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1 Introduction

1.1 Broad introduction

This work grew out from a lecture notes for a course given March 1 — April 30, 1998
in CCSOM of the University of Amsterdam. The course description included below
also serves as part of the present introduction.

Course description (modified to serve as a “broad introduction” for the
present work)

This course is designed mainly for people familiar with logic who are interested
in using logic for gaining a deeper understanding of (at least part of) reality. This
includes e.g. people studying the methodology or philosophy of sciences, or people
interested in the axiomatic [or logic based| approaches to relativity theory, or peo-
ple interested in the relationship between the “Reichenbach-Griinbaum version” of
relativity and the “standard version”, or people familiar with modern logic who are
interested in an easily comprehensible, “intuitively helpful” and at the same time
precise introduction into the exciting areas of relativity and cosmology.

(I) Historical perspective and some of our goals. Tarski formalized geometry
as a theory of first-order logic. The point here is to use only first-order logic; no
external “devices” or tacit assumptions are allowed to enter the picture. Motivated
by Tarski, P. Suppes [243] raised the problem of formalizing the theory of special
relativity as a theory purely in first-order logic.! This problem was studied by Ax,
Goldblatt and others. In the present work we want to work on a “programme”
which is related to the just quoted one (e.g. insist on using only first-order logic)

! There are certain methodological reasons why we want to stick with (possibly many-sorted
and perhaps modal) first-order logic (FOL) as opposed to using higher-order logic with its standard
semantics. These reasons are connected with the fact that higher-order logic is not absolute in
the set theoretic sense cf. e.g. Barwise-Feferman [43], e.g. p.33, below item 2.1.1, and §XVIL.2.1.,
and therefore no effective complete proof system can exist for higher-order logic. Putting it more
bluntly: There is no completeness theorem for higher-order logic, moreover it is impossible to
obtain a completeness theorem for higher-order logic (this follows e.g. from Gdel’s incompleteness
theorem). The above mentioned reasons for sticking with FOL were presented at various logic
conferences in Amsterdam (during the period 1994-1998) and can be (partially) recovered from
Sain [232], cf. also Johan van Benthem’s papers quoted in item (IT) “Logical core” e.g. [267]. We
collected and explained some of these reasons in the Appendix.



but is slightly more general (than the quoted one) in various respects, e.g. in the
following. A possible approach to axiomatizing special relativity in first-order logic
(FOL) would be the following: Axiomatize, first, Minkowskian geometry in FOL
and then try to build a relativity theory on top of that. Here, we want to develop
a different, more ambitious approach than this, namely primarily (or firstly) we
want to write up a natural and convincing axiomatization, call it Specrel, of special
relativity in FOL, and then we want to study and develop this first order theory
Specrel, such that studying Specrel would lead us to “deriving” something like
Minkowskian geometry as a “theoretical construct” (i.e. Minkowskian geometry will
show up as a “theoretical consequence” of our “primary” theory Specrel). Some
of our reasons for this preference are summarized in items (i)—(iii) below. (i) We
want to start out with such axioms about the subject matter of special relativity (i.e.
motion etc.) which are self-evident (in some sense). In other words, we would like to
derive (in some sense) relativity theory from easily comprehensible, natural axioms
which are convincing (and acceptable) even for the outsider (who does not know
anything about relativity) and who would be reluctant to accept that the world
works as described by e.g. Minkowskian geometry if he/she was simply told by some
authority that this is the way “the world is”. (Of course everybody accepts this but
some people might accept it only as a fact and not as an explanation.) In other
words, in the present work we seek understanding and insight as opposed to mere
knowledge. (ii) We also want to push ahead in the direction of general relativity.
(iii) Further essential reasons for our preference (for not starting with Minkowskian
geometry) will be indicated in items (IV), (V) below.

(ITI) Searching for the logical core. In a few papers, Johan van Benthem elab-
orates the idea of separating out the “logical cores” of certain logics. The idea here
is separating out the really essential part (from the logical point of view) from the
whole “burden of mathematical machinery attached to the subject in the course of
time” cf. e.g. Benthem [267] and also Sain [232]. A part of the present work can be
considered as carrying out this “Benthemian” programme for (parts of) relativity
theory.

(III) Searching for insight. All discussions will be in terms of simple concepts.
When formalizing our (language and) axioms we will confine ourselves to a very plain
language, using such easily comprehensible concepts as “bodies” or “observers”.
Whenever we need more complex concepts like “energy”, “entropy” or “curvature
of space-time”, then we will first define these, as a logician would do, in terms of
our plain language. This way we hope to gain real insight into why certain exotic
predictions of relativity theory are “predicted”. It also allows us to make the axioms



with which we started subject to debate: both because of the plain language in which
they are expressed and because of the purely logical nature of our reasoning.

(IV) Not “only the heart”. Sometimes physical theories are formalized in the
following style: Only the “heart” (in some sense) of the theory is formalized; and
then the so obtained formal theory comes together with a non-formalized, natural
language explanation of how to use the formal theory. This natural language text
is often called the “interpretation” of the formal theory. An example for such an
“only the heart” approach would be formalizing e.g. Minkowskian geometry in first-
order logic and then writing an explanation in natural language on how to use
Minkowskian geometry for solving problems in special relativity.

In the present work we intend to formalize the whole theory and not only the
heart. In particular, we want to obtain a formalized theory which contains its own
“Interpretation” (where the word “interpretation” is used in the above sense).

(V) Conceptual analysis.? We also study variants of special relativity in the

2 By conceptual analysis of a theory, like relativity, we understand the following activity. First
one identifies the key concepts of the theory, and then using these concepts one formulates the
key “principles” or axioms of the theory like e.g. the “principle of the speed of light”. Then one
refines these principles to sub-principles e.g. the principle, that “the speed of light is independent
of the velocity of its source” cf. principle (P1) in Friedman [90, p.159]. (Eventually, these sub-
principles need to be formalized as concrete formulas in the logical language of our theory.) Then
one investigates the logical relationship between the so obtained sub-principles (i.e. refined axioms),
and also the logical relationship between (the various combinations of) these sub-principles and
the distinguished theorems (i.e. “predictions”) of the theory in question. E.g. a variant, say (P1*),
of (P1) says that for each observer the speed of light does not depend on its direction. (This is a
kind of isotropy principle). As an example for conceptual analysis we will prove in §3.4, that, of the
“speed of light” sub-principles, (P1*) is sufficient for proving the nonexistence of faster than light
observers. Another example of conceptual analysis is a result Judit Madarész obtained by following
suggestions and encouragement from Gyula David (Dept. Gen. Physics ELTE Univ.) summarized
as follows. She derived almost all of special relativity from natural, simple and convincing axioms
not involving the speed of light or anything connected to electrodnamics. Chapter 5 (pp.704-769)
of this work is devoted to elaborating this result and discussing its consequences. As a piece of
motivation we note that in classical electrodynamics (P1) and (P1*) are valid but (P2) (saying that
the speed of light is the same for all observers) is not necessarily valid, cf. e.g. Friedman [90]. (So,
the quoted piece of conceptual analysis implies that the nonexistence of faster than light observers
already follows from classical electrodynamics [while certain other parts of special relativity do
not].)

Further examples of conceptual analysis, taken from pure mathematics, are the independence
of the Continuum Hypothesis in set theory, or the theorem saying that the Banach-Tarski “ball
decomposition paradox” is equivalent with the axiom of choice, or that Birkhoff’s theorem (char-
acterizing varieties of universal algebra) depends on the Axiom of Foundation. In general, what is
known as “reverse mathematics” belongs to conceptual analysis (of set theory or category theory,
depending on our choice of foundation for mathematics).




form of “competing” axiom systems formalized in first-order logic. The reason for
having several versions for the theory, i.e. several axiom systems, is that this way
we can study the consequences of the various axioms, enabling us to find out which
axiom is responsible for some interesting or “exotic” prediction of relativity theory.
Among others, this enables us to refine the conceptual analysis of relativity theory in
Friedman [90] and Rindler [224], or compare the Reichenbach-Griinbaum approach
to relativity (cf. L. E. Szabé [244] or [90]) with the standard one.

Such a conceptual analysis leads to the desire of making the axioms weaker and
weaker (and at the same time more and more “convincing and natural”) but such
that (almost) all important predictions of the theory in question remain provable.
It is surprising, how few axioms (i.e. assumptions) remain needed in the end for
proving almost all the outstanding predictions. In this connection we note that
(as we mentioned in footnote 2) following suggetions from Gyula D4vid?, in Chap-
ter 5 (due to Madardsz) she proves that in the framework to be presented here one
can avoid all the axioms involving the speed of light (i.e. photons) and still have a
nice, convincing, finite axiom system from which almost all important predictions
of special relativity are provable. Madarasz’s axiom system is purely kinematic, it
does not mention anything related to e.g. electricity.? In our opinion, the process
of so weakening/refining the axiom system(s) can lead to (i) improving the concep-
tual analysis discussed in Friedman [90] and Rindler [224] and (ii) improving our
understanding of the theory in question and why/how it works.

(VI) Fruits of “logicization”. After Tarski and his followers formalized geom-
etry purely in FOL (first-order logic), two useful things happened (among others
of course), as follows: (i) They applied the full machinery of mathematical logic
(including e.g. the theory of definability) to study the new theory. (ii) They arrived
at a “hierarchy” of aziom systems, i.e. theories of geometry.® (Then they studied
this hierarchy.) Both developments led to new insights and proved useful.

Analogously, after we have formalized (parts of) relativity in FOL, we will carry
through (in the present work) items (i) and (ii) above for relativity in place of
geometry. E.g. we will ask logical questions concerning the logical structure of the
theory, the number of non-elementarily-equivalent models, classification of models,
definability issues, connections with Gdédel’s incompleteness proofs, etc. Among
other things, we will use logic to find out which axioms are responsible for certain

3CE. [71].

“We are mentioning this because of the related work Blészer-Gnidig-Varga [49] deriving rela-
tivity from pre-Maxwellian, simple laws of electrodynamics.

5Tt belongs to the very spirit of the “axiomatic method” to study instead of a single theory

a hierarchy of its variants, alternatives, weaker versions etc. A typical example is the theory of
arithmetic as presented e.g. in H4jek and Pudlék [119)].




surprising predictions of relativity theory like e.g. “no observer can move faster than
the speed of light”, “the twin paradox” or issues concerning the possibility of time
travel.

As was already indicated in footnote 1 on p.6, we have some methodological
motivation for sticking with (possibly many-sorted) first-order logic. An outline of
the relevant methodological /metalogical results and considerations is included as an
appendix.

A further use of “logicising” relativity will be the following. We will be able to
give qualitative answers to qualitative questions in a precise mathematical manner.
No more will “quantitative” be a synonym for “precise” or “mathematical” (cf. e.g.
Rohlich [226]). In analogy with the structuralist chapters (like e.g. category theory
or algebra) of mathematics®, one can develop a structuralist approach to relativity
which can serve as a complement for the more traditional approach.

(VII) Temporal logic. Temporal and modal logics of relativity theory have been
around in the literature cf. e.g. Goldblatt [106], Benthem [265], Belnap [46]. Our
first-order theory of relativity can be used as a foundation for such temporal-modal
logics. This is analogous with the situation in temporal logics of programs and
actions. Namely, in Sain [231] a many-sorted first-order theory (analogous to our
present first-order theory of relativity) was elaborated about the “world of actions
and programs” and later it was used as a foundation for temporal logics of programs
and actions in Andréka et al. [14] and in many other works e.g. by Pasztor, Csirmaz,
Richter, Gergely and other researchers.

(VIII) Connections with Gédel’s incompleteness theorems. Hawking, Wein-
berg and others suggested the possibility of a final Theory of Everything. In the
literature it is often argued that Godel’s incompleteness theorem renders such the-
ory impossible. This is a challenge for the logician. In more detail: Recently there
has been an extensive debate, in the literature of relativity theory and related ar-
eas, concerning the connections between relativity (and its possible variants) and
Godel’s incompleteness theorems.” These debates were triggered by the programme
called searching for a “final theory” (or sometimes T.O.E.) proposed by Hawk-
ing, Weinberg and others. Cf. e.g. Hajek [118, p.291], Stoltzner [242], Dyson [76,
p.53], Regge [221, p.296] for the critiques using Gddel’s incompleteness theorem as
a “weapon” against the “final theory”. We investigate the issue and answer some
questions in §3.8 (pp.294-346), §6.6.9 herein, in [16], in [17], in Chapter 7 of [19].
Cf. also the “laws of nature” part of Chapter 6.
6Cf. e.g. Michael Makkai [180, 181].

"There are several of these varying in strength. (Therefore there are several Godel incomplete-
ness properties of theories.)
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(IX) On our choice of language (a return to the subject of “Searching for
insight”). Let us return to item (II) entitled “Searching for insight”. Our saying
there that we will try to use “simpler” concepts whenever possible instead of “more
complex” ones was a perhaps simplified way of referring to the following more subtle
considerations:

The concepts potentially usable in scientific theories (such as e.g. relativity) have
been partially ordered in the literature as being more observable (and less “theo-
retical”) or less observable and more theoretical. (Here “observable” also means
primary.) This observable/theoretical distinction, or rather hierarchy, is recalled
from the literature (of relativity theory) in e.g. Friedman [90, pp.4-5]. This observ-
able/theoretical hierarchy is not perfectly well defined and is known to be problem-
atic, but as Friedman puts it, it is still better than nothing. E.g. the movements
of the oceans called tides are more observable (or closer to be observable) than the
pull of gravity of the Moon which, we think, is causing them. That is, the gravita-
tional force field of a mass-point (like the moon) is a more theoretical concept than
the movement of a body (e.g. ocean’s shore). (Actually the gravitational force field
might turn out to be a “wrong concept” and we may have to replace it with some-
thing else like the curvature of space-time. Probably the movement of the ocean’s
shore-line will be less questionable as a “something” which one can talk about.)

In this work we will formalize theories of relativity in (many-sorted) first-order
logic. When formalizing a theory (in first-order logic), an important step is choos-
ing the language (i.e. vocabulary) of the theory. Here, we will try to choose the
basic concepts of our language as observational as possible; and will introduce more
theoretical concepts (as definitions) at later stages, when development of the theory
justifies them (c.f. e.g. §6.2, §6.9). Eventually, this process will lead to the intro-
duction of a new theory with new basic concepts (new language). We find this a
natural way of theory development / theory “understanding” / theory analyzing.

As Friedman [90, p.4] points out, the observational /theoretical distinction is not
an absolute one. E.g. what is an observational concept at a certain stage of theory
development might turn out to be a theoretical one later. But to our minds, this
seems to be in harmony with the modern approach of logic where theories are con-
sidered as dynamic objects (as opposed to the more classical “eternally frozen” idea
of theories), cf. e.g. van Benthem [268] (cf. also Andréka-van Benthem-Németi [31],
Andréka-Németi-Sain [28], Gardenfors [97], Németi [203] and references in [268] for
approaches to the dynamic trend in mathematical logic). Therefore, our theory of
relativity will come in stages. In the first stage, we choose our vocabulary to be
observational (relative to the state of being in the first stage). In a later stage,
we will have enough results for revising of what we consider observational (in that
stage) and accordingly we will revise our language (i.e. vocabulary). Then, the pro-
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cess continues in the same spirit. (There are of course even later stages and later
revisions of language. The point here is that we will try to keep all such revisions
well motivated by results obtained in earlier stages.) Cf. e.g. §6.2, §6.9.

(X) Addressing the “why”-type questions. In P. Davies & J. Gribbin [72] on
pp-94-95 Paul Davies writes the following about his early studies of relativity: “As
my education continued, I came to learn of the various predictions of relativity ...
All these results I took to be true, but what they actually meant remained a puzzle
to me. ... I had learned how to manipulate the formulae ... I could work out what
would actually happen, but I had no understanding of why this should be so.”

The above quotation illustrates that beside the authors of the present work there
are other people (e.g. P.D. and J.G.) who believe that certain why-type questions
are legitimate (we will try to explain below what kind of why-type questions we
have in mind). It often happens that a student of relativity asks e.g. “why is the
twin paradox true”, or “why do moving spaceships shrink”, or “why do clocks closer
to a black hole run slower than clocks distant from the black hole”.

A possible, mathematically precise answer is the following. The teacher declares
that space-time is a manifold with certain properties, then he writes up Einstein’s
equations, then he declares that they are true (for the physical world) and then he
derives the effect in question (e.g. the twin paradox) from these equations. Having
received and digested this answer, several students feel that now they can calculate
what will happen but that they still have not been told “why this should be so” (cf.
the quotation from P.D. above). Putting it more boldly, the student feels that his
why-type question has not been addressed.

Now, many of the science-popularizing books do address these why-type ques-
tions. But then, they rely on analogies, metaphors and their language is not math-
ematically precise. Therefore some of the above mentioned students still feel that
their why-type question has not been answered with a sufficient precision of logic.

In the present work, we try (among others) to please this logically minded stu-
dent. Namely, we will use the mathematically precise language of first-order logic,
and in this framework we will try to address the above circumscribed why-type
questions.® For this purpose, (i) we will keep (in the first part of this work) our
vocabulary on the “observational” side of the observational/theoretical distinction
discussed in item (IX) above, and (ii) when proving a prediction of relativity like
e.g. the slowing down of moving clocks (i.e. time dilation), we will try to keep our
axioms as few as possible, as simple and convincing as possible, and as weak as

8We did not define what precisely we mean by this particular kind of why-type questions, but
we hope that the quotation from Davies & Gribbin [72] together with our discussion following it
provides an “implicit definition” of the kind of why-type questions we are discussing.
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possible. So, efforts will be made to keep the axioms both observational and sim-
ple; and to maintain a standard of discussing, analyzing and refining their intuitive
meanings. At the same time theoretical concepts etc. will also be studied, but they
will be postponed to the point where we will feel that we can tell the above outlined
imaginary student why we introduce them.

We feel that a logical analysis of the theory in question (i.e. relativity), conducted
purely in first-order logic (and conducted in the above outlined spirit), might be the
right kind of framework for a logically precise and logically satisfying® approach to
answering the why-type questions.

(XI) Prerequisites. Familiarity with first-order logic (FOL) is the most important
prerequisite: some model theory of FOL, many-sorted FOL, e.g. Monk [197] or
Enderton [82] provide all the background needed from logic. But cf. e.g. Ehrig-
Mahr [79] for many-sorted universal algebra (and some many-sorted model theory).
Some knowledge of linear algebra and fields would be useful, but not indispensable.
Familiarity with the notions and terminology of universal algebra is also desirable.
For universal algebra see e.g. [54], [129, Chapter 0], [192], [112].

9By “logically satisfying” we mean a style when one does not have to say things like “... well,

this is not quite true, but if the laboratory is small enough and if we disregard this and that, then
it will become almost true”.
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1.2 More specific introduction

About our motivation and aims:

As we already indicated in section 1.1 (I), some works of Tarski and his followers
[131, 227, 237, 245, 246, 247, 251, 254] are devoted to the formalization of geometry
as a theory of first-order logic. The point is to use only first-order logic, and no “ex-
ternal” devices or tacit assumptions are allowed. In analogy with the quoted works
of Tarski et al, here we try (among others) to formalize relativity theory purely in
first-order logic'® (using nothing external, no tacit assumptions etc.). For further
motivation and related work we refer to e.g. Ax [35], Buseman [56], Friedman [90],
Goldblatt [108], Matolcsi [190], Mundy [199], Reichenbach [223], Schutz [236], Sup-
pes [243]. For further, related logic-oriented approaches to axiomatizing relativity
we refer to the references in the introduction of Schutz [236]. Reichenbach [223] is
a rather important reference in this direction. In the list of references we include
further related work. After formalizing the theory we also develop it to some extent
and then use the formalized version to analyze the logical structure of the theory.
First we concentrate on special relativity, then we move to accelerated observers,
and then explore the possibilities of moving in the direction of general relativity.

An additional motivation is the following. First we quote from the book Matolcsi
[190, p.11].

“Mathematics reached a crisis at the end of the last century when a num-
ber of paradoxes came to light. Mathematicians surmounted the difficulties
by revealing the origin of the troubles: the obscure notations, the inexact
definitions; then the modern mathematical exactness was created and all the
earlier notions and results were reappraised. After this great work nowadays
mathematics is firmly based upon its exactness.

Theoretical physics — in quantum field theory — reached its own crisis in
the last decades. The reason of the troubles is the same. Earlier physics
has treated common, visible and palpable phenomena, everything has been
obvious.”

0For some of the reasons why we want to stick with first-order logic, in addition to footnote 1
on p.6, we also refer to Ax [35], Mundy [199], da Costa et al. [66] and Sain [232], cf. also Barwise &
Feferman [43] p.33 lines 15-26, i.e. immediately below Def.2.1.1, and the note on “absolute logics”
on p.597 therein, and also §XVII.2 on p.609. As a simple example for these reasons we also note
that there cannot exist a complete inference system (hence anything like Godel’s completeness
theorem) for higher-order logics. Cf. also the Appendix.
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“It is quite evident, that we have to follow a way similar to that followed
by mathematicians to create a firm theory based on mathematical exactness;
having mathematical exactness as a guiding principle, we must reappraise
physics, its most common, most visible and most palpable notions as well.
Doing so we can hope we shall be able to overcome the difficulties.”

Mathematics solved the above problem by using logic. Here we will experiment with
doing the same in relativity theory, that is, build up (at least parts of) relativity
theory in first-order logic.'' Besides axiomatizing special relativity (and some of its
distinguished variants), purely in first-order logic (and subjecting the so obtained
first order theory to the usual logical and model-theoretic investigations), we do
have more ambitious goals summarized in items (i)—(iii) below and in section 1.1
way above.

(i) We will also study the possibility of moving beyond special relativity in the
direction of general relativity, and will look into having accelerated observers and
having “partial” observers who do not “observe” all events that might be “observed”
by other observers (cf. Ax6qg in section 3.3). Also,

(ii) We will look into possibilities for making our theory more general by making
the axioms more flexible (i.e., weaker), and studying the number and structure of
all complete theories extending our flexible theory.

(iii) Further, as was mentioned in section 1.1 (I), (III), (IV), (IX), to eliminate
the need for an “interpretation” of the theory etc., our theory will have objects in
it, which are not available in pure Minkowskian geometry. These are things like
bodies, inertial bodies, photons, observers, etc. In this connection we note items (1—
4) below: (1) If we identified Minkowskian geometry with special relativity, then this
would yield an uninterpreted (in the physical sense) version of special relativity, while
the first order theory which we develop here contains “its own interpretation”, too.
Cf. §1.1 (IV). (2) Tt is not clear to us how the conceptual analysis'? suggested e.g.
in [90] (or the Reichenbach-Griinbaum issues) could be squeezed into Minkowskian
geometry. Cf. §1.1 (V). (3) Our formalized (special) relativity theory is undecidable,
while the first order version of Minkowskian geometry in [108] is decidable, pointing
in the direction that our theory is not reducible to pure Minkowskian geometry.
(4) The observational/theoretical duality outlined in [90], cf. also section 1.1 (IX),
motivates us to keep our vocabulary and axioms on the “observational” side (while

1 The foundation of mathematics (i.e. axiomatic set theory) is also formalized in first-order logic.
12Which axiom is responsible for what, which axiom is intuitively more natural than the other,
etc.
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Minkowskian geometry remains more on the “theoretical” side).!®

After having formalized relativity in first-order logic, one can use the well de-
veloped machinery of first-order logic for studying properties of the theory (e.g.
the number of non-elementarily equivalent models, or its relationships with Godel’s
incompleteness theorems, independence issues, definability questions etc).

As we said, we will have weaker versions and stronger versions of (formalized spe-
cial) relativity. Then, we will see that already our weaker versions have the following
interesting property. Let Thg be such a weaker version. Then Thg is undecidable and
admits two natural, finitely axiomatizable extensions Thy, Thy as follows.'* Th; is
hereditarily undecidable, moreover the conclusions of both of Godel’s incompleteness
theorems hold for Th;. As a contrast, Ths is decidable. These claims will be elab-
orated in Chapter 7.

*oksk

So let’s get started. We want to develop a kinematics.!®

- What is kinematics?

- A theory of motion.

- What moves?

- Idealization: We assume that there are things called bodies (like “heavenly bodies”) and
they move.

- How do bodies move?

- Idealization: They change their (spatial) locations.

- What does change of location mean?

- At different time instances the same body has different locations.

OK, then there are time instances and locations involved (whatever they are).
Let us fix that. Our paradigm says that time instances and locations are only relative
to something which we will call observers.! So we assume that there are observers

13We feel that our basic concepts are more on the “observational” side and less on the “theoret-
ical” side than those of, say, Minkowskian geometry. Agreement with this opinion is spelled out
explicitly in Friedman [90, p.32, lines 15-19]. Accordingly, we will discuss Minkowskian geometry
but it will be derived later, as a “theoretical property” of our more “observational” theory.

14To be more precise, Ths is only a finite-schema axiomatizable theory.

I5For simplicity, we concentrate on kinematics of relativity, but by the same methods one can
extend the investigations to, say, mechanics. A motivation for sticking with kinematics is that by
using only kinematics we can prove things which are usually proved by using notions like e.g. mass.

16We use the expression “observer” in the sense of the physics book d’Inverno [75, pp.17,21]. So,
in our sense, an observer “coordinatizes” the set of events and as we will later (in §6) call it, an
observer coordinatizes what will be called there “space-time”. Other books (e.g. Hraské [139, p.32],
Landau-Lifsic [158], Misner-Thorne-Wheeler [196, p.327]) use the expression “reference frame” for
what we call observer. Still other books use a more abstract notion of observer such that for them
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(special bodies). Given an observer m, time instance ¢ and location s, observer m
may “observe” a certain body b as being present at (¢, s) while m may observe other
bodies b; as not being present at (¢, s). This simply means that from the point of
view of m, b is present at location s at time . We treat this concept of observing as
primitive and denote it as b € wy,(t, s). That is, w,(t, s) is defined to be the set of
bodies present at (t, s) from the point of view of m. We should emphasize that this
kind of observing has (almost) nothing to do with the intuitive notion of observing
in the form of, say, seeing optically.

- What are time instances ¢ and locations s?

- Our first answer is that they are “labels” used by observers. But sooner or later we will
have to be more specific. So let us see what ¢ is.

We agree that, for an observer m, time instances are “quantities” like 100, 500,
1/2. To be faithful to the spirit of the axiomatic method, we do not decide what
quantities are, we only postulate that they satisfy some simple axioms which in
themselves are intuitively convincing. Namely, we assume that quantities form an
ordered field § = (F, +, -, <), that is, § satisfies the usual axioms of ordered fields
(to be recalled in section 2.1 from, e.g., [59]). The time scale of observer m is simply
§ itself, the neutral element 0 of § means “now”, t > 0 represents “future” and
t < 0 represents “past”. For simplicity, we agree that locations s are represented by
triplets of quantities s = (sy, 89, 83) € *F.

So far, we agreed on representing locations by triplets of quantities, or by triplets
of “coordinates” from the field §. It is pairs p = (¢, s) of time instances and locations
for which we say that a body b occurs there (at (¢, s)) for observer m. We call such
pairs points of our coordinate-system *F, which we also denote by *F. Therefore
points of our coordinate-system are of the form p = (pgy, p1, p2, p3) € *F. We call p,
the time coordinate and (p1, pa, p3) the space coordinates of p.

Although our coordinate-system is four-dimensional, many of the ideas (and
proofs) can be illustrated already in two or three dimensions. We will try to keep
our presentation as simple as possible. Therefore we will sometimes pretend that
our coordinate-system is 2-dimensional but we will go up to 3 or 4 dimensions as
soon as the higher dimensional case would behave differently.

As we said, to each point p € *F of our coordinate-system, an observer m

“reference frame” = “observer + coordinatization” becomes the case. For us, this is only a matter
of choosing words, no issue of ideology is involved; and since we had to make a choice, we decided
to follow d’Inverno’s terminology where “observer” is basically the same as “reference frame”. In
passing we note that it is our impression that Einstein used the word “observer” in the same sense
as d’Inverno does and we do, cf. [80, §9]. Cf. also Taylor-Wheeler [256, §1.4 (the definition of
observers)].
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associates a set w,,(p) of bodies which, for m, are present at point p. Therefore, to
each observer m, we associate a so called world-view function w,, : *F — P(B)
mapping our coordinate-system *F into the powerset P(B) of the set B of bodies.
We call the elements of P(B) “events”. Matolcsi [190] calls them occurrences. For
us an event is nothing but information telling us which bodies are present and which
are absent.'” (This is why [190] calls them occurrences.) Therefore we can identify
an event by a subset of B.

On terminology: Sometimes we might write sloppily space-time for our
coordinate-system *F. However we need to reserve the expression “space-time” for
a similar but slightly different structure. Namely, in a later part of this work we will
use the word space-time for a structure whose elements are the events (roughly, the
universe of this structure is P(B)) and whose structure will be induced by that of
4¥ via the world-view functions w,, : *F — P(B) belonging to the observers. Cf.
the geometry chapter §6. In the simplest cases of special relativity, space-time will
be isomorphic with our coordinate-system *g. However, in order to be prepared for
generalizations coming in the more advanced chapters of the present work, we need
to treat space-time'® as a structure strictly different from *3.

Some _connections with the literature. To our knowledge, the first attempt at a
deductive treatment of relativity is due to Reichenbach [223], but we mention also
Robb [225] which is earlier but which seems to be an “only the heart” approach. Al-
though no explicit logical framework is present in [223], that work can be considered a
second-order logic approach analogous with Hilbert’s second-order logic discussion of
Euclidean geometry in [133].}Y The requirement of using basic, observation-related
terms as primitives is made explicit by Reichenbach in his general philosophy of
natural sciences.

The project of a strictly deductive presentation of relativity theory can be com-
pared to the similar development in Euclidean geometry. As well known, the first

"Misner & Thorne & Wheeler [196, p.6] (cf. Figure 1.2 therein) uses basically the same notion of
an event as we do. They also give there detailed intuitive motivation for this definition of an event.
For completeness, we note the following. In §6.9 (“On what we learned (so far) about choosing
our first order language for relativity”) of the present work we will arrive at a more abstract, more
sophisticated notion of an “event” cf. item (402) on p.1210 and the explanation following it. The
intuition behind that notion, however, is basically the same as the present one.

18Gpace-time will be a structure (Mn,...) with Mn C P(B) the set of “observable” events. (In
this connection, we note that e.g. Friedman [90, p.32, lines 4-5] defines space-time as “the set of

. all actual and possible events”.)

98ome definitions and axioms suggest in Reichenbach’s work the impossibility of a first-order
translation. Reichenbach did not aim at a first-order logic formalization.
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comprehensive and rigorous treatment of geometry is due to Hilbert [133], which is
taken as a second-order logic formalization.?’ Emphasizing the benefits of a first-
order approach, Tarski formalized Euclidean geometry in first-order logic. Cf. e.g.
[251], [237].

The first logic-oriented results related to relativity are due to Robb [225], who
aimed at deriving the geometrical structure induced (in some sense) by the binary
relation being after over events (in the sense indicated above). Despite the apparent
similarity of Minkowskian geometry to Euclidean geometry, however, the absence of
a comprehensive axiomatization allowing foundational and metamathematical dis-
cussions of the former is pointed out by Suppes [243], who proposes the idea of a
first-order formalization of Minkowskian geometry. (He might also be interpreted as
proposing a broader project of a first-order axiomatization of special relativity. The
identification of special relativity with its theoretical core, Minkowskian geometry,
is common in the literature. As we have already mentioned, we consider this identi-
fication as unfortunate.) Such a treatment of Minkowskian geometry was provided
in turn by Goldblatt [108]. From the point of view of special relativity as a compre-
hensive physical theory, Goldblatt’s study can be regarded as an “only the heart”
approach. We mention also Schutz [236], whose axiomatization is of second-order,
but is distinguished by the discussion of the independence of its axioms; Ax [35],
who aims at deriving Minkowskian geometry from observational primitives similar
to those in Reichenbach’s approach; and Mundy [199], who presents a systematically
simplified second-order axiomatization related to Robb’s treatment. We should also
mention Montague [198, §11] which represents a model theoretical (hence also logi-
cal) approach to physical theories of motion (Montague was a student of Tarski and
became famous for successfully applying the methodology of model theory outside
of pure mathematics.) The present list of references to related work is far from
being complete. Further references can be found in the bibliographies of the works
we quoted.

The question naturally arises: What is new in the present work (relative to the
above references)?

A short answer is that we continue where our precursors stopped. More con-
cretely, most of what we outlined in items (II)-(VI), (IX)-(X) on pp. 6-12 way above
seem to be new (or almost new). To be more precise, the idea of starting theory
building from the observational side (of the observational/theoretical distinction),
sketched in item (IX), appears already in Reichenbach’s work (but is not imple-
mented there in first-order logic). The idea of restricting our tools strictly and
consistently to (many-sorted) first-order logic is carried through in Goldblatt [108],

20For brevity we will sometimes write ‘first-order approach’ for ‘first-order logic approach’, and
similarly for ‘second-order’ approach.
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but he does not seem to go beyond the “only the heart” approach (cf. item (IV) in
§1.1).

There seems to be a point where most of the above quoted authors seem to
stop. This is, more or less, the following.?! Roughly speaking, they write up axiom
systems, then prove that the axiom systems have certain desirable properties.?? But
sooner or later they seem to stop. With some exaggeration one might say that in
the present work the real fun begins after we have written up some suitable axiom
systems and after we have proved that these have the desirable properties.

In connection with the above we would like to point out the following. If we want
to do the logical analysis of a theory (which is not yet in logical form), say of special
relativity, then the first step is to build an axiom system in the language of the
logic we have chosen, which will be our “logicized” version of the theory in question.
Then we prove that this “logicized” theory is indeed about the subject matter we
wanted to analyze (and not about something else). Let us call this Step 2. However,
it is only after Step 2 that we can really start applying the methods of mathematical
logic to analyze the so obtained logic-based theory of whatever we wanted to study,
e.g. of special relativity. In passing we note that during this analysis, among other
things, we will probably experiment with changing the axioms, so e.g. we end up
with having several concurrent logic-based versions of special relativity.?® Cf. again

2'We quoted so many works that it is hard to make categorical statements about them. Therefore
what we write here is intended to be a “general impression” only, allowing exceptions etc. and is
not a careful critical study of the literature.

22F.g. if the author’s aim was to axiomatize Minkowskian geometry, then he proves, say, that
every model of the axiom system is representable by a Minkowskian geometry over some real closed
field, etc.

23 An example for what we are saying is Tarski’s and his followers’ (Tarski et al.’s for short)
first-order logic-based approach to geometry. They too begin with writing up axiom systems
for geometry and proving so-called representation theorems (which prove that the axiom systems
describe those mathematical structures which the authors wanted to study). This is what we
called Step 2 above. Indeed, it is only after this Step 2 (and on the basis of Step 2) that the main
bulk (the main results etc.) of the theory developed by Tarski et al. unfolds (or in other words, is
developed). Further, this mathematical logic-based theory of geometry (initiated by Tarski et al.)
is not finished or “closed down” even today; it is still under development; it still provides new and
new insight into the original subject matter (and into related subjects).

Another example is provided by Tarski’s theory of cylindric algebras. Tarski wrote up the axioms
of this theory long time ago, and then he proved a representation theorem, saying that locally finite
cylindric algebras are exactly those structures which he originally wanted to axiomatize, cf. [129,
Part I]. This part of the theory could be written up and fully proved in not more than 50 pages.
However, the main bulk of the theory of cylindric algebras came into existence after these Step
2-type results were obtained, and already in 1985 they filled two volumes, which together take up
almost 1000 pages (cf. [129, Parts I, II]). Ever since then new and new results are added to the
theory of cylindric algebras leading to deeper and deeper understanding of the subject matter for
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items (I)-(X) in §1.1.

On some of our aims and an outline of this work:

As already indicated, all our axioms will be formulas of first-order logic. We
do not want to make our axioms generate a complete theory.?® Our purpose is
the opposite: we want to make our axioms as weak (and intuitively acceptable and
convincing) as possible while still strong enough for proving interesting theorems of
relativity theory.2’

When introducing a new axiom, say Ax, we will investigate why Ax is plausible,
why we (or the student) should believe in Ax, why we need it, and what would
happen if we omitted it. This way we will obtain a relatively small set, called
Basax (for basic axioms) of convincing (almost self-evident) axioms. Basax will
be our first “possible” axiom system. Later, as a result of studying Basax, we will
introduce and study a hierarchy of axiom systems (or of possible special relativity
theories) in which hierarchy Basax will be neither the strongest nor the weakest
theory. As we already said, we will investigate how many different complete theories
Th O Basax exist, which are possible consistent extensions of Basax. We will also
attempt a structural description of the essentially different kinds of models of Basax.

In Chapter 2, we introduce and discuss Basax. We also study it there to some
extent, e.g. we prove that Basax is consistent, that in dimension two it permits
faster than light (FTL) observers, which in turn lead to time-travel like phenomena,
and that the latter do not lead to logical paradoxes i.e. “Basax + there are FTL
observers” is consistent (in dimension 2). In this chapter we also prove from Basax
what we call the “paradigmatic effects” of relativity: moving clocks slow down, mov-
ing clocks get out of synchronism, and that moving meter-rods shrink. In section 2.8
we experiment with adding a strong symmetry axiom, Ax(symm), to Basax. This

which Tarski initiated the study. (Very roughly, this subject matter can be summarized as the
development and understanding of the theories of quantifier logics in a structuralist (or algebraic)
perspective.)

24A theory T is called complete iff for every sentence ¢ in the language of T', exactly one of ¢
and (—y) follows from T.

25The situation is somewhat analogous with the difference between classical number theory
studying the standard model Z = (Z,+,-, —,0,1) consisting of the set Z of integers, contrasted
with, say, a part of abstract algebra, e.g. ring theory (or the theory of fields) where we study a
broad class K of all rings of which Z is only a very special element. Sometime when we prove
theorems about K, we say (or feel) that we understand more (or better) why that theorem is true
for Z. In this analogy, classical, standard special relativity is analogous with the complete theory
of Z while the version we are describing here is analogous with the algebraic theory of K. (We
note, however, that this analogy is imperfect, as often happens with analogies.)
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symmetry axiom can be considered as an “instance” of Einstein’s (special) principle
of relativity. We will find that adding one, very natural and transparent axiom to
Basax yields a theory which completely reproduces the usual, standard version of
special relativity (i.e. the one based on Minkowskian geometry).?® Actually this
extra axiom will be Ax(symm).

In Chapter 3, we continue studying Basax. Further, we introduce refined
versions of Basax (e.g. Newbasax) and also weaker versions (e.g. Bax) of Basax.
These weaker versions are used for the purposes listed in §1.1 e.g. for finding answers
to the “why”-type questions. E.g. we will find that a surprisingly small fragment
of Basax is sufficient for proving a theorem to the effect that there are no FTL
observers in higher than 2 dimensions. We also analyse the reason for this no FTL
theorem.?” In the same chapter we study and classify the models of Basax. In
§8 3.8, 3.9 we return to studying the possible symmetry axioms (connected with
Einstein’s special principle of relativity) which can be added to Basax (and to
its variants like Bax). This will lead us to a complete and decidable extension
“BaCo+Ax(rc)” of Basax which describes the standard “textbook-version” of spe-
cial relativity. In passing, we note that a difference between Basax and Newbasax
is that in Basax-models the coordinate system *F is isomorphic with “space-time”
while in Newbasax this is not necessarily the case (similarly to the situation in
general relativity).

In Chapter 4, we continue refining our “generic” theories Basax + Ax(symm)
and Basax. We elaborate a hierarchy of theories ranging from the very weak Bax™ ™~
(in which practically no relativistic effect is provable) through stronger theories like
e.g. “Flexible-Basax” to Basax + Ax(symm) in which stages more and more of
the relativistic effects will be provable. Cf. e.g. Figure 223 on p.653. Special sections
are devoted to the Reichenbach-Griinbaum version of relativity (saying that we can
measure only the two-way speed of light) and its connections with the Einsteinian
version. The emphasis in Chapter 4 is on studying a hierarchy of theories (its
internal dynamics etc.) as opposed to studying a single theory. For motivation for
doing this we refer to §1.1, p.40, §3.4.2 and Figures 180 and 223 on pp.552, 653. In
addition we note that §4 illustrates the “modularity” principle or “lego” principle
of the axiomatic approach. By the latter we mean that §4 is intended to provide a
dynamic picture of the possible (special) relativity theories, i.e. it concentrates on

26The connections between standard Minkowskian geometry and our more flexible (or more
general) versions of relativity will be discussed in greater detail in Chapter 6, but cf. also §3.9
(“Symmetry axioms”).

2"We also investigate how one could avoid the no FTL result e.g. by changing or refining the
axioms or changing the definition of an observer etc. These are done e.g. in §3.4.2.
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“theory change”?® via taking theories apart and putting them together differently

and investigating the consequences (as opposed to studying a single theory in a
“static” way).

In Chapter 5, we continue the process of weakening our speed of light axioms
so much that eventually they completely disappear. The so obtained photon-free
relativity theory Relnoph remains strong enough to prove most of the paradigmatic
effects of usual relativity. We will see that Relnoph is a photon-free theory (or
axiom system) which can be considered as an adequete axiomatization of special
relativity (in the just indicated sense of proving most of the interesting theorems).
Connections with ideas from non-standard analysis is also discussed (cf. also §4.1,
Figure 133 on p.450).

In Chapter 6, we “discover” that there is an “observer independent” geometry
sitting inside each model 91 of, say, Bax. If 9 is a model of the complete extension
of Basax mentioned above (cf. §3.9), then this geometry agrees with the standard
Minkowskian geometry. Further, we elaborate a so-called duality theory acting
between the “world of certain kinds of geometries” on the one side, and the world
of our observational-oriented models 9t on the other side.

In Chapter 7 we investigate decidability questions (of our special relativity the-
ories) and connections with Gédel’s two incompleteness theorems. E.g. we find that
for a natural extension, call it Basax™, of Basax, the conclusions of both Godels’s
incompleteness theorems hold, e.g. the consistency Con(Basax™) of Basax™ can

be formalized in the language of Basax™ and is independent?® of Basax™.

In Chapter 8 we study accelerated observers. To this end, we change (enrich)
our first-order language for relativity and we refine and enrich our axiom system
Newbasax.

How to read this work (interdependence of major parts): We tried to keep
Chapters 1,2 easily readable and of an introductory character. (E.g. we tried to post-
pone more technical definitions or axioms to later parts.) The later chapters, i.e.
Chapters 3,4 etc., were designed to be readable independently of each other, but they
presuppose Chapter 2. So, after having read Chapter 2, the reader may continue with
e.g. Chapter 4 or whatever chapter he may prefer. We tried to encourage indepen-
dent reading of later chapters (after having read Chapter 2, of course) by including

28in the sense of the school of theory dynamics, theory change represented by e.g. [268], [95],
[97], [124].
297 e. is neither provable nor disprovable from Basaxt.
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an Index of symbols and defined terms and a List of axioms and ariom systems, cf.
p.1253.

We plan to make this work accessible in the form of Parts I, II, III etc. Part
I consists of Chapters 1,2 together with the Index, List of axioms and References.
Except for Part I, each Part consists of one chapter. Further exception is the last
Part which consists of appendices, various lists of definitions, index, references, etc.
As we said, only Part I is a prerequisite for the others.
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2.1 Frame language of relativity theory; world-view func-
tion

Some set theoretical notation and convention:

w denotes the set of all natural numbers {0,1,...,n,...}. We use von Neumann’s

concept of natural numbers, that is,

0L (@ denotes the empty set) and

n+1¥nu {n} ={0,...,n} for every n € w. Therefore, in this spirit we will
often write

1 € n for 1 < n, where i,n € w.

R denotes the set of all real numbers, and

R = (R, +, -, <) denotes the ordered field of real numbers (where +, -, < are the
usual ones).

7 denotes the set of all integers.
For any set H, P(H) denotes the powerset of H, that is,

PH)={X : XCH}.
If R is a binary relation, i.e. set of (ordered) pairs, then Dom(R) and Rng(R)
denote its domain and range, respectively. That is:

Dom(R) o {a : 3b{a,b) € R} and

Rng(R) ¥ {b : Ja (a,b) € R}.
A function is a binary relation f with the property that for each € Dom(f) there
is only one y such that (x,y) € f. As usual, f(z) denotes this unique y.
f:A— BorA 4 B denote that f is a function, Dom(f) = A and Rng(f) C B.
For an arbitrary set H and n € w, we often identify the set

ng {f: (f:n— H) } with the Cartesian power

Hx. . xH%Y {(ho,-.-,hn1) : (Vi <n)h; € H}. Thus, in particular,

n-times

H=H x H.
If R and S are binary relations, then their composition R o S is defined as

RoS¥ {(a,b) : F)(a,c) € R A (¢,b) € S]}.
Therefore, in particular if f and ¢ are functions with Rng(f) € Dom(g) then we
write their composition the following way3:

(fog)(x) d:efg<f(x)) for every x € Dom(f).

30This is usually used in the reverse order in the literature.
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For a binary relation R and a set X, the R-image R[X] of X is defined as

RIX]¥ {b: (3a€X) (a,b) € R}.
Therefore in particular for a function f,

fIX] = {f(2) : @ € Dom(f)N X }.
For a binary relation R, its inverse is

R {(ba) : (a,b) € R}.

1d, & (x,z) : © € A} is the identity function on A, for any set A. When A
is understood from the context we will write Id in place of Id 4.
The following is a notation for defining functions. Let expr(z) be an expression
involving z, and let D be a set. Then

(expr(z) : x € D) & {(z,expr(z)) : € D}.
fIrc aof {{z,y) € f : © € C} is the restriction of the function f to the set C,
for any function f and set C.

<

Before giving the definition of our frame-language, we recall from [59] some of
the standard notation and terminology used in (many-sorted) first-order logic.

By a first-order language we understand a language3! of first-order logic. Simi-
larly for 3-sorted first-order language or many-sorted first-order language. We will
often use the word vocabulary instead of a first-order language (to avoid ambiguity
arising from the fact that “language” could also refer to the set of all formulas of
some theory). A vocabulary is a collection of sort-symbols, relation-symbols and
function-symbols.

In the present work we will use many-sorted first-order logic. We hope that
the reader having some familiarity with one-sorted first-order logic will find the
transition from one-sorted to many-sorted easy to make. Indeed, throughout the
literature it is emphasized that many-sorted (first-order) logic is only a convenient
“notational dialect” of one-sorted first-order logic and that anyone familiar with the
one-sorted version will easily understand the many-sorted version without studying
it separately.

By many-sorted logic we understand the many-sorted version of first-order logic.
Le. for brevity, we will omit the adjective “first-order” (so in this work many-sorted
automatically implies first-order). Many-sorted logic is so close to one-sorted first-
order logic, that most logic books study and discuss the one-sorted case first and

31Let us recall from the literature of logic that a language of (many-sorted) first-order logic or
a “vocabulary” or a “similarity type” are different names for the same thing. The details can be
found in any logic book e.g. in Monk [197, p.14] or Enderton [82]. Cf. §6.3 for more information
on this.
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then they formulate the generalization to the many-sorted case as an exercise left
to the reader. Of course, for this exercise they explain how many-sorted logic can
be reduced to the one-sorted case. (The fact that here we allow finitely many sorts
only makes this reduction easier and “stronger”, cf. footnote 37 on p.29.)

For an introduction to many-sorted logic and for its reduction to one-sorted first-
order logic we refer to almost any logic book, e.g. to Enderton [82, §4.3, pp.277-281
(but the whole of §4 will be useful later)] or Manzano [185] or Monk [197]. We note
that the whole book Meinke-Tucker [193] is devoted to many-sorted logic and its
connections with higher-order logic. For completeness, we note that further useful
information on this subject is available in the book Barwise & Feferman [43] on
pp.25-27, pp.33-34, and item 7.1.2 (p.68).>2 We would like to reassure the reader
that for understanding the present work, looking into [43] is not a prerequisite. (At
a second reading of the present work, the just quoted parts of [43] might improve
appreciation of certain “fine details”.) Looking into [43] might also help seeing the
connections of our approach with second-order logic. At this point we would like to
emphasize that throughout the present work we are staying strictly within first-order
logic.3?

Let Fm and M denote, respectively, the set of all formulas and the class of all
models of an arbitrary first-order language.

Then = (C M x Fm) denotes the validity relation of this language. We extend
= to P(M) x P(Fm) the usual way: Let K C M and ¥ C Fm. Then

KEY iff (Ve K) (Vo e D) = .
We will write K |= ¢ in place of K = {¢} and 9 = X when K = {90t}.

ThK) L {pe Fm : K=y}

is the theory of K, and

Mod(S) & {MeM : ME=x}

is the class of all models of . Let ¢ € Fm. Then we say that ¢ is a semantical
consequence of ¥, in symbols ¥ = ¢, iff Mod(X) = ¢.

Th() < Th({1})
32For that book page numbers are important because it has no index and is 893 pages long.
331f at some point the reader would have the impression that this is not the case, then there
must be a misunderstanding at that point which needs to be clarified. (This is so because the
issue of our staying within first-order logic [or in one of its equivalent forms] is an important one
from our methodological point of view. For reasons see the appendix.) Cf. Enderton [82, §4] or
Manzano [185] for reducing higher-order logic to first-order many-sorted one.
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is the (first-order) theory of the model 9.

We will start our formal exposition of relativity theory with fixing a 3-sorted first-
order language. We will call this language the frame-language of relativity theory.3*
We will use this language for formulating our first axiom systems for special relativity
(this way producing our first formalized versions of the theory).3°

In this chapter we introduce a relatively rich language because we want to use this
language throughout the present work. At the beginning, and especially throughout
Part I, we could have used a much simpler language, e.g. the one introduced in [16].
More specifically, in part I (and in chapters 1-5) we will not really need G, E ,Ib
introduced in Def.2.1.1 below.

Definition 2.1.1 (frame-language of relativity theory)

Let B, Q and G denote three sorts called bodies, quantities and lines or geometry,
respectively. Let a natural number n > 1 be fixed.?® Intuitively, n will be the
dimension of our “space-time”.

We are defining a first-order language with sorts?” B, Q, G by first defining its
models, as follows. I is a model (of dimension n) of this language iff

om = (BT, F™ G™; Obs™, Ph™ Ip™, 47 2 <M M Wiy |

also denoted as
M = (B, F,G; Obs, Ph,Ib,+,-, <, E, W)

for brevity®, where:

e B is a nonempty set, it is 9’s universe of sort B. B is called the set of bodies

(of OM).

34Later we will expand our frame-language with e.g. a kind of pseudo-metric d : "F x "F — F,
also called distance, see §8.1. Our choice of language will be re-considered in §6.9 (“On what we
learned (so far) about choosing our first order language for relativity”).

35Because of the purposes explained on p.21 (“On ... aims ... of this work”) in later chapters
we develop several axiom systems.

36We will be interested only in the case n € {2,3,4}, but we give definitions and lemmas for
arbitrary n if this does not cost any extra effort.

3TMany-sorted logic is known to be reducible to one-sorted logic the following way (cf. Monk
[197], Enderton [82]): One uses the union BUQUG of the universes of the sorts of the many-sorted
model as the universe of our new one-sorted model and one calls B, Q, G unary predicates.

38 As is usual in logic, B, F, G, Obs etc. are symbols (sort symbols and relation symbols) of the
language of M while B™, ..., Obs™ etc. are objects denoted by these symbols according to the
model M. If and where there is no danger of confusion, we will identify the symbols with the
objects they denote (hence we write B for B™ etc).
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e F'is 9M’s universe of sort Q. Intuitively, F' serves both to be our “time scale”
and “space scale”. Relations
+,+, < are of sort Q, hence (F, +, -, <) forms a structure. We will assume that
5 :=(F,+,-,<) is a linearly ordered field.>*® That is, the following set
Axor of axioms is satisfied by (F,+, -, <).

F :=(F,+,-) is a field*

(F, <) is a linear order, and for every a,c € F,
a<c = (VdeF)(la+d<c+d) and
(a<cand d>0) = (d-a<d-c) hold.

0 and 1 denote the usual zero and unit elements of the field. Further, for every

a € F, |a| denotes the absolute value of a, that is,

def . .. .
la| = max{a,—a} (where “—” is the usual group theoretic inverse operation

determined by +).

We will denote the ordered field (F,+, -, <) by § and its field reduct (F,+,-)
by F. Often we write ™ for § (F™ for F) when we want to indicate explic-
itly that we look at § (F) as the “quantity part” of 9. F* is called the

ordered field reduct of 9, following the standard notation and terminology of
many-sorted model theory. We note that every linearly ordered field is infinite.

e (G is a nonempty set, it is 9’s universe of sort G. G is called (the set of) lines
(or geometry, but geometry will be used in Chapter 6 in a slightly different
and more comprehensive sense).*! Intuitively, lines represent motion (in the
form of “life-lines”) of inertial bodies.

e Obs,Ph,Ib C B are unary relations (of sort B). Their names are: set of

39This is why the universe of sort Q of 9t is denoted by F™ instead of Q™. Occasionally we
may refer to sort Q as sort F or as the field-sort of 9. (Since in standard mathematical practice
Q often denotes the field of rationals, there is a potential danger for ambiguity here for which we
apologize to the reader. Anyway, we will not use Q to denote the rationals.)

40For completeness, we recall here the definition of a field. (F,+,-) is called a field iff

(F,+) is a commutative group, we let 0 denote its neutral element;

(F \ {0},-) is a commutative group, we let 1 denote its neutral element;

- distributes over +, that is, a- (¢ +d) = a- ¢+ a - d holds for every a,c,d € F.
Sometimes we think of a field as a structure F = (F,+,-,—,0,1), we hope this will cause no
confusion. (We omitted 0, 1 and “—” from the original definition because they are first-order
definable from + and “-”. One thing that can be slightly influenced by this omission is the set of
homomorphisms between two fields.)

4180 the acronym G refers to geometry, but to avoid misunderstandings in Chapter 6, we pro-
nounce it simply as “lines”.
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observers, set of photons, and set of inertial bodies (or lonely bodies), respec-
tively. See the left-hand side of Figure 1.

qE/ pEL
F
4]
14
q oD
F
Bodies of 9 Quantities and lines of M

Figure 1: Bodies, quantities and lines of a model 97t.

e E C"F x Gis an (n+ 1)-ary relation of sort (Q,...,Q,G). Intuitively, for
p={Poy---sPn1) €E"Fand £ € G, E (po,...,Pn 1,f) expresses that the point
p € "Fis on the line £. If p and /£ are as above, we abbreviate E (pg, ..., pn 1, %)

by p E £. We postulate axiom Ax. below, called the axiom of extensionality
of lines.

Axo (Yo, b € G)((VpE”F)(pEEl s pEh) = 6 =£2).

Here we note that the axiom of extensionality allows us to identify £ € G with
a subset of "F. (See the right-hand side of Figure 1.) Indeed, we will identify
¢ with the set {p € "F' : pE £} (which is sometimes called the extension of
). By this identification we may assume that G C P("F) and E is the real
“element-of” relation, €. We will do this from now on, cf. Convention 2.1.2
(p.35).42

42This is a standard technique for handling higher-order objects of a logic.
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e Let p={(po,...,Pn_1) € "F. Then, py is called the time component of p, while
(P1y---,pn-1) is the space component of p.** Often we write py, py, py, p, for

Do, P1, P2, P3 respectively.
"F is called the coordinate-system of 9. We refer to p as a point or a (space-

time) location. (p1,...,pn_1) is a (space) location. We will use the word
location ambiguously.

e WC B x"F x B, that is, W is an n + 2-ary relation of sort (B, Q,...,Q,B).
W—/
n-times

W is called the world-view relation (of 9t). The most important part of our
model is this relation. Intuitively, for n=4, W(m,t,z,y, z,b) means that the
observer m “observes” or “sees”* the body b at time t at (space) location
(z,y, z). From the (n+ 2)-ary relation W and arbitrary observer m € Obs we
define the world-view function w,, : "F — P(B) as follows:

Wi (D) d:ef{b € B : W(m,p,b)} forevery pe"F,

see Figure 2.

For p € "F, we call the set w,,(p) of bodies the event “happening” at location
p as seen by m.*® Intuitively, w,, defines the “subjective reality” of m. That
is, w,, tells us how observer m “arranges” the events (elements of P(B)) in
the coordinate-system "F'; in other words, w,, tells us how m “coordinatizes”
the set of events P(B). See Figure 3.

43Tt is important to emphasize here that ™F is only the coordinate system of 9 as opposed
to being say “space-time” itself of 901. Space-time will not be one of our primitive (i.e. basic)
concepts, instead, it will be a derived “theoretical” concept and it will appear e.g. in §6. Cf. the
observational /theoretical duality in §1.1, on p.11.

44 We want to emphasize that here “observing” or “seeing” has nothing to do with the intuitive
notion of observing in the form of measurement, or with the everyday notion of seeing via photons.
In the present text, “observer” and “observing” are technical expressions which we use for historical
reasons. Qur “observing” is really a kind of coordinatizing, i.e. when we say that observer m
observes event e at coordinates ¢, x,y, z, we mean only to say that m associates coordinates t, z, y, z
to event e. (As opposed to “real observing”, this is a very abstract act only.) By the word
“observer” we mean what is sometimes called frame of reference or “system of reference” (or
coordinate-system), cf. Remark 2.2.5 (p.54).

45Two or more bodies occupying the same space at the same time might contradict the physical
intuition. However, presently we abstract away from the sizes of the bodies and therefore we permit
two or more bodies to be at the same place at the same time. We also note the following. The
reader may ask “why is an event a set of bodies”. Motivation for this definition of an event can
be found e.g. in Misner-Thorne-Wheeler [196, p.6], and Friedman [90, p.31] starting with line 9
therein.
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"F

/

Figure 2: The world-view function w,,.

In the literature sometimes "F is called space-time, and sometimes the set
of events P(B) is called space-time. The reason for calling P(B) space-time
is that "F' is only a coordinate-system (consisting of labels), using which ob-
servers coordinatize the set of events P(B).* On the long run it will be more
fruitful to use the word space-time for the thing which is being coordinatized,
that is for P(B).*" We will see more reasons for calling the set of events space-
time in the geometry chapter §6, pp.770-1169. The sets B™, F™ G™ are also
called the universes of M (of sorts B, Q, G respectively).

Summing up: The similarity type of our first-order language consists of

— the sort symbols B, Q, G;

— the unary relation symbols Obs, Ph, Ib (most often, their interpreta-
tions in models are denoted by Obs, Ph, Ib as well);

— the symbols +, -, < of the ordered field § (the neutral elements 0 and 1
of + and -, respectively, and “—” will also be treated as basic symbols);

— the (n+1)-ary relation symbol E, which we will systematically replace
by the set theoretic “€” (cf. Convention 2.1.2);

— the (n+2)-ary relation symbol W. Further:
The reduct (B, Obs, Ph, Ib) of 9 is purely of sort B (body);

46 A location p € ™F functions only as an “address” or “label” used by an observer m in labeling
those events which exist for m.

4"To help the reader’s intuition we note that the world-view function w,, connects up the
coordinate-system ™F with the set of events P(B). Therefore if for someone it were easier to
imagine "F' as space-time then he/she can use the world-view function w,, to translate his/her
intuition for viewing set of events as space-time.
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§=(F,+,-, <) = (F, <) is purely of sort Q (quantities);

G is the universe of sort G (lines), and there are no relation or function
symbols which would be purely of sort G.

E (which we will replace by €) acts between sorts Q and G, while W
involves B and Q.

F Wk P(B)
Wm
F
coordinate-system world-view functions set of events
or space-time
("F) (wp, : m € Obs) (subsets of B)

The heart of our model is W, which is represented by
functions wy, : "F — P(B) for each m € Obs.

Figure 3: This is the way one should visualize a model 9.

Variables ranging over the universes B, F,G of 9 are most often chosen as
follows. For arbitrary i € w,

ba bi,h, hz'a kakiama mzaphaphz € Ba
a, a;, C, Cj, da diat: tiax,xiayayiaza z’ia‘sa)‘an € Fu
Ll € G.

Let us recall that
Axor U{Axq} =
{the axioms postulating that § is a linearly ordered field, axiom of extensionality}.
Now the frame-language of relativity theory of dimension n is defined to be the 3-
sorted first-order language built up from the above symbols the usual way. A model
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M = (B, F,G; Obs, Ph,Ib,+,-, <, E, W) is called a frame model (of relativity the-
ory, of dimension n) iff

M = Axor U {Axc} U {W(m,p,b) — Obs(m)}. %

We denote the class of all frame models by FM.  We call Axop U {Axq}U
{W(m,p,b) — Obs(m)} the frame theory of special relativity theory (or frame
theory for short). By =°"¢ we denote semantical consequence within our present
frame theory Axor U {Axq}U{W(m,p,b) = Obs(m)}. That is, for two sets ¥ and
I’ of formulas in our frame language,

SET = (VREFM)(MES = ME=T).

Also we define
def

Modore(X) = FM N Mod(Y) .

For brevity, throughout this work, we will write Mod(X) for Modore(X). We
hope that this causes no confusion, since we never want to talk about models (of
type of our frame language) in which Axqr, Axg, or (W(m,p,b) — Obs(m)) would
fail.

Similarly, throughout we denote =°"¢ simply by =, and we will never use = in
its original purely logical sense in the context of our frame language (to avoid mis-
understanding). Of course, when talking about structures or formulas of a different
similarity type like e.g. §, then we use “E” in its usual logical sense.

END OF DEF.2.1.1 (FRAME LANGUAGE).

CONVENTION 2.1.2 As we indicated on p.31, below the definition of Ax., we
will identify our E with the set theoretic membership relation “€”. As it was
indicated there, this causes no loss of generality because every frame model 90 is
isomorphic to a frame model D¢ such that E” coincides with the set theoretic “€”.
Therefore throughout the rest of this work a frame model is of the form

M = (B, F,G; Obs,Ph,Ib,+,-,<,€, W).

48We use the standard convention from logic that an axiom ¢(z) automatically means its uni-
versal closure Vz ¢(z). Throughout we write p for po,...,pn—1, hence W(m,p,b) abbreviates
W(mapo -+ Pn-1, b)
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Throughout, we use the semicolon “;” to separate the sorts of a model from its
relations and functions, as in the above equality. Often, we will use the more concise
notation

M = ((B; Obs, Ph, Ib), 3, G; €, W).

If we want to indicate that a universe (or sort) like B or a relation like W comes from
a particular model 90, then we use the superscript B™, W™ respectively. This is why
on p.29 we wrote MM = (B™ ... Obs™, ..., W, However, if 9 is understood from
context, then we will usually omit the superscript. All this (B™ etc.) is standard
notation from model theory and universal algebra, cf. e.g. Hodges [136], Monk [197],
Griatzer [112], McKenzie&McNulty& Taylor [192], [129], Barwise-Feferman [43, p.27].
(As an exception, Chang-Keisler [59] uses lower indices like Byy instead of B™. But
the general style and notational philosophy remains the same in [59], too, as adopted
here.) <

As we said, intuitively, n is the dimension of our space-time. If n = 2, then we
have one time-dimension, and one space-dimension, i.e. space is one-dimensional. If
n = 3, then space is two-dimensional, and n = 4 represents our usual 4-dimensional
space-time, i.e. space is three-dimensional. In the case of n = 2 it is rather easy to
illustrate things, so we will often use n = 2 in our drawings. When n = 3, one still
can illustrate ideas by drawings quite well. Many ideas can be better seen in the case
n = 2 and work completely analogously for arbitrary n. Some statements, however,
are true for n = 2 and not true for n = 3,4. In these cases we will emphasize that
n=2,n=3,orn=4. (Sometimes [but not frequently|, the cases of 3 and 4 behave
differently. In such cases, of course, one emphasizes this difference. But most of the
time, for understanding the key ideas, we will concentrate on the case of n = 3.)%°
There is another reason why it may be useful to allow the dimension of space-time
to vary. Later we may devise models in which not all observers coordinatize events
with the same dimensional coordinate-system "F. FE.g. we could allow that most
of the observers coordinatize events in 4-dimension, while some special (e.g. faster-
than-light) observers coordinatize events with 2-dimensional coordinate-system only.

Figures 1 - 4 illustrate the structure of an arbitrary model 9t (of dimension 2)
in the sense of Definition 2.1.1. Consider the coordinate-system in the right hand
side of Figure 1 (or in the left-hand sides of Figures 2, 3, 4). Intuitively, the first
(vertical) axis is the time scale while the second (horizontal) axis represents space.
The straight lines ¢ and ¢; represent “lines” in Figure 1. The world-view relation
W, which is the heart of our model, is illustrated in Figures 2-4. W is represented

49Gometimes it is worth contemplating why the proofs are different for different dimensions.
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by the system of world-view functions { w,, : m € Obs), cf. Figure 3. In Figure 4,
Wi (p) = {b, ph} means that m “sees” at time p,y at location p; two bodies: b and
ph. L.e, W(m, p,b), W(m, p, ph) are true, while e.g. W(m,p, m) is not true.

For the time being we do not have a structure on the set P(B) of events, which
we also call space-time. In the geometry chapter §6 we will put some structure
on our space-time, too. Sometimes, the structure in Figure 3 is mathematically
modeled by a so called manifold.?

F Wi
g _Wm
) //,
Po
F
p1 wm(p)

The world-view relation W and world-view functions w,,.
m “sees” at time py at location p; two bodies: b and ph.

Figure 4: Second drawing of the world-view function w,,.

We will use the following notation. For Obs(b), Ph(b), Ib(b) we often write
b € Obs, b € Ph, b € Ib, respectively. Moreover, we will reserve the variables
m,m;, k, k; to denote observers; we reserve ph, ph; for photons; finally we use the
symbols p, g, 7, s to denote elements of "F. Thus we have®!

m,m;, k, k; € Obs;
ph, ph; € Ph;
p,q, 7,5 € "F.

50The manifold structure is not particularly relevant at the present point, but it will be relevant
in later developments.

51Sometime we will deviate from this convention though, for lack of enough letters. E.g. some-
times we will use m, k to denote natural numbers also.

37



Using the terminology of vector spaces, elements of "F will often be referred to as
vectors. As we mentioned, we use the convention from logic that

©(m) when used as an axiom, means (Vm € Obs)p(m).

(This is based on our convention above that m ranges over elements of Obs, and
not B.)

Consider a frame model 97t and its ordered field reduct §. We will sometimes
impose the condition on our 9 that F = R, the ordered field of real numbers.

We close this section with giving a possible formulation of the so called
twin paradoz”, as an example for a formula in our frame language.?® Intuitively,
the twin paradox says that if one of two twin brothers leaves the other (accelerating)
and returns to him later, then the brother who stayed behind will be older at the
time of their reunion. That is, more time has passed for the “non-moving” brother
than for the traveling one.

43

m k
N
d /
k m
4 \
p
m: “non-moving” (inertial) brother k: traveling (accelerated) brother

Figure 5: The “twin paradox”.

52We use natural abbreviations here, as well as later. E.g. we write “m, k € w,,(p) N w,(g)” in
place of the longer “W(m,p,m) A W(m,q,m) A W(m,p, k) A W(m,q,k)”.

38



(TwP) (Vm € ObsN Ib)(Vk € Obs \ Ib)(Vp,q,p', ¢ € *F)
(m,k € Wi (p) N Wi (q) N wi(p) = wr(p') A wn(q) = wk(q')) =
e — qi| > [P — gl

See Figure 5. It is not a coincidence that on Figure 5, the life-line of m as seen by
k is more “exotic” than that of k£ as seen by m. (The acceleration of m is sometimes
negative and sometimes positive.) We will discuss the reason for this in §2.8, p.145
and in §8.

53The notation p;, ¢ was introduced on p.31.
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2.2 Basic axioms Basax

Our next task is to postulate axioms in our frame language, expressing parts of our
intuition about physical reality. Our first set of axioms to be proposed shortly will
be called Basax, and it serves as one possible starting point for axiomatizing special
relativity theory.

Before presenting Basax, we would like to say a few words about its place in
the hierarchy of axiom systems which will be studied in the present work.

In section 8.1 we will introduce a further (actually a more “advanced”) set Acc
of axioms, in which we will allow accelerated observers, and accordingly, in Acc we
will modify some of the postulates of Basax (e.g. we will modify item 7 below).5*
In section 3.3 we will define variants of the axioms of Basax, and variants of Basax
itself (e.g. Newbasax).>® These new versions will be more “balanced” in a sense,
and will make it easier to move toward having accelerated observers, i.e. toward
Acc. (On the other hand, our first choice, Basax has the advantage that its axioms
are easy to formulate and understand, so it might be considered as a good starting
point.) In later parts we will introduce stronger as well as weaker (than Basax) ax-
iom systems. As we indicated in §1.1 (Broad Introduction), a plurality of competing
axiom systems (or relativity theories) is an essential feature of logical analysis of a
theory like relativity. Accordingly, in §3.4.2 and in §4 we introduce several axiom
systems for the purposes indicated in §1.1. One of these purposes is conceptual
analysis (started e.g. in Friedman [90] and Rindler [224]) which asks which axiom of
relativity is responsible for what conclusion of the theory. Another purpose of this
plurality is to study such variants of relativity as e.g. the Reichenbach-Griinbaum
version and to compare them with the standard version. Also, we want to “fine-
tune” our axiom systems in various regards. A further, but not negligible purpose
in studying weaker axiom systems is to prove stronger theorems. For more on the
motivation for having a plurality of axiom systems we refer the reader to §§1.1,
3.4.2, 4. See also Figures 180 and 223 on pp.552, 653. Finally we note, that besides

5 Acc (and its theory) can be considered as a first step in the direction of ezperimenting with
the idea of treating general relativity (in Acc we will have gravity, event horizons etc) in the
framework of first-order logic in a spirit analogous with that of the present work.

551t belongs to the spirit of the axiomatic method that we start out with a simple set of axioms
(like Basax), investigate its properties, prove some theorems from it, and then we use our so
obtained experience for modifying this axiom system. After that, we restart the “cycle”, i.e. we
start investigating the new axiom system etc.
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weakening (and/or modyfying) Basax we will also study the possibility of making it
stronger by adding a few new, natural axioms, cf. e.g. §§ 2.8, 3.8, 3.9. In §3.8, we will
also study an extension “BaCo+Ax(v/ )” of Basax, which completely describes
the standard, Minkowskian models of special relativity.

Before presenting Basax, we emphasize that it is only our first and simplest
variant of an axiom system for special relativity. Later, we will also have: (i) axiom
systems in which accelerated observers are permitted (i.e. informal postulate 2 below
will be withdrawn), (ii) systems in which for different observers different events may
exist (i.e. postulate 7 below will be withdrawn), (ii) systems in which the speed
of light will be not the same for all osbservers, (iv) the Reichenbachian version of
relativity where there is even less restriction on the speed of light, (v) systems in
which the coordinate-system of an orbserver may be not the whole of *F but only a
subset of *F, etc.

Informally, about a model 9 = ((B; Obs, Ph, Ib), §, G; €, W), Basax will pos-
tulate the following.

3§ is a linearly ordered field; we can thus define straight lines of the usual,
Cartesian geometry over §, i.e. of F (which, intuitively, are “life-lines”
or “traces” of the motions of inertial bodies), and we can define angles of
straight lines (which represent “speeds” of inertial bodies). In this sense
of the word we will postulate the following:

1. G is the set of straight lines of the Cartesian geometry over §.
2. Observers and photons are inertial bodies.

3. The “trace” of an inertial body h as seen®® by any observer m is in

G.
4. Any observer m sees itself as being at rest in the origin.
5. Any observer sees some observer on each “slow” line.57

6. Each line which could be the life-line of a photon (according to item
8 below) is indeed the life-line of a photon.

7. Any two observers see the same events.

8. All observers see all photons moving with the same speed.

56Below, and later on, we will use the word “see” as a kind of intuitive (or “animated”) way
of referring to the act of observing via the world-view function, as we already indicated this (cf.
footnote 44 on p.32).

5TA line is called slow if its “speed” (i.e. angle with the time axis) is smaller than that of a
photon.
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In items 5 and 6 above by existence we mean only potential existence.
[.e. when we say that on each slow line there exists an observer, what
we mean is that potentially there can exist an observer, but in reality
all these potential observers and photons need not be really there. The
same applies to the existence of “potential” photons in item 6.%8

For the formal definition of Basax, we need some preparation. We start with
recalling some basic notions of linear algebra e.g. from Halmos [122] or Kostrikin-
Manin [155] or Hausner [125] or [228] (or any other textbook on linear algebra).

If p € "F for some set F' and n € w then, for any ¢+ < n, p; denotes the ¢-th
component (projection) of p. Thus p = (po,---,Pis- > Pn1) = (Di)i<n-

Recall from any textbook on vector spaces (e.g. [122]) that, to any field F =

(F,+, ) and natural number n € w, an n-dimensional vector space "F can be asso-
ciated the following natural way. Defining +" : "F x "F — "F by

n def
(Vp,q € F)p+vq=e (Pi + @i)i<n

("F,+") turns out to be a commutative group with neutral element
& def
0 = <O>z<n

and inverse —Vp = (—p;)i<p, for any p € "F. With defining “multiplication by
scalars” -V :F x"F — "F by

aVp def (a-pi)icn foreachae€ Fandpe™F,
("F,+") becomes a vector space over the field F. We denote this vector space by
"F. We note that any n—dimensional vector space over F is isomorphic to "F (see
e.g. Halmos [122]). In universal algebra, there are two ways for making the notion
of a vector space like "F precise. These are the “one-sorted” and the “two-sorted”
versions, defined below. The one-sorted version is defined as follows:

def

nFl = <nF7 +Va _Va (_)1 fa>a€F

with f, unary and f,(p) ey Vp for pe€ " and a € F. Cf Burris-

Sankappanavar [54]. The two-sorted version is the structure

def LV _VgaVv
"Fy = <FanFa+ ;= 50, >)
58We will return later to clarifying the issue of these potentially existing entities (observers,
photons) which exist only potentially but need not exist actually. This can be made precise e.g.
by using first-order modal logic as a framework as will be discussed soon.
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where the operations +", —V, 0 are defined on sort "F while -V is of mixed sort,

ie. VY : Fx"F — "F. Throughout this work, "F denotes either "F; or "F,
depending on context. Occasionally we will explicitly indicate which one is meant.
So whenever "F shows up, it denotes the n-dimensional vector space over F without
specifying whether we mean the one-sorted or the two-sorted version (the reader is
asked to use the context if he wants to decide this).

We note that the notation "F is slightly ambiguous (from a different point of view
too) because "F can denote the vector space over the field F but also (by the standard
notation of universal algebra) it can denote the n’th direct (or Cartesian) power of
the algebraic structure F. This direct power happens to be a ring. Therefore
we might talk about the vector space "F or the ring "F (they are not the same
because they have different operations). If we do not indicate which one is meant
then, by default, we mean the vector space. l.e. if the symbol "F appears in the
text (without an indication of whether we mean a vector space or a ring) then it

denotes a vector space. A completely analogous convention applies to § in place of
F.

As usual, we will often write p—" ¢ in place of p+" (—"¢) for simplicity. Further,
we will often omit the index V from ¥, +Y and —V, and hope that context will
always save us from misunderstandings.

CONVENTION 2.2.1

(i) Throughout, § (= (F, <)) denotes an arbitrary linearly ordered field. However,
this is a context sensitive convention in the following sense: If there is a frame model
9N around, then automatically § denotes the ordered field reduct of 9t. A similar
convention applies to the field F, its universe F, coordinate system "F', and vector
space "F, e.g. if there is an § around then automatically F' denotes its universe etc.
In the other direction if we talk about, say, F' then implicitly we assume that there
is an § in the background etc.

(ii) As we already said in Def.2.1.1, when we work in "F (2 < n < 4), to match the
physical intuition, we call the 0-th coordinate py of a point p = (py,...,pp-1) € "F
the time coordinate or time component of p.  Accordingly, when drawing coordi-
nate systems, we call the 0-th axis of it the fime azis or t-axis. The rest of the
coordinates are the space coordinates or space components. We denote the first four
coordinate axes as follows:

t £ Fx"H0} (=Fx{0}x...x{0}),
z € {0} x F x"2{0},
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g = {0} x {0} x Fx"3{0}, and
z %10} x {0} x {0} x F x "*{0}.
In general Z; denotes the 7’th coordinate axis, that is

i} x F x "0}

T

Also, we put

bt = Do,
Pz = D1,
by = D2
p. = Ds;

for each p € "F.

(iii) Throughout this work, the dimension n (€ w) of our space-time is a parameter of
almost all of our concepts. Therefore a possibility for a rigorous presentation would
be to indicate n in the name of each concept we introduce, e.g., by putting something
like “(n)” after it. But then the text would become too complicated. Therefore we
chose omitting the “(n)”-s except when this would lead to misunderstanding or when
we want to emphasize the presence of n.

But sometimes we will define or state things for one particular n only (e.g.,
for just n = 2). In these cases we will indicate this fact by putting the particular
number, in parenthesis, after the name of the concept involved. For example, we will
formulate an axiom Ax1, where n will be a parameter of Ax1. Then the instance
of Ax1 for the case n = 2 will be denoted by Ax1(2).

Throughout this work n > 1. Therefore, we will not mention this explicitly.

We will treat some other parameters likewise. E.g., we will sometimes state
things for a collection of models from FM such that all 9 € FM share the same
ordered field § as their “quantity part”. Then we will denote this collection by

FM(F).
In cases when we will need more than one parameter we will list them in paren-
theses, separated by commas. For example,

M(3,R) = {MeFM(3) : " =R} .

That is, 9 € FM(3,R) iff 9 is of dimension 3 and the quantity part of 9 is the
ordered field R of real numbers.
<
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Besides our frame language introduced in section 2.1, we will also use the lan-
guage of the vector space "F5 (as an extension of our frame language) for expressing
ideas concisely. (E.g., for r,s € "F we may mention the vectors r + s or 3-r.) We
are allowed to do this since the "F, formulas are translatable to our frame language.
As a first example for this and for the other natural abbreviations we will use, we
introduce our first axiom Ax1 both as a formula in a concise style translatable to
our frame language® and, equivalently, as a (longer) formula written purely in the
frame language.

The set of straight lines of "F in the usual Euclidean sense is denoted by
Eucl := Eucl(n, §) := Eucl(n, F), that is,

£€EucI(n,F)g(ﬂr,se"F)(s;é(_) ANl={r+a-s: aeF}).60

Ax1 in a concise language:
G = Eucl(n, F).

Ax1 in the frame language of relativity theory:

Ax1’ (Vro,...,Tn_1,80,---,8n_1 € F)
({50,...,5n_1} 210} = (30 € G)(po,-.,pno1 € F) (E (poy- -, pns,£) &
(B0 € F) Aico pi=ri+a-5)
and
(Ve G)Tro,---,Tn_1,50,---,8n_1 € F)
{s0y---y8n1} #{0} A (Vpo,---,Pn1 € F)(E (po,--- 00 1,¢) &

FaeF) A, pi=rita- si)).

Here we emphasize that Ax1 is designed to serve the purposes of special relativity
only. In later parts when dealing with more general theories of relativity, Ax1 will
be changed.

591.e. in Ax1 we use convenient abbreviations reducible to our frame language.
60Note that after this definition the formula ¢ € Eucl(n,F) counts as a formula of our frame
language. Namely it abbreviates the following formula of our frame language:

e Gand (EIr,sG"F)(s;é(_) AN (Mpem"Fpel & (EIaGF)p=r+a-s]).
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Figure 6: Angle of a line.

If ¢ € Eucl(n,F), then we can consider the angle between ¢ and the time axis.
By ang?(¢) we denote the square of the tangent of the angle between ¢ and the time
axis.%! Thus, for £ ={r+a-s : a € F} € Eucl(n,F),

2, 2 2
ang?(f) ¥ Sit st — RS R sp # 0, and
50

ang?(t) ¥ oo if 55 = 0.

(It will cause no problem that infinity oo is not an element of F.) Thus 0 < ang®(¢) <
oo. ang?(¢) = 0 means that / is vertical, ang®(¢) = 1 intuitively means that the angle
between ¢ and the time axis is 45°, and ang®(f) = oo means that ¢ is horizontal.
The definition of ang?(¢) is illustrated in Figure 6.

Definition 2.2.2 (life-line (or trace), speed)

Let 9 be a frame model as in Definition 2.1.1. Let m € Obs and b € B be arbitrary
but fixed. Recall from Definition 2.1.1 that the world-view function

Wy : "F — P(B) of m was defined as follows:

wm(p) ={b€ B : (m,p,b) € W} for every p € "F.

61'We consider the square of the tangent (instead of the tangent itself) of this angle because, in
general, we do not assume that square-roots exist in F.
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(i) By the life-line (or trace) of b as seen by m (or life-line (or trace) of b by the
world-view of m) we mean the set

tro(®) L {penF : be wn(p)} ={pe™F : W(m,p,b)}.

(ii) If ¢tr,,(b) € Eucl(n,F), then by the speed of b as seen by m we mean

v (0) ¥ ang?(tr, (b)),
cf. Figure 7.

The formula v,,(b) = a will abbreviate that
trm(b) € Eucl(n,F)  and ang?(tr,, (b)) = a.

t trm(b)
A
T (b)), (b)) =1
ﬁ\ ,//
vm(b) <1 L b (b2)
7’ ’I"m
450/-\ //, 2
/// \ Um(b2) S .
2 T

Figure 7: Traces and speeds.

In Figure 7, the line tr,,(b) illustrates the life-line of a body b (in case n = 2).
The acronym “tr” stands for “trace”. If tr,,(b) = {(t,z,y,2) : t € F}, then m
always, at each time instance t € F, sees b at location (z,y, z), i.e. m sees the body
b at rest at location (z,y, z). Thus, tr,,(b) is a vertical line (a line parallel with the
time axis), i.e. v,,(b) = 0, means that “b is at rest, as seen by m”. Similarly, the
bigger v,,(b) is, the more “speed” b is moving with, as seen by m, cf. Figure 7.

As we said v, () is called the speed of b as seen by m. To be more precise it is
the square of the usual speed (since we used ang? instead of ang). The reason for
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using the square of quantities (in place of the original quantities) is that we do not
want to assume that square-roots exist in F. So, speed is a scalar (i.e. element of
F). As opposed to speed, the velocity ¥,,(b) of b as seen by m is an (n — 1)-vector,
i.e. Un(b) € " 'F, defined as follows (cf. Figures 8, 9). Let 9 be a frame model.
Let m € Obs and b € B such that tr,(b) = ¢ ={r+a-s : a€ F} € Eucl, for
some 7 and s # 0. Assume that s, > 0. Then

T (D) 70 (0) & (51/50, -+ ., Sn_1/50) (= (51, -, 5n1)/50).

If So = 0 then
Tn(0) € {a-s:a€F} .52

If sp = 0, then o(m)(b) is infinite (i.e. v(m)(b) = c0), therefore we cannot represent
Um (b) as a finite vector. Therefore, the information content of i, (b) = ¢ (where £ is in
the space part of "F') remains that b is moving in direction £ with infinite speed both
“forward” and backward”. We note that the speed v,,(b) is the (square of) distance
covered by b in unit time; while the velocity @, (b) is the vector representing the
change of location which happened in unit time, see Figure 8, assuming v,,(b) # oo.
For more on the distinction between speed and velocity cf. e.g. Gardner [98, p.7].

We are ready to postulate axioms Ax2-Ax6.

Ax2 ObsU Ph C Ib.

That is, observers are inertial bodies; and so are photons.

Ax3 (Vh € Ib)(Ym € Obs) (trm(h) = G).

That is, the life-line of any inertial body A as seen by any observer m must be
a “line”.

Ax4 (Ym € Obs) (trm(m) =t (=Fx "*1{0})).

Ax4 states that the life-line t¢r,,(m) of an observer as seen by itself is the
0-th axis (the time axis). Thus Ax4 says that each observer sees itself to
be a body at rest (not moving) at (space) location (0,...,0). In particular,
U (m) = 0. This is one of the basic axioms of relativity theory. This was a
“relativistic axiom” already before Einstein.®® It expresses that each observer

62We note that the so = 0 case of this definition in not important (i.e. we could have said that
Um (b) is undefined if sg = 0).

63Sometimes a slightly stronger form of this is referred to as Galileo’s relativity principle.
Galileo’s relativity principle says a bit more than just Ax4. Cf. e.g. Geroch [101], pp.32-39,
in particular §3 entitled “The Galilean View”.
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trm(b)

Um (), its length is vy, (b)

Figure 8: Speed and velocity.

Acceleration
is a vector

Um (b) = Velocity
is a vector

vm(b) = Speed =
(square of) length of vector ¥, (b)

Figure 9: Velocity, speed, and acceleration represented purely in space (the time
dimension is suppressed). (Of this figure, acceleration will be relevant only in §8.)
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Ax5

Ax6

can “think” that he is at rest and all other bodies are moving. The first step
toward general relativity theory will be that we will extend Ax4 to accelerated
observers, too%: then even accelerated observers can “think” that they are at
rest (and then, in a poetic language, gravity will come into the picture to
explain certain strange behavior of other bodies).®> On an intuitive level, the
principle on which special relativity is based is quoted as “all inertial observers
[or reference frames| are equivalent” (at this point our future AxE will play
a role, too); and the principle of general relativity is quoted as “all observers
[including the accelerated ones| are equivalent”. (Here “equivalent” means
only that each of these observers may imagine that he is not moving and it is
the rest of the universe which moves, accelerates etc.)

(Vm € Obs)(Vl € G) (angz(f) <1 = (3k € Obs) £ = tr,,(k) and

ang?(¢) =1 = (Iph € Ph) (= trm(ph)).

Ax5 makes sense only in the presence of Ax1 (because ang®(f) is not defined
otherwise). Then it states that we have the tools for (performing) thought-
experiments: on any appropriate straight line we can assume there is an ob-
server; and the same for photons.®® Later we will weaken the first part of Ax5
to say that there is a positive ¢ such that in every direction for every positive
A < c there is an observer going in that direction and with speed A. (I.e.,
(Vm)(3c > 0)(Vf)[ang®({) < ¢ = (Fk € Obs)t = tr,(k)]. Cf. Ax(5nop)~+
in §5, pp.761, 763.) This weaker form of the axiom is sufficient for many
purposes.

(Vm, k € Obs) <Rng(wm) = Rng(wk)>.

Ax6 states that all observers see the same set of events. I.e. whenever an
observer m sees a set F of bodies at some time point ¢ and space location s,
any other observer k£ must see the same set E of bodies at some time point
t' and space location s'. In still other words, the same events “exist” or “are

64 According to e.g. Friedman [90], p.5, general relativity begins with the study of accelerated ob-
servers (or accelerated reference frames) (at least when they are treated “equivalently” with inertial
reference frames). In this sense, our chapter 8.1 deals with the (first steps of the) generalization
of our (logic based) method from special relativity to general relativity.

65Cf. e.g. p.147 and Figure 48 in the discussion of the twin paradox in §2.8.

66In a later version of the present work we will see a (first-order) modal logic refinement (or
variant) of our axioms (and formalism) in which Ax5 sounds “less radical” (that is, sounds more
convincing intuitively). The modal version of Ax5 avoids making space-time “overcrowded” with
observers and photons.
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available” for all observers. Ax6 is quite strong. In particular, it will not be
true in our theory of accelerated observers (or in general relativity).5” Later
we will weaken Ax6 to Ax6q such that the new version will be true for our
accelerated observers, too. The new version Ax6qg will say that if m sees an
event F on the trace of the observer k, then k itself sees this event FE.

Our last axiom in the present section is the most distinguished one in relativity
theory:%®

AxE (Vm € Obs)(Vph € Ph) v,,(ph) = 1.

AXE (“Einstein’s axiom”) states that the speed of a photon ph, as seen by any
observer m, is always 1. In Basax, we choose the “speed of light” to be 1. This
is a rather ad-hoc decision, the important part of AxE is that all observers
see all photons as having the same speed. Later, e.g. in §4, we will weaken
AxE in several ways.®® We will see that already most of these weak forms of
AXE will be enough for proving the majority of the important consequences
of Basax. In particular, we will see that the weaker postulates saying that
in each direction there is a photon going forwards and that “photons do not
race with one another like bullets do” in place of AXE are already sufficient
(together with the other axioms, of course) to prove most of the interesting
theorems of special relativity theory.

Definition 2.2.3 (Basax) We define

Basax & { Ax1, Ax2, Ax3, Ax4, Ax5, Ax6, AXE },

where the axioms Ax1-Ax6, AXE were defined above.

670ne reason for this is that if observer k accelerates (in m’s world) so fast that its clock will
never reach 12 o’clock as seen by m, then the “event” seen by k at 12 o’clock (or after 12) will not
be “seen” by m.

680ne could refer to e.g. the Michelson-Morley experiment for motivation, but instead of doing
that, we refer to the introduction of Friedman [90].

890ne of these says that each observer m sees all photons with the same speed, another one is
the Reichenbach-Griinbaum version of AxXE etc. Cf. §4. Moreover, following an idea of Gyula
David [71], in §5 we will see a variant of Basax which (proves most of usual relativity and) does
not need AxXE at all.
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Here is a summary of the axioms in Basax:
Ax1 G = Eucl(n,F).
Ax2 ObsU Ph C Ib.

Ax3 (Vh € Ib)(Ym € Obs) (trm(h) € G).

Ax4 (¥m € Obs) (trm(m) —7 )

Ax5 (¥m € Obs)(VL € G) (angz(f) <1 = (3k € Obs) £ = try, (k) and
ang?({) =1 = (Iph € Ph) L= trm(ph)).

Ax6 (Yk,m € Obs) <Rng(wm) = Rng(wk)>.

AXE (Vm € Obs)(Vph € Ph) v,,(ph) = 1. <

It follows from Ax2,Ax3 that the trace of any observer is a line. Since we will
often use this conclusion, we are giving it a name:

(geod) (Vm,k € Obs) tr,(k) € G.

Statement (geod) together with Ax1 imply that ¢r,,(k) is a Euclidean straight
line. Later, Ax1 will be generalized so that G will be a more general geometry-like
structure, e.g. G might consist of the geodesics of some structure. Beginning with
§8 where we will have accelerated observers too, (geod) will be restricted to inertial
observers.

The world-view function w,, can be recovered from the family of traces of all
bodies (from (tr,,(b) : b € B)), and the world-view-relation W can be recovered
from all the world-view functions (from {(w,, : m € Obs)). Thus we can “represent”
the function w,, by the world-view of m, which is just the indexed family
(trm(b) : b € B), and which, in turn, we represent by drawing the traces of bodies
that we are interested in. See Figure 10.

Assuming Basax, we can (and will often) draw the world-view of an observer m
as shown in Figure 11. In this figure and in similar pictures, most often we simply
write the name of a body h instead of writing out the long expression tr,,(h), when
indicating the life-line of h (as seen by m).
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Figure 10: World-view of m.

Figure 11: The world-view of an observer m in a model of Basax.
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We will sometimes use the following.
FACT 2.2.4

(i) Assume Basax. Let h € Ib be an inertial body with v,,(h) # oo. Then
trm(h) : F — ""'F is a function everywhere defined on F, where we think of

F as the time axis t and of " 'F as “space”.™

(ii) Statement (i) above remains true if we replace Basax with {Ax1, Ax3}.

We omit the proof. 1

By the space part S of ™F we understand the subspace S aef
{{0,q1,...,qn_1) : ¢q€™F} (= {q € "F : g0 = 0}). Throughout chapter 2 we
will zdentify S with ""1F to simplify notation. In later chapters we do not identify
S with "1F.

Remark 2.2.5 (Terminology: Observers, reference frames, “slim observers”, “fat
observers”)

We call the (sometimes partial™) function w,, : "F — P(B) the world-view func-
tion of observer m.

(i) Some authors call w,, the reference frame of observer m, cf. e.g. d’Inverno [75].
We could have used that word instead of world-view function, it is only a historical
accident that we chose the other name.™

(ii) Some authors eliminate “observers” and talk only about reference frames (i.e.
world-view functions) w’s (with w : "F — P(B)), instead. This is absolutely
justified, because given a world-view function w : "F — P(B) we can recover an
observer, call it m, from w such that, after some modifications, basically w will
be the world-view function of m. In more detail: We “create” a new body m by
postulating that the set of events in which m is present should be w[t]. Next, we
expand all the world-view functions of our model with this new m. With this all
properties of m as a body are defined. Now, we raise m to the rank of being an

"OMore precisely, we can regard the relation tr,,(h) C "F as a function tr,(h) : F — "~'F by
identifying F x "~'F with "F.

"w,, will become a partial function in much later chapters e.g. in the chapter on accelerated
observers, §8. Also, when preparing the present framework for generalization to general relativity
we will make w,, partial.

"2We think, that in mathematics the choice of words is not so terribly important; the important
thing is the definitions we supply for them, and the way we use the so defined terms in the
subsequent discussions.
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observer by postulating that the world-view function w,, of m is defined to be w.
This construction shows that a reference frame w completely determines an observer
m such that m’s world-view function is w. The above illustrates that if we wish
we could forget the observers m and talk about reference frames w instead. Then
instead of a set Obs, another set Rfm of reference frames would be given as one of our
primitives. (We could let Rfm := {w,, : m € Obs}.) The above train of thought
shows that our approach and the “only reference frames” approach are equivalent
(inter-definable) and it is not important whether we start out with observers (Obs)
or reference frames (Rfm) in our basic vocabulary.

(iii) Our observers are “slim” in the respect that their life-lines (or traces) are
thin curves in "F. This again is not important, it is again only a choice of words:
Namely, we could identify observer m with its world-view function w,,, and then it
would cease to be “slim” in the above sense. In passing, we also note that instead
of a single body m, we could have used as an observer m together with a set K of
bodies [slim observers] such that (Vk € K) (¢r,,(k) would be parallel with #).”™ But
since the final mathematical effects would remain™ more or less the same™ (via
interdefinability), we decided to stick with an observer being a single body m € B
and whenever we would need a “fat observer” like K above, we will simply recover
it from the reference frame (i.e. world-view) w,, of m.

<

Remark 2.2.6 Throughout, we will use the standard practice from logic of intro-
ducing new relation and function symbols by defining them, and then treating them
as if they were symbols of our original language. E.g. we defined the function w,,
and then we used it in our axioms (as if it was part of our language). We believe
that translating the so enriched language back to the original first-order language is
straightforward. For such translating algorithms see e.g. Monk [197, pp. 206—210]
or Bell-Machover [44, p.97].

<

"3In this case we could think of an element k of K as a “partner” of m representing a time-like
coordinate-line for m. Then m € K could be called the “central partner” in (m,K). Such an
observer (m, K) could be visualized as a cloud of “particles” floating in space and each particle
having a clock. Etc.

Tat least from the point of view of questions investigated in this work

75 As we said, on the long run we allow w,, : "F — P(B) to be a partial function, i.e.
Dom(wy,) C "F is allowed.
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2.3 Some properties of Basax, world-view transformation

In this section we introduce the notion of world-view transformations. We discuss
some simple consequences of our basic axioms — to get a feel for them — and then
we investigate those functions that occur as world-view transformations in models
of Basax. We close this section with listing some basic properties of Basax as a
logical theory (like consistency, independence, categoricity).

Definition 2.3.1 (world-view transformation)
Given m, k € Obs, we define the world-view transformation f,; as follows:

def _
fouk = Wy © wkl.

We note that wy ! is a relation, hence the composition w,, o w;™! is again a

relation, cf. the definition of composition on p.26. Thus f,,; C"F x "F and

fok = {(p, @) €"F X "F 1 wn(p) = wi(q) },

see Figure 12. Thus f,,; is a binary relation on the coordinate system "F; two
points are f,,;-related when m and k see the same “events” at those points. See also
Figure 13.

"F

Figure 12: The world-view transformation.
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The name “world-view transformation” suggests that f,; is a function, i.e. to any
p € "F there is at most one ¢ such that p is f,,;-related to g. This indeed will be the
case in models of e.g. Basax, see Prop.2.3.3(v).” In arbitrary frame models, f,,x
can be an arbitrary binary relation.”” As we said, in models of Basax, f,,,; cannot
be an arbitrary binary relation, e.g. it has to be a function. Towards the end of
this section we characterize those functions that occur in models of Basax(2) as
world-view transformations cf. Thm.2.3.12, and also there we give some hints for
the n > 2 case.

Figure 13 illustrates the world-view transformation f,,; for the 2-dimensional
case. We drew the picture under the assumption that f,,; : 2F — 2F, and we
indicated two copies of 2F, the usual coordinate system way. The world-view of m

world-view of m

world-view of k

Figure 13: World-view transformation. The event when “m, k and ph are together”
happens at 0 both for m and for k, hence f,,;,(0) = 0. The event when ph and b are

!/

together happens at p for m and at p’ for k; thus f,.x(p) = p'.

76 .1, will be a partial function in all of the axiom systems, besides Basax, studied in the present
work.

""By this we mean that for any ordered field § and a binary relation R C "F x "F, there are a
frame model 9t and two observers m, k in 9% such that R = f,.
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is illustrated in the top coordinate system, and the world-view of k is in the bottom
coordinate system (we did not represent in the picture all traces and all points of
the world-views).

As a warm-up we begin with simple statements about our axiom system Basax.
Let us recall that Eucl = Eucl(n, §) is the set of straight lines defined on p.45.

Notation 2.3.2 We define the sets of n-dimensional slow-lines SlowEucl and
photon-lines PhtEucl over an ordered field § as follows.

ef

SlowEucl &' SlowEucl(n,§) ¥ {¢€Eud(n,§) : ang?(6) <1},
def

PhtEud ¥ PhtEucl(n,§) % {¢€Eud(®n,g) : ang?(¥)=1}. <«

In connection with Prop.2.3.3(x) below, let us recall from p.27, that Id is the
identity function on "F.

PROPOSITION 2.3.3 Let 9 be a frame model of Basax. Then the following
are true for all m,k,h € Obs, ph € Ph and b € B.

(i) ObsNPh =0, i.e. no photon can be an observer.
(ii) trm, (k) # trm(ph), i.e. no observer can travel together with a photon.
(iii) vn(k) #1, i.e. the speed of an observer is never 1.

(iv) The world-view function w,, is an injection (i.e. one-one). That is, no ob-
server “sees” the same event at two different space-time locations.

(v) The world-view transformation f,,;, is a bijection (i.e. one-one, defined on "F
and onto "F).

(Vi) wm = fop 0o wg. Le. we get the world-view of m from that of k by “applying
for” to it; T 1s the “conversion” between m’s and k’s world-views.

(vii) f,.x takes the trace of a body as seen by m to the trace of the body as seen by
k, i.e. fogltry(b)] = tri(b).

(viii) . takes slow-lines to straight lines, i.e. if £ € SlowEucl, then f,,[¢] € Eucl.

(ix) fx takes photon-lines to photon-lines, i.e. if £ € PhtEucl, then
frk[€] € PhtEucl.

(%) foum =14, frp = for, and fop = Fon © Fr.
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All the statements in Proposition 2.3.3 can be expressed with (first-order) formu-
las in our frame-language. We note that none of (i)-(ix) in Prop.2.3.3 is true without
assuming (at least part of) Basax. We invite the reader to construct frame models
in which these statements fail. We will prove the items in Prop.2.3.3 one-by-one, so
that we can single out the axioms we need for proving them.

Claim 2.3.4 {Ax4,AxE} &= Obsn Ph = 0.

Proof: Assume that m € Obs N Ph. Look at v,(m). By Ax4 we have that
Um(m) =0, and by AXE and m € Ph we have that v,,(m) = 1. Since in all fields 0
and 1 are different elements, we reached a contradiction. 1

Claim 2.3.5 {Ax4, Ax6, AXxE} = tr,, (k) # tr,(ph).

Proof: Assume that tr,, (k) = tr,,(ph). Then try(k) = ¢ and vi(ph) = 1 by Ax4
and AXE; in this connection note that vg(ph) = 1 implies that ¢ry(ph) € Eucl by
the convention on p.47. Thus try(k) # try(ph). Then k sees an event in which % is
present but ph is not present (namely such is wg(p) for any p € trg(k) \ tri(ph)).
However, m does not see such an event by ¢r,,(k) = tr,,(ph). This contradicts Ax6,
proving the proposition. See Figure 14. 1

t t
k e
. ph
‘ T
trm(k) = trm(ph) tri(k) # tri(ph)
m’s world-view k’s world-view

Figure 14: An observer cannot travel together with a photon.

Claim 2.3.6 {Ax1, Ax4, Ax5, Ax6, AXE} = v, (k) # 1.
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Proof: Assume that v,,(k) = 1 for some m, k € Obs. Then ang?(tr,,(k)) = 1, thus
by Ax5, tr, (k) = tr,(ph) for some ph € Ph. This contradicts Claim 2.3.5. &

Claim 2.3.7 {Ax1, Ax5} = (Vm € Obs)(w,, is an injection).

Proof: Let m € Obs and assume that p,q € "F, p # q. Then, by Ax1 and by the
properties of Eucl(n,F), (3¢ € G)(p € £ N ¢ ¢ £ A ang*(f) < 1). By Ax5,
(3k € Obs)t = tr, (k). For such a k, k € w,,(p) but k ¢ w,,(q). B

Claim 2.3.8

(i) {Ax1,Ax5,Ax6} = (.. is a bijection f,, : "F — "F).

(ii) {Ax1, Ax5} = (f,.x is a (possibly) partial one-to-one function ).
(iii) {Ax1,Ax5, Ax6} & (frum = Id, frur = for ok = foun © fri)-

Proof: That f,,; is one-to-one follows from Claim 2.3.7. That f,,; is defined every-
where and is onto "F follows from Ax6. f,, = Id, f; = f,:,z and fx 2 foun © fhi
follow from the definition of the world-view transformation relations. Assume
Ax1,Ax5,Ax6, let p € "F, and f(p) = ¢, i.e. wy(p) = wi(q). By Ax6 there
is p' € "F such that w,(p) = wi(p'). Now fon(p) = p' by wn(p) = wi(p') and
fre(p) = ¢ by wi(p') = wim(p) = wi(g). Thus fux(p) = fax(frn(p)). B

Remark 2.3.9 By Claim 2.3.8 we have that if the set Wtm © Wm™

{fmk :m,k € Obsm} of the world-view transformations is closed under compo-
sition o, then (Wtm, o, !, Id) forms a group (under assuming Ax1,Ax5,Ax6). In
Def.3.6.11 (p.269) we will define a class GM of models of Basax, such that for
some M € GM we have that Wtm is not closed under composition.”® However, in
section 3.9 we will introduce a “symmetry axiom” AxO1 and we will see that if
I = Basax U {Ax0O1}, then (Wtm™, o, !, 1d) is a group.

<

The proof of Prop.2.3.3(viii) consists of noting that every slow-line is the trace of
some observer k; as seen by m, and that ¢ri (k1) is a straight line. Similarly, the proof
of Prop.2.3.3(ix) consists of noting that every photon-line is a trace of some photon
ph; as seen by m (by Ax5), and that try(ph;) is a photon-line again (by AxE).
The proofs of Proposition 2.3.3 (vi), (vii) are similar to those of Proposition 2.3.3
(i)—(v), (x). We leave them to the reader.

"8For more on models 9 of Basax in which Wtm is not a group cf. section 3.10. Cf. also [259].
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By Claim 2.3.8(ii), in most of the situations we will investigate, f,,x will be a
function. This will remain so, even when we will study refinements of our axiom
system Basax, or even when we will omit some or most of our axioms, f,,; will be

at least a partial function "F O Dom(fy) M) "F. Therefore, we would like to use
the standard notation f,;(p) when p € "F as if f,,; were a (partial) function symbol.
But then (since in our original frame-language f,,, is only a relation symbol) we have
to define a translation mechanism ensuring that the formulas involving notation like
fk (p) remain formulas of our frame language. To ensure this we make the following
convention.

CONVENTION 2.3.10 We introduced f,,; as a binary relation symbol (in the
extended version of our frame-language). Since in models of Basax it is a function
(cf. Prop.2.3.3(v)), we will also use f,,;, as if it were a unary function symbol. There
is a well known practice of doing this; a precise translation algorithm can be found
e.g. in Monk [197, pp. 206-210] or Bell-Machover [44, p.97] (“Elimination of function
symbols”). However, later we want to treat theories where f,,;’s will be only partial
functions. Therefore, instead of the algorithms for translating total functions given
e.g. in Monk [197], we want to use a slightly more general translation algorithm
suitable for handling partial functions as well, see e.g. Andréka-Németi [27]. This
translation is quite intuitive: whenever we write “f,x(p)” we mean “f,; is defined
on p, i.e. there is a unique ¢ such that (p, q) € .k, and f,,x(p) denotes this unique

7

q’.

In more detail: Let 7, o(p) be terms and R be a relation symbol like “=" or “<”
in our frame language (expanded, for convenience, with the language of the vector
space™ "Fy). Let us recall that p, ¢ are variable symbols ranging over "F. Then an
atomic formula of the “shape” f,;(p) = 7 means

g ((p,q) € fmr) A g ((p, @) € A g =7),

where ¢ is a new variable and “3!” means “there is a unique”. That is, the new
formula says, f,,; is defined on the argument p and is a function on {p} and

fmk(p) = 7.5

Similar convention applies to more general atomic formulas like R(f,x(p),7) or
a(fmk(p)> = 7. In both cases the new formula begins with 3¢({p, q) € f.x). E.g.
the translated version of the second formula is

g ((p,q) € frx) A g ((p,q) € fre A a(q) =7),

™ As we already said, "F, formulas are translatable to our frame language.
80The first subformula 3lq {p,q) € f,x means, simply, that f,,;(p) is uniquely defined.
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where ¢ does not occur in 7 or o(p).

Let Tr denote the “translation function” which we are in the process of defining,
which is defined on formulas, and which eliminates function-symbol style occurrences
of the f,,x’s. So far we described how to translate atomic formulas, call them ¢;,
possibly containing f,,;’s as function symbols to new formulas Tr(y;) in which f,,;’s
do not occur as function symbols (and hence Tr(¢;) is truly in our frame language).
Now, if we want to translate a complex formula, call it 1), the same way (i.e. eliminate
using f,,x’s as functions), then first we translate all the atomic formulas ¢; occurring
in 7, and then we put together the translations exactly as 1/ was put together. E.g.

Tr(p A ) = Tr(p) A Tr(y), Tr(—¢) = = Tr(p), Tr(3zp) = 3z(Tr(p))-

<

Now, we turn to characterizing the world-view transformations in models of
Basax(2). Figures 15 and 16 illustrate these transformations, and give perhaps
a hint for why we will call such transformations later “rhombus transformations”.
Their relationship with the literature (Lorentz transformations, Poincaré transfor-
mations) is discussed in §2.9.8' In Figure 16 the world-view transformation f,, is
illustrated in such a way that the world-views of both k£ and m are drawn in the
same copy of 2F. I.e. k’s coordinate system is drawn into m’s world-view, cf. also
Figure 15.

Before giving the characterization (of the world-view transformations), we cite a
theorem from the next chapter.

THEOREM 2.3.11 Assume Basax. Let m,k € Obs. Then f,,; takes straight
lines to straight lines, that is, (V£ € Eucl) f,x[¢] € Eucl.

We will prove the above theorem as Thm.3.1.1 in §3.1. 1

Throughout, by a transformation f (of "F) we mean a function
f:"F — "F.3 By a photon-preserving transformation f (of "F) we mean a bi-
jective transformation such that both f and f~' take photon-lines to photon-lines.
Further, by a collineation f (of "F) we mean a transformation (of "F) which takes

81Using that terminology, world-view transformations in models of Basax are exactly the
Poincaré transformations composed with expansions and with functions induced by field-
automorphisms. Cf. Theorem 2.9.4.

820ften we write mapping or map instead of transformation like e.g. photon-preserving mapping
or linear mapping.
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z z
Coordinate system of k
as seen by m

World-view of m

t t
m k m o\ k

Coordinate system of m

World-view of k as seen by k

Figure 15: World-view transformation in two space-time dimensions assuming
Basax.
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Figure 16: Two-dimensional word-view transformation in Basax(2).

fkm [i‘]

0 (0,1)

Figure 17: Two-dimensional world-view transformation in Basax(2).
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straight lines to straight lines, i.e. which preserves Eucl. We recall from the stan-
dard literature of algebra that by a linear transformation of a vector space "F we
understand a homomorphism of the one-sorted vector space "F; into itself, cf. e.g.
Halmos [122]. (The homomorphisms of the two-sorted vector space "Fy into itself
are something else, cf. Remark 2.3.13.)

THEOREM 2.3.12 (Characterization of world-view transformations in
Basax(2).) Let § = (F, <) be any ordered field, and f:?F —» *F.

1. Assume first that F has no (nontrivial) automorphisms®® and £(0) = 0. Then
(1)—(iii) below are equivalent.

(i) f is a world-view transformation in some model of Basax(2) whose or-
dered field reduct is §.3*

(ii) f is like on Figures 15 and 16, i.e. f is a bijective linear transformation of
the vector-space ?F such that f[t| and f[Z] are mirror images of each other
w.r.t. a photon-line passing through 0. Moreover, the vectors f({1,0)) and
f((0,1)) are of the same length.%® Cf. Figure 17.

(iii) f is a photon-preserving bijective collineation (i.e. f is bijective, takes
stratght lines and photon-lines to straight lines and photon-lines respec-
tively).

2. In the more general case when F is permitted to have (nontrivial) automor-
phisms, we still have that (i), (i) above are equivalent (with each other and)
with both (1)’ and (ii)* below:

(ii)’ f = yog where g is like f was in (ii) above and there is an automorphism
o :F— F of F such that v(p) = (¢(po), ¢(p1)) for all p € F?. %

(ii)* f is a bijective collineation such that £((1,0)) and f({0,1)) are mirror
images of each other w.r.t. a photon-line passing through 0. Le. f is like
on Figures 15-17.

83 An automorphism of a structure is an injective and surjective homomorphism of that structure
into itself (cf. p.160 for more detail). Let us note that the property of 9 that “F™ has no
(nontrivial) automorphisms” cannot be expressed by a set of (first-order) formulas in our frame-
language, since this property is not preserved under taking ultrapowers. We also note that the
field of reals (real numbers) and the field of rational numbers enjoy this property.

841e. (IM € Mod(Basax(2))) [(3m, k € Obs) f = f,, and F* = F].

85We use pZ + p? for the length of p € 2F. (We do not take square roots because no axiom
ensures their existence yet.)

86To help the reader’s intuition we note that yog on the points with rational coordinates, like e.g.
p = (1,1), is the same as g. (Let us recall that, for any § the rational numbers can be considered
as elements of §.)
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3. If in 2 above we drop the assumption f(0) = 0, then (ii)” and (ii)* have to be
changed to (ii)” and (i)™, respectively, below.

(i1)” f is a composition of a function f' which is like in (i)’ and a translation,
i.e. f=1"o1 wheref’' is exactly like f was in (i)’ and 7 : 2F — %F 1is
a translation®.

(ii)™ f is a bijective collineation such that £((1,0)) and f({(0,1)) are mirror
images of each other w.r.t. a photon-line passing through £(0).

Before proving Thm.2.3.12, we include the following two remarks.

Remark 2.3.13 The bijective collineations of "F came up in the above theorem
(and they will keep on coming up later, too). Therefore, we note that the 0-
preserving bijective collineations are exactly the automorphisms of the two-sorted
version "F5 of the vector space "F.

Another characterization (of the bijective collineations preserving 0) is that they
are exactly the maps obtainable as a composition of a bijective linear transformation
(i.e. an automorphism of the one-sorted version "F; of the vector-space) and a map
induced by an automorphism of the field F. Cf. Lemma 3.1.6 on p.163.

<

Remark 2.3.14 The above theorem (characterizing the f,,;’s) involves field
automorphisms. Intuitive (as well as mathematical) discussion of field automor-
phisms with examples, pictures, and their roles in Basax models, in collineations
and in the world-view transformations (the f,,;’s) will be discussed in a separate
item in §3 in a later version of the present work. We note that a partial version of
the just promised dicussion (of field automorphisms etc.) can be found in the 1997
October 27 version of the present work, pp. 25—-26. The just promised discussion
will include e.g. the following: (i) In any Basax model 9, if F is Archimedean®®
and Euclidean then the f,,;’s are affine transformations®. (ii) There are Basax(2)

87T A translation is a map of the form (p+gq : p € "F), where q € "F is fixed.

88 ¥ is Archimedean iff to each positive x € F there is a natural number ¢ € w which is larger
than z, i.e. o > z. (We note that for every ordered field the set w of the natural numbers can
be considered as a subset of the ordered field, or in more careful wording w is embeddable into
the ordered field in a natural way.) For brevity, by “Archimedean field” we mean “Archimedean
ordered field”. We further note that § is Archimedean iff it is embeddable into (i.e. isomorphic to
a subfield of) .

89 Affine transformations are linear transformations composed with translations, as we will discuss
this in §2.9.

9For undefined terminology the reader is referred to the Index.
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models with Archimedean ordered field reducts containing non-betweenness preserv-
ing hence non-continuous and not affine world-view transformations.”® (iii) If, to
Basax(2), we add the axiom that the f,;;’s are betweenness preserving then we will
obtain a strictly stronger and natural version (of Basax(2)). (For n > 2, Basax
implies that the f,,;’s are betweeness preserving, cf. Prop.6.6.5 on p.1028). (iv) We
guess that in Basax models the assumption that the f,,;’s are betweenness preserv-
ing implies that they are continuous, but we did not have time to check this. (v)
There are Basax models with Euclidean ordered field reducts in which some of the
fuk’s are not affine, for every n > 2. (vi) There are Basax models with Euclidean
ordered field reducts where some of the f,,;.’s are continuous collineations which are
still not affine transformations. This means that if we add to Basax continuity of
the f,,x’s as an extra axiom we still cannot force all the f,,;’s to be affine. (vii) If
n > 2 and § is a reduct of a Basax model then all the automorphisms of F are order
preserving, i.e. using a standard notation of universal algebra Aut(F) = Aut(F), cf.
Corollary 6.7.12 on p.1142.

<

Proof of Thm.2.3.12: The main idea of the proof is illustrated in Figure 18.
We note that a more carefully polished proof will be included at a later stage of
development.

Assume first that F has no (nontrivial) automorphisms and f(0) = 0.
(i) = (iii): f is a bijection and photon-preserving by Prop.2.3.3(v),(ix); and f is a
collineation by Thm.2.3.11.

t t
/—f\ (1,1), 7
(1,0) 1= 1,1 Ly~
(0\/ /’ .\/\ N
Vo 7 ~ £(0,1)
<070) 4 N <07 1) — f<050> / N —
7 \ :E 2 = N :E
phy phy phy phy

Figure 18: This is the main idea of the proof of Thm.2.3.12.

91We note that “affine = continuous = betweenness preserving” (for f,,;’s of Basax models if

g =M.
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(iii) = (ii): Since F has no (nontrivial) automorphisms and f(0) = 0, a bijective
collineation is a linear transformation, cf. Remark 2.3.13. If we do not assume that
F has no (nontrivial) automorphisms — but we still assume f(0) = 0 - then f is like
in (ii)’, i.e. f is a composition of a linear transformation with a map coming from a
field automorphism, cf. Remark 2.3.13. If we do not assume f(0) = 0 either, then f
is like in (ii)”, i.e. we have to compose with a translation also. The main idea of the
rest of the proof is illustrated in Figure 18.

For any two distinct points p,q € 2F, pg denotes the Euclidean line containing
both p and gq.

Consider the two photon-lines (in Figure 18) illustrated on the left-hand copy
of 2F, they are (0,0)(1,1) and (1,0)(0,1). These two photon-lines are taken to
f{0,0)f(1,1) and f(1,0)f(0, 1).%2

These last two are photon-lines because f is photon-line preserving. They can-
not be parallel, because the original two photon-lines are not parallel. Thus they
have to be orthogonal (in the usual Euclidean sense) to each other because we are
in dimension 2. The two pairs of lines f(0,0)f(1,0), f(0,1)f(1,1) and f(0, 0)f(0, 1),
f(1,0)f(1,1) are parallel because the original lines are so. Thus the square with
vertices (0,0), (1,0), (0,1), (1,1) is taken to the parallelogram with vertices
(0,0), f(1,0), f(0,1), f(1,1). The latter parallelogram is indeed a rhombus, be-
cause its diagonals are orthogonal. This implies (ii).

(ii) = (i): We will prove this in the next section, as Thm.2.4.2. 1

.EI

]

Figure 19: World-view transformation in three space-time dimensions, cf. Figures 15
and 16.

928ometimes we write fp for f(p) like £(0,0) for f((0,0)).
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A large part of Thm.2.3.12 remains true in higher dimensions (i.e. for Basax(n)
in place of Basax(2)), e.g., under a mild extra assumption®® on §, (i) and (iii) remain
equivalent, c¢f. Thm.3.6.16 on p.273. We now generalize the kind of transformations
described in (ii) (of Thm.2.3.12) to arbitrary dimensions n > 2; we will call such
transformations “rhombus transformations”. Cf. Figures 19, 20.

In dimension 2, the trace of an observer, as everything else, is in the plane of the
time-axis and the z-axis. In higher dimensions this is not so. Below we will single
out a special case in higher dimensions that resembles the 2-dimensional case, and
we will call it “standard configuration”.

Notation 2.3.15

(i) For every i € n, 1; € "F denotes the unit vector pointing in direction of the
1’th coordinate axis Z;, that is,

Usually, we will write
14,14,1,,1, for 1g,14,15,13, respectively.
(ii) Plane(, ) denotes the plane determined by lines ¢ and Z, that is,
Plane(t, z) d:ef{p €e"F: (Vl<ien)p,=0}.
Le. Plane(t,z) = F x F x "2{0}.
<

We are ready to define standard configuration. We will write about the intuitive
meaning of standard configuration after the definition.

93This extra assumption is that the square roots of positive elements exist in § (i.e. that § is
Euclidean).
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PUSH

\ PUSH

Preparation for drawing 3-dimensional f,,.

Figure 20: 3-dimensional world-view transformation f,,; in “standard” configura-
tion, cf. Figures 14, 16. For the notion of standard configuration cf. Def.2.3.16 and
Figures 21, 22.
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Definition 2.3.16 (Standard configuration)

(i) Let 9t be a frame model. Let m, k € Obs. We say that m and k are in standard
configuration if

fnk[Plane(t, z)] = Plane(t,z) and (V1 <i€n)(30 <X € F)fu(1;) =X-1;.

(ii) We say that m and k are in strict standard configuration if in addition to the
above we have f,,(1;), > 0.

See Figures 21, 22. Cf. also Figure 20.

Figure 21: Standard configuration. Here T and ¢ are space axes of m while Z' and
y' are space axes of k. The spatial coordinate system {Z',7'} of k is moving relative
to that of m.

The next proposition says that m and k are in standard configuration iff they
meet at 0, they see each other moving in direction 1, (forwards or backwards), and
they see each other’s unit-vectors other than #,7 as perhaps shrinking or growing
but pointing in the same direction.

PROPOSITION 2.3.17 Assume Ax1 — Ax5. Then m and k are in standard
configuration iff (i)-(iv) below hold.

(1) fmr(0) =0

(ii) trp,(k),tri(m) C Plane(t, Z)

(iii) If vy (k) = 0 then f,.[Z] C Plane(t, z)

(iv) Let 1 < i € n. Then f,(0,...,0,1,0,...,0) = f,.(0,...,0,X,0,...,0) for
some 0 < A € F.
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We note that Ax3 and Ax5 in the above Proposition 2.3.17 can be replaced with
their much weaker forms Ax3y and Ax(5nop)~* ie. with (Vk € Obs)[tr,(k) =
0 or tr,(k) € G] and with (3¢ > 0)(Vl)[ang*(£) < ¢ = (Fk € Obs)l = try,(k)]
respectively. Thus in later parts when we deal with weaker axiom systems, (i)-(iv)
in Proposition 2.3.17 will still give an equivalent definition of standard configurations
(because the weaker axioms that we mentioned will be included in all our weak axiom
systems).

We note that being in standard configuration is a symmetric relation, i.e. if m
and k are in standard configuration, then k£ and m are also in standard configuration.
Very often it simplifies the discussion if we assume that m and k£ are in standard
configuration. (Sometimes, in intuitive discussions we may assume that m and k
are in standard configuration without explicitly mentioning this.)

The reader is invited to contemplate Figures 15-20. They all represent cases
of a natural kind of transformations f : "FF — "F which we will call thombus
transformations, their set will be denoted by Rhomb, cf. Def.2.3.18 below. They
are generalizations of the kind of functions occurring in Thm.2.3.12(ii); they will be
strongly related to what we will call Lorentz transformations in standard configura-
tion, cf. Thm.2.9.6 on p.156.

Now we turn to a common generalization of the transformations illustrated in
Figures 15-20.

Definition 2.3.18 (Rhombus transformation, Rhomb)

Assume § is an ordered field and n > 2.

By a rhombus transformation (of "F)** we understand a bijective linear transforma-
tion f:"F — "F of the vector space "F satisfying (i)-(iii) below.

(i) f(1¢) and f(1,) are both in Plane(t,Z) and are mirror images of each other
w.r.t. a photon-line £ with 0 € ¢ C Plane(t, z).%

(ii) (Vi<ien) f(1;)=A-1;, forsome0 < )€ F).%

94(Qccasionally we mention this symbol *§. Since § is an algebraic structure, so is its Cartesian
power "§ (which happens to be a partially ordered ring). However, in this work, we think of "F
as a partially ordered vector space ("F, <) where the partial ordering < of "§ is induced by <%
of § in the usual, “Cartesian power” style. (In particular, the coordinate axes like  are linearly
ordered by this partial order < of "F.)

9This mirror image part means that if f(1;) = (po,p1,0,...,0) then either
f(lm) = <p17p07 07 LERE 0) or f(lz) = <_p17 —Po, 07 AR 0)

9 For completeness we note that more on the choice of A can be found in §§ 3.2, 3.5. However, we
emphasize that the above definition makes sense (i.e. is complete) without any further discussion
of the choice of A.

72



N

z
A
1
! T (k)
I —
1
|
1
e i ) ikl
}/
g/
Standard configuration
z z'
A
1
U (K) /
— )
Il
1
1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T
T \
z il == \
\
\
\
i,l

A nonstandard configuration, which in “animated” form is drawn below.
The picture shows a spaceship flying in the indicated “nonstandard” direction.

1

Figure 22: A standard, and a nonstandard configuration.
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(iii) f preserves the set of photon-lines, i.e. (V¢ € PhtEucl) f[¢] € PhtEucl.

Condition (iii) is needed only if n > 2. The role of (iii) is to regulate the choice
of Ain (ii).
Rhomb = Rhomb(n,§) denotes the set of rhombus transformations of ™.
<

We note that rhombus transformations will play a central role in proving that
Basax(n) is consistent, cf. §2.4 and §3.5.

Remark 2.3.19 Assume that square roots of positive elements of § exist, that is
(VO <z € F)(3y € F) x = y%. Assume n > 2. In chapter 3 we will see that®” for
any slow-line £ with 0 € ¢ C Plane(t, z) there is a thombus transformation taking ¢
to £. The idea will be that first we choose f(1;) and f(1,) so that they are mirror-
images of each other like in (i) of Def.2.3.18, and f(1;) is on £. Plane(t, ;) is the
plane determined by ¢ and Z; in an analogous way as Plane(t, Z) was defined. Then
for every i € n, i > 1 there is a unique A making (ii) (of Def.2.3.18) true so that
photon-lines in Plane(Z, ;) are mapped to photon-lines. These now fix our linear
transformation f. Finally, we have to check that (iii) of Def.2.3.18 is satisfied, i.e.
that every photon-line is mapped (by f) to a photon-line, and not only those in
Plane(, z;).

<

We note that if for observers m and k we have f,,, € Rhomb then m and k are
in standard configuration.

In §2.9 we will recall from the literature the so called Lorentz transformations. A
special case of the latter will be called Lorentz transformations in standard configu-
ration. The elements of the above introduced Rhomb will turn out to be generaliza-
tions of Lorentz transformations in standard configuration, cf. Thm.2.9.6 on p.156.
At this point we would like to suggest that the reader go through Figures 15-20 and
compare them with the definition of Rhomb.

Connections between the world-view transformations f,,; and Lorentz transfor-
mations will be discussed in §2.9. It will turn out that for establishing these connec-
tions it is enough to assume Basax. Roughly speaking, these connections will say
that every f,,; is a composition of a Lorentz transformation, an “expansion”, and a
map induced by a field automorphism.

97Cf. §3.2, cf. also Lemma, 3.8.46.
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Now we turn to listing some (logical) properties of Basax as a first-order theory.

According to our Convention 2.2.1(ii), Basax(2) denotes Basax in the 2-
dimensional case. Next, in section 2.4, we will see that Basax(2) is consistent,
that is, there exist frame models satisfying Basax(2). In sections 3.2, 3.5 we will
see that Basax(3) is also consistent, and that generally, Basax(n) is consistent for
all n > 3 (cf. Definition 3.5.5, Thm.3.5.6).

The next two properties “count as logical” in the sense that the above property
(consistency) concerns the existence of models while the next two properties concern
existence of special kinds of models (namely models with faster than light observers,
and models with special ordered field reducts).

We will see, in section 2.4, that there are models of Basax(2) in which there
are observers moving faster than light, while if n > 2 then there are no such models
of Basax(n) (i.e. for n > 2, Basax(n) = (Vm, k € Obs)v,,(k) <1, see Thm.3.4.1,
while Basax(2) = (Vm, k € Obs)v,, (k) < 1).

We will see that every linearly ordered field is the ordered field reduct of some
model of Basax(2), while the ordered field reducts of Basax(3) are exactly the
Euclidean ordered fields (i.e. those in which square roots of positive elements exist).
For n > 3, we do not know exactly which ordered fields occur as ordered field reducts
of Basax(n) models, but we know that all Euclidean ordered fields do occur.

An axiom system Th is called independent if no axiom of Th follows from the
rest of Th, i.e. if Th\ {Ax} & Ax for all Ax € Th. Basax(n) is independent for
every n > 1.9 We omit the proof of this, but cf. [16]. To make this independence
statement about Basax precise we have to make the formulation of Ax5 a little-
bit more careful. Namely we have to replace the subformula ang®(¢) < 1 with the
formula (¢ € Eucl A ang®(f) < 1); similarly for the subformula ang?(¢) = 1.

We now list some further logical properties of Basax.” We already stated that
Basax is consistent and independent. We will classify the models of Basax, and we
will see that there are continuum many non-elementarily equivalent models of Basax
(such that they have the same ordered field reduct §), cf. Thm.3.8.18. Hence, Basax
is not complete (even if we add the theory Th(gF), for any choice of §); Basax is
non-categorical in any cardinality even if we fix the reduct § (it has non-isomorphic

98Let Basax' be the axiom system obtained from Basax by replacing Ax2 and Ax3 with a
single axiom (Vh € Obs U Ph) tr,,(h) € G. Then Basax’(2) is independent, Basax'(3) is not
independent, and we do not know whether Basax'(n) is independent for n > 3. These properties
of Basax' are proved in [16], taken together with Thm.3.6.17.

99For the notions from logic used below (like categorical theory, complete theory, theory gener-
ated by a set of axioms etc.) we refer the reader to §3.8 and to §7.
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models [with a common ordered field reduct] of the same cardinality, for each infinite
cardinality), cf. Thm.3.8.18. We will prove that the theory generated by Basax,
i.e. the set of first-order consequences of Basax, is undecidable cf. §7. This will
also prove that Basax is not complete (hence not categorical in any cardinality,
since its models are infinite), because Basax is finite. We will define some natural
axioms, call them Axnob ' and Axisb and we will show that Basax U {Axnob}
is complete'® (cf. §3.8), while BasaxU {Axisb} is hereditarily undecidable, thus no
finite extension of it can be complete, cf. §7.12 Moreover, the conclusion of Gédel’s
second incompleteness theorem also applies to Basax U { Axisb}.

Definability issues related to Basax and its variants will be discussed in §6.7. In
more detail, in §6.6 we will see that Basax admits a nice “duality theory” acting
between models of Basax and certain geometries.!%® This duality theory involves,
among others, “representation theorems” (in the Tarskian sense!®*). So in a sense
Basax admits a kind of “geometrization”!%. Studying this duality theory will lead
us (in §6.7) to definability properties of Basax (and its geometric counterpart) in
the sense of the chapter of model theory called definability theory.

TRUE

Basax
theorems

Formulas independent
from Basax.

negations
of Basax
theorems

FALSE

The Boolean algebra of our frame language

100y be precise, we note that Axnob is only a schema of axioms (as opposed to being a single
axiom).

101and also categorical in some natural sense to be made precise in §3.8

102The name Axnob refers to the fact that this axiom says, among others, that there are no
accelerated bodies. On the other hand Axisb refers to the fact that the key part of this axiom
says that there do exist accelerated bodies.

103For this we first add a few natural axioms to Basax, and then we find that this duality theory
works already for “fragments” and variants of Basax.

104hringing together Tarski’s approach to geometry and his approach to algebraic logic.

105This is analogous with “algebraization” of logics in Tarskian algebraic logic.
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Summing up:

Basax is independent.
Basax is consistent (cf. §§ 2.4, 3.2, 3.5).

Basax has many non-elementarily equivalent models (even if we add to it
Th(9R)), cf. Thm.3.8.18.

We will give a classification of the models of Basax (cf. §3.6).

The first-order theory T(Basax) generated by Basax is undecidable hence not
complete, cf. §7.

Adding an extra axiom-schema can make T(Basax) complete hence decidable,
since Basax is finite, cf. §3.8.

Adding a different extra axiom can make T(Basax) hereditarily undecidable
hence hereditarily not complete. The conclusions of Godel’s incompleteness
theorems apply to the so extended version of Basax. Cf. §7.

Adding an extra axiom-schema makes Basax equivalent with the standard,
“textbook version” of “Einsteinian” special relativity, cf. §§ 2.8, 2.9, 3.8, 6.2,
6.6.

Other distinguished versions like the Reichenbach-Griinbaum version of rela-
tivity can (and will) be formalized in first-order logic (and compared with the
Einsteinian version) by appropriately modifying Basax (cf. §§ 3.4.2, 4.4, 6.6
and the section [on “Reichenbachian relativity”] of §4 (§4.5)).
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2.4 Models for Basax in dimension 2

In this section we show that Basax(2) is consistent, via defining a frame model 9
and showing that 9t = Basax(2). We will also give a model of Basax(2), in which
there are faster than light observers.

First, let us have some intuitive considerations on why Basax(2) is consistent.
(Later we will give a formal proof.) The main reason why Basax(2) is consistent is
the following:

(%) for each slow-line ¢ there is a photon-preserving bijective
collineation taking ¢ to £.

The reader is invited to study Figures 1520 (pp. 63-70) to convince himself that
(x) is true, and then use () the following way to show that Basax(2) is consistent.

(I) Assume, we are given a “partial model”
M = ((B; {mo}, Ph,Ib),§, G; €, W),

which satisfies all the axioms in Basax ezcept for the observer-part of Ax5. Let us
use the notation Ax5 = Ax5(Obs) A Ax5(Ph). Then

M = (Ax1-Ax4, Ax5(Ph), Ax6, AXE).
Assume further § = R, and that
(V¢ € G)(Tb € Ib) £ = trpm,(b).

Constructing such a partial model is easy, and is left to the reader.

(IT) Next, we would like to add new observers to 9t so that eventually Ax5(Obs)
would become true without destroying validity of the other axioms (hence Basax
would become true).

Clearly, in 9 we do have a world-view function w,,, : 2R — P(B), to begin
with. From this world-view function we will construct world-views for new observers.
Let us pick randomly k € Ib such that v,,,(k) # 1. Now, we would like to raise k
to the level of being an observer. Assume, myg sees this:
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Our task is to choose the world-view of £ such that, among others, AxE remains
valid, i.e. that k observes all photons moving with speed 1. Following Figures 1520,
let us choose k’s world-view like this (the figure shows k’s coordinate system as seen
by observer my):

where ¢’ and Z' are the time-axis and Z-axis, respectively, of k. We note that if k
moves faster than light relative to mq (i.e. if v,,,(k) > 1) then k’s coordinate system
(as seen by my) is like in the following picture:

~|

=1 Phl

phy

Now clearly, k£ will observe photon ph; moving with speed 1 and the same applies
to ph,. Then one can check that for these two particular observers mg, k our axiom
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AXE holds, i.e. both k£ and mgy will observe all photons moving with speed 1. One
can check that for the extended model

M= ((B; {mo, k}, Ph, Ib), §, G €, W)

we have Ax1-Ax4, Ax5(Ph), Ax6, AXE still valid. Here, W™ denotes the exten-
sion of W with the world-view function wj, of the new observer k.

To complete the “intuitive” proof, one does the above extension not only with
a single k£ € Ib but with the class K = {k €1Ib : vy, (k) # 1} of all potential
candidates for being an observer. This will make Ax5(Obs) true. We note that
the condition 0 € tr,,(k) was not needed in our construction of wyg.

In passing we note that in the above constructed model faster than light observers
exist. It is easy to modify the construction in such a way that faster than light
observers will not exist in the modified model. This modification begins with adding
to statement (x) above that the photon-preserving bijective collineation in question
takes slow-lines to slow-lines. The rest of the modifications are straightforward, we
leave them to the reader.

END of Intuitive Idea of Proof.

Let us turn to precise proofs.

Let P be a function that to each ¢ € Eucl(2,R) associates a pair of two distinct
points lying on £. We will denote P(¢) by (og,t;). To each such function P, we will
define two frame models, 9t} and 9. These two frame models will be very similar
in spirit, but in 9 we have as few observers as possible, while in 9 there will be
an observer on each line (with angle # 1, cf. Prop.2.3.3(iii)).

First we define 9t &' 9P & ((B; Obs, Ph, Ib), §, G; €, W), where

i def R, the ordered field of real numbers,

G Eucl(2,2R), the set of straight lines over R,
Obs & {0 € Eucl(2,R) : ang?(6) <1},
Ph¥ {¢ € Eucl(2,R) : ang?(¢) =1},

B Y Ib % ObsU Ph = { ¢ € Eucl(2,R) : ang?(¢) < 1}.
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By the above, Ax1 and Ax2 are true in 90%. It remains to define W. Let

mo &t ¥R x {0}.

First we will define w,,, : 2R — P(B) and fg,, : R — 2R for all k €
Eucl(2,9R), ang?(k) # 1,k # my. To define w,,,, let p € ?R. Then

Wio(p) € {LEB : pet}.

By this we have that for all £ € B,
trme () = ¥,

in particular, ¢r,,,(mo) = mo. Thus Ax3, Ax4, Ax5, AXE are satisfied when m is
replaced in them with mgy. See Figure 23.

Figure 23: w,,,(p) in ML

Let k € Eucl(2,R),k # myg,ang?(k) # 1 be arbitrary. We are going to define
fimo- In the following, we will write f for fy,,,-

For any two distinct points p,q € "F, pg denotes the Euclidean line containing
both p and gq.
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Sometimes we write (z,y) for the ordered pair (z,y). We apologize to the reader
for this inconsistency.

Recall that two distinct points, o and t; are given to us by the parameter P of

the model 90t & EUIOP. First we define the point s; as the mirror image of ¢, w.r.t.

the line ¢, such that oy € ¢, and ¢ is parallel to the line (0,0)(1,1). See Figure 24.

t1—o
" " 1 d 1
(7 7
7
// Sk
Ve
7
7
01
.7 t1 — o
7
7
0o
T A

Figure 24: The definition of the point s.

In more detail: Let of = (09, 01), & = (to,t1). We define

def
Sk :e (0() + (tl - 01), 01 -+ (to - 00)).

By ang?(k) # 1 we have that sy # t, moreover, s, # a - t;, for all a € R.

We will define f & frmo : 2R — 2R to be the affine transformation!® that takes

(0,0),(1,0),(0,1) to o, tx, sk respectively. See Figure 25.

In more detail,

frmo (@, d) Lo (te — o) +d - (sx — o) + 0.

(Here we used that ¢y, s, o are also vectors.) See Figure 26.
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Figure 25: The world-view transformation fy,y,,.
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Figure 26: The world-view transformation f,,,.
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Intuitively, take a point p = (a,d) in %R, and let fi,,,(a,d) = (a’,d’). Then o, d’
are the coordinates of p in the coordinate system with basis {(1,0), (0,1)}, while a, d
are the coordinates of p in the coordinate system with basis {(tx — ox), (sx — 0k)},
see Figure 26.

By this, fgn, is defined for all & € Eucl(2,R),k # myg,ang?(k) # 1. We now
define

Wi % fpmg © Wi, for all k € Obs \ {my}, and

Wd:ef{(m,p,b> : m € Obs,b € w,(p)}.

By this, the model 9 &

model.

M < (B,..., W) has been defined. I is a frame

THEOREM 2.4.1 M’ = Basax(2).

def

Proof. Let MM = 9. We have already observed that 91 = Ax1, Ax2, and that
Ax3 — Ax5, AXE hold for the fixed observer mg € Obs. Let k € Obs \ {mg} be
arbitrary. Denote

def
f = fkmo ;

Eucl & Eucl(2, R).
We will check that the following (i) — (v) hold:

(i) f:%R — 2R is a bijection.

(ii) f takes straight lines to straight lines, i.e. f[¢] € Eucl for all £ € Eucl.
(iii) f takes ¢ to k, i.e. f[t] = k.
(iv) f maps a slow-line to a slow-line, i.e. (V£ € Obs)f[{] € Obs.

(v) f maps photon-lines onto photon-lines, i.e. V/(¢ € Ph < f[{] € Ph).

106For the definition of an affine transformation see §2.9. We will not need the definition here.
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Indeed, (i)-(ii) hold because f is a so called affine transformation!®?. (iii) holds
then because o, t; € k, and f(0,0) = o, f(1,0) = &, mg = (0,0)(0,1), k = oxty.
Since we defined s; to be the mirror image of ¢, w.r.t. ¢, we have that f(1,1) =
(tx — og) + (s — og) + ok lies on the line ¢;. Thus f[(0,0)(1,1)] = £. Similarly,
ang®(f[(0,0)(1,—-1)]) = 1. See Figure 27. In dimension 2 (i.e. in Eucl(2, F)), there
are exactly two photon-lines going through each point, and we have seen that f takes
the two photon-lines going through (0,0) to the two photon-lines going through
f(0,0).

Figure 27: f takes photon-lines to photon-lines.
By (i),(ii) we have that f takes parallel lines to parallel ones. This proves (v).
To see that (iv) holds, use a similar argument, and use Figure 28.
We have checked that (i)-(v) hold. Now, in 9t we have that for all £ € B
(2) € = try(f[]).
Indeed, let £ € B. Then f[{] € B, and f[{] = trp,f[¢]. Thus £ = f,[f[{]] =

fmok[trmof[¢]] = tri(f[€]), by Proposition2.3.3(vii). Since f is a bijection, by (ii) we
have that both f and f~! preserve Eucl. Using this, together with (ii)-(v), (2) and

107This is so because tj, # a - sy, for all a € R, since ang®(k) # 1.
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Figure 28: f takes slow-lines to slow-lines.

the fact that Ax3 — Ax5, AXE hold for my, we get that Ax3 — Ax5, AXE hold
for k, too. From (i) we get that Rng(wy) = Rng(wm,). Since k was arbitrary, this
proves I = Basax(2). 1

Now we define the other model 9tY. The definition of 9! is completely analo-
gous to that of 9, the only difference is that we allow all lines (with angle # 1)
to be observers. In detail: let

Obs; & {1 € Eudl(2,R) : ang?(¢) # 1},

def def

Bl = Ibl = ObSl U Ph= EUC'(Z,fR)
Then my € Obs C Obs;. We define

W me (D) déf{ﬁ €EB :pel},

def
; qel ’
W g _fkmoowmoa

w! d:ef{<m’p,b> 1 be 'U)’m(p) }’

M L ((By; Obsy, Phy, Iby), R, G; €, W').
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THEOREM 2.4.2 M’ = Basax(2).

The proof is analogous to that of Theorem 2.4.1, we omit it.

In Figure 29, 90t;, M5, M; represent possible models of Basax(2). There ¢,¢',¢"
are the time axes of observers k, k', k" € Obs.

Consider e.g. the picture representing 9%, (first picture of Figure 29). What the
picture really represents is the world-view of a particular observer k and also how k
sees k', k" etc. In the picture t’,t" represent the life-lines of observers &', ¥”. Further
1y = fir(ly), 1w = frg(ly) and 1y = frrg(1,) ete. Intuitively, 1y is the time-unit
vector of k' as seen by k, while 1,/ is the z-unit vector of k' as seen by k. We do
not claim that the world-view of observer &' would be similar. Actually it is not.
The only thing we claim is that there is an observer k of 91, whose world-view is as
represented in the picture. The same convention applies to the pictures representing
EIRQ and mg.

Figure 29 represents possible choices for the parameter P of the model 9"
introduced on p.80. Recall that {(o,,t;) = P(¢). In Figure 29 ¢ € {t,t',t", etc.}. In
the figure we chose o, := 0, further ¢, := 1, etc.

Let us turn now to the ideas we wanted to represent in these pictures.

In the third picture, the curves connecting 1;, 14,1 etc. are hyperbolas. In
§2.8 we will introduce a symmetry axiom called Ax(symm). We note that 93 =
Ax(symm), while 9; = Ax(symm) for i < 3. Roughly speaking Ax(symm) says
that “I see you the same way as you see me”. Thus in 93 all observers see the other
observers’ unit vectors as m sees it (while as we mentioned, in 90t and in 90, this
is not so). We also note that 93 corresponds to the usual (or classically standard)
so-called Minkowskian models of relativity, while 9%;, 9, are “non-Minkowskian”
(for the definition of a Minkowskian model see Definition 3.8.42 on p.331).

A common feature of 9,93 in Figure 29 is that, for m fixed,

U (k) — [fru(14) = Fru(0)]

is (i) a function (of v,,(k) € F) and this function is (ii) continuous. These properties
will re-emerge as potential axioms in a later version of this work. Although these
properties do not follow from Basax, we will not put too much emphasis on studying
models which do not satisfy (i) or (ii). Analogous properties will show up in §4.4 as
potential axioms.

We will return to the pictures in Figure 29 in §6.7.
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Figure 29: Possible models of Basax. Possible choices for the parameter P (on
p.80): 0, = 0 and #, are represented in the picture, for slow-lines ¢ going through 0.
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Minkowski-circles, Minkowski-spheres.

Assume n = 2. The drawings in Figure 29 are called Minkowski-circles. They
are often useful in representing models by simple drawings.

Definition 2.4.3 Minkowski-sphere Let n > 2, 9 be a frame model, and m €
Obs. Then the Minkowski-sphere MS around m is defined as

Ms 4ef MS (9%, m) def {p: (3k € Obs)(Fi < n)(fne(0) =0 and p € {fux[{1;,—1:}])}.

<

For very nice models (e.g. the ones studied in §2.8) MS forms a kind of surface
such that one can imagine that this surface is a boundary!®® of a connected region
like the inside of a ball (or a cube, or something like these). This is indeed the case
with the three models in Figure 29 (p.88). In two dimensions, instead of “spheres”
we speak of Minkowski-circles. What we said above about the Minkowski-spheres
in dimension n, sounds like the following for n = 2. In nice 2-dimensional models,
MS as defined above looks like a nice curve (like a circle, or a square etc) such that
one can imagine that MS is the boundary of a connected subset of the plane like
the circle is the boundary of a “disc”. This is the case in all three drawings in
Figure 29. Classically, in standard relativity theory, only the figure associated to
M3 was called a Minkowski-circle. (The reason for this is that only 90t; satisfies the
symmetry axiom to be introduced in §2.8.) However, here we generalize this concept
to arbitrary frame models. As we said, in nice models, MS(90t, m) looks like a curve
surrounding (or forming the boundary of) some connected area. However, in many
less “well behaved” models MS(90t, m) is just a set of points and does not even form
a curve. Later we will introduce an axiom called Ax(||). Typically, if Ax(]|) fails,
then MS tends to become more like a random set of points than a curve. With
this, we stop the discussion of Minkowski-spheres and Minkowski-circles, but from
time to time they will serve us as pleasant devices for visualizing certain nice, well
behaved models.

In passing we note that in the case of n = 2, it is more often the case that
MS(90t, m) is like a curve surrounding a well defined area, while if n > 2 then this is
more rare.'%” Basically, if n > 2, and (Vm € Obs)[MS(90,m) is a surface surround-
ing a connected and well defined areal, then the extra axiom Ax(symm) to be de-
fined later is true in our model 9, and then the Minkowski-sphere becomes prac-
tically the same what is called such in the classical literature (cf. e.g. “Minkowski-
metric” in Friedman [90]). On the other hand, for n = 2 this is far from being true
as is illustrated e.g. by Figure 29.

108;

if we disregard the points on the life-lines of photons crossing the origin.
109We mean this with “surface” in place of “curve”, of course.
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2.5 The three “paradigmatic” theorems of relativity

What the average layperson usually knows about relativity is that
(I) moving clocks slow down,
(IT) moving spaceships shrink (cf. Figure 30), and

(III) moving clocks get out of synchronism, i.e. the clock in the nose of the space-
ship is late (shows less time) when compared with the clock in the rear, see
Figure 31.

Y
G ))

Figure 30: Moving clocks slow down and moving spaceships shrink.

A/

Figure 31: Moving clocks get out of synchronism.
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In all of (I)-(III) above the spaceship is represented by an observer k, “we”
who look at the spaceship are represented by observer m, and all of (I)—(III)
are understood in the world-view of m. Below we formalize (I)-(III) as our
“paradigmatic” theorems.''® We will prove them from Basax. In §4 when investi-
gating weaker (or subtler) versions of Basax (e.g. the Reichenbachian version with
non-standard simultaneities) we will systematically re-visit our paradigmatic theo-
rems to see if they are still true. It will turn out that these paradigmatic theorems
can be proved from surprisingly weak axioms. Cf. §4, and especially section §4.8
which is devoted to paradigmatic effects. In § 2.8 we will see that our paradigmatic
theorems (I)-(III) hold in a stronger and simpler form in the stronger axiom system
Basax + Ax(symm).

Our next axiom, Ax(\f ), is of a technical nature. Namely, sometimes we will
need to assume that square roots of positive (greater than 0) elements exist in the
ordered field reduct § of the frame model 9 we are speaking about.

Ax(v') (Mo<zeF)3yeF)y=uz.

If § = Ax(v ) then we say that § is Euclidean. Clearly, ® = Ax(yv/ ). For
any 0 < x € F, \/z denotes that positive y for which y?> = x. For brevity, by an
FEuclidean field we mean an Euclidean ordered field.

CONVENTION 2.5.1 Let Th be a set of formulas of our frame language. Let
Ax;, Ax, be further formulas. Then

Th + Ax; + Axy denotes ThU {Ax;, Axs}.

Similar convention applies to other combinations like Th + Ax;. (This notational
convention is taken from axiomatic set theory.)
<

The intuitive meaning of Thm.2.5.2 below is the following. Item (i) of the theo-
rem states that observer m thinks that £’s clocks are late at time-instance 1. As a
generalization of this, (ii) says the same for many time instances A € F namely for
those \’s which are not “infinitely big” or “infinitely small”.

10Tn passing we note that the official names for effects (I) and (II) are “time dilation” and “length
contraction” cf. d’Inverno [75, §§3.3, 3.4].
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THEOREM 2.5.2 (Clocks slow down.)
Assume Basax + Ax(v/ ). Then (i)-(iii) below hold.

(i) There are observers m and k such that m “thinks” that k’s clocks run slow;
formally:

(3m, k € ObS) [frm(Ls) s — frm(0)¢ > 1,
see Figure 32. Moreover;

(ii) (Im, k € Obs)
(VA € F) ((30 <jeEW1/j<N<i = [fim 1)~ fom(0) s > |AI)-111

(iii) Assume m,k € Obs and 0 # v, (k) < 1. Then either m thinks that k’s clocks
run slow or k thinks that m’s clocks run slow (cf. Figure 33); formally:

(Am' k' € {m, k}) |form (11) ¢ — frrm (0) 4] > 1.

from(16) t — fem (0) ¢ m k

@
fkm(lt) @

m’s clocks look like this: @

k’s clocks look like this: {D

Figure 32: m thinks that £’s clocks run slow.

11We note that for every ordered field the set w of the natural numbers can be considered as a
subset of the ordered field, or in more careful wording w is embeddable into the ordered field in a
natural way. Further we note that if § is Archimedian (cf. footnote 88 on p.66) then (ii) above is
true in the following simpler form: (i)’ (Im,k € Obs)(Vp € t) [fem(P) ¢ — fkm (0) ¢| > |pe]-

An analogous remark applies to Thm.2.5.3(ii).

92



(H )

direction of simultaneities for k

direction of simultaneities for m

&

m’s clocks look like this: @

** k’s clocks look like this: @

Figure 33: Assume that for m, k’s clocks do not run slow. Then £ will think that
m’s clocks run slow.
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On the proof: The main idea of the proof of (iii) is illustrated in Figure 33. (i) is
a corollary of (iii). (ii) can be proved from Thm.2.5.3(i) below as follows:
By Thm.2.5.3(i), there are m, k € Obs such that

(3) [frm (1) ¢ — fem (0)¢] > 2.

We have that every automorphism of F is order preserving, i.e. every automorphism
of F is an automorphism of § since § is Euclidean. So, by Prop.3.1.4 (p.162), we
have that

(@) (A EF) (ffn - 1)e = fim©@u] = (A - [fem(1) s = fem(0)1]),

for some automorphism ¢ of §.

For every automorphism ¢ of § we have

(5) (eF) (F0<jew)z<IN<i = o) > 21,
because of the following. Let A\ € F such that (35 € w) 1/5 < |A| < j. Between
|A|/2 and |A| there is a rational number, say x. Let such an z be fixed. Every
automorphism (of ) is the identity function on the rational numbers. Therefore by
IA|/2 < z < |A|], we have |A|/2 < 2 = ¢(x) < ¢(|A]). So (5) holds. Let A € F such
that there is 0 < j € w with 1/j < A < j. Then

(AN - [fem (1) e = fim (0) o] by (4)
2¢(|Al) by (3)
A by (3).

[frm (A - 1) ¢ = Fin (0))]

AYARVARI

This completes the proof of (ii). A more detailed proof will be filled in at a later
stage of development. 1

THEOREM 2.5.3 (Clocks can run very slow.)
Assume Basax + Ax(v/ ). Let o € w be arbitrary.

(i) Then there are observers m, k such that m thinks that k’s clocks run more than
o-times slower than m’s; formally:

(Fm, k € Obs) |frm(1) ¢ — frm(0) 4] > 0.

Moreover:
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(ii) (3Im, k € Obs)

(VAeF) (B0<jew) /i< <j = [fim( 1)~ Ffum@)d > 0 N)-

On the proof: We include Figure 34 as a hint for the idea of the proof of (i). (ii)
follows from (i) similarly as item (ii) of Thm.2.5.2 did: Now, for a ¢ € w we choose
m,k € Obs such that [fg,,(1;); — f&n(0)¢] > 20. Then analogously to the proof of
Thm.2.5.2(ii) one can prove that for this choice of m,k  the “main body” of (ii)
holds. A detailed proof will be filled in later. R

% .
2 / /////’\\\\\ \ /

Figure 34: Hint for the idea of proof of Thm.2.5.3(i).

Let us turn to clocks getting out of synchronism (“effect” (III) on our “paradig-
matic” list). First we need some definitions.

Definition 2.5.4 Let 9 be a frame model. Events e,e; € P(B) are said to be
stmultaneous for observer m € Obs iff

e,e; € Rng(wy,) A (Vpe€w,'(e) (Vg € w,'(e1)) pr = g . 12

<

112To improve readability we write w,,!(e) instead of w; ![{e}], where m € Obs and e € P(B).
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THEOREM 2.5.5 (Clocks get out of synchronism.)
Assume Basax. Let m,k € Obs be such that v, (k) # 0. Then (i) and (ii) below
hold.

(i) There are events e,e; € P(B) which are simultaneous for m, but are not
simultaneous for k.

(ii) Assume that k moves in direction T as seen by m, formally:
trm (k) C Plane(t,Z). Then

(Vp,q €"F) ((pt =¢ N P2F @) = fon(p)e# fmk(q)t) ,

cf. Figure 35. Le. if m thinks that e = w,,(p) and e; = wn(q) are simultaneous
but their x-coordinates are different, then k will think that e and ey are not
stmultaneous.

Intuitively, let us tmagine that k is traveling on a spaceship and is being ob-
served by m. Then m will think that clocks in the nose and the rear of k’s
spaceship are not synchronous, cf. Figures 31, 387. (They do not show the
same time.)

The proof will be filled in later. B
We note that Thm.2.5.5 can be refined in the style of Thm.2.5.7 below.

Y Pt =q ] frk ()t 7 Tk () ¢

Figure 35: Events w,,(p) and w,,(q) are simultaneous for observer m, but they are
not simultaneous for observer k.
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THEOREM 2.5.6 (Clocks do not get out of synchronism in direction or-
thogonal to movement.)
From the point of view of synchronism, “nothing” happens in the spatial direction or-

thogonal to the direction of movement (cf. Figure 36);'*3 formally: Assume Basax.
Let m,k € Obs. Then (i) and (i) below hold.

(i) Assume m sees that k does not move in direction g, i.e.
(Vp,q € trin(k)) py =gy -
Then,
(Vp,q € "F) ((W eni#2 = pi=¢) = fubd):= fmk(‘])t) :
In particular
D,qEY = fmk(p)t:fmlc(Q)t-
That s, simultaneous events observed by m as separated only in a direction y
orthogonal to the direction of movement remain simultaneous for the moving
observer k.

The following is an almost equivalent re-formulation of (i).''

(ii) Assume that k moves in direction T as seen by m, formally:
trm (k) C Plane(t,z). Then

(Vp,q € "F) ((pt =¢ N po=¢) = @) ="Tfu(q) t) .

The proof will be filled in later. R

out of synchron.

Figure 36: Clocks do not get out of synchronism orthogonal to movement. Imagine
the little clocks glued to the hull of the spaceship.

H3More precisely, if two clocks are separated only in a spatial direction which is orthogonal to
the direction of movement then they do not get out of synchronism.
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Let us return to discussing the “out of synchronism” effects in Thm.2.5.5.
Throughout the rest of this section (in §2.5) Basax + Ax( V) is assumed (unless
otherwise specified), therefore we do not indicate this.

Let 9 be a frame model, and let m, k € Obs such that ¢r,,(k) € Eucl. Let us
recall that the velocity of k& as seen by m is denoted by ,,(k), cf. p.48, and it is a
“space vector”, i.e. an element of "~'F.

In connection with the next two theorems we note the following. Since we

assumed Basax, for every m,k € Obs, tr,(k) can be considered as a function
trm(k) : F — "7'F_ if v,,(k) # oo; therefore tr,,(k)(0) is well defined.'

THEOREM 2.5.7 (The clock in the nose of the spaceship is late.)

Let m,k,ky € Obs. Assume, try(ky) is parallel with t,'* 0 # v,(k) < 1, and
that time passes forwards for k as seen by m, formally: (frm(1): — frm(0);) > 0.
Intuitively, k represents the rear of the “spaceship”, while ki represents the nose of
the “spaceship”. Assume further that this “spaceship” is moving forwards as seen
by m; 'Y formally:

(trm(kl)(O) - trm(k)(())) = \- Uy, (k) for some positive A € F.

(i) Then m thinks that the clock in the nose of the spaceship is late w.r.t. the clock
in the rear of the spaceship (see Figure 37); formally:

(¥p € trim(k)) (V0 € trmn(k2)) (P = a0 = fme(P)e > fuela) 1)

(ii) Let m,k, ki € Obs satisfy all the conditions of the present theorem. Assume
further that the length of the “spaceship” as seen by k is 1. For simplicity we
formalize this condition as 1, € try(k1). Then

(Vp € tr(k) (Vg € trm(k2)) (b= a0 = (Ens(0)s — (@) ) < 1).

Intuitively, this says that assuming the length of the spaceship as seen by k
is 1 then the difference between the two clock readings (in the rear and in the
nose) as seen by m is always smaller than 1.

H41f we assume Ax(v/ ) together with the auxiliary axiom Ax(Triv) which will be introduced
in §2.8, then (i) and (ii) become equivalent.

H5Ct. Fact 2.2.4.

16This means that k; is in rest w.r.t. k, i.e. we use the relationship parallelism between lines in
the sense of Euclidean geometry.

W ntuitively, this means that m sees the spaceship moving in the direction of its nose.
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(iii) For any A € F with 0 < XA < 1, there are m, k, ki satisfying all the conditions
of the present theorem, including the condition in (ii) saying that the length of
the “spaceship” as seen by k is 1, such that

(99 € tru(K)) (Vg € trou(k) (=0 = (Eus0)e — Fr(@)1) > A).

Intuitively, the asynchronism between the two clock readings can get arbitrarily
close to 1.

We will fill in the poof later. 1

Item (iii) of the above theorem describes how much “asynchronism” we can
obtain as a relativistic effect.

direction of simultaneities for k

spaceship of k as seen by m

Figure 37: Clock (of k) in the nose of the spaceship is late w.r.t. the clock in the
rear, when viewed by m. (The length of this spaceship is more than 1 as seen by k.)
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Next, we turn to discussing how meter-rods shrink, i.e. to paradigmatic effect
(IT). (Strangely enough, one has to represent meter-rods and their shrinking slightly
differently than it was the case with clocks.)

Notation 2.5.8 Assume § is Euclidean, i.e. that § = Ax(v/ ). Let p € "F. Then
|p| denotes the Euclidean length of vector p, i.e.

def
Ip| = \/p3+p%+...+p%_1.

THEOREM 2.5.9 (Spaceships shrink.)
There are observers m,k,k; € Obs with 0 € tr,,(k), and with try(k,) parallel to
t,"18 such that for p := tr,,(k1)(0) and q := tr(k1)(0), we have |p| < |q|.***

The last statement |p| < |q| can be interpreted as saying that m thinks that the
purely spatial distance between observers k and ki is shorter than it is observed by
k, see Figure 38.

Intuitively, if k represents the rear of the “spaceship” and k, represents the nose
of the “spaceship”, then this spaceship is shorter for m than for k.

The proof will be filled in later. R

Remark 2.5.10 An improved version of Thm.2.5.9 could be formulated analo-
gously to Thm.2.5.3 saying that meter-rods can get arbitrarily short (if they are
parallel with the direction of movement).

<

Remark 2.5.11 Analogously with Thm.2.5.6, we could formulate a theorem saying
that meter-rods orthogonal to the direction of movement do not get shorter (at
least not as a consequence of relativistic effects). But for this we would need extra
conditions formulated in §2.8 “A symmetry axiom”. Cf. Item 2.8.12 (p.133).

<

18This means that k; is in rest w.r.t. k, i.e. we use the relationship parallelism between lines in
the sense of Euclidean geometry.
""9Here again |p| is the Euclidean length of p € » ' F.
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|g| = distance for k
(between k and k1)

/ z
\ |p| = distance for m (between k and k1)

Figure 38: Illustration for Thm.2.5.9.

Remark 2.5.12 Throughout the present remark we assume that the ordered field

reduct § of our model 9 has no nontrivial automorphisms.

(i)

(ii)

120

Thm.2.5.9 above could be interpreted and modified intuitively as follows:
There are observers m and k such that m sees £ moving in direction Z, and
those meter-rods of £ which are pointing in direction T as seen by m, are
shorter when observed by m than as observed by k. In short: m thinks that
k’s meter-rods pointing in direction Z, as seen by m, shrink. We will use this
intuitive language in the rest of the remark without formalizing it. The reader
is invited to formalize it.

Assume m sees k moving in direction Z slower than light and with nonzero
speed.

(a) Let us concentrate on meter-rods pointing in direction T as seen by m.'?!
Let us call them z-meter-rods. Then either m will think that &£’s z-meter-

120This assumption can be eliminated on the expense of restricting discussion to meter-rods of

rational length as seen by that observer whose meter-rods they are.
1217 e. even if the meter-rod is k’s one we check whether m sees it pointing in direction z.
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rods shrink or k£ will think that m’s xz-meter-rods shrink or both.1%2

(b) Let us concentrate on meter-rods pointing in direction 3 as seen by m.'?3

Let us call them y-meter-rods. Then if m thinks that k’s y-meter-rods
shrink, then k£ will think that m’s y-meter-rods grow.

(iii) Let m, k € Obs. Assume v,,(k) < 1. Then one of them thinks that all meter-
rods of the other shrink or remain unchanged. Those meter-rods shrink the
most which point in the direction of movement. Further, those can remain
unchanged which are orthogonal to the direction of movement.

(iv) Let us return to clocks getting out of synchronism in connection with item
(iii), cf. Theorems 2.5.5-2.5.7. Let m, k € Obs. Consider pairs of clocks which
are synchronous for £ and the distance between two clocks in a pair is 1 for £.
Then that pair will get out of synchronism most the connecting line of which
is parallel to the direction of motion of k£ (as seen by m). <

The following theorem says that on a moving spaceship (i) either clocks slow
down or meter rods (pointing in the direction of movement) shrink (or both, of
course) and (ii) clocks in the rear and the nose of ship get out of synchronism.

THEOREM 2.5.13 (Clocks slow down or meter rods shrink.)
Assume Basax + Ax(v' ). Let m,k € Obs, 0 < v,,(k) < 1. Then (i), (ii) be-
low hold.

(i) FEither the clocks of k run slow or meter rods of k parallel with ¥,,(k) shrink (as
seen by m).

(i1) Clocks in the nose and rear of the ship of k get out of synchronism.

The proof goes by the methods of the earlier similar theorems, and is left to the
reader.

Remark 2.5.14 If we omit the condition Ax(v/ ) from Theorem 2.5.13 above, then
the theorem remains basically true but the formulation gets more complicated, cf.
e.g. the formulation of Theorem 2.5.7(iii). Further, in Theorem 2.5.13, Ax(v/ ) can
be replaced with the weaker assumption that f,,; is betweenness-preserving'?*. <

122Here the emphasis is on that it is consistent with Basax that both m and k think that the
other’s z-meter-rods shrink.

1231 e. even if the meter-rod is k’s one we check whether m sees it pointing in direction .

124The ternary relation Betw of betweenness will be defined in footnote 405 on p.492 in §4.
Intuitively, for p,q,r € ™F the relation Betw(p, ¢,7) holds if p, ¢, are collinear and ¢ is between p
and r.
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The relativistic effects (I)—(III) discussed so far will lead e.g. to the famous
twin paradoz. However, for that we will need a symmetry axiom Ax(symm) dis-
cussed in section “A symmetry axiom” (§2.8). So, we will return to the twin paradox
in §2.8, cf. Thm.2.8.18 (p.140). An even more satisfactory discussion of this paradox
can be given by looking at accelerated observers, hence we will return to the “twin”
in §8 (“Accelerated observers”) again.

We will see in §2.8 how Ax(symm) (introduced in §2.8) influences the paradig-
matic effects (I)—(III). E.g. we will see that these effects (for example the effect
of clocks slowing down) admit a simpler and stronger formulation in Basax +
Ax(symm) than in pure Basax. Cf. Items 2.8.7-2.8.12.

As we already said, in a later chapter we will return to seeing how paradigmatic
effects (I)—(III) (discussed in items 2.5.2—2.5.11) change if we use more subtle (than
Basax) axiom systems, cf. §4, in particular section §4.8, and Figure 223 on p.653.

Our next figure illustrates the meter-rod shrinking effect, i.e. items 2.5.9-2.5.12.
To be more intuitive, we draw spaceships instead of meter-rods. The figure repre-
sents how observers m and k see k’s spaceship.

103



k’s spaceship as seen by k himself

k’s spaceship as seen by m

life-line of the nose of spaceship

life-line of the rear of spaceship

Here ¢’ and Z' denote the respective coordinate axes of observer k.

Let us see how the above picture (illustration of paradigmatic effect (II), i.e. of
items 2.5.9-2.5.12) looks like if £ moves faster than light relative to m. By §2.4, if
n = 2 then faster than light observers are possible. But this leads us to the subject
of our section 2.7. Therefore our next similar picture comes in section 2.7.
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2.6 Are all three paradigmatic effects necessary?

A central question that motivates our interest in the models of Basax is the follow-
ing:

(%) Are all three paradigmatic effects discussed in section 2.5 necessary conse-
quences of special relativity? If not, are they independent of one another?

It is question (x) that triggers our interest in the class Mod(Basax), i.e. in the
question how different the models of Basax can be from each other. 25

Turning to the question itself, the following idea naturally comes to one’s mind.
Are all the paradigmatic effects, items (I) to (III) on page 90, necessary consequences
of Basax? If not, in which combinations can they occur? Cf. also the pictures on
p- 88.

First, concerning effect (III) (moving clocks get out of synchronism), the answer
is simple. It s a necessary consequence of Basax, by Theorem 2.5.7. That is, when-
ever v, (k) > 0, m thinks that the clocks in the nose and in the rear of k’s spaceship
are out of synchronism (provided, of course, that k£ thinks they are synchronized).
This is so in every model of Basax and for every m, k € Obs.

On the other hand, to answer the question as far as the other effects are con-
cerned, we must pose it more precisely. Let us fix an observer mg in a model 9 of
Basax. We shall think in mg’s world view. For example, “k moves” means that
k moves relative to my. Now, we shall seek for the answers to our question in a
systematic manner (cf. items 1-3 below).

1. As we have already pointed out, paradigmatic effect (IIT) must be true in my’s
world view.

2. Clocks do not necessarily slow down on moving spaceships (i.e. effect (I) is not
necessary). More formally, there are a model 9 = Basax and an observer
mo € Obs™ such that

(Vk € Obs)[my thinks that k’s clocks tick with exactly the same rate
as his clocks|. 2°

Such a model 9 (with a distinguished my) is represented in Figure 29 (p. 88)
under the name 9;. That model is 2-dimensional, but it can be extended to 3

125This interest will lead us to the investigations in §3.6 (Models of Basax), as well as to the
study of non-elementarily equivalent models of Basax in e.g. Theorem 3.8.18(ii) on p. 303. Cf.
also Remark 3.6.15 on p. 271.

126We emphasize again that mg thinks that all observers have clocks running with the correct
rate.
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or 4 dimensions, too. However, this generalization from n = 2 to n > 3 is not
completely straightforward. We do not go into the details here, but the key
idea is described in §3.2. We should mention one difference between the cases
n = 2 and n = 3. In the case n = 2 we have a so-called Minkowski-sphere
around the origin which, assuming f,,,x(0) = 0, tells us for each k how long
its unit-vectors are (i.e. where f,, x(1;) is). This sphere works uniformly for all
choices of k € Obs (assuming f,,,x(0) = 0). By contrast, in the case of n = 3
all we know is that all the points f,, x(1;) are in a horizontal plane as depicted
in Figure 39. However, after 1¥ is determined by this plane for each choice of

k1
1, 1

k2
L

J

Plane S + 1;

Figure 39: Illustration for item 2.

k, we still have to fix the rest of k’s unit vectors as it is done in §3.2. (Where
it is shown that choosing 1¥ arbitrarily, the other unit vectors can be fixed so
that the axioms of Basax are validated.)

In the second part of this section, when discussing the independence of the
particular paradigmatic effects, we shall concentrate on the case n = 2; but
all the results can be generalized to n > 3, analogously to the generalization
indicated in item 2 above. We invite the interested reader to figure out what
the answers look like for n = 3 first, and later to all n > 3.

Let us return to discussing what happens if my thinks that all moving clocks
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tick with the correct rate (i.e., no clocks slow down or run fast). The present
answer to the question (%) (namely, that effect (I) is not necessary) applies if
we are allowed to fix 9N and my. However, in the same model 9 there will
be an observer m; who thinks that moving clocks do slow down. Indeed, if
Ume (k) > 0, then k will think that mg’s clocks do slow down (and they slow
down more than would be necessary if we did not force k’s clocks not to slow
down for my; this will be implicitly seen in §2.8).

. Similarly to item 2, moving spaceships need not shrink. That is, there are
9 = Basax and mg € Obs™ such that in my’s world view moving spaceships
do not shrink. Formally,

(Vk € Obs)[my thinks that k’s meter-rods are of the correct length)].

(The reader is invited to formalize this statement in our frame language.) The
model proving this claim is remotely similar to 9%3 in Figure 29 (p. 88), but
the functions that are parts of the Minkowski circle must grow faster in the
model. The reader is invited to construct (and draw) such a model (based on
the world view of some my in which no spaceship shrinks). For this exercise
it might be useful to consult Figure 38 on p. 101 proving that spaceships
“usually” do shrink. On the other hand, see picture 40.

By items 2 and 3 above we received permissive answers to our question concerning
the removability (or changeability) of the paradigmatic effects. The second part of
our question asked how independent effects (I)-(III) are of one another.

The paradigmatic effects (I)-(IIT) are not independent. We have already seen

that effect (III) (violation of synchronism) is necessary. Further, assume v, (k) > 0,
and consider mgy’s world view. The following holds:

(k’s clocks do not slow down) = (k’s spaceship shrinks).

Similarly,

(k’s spaceship does not shrink) = (k’s clocks slow down).

These statements are stated in Theorem 2.5.13. Actually in Thm. 2.5.13, Ax(v/ )
was assumed, but we conjecture that it is not needed here, because we are stating
only that

(x) (k’s clocks always show the correct time) = (one of k’s meter rods'?” shrinks),

127Namely, the one pointing in the direction of k’s movement.

107



' " )
t ¢ ¢ S ~ ph

\/,gi//life—line of k"’s nose

Py

.7 4 life-line of k"’s nose

7

!/

;,'/, T
1t” /'.’ .
7 v.
].t/ //
7
7
1 .
.’ 1$" "
, xT
7
7
7 ]-z’
7/
7/
7/
'/,
7
L 1, T

Figure 40: Illustration for item 3.

that is,
(Vp € t)ps = (fem(p)): = (one of k’s meter rods shrinks).

It seems to us that Basax = (), but we have not checked this claim carefully.

To sum up: On the one hand, we can get rid of effect (I), but then we must have
(IT) and (III).!?® On the other hand, we can get rid of effect (II), but then we must
have (I) and (III). So, for a possible observer my in a possible model 9t = Basax,
the following combinations can be realized:

(A) All three effects (I), (II) and (III) are experienced by my.
(B) Effects (I) and (III) prevail, but (II) does not.
(C) Effect (I) is not present, but (II) and (III) are.

There are no other possibilities. Thus we have at least three essentially different
classes of models for Basax,'? and this fact triggers our interest in asking how

128Moreover, we pay for not having (I) by having (II) to a higher extent.
129Gay, O’ is such that all observers are of type (A), 9M" is such that it has both (A) and (B)
type observers but none of type (C), and 9" has observers of type (A) and (C), but none of type

108



many, and what sorts of, non-elementarily equivalent models Basax has. The reason
why we talk about non-elementarily equivalent models is that this expression means
that the models in question are not only different (i.e., non-isomorphic), but they
are actually distinguishable by a formula in our frame language like (the formalized
versions of) (A), (B) and (C) are. Actually, the above mentioned three classes of
models are distinguishable by thought experiments too, which might be a stronger
notion of distinguishability (than the one using formulae). It would be interesting to
see how many classes of models of Basax are distinguishable by means of thought
experiments, but for this purpose we would need to define which formulas of our
frame language count as thought experiments. We do not deal with this issue here.!

Later, in §2.8, we shall introduce a natural axiom Ax(||) saying that observers
not moving relative to each other see the world essentially the same way. We mention
this because the presently discussed issue concerning the connection between the
paradigmatic effects is even more interesting in Basax+ Ax(||) than in pure Basax.
Therefore we mention that the answer to our question remains exactly the same,
i.e. cases (A) to (C) are all the possibilities, for Basax + Ax(||) too. Actually,
most of those axioms to be introduced that we will call auziliary azioms (cf. §3.8
on BaCo) leave the answer to the present question unchanged (i.e., (A), (B), (C)
remain possible). For example, for Basax+Ax(v )+ Ax(||)+Ax(Triv)+Ax (1) +
Ax(ext) + Ax(rc) the situation is the same as outlined above for Basax.'*! We
could even add the continuity Principle (x) from §5 (on Bax(nop)) to the axioms
without changing this result. However, the symmetry axioms, e.g. Ax(symm) to
be introduced soon, in §2.8, will change this picture.

(B). It takes some time to check that 9" and 9" exist, but they do. We omit the proof of this
claim.

130Cf. also Remark 3.6.15 for further philosophical reasons for studying non-elementarily equiva-
lent models of Basax.

131The mentioned extra axioms can be found in §3.8.
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2.7 Faster than light in two dimensions

In §2.4 we saw that if n = 2 then faster than light (FTL) observers are possible, more
formally the existence of FTL observers is consistent with Basax(2). In the present
section we will briefly discuss how these FTL observers behave, and what their
world looks like. For completeness we note that Basax(n) with n > 2 excludes
FTL observers, cf. Thm.3.4.1 (p.203). However, there are refinements of Basax
which allow FTL observers for n > 2 too. Cf. e.g. the axiom system Relphax and
Thm.3.4.22 (p.223).

Our first theorem states that, under assuming Basax+Ax(y/ ), if m sees k
moving FTL, then k sees m moving FTL, too.
THEOREM 2.7.1 Assume Basax(n) + Ax(v/ ). Let m,k € Obs. Then

vm(k) <1 < wg(m) <1, and therefore
(k) >1 < wvg(m)>1.

The proof will be filled in later. R

The next theorem says the following. Assume that 9 is a frame model of
Basax(2) + Ax(v/ ) and that there is an FTL observer in 9t. Then the observers
are classified into two disjoint “worlds”, and inhabitants of the same world see each
other as “normal” slower than light observers, while observers coming from different
worlds see each other as F'TL ones.

THEOREM 2.7.2 Assume MM € Mod(Basax(2) + Ax(v/ )). Let
STL C Obs x Obs be a binary relation defined as follows.

(Vm,k € Obs) m STLk <% v, (k) <1.

(m STL k means that k moves slower than light as seen by m).
Then (i) and (ii) below hold.

(i) STL is an equivalence relation on the set of observers Obs.

(ii) Assume that in 9 there is an FTL observer, i.e.
(Im, k € Obs) vy, (k) > 1. Then the equivalence relation STL has ezactly two
equivalence classes.
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The proof will be filled in later. B

The following theorem says that Thm.2.7.2 above does not remain true if we
omit the condition Ax(v/ ).

THEOREM 2.7.3 There are M € Mod(Basax(2)) and m,k € Obs™ such that
vm(k) <1 and vg(m) > 1.
Intuitively, observer k sees m moving FTL, while k does not see m moving FTL.

Proof: Let § = (F,<) be an arbitrary ordered field such that its field reduct

F has an automorphism, call it ¢, which is not order preserving, i.e. ¢ is not an

automorphism of §. Let 9 = ((B; Obs, Ph,Ib),§,G; €, W) be a frame model

constructed as the model 9" was constructed in §2.4 (for arbitrary P), i.e. Obs :=

Eucl(2, §) etc; the only difference (between our 9 and MY in §2.4) is that 90 is

constructed over § while 9T was constructed over the ordered field of reals fR.
There are F'TL observers in 9%, but also

(6) (Vm, k € Obs) (v(k) <1 < vg(m) < 1)

holds in 9. We will use the non-order preserving automorphism ¢ to modify 9 ob-
taining a model 9™ (of Basax) in which (6) above will fail. Let ¢ : 2F — 2F be the

function induced by ¢ : F — F as follows: (Vz,y € F) ¢({(z,y)) 4 (p(z), p(y))-
We note that @ takes straight lines to straight lines, i.e. (V£ € Eucl) @[] € Eucl. The
modified version 9™ of M will differ from 9% only in the world-view relation. We
will denote the world-view relation of 9™ by W*. Let m € Obs be arbitrary, but
fixed. Then for every k € Obs we define the world-view function of k£ as follows:

L def | powy ifk=m
wy 1= .
Wy otherwise.

We define W from w,’s the obvious way. By the above 9" is defined. Checking
that M = Basax is left to the reader.

Now we show that (6) above fails in 9. Let £ € Obs := Eucl be such that
k ¢ SlowEucl, but @[k;] = k, for some k; € SlowEucl.'*® Fix this k;. The “speed”
in 9T is denoted by v+ while the “speed” in 91 is denoted, as usual, by v. Now,
it is easy to see that v} (k) = vy (k1) and v} (m) = vg(m) since w;;, = @ o w,, and
w} = wg. Hence v} (k) <1 and v} (m) > 1. |

Let us return to the subject matter (and style) of the picture on p.104. In par-
ticular let us see how FTL (w.r.t. each other) observers see each other’s spaceships.
After that, we will also draw clocks and even some “visual effects”.

132Quch a k exists since ¢ is non-order preserving.
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Throughout the rest of this section (§2.7) Basax(2) + Ax(y/ ) is assumed, un-
less otherwise specified.

life-line of the nose of spaceship
t
j !
m
—
74

spaceship of £ as seen by k£ himself

spaceship of k as seen by m

We are in Basax(2)+ Ax(v/ ). The above picture shows meter-rods (represented as
spaceships) of FTL observer k as seen by observer m. Notice that the spaceship is
“flying” backwards as seen by m (i.e. moving in the direction of its rear). However,
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if £ points the nose of his spaceship in the opposite direction then m will see the
spaceship of k£ “flying” forwards. Formally, this amounts to reversing the direction
of the z-axis of k. This is illustrated in the following picture.

Convention: Throughout we assume that a spaceship always points its nose in
the positive direction of its z-axis.

life-line of the rear of spaceship

spaceship of k as seen by m

spaceship of k as seen by & himself

This was the spaceship of k; in turn the next picture illustrates how k sees the
spaceship of m.
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life-line of the nose of spaceship spaceship of m as seen by m himself

spaceship of m as seen by k

—1 /,/
7 the spatial direction
7 in which the spaceship
o is flying as seen by &
o /\_ , life-line of the rear of spaceship
- z

k sees that m’s spaceship is flying backwards (i.e. moving in the direction of its
rear). However, if m points the nose of his spaceship in the opposite direction then
both k& and m will see each other’s spaceships flying forwards (i.e. moving in the
directions of their noses). This is illustrated on the next two pages (pp.115-116).
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spaceship of m
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spaceship of m
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< = i
the spatial directionin \_—= "“
which the spaceship is <
flyingasseenby k X
:1—,/_ !

Both m and k see each other’s spaceships flying forwards.
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6

Both m and k see each other’s spaceships flying forwards.
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The pictures above show that it is possible to have a kind of symmetry when
considering the spatial directions in which the spaceships are flying, that is there
are observers m and k such that k£ moves FTL relative to m, and both m and k see
each other’s spaceships flying forwards, i.e. the spaceships are moving in direction
of their noses. However, this symmetry is not a perfect symmetry, namely for every
m,k € Obs with v, (k) > 1 the following holds: If m thinks that k’s spaceship
is flying forwards in the negative direction of z then k£ will think either that £’s
spaceship is flying forwards in the positive direction of Z' or it is flying backwards
(i.e. it is flying in the direction of its rear). If m thinks that k’s spaceship is flying
forwards in the positive direction of Z then k& will think either that k’s spaceship
is flying forwards in the negative direction of Z’ or it is flying backwards. Similar
arguments apply in the cases when m thinks that £ is flying backwards. We leave
the details of this to the reader.

As a contrast if v, (k) < 1 and if time passes forwards for k£ as seen by m then
the above lamented “perfect symmetry” is achievable, namely if m sees k flying
forwards in the negative direction of Z then k£ will see that m is doing the same.

Let us switch from regarding spaceships to regarding their clocks. In Thm.2.7.4
and in Figure 41 below we will see that it is impossible to have symmetry when
considering the directions of “flows of time” (i.e. considering whether the observed
clocks run forwards or backwards).

THEOREM 2.7.4 Assume Basax(n) + Ax(v/ )."*® Let m,k € Obs. Assume k
moves FTL relative to m, i.e. v, (k) > 1. Then the following hold. If m thinks that
k’s clock runs forwards then k will think that m’s clock runs backwards. However,
if m thinks that k’s clock runs backwards then k will think that m’s clock runs
forwards.'** Summing up, m and k see each other’s clocks differently. Formally:

fkm(]-t)t _fkm((_])t >0 = fmk(lt)t _fmk((_))t < 0.

On the proof: By Prop.2.3.3(iii), we may assume v,,(k) > 1. Then for n = 2,
the idea of the proof is illustrated in Figure 41. For n > 2, one either checks that
the idea represented in Figure 41 works; or equivalently one may use the no FTL
theorems in §3.4.1. The detailed proof will be filled in a later version. 1

133We note that a variant of this theorem remains true without Ax(y/ ), i.e. in pure Basax.

134Gometimes we quote this theorem as if it stated “... k’s clocks run backwards ...”. In these
quotations we have in mind the clock in the rear of k’s spaceship together with the clock in the
nose of the spaceship etc. and that is why we write in the plural k’s clocks instead of just k’s clock
as the theorem above says.
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direction of simultaneities for k

m’s clocks look like this:

k’s clocks look like this:

O
D

Figure 41: Assume that m thinks that k’s clock runs forwards. Then £ will think
that m’s clock runs backwards.
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THEOREM 2.7.5 (FTL excludes “perfect symmetry”.)
Assume Basax(n). Let m,k € Obs. If v, (k) > 1 then f # fm-

Proof: Under assuming Ax(y/ ) the theorem is an immediate corollary of Thm.2.7.4
above. The proof without assuming Ax(v/ ) will be filled in later. B

Thm.2.7.5 above leads us to the following considerations. In §3.9 (“Symmetry
axioms”) we will introduce two symmetry principles AxA1 and AxO1 which can
be regarded as special cases of Einstein’s Special Principle of Relativity.'*®

COROLLARY 2.7.6
Basax(2) + Ax(eqtime) + AxA1l = “ A FTL observers”, where Ax(eqtime)
will be defined in §2.8 on p.127.

<

The above is an immediate corollary of Thm.2.7.5.

Conjecture 2.7.7 Assume Basax(2). Then FTL observers are consistent with
Ax0O1.
<

In connections with items 2.7.5-2.7.7 above cf. Thm.2.8.2 on p.127 and Thm.3.8.11
on p.300.

Visual effects in FTL

Now we turn to discussing, briefly, what we call “visual effects”, i.e. what observers
see in the usual sense of seeing, i.e. via photons arriving “at their eyes”. (Recall
that in the rest of this work we use the word seeing in a completely different sense
namely we use it as “coordinatizing”.)

Let us recall that in the present section (§2.7) Basax(2) + Ax(v/ ) is assumed.
Let m, k € Obs such that k£ moves FTL relative to m. The way m optically (i.e. via
photons) sees k is represented in the following picture. Studying the picture reveals
the following. The experience of m concerning k is this: For a while there is nothing
just empty space. (In particular no & is around). Then suddenly, out of nothing
two copies of k appear and they start moving away from each other. Both copies
of k are moving away from m one copy is getting younger and younger, while the
other one is getting older (as normal). I.e. m optically sees the clocks of one copy
of k ticking forwards while sees the other clock ticking backwards.

135 AxAlis (Vm, k € Obs)(3k' € Obs)(trp (k) = trp(k') A fpp = frm and AxO1is (Vm, k,m’ €
Obs)(3k" € Obs)fr, = frmiger -
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Because of the no FTL theorem in §3.4.1 one might have the impression that
the just described phenomenon can happen only in two dimensions. However, in
Basax(n) + Ax(v/ ) with n > 2, we still can have this with the only difference that
k is not an observer but only a body having an “inner clock”. Such FTL bodies are
permitted by Basax(n), actually they are more or less the same what the literature
calls tachyons. Bodies with inner clocks will be discussed in a future chapter of this
work (which chapter does already exist in unfinished hand-written form).'3® (This
might remotely remind one of the case when a particle and its anti-particle is created
from nothing.)

photons

k’s clocks

136 A ctually FTL bodies with inner clocks have been extensievly discussed at the seminars which
served as a basis for the present lecture notes.
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In the next picture, we illustrate how % sees (the rest of the world)
visually / optically and how m sees (the rest of the world) visually. E.g. k inter-

N\

prets photons such that they are “coming” this V. way (relative to the world-view

or coordinate-system of m), while m will interpret them “moving” this '\ way.

The picture represents a somewhat surprising aspect of FTL visual effects.
Namely m sees (optically) k as we already described in connection with the previous
picture. Let us turn to the visual (optical) effects experienced by k as coordinatized
by m: The photons which &k will interpret as entering k’s spaceship through the
front window, “carry information” from m’s future according to the world-view (or
coordinatization) of m. If k looks out through the rear window then he will see m
growing younger and younger. Of course through the front window £ will see the
“other copy” of m getting older.

Further there are life-lines of photons in this picture the “causal direction” of
which is the opposite for k as for m. For k it is this , while for m is this .
(It is no coincidence that in the present work we did not talk about “causality”.
We think that a truly logical theory of causality is not evident how to create, cf.
Russel [229]. As we said, in a future version of this work there will be a chapter
about bodies having an inner clock. After that chapter we will be in a better position
for reasoning about causality.)
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incoming photons as perceived by k (optically)
through the window in the nose of his spaceship

m optically sees
via these photons

incoming photons as perceived by k through
the window in the rear of his spaceship
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2.8 Some symmetry axioms and the twin paradox

In order to discuss the twin paradox, we will need some kind of symmetry axioms.?"

In this section we study the possibility of adding certain symmetry axioms to Basax.
An example for a symmetry axiom is Ax(symm) to be introduced soon. We con-
sider Ax(symm) as a possible formalization of (an instance or a fragment of)
Einstein’s Special Principle of Relativity (SPR), cf. Friedman [90, p.149] princi-
ple (R) therein. After introducing Ax(symm) and investigating its effect on the
paradigmatic effects, we discuss the twin paradox.

Axiom Ax(symm) below is an “optional” postulate; sometimes we add it to
Basax (or other theories of special relativity introduced later in this study) and
sometimes we do not. Its usage is somewhat analogous with the Axiom of Choice
(AC) in set theory, where people are interested both in set theory without AC and
also with AC. Moreover, Ax(symm) is of a different nature than the other axioms
introduced up to this point. It expresses a sort of methodological (or aesthetics-
motivated) principle: by making all observers similar (in a certain sense) we commit
ourselves for describing the world as simply as possible. In this respect Ax(symm)
will serve as a kind of “Occam’s razor” in our analysis. To distinguish aesthetics-
motivated axioms like our symmetry principles (e.g. Ax(symm)) from experiments-
motivated ones (like e.g. AXE), statements like our Ax(symm) are often called
principles of parsimony (i.e. principles of economy of explanation in conformity
with Occam’s razor), cf. e.g. Friedman [90, p.29 line 23]. So, what we call in the
present work symmetry axioms!3® all belong to the kind of axioms called principles
of parsimony. For more on the special nature of Ax(symm) in connection with
Occam’s razor etc. we refer to § 2.8.3 on page 138 and to item 4.2.18 (p.464).

We provide deeper discussions of symmetry principles in §§ 3.9, 4.2, 4.7.

In the present section we include a relatively brief discussion of Ax(symm) and
its effects on theorems (or phenomena) already studied in the preceding parts. E.g.
we will discuss how Ax(symm) influences paradigmatic effects (I)—(III) discussed
in §2.5. We will see that these effects (for example the effect of clocks slowing down)
admit a simpler and stronger formulation in Basax + Ax(symm) than in pure
Basax, and all three paradigmatic effects are necessary if we assume Ax(symm).
After this, and motivated by these theorems, we introduce some other axioms and
show that they are equivalent with Ax(symm). We then briefly investigate what

137This is so because we will approximate the accelerated twin by several inertial observers, and
thus we need a kind of “similar behaviour” of these inertial observers.
138Cf. besides the present section §§ 3.9, 4.2, 4.7.
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Ax(symm) says about the physical world. After this we show that, (in the presence
of Basax + Ax(v/ )), Ax(symm) implies the twin paradox, more precisely, an
approximated version of the twin paradox. We then investigate the twin paradox a
little. We conclude this section with introducing one of our central axiom systems,
Specrel.

First, we postulate a natural symmetry principle Ax(symmyg), and then an
auxiliary axiom Ax(eqtime). Ax(symm) will be defined to be
Ax(symmy) + Ax(eqtime).

Ax(symmy) (Vm,k € Obs)(3Im/, k' € Obs)
(trm(m') —tri(K) = A fou = fk,m,>.

Let us see what Ax(symmyg) says intuitively, and why we claim that
Ax(symmyg) is a natural symmetry postulate about “how the world behaves”. As-
sume m, k are two observers. We would like to state that observers m and k are
equivalent in some sense. A natural thing to say in this direction would be saying
that “as I see you so do you see me”. That is

(%) as m sees k so does k see m.

But formally this would mean saying that f,,,x = fx,,, which is a too strong statement,

e.g. because k£ may be “looking in the wrong direction”. If the bicyclist sees the train
moving forwards, the train inhabitants may see the bicycle moving backwards. Cf.
the next sequence of pictures. However, this can be easily mended; instead of (x)
we state the following more subtle version ().

(xx) As m sees k so does some sister k' of k see some brother m' of m.

Here saying that k' is a sister of k£ means that ¢ri(k') = ¢, i.e. they have the same
life-line.!3? Indeed it is exactly the formalized version of (xx) what is stated in axiom
Ax(symmy).

Perhaps a more natural form of Ax(symmg) would state the existence of
brothers m' and k' such that m' and k' see each other exactly the same way, i.e.
ok = fgre . If there are no FTL observers (e.g. if n > 2), then this is an equivalent

139By quantifying over observers having the same life-line (like our quantifiers &', Im') we sort
of abstracted from “the directions in which our observers are looking” and this is exactly what we
needed.
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form of Ax(symmy), see § 3.9. However, this more natural form excludes FTL ob-
servers (see Theorem 2.7.5), this is why se stated Ax(symmy) in its present form.
Cf. Theorem 2.8.2.

As an illustration for why &' and m’ are needed in Ax(symmg) we include
the following sequence of pictures. (Throughout the discussion of these pictures we
assume Basax(2).)

t t
m = cyclist —__| train = k m = cyclist . train = k
T T
world-view of m = cyclist world-view of k = train

The above represents one possible configuration of the cyclist and the train: The cy-
clist sees the train moving forwards in the positive z-direction, while the train people
see the cyclist moving backwards in the negative z-direction. For this configuration
the world-view transformations are represented in the following picture.

L el £ [F] ’*k
k m.__\
fkm[i]
T T
fk frm i [7]

The above are the world-view transformations corresponding to the configuration
represented in the previous picture (the train and the cyclist look in the same di-
rection). Obviously f,x # fgm. Let us try to mend this by turning the train around
such that the train people will be looking backwards, which in our formalism means
that we choose a sister k' of k as illustrated in the picture below.
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(S

L fenlt] o

fem|Z]

Tk [3_3]

fmk fk’ m

Well, .k = firm is still not satisfied (but we made a step forward, look at fy,,[t] and
fmie[t]). Let us turn the cyclist around too. This means that we take a brother m'
of m as illustrated in the picture below.

b fmlE] Eofw[E]

fem [j] | [.’T)]

fmk fk’ m'

This picture shows that now we have a chance for f,,;, = fi,y being true since the
lines which are mapped to the axes ¢ and T are mapped to the right places. (In
connection with this we note that v,,(k) = vi (m’) follows from Thm.2.8.6 on p.129
which says that under some mild assumptions, v,,(k) = vx(m). This implies that in
our present case trp, (k) = trp(m').) But in addition to this, we need that f,,; and
frm agree on these lines, and not just that they take these lines to the same sets.
The fact that it is possible to arrange this at least in some model of Basax will be
seen in Theorems 2.8.1-2.8.2 below (and in more detail in §3.8.2).
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Next, we introduce an auxiliary axiom Ax(eqtime). We call Ax(eqtime)
axiom of “equi-time” because it says that time passes with the same rate for “ob-
server brothers” m and m/'.

Ax(eqtime) (Ym, m' € Obs)
(trm(m’) =t = (Yp,q€t) |p—q|=|fmmp) — fmm,(q)|>.

Concerning Ax(eqtime) we note that this is a very natural and convincing
axiom, it only says that if two observers do not mowve relative to each other (moreover
they are at the same place) then their clocks have the same rate. In other words
this means that our paradigmatic effect (I) **° does not show up in the absence of
motion. (This is a natural assumption which has always been assumed beginning
with ancient Greeks, then by Galileo and Newton and of course by Einstein.)

Let us turn to defining Ax(symm).
Ax(symm) 4 Ax(symmy) + Ax(eqtime) .

Let us see first if studying Basax+Ax(symm) makes sense at all. We already
stated on p.77 that Basax is consistent, cf. also §3.5 (“Simple models for Basax”).

THEOREM 2.8.1 Basax(n) + Ax(symm) is consistent, for all n > 1.

On the proof: In the present section we discuss the proof only for n = 2. The
general case will be proved in §3.8.2. A “computational” proof is given in the
proof of Thm.2.8.2 below. As a contrast, the proof in §3.8.2 is a more intuitive,
“structuralist” proof. We note that the “standard Minkowskian model” 4! of special
relativity validates Basax + Ax(symm). 1

THEOREM 2.8.2
(i) (Basax(2) + Ax(symm) + “3 FTL observers”) is consistent i.e.

(ii) there is M € Mod(Basax(2) + Ax(symm)) such that in O there are FTL
observers.

140Moving clocks slow down.
1410Cf. Def.3.8.42 on p.331.
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Proof: We use the construction in §2.4 (pp.80-87). Recall that P was an arbi-
trary choice function which to each ¢ € Eucl(2,9R) associated two distinct points
0¢,te lying on £. Then the model MY = ((B; Obs, Ph, Ib), R, Eucl(2,R); €, W) was
constructed from this P. In 9" there were FTL observers. Let us modify this con-
struction such that for each observer m we include all the “brothers and sisters” of m
as new observers. Le. let (MM)* := ((B*; Pht, Obs™, Ib"), R, Eucl(2,R); €, W)
be defined as follows:

Obs™ % Obs x F x {-1,1} x {~1,1},

Pht % Phx F x {—1,1} x {—1,1}.142

BT ¥ bt .= Obs™ U PhT,

W def { <<m, t,4, 7). p, (b, t’,i’,j’>> € Obs* x 2R x B+ : W(m, (po +z’t,jp1),b)}.

By the above, (9)* is defined. We claim that (9M])" = Basax and in (IM])"
there are FTL observers. (Checking these are left to the reader.) Therefore here it
is enough to show that P can be chosen such that Ax(symm) foo will be valid in
(9MF)*. To this end (for each £ € Eucl) let us choose 0, = {0y, 01) and t, = (o, ;)
such that the “Minkowski-distance” between them is 1; that is we choose them
such that |(0p — %9)? — (01 — t1)?| = 1. Checking that this works (e.g. (IMMI)* =
Ax(symm)) is left to the reader. B

The next theorem states that in models of Basax + Ax(symm) + Ax(y/ ), no
field-automorphisms are involved in the world-view transformations.

THEOREM 2.8.3 Assume MM |= (Basax + Ax(symm) + Ax(v/ )). Let
m,k € Obs. Assume f,;,(0) = 0. Then f.x is a bijective linear transformation of
the vector space "F preserving the set of photon-lines.

Proof: The proof will be filled in later, but it can be easily reconstructed from the
proof of Prop.3.8.35 (p.317). &

For completeness we note that Basax + Ax(symm) implies that on Figure 29
the Minkowski-sphere can look like only as in the case of 93. Cf. the proof of
Theorem 2.9.5 on p.155. Further we note that Basax+ Ax(symm,) is not sufficient
for this. (This was noted by Gergely Székely and Ramon Horvath.)

It is interesting to compare the above theorem about f,,;’s with Thm.2.3.12(ii)’.
Namely in the above theorem we did not need mentioning field automorphisms

142WWe included all “brothers” of photons only for technical reason.
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while we did need them in Thm.2.3.12. There is a similar contrast between the
above theorem and Thm.3.1.4 on p.162. In connection with the above theorem
we note that, under assuming Basax + Ax(symm) + Ax(yv/ ), the world-view
transformations f,,,;, are so called Poincaré transformations; and those world-view
transformations which preserve 0 are Lorentz transformations, cf. Thm.2.9.5 on
p-155.

Remark 2.8.4 Consider the possible models 9, My, M3 of Basax represented in
Figure 29 (p.88). As we said, of these only 95 is a model of Ax(symm). In
particular Ax(symm) fails both in 9%; and 9,. Therefore Basax + Ax(symm)
has radically fewer kinds of models than Basax does. The proof is left to the reader.

<

We think that the answer to the following question should be relatively easy.

Question for future research 2.8.5 Assume 9 = Basax + Ax(symm). Let
the set Wtm™ of the world-view transformations be as in Remark 2.3.9. TIs then
(Wtm™ o, 1,1d) a group?

<

So far we investigated a symmetry property of the the kind “as I see you so do
you see me”. According to the following theorem, a simple property of this kind
follows already from Basax and some mild extra assumption. Compare Theorem
2.7.3 on p.111.

THEOREM 2.8.6 Assume 9 = Basax. Let m,k € Obs. Then (i)-(iii) below
hold.

(i) Assume that the field reduct F of 9M has no nontrivial automorphisms. Then
Vi (k) = vg(m).

(ii) Assume that f,.x is an affine transformation of "F (cf. Def.2.9.1 on p.152 for
the definition of affine transformations). Then

Vi (k) = vg(m).
(iii) Assume that M = Ax(symm) + Ax(v/ ). Then

Vm(k) = vg(m).



On the proof: In the present version we include the proof only of (i) and (ii), and
only for n = 2. To prove (ii), let 9 = Basax(2). Let m,k € Obs such that f,; is
an affine transformation. Without loss of generality we may assume that 0 € tr,,(k)
and that v,,(k) # 0. Throughout the proof the reader is asked to consult Figure 42.

t tro(k
0 (k)
5 0
D . fkm[t_]
q
0 z

Figure 42: lustration for the proof of v,,(k) = v (m).

Let s € try,,(k) be arbitrary such that s # 0. Let £ be the mirror image of
trm(k) w.r.t. a photon-line containing s. Let p := (s;,0). Let ¢; be the mirror
image of ¢ w.r.t. the line ps (determined by points p and s). Let ¢ := £ Nt and
r:= £, Nt. Note that segments sq and sr have the same length, i.e. |s—q| = [s —7|.
The following two sentences will not be formalized. Angle Osr is a right angle by
elementary geometry, so we have that triangles Ops and Osr are similar. ¢ is parallel
with f,[t] by Thm.2.3.12 on p.65. So, we have

2
_ length of segment sq _ |s—q|? . . .
vg(m) = (length T ooment o8 =19 since f,, is an affine transformation

preserving photon-lines

2
length of —7r|2 .
(lgﬁgth o :ggﬁ‘;ﬁ: jg) (= |S|s‘r2| ) since sq and sr have the same length

2
length of segment ps _ s2 . . = = ..
(length of segment p0 =3 since triangles Ops and Osr are similar

= (k).
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Item (i) follows from item (ii) and Thm.2.3.12(iii) on p.65.
The rest of the proof of this theorem (the case n > 2 and also (iii)) will be
included in a later version. W

2.8.1 Ax(symm) and the paradigmatic effects
Let us turn to seeing how Ax(symm) simplifies the “picture” of special relativ-

ity, e.g. what it “says” about our paradigmatic effects (I)—(III) (p.90).

THEOREM 2.8.7 (Clocks slow down.)
Assume Basax + Ax(symm) + Ax(v/ ). Let m,k € Obs, with 0 < v,,(k) < 1.
Then:

(i) m thinks that k’s clocks run slow, i.e.

frm (1) ¢ — fem(0) ¢ > 1; moreover

(ii) (YO # A € F) [fem(X-1e) e = fam(0) o] > [A].

Proof: Item (i) of this theorem is a corollary of Thm.2.5.2(iii) (p.92) and Thm.2.8.9
below. Item (ii) of Thm.2.8.7 follows from item (i) and Thm.2.8.3 below (p.128).
|

In connection with the above theorem cf. Theorem 2.5.2. The novelty in The-
orem 2.8.7 is that it says that all observers’ clocks slow down in the presence of
Ax(symm), while without Ax(symm) we only know that some clocks slow down.
This also means that both m thinks that £’s clocks slow down and k& thinks that
m’s clocks slow down. This is counterintuitive to the thinking we got used to in
our Newtonian world where if £ thinks that m’s clocks run slow, then m will think
that k£’s clocks run fast. That both can think that the other’s clocks run slow is
possible because they do not percieve the same events as simultaneous, i.e. because
of paradigmatic effect (III). In connection with this see Figure 50.

Analogous statement can be made about paradigmatic effect (II), i.e. about
shrinking of meter-rods, cf. the following theorem. In connection with the next
theorem we note the following: If we assume Basax, then for every m,k € Obs,
such that v,,(k) # oo, tr,,(k) can be considered as a function tr,,(k) : F — "7'F,
therefore tr,,(k)(0) is well defined (cf. Fact 2.2.4).
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THEOREM 2.8.8 (Meter-rods shrink.)

Assume Basax + Ax(symm) + Ax(v/ ). Let m,k € Obs, with 0 < v,,(k) < 1.
Then (i) and (ii) below hold.

(1) Meter-rods of k parallel with the direction of movement of k shrink when ob-
served by m. Le. m will think that k’s meter-rods are shorter than k thinks,
formally:

For simplicity assume that 0 € tr,,(k) C Plane(t,z). Let k; € Obs with t #
tri (k1) C Plane(t, z) such that try(ky) is parallel with t.'*3 Let p := tr,(k1)(0)
and q := tri(k1)(0).

Then |p| < |q|. Cf. Figure 38 on p.101.
(ii) Those meter rods of k which are not orthogonal to the direction of movement
shrink when observed by m. Formally:

For simplicity assume again that 0 € tr,, (k) C Plane(t,z). Let ki € Obs such
that tri (k1) is parallel with t and tri(k1)(0)o # 0.

Then |p| < |q|.
The proof will be filled in later. R
In connection with the above theorem cf. Items 2.5.9-2.5.12 (pp.100-101).

THEOREM 2.8.9 (Clocks slow down exactly the same way.)
Assume Basax+ Ax(symm). Assume m,k € Obs. Then m sees k’s clocks slowing
down to exactly the same degree as k sees m’s clocks doing the same; formally:

(i) |fem(Le) s — fem(0) ¢| = |fmk(1e) ¢ — fk(0) ¢|, moreover:
(1) (VP € 1) [fm(P) ¢t = Fom(0) e = lfmr(p) ¢ — i (0) -

Proof: We will fill in the proof later, but it can be easily reconstructed from the
proof of Prop.3.8.34 (p.317). 1

Remark 2.8.10 An analogous statement can be made about the effect of shrinking
meter-rods as follows.

Assume Basax + Ax(symm) + Ax(v/ ). Then (i) and (ii) below hold.

(i) Assume further m, k € Obs are in standard configuration. Let us concentrate
on meter-rods parallel with the direction of movement. Then m will see k’s
meter-rods shrink exactly with the same ratio as k£ sees m’s meter-rods shrink.

143Intuitive1y k and k; together represent a meter-rod of k.
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(ii) Assume k moves in direction Z when observed by m (i.e. tr,, (k) C Plane(t, )).
Let us concentrate on meter-rods which are parallel with direction Z when
observed by m. Le. even if the meter-rod is k’s one we check whether m sees
it parallel with the plane Plane(Z, Z) determined by axes ¢ and z.

Then m will see k’s meter-rods shrinking with the same ratio as k sees m’s
meter-rods. <

Roughly, the following theorem implies that meter-rods orthogonal to the di-
rection of movement do not shrink or grow, assuming Basax + Ax(symm), cf.
Corollary 2.8.12.

THEOREM 2.8.11 Assume Basax + Ax(symm) + Ax(v/ ). Let m,k € Obs.
Let e, eq be two events which are simultaneous for both m and k. Then the spatial
distance between e and ey is the same for m as for k; formally:

(Vp,g € "F) [(pr=a A fur(p)e =Ffk(@)e) = |p—al = [frr(p) — Frr(g)[].-
The proof will be filled in later. B

The following is a corollary of Thm.2.8.11 above and Thm.2.5.6 (p.97) which
says that (under assuming Basax) if two clocks are separated only in the spatial
direction which is orthogonal to the direction of movement they do not get out of
synchronism.

COROLLARY 2.8.12 (Meter-rods orthogonal to movement do not
shrink.)

Assume Basax + Ax(symm) + Ax(v/ ). Then meter-rods orthogonal to the di-
rection of movement do not get shorter; formally: Let m,k € Obs. Assume m sees
that k& does not move in direction y, that is

(Vp,q € tri(k)) py =gy

Then,

(Vp,q € "F) ((Vi eEn)i#2 = pi=q¢) = |p—q|=fu) - fmk(Q)|) :

In particular
p.a€y = [p—q|l=[fup) — fuk(a)]
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2.8.2 Equivalent forms of Ax(symm)

In this part we show that certain forms of the paradigmatic effects are actually
equivalent with Ax(symm) (in Basax under mild conditions). Different equivalent
forms of Ax(symm) will be given in § 3.9.

Thm.2.8.9 motivates the axiom Ax(syto) below. We note that the “name”
Ax(syto) intends to refer to “symmetry of time”. Intuitively, Ax(syto) says that

“as I see your clocks slowing down (because of your speed relative to me) so do you
see my clocks (because of my speed relative to you) slowing down”.

In the formulation of Ax(syte) below the assumption tr,,(k) # () is superfluous
at the present point, because Basax = tr,,(k) # 0. However in later sections this
assumption will become useful.!#*

Ax(syto)  (Vm,k e Obs)(trm(k) 40 =
(V9 € 7) [t (p) s = e (0) o] = [fom(p) ¢ = Fem (0) ol )

In terms of the just defined Ax(syto), Thm.2.8.9 says that
Basax = Ax(symm) — Ax(syty).

In Thm.2.8.13 below we will see that, under mild assumptions, the implication holds
in the other direction too, i.e. Ax(syto) is an equivalent form of Ax(symm) (in
th presence of Basax). To formulate Thm.2.8.13 we introduce auxiliary axioms
Ax(Triv) and Ax(Triv;). First we introduce the notion of an isometry and the set
Triv of trivial transformations.

Triv denotes the set of all mappings of "F into intself which preserve Euclidean
distance, take ¢ to a line parallel with it, and so that the order of points does not
change on ¢t. Formally: Let § be an ordered field. Then f:"F — "F is said to be
an isometry iff it preserves the square of Euclidean distances, i.e. (Vp,q € "F)

Po—q0)?+ 1 — @)+ + (Pn1— 1)’ =
(F®)o = F@0 + (F®)s = F@ + -+ (F @t — F@)as)?

144We would like to remind the reader that we mentioned that when generalizing our axioms
toward general relativity, Ax6 and Ax3 will be weakened and therefore trp, (k) = @) will be possible
for some choices of m,k € Obs.
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cf. also Def.3.9.3 on p.349. Let "F)"F denote the set of all functions mapping "F
into itself. Then

Triv & Triv(n, §) o {fe CEYnp . fis an isometry, f[t] || , f(1¢) — f(0); > 0 }.

As we will explain in §3.5 in more detail, the transformations in Triv involve no
“relativistic effects”, one could say that they are very non-relativistic or, so to speak,
trivial. To illustrate this, assume f(0) = 0. Then f € Triv if and only if f is identity
on t and f maps the space-part S to itself (i.e. f[S] = S) so that it preserves
Euclidean distance on S.

Ax(Triv)  (Vm € Obs)(Vf € Triv)(3k € Obs) o = f.

Ax(Triv) says that every observer can “re-coordinatize” his world-view by
any trivial transformation. As is explained in §3.9, Ax(Triv) is first-order,
because each isometry is an affine transformation, and so quantifying over
elements of Triv can be replaced with quantifying over elements of §.

Ax(Trivy) below is a weaker form of Ax(Triv).

Ax(Triv))  (Vm € Obs)(Vf € Triv) ( fE]=7 = (3k € Obs) iy = f).

THEOREM 2.8.13 Assumen > 2. Then
Basax + Ax(v ) + Ax(Triv;) = Ax(symm) <> Ax(syto).
Proof: This will be proved as Prop.3.9.47(ii) (p.391), cf. also [174].

We consider Ax(Triv) and Ax(Triv;) as some of our auxiliary axioms.'*® A
similar auxiliary axiom is Ax(]|) to be introduced below.

145The axioms we call auxiliary are of a status that we assume them without any hesitation
whenever we need them. I.e. we consider them as true in the “real world” and we omit them from
some of our theories only to make these theories look prettier. To be on the safe side, we note that
Ax(Triv) and Ax(]|) will “not survive” the transition from special to general relativity. They
both will need some refining already in our chapter on accelerated observers. The following form
Ax(Trivy) of Ax(Trivy) will remain “true”: (Vf € Triv)[f(0) = 0 = (3k € Obs)fmi, = f]. In the
case when we will allow only uniformly accelerated observers, also Ax(Trivy) will remain “true”.
Here “true” means “usable” or consistent with our intentions.
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Ax(|])  (Vm,k € Obs)(trm(k) |t = (fuxisan isometry)).

Intuitively, assuming Ax4, axiom Ax(||) says that if you do not move relative
to me then we will agree on which events are simultaneous, which occurred at
the same place and we agree on both spatial distances and temporal distances
between events. Hence Ax(||)+Ax4 implies that none of the paradigmatic
effects shows up in the absence of motion. Ax(||) is a stronger version of
Ax(eqtime). In passing we note that later (in §6) we will introduce an axiom
called Ax(eqm) which (under mild assumptions) will be a stronger version of
Ax(]])-

The proposition below says that, assuming Basax + Ax(Triv), the auxiliary
axioms Ax(||) and Ax(eqtime) are equivalent.

PROPOSITION 2.8.14 Basax + Ax(Triv) £ Ax(]|) < Ax(eqtime).
The proof will be filled in later. R

The following proposition says that, assuming Basax+Ax(y/ ), both Ax(syto)
and Ax(symm) imply Ax(]|).

PROPOSITION 2.8.15
(i) Basax + Ax(v' ) + Ax(syto) E Ax(|]).
(ii) Basax + Ax(v ) + Ax(symm) = Ax(|]).

Proof: Item (i) will be proved as Prop.3.9.44 (p.389). Item (ii) follows from
Thm.2.8.9 and item (i).

Since Ax(]|) is a stronger form of Ax(eqtime) the above proposition implies
that
Basax + Ax(v ) + Ax(syto) = Ax(eqtime).

Thm.2.8.11 motivates the following potential axiom, which we call the
axiom of “equi-space”.

Ax(eqgspace) (Vm,k € Obs)(Vp,q € "F)
(Be=a A D) = fua@)0) = [p—al = [fe(p) — fru(a)] ).

Intuitively, Ax(eqspace) says that if two events are simultaneous both for m
and k, then the spatial distance between those two events is the same for m as
for k. Theorem 2.8.16 below explains why we consider Ax(egspace) as one
of our symmetry axioms.
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In terms of the just defined Ax(egqspace), Thm.2.8.11 says that
(Basax + Ax(symm) + Ax(v/" )) = Ax(egspace) .

In the next theorem we will see that (under assuming n > 2 and Ax(Trivy)) the
implication holds in the other direction, too.

THEOREM 2.8.16 Assume n > 2. Then
(Basax + Ax(v' ) + Ax(Triv;)) = Ax(symm) +> Ax(eqspace).

The proof will be filled in later, and it can be found in [174]. B

Next we introduce another natural symmetry axiom. Intuitively,
Ax(speedtime) below says that the rate with which moving clocks slow down
depends only on the relative velocity #,,,(k) with which one observer sees the other
moving. Roughly, the idea is the following. The relativistic effects are caused by
relative motion (of k relative to m). Motion is completely determined'* by velocity
Um (k) (of k relative to m). Therefore one concludes that relativistic effects (involving
fuk) should be determined by o,,(k). (At least if we disregard acceleration). For
technical reasons the axiom is formulated in terms of speeds instead of velocities.
Interestingly, we will see that this axiom turns out to be one of the symmetry axioms
analogous with Ax(symm) and Ax(syto), cf. Thm.2.8.17.

Ax(speedtime) (Vm,k,m', k" € Obs) (vm k) =vn (k) =
(Vp € 1) [fmk(p) ¢ — Fur(0) o] = |fm'k'( )t —fm'k'(ﬁ)t\)-

Ax(speedtime) also turns out to be equivalent with an instance of (or fragment
of) Einstein’s SPR.

The theorem below says that (under mild assumptions) the symmetry axioms
introduced in this section are equivalent with each other. For similar equivalence
theorems we refer the reader to §§ 3.9, 4.7.

1461f we disregard acceleration and things like that.
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THEOREM 2.8.17 Assume n > 2. Then (i) and (ii) below hold.
(i) Basax + Ax(v ) + Ax(Trivy) &

Ax(symm) < Ax(speedtime) <+ Ax(syto) < Ax(egspace);

where the “transitive notation” 1, <> 9 <> 3 intends to abbreviate
(V1 <> o) & (Yo <> 3). Similarly for the case when we have four formulas

say wla .- 'aw4-
(ii) Basax + Ax(v ) & Ax(speedtime) <+ Ax(syto) <> Ax(egspace).

The proof will be filled in later, but cf. §3.9 and [174]. 1
2.8.3 Is Ax(symm) objective or subjective?

Instead of Ax(symm) let us discuss its corollary Ax(sytoeo) formulated below,
because this simplifies the discussion. However, the whole discussion extends to
Ax(symm) too.

Ax(sytoo)  (Vm,k € Obs) [f(0) =0 = [foe(1)s] = [frm(1)e]]

That is, “if I see your clocks slowing down (as a consequence of your motion
relative to me) so will you see my clocks slowing down (as a consequence of
my motion relative to you)”.

Meditating over the meaning of Ax(sytee) leads to the following question.
Ax(sytgo) can be made true (or false) by choosing the units of measurement k
uses. (The same applies to Ax(symm)). But choosing units of measurement is
something subjective. Assume that m lives on the Earth while £ lives in a space-
ship originating from another galaxy. Then they can see each other all right, but
how can they compare their meter-rods (or their clocks) i.e. how can they agree on
using the same units of measurement. Suppose, they are in radio communication.
If they cannot compare their units of measurement via radio communication, then
perhaps there is no thought-experiment for them to check wether Ax(sytqo) is true,
which could render this axiom either meaningless or to be a matter of agreement
for convenience. In other words, then Ax(sytoo) would become kind of subjective
(i.e. something which does not say too much about what the world is really like, but
instead which is about how we choose to describe the world).

The following intuitive argument says that this danger is not present i.e.
that Ax(sytep) and Ax(symm) are objective, i.e. they are checkable by some
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thought experiment. This goes as follows. Electrons, and hydrogen atoms are the
same in all parts of our Universe, according to the best of our knowledge.'*” Ob-
servers m and k can agree through their radio contact that they will use the hydrogen
atom for defining their units of measurement (both for space and for time). I.e. they
can agree to use the same units of measurement. After this, it is only a matter of
patience to work out a thought experiment for checking whether Ax(sytgo) holds
for m and k. A similar argument applies to Ax(symm) in place of Ax(sytoo).
Therefore, we can conclude that Ax(sytge) and Ax(symm) are meaningful (ob-
jective) axioms about what the world is like (and not only “linguistic toys” like, say,
absolute time).

The above considerations (using hydrogen atoms for matching units of measure-
ment) will come up in §4 where we will look into axiom systems weaker than Basax
and the question will come up whether the difference between the weak system'8
and Basax is testable by thought experiments (i.e. is objective) or not.

2.8.4 The twin paradox

The twin paradox (TwP) was formulated on p.38. However, that formulation
cannot be used in Basax because it uses non-inertial (i.e. accelerated) observers.
Below we will introduce a variant of (TwP) in which we will simulate an accelerated
observer by several inertial ones. To formulate (our present version'*® of) the twin
paradox, we will need the binary relation STL of being slower than light between
observers to be recalled from Thm.2.7.2. Let 90 be a frame model and m, k € Obs™.
Then'®

m STL k <% v, (k) <1.

147 At this point we acknowledge that we brought a new axiom into our picture of the world. But
we think that should be all right as far as one acknowledges it. (I.e. what we are saying about
Ax(sytoo) is not based on pure logic only.)

148in which for different observers the speed of light might be different

1491Tn reality this is only an “approximation” of the original paradox, and this is called “clock
paradox” in d’Inverno [75]p.24.

150The relation STL will be re-defined in Def.4.2.6 (p.460), where the definitions of Ax(TwP)
will be changed too. The reason for this is that in the first 219 pages of this work we assume that
the speed of light is 1 (for short, ¢ = 1). We relied on this convention in formalizing the definition
of STL above. However in later theories (beginning with Bax, p.219) our assumptions on the
speed of light will become more subtle (than ¢ = 1). Hence some of the formal definitions made
during the “c = 1 era” will need adjustment around the beginning of §4. Therefore the present
definitions of STL and Ax(TwP) live (i.e. they apply) on pp. 139-422. The future definitions of
STL and Ax(TwP) live from p.422 to the end of the present work. However, in the presence of
Basax, the new and old definitions of STL and Ax(TwP) will have the same meaning.
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In Thm.2.7.2 we saw that STL is an equivalence relation on the set of observers
Obs (assuming Basax + Ax(v/ )).

Let us turn to formulating our present version of the twin paradox. Although
the formula below might look long at first sight, its intuitive content is simple cf.
Figure 43. The key idea is the following. Originally in (TwP) we had two twin
brothers m and k. Of these, m was inertial while £ was accelerated. As we already
said, since now (in the present section) we do not have accelerated observers, we
will have to simulate (or approximate) brother (i.e. observer) k£ by two “auxiliary”
inertial observers k; and k.

We will return to discussing the role of STL in Ax(TwP), soon.

Ax(TwP) (VYm,ky, ke € Obs)(Vp,q,r € "F)

([mSTLk1 AN mSTLky N p<q<r A

{p} = tria(m)Ntr, (k1) A {q} = trp(k) Ntrpn(ke) A {r} = trp(m)Nitr,(k)] =
=l > o (8) e — Fi (@)1 + s (0) 1 — 7)o ).

see Figure 43. 15!

THEOREM 2.8.18 (Basax + Ax(symm) + Ax(v )) E Ax(TwP).

The proof will be filled in later. R

Remark 2.8.19 (On the role of STL in Ax(TwP))

(i) STL is needed in Ax(TwP) (in connection with Thm.2.8.18 above) in the
following sense. Assume 9 |= (Basax + Ax(symm) + Ax(v/ )) and m, k €
Obs™ such that v,,(k) > 1. Then there are ky, ky € Obs and p,¢,r € "F such
that all the assumptions about m, kq, ko, p,q,r of Ax(TwP) hold with the
exception of “STL”, and the conclusion of Ax(TwP) fails. In other words, if
(Im, k) vm(k) > 1 in 9 then that version of Ax(TwP) from which the STL
condition is deleted fails in 90.

(ii) The condition “STL” can be replaced in Ax(TwP) with the following perhaps
more natural condition: All three observers m, ki, ko think that event w,,(q)
was “temporally between” events w,,(p) and w,,(r). We leave the complete
formalization of this version of Ax(TwP) to the reader. <

151 As we indicated, the definition of Ax(TwP) will be changed on p.460.
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Figure 43: Twin paradox. (In this figure we choose the speed of light to be 2 instead
of 1 for better representation of the effects we want to illustrate.) The slanted lines
in the left-hand picture represent simultaneities of observer k.

Figure 43 shows how the inertial brother, m, observes his accelerated twin
brother, k. Let us see how the accelerated brother, k£, observes his inertial twin
brother, m. Below (and when looking at Figures 43-48) it is important to keep in
mind that “m observes k£” means that m represents k’s life-line in m’s coordinate
system. Hence “observing” means “coordinatizing” and not visually seeing via pho-
tons. Hence “observing” does not involve any visual effect like the doppler effect.
As we said before, this convention applies throughout the present work.

In Ax(TwP) we approximated k£ by two inertial observers, k; and ko. We
can imagine that k travels with k; until k; meets ko, when & “jumps over” to ky’s
spaceship. We then put together k’s worldview from k;’s and ky’s such that k’s
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worldview agrees with k;’s worldview until they meet k5, and from that time on k’s
worldview agrees with ky’s worldview. We also assume that the clocks of k; and
ko are such that they show the same time at their encounter (i.e. we assume that

fky (@) = fmk, (@) where {q} = trp (k1) N trm, (k) ).

From now on we assume Basax + Ax(symm)+ Ax(v/ ). We will use properties
of the world-view transformations in models of Basax + Ax(symm)+ Ax(y/ ) that
we proved in this section, see e.g. Theorems 2.8.7-2.8.8.

Figure 44 shows how £k observes m when £ is approximated by k; and &k, as on
Figure 43. Recall that on Figure 43, #,,(k1) = —¥,(k2) and ki and k; meet at g,
ie. trp(ki) Nitr, (k) = {q}, and p = 0. Le., according to Figure 43, m observes k
receding with speed v until time ¢;, when & turns back and begins to approach with
the same speed v. As illustrated on Figure 44, k will observe m to recede with the
same speed v until time f,,x, (¢);, when m turns back (as observed by k) and begins
to approach with speed v. This is very similar to how m observes k, except that m,
as observed by k, turns back sooner than k& does so as observed by m, because by
paradigmatic effect (I) (moving clocks slow down) we have that f,.x, (¢); < ¢ Le.,
m needs less time for the journey as k observes it than k£ needs for the journey as m
observes it (this is the twin paradox). This also implies that the distance m covered
according to k is less than the distance k covered according to m.

Let us analyze further (from a different point of view) how k observes m. Assume
that when k£ departs, m is standing there waving goodbye, then goes home, has
breakfast, and then comes back to the departing spot again to meet his brother k.
Now, k£ will observe m waving goodbye and starting to go home in slow motion (i.e.
all of m’s processes are slower than usual), then before m reached home, according
to k’s worldview, suddenly he is already coming back again (in slow motion) to meet
him at the departing spot. In turn, m will observe his twin brother in slow motion
all the time, and he will observe all events that happened with £ on his journey.

In more technical terminology, using Figures 43 and 44: ey = w,,(0) is the
event of k’s departing, and w,,(¢) is the event of k’s turning back on his journey.
Let event e; in m’s life be simultaneous with w,,(¢) according to k; (i.e. m € e;
and fo, (@): = wy,'(e1)r). See Figure 44. Similarly, let event ez in m’s life be
simultaneous with w,,(¢q) according to k. We can see that e, happens much later
in m’s life than e; and that £ does not observe the events in m’s life that happen
between e; and e;. In our story, e; is an event in m’s life when he is on his way home
after waving goodbye to his twin, and ey is an event in m’s life when he already is
on his way back to meet his twin brother upon his return. k observes m in slow
motion because k observes that m’s clock slows down, and so for £ more time passes
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Figure 44: Twin paradox approximated by two inertial observers of the same speed.
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between the events ey and e; than for m.!52

On the other hand, as we said, m will observe his twin brother in slow motion
all the time, and he will observe all events that happened with k£ on his journey.
What is the reason for this strong assymetry between the twins? The reason is
that m is an inertial observer while k£ is not; k’s worldview is put together from
the worldviews of two different inertial observers, and at the “pasting point” (i.e.
at the event when &k turns back) there are strange effects, e.g. a large part of m’s
life-line gets “cut out” (k observes m suddenly at a much later point in m’s life).
As a side-effect of approximating k£ by only two inertial observers, “at point ¢” k
experiences infinite acceleration (which in turn naturally causes funny effects). Soon
we will approximate k£ by more and more inertial observers. Then the “irrelevant”
parts of the funny effects will gradually fade away while the “relevant” parts of the
effects will stay with us (cf. e.g. Figure 47).

If we approximate k£ by two inertial observers differently than on Figure 43, e.g.
if £ comes back more slowly than he was travelling outward, then £ will observe m
at the turning point suddenly placed at a bigger distance, as on Figure 45. But if &,
and ko have the same speed, then this “instantaneous displacement” will not occur.

t t
m k
ko
k‘g m
kl kl m
T T

Figure 45: Twin paradox approximated by two inertial observers of different speeds.

Let us see what the above look like if we refine our approximation of the accel-
erated twin, i.e. if we approximate the accelerated twin by more and more inertial
observers. From now on we assume that the life-line of £ is symmetric in the sense

152This is one of our paradigmatic effects, the Ax(symm) version of “moving clocks slow down”,
cf. Thm. 2.8.7.
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that his motion outwards is exactly of the same kind as his motion inward, i.e. k’s
life-line is symmetric w.r.t. the horizontal line containing ¢. Further, we assume
that both m’s and k’s clocks show 0 at the turning point of k’s life-line.'®® Also, for
simplicity, we assume § = R.

Figure 46 shows m’s and k’s worldviews when £ is approximated by three inertial
observers, and when k is approximated by five inertial observers. We can see that
as we approximate k£ by more and more inertial observers, the intervals on m’s
life-line that £ will not observe become shorter and shorter, and eventually £ will
observe all events on m’s life-line. Similarly, m’s life-line will eventually become
a continuous curve as k observes it (i.e. the displacements at the “pasting points”
will eventually disappear).'®® (The word “eventually” here means “at the limit of
this approximating process”. We approximate so that the difference of speeds of
the consecutive inertial observers approaches 0 and we choose the “pasting points”
appropriately.)

Figure 47 shows the “limit” of this approximating process. We concentrated on
“smoothing out” the turning point on k’s life-line, and we disregarded the initial
and last segment of k’s acceleration and deceleration (cf. the left-hand side of Figure
43).'55 Thus k goes outward with a constant speed v for a certain amount of time,
then gradually (smoothly) he decelerates until he becomes momentarily at rest with
respect to m, then he continues decelerating which means that he turns back and
begins to gain speed!®® until he attains speed v again, and then he stops decelerating
and approaches m with constant speed v until he reaches m. Cf. the left-hand side
of Figure 47. This is how m observes k. Let us turn to how the accelerated twin
k observes his inertial brother m. On Figure 47 we can see that k& observes m first
receding with a constant speed v, then m accelerates (increases (!) his speed), then
m begins to decelerate till m becomes momentarily at rest w.r.t. k£, and then m
reverses this process. Thus the two life-lines are not alike: k’s life-line, as observed
by m, is “convex” in the sense that k’s movement is uniform, it always decelerates.

133in order to get simpler drawings

154This is so because the extent of the paradigmatic effects increases with speed, they do not
occur at speed 0, and the extent they occur with depends continuously of speed of movement. See
Theorem 2.9.5 in §2.9.

155For formulating and discussing the Twin Paradox, we do not need to assume that before event
eo (or after e3) the two twins k& and m are at relative rest. Instead, we may assume that they
simply meet at eg (moving with relative speed v). This way we can get rid of the initial (and final)
acceleration without loosing anything essential. The acceleration “around” ¢, however, is essential,
it cannot be “argued away” in the just used spirit.

156 This is so because k’s velocity changes gradually from @ to —#. So in terms of velocity, k’s
velocity is constantly decreasing. In terms of speed, this implies losing speed gradually from v to
0, and then gaining speed gradually from 0 to v again.
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At the same time, m’s life-line as k observes it is both “convex and concave”. This has
to be so because of the following: tr,,(k) and tri(m) are both continuous (because
in physics all movements are continuous), their initial and last segments are straight
and parallel (because v,,(k) = vg(m) in the inertial parts of the journey), these
segments are closer in m’s life-line than in £’s one (because for k less time has
passed between departing and meeting, i.e. between eq and ez, than for m), while
the “width” of both life-lines are the same (because at the turning point k£ and m
are at rest with respect to each other, so they see each other to be at the same
spatial distance). See Figure 47.
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Figure 47: The inertial brother’s life-line is different from that of the accelerated
one.

We will return to the twin paradox in the chapter on accelerated observers, where
we will begin to study gravity, too. Jumping ahead for a short while, let us see how k
will “explain” m’s strange movement (life-line) by using his knowledge about gravity.
This explanation serves also to explain how the “laws of physics” can be the same
for m and for k despite of the fact that they observe their brothers as behaving
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rather differently. The reader does not have to understand the explanation which
comes below, since it uses (i) Einstein’s equivalence principle (between acceleration
and gravity) and some of the effects of gravity which we will prove in the chapter
on accelerated observers, namely that (ii) gravity causes clocks run slow relative to
clocks far away from the “source of” gravity, and (iii) in some sense gravity does
not affect processes which happen sufficiently far away from the source of gravity.
Therefore we advise the reader to read the explanation below as a “fairy tale”
(which, in turn, will become easily understandable after studying the basic parts of
the theory of accelerated observers).

The accelerated brother k£ thinks that he is at rest and m is moving away from
him with speed v. When m is at a distance already, a gravitational field appears
in k’s worldview where k£ stands. To remain motionless despite of this strange
gravitational field (which appeared “out of nowhere” so to speak), k starts up the
engine of his spaceship to balance the effect of gravity. (As a constrast, m thinks
that k started his engines in order to decelerate.) This gravity slows down k’s clock,
and this explains why, for k£, m appears to accelerate first when gravity appears. See
Figure 48. From this time on, since this gravity “pulls” m towards k, m begins to
decelerate till it comes to a momentary rest w.r.t. k, then turns back and begins to
“fall back” towards k with growing speed. When gravity disappears (then k stops
the engine in order to stay motionless), m first slows down'®”, and then reaches
speed v and continues to approach k£ with constant speed v. (In passing we note
that the reader might have the impression that for £ sometimes m moves faster
than light. However, this is not the case, because as a side-effect of gravity in k’s
coordinate system, at places far away from k the speed of light becomes larger than
usual. This will be seen in the chapter on accelerated observers.)

In the above we used the expression “k observes” in place of the expression “k
sees”, because we wanted to emphasize that we meant everything according to k’s
coordinate system, and not according to how k actually “sees” via photons. Let us
briefly turn to the visual effects, i.e. let us see how m and k visually see the journey
via photons. See Figure 49. Again, we will find that the two brothers see the journey
differently. The inertial brother will see & such that k travels outward (with slowed
down clocks) for a long time and then he approaches (with fast running clocks) for
a very short time. On the other hand, k£ will see that his inertial brother m travels
outward (with slow clocks) for about the first half of the time needed for the whole
experiment (i.e. until event w,,(q) which is when m thinks that k£ turns around),
and from that time on m approaches (with fast clocks). Thus for k, m’s outward
and inward parts of the journey (as k sees via photons) lasted approximately for

57hecause of the already mentioned effect of gravity on k’s clocks
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the same time, while m will see (via photons) that k’s journey outward lasted much
longer than k’s journey backward. If k£ decelerates only for a short time around its
turning point, then this difference of ratio of outward and inward trips as £ and m
see them via photons will remain.

t t
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) as approaching as approaching
N\, k2
N
“\
% here k sees / %
K4 via photons m
, di _here m sees
L] as receding via photons k k1
as receding
T T

Figure 49: The two brothers’ visual observations of each other’s journey are also
different.

2.8.5 Our central axiom system Specrel.

We conclude this part with introducing one of our central axiom systems for
special relativity. Theorem 2.9.5 in §2.9 (p.155) states that the world-view transfor-
mations in models of Basax + Ax(symm) are all so called Poincaré transforma-
tions, i.e. such world-view transformations which occur in the standard models of
special relativity. Thus, in models of Basax+ Ax(symm) all the usual formulae for
coordinate-transformations, used in the physics books, are valid. Therefore, mod-
els of Basax + Ax(symm) are very close to the standard, Minkowskian models.
In proofs we often will need the auxiliary axioms Ax(Triv) and Ax(||). Though
Ax(||) follows from Basax + Ax(symm), for later weaker versions of Basax this
will not be so, e.g. Bax + Ax(symm) %~ Ax(]||), here Bax is an axiom system to
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be introduced in §3.4.2. Therefore we define one of our stronger kind!®® of special
relativity theories as follows.

Definition 2.8.20
Ax(symm)' ¥ Ax(symm) + Ax(Triv) + Ax(||)
Specrel & Basax + Ax(symm)'.
<

Specrel is a first-order-logic theory of special relativity that is basically equiv-
alent with the standard version of special relativity theory. The only omissions
(missing from Specrel) are some auxiliary axioms that we almost never use, see the
definitions of BaCo and!®® Minkowski model in §3.8, pages p.298, p.331. For more
on this see §3.8.

158 A5 indicated in the introduction, in the present work we will have stronger axiomatic versions
as well as weaker axiomatic versions of (special) relativity. At each point, we will choose between
the stronger or weaker versions depending on our purposes at that point, cf. e.g. items II, III, V
in §1.1 herein.

159BaCo is a complete axiomatization of (what we consider as) usual special relativity.
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2.9

Connections with standard Lorentz and Poincaré trans-
formations

In order to compare our results with the literature, we recall some standard concepts
from the literature.

Definition 2.9.1 Assume § = (F, <) is an ordered field and n > 2.

1.
2.

. By a standard Lorentz transformation®®

Linb = Linb(n, §) denotes the set of bijective linear transformations of "F.

Let p € "F. Then 7, : "F — "F denotes the translation by vector p, defined
as follows: ot
m=(q+p:qe"F).
Tran = Tran(n,§) denotes the set of translations of "F, i.e.
Tran & {7, :pe™F}.

. A function f : "F — "F is called an affine transformation of "F iff it is a

composition of an bijective linear transformation and a translation, i.e.
f=gor, forsomeg € Linb(n,§) and p € "F.

Aftr = Aftr(n,§) denotes the set of affine transformations of "F.

Let p,q € "F. Then the square of their Minkowski-distance gi (p, q) is defined

as follows: e
QZ(Pa q9) = |(g0 —po)® — (Z (¢ — pi)2)

We note that g : "F x "F — F.

0<i€n

. By a Lorentz transformation of "F we understand f € Linb such that f pre-

serves the square of Minkowski-distance, that is,

(%) (Vp,q € "F) g.(p,q) = g.(f(p),(q))-

Lor = Lor(n,§) denotes the set of Lorentz transformations of "F.

0 we understand a Lorentz transforma-

tion f such that

f[t],f[z] C Plane(t,z) and (V1<i€n)f(l;)=1;.

160Qr equivalently a Lorentz transformation in standard configuration.

152



SLor = SLor(n,§) denotes the set of standard Lorentz transformations of "F.

7. By a Poincaré transformation of "F we understand f € Aftr such that f pre-
serves the square of Minkowski-distance, that is, (%) in item 5 holds for f.
61

Poi = Poi(n,§) denotes the set of Poincaré transformations.!

8. An bijective linear transformation f of " is called an ezpansion'6? iff

(FH0<AeF) f=(A-p:pe"F).

Exp = Exp(n,§) denotes the set of expansions.
<

CONVENTION 2.9.2 For better readability, the elements of Exp and Lor will
often be denoted by exp and lor, respectively. Similarly for Linb, SLor, Poi, Rhomb
etc.

<

For completeness, we note that our distinguished sets of transformations are con-
tained in each other in the following way:

SLor C Lor C Linb O Exp
N N
Tran C Poi C Aftr,

A
where N , B D A, etc. all denote that A is a proper subset of B.
B

Thm. 2.9.4 below is a kind of characterization of the world-view transformations
fae in Basax + Ax(y/ ). Intuitively, it says (assuming Basax 4+ Ax(v/ )) that a
world-view transformation f,,; is always a composition of a Poincaré transformation,
an expansion, and a map ¢ induced by an automorphism ¢ of the ordered field §
(cf. Notation 2.9.3 below for ¢). Moreover all such compositions are world-view
transformations (of some Basax model), if we assume that § is Euclidean. To
formulate this theorem we need Notation 2.9.3 below.

161An equivalent definition says that a Poincaré transformation is a composition of a Lorentz
transformation and a translation, i.e. is of the form lor o 7,,, for some lor € Lor and p € "F.

162We note that the official name for an expansion is a transformation of similitude. (Cox-
eter [62] uses the word dilation while Burke [52] calls it an expansion. Sometimes it is also called
homothetic transformation). For reasons of convenience we restricted the notion of an expansion
for multiplying with positive \’s only.
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Notation 2.9.3

o Aut(F) denotes the set of automorphisms of the ordered field §. For any
algebraic structure or model A, Aut(A) is defined similarly (i.e. is the set of
automorphisms of 2).

e ¢ denotes the function induced by other function ¢ the following way. Assume
¢ : F — F. Then the induced function ¢ : "F — "F is defined the natural
way, i.e.

@(p) = (e(po); ¢(p1), - - -, ¢(Pn-1)), for every p e "F.

THEOREM 2.9.4 (Characterization of the world-view transformations in
models of Basax) Assume Basax + Ax(v/ ). Let m,k € Obs. Then:

(i) fx = poioexpo @, for some poi € Poi, exp € Exp and ¢ € Aut(F).

(ii) Assume in addition that f,,;(0) = 0. Then
fk = loroexpo @,  for some lor € Lor, exp € Exp and ¢ € Aut(F).

(iii) Let § be a fired Euclidean ordered field. Assume f is a composition of a
Poincaré transformation, an expansion, and a map @, for some ¢ € Aut(F).
Then there is a Basax model N with ordered field reduct § such that f = {5,
for some m', k' € Obs™.

The proof will be given in §3.7. 1

Let us recall that the symmetry axiom Ax(symm) was introduced in §2.8 on
p-127.

The following theorem says that, under assuming Basax + Ax(symm) +
Ax(\f ), a world-view transformation f,,; is a Poincaré transformation. Moreover
all Poincaré transformations over a Euclidean § are world-view transformations in
some Basax+ Ax(symm) model. That is, Ax(symm) implies that expansions and
automorphisms are not needed in the above characterization of world-view transfor-
mations.
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THEOREM 2.9.5 (Characterization of the world-view transformations in
models of Basax + Ax(symm)) Assume Basax + Ax(symm) + Ax(v/ ). Let
m, k € Obs. Then (i)—(iii) below hold.

(i) foux € Poi.

(ii) Assume in addition that f,,;(0) = 0. Then
fok € Lor.

(iii) Let § be a fized Euclidean ordered field. Let f € Poi(n,§). Then there is
a Basax + Ax(symm) model M whose ordered field reduct is § such that
f=fw, forsomem k' e Obs™.

The proof will be given in §3.8. Here we show the idea of proof of (ii) in the
case of n = 2. Assume that 9 = Basax + Ax(symm) + Ax(v/ ), m,k € Obs
and f,,;(0) = 0. Then each of m and k thinks that the other’s clock is slow (by
Thm.2.8.7), and moreover the rate of slowing down is the same for both of them
(see Thm.2.8.9). Figure 50 shows how this is possible. By using this figure, it is not
difficult to show that the unique place where e = f,;x(1;) can be is such that the
Minkowski-distance between 0 and e is 1.

/ eszm(lt)

/— direction of simultaneities for &

direction of simultaneities for m

Figure 50: Both m and k think that the other’s clock slows down iff f,x(1;) is in
between a and b. The rates of slowing down will be equal at a unique point. This
unique point is closer to a than to b, and a geometrical construction for it is given
in § 3. The Minkowski-distance between 0 and e is 1.
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Recall that the set Rhomb(n,§) of rhombus transformations was defined in
Def.2.3.18 (p.72).

The following theorem says that, under some mild assumptions, rhombus trans-
formations are compositions of standard Lorentz transformations and expansions.
Moreover all such compositions are rhombus transformations.

THEOREM 2.9.6

(i) Assume § is Euclidean, i.e. that § = Ax(v/ ). Then

Rhomb(n,§) = { slor o exp : slor € SLor and exp € Exp }.

(ii) Assume n > 2. Then

Rhomb(n,§) = {slor o exp : slor € SLor and exp € Exp }.

(iii) Rhomb(n,§) D {sloroexp : slor € SLor and exp € Exp}.

The proof will be filled in later. R
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