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of the Mal'cev's problem of the existence of an associative (semigroup)

ring which is not embeddable into any skew-field, but its multiplicative
semigroup is embeddable into a group.

For more informations, see also (Book and Otto 1993).

G.8 Relational Algebras

by Hajnal Andréka, Judit X. Madarász, and István Németi

in Budapest, Hungary

Boolean algebras (SA's for short) can be regarded as algebras of unary

relations; i.e., the elements of a BA, say B, are unary relations and

the operations of B are the natural operations on unary relations. The

purpose of relational algebra is to expand the natural algebras of unary
relations (i.e., BA's) to natural algebras of relations of higher ranks, i.e.,
of relations in general. What will be the elements of the new algebras?

The elements of BA's can be visualized as sets of points. Then, the

elements of the new algebras will be sets of sequences (the reason for
this is that the elements of relations are sequences independently of
whether our relations are binary, ternary or n-ary).

The simplest case is when we concentrate on binary relations. For a

set U, .9(U) denotes its power set (the set of alI subsets of U) while

P(U) denotes the BA (.9(U)j U, n, -) with universe .9(U). The full

relation algebra over the set U is defined to be the algebra

'R.e(U) = (P(U x U),o,-l,Idu )

where "o" is the usual composition of two relations, R-l is the usual
converse (or inverse) of the relation R and Id = Idu is the identity

relation on U. The class RRA of representable relation algebras is

defined as

RRA = SP{ne(U) lUis a set}

where S and P are the operators on classes of algebras corresponding

to taking isomorphic copies of subalgebras and direct products, respec-

tively.

G.S.! Theorem (Tarski) RRA is a discriminator variety. The equa-

tional theory of RRA is recursively enumernble but not decidable.

Before discussing RRA's further, let us look at algebras of relations of

higher ranks (e.g., ternary, n-ary relations). The natural algebras are
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called cylindric algebras. In the following, n denotes a natural number.
The full cylindric algebra of n-ary relations over a set U is defined

as

Reln(U) = (P(Un), co,..., Cn-l, Id)

where Id is the n-ary identity relation Idn,u = {(a,..., a) I a EU}

and ci is a unary operation for each i < n defined by Ci(R) = ciU)(R) =
{ (bo,... , bi-l, a, bi+l,.. ., bn-l) I (bo,..., bn-l) E R and a EU}, for

any i < n and R ~ nu. We will omit the superscript U. Let R ~ un

be a relation. Then the relation Ci(R) is called the smallest i-cylinder

containing R. Choosing n = 3 and U the real numbers, we obtain the

greatest element U x U x U of our algebra as the usual Cartesian space,

and i-cylinders appear as cylinders parallel to the í-th ms. Let n = 2

and R ~ UxU. Thenco(R) = UxRg(R) and cl(R) = Dom(R)xU.This

example shows that the operations ci are natural ones (on relations). The

class RCAn of n-ary representable cylindric algebras is defined as

RCAn = S P{ Reln(U) lUis a set }.

G.S.2 Theorem (Tarski) RCAn is a discriminator variety. The equa-

tional theory of RCAn is recursively enumemble, and if n > 2 then un-

decidable.

To have alI finitary relations over U in a single algebra, we need to

extend cylindric algebras to a-ary relations wit~ a an arbitrary ordinal.

For this, we need to replace our single (a-ary) identity relation Id with

a x a many identity relations Idij = {q E QU I qi = qj}, for i, j E a.

Throughout, a is an arbitrary (possibly finite) ordinal. Now, we define

the full algebra of a-ary relations as

RelQ(U) = (P(UQ), Ci, Idij Ii, j < a),

where Ci(R) and Idij are defined as above. Thus, besides the Boolean

operations, RelQ(U) has a many unary operations ci (one for each i < a)

and a x a many constants Idij. Now, for a < ÚJ we have two versions for

RelQ(U) but they are polynomially equivalent.. Indeed, if e.g., a = 3
then Idl,2 = co(Id) while Id = Idol nId12, RCAQ = SP{RelQ(U) lUis

a set}.

G.S.3 Theorem (Tarski) RCAQ is an arithmetical variety. The equa-

tional theory of RCAQ is recursively enumemble, but it is undecidable if
a> 2.
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80 far, the greatest elements of our algebras were Cartesian spaces,

i.e., of the form ua (both in the cases of RRA's and RCA's). However,

this restriction is not always convenient (cf. e.g., Andréka et al. (1998),
van Benthem (1996), Monk (2000), Henkin et al. (1981)). Removing

this restriction motivates the definition of cylindric-relativized set alge-
bras. Let V ~ ua be an arbitrary a-arr relation. Then the algebra of

subrelations of V is defined as

Rel(V) = (p(V),cr,Id~ I i,j < a)

where cr (R) = V n ci (R) and I d~ = V n Id;j. The class of a-ary

cylindric-relativized set algebras is defined as

Crsa = 8{ Rel (V) I V ~ Ua for some set U}.

The finite algebra part of the next theorem is the result of a joint work

with Hajnal Andréka and lan Hodkinson.

G.8.4 Theorem (Németi) Let a # 1. Then Crsa is an arithmetical

variety. The equatzonal theory of Crsa is decidable. A finite CrSn is

isomoryhic to one with finite greatest element.

It is natural to ask whether any one of the distinguished kinds RRA,

RCAa, Crsa of algebras of relations is axiomatizable by a finite set of

equations. If a ;?: úJ, then having a finite set of axioms is impossible

because there are infinitely many basic operations, but we still could

hope for a finite scheme of equations like the scheme ci Idij = 1, for alI
i,j < a.

G.8.5 Theorem (Monk, Monk, Németi, Jónsson, Andréka)

Assume a > 2. None of the varieties RRA, RCAa, Crsa is axiomatizable
by a finite scheme of equations. None of RRA or RCAa is axiomatizable

by a scheme E of universally quantified formulas suck that Einvolves

only finitely many variables.

The negative result above motivates the definition of the finitely ax-
iomatizable approzimations RA and CAa of RRA and RCAa. The

axioms for RA are (Rl) - (R3) below.

(RI) The Boolean axiomsj and the operations o, -1 are "U"-distributive,

i.e., they cornrnute with the Boolean join "U".
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(R2) o, -1, Id form an involuted monoid, where an involuted monoid
is a monoid with an extra unary operation -1 satisfying the two

equations x-1-1 = x-1, (x o y)-l = y-1 o x-1.

(R3) x-1 o -(x o y) ~ -y.

The axiOIllS for CAa are (El) - (E5) below.

(El) The Boolean axiOIllS.

(E2) The Ci'S are commuting complemented u-distributive closure op-

erations (e.g., CiCjX = CjCiX, ci - CiX = -CiX etc).
(E3) Idii = 1 and I~j = Idji (i.e., notational trivialities)
(E4) I~k = cj(Idij nIdjk) if j ~ {i, k}.
(ES) x ~ Idij =? ci (x) n I~j = x.

Clearly, RA 2 RRA and CAa 2 RCAa. CAl's are also called monadic

algebras. Both approximations RA and CAa were introduced by Tarski.

In some sense, RA is close to RRA and CAa is close to RCAa. However,

it is hard to make it precise what we mean by close here. It is possible

to introduce natural properties Buch that

RA n "property" ~ RRA and CAa n "property" ~ RCAa.

However, one can replace RA by a bigger class RA-and CAa with CA~

Buch that alI the above stylerepresentation theorenis remain true. Using

the weIl established connections between logic and algebraic logic, one
can argue that the axiOIllS for RA and CAa are optimal in some sense.

E.g., the CAa axioms correspond to one of the usual axiomatizations of

first order logic and most of the equations separating RCAa from CAa

would look strange to the logician as a possible extra axiom (unless he is
trying to axiomatize the finite-variable fragments Ln of first order logic).

CAa's correspond to first order logic La with equality. If we alge-
bmize the game logic, but without equality, we obtain substitution-

cylindrification algebras which are obtained from CAa by throwing

away the constants Idij and replacing them with the term-functions

s~(x) = Ci(Idij nx). Quasi-polyadic algebras (of Halmos) are almost
the same as these, cf. Henkin et al. (1985) for both kinds of algebras.

Connections with logic are in Tarski and Givant (1987), Andréka et al.

(2001), HenkiIi et al. (1985), Németi (1991) except for new kinds of

recent applications of Crsa-theory to the finite-variable fragments, finite

model theory, the bounded fragments, and the guarded fragment, cf.

e.g., Hoogland and Marx (2001), Andréka et al. (1998), van Benthem

(1996). Of. also Craig (1974), Henkin et al. (1971, 1985).
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The negative re-sult Theorem G.8.5 gave risc to the Finitization Prob-

lem which asks whether we could define our algebras: of relations in Buch

a way that they would form a finitely axiomatizable variety. There has

been extensive research work on this problem recently, cf. e.g., Németi

and Sain (2000) for further references.

AIgebras of relations have been extensively applied in computer sci-
ence, Al, linguistics and other areas, cf. e.g., Bergman et al. (1990),
Marx et al. (1996), van Benthem (1996).

This re-search was supported by the Hungarian Foundation for Basic

Re-search, Grants T30314 and T35192.

G.9 Partial AIgebras

by Peter Burmeister in Darmstadt, Germany

Introd uction

Quite often (e.g., in Computer Science, but also for the multiplicative
inverse in fields) the operations in an "algebra" arc not everywhere de-

fined. Moreover, quite often constructions for "total algebras" make use

of partial algebras and some general construction principle-s like uni-

versal solutions. For Buch "partial algebras" , a highly developed theory
has been worked out. This theory of parti al algebras lie-s in between

those of total algebras and relational systema (see Section G.8). From

total algebras it 'inherits in particul ar the concepts of terms, direct prod-

ucts (with the structur.~ defined componentwise whenever possible in

all components), closed subsets (and in connection with them (closed)

subalgebras as the parti al algebras obtained by re-stricting the structure

to closed subsets, and the concept of generation). From relational sys-

tema it inherits the wealth of possible concepts, since partial algebras

can model relational systems (cf. ,Burmeister 1986, 13.4.2). Moreover,

many-sorted (partial) algebras can easily be considered as: parti al al-

gebras on the disjoint union of the carriers of the difIerent sorts, and

their homomorphisms then ha.ve just to be compatible with the canon-

ical homomorphisms into the set of sorts with the specification of the

many-sorted (partial) operations as fundamental partial operations (cí.

Burmeister 1986). Here we can only introduce some of the basic concepts

and applications of a language for parti al algebras.
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