+ {¢oms1 : nE W},

where ¢, is as given above. Let us notice that in some sense Ax(rc) is defined
by a finite schema of axioms. Therefore BaCo + Ax(rc) remains in some
sense finitistic. (Therefore the deductively closed theory generated by

BaCo + Ax(rc) remains axiomatizable by a finite schema.)

<

Definition 3.8.13 A theory Th is called complete iff it is consistent and it implies
either ¢ or =, for each closed (first-order) formula ¢ (of its language), that is, for
each closed v, either Th = ) or Th = —) holds.?8!

<

THEOREM 3.8.14

(i)
(ii)

BaCo + Ax(rc) is a complete theory.

Assume § is Euclidean. Then BaCo + Th(F) is a complete theory.?®®

In the proof we will use the following known fact, cf. e.g. Chang-Keisler [59].

2847 theory is consistent iff it has a model; a formula is closed iff it has no free variables (i.e.
every variable in the formula occurs under the scope of some quantifier.)

285Recall that Th(F) :={v¢ : FE¢ }.
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FACT 3.8.15
(a)  The theory Ax(rc) of real-closed fields is complete.
(b) R E Ax(rc), hence the closed theory generated®®® by Ax(rc) is Th(R).

<

Proof of Thm.3.8.14: The proof is based on Thm.3.8.7. Let us notice that by
Fact 3.8.15 it is enough to prove (ii) of the theorem. Let § be Euclidean. Let 90t
and 2 be models of BaCo + Th(g). We cannot apply Thm.3.8.7 yet, because
the ordered field reducts §o and §, of 9 and I’ respectively may not be the
same. But they are elementarily-equivalent?®”, since Th(gF) is complete, so by the
Keisler-Shelah isomorphic ultrapowers theorem (cf. e.g. Chang-Keisler [59]) they
have isomorphic ultrapowers, say §; and §; taken by an ultrafilter, say, U. Let
My and M be the ultrapowers of M and IM' respectively, taken by the ultrafilter
U used before. Then the field-reducts of these are §; and §) respectively. Now
we can apply Thm.3.8.7 to 9%, and 9 because §; and §; are isomorphic, getting
that 90t; and 90| are isomorphic, so elementarily-equivalent. But then 9t and 9%
are elementarily-equivalent, too, since the former two models are ultrapowers of
these. This completes the proof since if all models of a theory Th are elementarily-
equivalent then Th is complete. 1

THEOREM 3.8.16 BaCo + Ax(rc) is a decidable theory.?®®

Proof: The theorem is a corollary of Thm.3.8.14(i) because of the following. The
theory BaCo + Ax(rc) is recursively enumerable?®® since it is axiomatized by
a finite schema. This, by the fact (known from basic logic) that every recursively
enumerable complete theory is decidable, completes the proof. B

Results related to the above theorem will be discussed in §7 the subject of which is
decidability and Godel incompleteness.

286By the closed theory generated by say Ax(rc), we understand the smallest deductively closed
theory containing Ax(rc) (cf. footnote 280 on p.295).

287Cf. Def.3.8.17 below for elementary equivalence of models.

288 A theory Th is decidable iff there is an algorithm which decides the set {4 : Th =} of its
consequences.

289 A set T (of formulas or numbers) is called recursively enumerable iff there is an algorithm (or
Turing machine) which lists (i.e. enumerates) all the elements of T', cf. any logic book for details.
We note that any decidable T is recursively enumerable, but there are recursively enumerable sets
which are not decidable.
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As we already said, all the axioms in Compl turn out to have an interesting
property except for Ax(1). This property is that if we omit the axiom in question
from BaCo+Ax(rc) then all of a sudden we will have the opposite of completeness.
This is the intuitive content of our next theorem (Thm.3.8.18).

Definition 3.8.17 Two models 9 and N (of the same fist-order language) are
called elementarily-equivalent iff there is no formula (on their language) which would
distinguish them, that is, Th(9t) = Th(MN).

<

THEOREM 3.8.18 Let § be Euclidean and Ax € Compl \ {Ax(1)}. Then (i)
and (i) below hold.

(i) The theory BaCo \ {Ax} + Th(§) has 2¥ (i.e. continuum) many non-
elementarily-equivalent models.

(ii) There are 2 many different complete deductively closed **° theories extending
BaCo \ {Ax} + Th(g).

On the proof: We note that item (ii) is an equivalent reformulation of item (i). A
proof can be obtained as follows. Assume § is Euclidean. Assume

Ax € Compl \ {Ax(1)} . Assume that a set {1; : j € w} of formulas satisfying
(x) below has already been given.

() For every I C w there is a model 9t; of BaCo\{Ax}+Th(g)
such that My E={vy; : je€l} and (Vjew\I) M ;.

Let such 90t;’s be fixed. Then, clearly, if I, J C w with I # J then 9; and 90 ; will
not be elementarily-equivalent. So, the set {9t; : I C w} will consist of 2* many
non-elementarily-equivalent BaCo \ {Ax} + Th(F) models. As examples, below

we give sets {1¢; : j € w} of formulas satisfying (x) for the cases Ax = Ax(ext)
and Ax = AxQ.

Case Ax = Ax(ext): Let j € w. The formula v; below says that there cannot be
exactly j many different observers having the same world-view function (i.e. if there
are 7 many different observers having the same world-view function then there is a
(4 + 1)’th observer with the same world-view function).

(Ymg, my,...,mj_y € Obs) ((‘v’i,i' €fmi #Fmy N Wy = Wy,) =

(%) (Elm c Obs)(Vz c ])(m 75 m; N\ Wy, = wmi)).
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¢

Checking that {1, : j € w} has the property (x) above is left to the reader.

Case Ax = AxQ: Let j € w. The formula 9; below says that there are no two
bodies meeting each other exactly j times (i.e. if there are two bodies meeting each
other j times then they will meet each other j + 1 times t0o).

Vb, € B)(Vp°, p',...,p"~t € "F)
;) ([(Vz’,i' e N £ P A PP Pt € trn(B) N ()] =
(@ € F) (Vi€ ) p# 0 A pE tr(®) 1 trm(b)] ).

Checking that for {9; : j € w}, (%) above holds is left to the reader.
The rest of the proof will be filled in at a later stage of development. R

We will see in §7 (on “decidability and Gddel incompleteness”) that to any one of
the theories BaCo \ {Ax} + Th(g), discussed in Thm.3.8.18 above, the conclusion
of Godel’s incompleteness theorem also applies.

Remark 3.8.19 The conclusions of the above theorem (Thm.3.8.18) apply to the
finite schema axiomatizable theory BaCo + Ax(rc), for the obvious reason that
the closed theory generated by Ax(rc) is Th(R) (cf. 3.8.15).

<

Conjecture 3.8.20 We conjecture that BaCo \ {Ax(symmyg)} + Ax(rc) will
turn out to have 2 many non-elementarily-equivalent models.
<

The following is a corollary of the proof (to be given in §3.8.3) for the unique-
ness part of the categoricity theorem in this section (Thm.3.8.7). A further reason
for stating this corollary here is that it is strongly connected to Einstein’s Spe-
cial Principle of Relativity, and the same applies to one of the “main characters”
of this section, namely to Ax(symm). The connection between Ax(symm) and
Einstein’s Special Principle of Relativity was discussed in §2.8. More discussion of
Einstein’s Special Principle of Relativity (in terms of logic, of course) comes in §3.9.

COROLLARY 3.8.21 Assume 9t = BaCo. Then

(Vm, k € Obs) (there is an automorphism a of M with a(m) = k) . |

290As we already said, a theory Th is called deductively closed iff for any formula ) in the
language of Th (Th =4 = ¢ € Th).

304



As we already said, the above corollary is strongly related to Einstein’s Special
Principle of Relativity, cf. e.g. Friedman [90, §1V.5].2%! Clearly, the corollary above
says that all the observers are equivalent in a rather strong sense, under assuming
BaCo of course. (Namely, being connected by an automorphism is an extremely
strong form of equivalence.) In a later version we will discuss, under what assump-
tions (in place of BaCo) is the above corollary still true. It is not impossible that
the answer will turn out to be something like either Newbasax + Compl or
BaCo \ {Ax(1)} + (no FTL obs.).

Since in this section we are discussing theories containing Basax + Ax(symm),
we include the following conjecture (though it does not strictly belong to the subject
matter of this section).

Conjecture 3.8.22 (i) Basax + Ax(symm) = Ax(V/ ).
(ii) Basax + Ax(symm) E (Ym, k € Obs) f,,; € Poi.

In connection with the above conjecture, we note that
Basax + Ax(symm) + Ax(v ) & (Vm,k € Obs) f, € Poi (cf. Thm.2.9.5 on
p.155), and that Basax(3) = Ax(v/ ) (cf. Thm.3.6.17 on p.274).

We conjecture that Newbasax + Compl + Ax(rc) has 2“ many non-
elementarily-equivalent models, but we did not have time to check this.

291Cf. also the discussion of Friedman’s conceptual analysis of the various principles occurring in
relativity theory in our §§3.4.2, 4.4.
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3.8.1 Median observer

This sub-section is about the following idea. Whenever we have two observers m
and k then to this two ones there is a third observer h who sees m and k exactly the
same way. More precisely h will think that m and k£ are mirror images of each other
w.r.t. the time-axis . (We mean this under some axioms, of course.) This third
observer h will be called a median observer for observers m and k. These median
observers will be used in several proofs, and the will also help us to visualize (in a
simple way) certain situations.

or defined below is a special case of o, which was defined in Def.3.1.20(i) on
p-173.

Definition 3.8.23

(i) We let o7 : "F — "F denote the reflection w.r.t. the time-axis ¢, more con-
cretely:

o¢ € Linb with (05(10 =1; and (VO<ie€n)oil;) = —1i> )
(ii) Let p,q € "F. We say that p and ¢ are t-symmetric iff oz(p) = ¢. Let
P,Q C"F. We say that P and @ are t-symmetric iff of[P] = Q.
<

Definition 3.8.24 Let m,k € Obs. Then h € Obs is called a median observer for
observers m and k iff ¢ry(m) and tr,(k) are t-symmetric.

<

THEOREM 3.8.25 Assume Basax + Ax(v ).

(i) Then for every m,k € Obs with vy, (k) < 1 there is a median observer h for
observers m and k.

(ii) A median observer h for observersm and k, with v, (k) < 1, can be constructed
as illustrated in Figures 90, 91, 93.

The idea of the proof of the above theorem is in Figures 90-94. For this proof we
will need Lemma 3.8.28 and its corollary Cor.3.8.30 below, therefore the proof of
the theorem comes below Cor.3.8.30 on p.309.
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Remark 3.8.26 Assume Basax + Ax(y/ ). Assume m,k € Obs such that k
moves FTL relative to m (i.e. v,(k) > 1). Then, by Thm.2.7.2,22 there is no
median observer for observers m and k.

<

CONVENTION 3.8.27 Throughout, we will use the fact that all axioms of Eu-
clidian geometry, with the exception of the Axiom of Continuity are true in ge-
ometries over arbitrary Eucledian fields. Therefore we will use those elementary
theorems of geometry which do not need the continuity axiom.

<

LEMMA 3.8.28 Assume Basax. Assume m,k € Obs. Assume P is a plane
parallel with t such that tr,,(k) C P. Assume £ € Eucl such that £ is the mirror
image of trmy (k) w.r.t. a photon-line ¢' with £’ C P. (Let us notice that then ¢ C P.)
Then events happening on £ in the world-view of m are all simultaneous for k. That

is, (Vp,q € £) (D)t = Frk (@)

Proof: The proof will be similar to that of Prop.3.1.21. The idea of the proof is
illustrated in Figure 89. Throughout the proof we will need the following claim.

t
trom (k) o tri (k)
s wdd
<\u: ’
./.\
p, , N q,

world-view of k
restricted to plane P’

world-view of m

restricted to plane P

Figure 89: Illustration for the proof of Lemma 3.8.28.

2923nd by the no FTL thm. for n > 2, ¢f. Thm.3.4.1
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Claim 3.8.29

(i) Assume P is a plane parallel with ¢. Assume ¢; € Eucl and /5 € PhtEucl such
that 61,52 C P and ¢, 1, {5. Then ¢4 € PhtEucl.

(ii) Assume v, w, z € "F are distinct points such that vw = ¢ and vz, wz € PhtEucl.
Then 7z 1, wz and segments vz and wz are of equal length (i.e. |[v — z|]| =
[w — z]]).

The proof of this claim is straightforward, therefore we omit it.

Let us turn to proving Lemma 3.8.28. Throughout the proof the reader is asked
to consult Figure 89. Assume Basax. Assume that m,k € Obs, that P is a plane
parallel with ¢ such that ¢r,,(k) C P, and that ¢ € PhtEucl such that ¢ C P. Let ¢
be the mirror image of tr,, (k) w.r.t. /. (Then ¢ C P.) Let p € tr,,(k)N¢N£. Such
p exists and is unique. Let ¢ € £ with g # p be arbitrary. To prove the lemma, we
will prove that events w,,(p) and w,,(¢) are simultaneous for observer k. Let s be
the mirror image of ¢ w.r.t. £, let u be the midpoint of segment ¢s, and let r € ¢
be such that u will be the midpoint of segment pr. Then, obviously, s € tr,,(k).
Further, gs € PhtEucl by Claim 3.8.29(i). So,

(109) gs € PhtEucdl  and  pr = ¢ € PhtEudl.

Let us consider the quadrangle {p, g, r, s). Its diagonals bisect each other, so we have
that
(110) (p,q,r,s) is a parallelogram.

Let p',¢',r',s',u', P’ denote, respectively, the f,; images of p,q,r,s,u, P. (Let us
notice that P’ is a plane since P is a plane, cf. 3.1.16.) Then by (109) and (110)
(and by f,,x being a bijection preserving Eucl and PhtEucl) we have that

(111) (p',¢,r',s") is a parallelogram  and ¢'s', p'r' € PhtEucl.
Since p, s € tr,,(k), we have that
ps’ =t

by Ax4. Now, by (111) and by applying Claim 3.8.29(ii) for v :=p/, z :== v/, w := ¢
one concludes that (p, ¢, 7', ') is a square whose side p's’ is lying on the ¢ axis. This
implies that p, = ¢;. Hence, events w,,(p) and w,,(q) are simultaneous for k. 1

COROLLARY 3.8.30 Assume Basax. Let m, k € Obs such that m and k£ do not
move relative to each other, that is, ¢r,,(k) || . Then events which are simultaneous
for m remain simultaneous for k.
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Proof: Assume Basax. Let m,k € Obs with tr,,(k) || t. Let p € tr,,(k) be fixed.
By Lemma 3.8.28, we have that

(112) (V0 <i€n) <events Wy (p) and wy,(p + 1;) are simultaneous for k),

since (VO < i € n) (p(p—i—li) is the mirror image of t¢r,, (k) w.r.t. the photon-

line {p+A-(1;+1;) : A€ F} ) By f.x being a bijection taking straight lines
to straight lines (and therefore taking planes to planes, parallel lines to parallel

ones etc.), (112) implies that any two events which are simultaneous for m remain
simultaneous for k. 1

Proof of Thm. 3.8.25: Assume Basax + Ax(v/ ). Let m, k € Obs with

vm(k) < 1. We distinguish two cases:

Case (I): m and k meet each other, or their life-lines are parallel (i.e. trp, (k) Nt # ()
or trp, (k) || t)-

Case (II): The life-lines of m and k are skew lines (i.e. there is no plane containing
both ¢ and tr,,(k)).

Proof for Case (I): Assume first, that the life-lines of m and k are parallel, i.e.
trm(k) || . Let A € t and B € tr,,(k) such that A, = B;. Let £ € Eucl be the
perpendicular bisector of segment AB in Plane(t, tr,,(k)), see Figure 90. Let h be
an observer whose life-line is ¢, i.e. let h € Obs such that tr,,(h) = £. (Such an h
exists by Ax5.) This h is a median observer for observers for m and k. Checking
the details is left to the reader.

Now, assume that m and k meet each other. See Figure 91. We note that the
proof might be easier to understand if the reader assumes (at lest at the first reading)
that f,,1(0) = 0, tr,,(k) C Plane(¢, ) and that the whole construction is happening
in Plane(?, z).2%

Let 0 € t N try,(k), i.e. m and k meet each other at point O in the world-view
of m. Let A € t with A # 0 and let B € £ such that B; = A;. Let £ € Eucl be the
perpendicular bisector of segment AB in Plane(t, tr,,(k)). (Let us notice that ¢ || ¢
by A; = B;.) Let C be the circle with diameter 0A in Plane(t, tr,,(k)). By § being
Euclidean C N ¢ # 0.2°* Let ¢ € C N ¢ such that OC € SlowEucl. Such a C exists,
and is unique. Let h € Obs such that tr,,(h) = OC. (Such an h exists by Ax5.)
We will prove that this h is a median observer for m and k. The proof of this is

293By this we mean to say that all the basic ideas come up in this special case, therefore it might
be a practical idea to concentrate on this case only.
294This is so because the length of segment OA is greater than that of AB (by v, (k) < 1).
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Figure 90: A is a median observer for m and k (for the case when ¢r,, (k) || ©).

illustrated in Figure 92 and goes as follows. Let D € t N BC. (Such a D exists and is
unique.) First, we prove that events w,,(D), w,,(C) and w,,(B) are simultaneous for
observer h. OC L, AC since C is on the circle C whose diameter is segment OA. Let
us recall that ¢ is the perpendicular bisector of segment AB (in Plane(t, tr,,(k))),
and that ¢ || ¢. Let 7 be the composition of the following two transformations
of?%® Plane(, tr,(k)): “the rotation by 90° about ¢” and “the reflection w.r.t. line
¢ 7. Transformation 7 takes tr,,(h) = OC to CB. On the other hand, it is not
hard to prove that T is a reflection [of Plane(Z, try,(k))] w.r.t. a photon-line £,, with
¢ € L, C Plane(t, trp,(k)). Therefore CB is the mirror image of tr,,(h) w.r.t. a
photon-line £,;, C Plane(t, tr,(k)). But this, by Lemma 3.8.28, implies that

(113) events wy,(B), wy,(C) and w,,(D) are simultaneous for h.
Let us notice that by our construction
(114) C is the midpoint of segment BD. 2%

Let us switch over (from the world-view of m) to the world-view of h. Let B', ¢/, D’
denote the f,,; images of B, ¢, D, respectively. Then by (113) and (114), respectively,
we have that (115) and (116) below hold.

(115) B,t = Clt = Dlt .

2951 e. the transformations take the plane into itself.
296This is so because ¢’ is the midline of triangle ABD by ¢ || # and by £ being a bisector of
segment AB.
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(3]

world-view of m restricted to Plane(t, tr, (k))

Figure 91: h is a median observer for m and k. (Construction for the case when m
and k£ meet each other).
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m v h k
world-view of m restricted
to Plane(t, try, (k)):
A I I B
. C
D
C
O
t
world-view of h restricted m h k

to Plane(t, trp,(k)):
DI CI BI

Figure 92: This is the main idea of the proof that h constructed as in Figure 91 is
a median observer for observers m and k.
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(116) ¢’ is the midpoint of segment B'D'.

Let us notice that ¢’ € , ?” and that B' € try(k), D' € try(m). But then, by (115)
and (116), we conclude that ¢ry(m) and tr,(k) are t-symmetric, so h is a median
observer for observers m and k. By this the theorem is proved for Case (I).

Proof for Case (II): Let us recall that in this case the life-lines of m and k are skew
lines. The proof is illustrated in Figures 93, 94.

Let k' € Obs such that tr,, (k') || trm(k) and tr,, (k') Nt # 0. Such a k' exists.
Let h' be a median observer for observers m and £’. Such an A’ exists by Case (I).
We will construct a median observer h for m and k in the world-view of A'. Let us
notice that try (k') || trw (k). See Figure 94. Let A € t N tryp (k') N trp (m). Such an
A exists and is unique. Let B € trp/ (k) such that

(]_]_7) By = A;.
Such a B exists. Let ¢ be such that
(118) C is the midpoint of segment AB.

Let ¢ € Eucl such that ¢ € £ || t. Let h € Obs such that ¢ry (h) = £. We will prove
that h is a median observer for observers m and k. Let M € try(m), such that
M # A, further let H € tr,(h) and K € try (k) such that

(119) M; = Hy = K.

We will prove that
(120) H is the midpoint of segment MK.
To prove (120) let k" and H' be, respectively, points on ¢y (k') and ¢rp (k') = t such
that K’y = H'; = M;. So, events happening at points M, H, H', K, K’ are simultaneous
for A’ by the choice of these points. It is easy to check that (121) and (122) below
hold.

(121) H'H | AC and (segments H'H and AC are of equal length).
(122) K'’K || AB and (segments K'K and AB are of equal length).

Further, by A’ being a median observer for observers m and k', we have that

(123) H' is the midpoint of segment MK'.
297This is so by C € tr,,(h) and Ax4.
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hl

~——— a simultaneity of A’ and h

Figure 93: h is a median observer for observers m and k. (Construction for the case
when the traces of m and £ are skew lines.)

hl

(53]

!
h K a simultaneity of h’ and h

k

Figure 94: This illustrates why the construction in Figure 93 works.
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But then, by (121)—(123) and by ¢ being the midpoint of segment AB (cf. 118), we
conclude that H'H is the midline of triangle MK'K. Therefore, (120) above holds.

By 3.8.30 we have that events which ate simultaneous for A’ remain simultaneous
for h. Let us switch over from the world-view of A’ to the world-view of h. Let
A* B*, C*, M*, K*, H* denote, respectively, the f,, images of A,B,C, M, K, H. Let us
notice that c*,u* € ¢ (by c,H € trp(h) and by Ax4). Now, by (117, 118) (and by
3.8.30), we have that

A", =B, =C" and C* is the midpoint of segment A*B*.
Therefore, since C* € ¢, we conclude that
(124) A* and B* are t-symmetric.

We conclude (125) to be formalized below from (119, 120) completely analogously
to the way we proved (124) from (117, 118).

(125) M* and K* are {-symmetric.

Let us notice that A*M* = ¢ry(m) and that B*k* = trp,(k). Therefore, by (124, 125)
we have that ¢ry(m) and tr,(k) are {-symmetric, so h is a median observer for m
and k. 1

The following six propositions are included to motivate the model construction
in §3.8.2 below. The most important two of these are Propositions 3.8.31 and 3.8.32
below. The intuitive content of these two is the following: The symmetry principle
Ax(symm) implies that a median observer h (for observers m and k) sees the clocks
of m and k slowing down with the same rate.

PROPOSITION 3.8.31 Assume

Basax + Ax(v ) + Ax(symm). Let

m,k € Obs. Assume that h is a median observer for observers m and k. Then h
sees the clocks of m and k slowing down with the same rate; formally:

(1)t — fmn(0)e] = [fen(12): — o (0):] -
Proof: The proof will be filled in later. R

The following proposition is a variant of Prop.3.8.31 above. For the intuitive
meaning of the following proposition the reader is referred to Figure 95 on p.319.
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PROPOSITION 3.8.32

Assume Basax + Ax(v/ ) + Ax(symm) + Ax5% + Ax(1). Assume m,k € Obs
such that f,(0) = 0. Assume h is a median observer for observers m and k. Then
in the world-view of h the time-unit vectors of m and k are t-symmetric, that is,

frun (1) and frn(1;) are t-symmetric.

For the proof of the above proposition we need items 3.8.33—-3.8.37 below, there-
fore the proof (of Prop.3.8.32) comes below these items (on p.318). We note that
the idea of the proof is in Figure 95.

Intuitively, Prop.3.8.33 below says, that under assuming Ax(eqtime) the world-
view transformation between “observer brothers” m and m' is a trivial one.

Proposition 3.8.33 Assume Basax + Ax(eqtime). Assume m,m’ € Obs are
brothers, formally: tr,,(m') =t. Then (i) and (ii) below hold.

(’l) fm € Aftr.
(i1) Assume in addition Ax(1). Then

frum: € Triv .

Proof: Assume Basax+ Ax(eqtime). Assume m, m' € Obs such that tr,,(m') =
t. Then, by Prop.3.6.5,

(126) fpm = @o f, forsome f € PT with f[t] =t and for some ¢ € Aut(F).

Let such f and ¢ be fixed. Let f; : F — F be the restriction of f to ¢, that is,

(Vt € F) fo(t) o f({t,0,...,0))o. By f € PT C Aftr we have that f; is a linear

function.?®® Now, by Ax(eqtime), we have that (V¢ € F) |fo(o(t)) — fo(0)| = |¢]
(by ©(0) = 0), in particular |fo(1) — fo(0)] = 1 (by ¢(1) = 1). From these two,
by fo being a linear function, one concludes that for the automorphism ¢ we have
(Vt € F) |p(t)] = |t|, therefore ¢ is the trivial automorphism (i.e. the identity
function). Hence

(127) foumw € PT

by (126), and this completes the proof of (i) since PT C Aftr. Let us notice that
fme[t] = T. To prove (ii), assume in addition Ax(1). Now, fm (1¢) — fmme (0) = 1,

by Ax(eqtime) and Ax(1). Therefore f,,,» = go7 for some g € PT with g(0) =0
298 A function h : F — F is called a linear function iff (3a,d € F)(Vz € F) h(z) = az + d.
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and ¢(1;) = 1; and for some translation 7 (by 127). Let such g and 7 be fixed.
Applying Lemma 3.6.20 we get that g € Trivy, hence f,,,,» € Triv by the definition
of Triv, and this completes the proof of (ii). B

The following proposition is a variant of Thm.2.8.9. Intuitively, it says that
under assuming Ax(symm), any two observers see each other clocks slowing down
with the same rate.

Proposition 3.8.34 Assume Basax + Ax(symm) + Ax(1). Let m,k € Obs.
Then

fmk(lt)t - fmk((_))t - fkm(lt)t - fkm((_])t .

Outline of proof: Assume Basax + Ax(symm) + Ax(1). Let m,k € Obs. Let
k', m' € Obs such that fy,, = f,vr and that try (k') = tr,,(m’) = t. Such k', m' exist
by Ax(symm). By noticing that

fkm = (fm’k’ :) fm’m OTmk © fkk’

holds and by (128)—(130) below, one can complete the proof; where (128) holds by
Ax(eqtime), Ax(1) and tr,,(m') = ¢; (129) can be checked by Thm.3.1.4; and
(130) is true since fg € Triv by Prop.3.8.33.

(128) fm’m(lt) - fm’m((_)) = 1t and fm'm(lt), fm'm(()) € {
(129) (Vp,q ) <p—q =1; = k() — frr(q) = fr(1e) — mk(ﬁ))-
(130) (Vp,q € "F) fuw (0)¢ — fenr (@) = 0t — ;- n

The following is a variant of Thm.2.8.3. Cf. also Thm.2.9.5.

Proposition 3.8.35 Assume Basax + Ax(v )+ Ax(symm). Let m,k € Obs.
Then

(i) fmr € Aftr, moreover:
(ii) foui € PT.

For the proof of Prop.3.8.35 we will need Lemma 3.8.36 below, so we will give the
proof of Prop.3.8.35 below the lemma.

LEMMA 3.8.36
(i) Assume g € Aftr(n,F) and ¢ € Aut(F). Then go @ = @ og', for some
g' € Aftr(n, F).
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betweenness pre-
serving, nincs még
definidlva!

(ii) Assume g, € Aftr(n,F) and ¢, ¢’ € Aut(F) such that o g= @' og'. Then
o=y

The proof of this lemma is straightforward, we omit it. N

Proof of Prop.3.8.35: Assume Basax+Ax(v )+ Ax(symm). Let m, k € Obs.
Then, by Prop.3.6.5,

(131) fmk = fo @, for some ¢ € Aut(F) and f € PT.

Let such ¢ and f be fixed. Let m', k' € Obs such that f.,;, = fpy and tr,(m') =
tri(k') = t. Such m' and k' exist by Ax(symm). Then, by f,,x = fyrr, we have

(132) fmk = fk:’k: o fk:m © fmm’ .
(131) and (132) imply that

(133) Gof=furop Lof " ofmm.

By Prop.3.8.33(i), we have that fyg, fm € Aftr. Applying Lemma 3.8.36, (133)
implies?® that ¢ = ¢!, which means that ¢? = Id. Since an ordered field cannot
have a non-trivial automorphism whose order is finite, we conclude that ¢ = Id,
which by (131) completes the proof. B

Intuitively, Prop.3.8.37 below says that, under assuming Ax5"+Ax(1), clocks
are ticking forwards only.

Proposition 3.8.37 Assume Basax + Ax(v/ )+ Ax5" + Ax(1). Assume
m,k € Obs. Assume any one of the following three assumptions: (i) vy, (k) <1 or
(i) Ax(symm) or (iii) n > 2.

Then m sees the clock of k ticking forwards, that is, m 1 k.

On the proof: Assume Basax + Ax(v )+ Ax5" 4+ Ax(1). Assume m, k € Obs.
Let us notice that both (ii) Ax(symm) and (iii) n > 2 imply (i) v,(k) < 1, by
Thm.3.8.11 and Thm.3.4.1. Assume v,,(k) < 1. Then by Ax5", there is h € Obs
such that trp,,(h) = tr,(k) and m 1 h. Then, by Ax(1), h T k. But then m 1 k
must hold since the world-view transformations are “betweenness preserving” by
Prop.3.6.5(ii) (let us notice that we assumed Ax(v/ )). W

Proof of Prop.3.8.32: We note that a more detailed and careful proof will be
included at a later stage of development of the present work. The idea of the proof
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world-view of h restricted to plane P: 7
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M
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17
a simultaneity of m o a simultaneity of k

If 1; of m and k were not t-symmetric as seen by h then m and k would

see each other clocks differently, i.e. slowing down with different rate.

t
m h A k
M K
/. Ly,
1 1%
o)

Figure 95: Illustration for the proof of Prop.3.8.32.
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is illustrated in Figure 95. Assume Basax + Ax(v ) + Ax(symm) + Ax5% +
Ax(1). Assume m,k € Obs such that f,,;(0) = 0 and assume that & is a median
observer for observers m and k. (Let us notice that then f,,;(0) = f;,(0) and that
Plane(t, trn(m)) = Plane(t, try(k)).) Let

d:ef fmh(()) = fkh(()); and

Plane(t, trp(m)) = Plane(t, try(k)) .

o

def
P =

Let 17 and 17 denote, respectively, the time unit vectors of m and k as seen by h,

ie 17 def mh (1) and 1¥ = f4,(1;). (This notation corresponds to our intuition in

the case when 0 = 0. Out of “lazyness” we use the same notation in the general
case t00.) Obviously,

(134) 1" € trp(m) and  1F € try(k),

see Figure 95. Further, by Prop.3.8.37,

(135) (1™ —-0,>0 and (1¥), —0, > 0.

By h being a median observer for m and k

(136) trp(m) and  try(k) are t-symmetric.

We shall prove that 17* and 1¥ are {-symmetric, too (this is what the proposition
states). Let £, and ¢ be, respectively, the simultaneities of m and k passing through
0 in the world-view of h restricted to plane P, formally

b CEnlSINP  and £, EHu[S]NP.
See Figure 95. Then 4, ¢; € Eucl and
(137) Ly, and  { are {-symmetric,

where (137) can be proved e.g. by using Lemma 3.8.28. Let M € try(m) such that
events wy(M) and wy(1¥) will be simultaneous for m. (Such an M exists and is
unique.) Then

(138) ML || £y

Let K € try(k) such that events wy(K) and wy(17*) will be simultaneous for £. (Such
an K exists and is unique.) Then

(139) KT || 4.
Further, by Lemma 3.8.28, by (135, 136), by vs(m) < 1 by v, (k) < 1, 300

(140) My — O > 0 and Ky — O > 0.

L (in place of g and ¢), after that

299First, one applies item (i) of Lemma 3.8.36 for fy/; and ¢~
one applies item (ii) of Lemma 3.8.36.

300That vy (m) < 1 and vy (k) < 1 are true by Thm’s 3.8.11 and 3.4.1.
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By Prop.3.8.34, m and k see each other clocks slowing down with the same rate,
i.e. fue(11): = fem(14);. This phenomenon appears in the world-view of h as (141)
below because of the following. By Proposition 3.8.33(i), we have that f,,;, and fg,
are affine transformations. By this and by Prop.3.8.37, it is easy to prove that
fkm(lt) = 4ol and fmk(lt)t = [x=ql

ET p—ol o 1f-of”

M—o0| |K—0

(141) O .
1" —o| 1} — o

Let us notice that by (135, 140), (141) is equivalent with
W | 715
Now (134-141) imply that
1™ and 1F are f-symmetric,

see Figure 95. This is what we wanted to prove. 1
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3.8.2 Model construction for BaCo

This sub-section is devoted to the proof of the existence part of Thm.3.8.7 which
says that BaCo is §-categorical (for any Euclidean §); i.e. we are concerned with
the “consistency” part now (while the “completeness” part was in Thm.3.8.14 on
p.301, and the “uniqueness” part comes in §3.8.3).

On the intuitive idea of our model construction for BaCo:

We could base our present model construction on the intuitive model construction
for Basax(3) given in §3.2; and probably this would yield the most satisfying version,
from the point of view of visualizability and easy understandability. However, for
historical (and related) reasons the construction in the present sub-section will be
closer to the somewhat more computational §3.6 (“Models of Basax”). But before
going into that, let us have a quick glance at how the construction would go if we
based it on the more intuitive §3.2 (“Intuitive ... Basax(3)”). So, let us imagine
that we start out from §3.2 and want to modify it to obtain a construction of a
model for BaCo. The model constructed in §3.2 satisfies all of BaCo except for
Ax(symmyg), Ax5" and Ax(Triv;); more precisely we can throw away superfluous
bodies such that AxQ and Ax(ext) will also be satisfied by the so trimmed version
of the model constructed in §3.2. We note that the construction in §3.2 goes through
for any Euclidean field § in place of PR. The reader is invited to check this. So
we have to modify that construction such that the missing three axioms (Ax5%,
Ax(symmyg), Ax(Triv;)) become satisfied too. As a first step the reader is asked
to look up the picture on p.181 representing the choice of the unit vectors 13, 17, 1.
Now, we choose the direction of 1} to be positive such that Ax5" becomes true (for
m). Then we add to the model enough “brothers” for each observer such as to make
Ax(Triv;) true (but do not destroy any of the other axioms). The construction
in §3.2 is flexible enough to accommodate all these changes. Therefore (this way)
one can obtain a relatively simple and easily visualizable model all of BaCo(3)
except for Ax(symmyg). The interested reader is invited to fill in the details and
to try to visualize the so obtained model. Summing up, so far we have a model 9
satisfying BaCo \ {Ax(symmyg)} for n = 3. The remaining part (below) of the
present intuitive text shows how to modify this 9t to obtain a model for BaCo(3).
However, we would like to obtain a model of BaCo(n) with n arbitrary. This could
be done by generalizing the intuitive model construction in §3.2.

In order to not to loose time with generalizing the intuitive proof in §3.2 to
arbitrary n, instead of the above constructed model we will use the following. Let
n be arbitrary. Using Def.3.6.11 (“General Models”) and Thm.3.6.12 on p.270 it is
easy to construct a model 9 satisfying BaCo except for Ax(symmyg) such that
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Minkowski
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all world-view transformations in 91 are affine and there are no FTL observers in
it. Further the F-reduct of 9M is Euclidean.?! (The above outlined construction
using §3.2 satisfied all the just outlined criteria.) Let us note that in 90t all clocks
are ticking forwards, by Prop.3.8.37 (i.e. each observer sees the clock of an other
observer ticking forwards).

Next we modify this model 9t such that Ax(symmyg) becomes true in it (and
of course all the other axioms remain true). We do this the following way: First we
choose an observer mg.

Instead of the symbols 1} and m (used in §3.2) in the present sub-section we use
1¥ and my.

All what we do in the next 12 lines is understood in the world-view of my.

For each one k£ of the remaining observers we change the length of time-unit
vector 1¥ of k such that a median observer h (for observers mg and k) thinks that
clocks of mg and k slow down with the same rate and clock of k£ remains ticking
forwards, see Figures 96, 97. (This step is motivated by Propositions 3.8.31, 3.8.32.)
We think of 1¥ as an ordered pair (fx;,,(0), fxmo(1;)). When we change the length of
a vector represented as such a pair then we leave fi,,,(0) fixed and we change only
femo(1¢), i.e. we change only the tip of the arrow. See Figure 97.

After these we have to adjust the lengths of the rest (like e.g. 1¥) of the unit
vectors of k£ such that they match nicely the new time unit-vector of k. Formally all
this can by done by composing w; with an expansion exp from the left (then the
new version of wy will be exp o wy).

It is not hard to prove that if this construction is carried through then the new
model, call it 9, validates Ax(egspace)®*? for the particular observer my in place
of m (k remains universally quantified). This can be seen by studying the world-
view of the median observer h for my and k. We note that the median observers
remain the same in the new model 9%;, as they were in 9). It remains to prove that
M = Ax(symmyg). This goes as follows. From Ax(egspace) (for my and k) one
can infer that f,,,, preserves Minkowski-distance. This implies that

(%) for every m and k, f, is Minkowski-distance preserving.

Let m, k be arbitrary, and let h be their median observer. From the world-view of
h we see the following: Since f,,, and fi, are Minkowski-distance preserving by (),
h thinks that the time-unit vectors 17* and 1¥ of m and k have the same Minkowski-
length (namely 1). But then, since m and k have the same speed, the Euclidean

length of 17 and 1¥ coincide. For simplicity we assume that n = 3. Let 17, 1™ 1;”'

301We note that such a model will be constructed in Def.3.8.38, cf. also Prop.3.8.40.
302For Ax(eqspace) cf. §2.8, p.136.
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world-view of my world-view of median observer h

Figure 96: We change the length of time-unit vector 1% of k such that a median
observer h (for observers my and k) thinks that clocks of my and & slow down with
the same rate, cf. also Figure 97.

y

world-view of my world-view of median observer h
Figure 97: We change only the tip of the arrow.
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be, respectively, t-symmetric to 1f, 1%, 1%, see Figure 98.%% Similarly let 15 1k 1’;'

be, respectively, {-symmetric to 17", 17 13". Then since 1j* and 1¥ have the same
Euclidean length (and since clocks are ticking only forwards), by Ax(Triv,), one
can prove that there are observers m' and k' whose unit vectors are (17,17 1;"')

and (1¥ 1% 1’;’), respectively. Then viewing the situation from the world-view of h
(see Figure 98), we conclude that, ., = fym (and tr,,(m') = tre(k’) = t). This
completes the intuitive proof of validity of Ax(symmyg) in our model (i.e. the proof
of consistency of BaCo); the formal proof will be slightly different and it will be
given in the form of the proofs of Propositions 3.8.40 and 3.8.44. The summary of
this formal proof is the following:

For every Euclidean §, first we will define a class of models
{zm§ : @ is an appropriate choice function},

in a similar style as models were defined in §2.4 (“Models for Basax in dimension
27), Def.3.5.5 (“Simple Models”) or in Def.3.6.11 (“General Models”).3** We will
show that this class validates all of BaCo except for Ax(symmyg). Intuitively, @
will determine the lengths of the time-unit vectors of observers as seen by a particular
observer mg. Then we will choose @, such that 93?? = Ax(symmyg) will become
true. This special choice of @) will be denoted by M, and the model corresponding
to M will be denoted by ﬁ)ﬁgf . In the symbol Dﬁgf the letter M intends to remind
us that model M} is the standard Minkowskian one (cf. Def.6.2.58) over §.

Definition 3.8.38 (M7)
Let § be Euclidean (and n > 2). Let

Speedsd:ef{xEF 0<z<1}.
Let
Q : Speeds — TF

be a function such that Q(0) = 1.3% Intuitively, Q(v) (for v € Speeds) will be
the length of the time-unit vectors of those observers k£ which are moving with

8031F ... 1F were denoted as @0 - .. %k,2 on p.255 (around the end of the definition of SM).

304Tn the present context () denotes a function while in the definition of frame models @ was a
sort. These two @’s are of course completely different things. We hope that this coincidence of
notation will cause no confusion. Anyway, we emphasize that in the present sub-section (§3.8) our
@ is not a sort of our language, but a so called choice function.

305The assumption Q(0) = 1 is not important in this definition, we made it only for convenience.
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world-view of the median observer h:

= o
R
x

m, m' h

case when m and k meet:

case when trp(m) and
trp(k) are skew lines:

Figure 98: The “solid” vectors are the unit vectors of m and k, while the “dashed”
vectors are the unit vectors of m’ and &’. Viewing the situation from the world-view

of h, we conclude that f,,; = fir,.
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speed v relative to a particular observer mgy. Soon, we will define the model img
corresponding to § and @ (and n).3%

Let Rhomb“” = Rhomb®(n, ) and PT? = PT%(n, ), corresponding to @, be
the sets of transformations defined as follows.

Rhomb® = {f € Rhomb(n,J) : (*) below holds for f} .
(%) f(L)e >0 A f[t] € SlowEucl A |f(1y)] = Q(angz(f[ﬂ)) :
PT? = {gofogy: f€ Rhomb®, g€ Triv, gy € Trivy } .

mg = ((B; Obs, Ph, Ib),§,Eucl(n,§); €, W), where

Obs ¥ pr@
Ph % PhtEudl
B ¥ 1 ¥ obsuPh.

It remains to define W. (By Q(0) = 1 we have that Id € Obs. Now, ituitively,
k € Obs (= PT9), as a “mathematical entity” will happen to be the world-view
transformation between observers k& and mg := Id.) First, we define a function

wo : "F — P(B) as follows. For every p € "F, let
def

wo(p) = {ke€Obs:pek[t]}U{phePh:peph}.
For every k € Obs let
def
W = kowo.

Let
W & {(k,p,b) : ke Obs, b wn(p)} .

By this, the model zm§ has been defined.
<

Remark 3.8.39 (On the definition of zmg) As a heart of the definition of Dﬁg
we used the class PT9. But the members of PT® are put together from members
of Triv and members of Rhomb®. Below the definition of Triv, we emphasized that
the members of Triv are irrelevant from the point of view of relativity theory and
therefore we will downplay their role in this material. Accordingly, we say that the
heart E)ﬁg is the class Rhomb? of rhombus transformations (and Triv is added only

306 Therefore the model Sﬁg will have three parameters @), § and n. Since n and § are usually
understood from context most of the time explicitly we will mention @ as a parameter of our model
ms.

¥
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for “book-keeping” purposes; and this is how we arrive at PT whose heart remains
Rhomb?).
<

PROPOSITION 3.8.40 For any Euclidean § (for every n > 2) and for every
function Q) as in Def.3.8.38 above,

E)th = BaCo \ {Ax(symmy)},

where the model img was defined in Def.3.8.38 above.

Before turning to the proof of Prop.3.8.40 we list some simple properties of
Rhomb® and PT® introduced in Def.3.8.38.

Lemma 3.8.41 Assume § is Euclidean. Assume @, Rhomb® and PT? are as in
Def.3.8.38. Then (i)—(iv) below hold.

(i) (Vf € PTY) f[t] € SlowEucl.
(ii) (V¢ € SlowEucl) (0 € 0 CPlane(f,7) = (3f € Rhomb®) f[f] = 13).

(iii) (V£ € SlowEucl) (3f € PT®) f[t] = ¢.
(iv) Triv C PTY and (Vg € Triv)(Vf € PT) go f € PT?.

Proof: Item (i) holds by the definition of PT?. Item (ii) can be proved by
Lemma 3.8.46 below. Item (iii) follows from (ii), by Lemma 3.5.3 and by the
definition of PT®. Ttem (iv) follows by the definition of PT?, by noticing that
Id € PT? 37 and by the fact that Triv is closed under composition. B

Proof of Prop.3.8.40: Let §, n, Q, PTY and 9Jt§ be as in Def.3.8.38. Further
let
Wy : "F—"F

be as in Def.3.8.38 on p.327. We will check that the axioms in
BaCo \ {Ax(symmy)} are valid in Em§

M = {Ax1, Ax2, AxD}

3071d € PTY by Q(0) = 1.
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by the definition of Sﬁg Further
MY = Ax6
§

since (Vk € Obs)Rng(wy,) = Rng(wy). Let

def

mo = Id € Obs (= PT?).
Then, obviously,
Wmy = Wy -
It is easy to check that for every k € Obs and for every ph € Ph ( = PhtEucl)
(143) and (144) below hold.
(143) trme(k) = k[t].
(144) trme(ph) = ph.

By Lemma 3.8.41(iii) we have that (145) below holds.
(145) (V¢ € SlowEucl)(3k € Obs) k[t] = £.

By (143)—(145), we have that Ax3, Ax4, Ax5, AXE are satisfied when m is replaced
in them with mgy. Let & € Obs be arbitrary, but fixed. We will prove that Ax3—
Ax5, AXE hold for k, too. By the definition of 9, it is easy to check that (146)
and (147) below hold.

(146) fkmo = ]{3
(147) E[tre(b)] = trmg(b), forallbe B.

By the definition of PT?, we have that k[f] € SlowEucl. Let us notice that PT% C
PT (by Remarks 3.5.2, 3.6.3 and Lemma 3.7.1). Hence k € PT. By (146) and (147),
and by the fact that Ax3—-Ax5, AXE hold for my, and by some properties of PT’s,
we get that Ax3-Ax5, AXE hold for k, since k € PT and k[t] € SlowEucl. Hence,

ﬂﬁg = {Ax3, Ax4, Ax5, AxE}.

So far, we have proved
?)ﬁg = Basax + AxQ.

By (146), we have that

(148) (Vm, k € Obs) fu, = mok™",
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since fre = frmg © ok = frumo © fimg- FOI every m € Obs (= PT9), by the def. of
PT?, we have

(149) mePT A mjt] €SlowEucl A m(1;); —m(0); > 0.

Since the property (149) is preserved under composition and taking inverse, by (148),
we get that
(150) (Vm, k € Obs) fur(14)s — frme(0); > 0.

By (150) and Ax5, we have
M? = {Ax5+, Ax(1)}.

By the definition of PT? = Obs, one can check that for every m,k € Obs (151)
below holds. Further, since we have already proved ﬁﬁg = Basax, we have that
(152) below holds by (146).

(151)  m[t] =k[t] = (Yp,q€t)|mp)—m(q) = k(p): — k(q):.
(152) trm(k) =t = mt]=k[t].

By (148), (151) and (152), we conclude that
sm§ = Ax(eqtime).

Now, we turn to proving that Ax(Trivy) holds in our model. We will prove the
stronger form Ax(Triv) of Ax(Triv,). Let m € Obs (= PT?) and g € Triv. We will
prove that there is k € Obs such that f,,;, = g. By g € Triv, we have that g=' € Triv
(cf. Remark 3.5.2.). Applying Claim 3.8.41(iv), we get g~' om € PTY (= Obs).
Hence g~ om = k, for some k € Obs. Let this k be fixed. Now, m o k~! = ¢ holds
(by gt om = k). This, by (148), implies that f,,; = g. Hence,

9ﬁ§ = Ax(Triv) .

Finally, we turn to prove Ax(ext). It is easy to see that the function
wy : "F — P(B) (defined in Def.3.8.38) is injective. Hence for m,k € Obs with
m # k we have w,, := mowqy # k o wy =: wg. So, the “observer” part of Ax(ext)
has been proved, and it is easy to prove the remaining part of Ax(ext). We leave
it to the reader. So,

sm§ = Ax(ext),

and this completes the proof of Prop.3.8.40. 1
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Next, we will define a special model Sﬁgf which we will call the Minkowski model
(because of its connections with Minkowskian geometry defined in Def.6.2.58). We
will define this model by choosing the parameter ) of the model Dﬁg (defined in
Def.3.8.38) in a special way. This special choice of @ will be denoted by M. Our
purpose with this special choice M of () is to ensure that zmgf = BaCo. Of course,
by Prop.3.8.40, the only axiom we will have to worry about is Ax(symmy).

Let us turn to discussing how to choose M. In this Propositions 3.8.31, 3.8.32 and
the intuitive discussion (on pp. 322-325) at the beginning of the present sub-section
will help us. We recall that, intuitively, Propositions 3.8.31 and 3.8.32, say that
the median observer for observers m and k thinks that the clocks of m and k slow
down with the same rate, under assuming the symmetry principle Ax(symm). In
choosing the function M we will also use the construction we gave in Thm.3.8.25(ii)
above (cf. Figure 91 on p.311) for constructing the median observer. The idea is
the following. Assume we are given a speed v € Speeds. Consider ¢ € Eucl with
0 € £ and ang®(¢) = v. Let us think of £ and f as two observers. Construct h as the
median one of £ and ¢ (cf. Figures 91, 99). Consider the simultaneity of h containing
1; (in the world-view of observer ¢). The intersection of this simultaneity with ¢
gives us the time-unit vector of observer ¢. Then, we will define M (v) to be the
length of this vector.

Definition 3.8.42 (The Minkowski model 9}')
Let § be Euclidean, (n > 2), and Speeds oo {z€F:0<z<1} as in Def.3.8.38.
We are going to define a function M : Speeds — F'". To define this function,
let 0 # v € Speeds. Throughout the following construction the reader is asked to
consult Figure 99.

Let £ € Eucl(2,§) such that 0 € £ and ang®(¢) = v. By § being Euclidean such
an ¢ exists. Let A € t such that A; # 0. Let B € £ such that B, = A;. (Such a B
exists and is unique.) Let ¢ € Eucl be the perpendicular bisector of segment AB.
Let C be the circle with diameter 0A. By § being Euclidean and ang?(¢) = v < 1,

we have that CN ¢ # (. Let ¢ € C N ¢ be such that 0c € SlowEucl. Such a ¢ exists
and is unique. Let ¢ € Eucl such that 1; € ¢” and ¢" || CB. Let E € £ N {. Such an
E exists and is unique. Now, we let

Further, we let

By all these, the function M : Speeds — *F has been defined. We claim that the
definition of M is unambiguous in the sense that the value M (v) is independent
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Figure 99: Illustration for the definition of M. M (v) & |E|. (Cf. Figures 91, 92.)

form the choice of parameters (e.g. ¢, A) which we used in defining M. (Checking
this claim is easy, and is left to the reader.)

Recall that in Def.3.8.38 the model zm§ was defined. Now, the Minkowski model
93" is defined by substituting our special M in place of @ (in img)

Recall also that in Def.3.8.38 the sets of transformations Rhomb? and PT? were
defined. Now, Rhomb™ = Rhomb™ (n,F) and PTY = PT™(n,J) are defined by

substituting our special M in place of @ (in Rhomb® and PT@, respectively).
<

PROPOSITION 3.8.43 Assume § is Fuclidean. Then

f € Rhomb™
<
(f € Rhomb, f[t] € SlowEucl, and either (x) below holds or f = Id).

f(1;) is constructed from f[t] (and from t, 1;) as in Figure 100;

(%) completely analogously?®® as E was constructed from £ (and from

t, 1;) in Def.3.8.42 (cf. Figure 99.)
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Proof: The proof is straightforward by the definition of M and Rhomb™. ®

f1t]

> ;
—

Figure 100: f € Rhomb" & (f € Rhomb A f(1,) is as above). (Illustration for
Prop.3.8.43.)

PROPOSITION 3.8.44 Assume § is Fuclidean. Then
My = BaCo.

In the proof of Prop.3.8.44 we will need six lemmas. The first four of these are about
some simple properties of the set Rhomb = Rhomb(n, §) of rhombus transformations
(cf. 3.8.46-3.8.49). The fifth lemma is about the set PT of photon preserving (affine)
transformations (cf. 3.8.50). The sixth lemma is about Minkowski-distance (cf.
3.8.51). The proof of Prop.3.8.44 comes below these lemmas on p.336.

Definition 3.8.45 We let 1, : "FF — "F be the linear transformation which inverts
the x unit vector and leaves all the other unit vectors fixed, that is,

Ly € Linb with (Lm(la;) =-1, and (V1#i€n)(l;)= 1Z~> )

We note, that for n = 3, ¢, is the reflection w.r.t. Plane(Z, 7). The symbol ¢, intends
to remind the reader that the x component is being inverted. <

308The just quoted part of Def.3.8.42 (i.e. the construction of E) was given in two dimensions only,
and now we are in n dimensions. All the same this causes no problem, because the construction
in which we want to imitate the corresponding part of Def.3.8.42 happens in Plane(t, 7).
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esetleg squares of
M-distances?

LEMMA 3.8.46 Assume § is Euclidean. Let p € Plane(t,Z) such that p # 0 and
Op € SlowEucl. Then there is f € Rhomb with f(1;) = p.

The proof will be filled in later. R

LEMMA 3.8.47 (Rhomb,o, ',1d) forms a group.
The proof will be filled in later. B

Roughly, item (ii) of the following lemma says that there are exactly two rhombus
transformations which agree on 1;. Cf. Figure 101.

LEMMA 3.8.48 Assume n > 3. Let f,g € Rhomb such that f(1;) = g(1;). Then
(i) and (ii) below hold.

(i) Assumen > 3. Then f(1,) = g(1,).
(ii) Fither f =g or f =1, 09g. See Figure 101.
The proof will be filled in later. R

Figure 101: Tlustration for Lemma 3.8.48: Assume f, g € Rhomb such that f(1;) =
g(1;) and f # g. Then f =1, 0g4.

LEMMA 3.8.49 Assume n > 3. Assume f € Rhomb such that f(1,) =1,. Then
f preserves the square of Minkowski-distance, that is,

(Vp,q € "F) g:(p,q) = g:(f(p), f(q)) -
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On the proof: Assume n > 3 and assume f € Rhomb such that f(1,) = 1,. By
f(1,) =1, and by the definition of Rhomb, we have that (i)—(iii) below hold.

(i) (V1 <ien) f(L) =1,
(i) f(1,), f(1,) € Plane(f, 7).

(i) f(1;) and f(1,) are mirror images of each other w.r.t. a photon-line ¢ with
0 € £ C Plane(t, 7).

Also, by the definition of Rhomb, f takes photon-lines to photon-lines. Hence,
the f image 0(f(1;) + 1) of the photon-line 0(1; + 1,) is a photon line too.

By this and by (ii) above, one can “compute” that

(154) 9,0, f(1,)) = 1.
By (ii), (iii) and (154), we conclude (155) below.
(155) 9,0, (1)) = 1.

Now we claim that (i)—(iii) and (154, 155) imply that f preserves the square of
Minkowski-distance. Checking this claim is left to the reader. (The proof of this is
a straightforward computation and we guess it should be known from the “standard
part” of the literature. We note that f is a standard Lorentz transformation.)

|

LEMMA 3.8.50 Assume f, f' € PT such that f[t] = f'[t] and
f(L)e = f(0)e = f'(14)e — f'(0)s. Then

f=go f" for some g € Triv with g[t] =t.

Proof: The proof will be filled in later. We note that a proof can be obtained using
Lemma 3.6.20. 1

LEMMA 3.8.51 Assume £, ¢ € Eucl such that ang®(¢) = ang®(¢'). Assumep,q € ¢
and p',q' € V' such that gi(p, q) = gi(p’,q'). Then,

D — @l = Py — ql -
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Proof: The proof is straightforward. We omit it. B

Proof of Prop.3.8.44: Assume § is Euclidean. To prove Qﬁé/f = BaCo, by
Prop.3.8.40, it remains to prove only that MY = Ax(symmyg). Let us recall that
Obs = PT™, Rhomb™ C PT™. 1d € Rhomb™ by M(0) = 1. Let

my 1d € Obs.
By the definition of 9, it is easy to see that
(156) (Vk € Obs) fymy =k A (Vm,k € Obs) fp = mo k™1,
cf. (146) and (148) on p.329 in the proof of Prop.3.8.40.
Claim 3.8.52 Assume n > 3. Then (Vk € Rhomb™) k(1,) = 1,,.

Proof: Assume k € Rhomb™ (C Obs). Let h be a median observer for observers m
and k as constructed in Figure 91 on p.311, c¢f. Thm.3.8.25(ii). (Of course, we have
to replace m in that picture with mg.) Let A, B, C be points as in that construction.
By Lemma 3.8.41(ii) (and Thm.3.8.25(ii)) we may assume that

h € Rhomb™ .

Throughout the proof of this claim (i.e. 3.8.52) the reader is asked to consult Fig-
ure 102. Let us notice that k(1;) € trp,(k) since k = fgm, (cf. 156). Now, by
Prop.3.8.43,

(157) 1¢k(1¢) || ©B,

since k € Rhomb". By the proof of Thm.3.8.25 (cf. (113) on p.310),
events wp,,(B) and w,,,(C) are simultaneous for h.

This and (157) imply that

(158) events Wy, (1) and w,,(k(1;)) are simultaneous for A.

Let us notice that f,,,n(k(1;)) = fer(1;).2° By this and by (158), we have

(159) fmoh(lt)t = fkh(lt)t-
Obviously (by 903" = Basax),

309This is so because k = fm, (cf. (156)) and because frr, = frmg © fmgh-
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world-view of mg: Mo / /
A I I B
T
D [
k(1)
1
C
0 z
t
) k
world-view of h:
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fmon(k(1¢)) = frn (1)

Figure 102: Illustration for the proof of Claim 3.8.52.
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(160) fron(1e) € tra(mg) and  fip(1y) € trp(k).
Now, by h being a median observer (for mg and k), we have that

(161) trp(mo) and ¢ry(k) are t-symmetric.
By (159)—(161), we conclude that

(162) fmon(ly) and  fgp(1y) are t-symmetric.
Since k, h € Rhomb, we have that

(163) fimon € Rhomb and  fy, € Rhomb

by (156) (and Lemma 3.8.47). By (163), we have that

(164) fron(1y) € Plane(t,z) and fgu(1;) € Plane(t, 7).

Consider the transformation f,,; o ;. See Figure 103.

fmoh fmoh O lyg

Figure 103: For n = 3, composing with ¢, from the right amounts to taking the
mirror image w.r.t. Plane(Z, 7) of the unit vectors determining the transformation

froh-

(165) frmoh © tz € Rhomb

by fmon, tz € Rhomb and by Lemma 3.8.47. Further, by (162, 164), we have
(166) (fmoh e} Lm)(]-t) = fkh(lt) .
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S0, fmen © tz and fg, are both rhombus transformations (cf. 163, 165) and they
take 1; to the same place (cf. 166). Hence, by Lemma 3.8.48(i), we conclude that
(fmon © tz)(1y) = 1,. By this, since ¢, leaves y point-wise fixed (and since f,,, €
Rhomb) we have that (1) = fkn(1,). Therefore, by fipm, = fkhof;n}]h; we conclude
that fxm,(1,) = 1,. Hence, by k = fi,,, we have k(1,) = 1,, and this completes the
proof of Claim 3.8.52.

QED (Claim 3.8.52)

Claim 3.8.53 (Vm, k € Obs) [fx;, preserves (the square of) Minkowski-distance].

Proof: If n > 3 then Claim 3.8.52 and Lemma 3.8.49 imply that every k € Rhomb™
preserves (the square of) Minkowski-distance. The same holds for n = 2 because
of the following. Assume that f € Rhomb™(2,F). Then by Lemma 3.8.46 (and by
Lemma 3.8.41) f can be extended in a natural way to an f* € Rhomb(3,F) (i.e. there
is f* € Rhomb(3,§) such that f is the natural restriction of f* to Plane(Z,z)). But
then, by Prop.3.8.43, we conclude that f* € Rhomb™ (3,). So, since, as we said,
the members Rhomb™ (3, §) preserve Minkowski-distance, f* preserves Minkowski-
distance. Therefore, f preserves Minkowski-distance.

The members of Triv and Trivy preserve Minkowski-distance. Further, the
property of “preserving Minkowski-distance” is preserved under composition. But
then, since PTY = {go fogy : f € Rhomb, g € Triv, gy € Trivy} by definition,
we have that every K € PT™ (= Obs) preserves Minkowski-distance. Therefore,
(Vm, k € Obs) f, = mo k™! (cf. 156) completes the proof of the claim.

QED (Claim 3.8.53)

Now, we turn to proving My = Ax(symmg). The idea of this proof is il-
lustrated in Figure 98 on p.326 and is explained in the intuitive text on p.323.
Now, we include below a “computational” proof for this. To prove Ax(symmy) let
m,k € Obs. Let h be a median observer for m and k. By Claim 3.8.53, we have

9:(14,0) = g3 (Frun(14), 0 (0)) and g2 (14, 0) = g2 (frn(14), fxn(0)). Hence,
(167) gZ(fmh(lt)a fmh((_])) = gz(fkh(lt): fkh((_])) .

By (150) on p.330 in the proof of Prop.3.8.40, we have

(168) fun(Le): — frmn(0)g > 0 and fen(1)e — fen(0), > 0.
From (167, 168) and Lemma 3.8.51, we get

(169) frn(1e): — fmn(0), = fen(1e)s — £ (0),

since by h being “the median”, ang?(trp(m)) = ang®(trn(k)) holds, and since
fn(1s), fmn(0) € trp(m) and feu(1y), fn(0) € try(k). It is easy to check that
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(170)—-(172) below hold; E.g. (171) holds by h being “the median” (and by Ax4);
(172) holds by (169).

(170) fmha fkh,7 fmh 0o 0%, fkh 007 € PT.

(171) fon[f] = (Fen 0 07)[f]  and  funlf] = (Fun 0 07)[E].-

(172) fmh(lt)t - fmh(ﬁ)t = (fkh © Uf)(lt)t - (fkh © Uf) ((_))t and
fkh(lt)t - fkh(ﬁ)t = (fmh © Uf)(lt)t - (fmh © Uf) (6 t-

By (170)-(172) and Lemma 3.8.50, there are f, g € Triv such that f[t] = g[t] =1
and
(173) fun = fofgpoor and fg, =gof,,o0o07.

Let such f,g be fixed. Now, by Ax(Triv;) (and by f~',¢7! € Triv with f~[¢] =
g~ '[t] = 1) there are k', m' € Obs such that

(174) tri(k") = trp,,(m') =t, and

(175) foe=7r and fom =9.
By (173) and (175), we conclude

(176) fmh = fklh o 0 and fkh = fmlh O 0g.
Now,
fe = fmn ok
= (fenoog) o (fan 0 07) ™" by (176)
= fppooroozofyy by 0{1 = o7 and fT_n}h = fhm
= fk’h O fhm’ by 0'32 =1d
== fklml .

S0 ik = iy, and this by (174) completes the proof of Prop.3.8.44. 1
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3.8.3 JF-categoricity, completeness etc. of BaCo

intuitiv szove,

kene! ; This sub-section is devoted to proving the uniqueness part of Thm.3.8.7 saying that
BaCo is §-categorical for any Euclidean §; that is, to every Euclidean § there is
exactly one model up to isomorphisms of BaCo extending §.

Let us recall that in §3.8.2 (Def.3.8.42) for every Euclidean § (and n > 2)
the Minkowski model E)J?é/f was defined. In the present sub-section we will prove
that every model 9t of BaCo, with ordered field reduct §, is isomorphic with the
Minkowski model img . Therefore any two models of BaCo with the same ordered
field reduct are isomorphic.

First, we state a lemma.
LEMMA 3.8.54 Basax+Ax(symm)+Ax(1)+Ax5"+Ax(Trivy) = Ax(Triv).

The proof of this lemma will be included at a later stage of development. R

PROPOSITION 3.8.55 Assume M is a model of BaCo (and n > 2). Assume §
15 the ordered field reduct of M. Then M is isomorphic with the Minkowski model
MY (defined in Def.3.8.42).

Proof: Assume 91 is a model of BaCo, and assume that the ordered field reduct is
§. Then § is Euclidean (by Ax(v/ ) € BaCo). Recall that the sets Rhomb™ and
PTM of transformations were defined in Def.3.8.42. Let mg € Obs™ be arbitrary,
but fixed.

Claim 3.8.56 {fin, : k€ Obs™ } = PT".

We will give the proof of this claim at the end of the proof of Prop.3.8.55.

Let 9 := 93?%" be the Minkowski model over §. Recall that by the definition of
9M3', we have that

Obs™ = PTM  and  Ph™ = PhtEud,
cf. Def.3.8.38. Let

ap = {(k,fumo) : k€ Obs™},
ar = {(ph,try,(ph)) : ph€ Ph™} .
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Then by Claim 3.8.56 (and by Obs™ = PTM) «q : Obs™ — Obs™ is a surjective
function. By 9t = Basax+ Ax(ext), we have that (k # m = fg,, # fm,)- Hence
oo is a bijection. Similarly, oy : Ph® — Ph™ is a bijection too by Ph™ = PhtEucl
and by N = Basax + Ax(ext).

(pUay) : B — B™ s a bijection,

since B = ObsU Ph (by AxQ) and Obs N Ph = () by Prop.2.3.3(i). This bijection
extends in a natural way to a “potential isomorphism”3!® o between models N
and 9% namely « is the identity function on the sorts F and G (and of course
is ap U a1 on sort B). Next, we prove that the so defined extended function « is
indeed a homomorphism, namely that it commutes with the operations and relations.

Moreover, we will prove that it is also an isomorphism. Consider the relation
W C Obs x "F x B. We will prove that

WH(k,p,b) < W™ (a(k),p,a(b)).

Claim 3.8.57 (Vk € Obs™)(Vb € B™) tr}(b) = triy,, (a(D)).

Proof: Let us notice that a(mgy) = Id by the definition of @. Now, by the definition of
M = Dﬁé/f is easy to check that for every k € Obs™, ph € Ph™ and b € Obs™ (177)-(179)
below hold (cf. (143), (144) and (147) around p.329 in the Proof of Prop.3.8.40).

(177) tra(mo) ((k)) = a(k)[t].
(178) tra(mo) (2(ph)) = a(ph).
(179) a(k) [trow) (ad)] = trame) (b)) -

Next, we prove that (180) below holds.
(180) (Vb € BY) (trim, (b) = trif)((b))

To prove (180) let b € Obs™. By AxQ, B™ = Obs™ U Ph™. Assume first that b = k, for
some k € Obs™. Let this k be fixed. Then, tr,, (k) = fklf] = a(k)[f] = t7 a(mo) ((K))
by (177) above and by the definition of . Hence, (180) holds when b € Obs™. Assume
now that b = ph, for some ph € Ph”. Let this ph be fixed. Then,

trmo(Ph) = a(ph) = try(m,) (@(ph)) by (178) and by the definition of . So, (180) has
been proved.

310 We recall from the literature that a homomorphism between our kind of 3-sorted models
M and I consists of 3 functions hp, hr, hg such that hg : BY — B™ hp : F* — F™M,
hg : G® — G™ and the usual commutativity conditions hold. By a potential homomorphism we
understand such a triple of functions without requiring the commutativity conditions.
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Now, we turn to prove Claim 3.8.57. Let k € Obs™ and b € B”. Then,

tri(d) = o, [irmo ()] by Prop.2.3.3
= a(k)Htrg(me) ((b))] by the def. o and by (180)
= Irag (b)) by (179).

This completes the proof of Claim 3.8.57.
QED (Claim 3.8.57)

Now, by Claim 3.8.57 and by the fact that in every frame model
W(k,p,b) << pé€ tri(b)
holds, we conclude that, for every k € Obs™, p € "F and b € B™,
W2 (k,p,b) <= W™ (a(k),p, ab)).

With this we proved that « is an isomorphism between Ot and 9, and this is what
we wanted. So, Prop.3.8.55 is proved modulo Claim 3.8.56.
Let us turn proving Claim 3.8.56.

Proof of Claim 3.8.56: Let us recall that the claim states that
{fimo : k€ Obs™ } = PT™.

Claim 3.8.58 Assume m € Obs. Assume £ € SlowEucl such that 0 € ¢ C Plane(t, ).
Then there is £ € Obs such that fy,, € Rhomb and f,,[t] = £.

Proof: Let m € Obs. Let £ € SlowEucl such that 0 € ¢ C Plane(t,7). Let k' € Obs
such that
trm(k') = ¢

and fyr,,(0) = 0. Such a k' exist by Ax(Triv;) and Ax5. Let f € Rhomb such that
f(1) = frm(1y). Such an f exists by Lemma 3.8.46. Let us notice that

(181) flt] =trn(k) =¢.

Now, it is easy to check that

(182) (fremo f (1) =1, and (fprmo f 1)(0)=0.
Further, by Prop.3.8.35(ii), we have that

(183) fomo f~1 e PT.

By (182, 183) and Lemma 3.6.20, we conclude that

fom o f71 € Trivg .
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By this, and by Ax(Triv;), there is k € Obs with try (k) = and fyg = fr 0 f71.
Let such a k be fixed. But, then fy,, = f and fy,[t] = trp,,(k) = tr, (k') = £. By
f € Rhomb, this completes the proof of Claim 3.8.58.

QED (Claim 3.8.58)

Throughout this proof Obs := Obs™.
Claim 3.8.59 (Vm,k € Obs) (fi,, € Rhomb = fi,, € Rhomb™).

Proof: Let m,k € Obs such that fy,, € Rhomb. Let h be the median observer for
observers m and k as constructed in Figure 91, 92 (cf. Thm.3.8.25). By Prop.3.8.32,
in the world-view of h the time unit vectors of m and k are ¢t-symmetric. Hence,
events w,,(1;) and w,,(fe, (1)) are simultaneous for h. Therefore, by Prop.3.8.43
(see Figure 100 on p.333), by Thm.3.8.25(ii) (see Figures 91, 92 on pp.311-312) and
by the proof of Thm.3.8.25, we conclude that fg,, € Rhomb™ .

QED (Claim 3.8.59)

Claim 3.8.60 Assume m € Obs. Then (Vf € Rhomb™)(3k € Obs) fi, = f.

Proof: Let m € Obs. Let f € Rhomb™. Then by Claim 3.8.58 (and by
Lemma 3.8.41(i)), there is £ € Obs such that

fem € Rhomb  and  fi,[t] = f[t].
But then, by Claim 3.8.59, we have
fym € Rhomb™

(since fy,, € Rhomb). Further, by f, fr,, € Rhomb™ by f.,,[f] = f[f] and by the
definition of Rhomb™ , we have

frm (1) = f(14) .

Then by Lemma 3.8.48(ii) either fg,, = f or fg = 1z 0 f. If f, = f is the case then
we are done. So, assume fg,, = t; o f. Then by Ax(Trivy) (and by ¢, € Triv with
g[t] = t), there is k' € Obs, such that fyg = 1. For this k', we have fy,,, = f (by
fem =tz o f and fggr = ¢,). This completes the proof of Claim 3.8.60.

QED (Claim 3.8.60)

Claim 3.8.61 Assume m € Obs. Then (Vf € PT")(3k € Obs) fi = f-
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Proof: Let m € Obs. Let f € PT™. We will prove that there is k& € Obs such that
fum = f. By the definition of PTM

(184) f=go f'ogo,

for some f' € Rhomb™, g € Triv, and gy € Trivy. Let such f’, g, go be fixed. By
Lemma 3.8.54, we have that 9 = Ax(Triv). Now, let m’ € Obs such that

(185) form = go-

Such an m/' exists by Ax(Triv,). Let k' € Obs such that
(186) fom = [

Such a k' exists by Claim 3.8.60. Let k& € Obs such that
(187) fir = 9.

Such a k exists by Ax(Triv).

Now, by (184)—(187), we have fy,, = frr ofprmy o, = go f'ogo = f. This completes
the proof of Claim 3.8.61.
QED (Claim 3.8.61)

Claim 3.8.62 Assume m € Obs. Then (Vk € Obs) f;,, € PTV.

Proof: Let m,k € Obs. We will prove that f;,, € PT™. By Claim 3.8.41(iii) we
have that (188) below holds.

(188) (V¢ € SlowEucl)(3f € PTM) f[t] = ¢.

trm (k) € SlowEucl since there are no FTL observers in 9t by Thm’s 3.8.11, 3.4.1. Let
f € PT™ such that f[f] = tr,,(k). Such an f exists by (188) above. Let k' € Obs
such that
fk’m = f .

Such a k' exist by Claim 3.8.60. By fy.,, = f and f[t] = tr,,(k) we have that k
and k' are “brothers”, i.e. tri(k’) = ¢. But then fy € Triv by Prop.3.8.33(ii).
Since f € PT" and fy € Triv, by Lemma 3.8.41(iv) (or by the definition of PT")
we have that f o f € PTM. Now, fyw o f € PTM and f = fp., imply that
fim = fr © frrm € PT™. This completes the proof of Claim 3.8.62.

QED (Claim 3.8.62)

Now, by Claims 3.8.61 and 3.8.62, we have that

(Ym € Obs) {fym : k € Obs} = PTM,
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This completes the proof of Claim 3.8.56 and the proof of Prop.3.8.55. 1
At this point all parts of the proof of Thm.3.8.7 has been taken care of.

Next, we formulate characterizations of the rhombus transformations and the
photon preserving transformations in Minkowski models (or equivalently in BaCo
models).

PROPOSITION 3.8.63

(i) Rhomb™ = {feSLor : f(1,);>0, f[t]€ SlowEucl}.
(ii) PTM = {fePoi : f(1;);>0, f[t]€ SlowEucl}.

The proof will be filled in later. R

PROPOSITION 3.8.64 Assume n > 3. Then (i) and (ii) below hold.
(i)  Rhomb™ = {feSLor : f(1,);>0}.
(ii) PTY = {fePoi : f(l);>0}.
Proof: The proposition follows from Prop.3.8.63 above and Lemma 3.4.5 on p.205.
|

It might be of interest to notice that for any m € Obs the set of world-view trans-
formations involving m is the whole of PT™ in Minkowski models by Claim 3.8.56.
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3.9 Symmetry axioms

In §2.8 we began with the formalization of symmetry assumptions used in relativistic
arguments, which are understood as part of Einstein’s Special Principle of Relativity
(SPR). We introduced our distinguished symmetry axiom Ax(symm) as a possible
candidate for the role of symmetry axiom. In this section we intend to push this
analysis further.

First, we shall introduce several (rather strong) symmetry axioms that formalize
and logically analyze the “remaining part” of Einstein’s SPR (in a sense we are
going to discuss soon). We shall introduce Ax(w) for their conjuction to abstract
from the subtle differences among them. Then we shall recall and discuss some
weaker axioms occurring in this study, which are also partial formalizations of SPR
expressing symmetry.

Axiom Ax(w) is used for the same purpose as Ax(symm) and Ax(syt)3!!.
Namely, whenever we have a “core theory” like Basax, Flxbasax or Bax, we
shall examine the way the introduction of a symmetry axiom as a methodological
principle simplifies our description of the world. By considering symmetry as a
matter of methodology (or aesthetics) we entertain the following idea. While axioms
of our core theories from Basax to Bax™ and further can be defended to some
extent by referring to experiments, perhaps combined with, say, “inductive logic”,
accepting symmetry is some sort of “aesthetic” decision: we want to describe the
world as simply as possible, excluding e.g. the possibility that different observers
use different measurement units thereby disguising physical phenomena. This kind
of methodological decision is related to ideas/principles known as “Occam’s razor”
or “Mach’s principle”. In this connection it is very important to choose for each
theory an adequate symmetry principle, in the sense that our methodological decision
should not falsify the essential physical assumptions of the theory. For example, both
Ax(w) and Ax(symm) are adequate for Basax(n) for n > 3; if n = 2 then only
Ax(symm) is adequate; for Bax only Ax(syt) seems to be appropriate. At first
sight we can use the “rule of thumb” that Ax(w) > Ax(symm) > Ax(syt).

We note that the first two pages of §3.9.1 below contain important information,
relevant to the present introduction. Similarly, Remark 3.9.10 (p.355) is strongly
relevant to this introduction. Further Corollary 3.8.21 on p.304 is highly relevant.
Actually, that corollary implies the following model theoretical characterization of
symmetry principles (in the spirit of Einstein’s formulation of SPR).

Definition 3.9.1 Let

BaCo~ & BaCo)\ {Ax(symm)} + Ax(eqtime) + Ax(v/ ), ie.

BLLCE. §62.8, 4.2.
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BaCo~ = Basax+ (Compl)\ {Ax(symm)})+ Ax(eqtime) + Ax(y/ ),

cf. p.298 (Def.3.8.2).
<

THEOREM 3.9.2 Assume M = BaCo . Then (i) and (ii) below are equivalent.
(i) (Ym,k € Obs™)(3a € Aut(IM)) a(m) = k.

Le. any two observers are connected by an automorphism of M (i.e. all ob-
servers are alike).

(1) M = Ax(symm). B
The above theorem says the following.
Ax(symm) <= (Vm,k € Obs)(Ja € Aut(IM)) a(m) =k,

assuming BaCo .

We should emphasize two things here: (1) This is a model theoretic character-
ization of Ax(symm) in Einstein’s spirit. (2) We had to pay a very high price
for this characterization in the sense that BaCo™ is a very strong assumption. We
will return to giving satisfactory model theoretical characterizations under weaker
assumptions in chapter 6 (cf. §6.2.8).

3.9.1 Alternative symmetry axioms

As we promised, we are introducing a couple of axioms which are candidates for
the role of symmerty axiom. Each can be considered as a partial formalization of
Einstein’s Special Principle of Relativity. They assert symmetry (the claim that the
way two observers see each other is “the same”) in special characteristic situations.
As we shall see later, they are not necessarily equivalent assuming Basax only.3!2

Let us discuss first in which sense we speak about formalizing parts of SPR.
Roughly speaking, SPR states that from a certain point of view all inertial ob-
servers are alike. Then we only have to specify the relevant aspect from which
inertial observers are all the same. The usual stipulation is that no law of nature
distinguishes any observer from the others. More formally,

(x) If a formula ¢ in the frame language of relativity qualifies as a law of nature,
M is a frame model and m, k € Obs™, then (M = o(m) < M E ¢(k)).

312We note, however, that when analyzing symmetrical versions of theories we shall only use the
concatenation (conjuction) of the axioms to be introduced (see Ax(w) below).
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Which formulae are then potential laws of nature? This is not easy to tell
precisely. We obviously do not want ¢ to talk about something accidental (e.g. the
cardinality card(w(0)) of bodies at the origin of m’s coordinate system). Clearly,
our earlier axiom systems like Basax, Newbasax, Bax all can be regarded as
capturing parts of SPR in the sense that they do not distinguish any subset of
inertial observers. (E.g. by Basax all observers see photons the same way. This can
be understood as part of SPR. Also the very philosophy of Basax that does not
distinguish a particular observer as the main observer is part of SPR.)

Since we cannot tell which formulae are laws of nature and which are not 3!
we must formalize parts (or instances) of SPR in a form different from the above
schema. To be sure, we do not want to use the whole of SPR. The reason is that
it would be too strong for helping the logical analysis. Axioms AxO1, AxAl,
Ax02, AxA2, to be introduced below, as well as Ax(symm) and Ax(syt), are
formalized instances of SPR in the sense that they assert symmetry (the claim
that the way two observers see each other is “the same”) in special characteristic
situations.?'* As a “limiting case”, Corollary 3.8.21 in the previous section shows
that in our special axiom system BaCo we have collected enough instances of SPR to
recover the whole principle. But we emphasize again that our main concern is not to
obtain stronger and stronger axiom systems.?'® Instead, we thrive for understanding,
insight, simplicity, decomposition, analysis, as explained in the introduction. In
case of SPR, for instance, different parts may be acceptable for the Reichenbachian
theories and for the conventional Einsteinian theory.

Let us turn to introducing some of the promised symmetry axioms. First of all,
we introduce below the notion of an isometry (over an arbitrary field) and include
a technical result, because they will help us in handling the sort of transformations
that comes up naturally when formulating some of our symmetry axioms.

313No doubt the concept of a law of nature has a more or less clear intuitive meaning. We only
assert that this concept has no precise formal definition which could be translated to our plain
language.

The issue of the definiability of laws of nature is not at all an idle question. For example, the
literature writes about a conflict between Gdédel’s incompleteness theorem and Hawking’s program
of searching for a TOE (also called the Final Laws of Nature). The logical part of this debate could
be resolved if one could answer the above question, i.e. if one could tell exactly which formulae
are potential laws of nature. For the discussion of this problem (about laws of nature) with an
emphasis different from ours cf. Friedman [90], pp. 150-151.

314 At first sight principle (x) sounds different from saying that “the way I see you is the way you
see me”. But a little reflection on the ideas involved reveals that the “as I see you so do you see
me” statement is a special case of (*).

315The stronger your axiom system gets the weaker (and less general) your theorems get.

349



Definition 3.9.3 Let F be a field. (Note that F is not necessarily Euclidean, i.e.
square root may not exist.) Let A :™F — "F be an arbitrary function. We call h
an isometry if h preserves the square of Euclidean distances. That is, ||p — ¢|| =
|h(p) — h(q)|| for any p,q € "F.

We shall use the expressions “congruence transformation” or “distance preserving
transformation” as synonymes for “isometry”.

Remark 3.9.4
(i) Isomeries on "F form a group, for any field F.

(ii) The connection between our class of transformations Triv (introduced in Def.
3.5.1) and the class of isometries is as follows. Triv is the set of those isometries
f for which f[t] || t and f(1;); > 0.
LEMMA 3.9.5

Assume § is an ordered field. If h : "F — "™F is an isometry, then h is an affine
transformation. Briefly:

Isometry = affine.
We postpone the proof Lemma 3.9.5. It comes after Thm. 3.9.31.
Ax0O1 (Vm, k,m' € Obs)(Fk' € Obs)f = frk-

That is, any two observers m and m' are equivalent in the sense that if m sees some
k a certain way, then m’ too sees some observer, call it &', exactly the same way as
m sees k. (This intuitive formulation clearly shows that AxO1 is a special case of
the (x) form of SPR.)

Ax0O2 (Ym, k,m', k" € Obs)(try, (k) = trp (k') —
there is an (affine) isometry N of "F such that N[f] || £ and f,,x = fp o N).316

316Lemma 3.9.5 ensures that we “lose” no isometry by quantifying over affine transformations.
This is necessary to keep Ax02 in first order logic.
Alternatively, in the conclusion one could use the composition g = f,,,; o fgr,, and state that this
function is an isometry preserving the ¢ axis. Doing so one relies on Prop. 2.3.3(x).
In most cases it would not matter if we required N[t] = ¢ instead of N[t] || ¢ in this axiom (e.g.
assuming Bax).
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Intuitively, the way a particular observer m sees another observer £ move determines
how their world-views are related, up to a trivial recoordinatization of space-time
and possibly a reversal of the arrow of time. The isometry (distance-preserving
transformation) N permits that, letting observers m, k, m’ be fixed, k' is still “free”
to choose the orientation of its coordinate axes and the origin of its frame of reference
(although the latter freedom is restricted, of course, by Ax4).

AxA1 (Vm,k € ObS)(Elkl € ObS)(trm(lﬁ) = tTm(k,) N fmkl = fklm).

This means that although we cannot require from a pair of observers, say m and
k, that one of them sees the other the same way as the other sees him (because he
may e.g. “turn his head in the wrong direction”), we can require that it should be
possible to find a brother &' of £ who can see m just like m sees k'.

AxA2 (Vm,k € Obs) (there is an (affine) isometry N of "F such that
N[t] || t and fp = N o f, 0 N).3Y7

That is, the way two observers see each other cannot be very different; a trivial
recoordinatization of space-time by one of them?® is enough to make them see each
other the same way. Note also that we allow the direction of time to be different for
the two observers.

As the reader may have noticed, AxO1 and Ax0O2 assert the equivalence of two
observers, m and m’ in connection with other observers (k and k'), while AxA1 and
AxA2 characterize the way two observers, m and k, see each other. While AxA1
and Ax0O1 solve the problem of the possibly wrong orientation of spatial coordinate
axes by taking a new observer with the appropriate trace (and orientation), AxA2
and AxO2 admit a distance preserving transformation in the relationship of world-
view transformations.

We think that from the point of view of logical analysis pursued in this study the
subtle differences between the above introduced symmetry axioms (AxA1, Ax0O1,
AxA2 and Ax0O2) are often irrelevant. We shall see soon that if n > 3, then they
can be shown to be equivalent assuming Basax and a couple of auxiliary axioms. For
these reasons we shall usually refer to their conjunction Ax(w) or their disjunction
Ax(w™) introduced below.

Definition 3.9.6

Ax(w) = AxO1A AxO2 A AxA1 A AxA2.
Ax(w™) = AxO1V Ax0O2V AxA1V AxA2.

317 Again, because of Lemma 3.9.5, one can imagine quantification over isometries in general in
place of quantification over affine isometries.
318Rearranging the equation in this axiom yields N~! o f,;, = fxm o N.
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Thus, whenever we intend to extend a theory like Basax, Flxbasax, Bax etc.
with a natural symmetry principle, we can consider Basax + Ax(w), Flxbasax +
Ax(w), Bax + Ax(w) etc. provided that we are at a point that we need not worry
about the fine distinctions between AxA1 and its variants. In this connection we
note that Ax(w) is definitely stronger than Ax(symm). We shall argue this claim

soon.31

PROPOSITION 3.9.7 Ax(w) is consistent with Basax; moreover BaCo +
Ax(V') E Ax(w) (and we have already seen that BaCo 4+ Ax(v/ ) is consistent).

Proof: If n > 3, then Prop. 3.9.7 follows by Thm. 3.8.7, saying that BaCo+Ax(v/ )
is consistent, and the following items:

e BaCo(n) + Ax(v ) = AxA1 by Thm. 3.9.26(ii),

)

e BaCo(n) + Ax
)
)

( = AxA2 by Thm. 3.9.27(ii),
e BaCo(n) + Ax
(

= Ax0O1 by Thm. 3.9.31(ii),
)

\/_
\[
\/_
V') = AxO2 by Thm. 3.9.29(ii).

')
V')
')
e BaCo(n) + Ax(v )

For the case n = 2 one has to use the Minkowski model img/f , and derive the
items of Ax(w) one by one. We omit this part of the proof. |

First, to gain insight into the strength of these axioms we shall compare their
implications to those of Ax(symm). Recall that Theorem 2.8.2 said that the ex-
istence of FTL observers is consistent with Basax(2) + Ax(symm). Moreover, in
Thm. 3.8.11 we proved that adding Ax(1) (plus the auxiliary axiom Ax(v/ )) to
Basax(2) + Ax(symm) is enough to exclude faster than light observers.

The following theorem says that assuming Basax + Ax(v/ ), both AxA1 and
AxA2 exclude faster than light observers even in 2 dimensions, while Ax(syto),
Ax(symm), AxO1 and Ax0O2 do not.

THEOREM 3.9.8 The following items hold.
(i) Basax + Ax(v )+ AxA1l | “there are no FTL observers”,
(ii) Basax + Ax(v")

(iii) Basax + Ax(v ) + Ax(Triv) + Ax(||) + Ax(syto) + Ax(symm)+
Ax0O1 + AxO2 (& “there are no FTL observers”.

+ AxA2 = “there are no FTL observers”,

319Cf. Thm. 3.9.8.
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To prove Thm. 3.9.8 we shall need the following lemma.
LEMMA 3.9.9 Bax™ + AxA2 + Ax(V' ) = fu € Aftr.

Proof: Assume Bax™ + AxA2+ Ax(v/ ). Let m, k € Obs be arbitrary. We have
fk = @ 0 g for some g € Aftr and ¢ € Aut(F) by Thm. 4.3.11 and Lemma 3.1.6.
But ¢ € Aut(§) by Lemma 6.6.6 (i.e. ¢ preserves order).

Now, from AxA2 we get the following statement:

(189) pog=Noglop'oN,

for some isometry N. We have N € Aftr by Lemma 3.9.5.
Using (189), Lemma 3.8.36 and the fact that N and g are affine transformations,
one obtains ¢? = Id. Since ¢ preserves order, we have ¢ = Id. 1

Proof of Thm. 3.9.8(i): This item is only a restatement of Cor. 2.7.6. Moreover,
we conjecture that the proof might be able to be generalized so that it omits Ax(v/ ).

Proof of Thm. 3.9.8(ii): Informally, the proof is based on the observation, proven
in §2.7, that a pair of observers moving faster than light relative to one another must
see each other’s clocks run differently. If m sees k’s clock run forwards, then & sees
m’s clock run backwards; or, if m sees k’s clock run backwards, then k sees m’s clock
run forwards. This fact conflicts with axiom AxA2, which implies that m sees k’s
clock run forwards if and only if k£ sees m’s clock run forwards.

Let us work out this idea formally. Assume Basax+AxA24 Ax(v/ ). Suppose
for contradiction that there are m,k € Obs such that v, (k) > 1. (Then vg(m) > 1
by Thm. 2.7.1.) By AxA2 we have

(190) fr = N ofy, o N,

for some isometry N such that NJf] || . On the other hand, by Thm. 2.7.4 we have

(191) fem(1t): — fkm(0): >0 <= foe(1)r — frmk(0): < 0.

Case 1. Assume N(1;); — N(0); > 0. In this case N does not turn back time
sequences. That is, one can check that

(192) (Vp,q € "F)(ps > ¢ <= N(p): > N(q)s)-
Using that f,,,;, € Aftr by Lemma 3.9.9,3%

(N o fim 0 N)(1) = N(fem(11)) = N(fem(0)) + N (frm (N(0))),

320We omit some simple computational steps.
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thus by (190) one gets f,x (1) — fuk(0) = N(ferm(1:)) — N(fm(0)). Hence

k(1
fmk(]-t)t — fmk((_])t >0 <= N(fkm( )) (fkm(ﬁ))t >0
= fim(L)e = fem(0): > 0,

using (192). This obviously contradicts (191).
Case 2: N(1;);— N(0); < 0. This case can be handled analogously. We omit the
details.

Idea of the proof of Thm. 3.9.8(iii): We need to build a model of Basax(2) +
Ax(V') + Ax(Triv) + Ax(]|) + Ax(syto) + Ax(symm) + AxO1 + AxO2 that
contains faster than light observers.

Consider the standard Minkowski-plane on 2R. Let the set of our observers
include all the possible reference frames whose “unit vectors” have Minkowski-length
1. One has to apply the model building algorithm of Def. 3.6.11.

Let 90t denote this model. Then 9 = Basax(2)+Ax(v/ )+ Ax(Triv)+Ax(]|).
We suppose that the symmetry principles Ax(syto), Ax(symm), AxO1 and AxO2
hold as well. We admit that we have not checked this claim carefully. |

For completeness we shall show that Basax(2) + AxO1” admits FTL observers,
where the “simple axiom” AxO1’ is a straightforward consequence®?! of AxO1.

Ax0O1’ (Vm, k € Obs)(Im' € Obs)(try(m') = trn(k) A Tk = frmr)-

Compare Ax0O1’ with AxA1. Both axioms aim at saying that the way m sees
k is the same as the way k sees m, but the possibility must be allowed for that
their coordinate axes are not suitably oriented to validate this claim. Now, in case
of AxA1 we took an appropriately oriented brother of k£ instead of £ itself; while
in AxO1” we took third observer m' (instead of m) whose orbit in the world view
of k£ is the same as k’s trace for m, thereby allowing for a similar relationship of
world-views (remember that m’ is not a brother of m in Ax01°).3%

The basic idea is depicted on Figure 104. Somewhat more formally, let 97T be
a model of Basax(2) + Ax01’. We shall construct another model 9, such that
M, = Basax(2) + AxO1’ + (Im, k € Obs)v, (k) > 1. The construction consists of

two steps:

1. We extended I so that the “mirror image” of any observer will be present
in the new model 9,. By this we mean that for any m € Obs we have an
m' € Obs such that (Vp € "F)f,,,.» (p) = —p.
321Gtatement AxO1’ follows by applying AxO1 for m, k,m' = k, and checking try(m') = tr,, (k).
For the latter step we use Ax4 and Prop. 2.3.3(vii), which in turn requires Basax.

322Fyurther we note that AxO1 in its original form asserts the equivalence of m and m’, while
AxA1 deals with the equivalence of m and k.
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Figure 104: Intuitive idea of the proof of statement (Im' € Obs)f = frrpy.

2. We add an observer to 9, that travels faster than light to some other observer.
Thus we arrive at model 9%

The first step is needed to ensure that adding an FTL observer does not invalidate
Ax0O1’. Figure 104 shows how we can find for m, k& € Obs the appropriate m' € Obs
(referred to in Ax0O1’) in the case v,,(k) > 1. The picture actually shows how fg,,
is built. Filling in the details of the model construction is straightforward. The
reader is challenged to do that.

Remark 3.9.10 [On the intuition behind AxA1 etc.] Consider the following
equivalence principle (which is called homogenity in model theory): All observers
are alike in the sense that

(x) (Vm, k € Obs)(3h € Aut(IM))h(m) = k.



Clearly, (x) states a very strong form of equivalence of inertial observers (al-
though not in first order logic). It would be interesting to know how much of AxA1
and the other recently introduced symmetry axioms is derivable from (%) (perhaps
using other items of SPR like Ax(||), Ax(Triv), Ax(ext) or AxQ).

Of course, we cannot replace the conclusion of (x) with the stronger h(m) =
k A h(k) = m, since m and k might look in the wrong direction spatially. However,
the following version seems to be correct.

(**) (Vm, k € Obs)(3k' € Obs)[trp,(k) = tr,(k') A
(Fh € Aut(IM))(h(m) =k A h(k') =m)].

In (xx) we have followed the usual strategy of quantifing over observers in order
to abstract from the accidental orientation of k’s spatial coordinate axes. That is,
(xx) requires that at least a brother of k£ should be equivalent with a given m up to
an automorphism (of the entire model). Now we may ask the same question about
(xx) as about (*).

A different “derivation” (or justification) of AxA1 would be using the following
potential axiom.

(xx %) fnx depends only on the velocity vector o, (k) together with the orientation

of k’s space coordinates (and, of course, on k’s origin as seen by m, ft,,(0)).

For instance, the orientation of k’s T axis is the direction in which the space
component of the vector f,,z(1;) — .. (0) points. In other words, (x**) says that f,,x
is a (partial) function of three variables, a vector 7 € ""1F, a point (k’s origin), and
an “orientation”, where the latter is a triple of directions.??®> Then we conjecture
that (x x x) plus some auxiliary axioms would imply AxA1. But we observe that
(x % x) would be a very strong axiom.

It can be checked that items (%) to (xx*) are true in models of BaCo. For item
(x) cf. Cor. 3.8.21 on p. 304. The reader is invited to check the validity of the other

items in models of BaCo.

The following theorem says that all the symmetry axioms studied in the present
sub-section are equivalent, assuming Basax, some auxiliary axioms and n > 3. Note
that the assertions of this theorem can be made sharper is some cases, as we shall
see below in this sub-section when proving the equivalence statements in detail.

3231 e. of elements of directions C " 1F.
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THEOREM 3.9.11 Assume n > 3. Let

H Y {Ax(syto), Ax(egspace), AxA2},
H ¥ {Ax(symm), Ax02, AxA1 + Ax(eqtime)},
H' ¥ {Ax0O1+ Ax(eqtime)}.

Then items (i) to (iii) below hold.
(i) Basax(n) + Ax(v/ ) = all the azioms in H are equivalent with one another,

(ii) Basax(n) + Ax(v ) + Ax(Triv,) = all the azioms in HU H' are equivalent
with one another,

(iii) Basax(n) + Ax(v ) + Ax(Triv,) + Ax5* |= all the azioms in HU H' U H"
are equivalent with one another.

Proof: This theorem is based on Prop. 3.9.12 below. One can proceed as follows:

e Prop. 3.9.12(v)-(vi) assert that Ax(sytg) is implied by AxA2 or
Ax(eqgspace) if Basax(n) + Ax(y/ ) is assumed. Axiom Ax(syto) implies
both AxA2 and Ax(eqgspace) by items (ix) and (vi).

e Items (ii) and (iv) of Prop. 3.9.12 assert that AxA2 € H is implied by
Ax0O2 or AxA1l A Ax(eqtime) if Basax(n) + Ax(v ) + Ax(Triv;) is
assumed. Axiom AxA2 implies AxO2 by item (xi), and Ax(syte) im-
plies AxA1+Ax(eqtime) by item (vii). On the other hand, items (iii)
and (viii) establish the equivalence of Ax(syto) and Ax(symm) assuming
Basax(n) + Ax(v ) + Ax(Triv,).

e Items (i) and (x) assert the equivalence of AxO1 A Ax(eqtime) to AxO2
assuming Basax(n) + Ax(v/ ) + Ax(Triv,) + Ax5% for n > 3. Thereby the
pairwise equivalence of members of H U H' U H"” is implied.

PROPOSITION 3.9.12 Assume Basax. Then items (i) to (zi) below hold.
(1) (AxO1 + Ax(eqtime)) — AxO2.

(i1)) (AxA1+ Ax(eqtime)) - AxA2.
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(11i) Ax(symm) — Ax(syto).
In the following items always assume Ax(v/ ).

(iv) Assume n > 3 and Ax(Trivy). Then AxO2 — AxA2.

(v) AxA2 — Ax(syto).

(vi) Ax(egspace) <> Ax(syto).

(vii) Assume n > 3 and Ax(Trivy). Then Ax(syto) — (AxA1l + Ax(eqtime)).
(viii) Assume n > 3 and Ax(Triv,). Then Ax(syto) — Ax(symm).

(iz) Assume n > 3. Then Ax(syte) = AxA2.

(xr) Assume n > 3 and Ax(Triv,) + Ax5". Then Ax0O2 — (Ax0O1 +
Ax(eqtime)).

(zi) AxA2 — Ax0O2.

Proof: This proposition follows from several theorems, propositions and corollaries
demonstrated in course of this sub-section. We shall give the references to them.

e Item (i) follows from Thm. 3.9.20(i),

e item (ii) follows from Thm. 3.9.23(i),
e item (iii) follows from Prop. 3.9.47(i),
e item (iv) follows from Thm. 3.9.19(ii),
e item (v) follows from Prop. 3.9.51(i),
e item (vi) follows from Prop 3.9.74(i),
e item (vii) follows from Cor. 3.9.53(iii),
e item (viii) follows from Prop. 3.9.47(ii),
e item (ix) follows from Prop. 3.9.51(ii),
e item (x) follows from Thm. 3.9.20(ii),
(

e item (xi) follows from Thm. 3.9.19(i).
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The following simple proposition says, roughly, that we could have used Triv instead
of isometries when formulating AxA2. Apart from its role as a lemma, it illustrates
a very useful proof procedure for symmetry statements. The reader will find many
similar arguments throughout this sub-section.

PROPOSITION 3.9.13 Basax + Ax(V ) E AxA2 < AxA2*, where AxA2*
1s defined as follows:

AxA2* (Vm,k € Obs)(there is N € Triv such that N[t] =t A fpur = Nofg,oN).

That is, the way a certain observer sees another differs only trivially from the way
the other sees him. To show Prop. 3.9.13 as well as some other propositions we shall
need the following lemmas.

Definition 3.9.14 Let og denote the reflection around the plane S (where S de-
notes the spatial subspace S = {p € "F : p, = 0}). That is,

os(p)e =—p¢ and (Y0 <i<n)os(p)i = pi.
LEMMA 3.9.15 The following items hold.
(i) Basax + Ax(v ) &= AxA2 — Ax(eqtime).
(i) Basax + Ax(vV ) &= AxA2 — Ax(]|).

Proof: Item (i) is a corollary of item (ii), hence we shall prove item (ii) only. Assume
Basax + AxA2 + Ax(v/ ). Let p,q € I. Let m,k € Obs be such that tr,,(k) || £.
We have f,,;, € Aftr by Lemma 3.9.9. By AxA2 there is an isometry N such that

NJt] || t and
(193) fk:m =No fmk oN.
Then

p—al = |(fmk © fom)(P) — (Fruk © fim) (0)]

= |(fko Nofpuro N)(p) — (fk © N o frr 0 N)(q)],

by fmk © frm = Id and (193). Since N, fk, frm € Aftr, letting § denote the linear
part of any g € Aftr,

(194) P — | = |(fnk © N 0 fru 0 N)(p) = (Firk © N 0 i 0 N)(g) -
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Now, by NJt| || t || fmk[t] we have

(195) (Vz € )N(z) = =z, and
(196) (Vz € Dfpi(z) € L.

Applying (195) and (196) for (194) yields
p—al = p — qllfmur (1) — Frr(0)

Now, (193) implies |fx(1:) — fmr(0)] = 1. Thus [p — q| = |fme(®) — fmr(g)|- (This
would be enough to derive Ax(eqtime).)

Now let g =f, s 07T £ , if £ (1) > fux(0), else let g = 0 050 T L(0) We
have g € PT by f.x € Aftr and Basax. Further, from the above definition and the
fact that f,,;, preserves distance between points in Z, g(1;) = 1; and g(0) = 0 follow.
Then, using Lemma 3.6.20 one obtains g € Trivy. Hence f,,; is an isometry. |

The following lemma says that, assuming Basax + AxA2 + Ax(v/ ), the median
observer for a pair of observers m and k can see the clocks of m and k slow down
with the same rate.

LEMMA 3.9.16

Basax + AxA2 + Ax(v ) = (h is a median observer for m, k) —
(frmn (L)t — frmn (0)e] = [fen(Le): — fin(0): -

Proof: The proof is analogous to that of Propositions 3.8.31 and 3.8.32. Indeed,
we shall present the same argument while referring to different lemmas. The reader
is asked to consult Figure 105 when following the argument.

Assume Basax+AxA2+Ax(v/ ). Let m, k, h € Obs be such that h is a median
observer for m and k. (Actually, m and k can be chosen freely, because v,,(k) < 1
by Thm. 3.9.8(ii), and hence the existence of a median observer is guaranteed by
Thm. 3.8.25.) We shall approach the general case in two steps.

Special case 1: f,,(0) = 0. We shall use the notation of the proof of Prop. 3.8.32
as closely as possible. Let

O d:ef fmh((_)):fkh(ﬁ)a

p ¥ Plane(t, tr,(m)) = Plane(t, tr,(k)),
b % fn[S]NP and £, €[S N P.

Lines ¢, and /), contain all events in the plane P simultaneous with w,,(0) = w(0) =
wp(0) for m and k, respectively. See Figure 105. Recall that v,,(k) < 1 by Thm.
3.9.8(ii).
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world-view of h restricted to plane P: 7

K
M
em em 1%” Ek
ek =
a simultaneity of m o a simultaneity of k

If €™ and ef were not #-symmetric as seen by h then m and k would

see each other clocks differently, i.e. slowing down with different rate.

Figure 105: Illustration for the proof of Lemma 3.9.16.
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Figure 106: Illustration for the proof of Claim 3.9.17.

Claim 3.9.17 ¢, = oz[y].

Let P € PhtEucl be such that 0 € (" C P. (Actually, there are two such lines.)
Let
0 =owltry(m)] and £, = own[try(k)].
It is easy to check that £, = oz[f}]. See Figure 106. Now, by Lemma 3.8.28 events
on /. are simultaneous for m, and, similarly, events on ¢} are simultaneous for k.
Then ¢, C f,4[S] and ¢, C fxu[S]. On the other hand, we have £ ¢, C P by
construction. Therefore ¢, = ¢ and ¢, = £.. (Claim 3.9.17) B

Let 17 and 1F denote the time unit vectors of observers m and k, respectively.
Formally,

I £ frmn(1;) € tra(m), and 17 « fen(1e) € tri(k).
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Let e™ =17, If m 1 k, let € = 1¥; otherwise let e¥ = —1F. Hence e™ and e* are on
“the same side” of the horizontal line going through 0 in P. Formally,

(™), > 0, <= (¥, > 0.

Let M € try(m) be such that events wy(M) and wy(e*) are simultaneous for m.
Formally, f,,(M); = frm(eF);. Analogously, let K € try,(k) be such that events wy(K)
and wy(e™) are simultaneous for &k (i.e. frp(K); = frr(e™),). It is easy to check that
M and K are uniquely defined. By the fact that world-view transformations are
bijective collineations (cf. Prop. 2.3.3(v) and Thm. 3.1.1) we have

(197) Mek || 4, and Ke™ || 4.

Claim 3.9.18 =0l _ [x=0

lem—o| — |ek—o]"
By (197) we have

fhm (M) _ |frm (M)
frm (™) 14|

(198) [fom (10):| =

We have f,,, € Aftr by Lemma 3.9.9. Then f,,, preserves proportion of distances
between collinear points. Since 0, €™, M € try(m), their fy,,-images, 0, 1; fp,, (M) are
collinear (indeed, they fall on ¢). Thus, calculating (198) in the world-view of &, one
gets

M — o]
199 fem(1p):] = ———.
(199) o100 =
By a similar argument one obtains

Kol
200) e (1e)e| =
( mk\1t)t |€k‘ _ O‘
By Prop. 3.9.51(i) Ax(syto) holds. Then
(201) [frm (Le)e] = [fmn (L2)e]-

Now, (201) together with (199) and (200) imply Claim 3.9.18. (Claim 3.9.18)

We have by construction that e™ and K, and e* and M, respectively, are on the
same side. That is,

(202) K; > 0; <= (e™); > 0; <= (e*)y >0, &= m; > 0.
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The triplets 0, €™, M and 0, €*, K are collinear by construction. Moreover, by
(202) O is neither between e™ and M, nor between e* and K. It is known from
elementary geometry that Claim 3.9.18 plus the above facts imply

WK || emek.
Using the definition of M, K, 0, €™ and e* one gets

fmn (1)t — fmn (0)e] = [frn(10)e — fn(0)e],

as required.

Special case 2: tr,(k)Nt # (. Clearly, this case is slightly less special than Case
1. We assume that m and k meet, but we do not expect that their meeting point
is the origin of either. We can reduce Case 2 to Case 1 by observing that only the
length of the unit vectors, and not their actual location, played a role in the proof
of Case 1.

Let us formalize this idea. By assumption, there are p, ¢ € ¢ such that f,,x(p) = ¢.
We can use the same argument as for Case 1, but for the following entities:

O d:ef fmh (p) = fkh(Q):
b & falS+pINP and £S5 +qNP
em fmn(p + 1),
ek fen(q + 14), if m 1 k and fg,(g — 1;) otherwise.

Plane P is defined as previously. The interested reader might fill in the details.
General case: Let m,k € Obs be arbitrary. By Ax5 there is an observer k' such
that tri (k') || ¢ and m and &' meet (tr,,(k")Nt # 0). (Recall that the traces of k and
k' are parallel in any observer’s world-view because world-view transformations are
bijective collineations.) Let A’ be a median observer for m and k'. Such b’ exists by
Thm’s 3.9.8(ii) and 3.8.25. Since m, k', b’ fulfill the conditions of Case 2, we have

(203) |fmh’(]—t)t — fmh,’((_))t| = |fk’h,’(1t)t — fkihl((_))t|.
Now, axiom Ax(||) holds by Lemma 3.9.15(ii). Then the following items hold.

1. Observer h' can see the time unit vectors of k& and k' of exactly the same
length. Formally,

(204) |fkh,’(1t)t —_ flch’((_))t| = ‘fk’h,’(lt)t — fklhl((_))t‘-
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2. Observers h and h' agree on the length of unit vectors of m and k. That is,

(205) [fine (12)e — Fins (0):

fkn(1e)e — frn(0)e],
(206) frne (1)¢ — Fonnr (0): 0

|
| = [fmn(Le)e — fmn(0)e]-

Now, Lemma 3.9.16 follows in the general case from items (203) to (206). We omit
the details, but see Figure 107. 1

fron(1s)

fer(0)

Plane || S

Figure 107: Idea of the proof of Lemma 3.9.16, General case. The picture show
the world-view of observer h. The thickened polygons can be demonstrated to be
parallelograms. Although the picture assumes m 1 k 1 k', all other cases can be
handled similarly.

Proof of Prop. 3.9.13: This proof is the first of a whole series of structurally
similar proofs. All these aim at deriving AxA1, AxA2 or Ax(symmy) from an
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appropriate set of axioms. Hence we are going to present it in much detail, while
we shall try to give the forthcoming similar proofs as briefly as possible.

Assume Basax(n) + Ax(v/ ) + AxA2. We have to prove Ax/A2*,

Let m, k € Obs be arbitrary. Faster than light observers are excluded by Thm.
3.9.8(ii). Then by Thm. 3.8.25 there is a median observer h for m and k. Thus we
have
(207) tri(k) = ogltri(m)].

We have ., fin, frx € Aftr by Lemma 3.9.9. On the other hand, by Lemma 3.9.16
we have that h can see the clocks of m and k tick with the same rate:

(208) finn (16)e — Fmn (0)e] = [fen(1e)e — fn (0)¢)-

Case 1: m 1T k. The reader is asked to consult Figure 108. Consider transforma-

trp(m) try (k)

Plane || S

Figure 108: Idea of the proof of Prop. 3.9.13, Case 1. The picture shows the world-
view of observer h.
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tions f,,; and fg, 0 07. Both map ¢ axis to the same line, tr,(m) by Prop. 2.3.3 and
(207). Since m 1 k and o7 | t = Id, (208) implies

(209) frn (1)t — fmn(0)e = (fin 0 07) (14), — (fien © 07)(0),-

Then by Lemma 3.8.50 there is a N € Triv such that N[t] =t and

(210) N o fpp = g 0 0.

Inverting both sides of (210), and using Prop. 2.3.3(x) one obtains
fam © N™1 = 07 0 .

Multiplying with o7 from the left and with N from the right yields

(211) 070 Fim = g 0 N.

Composing the appropriate sides of (210) and (211) yields N o fx 0o N = i, as
required.

Case 2: m | k. This case is similar to Case 1, but we should consider f, o g,
instead of fij, o o7, where £ is the line defined by the following conditions:

e /is perpendicular (in the Euclidean sense) both to ¢ and the common perpen-
dicular ¢, of lines try(m) and try(k),

e / is parallel to the pair of parallel planes containing ¢r,(m) and try,(k),
e (Nt#0, and
o (N, #0.

See Figure 109. Transformation o, reverses the arrow of time, thereby ensuring that
a relation analogous to (210) holds. Cf. (212) below.

To elaborate this idea formally, consider transformations f,,;, and fz, o o,. We
have f,[t] = trn(m) = (fgn 0 0¢)[t] by Prop. 2.3.3 and (207). Since m | k and
o¢ [ t = —1Id, (208) implies

frun (Le)e = fmn (0)e = (Fin 0 0¢) (1), — (Fin © ) (0),.
Then by Lemma 3.8.50 there is a N € Triv such that N[t] = ¢ and

(212) No fmh = fk:h, O Oy.
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trh(k)

Plane || S

Figure 109: Idea of the proof of Prop. 3.9.13, Case 2. Again, we can see the world-
view of observer h.

Form this point the argument continues like in Case 1, using (212) instead of (210).
We omit the details. [

Now let us turn to the issue of the interconnections of AxO1, AxA1, AxO2
and AxA2. In what follows we shall need some auxiliary axioms like Ax(eqtime),
Ax(Trivy). We consider these axioms rather harmless and natural. They are not
part of Basax only because they were unnecessary to prove our basic theorems.

THEOREM 3.9.19 The following items hold:

(i) Basax + Ax(v ) E AxA2 — AxO2,
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(ii) If n > 3, then3?

Basax(n) + Ax(Triv,) + Ax(v ) = AxA2 < Ax0O2.

Proof of item (i): The argument is illustrated in Figure 110. Assume Basax +

Figure 110: Illustration for the proof of Thm. 3.9.19(i).

Ax(vV ) + AxA2. Let m, k,m', k' € Obs be such that tr,,(k) = tr,(k'). By Thm.
3.9.8(ii) vm(k) = vy (k') < 1. Then by Thm. 3.8.25 there are h, i’ € Obs such that
h is a median observer for m and k, and A’ is a median observer for m' and k’.
By the construction of Thm. 3.8.25(ii), the trace of the median observer for a pair
mg, my € Obs is uniquely determined by tr,,,(m:). Hence

(213) troe (B') = tro,(h).

324The condition n > 3 is needed because Ax02 does not exclude FTL observers, while Ax/A2
does (assuming Basax + Ax(v )).
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On the other hand, by Lemma 3.9.16 we have

(214) fmn(16)t = fmn(0)e] = [frn(L4)s — fra(0)el,

(215) |fm’h,’(1t)t — fm’h’ ((_))t‘ == ‘fk’h’(lt)t — fk’h’(o)t|'

Let p™ be the point on tr,(k) that is simultaneous with f,,;(1;) for h, and let
p~ € try(k) be simultaneous with f,,,(0) for h. Similarly, let ¢*, ¢~ € try (k') be
such that for b’ ¢ and f,,4/(1;), and ¢~ and f,/(0), respectively, are simultaneous.

Then from (214) and (215) we obtain

(216) i — o7 1 = [fen(1e)e — fen(0)e],

(217) g —a | = (L) = forn(0)e].

Turning to the world-view of m and m/, it is easy to check that f;,, maps p*™ and
p~ to the points where fj,,y maps ¢ and ¢~. Indeed, fp,,(p~) is the intersection of
trm(k) and the plane P that is parallel to f;,,[S] and goes though 0 (since fy, is a
bijective collineation, it takes parallel planes to parallel planes). Similarly, fs,,(p*) =
trm(k) N (P + 1;). Regarding m/,q",q™, it is easy to see that the corresponding
plane, i.e. that is parallel to fu,[S] and goes though 0, is P. This follows by
trm(h) = tryy (h') and Lemma 3.8.28. To sum up, we have

fhm(p+) = fh’m’(q+)a
fhm(pi) = fh’m’(qi)-

Since fy, fprme € Aftr by Lemma 3.9.9, both functions preserve proportions along
the same line. Hence (216) and (217) imply

fem (Le)e = fom (0)¢] = [frrms (12)¢ = Fromms (0)s]-

Then, comparing fx,, and fi,,v, by Lemma 3.8.50 there is N € Triv such that N[t] = ¢
and
NOfkm:fklml, or NOfkaO'Sofklml.

(We have the first case if (m 1 k£ and m' 1 k') or (m | k and m' | k'), the second
case applies if (m | k and m' 1T k') or (m 1 k and m' | k').) Both cases imply AxO2.

Proof of item (ii): Direction “—” only recapitulates item (i). Hence we shall
prove the other direction only. Assume Basax(n) + Ax02 + Ax(Triv,) + Ax(v/ )
for some n > 3. We have to derive AxA2. Figure 111 shows the elements of the
argument.

Let m, k € Obs be arbitrary. We have v,,,(k) < 1 by Thm. 3.4.1. Then by Thm.
3.8.25 there is a median observer h for m and k. Thus tr,(k) = of[trn(m)].
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m h k k h' m

Figure 111: Ilustration for the proof of Thm. 3.9.19(ii).
On the other hand, by Ax(Triv,) we have an h' € Obs such that f,,, = 07. Then
trie (k) = trp(m) by try(k) = ogftry(m)]. Applying AxO2 one gets
fhm:fhlkON:OgthkON,
for some isometry N such that N[¢] || . Then by Prop. 2.3.3(x)

fun = N 'ofg, 00,

Nofmh = fkhOO'f.

From this point the proof follows the same steps as that of Prop. 3.9.13, Case 1,
from (210). ]

THEOREM 3.9.20 The following items hold:
(i) Basax + Ax(eqtime) = AxO1 — Ax0O2,

(i) If n > 3, then Basax(n) + Ax(Triv,) + Ax(eqtime) + Ax5 + Ax(V/ ) =
AxO1 + Ax0O2.

To prove Thm. 3.9.20 we shall use the following lemma, which in turn is a variant
of Lemma 3.8.33.

LEMMA 3.9.21

Basax + Ax(eqtime) | tr,,(m') =t — (fw i an isometry and f .. [t] = 7).
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Proof: Assume Basax + Ax(eqtime). Let m, m’ € Obs be such that tr,,(m') =¢.
Now, fm[t] = ¢ follows by Prop. 2.3.3(vii).

By Prop. 3.8.33(i) we have f,,,,» € Aftr; but the proof of Prop. 3.8.33(i) actually
establishes f,,,y € PT (see (127) in that proof).

Case 1: m 1t m'. In this case the proof of Prop. 3.8.33(ii) goes through; fy €
Triv and thus f,,,» is an isometry.

Case 2: m | m'. Let og denote the reflection around S. Consider f = f,,,» 0 0s.
Clearly, f € PT because f,,,/,05 € PT and PT is a group. We have f[t] = ¢
by fom[t] = ¢ and og[t] = ¢. On the other hand, f,,.v(1;) — fm (0) = —1; by
Ax(eqtime) and m | m/'; thus f(1;) — f(0) = 1;. Then f = go 7 for some g € PT,
g(0) =0, g(1;) = 1;, and a translation 7. Now, g € Trivy by Lemma 3.6.20, and
hence f € Triv by the definition of Triv.

Clearly, f is an isometry by f € Triv. Then f,,,» = f o0g is an isometry, too. B

LEMMA 3.9.22 Ifn > 3, then
Basax(n) + Ax(v ) | (47 is an equivalence relation).
Proof: We omit the proof. |

Proof of Thm. 3.9.20(i): Assume Basax + Ax(eqtime) + Ax0O1. Let
m, k,m', k' € Obs be such that tr,,(k) = tr,,(k'), as assumed by Ax0O2.
By Ax0O1 there is a ko € Obs such that f,,; = f,vx,. Thus by Prop. 2.3.3(x)

(218) fmk = fm'k’ O fk’ko-

Applying Prop. 2.3.3(vii) we get trp (ko) = trmy(k). Then tr. (ko) = trn. (k') by
trm(k) = trpy (k'), and try (ko) =t because f,p is a bijection and by Ax4.

Now, applying Lemma 3.9.21 we have that fy, is an isometry with fy, [t] = .
Therefore (218) is exactly the conclusion of Ax0O2 (letting N = firg,).

Proof of item (ii): Direction “—” is a corollary of item (i). To prove the other
direction, assume Basax(n) + Ax(Triv;) + Ax5" + Ax(v/ ) + AxO2 for n > 3.
(We do not need Ax(eqtime) here.) Let m, k,m' € Obs be arbitrary.

We have v,,(k) < 1 by Thm. 3.4.1. We have that “1” is an equivalence relation by
Lemma 3.9.22. We have three cases according to the direction of time for m, k, m'.
Let £ = try(k).

Case 1: m 1 k. See Figure 112. By Ax5" we have an observer kq such that
tro (ko) = £ and m' 1 ko. Then, by AxO2,

(219) fmk = fm’ko O N,
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ko

Figure 112: Tllustration for the proof of Thm. 3.9.20(ii), Case 1.

for some isometry N such that N[t] || t. It is easy to see that N[t] = ¢ must hold.
Now, because neither f,,; nor f,,, reverses the arrow of time (formally, f,x(1;) >
fur(0) and f,5, (1) > for,(0)), N must not do so either. Hence N € Triv. Then,
by Ax(Triv;) there is another observer k' such that f, = N. Thus (219) becomes
frke = fiko © Thor = frvir, as required.

Case 2: m | k, m T m'. See Figure 113. In this case must we apply Ax5"
differently. We apply Ax5™ in the world-view of k. We get that there is kg € Obs
such that trg(ko) = fwklf] and k 1 ko. We have m' | ky by m | k, m T m/,
k T ko, and because “1” is an equivalence relation. It is straightforward to check
that tr,, (ko) = £. By AxO2 get that f,,; = sk, o N for an isometry N such that
NJt] = t. Because both f,,; and f,x, turn back the arrow of time, N must not do
so. The rest of the proof is the same as for Case 1.

Case 3: m | k, m | m'. See Figure 114. We apply Ax5" in the world-view of
m. We get that there is kg € Obs such that tr,, (ko) = form[€] and m 1 ky. We have
m' | ko by m | m/, m 1 ko, and because “1” is an equivalence relation. Again, it can
be checked that tr,, (ko) = . By AxO2 get that f,x = fug, © N for an isometry
N such that N[t] = t. Because both f,,; and f,x, turn back the arrow of time, N
must not do so. The rest of the proof is the same as for Cases 1 and 2. [ |

THEOREM 3.9.23 The following items hold:
(i) Basax + Ax(eqtime) = AxA1 — AxA2,
(i) Basax + Ax(Trivy) + Ax(vV ) E AxA2 — AxA1,
(iii) Basax + Ax(Triv;) + Ax(eqtime) + Ax(v/ ) & AxAl + AxA2.
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Figure 113: Illustration for the proof of Thm. 3.9.20(ii), Case 2.

Proof of item(i): Assume Basax + Ax(eqtime) + AxA1l. Let m,k € Obs be
arbitrary. By AxA1 there is a k' € Obs such that tr,,(k) = trp,, (k") and f = ferm.
Thus by Prop. 2.3.3(x)

(220) fmk o} fkk’ = fk’k: o fk:m-

Now, tri(k') =t by Prop. 2.3.3(vii) and try(k) = ¢. Then by Lemma 3.9.21 we have
that f is an isometry with f.[t] = £. Letting N = fy, from (220) we get

fmkoN*1 = N ofgy;
for = NOfkmON,

as required.

Proof of item (ii): Assume Basax+Ax(Triv;)+Ax(v/ )+AxA2. Let m, k € Obs
be arbitrary. By Prop. 3.9.13 we have that there is N € Triv such that

N[t]=t A fur=Nofg,oN.
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Figure 114: Tllustration for the proof of Thm. 3.9.20(ii), Case 3.

Consequently (using Prop. 2.3.3(x)),
fmk O]V_1 = NOfkm.
By Ax(Triv,) we have an k' € Obs such that fy, = N. Then

frr = form.

On the other hand, tr,, (k") = (furk © fem)[t] = fem[t] = trm(k), as required.

Proof of item (iii): This item is a corollary of items (i) and (ii). |

COROLLARY 3.9.24 Basax + AxA1 + Ax(eqtime) + Ax(y/ ) = f € Aftr.

Proof: This corollary follows by Thm. 3.9.23(i) and Lemma 3.9.9. ]

PROPOSITION 3.9.25 Letn > 3. Then
(i) Basax(n) + Ax(Triv;) + Ax(v ) E AxO1 — AxAl,
(i) Basax(n)+Ax(Triv,)+Ax(v )+Ax(eqtime)+Ax5" = AxO1 <> AxAl.

Proof: Item (ii) follows by Thm’s 3.9.19(i), 3.9.20(ii) and 3.9.23(i). We shall prove
item (i) directly.

Assume Basax(n) + Ax(Triv;) + Ax(v" ) + AxO1 for n > 3. Let m,k € Obs
be arbitrary. Let h € Obs be a median observer for m and k (such an h exists by
Thm’s 3.4.1 and 3.8.25).
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By Ax(Triv;) there is an ' € Obs such that f,; = oz. Consider observers
h,m,h’. Axiom AxO1 implies that there is a k' € Obs such that

(221) fhm = fhlkl = fh’h O fhkl = 07O fhkl.

Then trp(k) = trp(k"). Since the world-view transformations are bijective, we have
tri(k') = t. Inverting (221), multiplying by o7 from the right, and composing the
appropriate sides yields

frkr = frrn 0 0p 0 0 0 fpn = frm,
as required. ]

We shall now turn to this issue of the relationship of our preferred symmetry
axiom, Ax(symm), to the recently introduced axioms. We shall prove a sequence
of theorems and corollaries (items 3.9.26 to 3.9.31) which state that under certain
assumptions Ax(symm) follows from any of {AxA1l, AxA2, AxO1, AxO2} or
conversely.

THEOREM 3.9.26 The following items hold.
(i) Basax + Ax(Triv;) + Ax(v/ ) + Ax(eqtime) | AxA1 — Ax(symm).
(ii) If n > 3, then3®

Basax(n) + Ax(v ) + Ax(Triv;) E Ax(symm) — AxXAL.
Proof of item (i): Assume Basax+AxA1+Ax(Triv,)+Ax(v )+ Ax(eqtime).
We only need to derive Ax(symmy), because Ax(eqtime) is assumed.

Let m,k € Obs be arbitrary. Faster than light observers are excluded by Cor.
2.7.6. Then by Thm. 3.8.25 there is a median observer h for m and k. Thus we have

(222) tri(k) = ogltra(m)].

On the other hand, by Thm. 3.9.23(i) AxAZ2 holds. Then by Lemma 3.9.16 we have
that h sees the clocks of m and k tick with the same rate:

(223) fn (1)t — fmn (0):] = [fen(14)e — fn(0)e].

We have f,,,, fin, fr € PT by Cor. 3.9.24.

325Note that AxA1 excludes FTL observers together with the rest of the premises, unlike
Ax(symm).
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Case 1: m T k. The world-view of h for Case 1 is shown in Figure 115. The
basic idea is to reflect the origin and the unit vectors of observers m and k to the
t axis. We shall show that this operation yields the origin and unit vectors of two
other observers m' and £’ that must be present in the model because of Ax(Trivy).
It will be easy to see that f,,, = fyr,y by this construction, and that m and m/, and
k and k', respectively, are brothers.

trp(m) tri (k)

Plane || S

Figure 115: Illustration for the proof of Prop. 3.9.26, Case 1.

Consider transformations f,,;, and f;;, o 0. Both map ¢ axis to the same line,
trp(m) by Prop. 2.3.3 and (222). Since m 1 k and o7 | ¢ = Id, (223) implies

(224) frmn (1)t = fmn(0)e = (Fen 0 07) (1¢), — (frn © 0¢)(0),-
Hence by Lemma 3.8.50 there is a N € Triv such that N[t] = ¢ and

(225) N of,,p = fip 0 07
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Now by Ax(Triv,) there is an observer m' such that f,,,,, = N. On the other
hand, (225) also implies by a simple calculation N~! o fy, = f,;; 0 07. Again by
Ax(Triv;) there is k' € Obs such that fry = N~'. Thus we arrive at

fm’h, = fk:h, (oN oz and fklh = fmh O 03.

By inverting one of these equations and combining with the other we get f,,;p = fip,
as required.

Case 2: m | k. This case is similar to Case 1, but we should consider f; o oy
instead of fi;, 0oz, where £ is the line used in the proof of Prop. 3.9.13 Case 2, defined
on p. 367. (Transformation o, reverses the arrow of time, thereby ensuring that a
relation analogous to (224) holds.) The reader is invited to fill in the details.

Proof of item (ii): Let n > 3. Assume Basax(n) + Ax(symm) + Ax(v/ ) +
Ax(Trivy). Let m,k € Obs be arbitrary. We have to show the existence of an
observer k' such that trp, (k) = tr,, (k') and f,x = fprm.

By Thm. 3.8.25 and Thm. 3.4.1 there is a median observer h for m and k. Thus
we have
(226) tri (k) = ogltrn(m)].

On the other hand, by Prop. 3.8.31 we have that h sees the clocks of m and £ tick
with the same rate:

(227) fmn (1)t — fmn (0)e] = [fen(14)e — fn(0)e].

By Prop. 3834(1]) fon, fin, fk € PT.

Case 1: m 1 k. Because of (226) and (227) the world-view of h looks as shown
on Figure 108. Consider transformations fi; and f,,; o o7. Both map ¢ axis to the
same line, try(k) by Prop. 2.3.3 and (226). Since m 1 k and o3 | ¢ = 1d, (227)
implies
(228) fen(Le)e — frn(0) = (fmn © 07) (11), — (frn © 07)(0),-

Hence by Lemma 3.8.50 there is a N € Triv such that N[t] =t

N o fyp, =t 0 0.

It is easy to check that tr,, (k) = tr, (k).
Now by Ax(Triv;) there is an observer &£’ such that fx, = V.

(229) fk’h = fmh O Of.

Using Figure 108, (229) means that the unit vector shown with dashed lines are
actually the unit vectors of a “real” observer (k').
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Inverting both sides of (229) and multiplying with o7 we get o7 o fopr = fpm-
Composing this with equality the corresponding sides of (229) we arrive at fy,,, =
fmk’-

Case 2: m | k. This case is similar to Case 1, but we should consider f,,;, o g,
instead of f,,; o oz, where £ is as defined in the proof of Prop. 3.9.13, Case 2. The
reader is invited to fill in the details, based on the analogy with the two cases of
Prop. 3.9.13. |

THEOREM 3.9.27 The following items hold.
(i) Basax + Ax(v ) + Ax(Triv;) | AxA2 — Ax(symm).
(i) If n > 3, then Basax(n) + Ax(v/ ) = Ax(symm) — AxA2.

Proof of item (i): Assume Basax+AxA2+Ax(v )+Ax(Triv,). Let m, k € Obs
be arbitrary. By Prop. 3.9.13 Ax/A2* holds. By AxA2* we have an N € Triv such
that

N[t]=t and f,z = N ofg,oN.

Now, applying Ax(Triv;) twice we get that there are m', k' € Obs such that fy, =
N = . Then, f, = frg 0 fym © frumy = fr, as required. Noting that ¢r,, (m') =
frwm[t] = N7'[t] = t and similarly trg (k") =  completes the proof of Ax(symmy).
Axiom Ax(eqtime) follows by Lemma 3.9.15(i).

Proof of item (ii): Assume Basax(n)+ Ax(symm)+ Ax(y/ ). We have to prove
AxA2. Let m,k € Obs be arbitrary. By Prop. 3.8.34(ii) .., fxn, fmx € PT. Faster
than light observers are excluded by n > 3 and Thm. 3.4.1. Then by Thm. 3.8.25
there is a median observer A for m and k. Thus we have

(230) tri(k) = ogltri(m)].

On the other hand, by Prop. 3.8.31 we have that h sees the clocks of m and & tick
with the same rate:

(231) fmn (1)t — fmn (0):] = [fen(14)e — fn(0)e].

Having (230) and (231), one can continue like in the proof of Prop. 3.9.13. Again,
there are two cases whether m 1 k or m | k. Indeed, (230) and (231) are equivalent
to (207) and (208). The reader is invited to fill in the details. |

COROLLARY 3.9.28 Basax + AxA2 + Ax(v/ ) + Ax(Triv;) |= fux € Poi.
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Proof: This corollary follows by Thm’s 3.9.27(i) and 2.9.5(i). |

THEOREM 3.9.29 Assume n > 3. Then the following items hold.
(i) Basax(n) + Ax(Triv,) + Ax(v ) &= AxO2 — Ax(symm),
(ii) Basax(n) + Ax(v ) = Ax(symm) — AxO2.

Proof of item (i): Let n > 3. Assume Basax(n) + Ax02+ Ax(Triv,) + Ax(v/ ).
By Thm. 3.9.19(ii) axiom AxA2 holds. Then by Thm. 3.9.27(i) we get that
Ax(symm) holds as well.

Proof of item (ii): Let n > 3. Assume Basax(n)+ Ax(symm)+ Ax(y/ ). Thm.
3.9.27(ii) ensures that AxA2 holds. By Thm. 3.9.19(i) AxO2 is implied.??% |

COROLLARY 3.9.30 Let n > 3. Then
Basax(n) + Ax02 + Ax(V/ ) + Ax(Triv;) | i € Poi.
Proof: This corollary follows by Thm’s 3.9.29(i) and 2.9.5(i). ]

THEOREM 3.9.31 Assume n > 3. Then the following items hold.
(i) Basax(n) + Ax(Triv;) + Ax(v/ ) E AxO1 — Ax(symmy),
(ii) Basax(n) + Ax(Triv;) + Ax(v/ ) + Ax5" = Ax(symm) — AxO1.

Proof of item(i): Assume Basax(n) + Ax01 + Ax(Triv,) + Ax(v/ ) for n > 3.
We have to prove Ax(symmy). Throughout the proof the reader is asked to consult
Figure 116.

Let m, k € Obs be arbitrary. Faster than light observers are excluded by n > 3
and Thm. 3.4.1. Then by Thm. 3.8.25 there is a median observer h for m and k.
Thus we have
(232) tri(k) = ogltry(m)].

By Ax(Triv;) there is another observer A’ such that fn, = o7. Of course, A’ is
also a median observer for m and k. Now, by AxO1 there are observers m’, k' such
that the following statements hold:

(233) o = fmn,
(234) fm’h’ = fkh-

326 Alternatively, one could prove item (i) and (ii) by exploiting the same method that we used
to show Theorems 3.9.26 and 3.9.27. The reader is invited to fill in the details.
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Figure 116: Illustration for the proof of Thm. 3.9.31(i).

Then, from (233) and (234) one can derive f,; = fyry.
We still have to show tr,,(m') = try (k') = t. Now, using (234), (232), fop = oy,
and Prop. 2.3.3(vii) in turn,
trpy (m') = trh(k)
agltra(m)]

= fhh:[trh(m)]

= try(m).
Then, Prop. 2.3.3(vii) and t¢r,,(m) =t imply tr,,(m’) = t. Showing try(k') = ¢ is
analogous.

Proof of item (ii): This is a corollary of Thm. 3.9.29(ii) and Thm. 3.9.20(ii). ®

Proof of Lemma 3.9.5: We shall give the proof for an Euclidean ordered field §.

A more general proof will be filled in later. For the time being we note that the only

step that requires square roots (i.e. an Euclidean field) is the proof of Claim 3.9.32.
Assume h :"F — "F is an isometry. Formally, the following formula holds:

(235) (Yp,q € "F)llp — ¢l = [|h(p) — h(q)]|.
We have to show that h € Aftr.

Claim 3.9.32 Function A is a collineation. Formally, (V¢ € Eucl)h[¢] € Eucl.
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To show Claim 3.9.32 we shall use the notion of Euclidean distance. The distance
of points p,q € "F is |p — q| = +/||p — ¢q||- Of course, the field § must be Euclidean.
It is trivial that

(236)  (Vp,q € "F)(|h(p) = hla)| = [p— gl > [Ih(p) = Al = lIp - ll).

Let p,q,r € "F be collinear. They can be chosen so that ¢ is between p and r.
Then, by the definition of distance, we have

(237) p—q|+lg—r/=[p—r|

By (236), (237) and h being an isometry we have

(238) h(p) = M(@)| + |h(q) = h(r)| = |h(p) = h(r)].
It is well known from Euclidean geometry that (238) implies that h(p), h(g), and
h(r) are collinear. Cf. e.g. [121, p. 59]. (Claim 3.9.32) 1

Returning to the mainstream of the proof, let us notice the following. It is enough
to deal with the case h(0) = 0, because in the general case we have h = h' o 7 for
some isometry b’ and translation 7, and if A’ is an isometry, then so is h. Therefore
we assume h(0) = 0 in the rest of the proof. Lemma 3.9.5 follows by Claims 3.9.33
and 3.9.34

Claim 3.9.33 (Yu € "F)(YA € F)h(\u) = Ah(u).

Assume u # 0, A # 0 (otherwise Claim 3.9.33 becomes trivial). Since 0, u, Au
are collinear, by Claim 3.9.32 h(0) = 0, h(u), h(\u) are collinear, too. Because h is
an isometry, ||h(Au)| = ||Mu|| = A2||lu||. Since h(Mu) € Ou, h(Au) can be either \u
or —Au.

Now, suppose hA(Au) = —Au. Then

A= 1Plull = M = ull = [h(h) — h(u)ll = || = Mu = hu)l| = |A + 1 [Ju].
Then |A — 1|2 = |\ + 1%, and hence A = 0, contrary to our assumption A # 0.
Claim 3.9.34 (Vu,v € "F)h(u + v) = h(u) + h(v).

Assume v # 0 # v and u [fv (if u = 0V v = 0, Claim 3.9.34 is trivial; if u || v,
then u = Av and the previous argument applies). By the definition of addition,
Ouv(u + v) is a parallelogram. That is,

Oul|v(u+v) and Ov | u(u+ ).
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Since h is a bijective collineation, it takes parallel lines to parallel lines, and we have

h(0)h(u) || h(v)h(u+ v),
h(0)h() I h(u)h(u+wv),
h(u) |f h(v).
Now, since h(u) |f h(v), h(v)h(u +v) and h(u)h(u + v) intersect in a single point,

h(u + v). But this point must be h(u) 4+ h(v), by the definition of addition. Thus
Claim 3.9.34 holds. 1

We are finishing this paragraph by dealing with the problem when two observers
see each other ezactly the same way (i.e. fx = fxm for a pair m, k € Obs).

Proposition 3.9.35 Let n > 3. Assume Basax(n) + Ax(symm) + Ax(Triv;) +
Ax(V/' ). Let m,k € Obs. The following items hold.

(i) There are m', k" € Obs such that
(*) trm(m') = t’f‘k (kl) = 'E A fm’k’ = fk’m’-

(ii) Assume trp,(k)Nt # @. Then there are m', k' € Obs in standard configuration
such that (%) above holds for m' and k', and f,yp € Rhomb.3*"

Proof of item (i): This is a corollary of Thm. 3.9.26(ii).

Proof of item (ii): Assume Basax+Ax(symm)+Ax(Triv,)+Ax(y/ )andn > 3.
Let m, k € Obs be such that ¢r,,(k)Nt # 0. Let h be a median observer for observers
m and k. Such an h exists by Theorems 3.4.1 and 3.8.25. By Ax(Trivy), h can be
chosen such that 0 € tr,(m)Ntry(k) and try(m)Utr, (k) C Plane(Z, ). Let h be such.
We will choose m/, k' € Obs so that fy, fuy € Rhomb and tr,,(m') = try(k') = t.
The existence of such m’, k' can be proved by Ax(Triv;) as follows. Let p € try(m)
and g € trp(k) such that

(239) pr = fon(1): — fma(0);, and
(240) ¢ = fen(Le)e — fen(0):.
Let f,g € Rhomb such that f(1;) = p and g(1;) = ¢. Such f,g exist by

Lemma 3.8.46. Clearly f[t] = fus[t] and g[t] = fgs[t]. By this, Rhomb C PT,
(239), (240) and Lemma 3.8.50, we have that f = N of,, and g = M o fg,

327Tet us recall that if for observers m’ and k' we have f,,;;r € Rhomb then m' and k' are in
standard configuration.
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for some N, M € Triv with N[t] = M[t] = t. Let such N, M be fixed. By
Ax(Triv,) there are m', k' € Obs such that N = f,,, and M = fg. Let such
m', k" be fixed. Thus, f = fup and g = fpp. So tr,(m') = tri(k') = t and
for = fppofper = fo gil € Rhomb. By f,,xx € Rhomb, we have that m' and k'
are in standard configuration. 1

The next proposition answers the following natural question. Given observers
m and k, how many brothers &' of k exist such that m and k' see each other
symmetrically (i.e. fpr = frrm). Recall that AxA1 is of the following pattern:

(Vm, k) (Hkl)(t’l"k(kl) = E N fmk’ = flc’m)-

In other words, in the proposition below we will answer the following question about

AxA1l: “How many different choices of £’ satisfy the conclusion of AxA1 (assuming
BaCo+Ax(v ))?”

PROPOSITION 3.9.36

(i) Assume BaCo + Ax(v/ ). Let m,k € Obs. Let h be a median observer for
observers m,k (h exists by Thm’s 3.8.11, 3.4.1, 3.8.25). Then the number of
brothers of k satisfying the conclusion of AxA1 is the same as the cardinality
of T below. In more detail: Consider the following sets:

O Y (KeObs: tri(k) =1 fpur = Ffarm }.
def

T = {o€Tv: oft]| =1 o*=1d, oltra(m)] = tru(k) } .

Then |O| = |T|. Moreover:

(ii) There is a natural bijection 8 between O and T as follows.
BE LK o) € O x Aftr : fp =Ffupoo},

where the intuitive meaning of fr, = ., 0 0 is the following. In the world-
view of h the world-view of k' is the o-image of that of m, in particular the

unit vectors of k' are the o-images of that of m (i.e. for every i € n letting

17 € £ (1) and 15 € f (1) we have 1¥ = o (17)).

Proof: Assume BaCo. Let m,k € Obs. Let h be a median observer for observers
m, k. Let O, T be the sets as in the formulation of the proposition. Let 5 be as in
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(ii) above. We will prove that § is a bijection between O and T. By the definition
of 5 and by Prop.3.8.35, we have that Dom(f5) = O.

By Ax(ext) it is easy to check that § is an injection. Thus to prove that f is a
bijection between O and T it remains to prove that Rng(8) = T.

To prove Rng(8) C T, let 0 € Rng(B). Then there is ¥’ € O such that fy;, =
fn0o. Let this &' be fixed. Then o = f,, ofpp,. By &' € O, we have f,,» = f,, and
tri(k') =1t. S0 0 = fam o fpon 0 fhm 0 fprn = fhm O fprm OFpin = Fm 0 fpr O Fprsy = fp = 1d.
By the above computation
(241) o? =1d.

By firn = fun 0 0 and by tri(k') = ¢, we have that
(242) oltrp(m)] = try(k).

tri(h) = tri(h) holds because of the following. By f,x = fr,, we have
trm (k") = trp(m). Since try(k') = t, we have that h is a median observer for
observers m and &'. By this, by tr,, (k') = trp(m) and by the proof of Thm.3.8.25
we have tr,,(h) = tri (h).

Therefore o[t] = (fum © firn)[t] = firn[trm(h)] = fenltri (h)] = t. Thus

(243) ot] =t.

o € PT by Prop.3.8.35. By this, by (241) and (243), it can be checked that o is an
isometry. Since we assumed BaCo, we have

(244) o € Triv.

By (241)—(244), we have that o € T. Thus Rng(8) C T.

To prove T C Rng(B), let ¢ € T. Then, by the definition of T, o € Triv,
olt] =t, 0* =1d and o[try(m)] = trp(k). Consider the transformations f,,; o o and
fen- By o[tri(m)] = trp(k), we have

(245) (fmn 0 0)[t] = tra(k) = fun[t].

By Prop.3.8.32 and o € T, we have

(246) (frn 0 0) (1) — (Frun © 0)(0)¢ = Fien(12): — frn(0):.
By (245), (246) and Lemma 3.8.50, we have that

(247) fmn 00 = N o fgp,
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for some N € Triv with N[t] = ¢. Let this N be fixed. By Ax(Triv;) there is
k" € Obs such that fr, = N. Let this k£’ be fixed. Now, by fr, = N and (247) we
have

(248) fmh o0 = fklh
By (248),
(249) g o fhkl = fhm

By (248), (249) and 0% = Id, we have f,,pr = foupofpr = fupooooofpy = fupofp, =
ferm- SO frukr = frm. By fe = N and N[t] = ¢, tri(k') = t. Therefore ¥’ € O. Thus,
by (248), o0 € Rng(B). So T C Rng(B). This completes the proof. |

3.9.2 A weaker symmetry axiom: Ax(syt)

Recall that we had to introduce Ax(syt) for several reasons.3?® First, it was neces-
sary for the careful analysis of our sequence of weak systems of relativity introduced
in §4. Second, it will be useful in Chapter 6 (Observer Independent Geometry). The
main point in introducing Ax(syt) is that it may be a more adequate symmetry
principle for certain axiom systems of relativity than the rather strong Ax(w) or
even Ax(symm). It can be considered as a weakening of Ax(symm). We can also
conceive of Ax(syt) as a stronger version of Ax(eqtime), which in turn is part of
Ax(symm).

First we are going to show that Ax(syt) is necessary in the sense that using
Ax(symm) would blur the essential distinction between Bax and Newbasax.
Recall that Thm. 3.4.34 states that - is an equivalence relation on Obs in models
of Bax. Thus models of Bax fall apart to worlds whose observers see only observers
of the same world. The following proposition states that the speed of light is the
same for all those observers who see each other, i.e. that belong to the same world.

In a sense, we can interpret Prop. 3.9.37 below as saying that Ax(symm) is a
too strong symmetry principle for someone who “seriously” wants to study Bax and
its symmetric version, because it blurs the distinction between Bax and Flxbasax
(modulo the assumption (Vm,k € Obs)m > k and the natural auxiliary axiom

Ax([1))-
PROPOSITION 3.9.37 Ifn > 3, then

Bax(n) + Ax(symm) + Ax(||) = (Ym, k € Obs)(m 3 k — ¢, = cx).

328CF, §4.2.

386



Proof: The basic idea of the proof is as follows. If two observers, say m and k, see
each other, but disagree on the speed of light, then there is an observer whose speed
for m is the same as the speed of light for k. But symmetry requires that “the way
I see you is the way you see me”, and using this principle we can derive that £ must
think that the speed of this observer is the speed of light in m’s opinion. But since
the speed of light is different for m and k, we get that a faster than light observer
exists for at least one of them, which is excluded by n > 3.

Now let us work out this idea formally. Let 9t be a model of Bax(n) +
Ax(symm) + Ax(]|) for some n > 3. Suppose that there are m,k € Obs such

that m = k and ¢z < ¢ By Ax(symmyg) there are m' k' € Obs such that
ok = oy and trp,(m') = tri (k') = 1.

Claim 3.9.38 ¢,, = ¢,y and ¢, = ¢y

We have that f,,,, and fx are isometries by Ax(||). The claim follows by the fact
that isometries preserve angles. Cf. e.g. [121, p. 64].3%

Claim 3.9.39 (V/ € Eucl) [ang®({) = ¢ — ang?®(fgm[l]) = cm)]-

We postpone the proof of this claim to the end of this argument.

Let k* be such an observer that m' < k* and v,y (k*) = ¢ holds. Such an
observer exists by Ax5°P% and ¢, < ¢ = . We get oy by m/ 9 k*, k' and
2 being an equivalence relation by Thm. 3.4.34. Let us calculate v (K*).

v (k) = ang®(trp(k*)) by def. of vy,

= ang®(fpuw [trow (K*)])

= ang®(fgm[trm (k*)]) by fux = fere and Prop. 3.4.35,
Cm by v (k*) = ¢ and Claim 3.9.39.

Now v (k*) = ¢ > ¢ = ¢}, by Claim 3.9.38. This contradicts Thm. 3.4.19, which
states that there are no FTL observers in models of Bax(n) if n > 3.

Proof of Claim 3.9.89: Let £ € Eucl be such that ang?(f) = c¢,. By Ax5Fh
there is ph € Ph for which try(ph) = £. We get fru,[tri(ph)] = trn(ph). Then
ang? (fym[tri(ph)]) = ang®(tr,(ph)) = cm, as required. |

COROLLARY 3.9.40 If n > 3, then

Bax(n) + Ax(symm) + Ax(||) + (¥m, k € Obs)m 3 k |= Flxbasax.

329 Although this fact comes from standard Euclidean geometry, where Ax(y/ ) is always assumed,
square roots are not essential to prove it.
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Corollary 3.9.40 implies that Bax + Ax(symm) + Ax(]|) is very close to
Newbasax, since Flxbasax (introduced in §4.1) differs from Newbasax only by
saying that the speed of light is constant without specifying what the exact value of
this constant is. From the theoretical point of view this difference is negligible.

Proposition 3.9.37 also implies that Bax + Ax(symm) is extremely close to
Flxbasax, because Ax(||) is a quite natural auxiliary axiom, and in Bax +
Ax(symm) + Ax(]|) all observers inside any fixed observer’s world-view think that
the speed of light is the same for everyone; therefore, roughly speaking, inside the
world-view of any observer Newbasax is almost true (except for the precise value
of ¢). Thus we feel that adding Ax(symm) to Bax removes the essential difference
between Bax and Newbasax (or, more precisely, Flxbasax). We express this by
saying that Ax(symm) “blurs” the difference between Bax and Flxbasax; hence
Ax(symm) is not an adequate symmetry principle for Bax. In other words, if we
want to study the “symmetric version” of Bax, and it is important that this should
be distinct from Newbasax or Flxbasax, then we need a more refined, more subtle
symmetry principle than Ax(symm).

Remark 3.9.41 Recall that Theorem 3.3.12 characterized models of Newbasax in
terms of models of Basax in the following manner. Any model 9% of Newbasax was
a “union” of models of Basax in the sense that a class C of Basax-models existed
such that the observers, photons, inertial bodies, bodies and world-views in 90 were
unions of the corresponding entities in models belonging to C; and observers were not
shared in models in C. Now, we feel that an analogous construction might be found
for Bax + Ax(symm)+ Ax(]||). That is, models of Bax(n) + Ax(symm) + Ax(||)
could be made up as similar “disjoint unions” of models of Flxbasax (at least for
n > 3).

Conjecture 3.9.42 Bax(n) + Ax(syt) }& (m > k — ¢p = ¢3), for anyn > 2.

Idea of a possible proof: Let us take a model 9t of Basax. Consider the following
relation on the sort of observers:

m || k <L 3h € Obs)try(m) || tra(k).

We guess that “||” is well defined and it is an equivalence relation. Let f : Obs — F'*
be a function such that m || & = f(m) = f(k). Now, let us turn 9 to another
model 91 of Bax by stretching the meter rods of any observer m by the factor f(m).
(The interested reader should formalize this construction.)

Clearly, t = Ax(syto), because 9 = Ax(syto) and we did not change the
clock of any observer when turning 9t to 9. Nor did we invalidate Ax(]|) because
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of our restriction on f. Thus M = Bax + Ax(syt), but f can be chosen so that
cm = ¢ becomes false.
The reader is invited to check whether this idea is sound. [

The rest of this sub-section is devoted to exploring the consequences of Ax(sytop).
In particular, we shall examine the conditions under which Ax(syto) follows from
the previously introduced Ax(symm), AxA1, AxA2, AxO1 or AxO2, and vice
versa.

PROPOSITION 3.9.43 Bax™ + Ax(v ) = Ax(syto) — Ax(eqtime).

Proof: Assume Bax™4+Ax(syto)+Ax(v/ ). Let m, k € Obs be such that tr,, (k) =
t. We have f,,; € Aftr by Prop. 3.9.50(i). By Ax(sytg) one obtains

[frmk (L) — Frun(0)e] = [Frnk (1e) — frm (0)e].

Let f,,x = g o7 for some g € Linb and translation 7. Then

(250) l9(Le)e = [~ (o).

We have g[t] = t by assumption and g[S] = S follows from Cor. 3.8.30. Then
g9(1): = 1/97*(1;)s, and by (250) we have |g(1;);| = 1. Hence g preserves distance
between points in £, and so does f,,; = goT. |

PROPOSITION 3.9.44 Basax + Ax(v ) & Ax(syto) — Ax(]|).

Proof: Assume Basax + Ax(syto) + Ax(v ). Let m,k € Obs be such that
trm (k) || t. We have f,,; € Aftr by Prop. 3.9.50(i). First we shall show that f.z, fxm
preserve the distance between points in ¢.

Case 1: m 1 k. See Figure 117 for the elements of the argument. Let p € ¢ be
such that p is simultaneous with m’s origin for k. Formally,

(251) fmk (0)e = pi-

Such a p exists and is unique. Since f,, takes parallel lines to parallel lines,

(252) fem(p): =0

holds. Similarly, let ¢ € ¢ be such that
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1t A p+ 1tﬂ 777777777777777 fmk (q)

Figure 117: Illustration for the proof of Prop. 3.9.44.

Then

Now, suppose that f;,, does not preserve the distance between points in ¢. Sup-

pose, €.g8. fem(1t)t — frm(0); > 1. Then ¢; > 1 by f,,, € Aftr.
Axiom Ax(syto), fxm € Aftr and m 1 k imply

(255) frk (1)t — fruk (0) = fm (P + 10)t — Fm (p)e-

Consider function f,,;. It takes the collinear points 0, 1;, ¢ to collinear points in
tri(m). We have f,.1(¢); > fx(0); by m 1 k. We claim that f,.x(q): < fur(1s)e-
Using (251) to (255),

fok(q): = pi+1
< Pt q
= fuk(0)¢ + fem (P + 1)t — frm(p):
= fo(1y)s
Thus f,,, does not preserve betweenness. This contradicts f,,; € Aftr.
Case 2: m | k. This case can be treated in a similar fashion. (It is enough to
use “p — 1;” whenever we used “p + 1,” above.) We omit the details.

Up to this point we have that proven that |f,x(1;) — f,x(0)| = 1. Compare f,,;
to a translation 7 that takes ¢ to trx(m). They are both in PT and

k(1) — fri(0)e] = 1 = |7(14)s — 7(0),].
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Then by Lemma 3.8.50 f,,, = N o7 for some isometry N. Since isometries form a
group, f,,x is an isometry. |

Remark 3.9.45 By contrast, Bax + Ax(v/ ) & Ax(syto) — Ax(]|). The reason
for this is contained in the idea explained for Conj. 3.9.42 above.

The following theorem is an analogon to Thm. 2.8.6(iii).

THEOREM 3.9.46
Basax + Ax(syto) + Ax(v ) = (Ym, k € Obs)v, (k) = vi(m).
Proof: The proof follows by Prop. 3.9.50 and Thm. 2.8.6(ii). |

PROPOSITION 3.9.47 The following items hold.
(i) Basax = Ax(symm) — Ax(syto),
(ii) If n > 3, then Basax + Ax(v" ) + Ax(Triv;) &= Ax(syto) < Ax(symm).

Proof of item (i): Assume Basax+ Ax(symm). Let m, k € Obs be arbitrary. By
Ax(symm) we have m', k' € Obs such that tr,,(m’) = tri(k') =t and f,x = ferm
By Prop. 2.3.3(x) we have

(256) fmk = Tk © Fim © T -
Let p, g € t be arbitrary. Let us calculate the following expression:

|fmk‘(p)t - fmk (q)t| = |fk:’m’ (p)t - fk:’m’ (Q)t‘
= |(fk’k o fkm o fmm’)(p)t - (fk’k o fkm o fmm’)(Q)t‘
= |(frk © Fem) (0)t — (Farie © Fim) (@)

by (256) and Ax(eqtime) applied for m and m'.

Now Lemma 3.9.21 implies that f is an isometry and fy.[t] = £. Then (Vz €
O)fpr(z) = £ + t for some t € ¢ (i.e., fp might reflect z to the origin and then
translate it along #). On the other hand, we have fi,, = @ o g for some ¢ € Aut(F).
Then

k(D) — ok (@)e] = |fem(ED + 1) — frm(£q + 1),

lg(P(£p +1)): — 9(@(Fq + 1))

= |g(@(£p) + (1)) — 9(@(£q) + (2)):|
l9(P(£p)): — 9(P(£4q)):]

= |fem(P)t — frm(9)el,
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as required by Ax(syto).

Proof of item (ii): It is enough to prove the “—” direction because of item (i).
Assume Basax + Ax(v/ ) + Ax(Triv,) + Ax(syto) for n > 3. By Prop. 3.9.51(ii)
AxA2 holds. Then by Thm. 3.9.27(i) Ax(symm) holds, too. |

COROLLARY 3.9.48 Basax &= Ax(symm) — Ax(syt).

Proof: This corollary follows by Prop. 3.9.47 and Prop. 3.9.44. |

QUESTION 3.9.49 Does the conclusion of Prop. 3.9.47(ii) above remain true if
we omit Ax(v/ ) orn > 3 (where the latter is assumed to exclude FTL observers)?

The following proposition clarifies the conditions under the which world-view
transformations f,,;, are “nice”. Recall that by Thm. 2.9.4(i) every world-view trans-
formation f,,;, = poi o exp o @, for some poi € Poi, exp € Exp and ¢ € Aut(F).
This may look disappointing, since while poi is intuitively expected and exp is un-
derstood as responsible for asymmetries, ¢ can hardly be assigned any physical
meaning. Having tried to eliminate the expansion exp by some symmetry axiom,
we still have to make automorphism ¢ vanish by additional postulates if need be. In
this context the reader should compare Prop. 3.9.50 to Thm. 2.9.5 and Cor’s 3.9.28
and 3.9.30.

PROPOSITION 3.9.50 The following items hold.
(i) Bax™ + Ax(v ) + Ax(syto) |= fux € Aftr.
(ii) Basax + Ax(v/ ) + Ax(syto) = fux € Poi.

Proof of item (i): Assume Bax™ + Ax(v/ ) + Ax(syto). Let m, k € Obs. Then
we have
(257) fk = po A,

for some A € Aftr and ¢ € Aut(F) by Thm. 4.3.11 and Lemma 3.1.6. By Prop.
2.3.3(x) we have
(258) fom= (FoA) ' = A oG =5 0B,

for some B € Aftr.

In order not to lose the actual insight, we are going to describe the idea of the
proof informally first. Throughout this explanation and the formal proof consult
Figure 118. Our field § can be identified with the time axis of either observer. The
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m . k k . m
fmk fkm

Figure 118: Illustration for the proof of Prop. 3.9.50.

function fy,, maps k’s axis to tr,,(k), and, similarly, f,,, maps m’s axis to try(m).
Thus observer m can “observe” the field, mapped onto itself by ¢!, by measuring
how k’s clock ticks. Analogously, k& observes the field, identified by m’s time axis,
mapped onto itself by ¢. But Ax(syto) says that the way m can see k’s clock tick
is indistinguishable from the way k can see m’s clock tick, which, in turn, implies
that ¢! cannot differ from ¢. (If ¢ moves a (non-rational) point z, then ¢~! must
move it similarly, ¢(z) = ¢~'(z).) Since there cannot be nontrivial automorphisms
of finite order in an ordered field, ¢? = Id implies ¢ = Id.

Now let us work out this idea formally. Let us define ',

fi : F — F as follows:

flo(®) = fu(zly), and
fom(2) = frm(x1e):.

By (257) it is straightforward to check that f’ , is a composition of ¢ and a linear
function, i.e., there are a,b € I such that

(259) 0. (x) = ap(z) + b.
Similarly, by (257) there are ¢,d € F such that
(260) fi (x) = cp(x) + d.
By Ax(syto) we have

(261) (V2 € F)f (@) — fri(0)] = [fipn (@) — Fin (0)].
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Now, by (259), (260) and (261) we get

(Vz € F)lalle(@)] = [bll¢ ™ (2)].

Since ¢(1) = 1, we have |a| = |b|. Therefore (Vz € F)|p(z)| = | (z)|. Since ¢ is
order-preserving, this implies (Vz € F)p(x) = ¢~ !(z). Hence ¢* = Id. Thus ¢ = Id
by ¢ preserving order.

Proof of item (ii): Assume Basax + Ax(syto) + Ax(v ). Let m,k € Obs
be arbitrary. We have f,,;, = poi o exp o @, for some poi € Poi, exp € Exp and
¢ € Aut(F) by Thm. 2.9.4(i). On the other hand, f,), € Aftr by item (i). Then
¢ € Aftr and ¢ = Id by Lemma 3.8.36. To sum up, we have

(262) fmk = poi o exp.

Let exp be an expansion by A > 0, i.e. (Vp € "F)exp(p) = A\p. Let p,q € t be
arbitrary. By Ax(syto) and (262) we get

|fkm(p)t — fkm(q)t|a
= (1/A)|poi ' (p); — poi~*(q)u-

|fmk(p)t — (Q)t
(263) Alpoi(p) — poi(q),

We intend to prove A = 1.

We know that poi, poi~! € Poi preserve the square of Minkowski-distance, where
the latter notion was introduced in Def. 2.9.1. Introducing the following abbrevia-
tions,

def . .
Tpoj = (pOI(p)t - pOl(q)t)Z,
. n—1
de . .
Spoj = (poi(p)i — POl(CI)i)2,
i=1
and Tp 0i 1 S poi~? similarly, the mentioned property of poi, poi~" implies
On the other hand, by Thm. 3.9.46 we have
S. . S .
(265) 7 = vn(m) = vm (k) = 22—
poi poi™’
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Comparing this with (263) one gets A = 1, exp = Id. Therefore f,,x = poi € Poi. &

Having shown the previous crucial proposition, we shall deal with the relationship
between Ax(syto) and Ax(w). Prop. 3.9.50 will be exploited.

PROPOSITION 3.9.51 The following items hold.
(i) Basax + Ax(v ) = AxA2 — Ax(syto),
(i) If n > 3, then Basax + Ax(v ) E AxA2 < Ax(sytg).5*

To prove Prop. 3.9.51(ii), one needs the following lemma.
LEMMA 3.9.52

Basax + Ax(syto) + Ax(v ) = (b is a median observer for m, k) —
(frn (1) = Fiun (0)e] = Ifin(1e)e — Fin(0)e]-

Proof: The proof is very close to that of Lemma 3.9.16. Note that the essential step
in Case 1 of the proof of Lemma 3.9.16 was reached via Ax(syto): the premises of
Lemma 3.9.16 implied Ax(syto) by Prop. 3.9.51(i), and (201) followed by Ax(syto).
Indeed, Case 1 and Case 2 can be repeated using Ax(syto) directly, otherwise
unchanged. We shall omit this part of the proof.

Now, for the general case, assume Basax+ Ax(syto) +Ax(v/ ). Let m, k € Obs
be arbitrary. By Ax5 there is an observer k' such that tr,(m) N trp(k) # 0. Let
p € try(m) N try(k). Again by Ax5 there is a h' € Obs such that p € try(h') || .

It is easy to check that A’ is a median observer for m and &’. Using Case 2 for
m, k', h' we get
(266) e (L)t — Franr (0)e] = [frrnr (1e)e — forar (0)s]-

On the other hand, Ax(]||) holds by Prop. 3.9.44. Then fp/, is an isometry and, of
course, fpt || t. This yields

(267) [fimtr (Le)e — Fian (0] [fmn(1)e — frn (0)e],
(268) fkn (1) — fienr (0)e] = [Frn(1e)e — frn(0)¢].
Combining items (266) to (268) yields the proof of the general case. |

330The condition n > 3 is necessary because, assuming Basax + Ax(v/ ), AXA2 excludes the
existence of faster than light observers, while Ax(syto) does not. Cf. Thm. 3.9.8 items (ii) and

(ii).
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Proof of Prop. 3.9.51(i): Assume Basax + AxA2+ Ax(y/ ). We have to show
Ax(syto).

Let m,k € Obs be arbitrary. By AxA2 there is an isometry N such that
fmk = N o fg 0 N and NJ¢] || {. Lemma 3.9.5 entails N € Aftr. Let N = Ao, for
some A € Linb,a € "F.

Let p,q € t. Then

(D)t — fmr (@)e] = IN(Fem(N(p)))e — N(fxm(N(q)))¢l
= [fim(N(®)): — fem(N(q)):]

because NJt] || t and N preserves distance.
We have f;,,, € Aftr by Lemma 3.9.9. Let f;,, = Bor, for some B € Linb,b € "F.
Then

(e (D)t — Frk (0)e] = [frm (N (D))t — fom (N (@)l = [B(N(p))e — B(N(q)):|
= |B(£p +a); — B(£q + a)
= |B(p): — B(q)/|
= [fem(P)t — frm (@),

as required by Ax(syto).

Proof of Prop. 3.9.51(ii): Assume Basax(n) + Ax(syto) + Ax(v/ ) for n > 3.
We have to show that AxA2 is implied.

Let m, k € Obs be arbitrary. Faster than light observers are excluded by n > 3
and Thm. 3.4.1. Then by Thm. 3.8.25 there is a median observer h for m and k.
Thus we have

(269) tri(k) = oy[tra(m))].

On the other hand, by Lemma 3.9.52 we have that h sees the clocks of m and k tick
with the same rate:

(270) finn (16) — Fmn (0)e] = [fen(1e)e — frn(0)¢].

By Prop. 3.9.50 f,.p, fun, frr € PT.

Case 1: m 1 k. Consider transformations f,,;, and f;, o o7. Both map ¢ axis to
the same line, ¢rp(m) by Prop. 2.3.3 and (269). Since m 1 k, o7 [ t = Id, (270)
implies
(271) fran (1)t — fmn(0): = (fin 0 07) (11), — (fkn © 07)(0),-

Hence by Lemma 3.8.50 there is a N € Triv such that

(272) No fmh = fk:h O 07.
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From this point the proof follows the same steps as that of Prop. 3.9.13 from (210).

Case 2: m | k. This case is similar to Case 1, but we should consider f, o o,
instead of fi;, 0 o7, where £ is the line used in the proof of Prop. 3.9.13 Case 2, defined
on p. 367. (Transformation o, reverses the arrow of time, thereby ensuring that a
relation analogous to (271) holds.) The reader is invited to fill in the details. |

For brevity, we shall only collect the implications of the previously shown propo-
sitions regarding the connection of Ax(syto) with the rest of Ax(w) (i.e. AxO1,
Ax0O2 and AxA1). In some cases the relationship could be asserted more sharply.
The interested reader is advised to explore the details herself/himself.

COROLLARY 3.9.53 Assume n > 3. Then the following items hold.
(i) Basax(n)+ Ax(v' ) + Ax(Triv;) E AxO2 < Ax(syto),

(ii) Basax(n) + Ax(v' ) + Ax(Triv;) + Ax5% + Ax(eqtime) = Ax0O1 «
Ax(syto),

(iii) Basax(n) 4+ Ax(v" ) + Ax(Triv;) + Ax(eqtime) = AxA1 <> Ax(syto).

Proof: Direction “—” of item (i) follows by Thm. 3.9.29(i) and Prop. 3.9.47(i);
direction “<-” follows by Prop. 3.9.47(ii) and Thm. 3.9.29(ii).

Direction “—” of item (ii) follows by Thm. 3.9.31(i) and Prop. 3.9.47(i); direction
“” follows by Prop. 3.9.47(ii) and Thm. 3.9.31(ii).

Direction “—” of item (iii) follows by Thm. 3.9.26(i) and Prop. 3.9.47(i); direc-
tion “<” follows by Prop. 3.9.47(ii) and Thm. 3.9.26(ii). |

3.9.3 Connection between Ax(symm) and Ax(eqm)

We are going introduce Ax(eqm), a fairly strong symmetry axiom that will be useful
in Chapter 6, devoted to observer independent geometry. In the present context we
only aim at discussing the intuitive meaning of Ax(eqm) and its relation to the
other symmetry principles.

Ax(eqm) (Vm,k € Obs)(Vi,j € n)(Vp € 7;)(Vq € 7;)
[((wm(O) = wk((]) A wm(p) = wlc(CI)) — |pz| = |Qj|)].331

3310f course, the quantification (Vi,j € n) can be substituted by a disjunction, thus it does not
violate first order logic.
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Figure 119: Illustration for Ax(eqm).

Intuitively, Ax(eqm) states that observers agree on distances. More precisely, ob-
servers whose origin coincides agree on distances measured on the coordinate axes.
See Figure 119.

Next we state some propositions and conjectures concerning the connections
between Ax(eqm) and other symmetry axioms. Note that Ax(Gal) is an auxiliary
axiom introduced in Chapter 6, in the spirit of discussion of geometry.

PROPOSITION 3.9.54 Ifn > 3, then
Basax(n) + Ax(v ) + Ax(Gal) + Ax(eqm) = Ax(w").
Proof: We shall fill in the proof later. |
QUESTION 3.9.55 Ezactly which parts of Ax(w™) follow from the assumptions
Basax + Ax(v ) + Ax(Gal) + Ax(eqm) and n > 37
In connection with this question we conjecture the following.

Conjecture 3.9.56 If n > 3 then the following items hold.
(i) Basax(n) + Ax(v )+ Ax(Gal) + Ax(eqm) = AxO2 A AxA2,
(ii) Basax(n) + Ax(v ) + Ax(Gal) + Ax(eqm) £ AxO1 Vv AxAL.
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PROPOSITION 3.9.57 Basax + Ax(v )+ Ax(w) = Ax(eqm).

Proof: We shall fill in the proof later. [ |

QUESTION 3.9.58 How much of Ax(w) is needed for the conclusion of the pre-
vious proposition?

In connection with this question we state Proposition 3.9.59 and Conjectures
3.9.60 and 3.9.61.

PROPOSITION 3.9.59 The following items hold.
(i) Basax + Ax(v ) + Ax(Gal) + AxA1l [~ Ax(eqm),
(ii) Basax + Ax(v/ ) + Ax(Gal) + AxO1 [~ Ax(eqm).

Proof: We shall fill in the proof later. [ |

Conjecture 3.9.60 The following items hold.
(i) Basax + Ax(v ) + Ax(Gal) + AxA2 = Ax(eqm),
(ii) Basax + Ax(v/ ) + Ax(Gal) + Ax0O2 = Ax(eqm).
Conjecture 3.9.61 We suppose that the following items hold.
(i) Basax + Ax(v ) + Ax(Gal) + AxA1 + Ax(]|) & Ax(eqm),
(ii) Basax + Ax(v/ )+ Ax(Gal) + AxO1 + Ax(||) = Ax(eqm).

3.9.4 Isotropy

The claim that no spatial direction is distinguished from the others, usually referred

to as the isotropy of space, should also be considered as a (yet unformalized) in-

stance of SPR. We may expect further insight from investigating to which extent

our distinguished axiom systems, from Bax™ to Basax, comply with this claim.
First we give a rather strong formalization of isotropy:

Ax(isotropy) (Vm,k, ki € Obs)|vm(k) = vy (k1) —
(Fk2 € Obs) (trm(kl) = tr,(ky) A [for all isometry A on "F
(P €DRD) =p A hltrm(k)] = trm (k1)) = b0 fue = fr, 0 1] ) |.
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Figure 120: Illustration for the definition of Ax(isotropy).

For an illustration of the idea behind Ax(isotropy) the reader is asked to consult
Figure 120. Intuitively, Ax(isotropy) compares the two directions in which ob-
servers k and kq, respectively, move in the world-view of an observer m. They move
with the same speed relative to m. This implies that there is a congruence transfor-
mation that takes tr,, (k) to trm, (k). Now, Ax(isotropy) aims to say that the way
k and k see events differs only by this transformation. This would be, however, too
strong: Observer k1 might “look in the wrong direction” thereby spoiling the simple
relationship of world-views. That’s the reason why we take a brother ks of k; and
relate fx to fk,-

Remark 3.9.62 Note that Ax(isotropy) could have been formulated more con-
cisely:

Ax(isotropy’) (VYm,k, ki € Obs)(Jky € Obs)
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(trm(kl) = tr,(ky) A [for all isometry h on "F
(€ Dh) =p A hltr(k)] = tru(k)) = ho fe =i, 0 ).

We omitted the condition “v,,(k) = v, (k1)”. If this fails, A is chosen from the
empty set. We preferred the original form of Ax(isotropy) because it might be
understood more easily.

An apparently weaker isotropy principle is the following:

Ax(isotropy ) (Vm, k € Obs)(3k € Obs)(trm(k) — trm(K) A
for all isometry h on "F (Vp € t U trp,(k))h(p) =p — hofppr = fpr © h} )

We feel this axiom weaker because it states isotropy only in a special configu-
ration. It might be true even in the Reichenbachian versions of our theories. The
following proposition and conjecture elaborate the connection of Ax(isotropy) and
Ax(isotropy ™).

THEOREM 3.9.63 Let img[ be a Minkowski model associated to an Fuclidean
ordered field §, as specified in Def. 3.8.42. Then the following items hold.

(i) MY = Ax(isotropy~),
(i) MY = Ax(isotropy).

Proof: Item (i) follows from Thm. 3.9.64(i) below. Checking item (ii) is left to the
reader.33? ]

THEOREM 3.9.64 Assume 9 |= Basax + Ax(Triv) + Ax(v/ ). Assume
(i) either (Vm, k € Obs)f,,;, € Aftr,
(ii) or that ™ has no nontrivial automorphism.

Then M = Ax(isotropy ).

332We are under the impression that Attila Andai has actually checked item (ii).
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We note that only the case n > 3 is nontrivial. Note that item (i) is in first order
logic, while item (ii) is not. Item (i) could be written as Basax + Ax(Triv) +
Ax(V') +fr € Aftr = Ax(isotropy ™).

Proof: Assume Basax + Ax(Triv) + Ax(v ). Let m,k € Obs. In both cases
(items (i) and (ii)) we have f,,; € Aftr. We are considering the case of standard
configuration first. We shall deal with the general case later on.

Case 1: Assume m and k are in standard configuration: f,x(0) = 0,
trm(k), tre(m) € Plane(t,z). Let h : "F — ™F be an isometry with (Vp €
t U tr,(k))h(p) = p. Then (Vp € Plane(t,7))h(p) = p follows by h € Aftr. It
is enough to show that h o f,; = f.,x 0 h.

Claim 3.9.65 Let ¢ € Exp. Then hoe = eo h.3%
We omit the trivial proof. (Claim 3.9.65) 1
Claim 3.9.66 Let slor € SLor. Then h o slor = slor o h.

This claim follows by the fact that slor “has no effect” in directions orthogonal
to Plane(t,Z), while h | Plane(t,Z) = Id. Formally, let p € "F. Let us choose
p,p" € "F so that p' € Plane(t,Z), p" L Plane(¢,Z) and p = p' + p”. Then

slor(h(p)) = slor(h(p' + p")) = slor(p’ + h(p")) = slor(p') + h(p")
= h(p" + slor(p')) = h(slor(p" + p')) = h(slor(p)).

(Claim 3.9.66) 1

Now, f,, = slor o exp, for some slor € SLor and exp € Exp by Thm. 2.9.4(ii),
m and k being in standard configuration, and because of f,,;, € Aftr. Then

hof,, = hosloroexp
= sloro h o exp

= sloroexpoh = f,;oh,

using Claims 3.9.66 and 3.9.65 in turn. Note that we did not have to choose another
observer to replace k.

Case 2: Let m, k be arbitrary (i.e., they are not necessarily in standard config-
uration). By Ax(Triv) and Ax(y/ ), there are m/, k' € Obs such that m’ and k'

333 This remains true even if e is an affine transformation effecting different expansions in the
time direction and in spatial directions. Le., e(1;) = A1z, (VO < i < n)e(e;) = A1e;, Ag # A1. This
may be relevant for Bax.
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are in standard configuration, and f,,,,y, ferr € Triv. (By Ax(Triv), m and k can be
translated in order to bring their origin to the same point; by Ax(Triv) and Ax(v/ )
their world-view can be rotated so that they see one another move in Plane(t, z).)
Again, f,,/pr = sloroexp, for some slor € SLor and exp € Exp. By Prop. 2.3.3(x)
we have
frk = fonmy © Ty 0 firy.

Now,
hofmk = hOfmml Ofmlkl ofk:’k:
= fmml (o] hl (o] fm’k’ (o] fklk
(273) = fmml O fmlkl O h,l O fk’ka

for some A’ isometry such that (Vp € tUZ)h'(p) = p A hof = fm oA, (It can
be checked that such an A’ exists.) In the second step we used Case 1.
Our next aim is to find an observer k" for which A’ o fypr = fir o h. Recall that

h o fm = frm o B

Then, by the bijectivity of all the functions involved,
h' ofm = frm 0 h.

Now, by Ax(Triv) there is k" € Obs such that fygr = fr,,. Hence
h' o fypn = fpn o h.

Recall that by (273) we have h o f; = fpr © B’ 0 frrg. Then

h O fmk” = h, O fmk O fkk”
= fmk’ o ]’LI O fklk O fkk”
fmlc’ O hl O fklkll
= fmk:’ (o] fk:’k" (o] h

fmlc” o h’a
as required. ]
Conjecture 3.9.67 Statements analogous to Thm. 3.9.64 above can be formulated

for Bax and Reich(Basax). More precisely, assume that § has no nontrivial au-
tomorphism. Then the following items should hold.
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(i) If M = Bax(F) + Ax(Triv) + Ax(v/ ), then M = Ax(isotropy™).
(i) If M = Reich(Basax)(F)+Ax(Triv)+Ax(v/ ), then M = Ax(isotropy ™).

Idea for the proof of item (i): The proof of Theorem 3.9.64 should go through
in Bax, too. Cf. footnote 333. [ |

Questions for future research 3.9.68

1. It would be interesting to know what the logical relationship between
Ax(isotropy) and Ax(isotropy ) is.3** One’s first intuitive impression is
that Ax(isotropy~) should be weaker. Indeed, Thm. 3.9.64 seems to point
in the direction that Ax(isotropy™) is a relatively week assumption.

2. Under what set Th of axioms is Th + Ax(isotropy) = Ax(isotropy~) true?
(Certainly Th = Basax+Ax(v/ )+ Ax(Triv) is enough, but this is a vacuous
truth, because for this choice of Th we have Th = Ax(isotropy~). Hence we
are interested in such a Th that is strictly weaker than Basax + Ax(v/ ) +
Ax(Triv).) A probable candidate might be Bax™ + ¢, < co + Ax(v/ ).

As usual with axioms expressing instances of SPR, it is interesting which distinc-
tions among weak theories are blurred by adding them to the theories in question.
In this connection we have the following expectations.

Conjecture 3.9.69 The following items hold.
(i) Bax™ + Ax(isotropy)+ some natural auziliary azioms = Bax,
(1) Reich(Bax) + Ax(isotropy)+ some natural auziliary azioms = Bax,
(iii) Ax(isotropy) does not make Bax significantly®*® stronger,
() Reich(Bax) + Ax(isotropy™) is essentially®*® weaker than Bax.

We did not have enough time to check these conjectures. The relationship be-
tween Ax(isotropy) and our collection of symmetry axioms might also be interest-
ing. The reason why we have not used isotropy assumptions in this study is that
they were not necessary to prove our main theorems.

334They are both true in standard Minkowski models, therefore standard relativity theory does
not establish any connection between them.

335Tn the sense that the main pecularity of Bax, namely that observers can disagree about the
speed of light, remains possible.

336By this we mean that the real point in Reich(Bax) is not affected: simultaneity remains
arbitrary.
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Remark 3.9.70 An alternative approach to isotropy would be the following. Let
some observer k£ move in direction Z in the world-view of observer m. Formally,
trm(k) € Plane(t,z) and vy, (k) # 0. Let A : " 'F — ""1F be a rotation that leaves
T pointwise fixed (the class of rotations can easily be defined in first order logic).
Moreover, let h be the natural extension of h from "~'F to "F (if p € "F, then
h(p) = {po} X h({(p1,p2, ... Pn_1))). Then h commutes with ., i.e. hoFm = frk 0 h.

It is easy to generalize this approach to cases in which the spatial projection of
tr, (k) does not fall on Z. We challenge the reader to formalize isotropy along these
lines.

3.9.5 Homogenity

The assumption that physical laws do not distinguish any point of space to any
other is usually referred to a homogenity of space. Similarly, one can assume that
there is no distinguished time coordinate value (for any observer). Combining both
ideas, one could speak about the homogenity of space-time. However, following
the tradition of the literature, we shall prefer the expression affinity of space-time.
We can look at this principle as capturing an instance of SPR; that’s why we feel
justified to discuss it here.
Let us tentatively formalize the principle asserting that space-time is affine:

Ax(homogenity) (Vm,k € Obs)(Vp € "F)(3k' € Obs)
(Vg € "F)[fmr (q) = fur(q) + p]-

The traditional formulation of this principle says that “physical laws” (i.e., in
our case, f,; functions) do not depend on the choice of the point p of space-time
where we want to apply them, or, more concretely, where our moving observer k
is; however, the only means by which we can characterize k’s location is the point
where m sees k’s origin.

We note that we shall never use Ax(homogenity) in its own right because it is
nothing but a special case of our frequently used auxiliary axiom Ax(Triv).

In this connection we note that Ax(||) can also be considered as a homogenity
(or space-time affinity) principle. Recall that Ax(||) says that parallel observers
agree on spatial distances. Axiom Ax(||) is part of Ax(syt) but it is also used
independently as an auxiliary axiom. Moreover, in any reasonable relativity theory,
Ax(homogenity) and Ax(Triv,) together imply Ax(Triv). Note that Ax(Triv,)
can be regarded as a very weak isotropy principle.

In passing we note that Ax(isotropy) and Ax(homogenity) seem to play an
important role in the literature. Cf. e.g. [90], p. 160, line 6 (and Gyula Déavid
personal communication, 2 Nov. 1998).
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QUESTION 3.9.71 Consider the following axiom system.:

*

Bax™" = Bax~ U{Ax(||), Ax(ext), Ax(Triv),
Ax(isotropy), Ax(homogenity), B = Ib}.

It would be interesting to study what kinds of “nonstandard models” (models essen-
tially different from those of Bax) Bax~" has. Ezamples of these are the “non-

standard” models of Reich(Bax). Are there other kinds of nonstandard models in

Mod(Bax™")?

3.9.6 Further ideas

Remark 3.9.72 Consider the following potential axiom:
AxA3 (Vm,k € Obs) [(fmi(0) =0 A trp,(k) C Plane(,7)) = |fux(1y)| = 1].

Intuitively: Meter rods orthogonal to the direction (zZ) of movement do not shrink;
in other words, if £ does not move in direction y then distances in direction y do not
change. Still more intuitively, if there is no movement in direction § then nothing
happens (changes) in direction 7.

It might be interesting to see under what conditions is AxA3 < AxA1l (or
AxA3 +» Ax(symm)) true. Of course, n > 3 is a necessary condition.

Remark 3.9.73 For completeness we note that Ax(egspace), introduced in §2.8,
can also be considered as a symmetry axiom. Recall that Ax(egspace) states the
following:

Ax(eqgspace) (Vm,k € Obs)(Vp,q € "F)
(=t A fk(P)r = Fan(0)e) = [P = 0] = [k (p) = Fr(a)]).

That is, if two events are simultaneous for both m and k, then m and £k agree on
the spatial distance between them.

The relationship between Ax(eqspace) and Ax(symm) has been clearified by
Theorem 2.8.16, which says that assuming Basax + Ax(v/ ) + Ax(Triv,), n > 3,
Ax(symm) < Ax(egspace) holds.

PROPOSITION 3.9.74 The following items hold.
(i) Basax + Ax(v ) = Ax(syto) <+ Ax(egspace),
(ii) Bax + Ax(v ) ~ Ax(sytg) <+ Ax(eqspace).
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Proof: We shall fill in the proof later. 1

Remark 3.9.75 As we have seen at several stages in this study, to prove the fa-
mous twin paradox from some axiom system of relativity we always need to intro-
duce some sort of symmetry principle. Turning the point of view around, we can
regard Ax(Twinpy) and Ax(Twinp) themselves, the formulae expressing the twin
paradox, as symmetry principles in their own right. (These variants of Ax(TwP)
(see p. 140) will be introduced in §?? (p. ??7) below. We note Ax(Twinpy) does
not exclude FTL observers in certain situations while Ax(Twinp) does. Assume
Basax + Ax(v/ ) for example.) What makes Ax(Twinp,) interesting is that it de-
scribes bidirectional movement along the same path, which suggests that it might be
a natural symmetry principle for our Reichenbachian theories like Reich(Basax)
or Reich(Bax). (Other candidates for the role of adequate symmetry axiom for
Reich(Basax) etc. are Ax(syt) and Ax(syx).)

PROPOSITION 3.9.76 Basax + Ax(||) < Basax + Ax(]|) + Ax(Twinpy) <
Basax + Ax(]|) + Ax(w).

Idea of the proof: Intuitively, Basax + Ax(||) < Basax+ Ax(||) + Ax(Twinp,)
holds because when building a model of Basax, we are free to choose the length of
each observers’s unit vectors in another’s world-view. See the model construction
methods in §§3.2, 3.5, 3.6. Axiom Ax(||) restricts this freedom only inside the
equivalence classes generated by the relation

def

R(m, k) <= (3h € Obs)try(m) || tru(k).
Thus we can build a model in which Ax(Twinpy) fails for three particular observer.
Further, Basax + Ax(||) + Ax(Twinp,) < Basax + Ax(||) + Ax(w) holds at
least for a “bookkeeping” reason. By this we mean that AxA1 and AxO1 quantify
over observers in order admit the possibly disturbing orientation of observers that

should see eachother the same way. Now, AxA1l or AxO1 can fail in models in
which there are “not enough” observers. 1

QUESTION 3.9.77 Do Bax™ + Ax(Twinpy) + Ax(||), perhaps together with
some more auziliary azioms, imply Ax(w™)?
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3.10 Groups of Relativity
3.10.1 Group Properties of the World-View Transformations

In this sub-section we shall investigate the collection of world-view transformations
that are associated to frame models in a straightforward manner.

Recall that if a model 90 satisfies certain axioms, e.g. 9 = Bax, then its world-
view transformations, members of {f,.; : m, k € Obs™}, are bijections. This means
that this set together with the usual function composition and inverse forms a partial
group. In what follows we try to find the necessary and sufficient conditions under
which this structure becomes a group. In particular, we shall examine the connection
between our symmery axioms introduced in §3.9 and the group property of world-
view transformations. Moreover, we try to identify possibly interesting research
areas, e.g. the relation of this structure to other structures defined in connection
with relativity models. Examples are the geometrical structures defined in Chapter 6
and the velocity group which will be defined and discussed in a later version of this
study.

Definition 3.10.1 Recall that FM(n) is the class of n-dimensional frame models.
FM(n) is a special case of Modore(Th(n)), where Th is a theory in our frame language
like Basax, Newbasax, Bax etc. Let 9t € FM. Then

1. The Poincaré Group of M is defined as PGoy def (PGgy,0,1d,”"), where

PGW( d:ef {fmk - m, k€ ObSm}

2. The Lorentz Group of 9t is LGgy dof (LGgn,0,1d,” 1), where

def

LGogy = {fmk m,k € ObSEm N fmk((_)) = (_)}

def

3. The Standard Lorentz Group of M is SLey = (SLgp,0,1d,~! ), where

SLon % {foe 1 m, k € Obs™ Afpp,(0) =0

A
(Vp € Plane(t, Z))f(p) € Plane(t,)}.

4. Let Th be a theory in our frame language. Then

PG(Th,n) & {PGyy : MM € Mod(Th(n))}.

PG(Th,n) is called the class of the Poincaré groups of theory Th in n dimen-
sions.
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def

5. Similarly, LG(Th,n) = {LGgy : 9 € Mod(Th(n))} is called the class of the
Lorentz groups of theory Th in n dimensions.

6. Finally, let SL(Th,n) % {SLay : 9 € Mod(Th(n))} be called the class of the

standard Lorentz groups of theory Th in n dimensions.

Remark 3.10.2 1. Note that SLyy C LGgyy C PGyy.

2. PGgy, LGoy, SLgy are always partial groups in the sense of Andréka & Németi
[, but they need not be closed under the operations.

3. What is usually called the Poincaré Group in literature is PGy, where O is
the standard (or generic) model of special relativity. In our terminology, this
is the Minkowski-model iUté" defined in Def. 3.8.42. The following statements
are corollaries of Prop. 3.8.63:

PszSM = {f € Poi: f(1;); > 0},
LGopw = {f € Lor: f(1y); > 0},
SLWI%/I = {f € SLor : f(]-t)t > O}

4. Let us notice that PG(7Th) is not an abstract class of groups, but rather a
class of concrete groups. By this we mean that for PGgy a set "F is given
so that the elements of PGgy are transformations of "F'. In other words an
element of PG(Th) is a represented group, i.e. a group whose elements are
permutations of some fixed set. Hence PG(Th) # IPG(Th), i.e. an isomorphic
copy of a Poincaré group (of theory Th) is not necessarily a Poincaré group
(of the same theory). In this sense Poincaré groups of relativity are analogous
to Boolean set algebras or cylindric algebras, as opposed to abstract Boolean
algebras or abstract cylindric algebras.

Now we are going to examine the question: What are the conditions that make
PGoy a group? We shall prove that not even the strongest of our “core” theories,
Basax, is enough to ensure this. Although the addition of some symmetry axioms
introduced in §3.9 is sufficient, these axioms are too strong (not necessary) assump-
tions in general. This means that we can add an extra axiom to a core theory, say
Newbasax, which states the group property of PGgy, and assymetric models still
remain admitted.

First let us define a formula asserting that the world-view transformations pro-
duce a group.
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Ax(group™) (Vm,k,m', k" € Obs)(Im", k" € Obs)fyuy o fpr = frmpr

Let us recall some proposed axioms from §3.4. The property required by these
formulae is, of course, different from, but analogous to, being a group. Because of
the apparent similarities we insert these issues here.

Ax(group) (Vm,k,m' k' € Obs)(3k" € Obs)f; o fpygr = fmpr 0 exp o N o @, for
some N € Triv, exp € Exp, ¢ € Aut(F).

This axiom characterizes how far the composition of two world-view transfor-
mation can be approximated in general by a third world-view transformation.
The restriction on the choice of the approximant (f,), namely that one of
its “feet” must be m, is probably unimportant. Notice that exp comes from
the possible asymmetry of (some) models, /V is present because observers with
the “right” orientation of spatial axes are allowed to be missing, and ¢ is a
general burden on world-view tranformations unless one eliminates them by
axioms (cf. Thm. 2.9.5, Cor’s 3.9.28 and 3.9.30, and Prop. 3.9.50).

Ax(group™) (Vm,k,m',k" € Obs)(3k" € Obs)fyi o frkr = frpr

Axiom Ax(group™) is stronger than Ax(group) in that it postulates the
equality of a composition of two arbitrarily chosen world-view transformations
to one that connects the world of m to some k”. That is, the r.h.s. is chosen
from the set {f,,; : h € Obs}, where m is fixed.

Remark 3.10.3 Bax™ = Ax(group®) = Ax(group) A Ax(group~).

PROPOSITION 3.10.4 The following items hold.
(i) Basax = AxO1 = Ax(group™).
(i) Basax = Ax(group') = Ax0O1.

Proof of item (i): Assume Basax + Ax0O1. Let m,k,m', k' € Obs be arbitrary.
By Ax0O1 there exists m” € Obs such that fy,, = fy,,». Therefore

(274) foop = Frgs

by Prop. 2.3.3(x). Again by AxO1, there is k" € Obs such that:
(275) A

By Prop. 2.3.3(x), (274) and (275) we get

fmk o] fmlkl = fmllkl o fklkll = fm”k”;
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as desired.

Proof of item (ii): Assume Basax + Ax(group™). Let mg, ko, m; € Obs. Ap-
plying Ax(group™) for m = k = my,m’ = my, k' = ko one obtains that there is
ki1 € Obs such that

fmlkl = fm1m1 O Tmgko = Tmoko-

The following proposition derives Ax(group™) from symmetry axioms, together
with auxiliary axioms like Ax(Triv), Ax5" etc. We shall also need Ax(1), which
was introduced among the “essential axioms” of BaCo in §3.8, and it states that
the clocks of “observer brothers” run in the same direction.

PROPOSITION 3.10.5 Let n > 3. Let Ax be one of the following axioms:

{Ax(symm), Ax(syto), AxA2, AxO2,
AxA1 A Ax(eqtime), AxO1 A Ax(eqtime)}.

Then Basax(n) + Ax + Ax(Triv,) + Ax(v/ ) + Ax(1) + Ax5* = Ax(group™).

Proof: Assume Basax(n) + Ax + Ax(Triv;) + Ax(v ) + Ax5T for n > 3. We
have (Vm, k € Obs)f,, € Poi for every choice of Ax. We must refer to

Thm. 2.9.5, if Ax = Ax(symm),

Prop. 3.9.50(ii), if Ax = Ax(syto),
Cor. 3.9.28, if Ax = AxA2,

Cor. 3.9.30, if Ax = Ax02,
e Thm. 3.9.23 and Cor. 3.9.28, if Ax = AxA1 A Ax(eqtime),
e Thm. 3.9.20 and Cor. 3.9.30, if Ax = Ax0O1 A Ax(eqtime).

Let f = fym ofgm, £ = f[t]. We have ang®(f) < 1 by Thm. 3.4.1. We are looking
for an observer kg such that ¢r,, (ko) = ¢ and

f reverses the arrow of time <= fy,,, reverses the arrow of time.
More formally,
F(1): = f(0); >0 <= frpm(1e)s — from(0) > 0.
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We have two cases.
Case 1: (m P kAm' T )V (m L kAm' | k). Then f(1,);— f(0); > 0. By Ax5"
there is ko € Obs such that tr,, (ko) = £ and m 1 ko. Thus frgm (1) — frem(0): > 0.
Case 2: (m Tt kAm LE)YV (m | kAm'tE). Then f(1;); — f(0); < 0. One
of k,m', k'—let us call it k*—is such that £* | m. We must apply Ax5" in the
world-view of k*. So there is kg € Obs such that try«(ko) = fmr+[€] and k* 1 ko. By

Prop. 2.3.3 then we have tr, (ko) = ¢ and m | ko Thus frym(1:)e — feem(0): < 0.
Now compare fi,,, and f. They both map ¢ to ¢, and by fy,m, f € Poi and the
above definition of k, we have

feom (1)t — from (0)e = f (1) — £(0)e.
Then by Lemma 3.8.50 there is some N € Triv such that N[t] = ¢ and
f =No fkom-

By Ax(Triv) there is such a k" € Obs that fyny, = N. Hence f = fyn,, and by
Prop. 2.3.3(x) we have

fmlc” = fil = Tmk © fm’k’-

PROPOSITION 3.10.6 The following items hold.
(i) Basax + AxA2 + Ax(Trivy) + Ax(v ) + Ax(1) + Ax51 = Ax(groupt).

(ii) Basax + AxA1+ Ax(eqtime) + Ax(Trivy) + Ax(v/ ) + Ax(1) + Ax5* =
Ax(group™).

Proof: The proof of Prop. 3.10.5 goes through, because we used n > 3 only to
exclude faster than light observers, and the premises of both items have the same
effect. See Cor. 2.7.6 and Thm. 3.9.8(ii). |

The following proposition asserts that Ax(group~) is not implied by Basax,
and therefore it does not follow from our weaker axioms systems either.

PROPOSITION 3.10.7 Basax(n) = Ax(group™), for any n > 1.
Proof: We shall fill in the proof later. |

Now let us show that Ax(group™) is weaker than our symmetry axioms intro-
duced in §3.9.
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PROPOSITION 3.10.8 Basax+ Ax(group~) £~ (AxO2VAxA2V Ax(sytg)).

Proof: We shall fill in the proof later. [ |

QUESTION 3.10.9 Does AxO1 or AxA1 follow from Basax + Ax(group™)?
PROPOSITION 3.10.10 Ifn > 3, then Basax(n) = Ax(group).
Proof: We shall fill in the proof later. |

Note that it is an open issue whether Bax = Ax(group), Basax +
Ax(group) E AxA1 or Basax + Ax(group™’) E Ax(w).

Future research task 3.10.11

1. Investigate IPG(Bax), IPG(Newbasax), IPG(Newbasax + Ax(w)) from an
algebraic point of view.

2. How do these groups relate to Poi, Lor, SLor?

Future research task 3.10.12 Assume 9% = Bax™ . Consider the automor-
phism group Aut(®gy) of the geometry defined in Chapter 6 above.

1. How does PGy relate to Aut(®gy)? Is for example PGy C Aut(Bgy) true?

2. How does Aut(®gy) relate to the automorphism groups of its reducts?

3.10.2 Duality Theory for Poincaré Groups

We shall see in Chapter 6 (Observer Independent Geometry) that a duality theory
between models 9 and geometries Ggy can be developed. It can be depicted by the
schema:

(*)  Models &= Geometries.

We would like to note that a duality theory between models 9 and Poincaré
groups PGgy can be elaborated in an analogous fashion. It will be of the general
pattern

(*x)  Models = Poincaré groups,
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analogous with (x). Similarly to the case of our geometric duality theory, one can
single out strong enough relativity theories such that on the level

Mod(Th) = PG(Th)

the duality theory works well (exactly in the same sense as we used this expression
in the geometry chapter). Among others, this means that for nice enough models,
the model 9M is recoverable from its Poincaré group PGyy.

Of course, one can combine the duality theories of patterns () and (*x) to obtain
dualities between geometries and concrete groups.

The just indicated ideas about extending our duality theory from geometries to
Poincaré groups will be further discussed in a later version of this work.

3.10.3 The Group of Velocities

In this sub-section we shall discuss the following question:

(*) Given some theory of kinematics, in which sense can we speak about the ad-
dition of velocities; how should we formalize this operation (if it turns out
to meaningful), and what sorts of nice algebraic structures (if any) can be
associated to this idea?

Clearly, we are interested only in vectorial velocities introduced below Def. 2.2.2.
Recall that the function we are referring to, ¥,,(b), associates a member of "~'F
to each observer m and inertial body b. That is, velocity, like location, speed,
simultaneity etc., is an observer-dependent concept; we can speak of relations of
velocities only in terms of observers (or reference frames). Accepting this, we can
consider u € " 'F the sum of v € " 'F and w € " 'F only if there are observers
that measure it to be so (in a sense to be specified below). That is, any definition
of addition of velocities must refer to entities whose properties are stated in the
“relativistic part” of our axioms. (This is unlike the case of operations +",—"
defined on the vector field "F, which only refer to the ordered field § and hence
their definition only depends on Axor and Axg, which are always assumed.)

Let us try to find a formal notion of velocity addition. We want a function that
answers a question of the following pattern: If T observe your spaceship move off by
velocity v, and a cabin leaves your spaceship by velocity w (as see by you), what is
the cabin’s velocity as measured by me? More formally, we would like to say the
following:

(%*) The relativistic sum of v, w € ""'F isu € ""'F only if there are m, k, k; € Obs
such that v = v, (k), w = Tk(k1), and u = v, (ky).
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Undoubtedly, this is what one has in mind when discussing the “velocity transfor-
mation” (cf. [224, §§2.15, 1.3]).

But if one intends to define an operation on wvelocities (as opposed to the issue
of how velocities transform when changing form one inertial frame to another®"),
(%*) would be insufficient. Given the velocity vectors v,w € "'F (but assume
lv]| <1 A |lw]| < 1), in models of any “reasonable” theory one can find m, k € Obs
such that v = 4,,,(k); but the orbit and, consequently, the velocity of the third
observer (or inertial body) k; as seen by m would depend on the orientation of £’s
spatial coordinate axes. Thus we have to make significant restrictions on the choice
of k (restricting the admissible orientation of k’s spatial coordinate axes).33®

There are a number of ways to restrict k’s free choice of spatial orientation in
order to make the velocity addition a function; but we also aim at making this
operation the foundation of a group. Hence we also have the purpose of making
addition associative. We are not sure whether the set of restrictions exposed below
is the only way to achieve that.

Let us first consider the textbook case v = (v, 0, ...,0) (cf. [224, §§2.15]). Then
we can require that m, k € Obs must be chosen so that v = 7,,(k) and m and k are
in standard configuration. That is,

foi[t], fmk @] C Plane(f,z) and (V1 < i € n)fpi[0e;] = Oe;.

Observer k still has some degrees of freedom: (i) it can choose to point its unit
vector along the Z axis in the direction of its movement or against it (“towards” m
or in the opposite direction), (ii) &’s clock may run forwards of backwards as seen
by m (with earlier notation, m 1 k or m | k). This freedom must be eliminated,
in order to have a well-defined notion of velocity addition. Thus we require the
following condition on m, k in the definition under preparation:

(% % %) (Vi € n)fi(1;); > 0.

By these restrictions on k& (m, k in standard configuration and (x x x)) we have at
least a chance of defining a unique sum for v,w € "'F if v is chosen in a special
way. (Whether this expectation is fulfilled or not depends on the relativity theory
assumed. The point is that without the above conditions we would have no chance
of finding a function even in the nicest models.)

But we aim at a definition that does not restrict the v’s direction. The restrictions
we are making on the choice of £ should reduce to the above conditions if v =

(v0,0,...,0), and should provide an unambiguous definition on all velocities that

337From the viewpoint of definition, this would be a trivial task.
3380f course, this argument applies to the classical Galilean-Newtonian kinematics, too.
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can be realized by observers. For this purpose we shall introduce the notion of a
weakly standard configuration.

Definition 3.10.13 Assume Bax™. We say that m, k € Obs are in weakly standard
configuration if and only if the following conditions hold.

(i) f.e(0) = 0.
(ii) There is a median observer h for m and k.

(iii) Consider the plane P oo fem[S] (i-e. members P coordinatize events that are
simultaneous with 0 for k). For any 0 < 7 < n, let P, = Plane(tr,,(h), Oe;).
Informally, P; is the plane that contains both the i-th spatial coordinate axis
0e; and the median observer h’s trace as seen by m. Then fi,,[0e;] C PN P,.

(IV) If i € n, then fkm(e,), > 0.

See Figure 121.

Since Def. 3.10.13 prescribes the coordinate axes of observer k, we must show
that its requirements are not impossible to satisfy. More specifically, we have to
show that the prescribed axes are indeed Minkowski-orthogonal, i.e. they are the
coordinate axes of a possible observer. The following proposition asserts this.

PROPOSITION 3.10.14 Assume Basax + Ax(v' ) + f € Aftr. Let m, k, h €
Obs be such that h is a median observer for m and k. Let P and P; be defined as
in item (ii1) of Def. 3.10.13 above. Then the following items hold.

(i) The lines {f [P N P} :i € n} are pairwise orthogonal. Moreover, they fall in
S.

i1) Further, if we assume Ax(Triv;) + Ax5™, then
(1)

(3k" € Obs)(trm (k') = trm(k) A (Vi € n)fum[0e;] € PN P).

To show Prop. 3.10.14 we shall need the following couple of lemmas.

LEMMA 3.10.15 Let A € PT. If A[t] =t, then A= ho N, for some exp € Exp
and isometry N such that N[t] = t.

Proof: The proof follows by Lemma 3.6.20 in §3.6. |
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Figure 121: Illustration for Def. 3.10.13. Observers m and k are in weakly standard
configuration. The unit vectors of k£ are drawn with solid lines, those of m are
dashed.
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LEMMA 3.10.16 Let ¢ € Eucl and g1,9> € PT with ¢1[¢] = g2[¢] = t. Then
g1 =gooexpo N, for some exp € Exp and isometry N such that N[t] = t.
Proof: g,' o ¢i[t] = . Applying Lemma 3.10.15 completes the proof. |

Proof of Prop. 3.10.14(i): Let ¢; = f,,x[P N P;] for any i € n. One obtains ¢; C S
easily:

Next we have to show that ¢; L. ¢; for i # j. We shall work in the world view
of the median observer h. Consider f;,, and o7 o f4;. Both map the line ¢r,(m) to t.
Using Basax + (Vm, k € Obs)f,, € Aftr we get fy,, oo fpe € PT. Then by Lemma
3.10.16
(277) fpm = oo fpy 0 expo N,
for some exp € Exp and N € Triv such that N[t] = ¢.

Now, let ¢; def fmh[(_)_ez-] (i.e. t; is the image of m’s i-th axis in h’s world view). Let

S; dof mh [P N P;]. We shall use the following statement:

Claim 3.10.17 t; = og[s;].

We shall postpone the proof of Claim 3.10.17. Its implications are illustrated in
Figure 122.

Let 4,5 € n be such that ¢ # j. We have fy,,[t;] Le fam[t;] by definition. Using
(277) and Claim 3.10.17 one obtains

(07 o fpr 0 exp o N)[og]s;]] ¢ (orofp,0expo N)og[s;l],

L
(frk o expo N)[s;] Le (fux o expo N)[s;].
Since both exp and N map perpendicular lines to perpendicular lines, this implies
fhk[si] J—e fhm[sj]-

But fhk[si] = fhk[fmh[P M Pl]] = ﬁl Thus EZ J—e ZJ
Proof of Prop. 3.10.14(ii): We shall fill in the proof later. ]

PROPOSITION 3.10.18 Assume Basax. Let m,k € Obs be in weakly standard
configuration. Assume tr, (k) € Plane(t,z). Then m,k € Obs are in standard
configuration.
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fun[Plane(t, 7)]

fun[Plane(t, 7)]

Th
k 1y
Ly
@h/
1m Plane(try,(m), trp(k))
y

Figure 122: Tllustration for the proof of Prop. 3.10.14(i).
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Proof: We shall fill in the proof later. 1

Now we feel ready to define the algebraic structure of velocities which might be
a group in certain frame models.

Definition 3.10.19 Let 9% be a frame model. The wvelocity structure V0igy is the
algebraic structure (V Loy, ®™, 6™ 0), where

1. VLo = {Gn(k) : m, k € Obs™},

2. Operation @™ : VLgy X VLeyyw — V Lgy, called the relativistic addition of
velocities, is defined as follows. Let v,w € V Lgy. By the relativistic sum of v
and w, v ®™ w, we mean the following set:

velw = {ﬁm(kl):m, k by € Obs™ A v =0n(k) A w= (ki) A

m, k are in weakly standard configuration A
(Vi € n\ 1) (s (e3) = s (0)s > 0) .

3. 6y = {(v,u) cv @My = {6}}

Remark 3.10.20

(i) We shall drop the superscript ™ from @ and © whenever the context excludes
misunderstandings.

(ii) Let 9 = {Ax1, Ax2, Ax3}. Then VLlgy is a multigroupoid.

(iii) An alternative definition of the addition of velocities would be the following.
Let v,w € V Loy be arbitrary for some 9t = Bax™. Then

By = {ﬁm(kl):m, k ki € Obs™ A ) A w= (k) A

= Um(k
(3P € Plane(F))(trm(k), tre(m ) CPA
(Vi € 1) (Fr(€3) — e (0); > o)}.

The intuitive idea behind the definition of H is the following. If v =
(v9,0,...,0), then v is realized by some m and k in standard configuration.
Then tr,,(k), tri(m),t C Plane(t,Z). In this case P = Plane({,z). More-
over, we must restrict k’s freedom of directing its axes to either of the two
remaining directions in order to obtain a possibly unambiguous definition, as
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explained above. On the other hand, if v # (v, 0,...,0), then we try to re-
place Plane(t, Z) by some other plane P, and to require similar restrictions on
the orientation of £’s axes.

We conjecture that @ and H are equivalent under some mild assumptions.

Conjecture 3.10.21 We guess that under very mild conditions on M, V0Lgy turns
out to be a multigroup.

THEOREM 3.10.22 Let n > 3. Assume Basax(n) + Ax(Triv;) + Ax5% +
Ax(V ) + o € Aftr. Then Vlgy is a group.

Proof: We shall fill in the proof later. [ |

Question for future research 3.10.23 How far can the previous theorem be
pushed into the domain of weaker theories like Bax? In other words, under what
weaker conditions on 9 will VLgy still remain a group?

PROPOSITION 3.10.24 Let n > 3.
(i) Basax(n) = (@ is non-commutative),
(1) Basax(2) = (& is commutative).
Proof: We shall fill in the proof later. 1

Let us turn to the issue of connections between VLgy, and the algebraic structures
of the world-view transformations defined above, PGgy, LGoy and SLgy. First we shall
define an equivalence relation =, on the Poincaré group PGgy. Here =, is called
velocity-equivalence.

Definition 3.10.25 Let 9t = Bax™. Then

fmk =v fm’k’ <d:ef> Um(k) = vm’(k,)v

for any m, k,m', k' € Obs.
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