A marriage of groups and Boolean algebras.
In memory of Steven R. Givant

Andréka, H. and Németi, I.

Relation Algebras

Already in his 1941 article, Tarski remarked that the theory of relation algebras seemed to be a kind of union of the theories of Boolean algebras and of groups. The penultimate theorem we shall discuss provides an explanation of this connection.

$$
\text { RA }=\text { Groups }+B A
$$

GROUPS

Group: (A, •• $1^{\prime},{ }^{-1}$)

- binary operation $a \bullet b$ in A, for all a,b Invertible monoid

Brandt groupoid: (A, ••,,$^{-1}$)

- partial binary operation $\mathrm{a} \bullet \mathrm{b}$ in A , for some a, b Invertible monoid

Polygroupoid: $\left(\mathrm{A}, \bullet,,^{-1}\right)$

- many-valued binary operation $a \bullet b$ subset of A, for all a, b Invertible monoid

Group: (A, •• $1^{\prime},{ }^{-1}$)

- binary operation $a \bullet b$ in A, for all a, b

Invertible monoid

- associative: $a(b c)=(a b) c$
1^{\prime} is identity: $a 1^{\prime}=1$ 'a $=a$
${ }^{-1}$ is inverse: $a a^{-1}=a^{-1} a=1^{\prime}$

Brandt groupoid: (A, ••,,$^{-1}$)

- partial binary operation
$a \bullet b$ in A, for some a, b

Invertible monoid

- associative: $a(b c)=(a b) c$ if $a b, b c$ exist e in I is identity: $a e=a$, ea $=a$, if exist
-1 is inverse: $a a^{-1} a=a$, and $a a^{-1} a$ exists

Polygroupoid: $\left(A, \bullet, I^{-1}\right)$

- multivalued binary operation
$a \bullet b$ subset of A, for all a, b

Invertible monoid

- associative: a(bc)=(ab)c
l is set of identities: $\mathrm{al}=\mathrm{la}=\mathrm{a}$
${ }^{-1}$ is inverse: multivalued version

Polygroupoid: $\left(\mathrm{A}, \bullet, \mathrm{I}^{-1}\right)$

- multivalued binary operation
$a \bullet b$ subset of A, for all a, b

Invertible monoid

- associative: $a(b c)=(a b) c$ complex multiplication
l is identity: $\mathrm{al}=\mathrm{la=a}$
${ }^{-1}$ is inverse:
a in $b c$ iff b in $a c^{-1}$ iff c in $b^{-1} a$.

Complex multiplication:
$X Y=$ unionof $\{a b: a$ in X, b in $Y\}$

GROUPS

Cayley representation

Group: (A, •• $1^{\prime},-1$)

- binary operation

Cayley representation:
A is set of permutations on a set Composition, identity map, inverse

Suc $=\{(0,1),(1,2),(2,3),(3,0)\}$

Group: ($\mathrm{A}, \bullet \cdot 1^{\prime},-1$)

- binary operation

Cayley representation:
A is set of permutations on a set Composition, identity map, inverse

Composition, identity

Group: (A, •, 1', -1)

- binary operation

Cayley representation:
A is set of permutations on a set Composition, identity map, inverse

Suc $=\{(0,1),(1,2),(2,3),(3,0)\}$
Suc $^{-1}=\{(1,0),(2,1),(3,2),(0,3)\}$
Suc $^{2}=\{(0,2),(1,3),(2,0),(3,1)\}$

Cayley representation of Z_{6}

BRANDT GROUPOIDS

Brandt groupoid structure

Brandt groupoid: (A, •, I^{-1})

- partial binary operation

$A=\{(i, g, j): i, j$ in I and g in $G\}$
$(\mathrm{i}, \mathrm{g}, \mathrm{j}) \cdot(\mathrm{j}, \mathrm{h}, \mathrm{k})=(\mathrm{i}, \mathrm{gh}, \mathrm{k})$
multiplication in G

Structure:
Copies of a group on the full graph on I

Brandt groupoid with $\mathrm{I}=\{\mathrm{p}, \mathrm{q}\}$ and $\mathrm{G}=\mathrm{Z}_{3}$

Category

POLYGROUPOIDS

Polygroupoid: $\left(A, \bullet, I^{-1}\right)$
Structure:

- many-valued binary operation

Theorem (Comer, 1983)
Polygroupoids are exactly atom-structures of atomic relation algebras.
$R A=S C m P G$.

Representation of a polygroupoid:
Elements of A with binary relations

- as composition of binary relations

I as identity relation
${ }^{-1}$ as converse of a relation

Complete representations of RA: determined by polygroupoid Incomplete representations of RA: determined by BA structure Subject of second part of the talk

STORY

- Representation theorem of Jónsson and Tarski 1952
- Discovery of Roger Maddux 1991
- Idea of Steven Givant 1991
- Vision of Steve Comer 1983

Loop polygroupoids

a is a loop if there is x in I such that $x a x=a$.

A polygroupoid is a loop-polygroupoid iff the product on loops is a partial function. LPG

A relation algebra is measurable iff the identity is the sum of atoms, and for each subidentity atom x the square $x ; 1 ; x$ is the supremum of functional elements. MRA

The structure of LPGs is very similar to BGs:
Groups on the vertices, but different groups possible, Factor groups on the edges.
Plus a common factor group in the middle of each triangle.

LOOP POLYGROUPOIDS

$A=\{(i, g, j): i, j$ in I and g in $G\}$
$(i, g, j) \bullet(j, h, k)=(i, g h, k)$
multiplication in G

$$
\begin{aligned}
& A=\left\{(\mathrm{i}, \mathrm{~g}, \mathrm{j}): \mathrm{i}, \mathrm{j} \text { in } \mathrm{I} \text { and } \mathrm{g} \text { in } \mathrm{G}_{\mathrm{ij}}\right\} \\
& (\mathrm{i}, \mathrm{~g}, \mathrm{j}) \cdot(\mathrm{j}, \mathrm{~h}, \mathrm{k})=\{(\mathrm{i}, \mathrm{q}, \mathrm{k}): \pi \mathrm{q}=\pi \mathrm{g} \cdot \pi \mathrm{~h}\} \\
& \text { multiplication in } \mathrm{G}_{\mathrm{ijk}}
\end{aligned}
$$

LOOP POLYGROUPOIDS

REPRESENTABLE EXAMPLES

Multicategory (on blackboard)

g_{5}
g_{4}
g_{3}
g_{2}
g_{1}
g_{0}

(a)

(c)

(b)

(d)
\square
(e)

Fig. 10.3 (a) The Cayley representation of the group complex algebra \mathfrak{C}. (b) The same representation with a reordered base set to show that the representation of t is an equivalence relation on G with equivalence classes $\{0,2,4\}$ and $\{1,3,5\}$. (c) The induced representation of $\mathfrak{C} / \mathrm{l}$. (d) The induced representation with a reordered base set. (e) The contracted representation of \mathfrak{C} / ι.

Loop polygroupoid with $I=\{p, q, r\}$ and $G_{x}=Z 4$ and $G_{x y}=Z 1$

Loop polygroupoid with $\mathrm{I}=\{p, q, r\}$ and $\mathrm{G}_{\mathrm{x}}=\mathrm{Z4}$ and $\mathrm{G}_{\mathrm{xy}}=\mathrm{Z2}$

Point dense RA: (A, •, I^{-1})
all the groups are one-element

Loop polygroupoid with $\mathrm{I}=\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$ and $\mathrm{G}_{\mathrm{x}}=\mathrm{Z}_{1}$

Pair dense RA: (A, •, $\left.I^{-1}\right)^{-1}$
all the groups are one- or two-element

Loop polygroupoid with $\mathrm{I}=\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}\}$ and $\mathrm{G}_{\mathrm{x}}=\mathrm{Z}_{2}$ or $\mathrm{G}_{\mathrm{x}}=\mathrm{Z}_{1}$

Pair dense RA: $\left(A, \bullet, I^{-1}\right)$
all the groups are one- or two-element

Loop polygroupoid with $\mathrm{I}=\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}\}$ and $\mathrm{G}_{\mathrm{p}}=\mathrm{G}_{\mathrm{q}}=\mathrm{G}_{\mathrm{r}}=\mathrm{G}_{\mathrm{pq}}=\mathrm{Z}_{2}$, all the others are Z_{1}

$G_{x y}$ is a common factor group of G_{x} and G_{y}

\downarrow

$A=\left\{(i, g, j): i, j\right.$ in I and g in $\left.G_{i} / H_{i j}\right\}$
$(\mathrm{i}, \mathrm{g}, \mathrm{j}) \bullet(\mathrm{j}, \mathrm{h}, \mathrm{k})=\left\{(\mathrm{i}, \mathrm{q}, \mathrm{k}): \mathrm{q}\right.$ in $\mathrm{G}_{\mathrm{i}} / \mathrm{H}_{\mathrm{ik}}$ and ... $\}$
structure belonging to group system

Theorem (G): Representable LPGs are exactly the structures belonging to group systems.

Problem: are all LPGs representable?

Partial results (AG):
LPGs with I having less than 5 elements are representable.
LPGs with all groups direct products of at most two finite cyclic groups are representable. LPGs with less than "three levels" are representable.

Surprise (AG):
There is a nonrepresentable LPG with I having 5 elements, the groups on the vertices $Z 2 \times Z 2 \times Z 2$, the groups on the edges $Z 2 \times Z 2$, and the group in the middle $\mathrm{Z2}$.

NONREPRESENTABLE LPG

Loop polygroupoid: (A, •, I, ${ }^{-1}$)

- partial binary operation on loops

$A=\left\{(x, g, y): x, y\right.$ in I and g in $\left.G_{x y}\right\}$ $(x, g, y) \bullet(y, h, z)=\left\{\left(x, g h C_{x y z}, z\right)\right\}$
element of factor group $G_{x y z}$ of $G x$ $\mathrm{C}_{\mathrm{xyz}}$ is called the shift in the triangle xyz

Conditions on next slide
(i) $\varphi_{x x}$ is the identity function on $G_{x} /\left\{e_{x}\right\}$, where e_{x} is the identity element of G_{x}.
(ii) $\varphi_{y x}$ is the inverse of $\varphi_{x y}$. In particular, $K_{x y}=H_{y x}$.
(iii) $\varphi_{x y}\left[H_{x z} / H_{x y}\right]=H_{y z} / H_{y x}$.

Assume that (iii) holds. Define $\varphi_{x y}^{z}\left(g /\left(H_{x y} \circ H_{x z}\right)\right)=\varphi_{x y}\left(g / H_{x y}\right) \circ H_{y z}$.
(iv) $\varphi_{x y}^{z}\left|\varphi_{y z}^{x}=\tau\left(C_{x y z}\right)\right| \varphi_{x z}^{y}$.
(v) $C_{x y y}=H_{x y}$.
(vi) $\varphi_{x z}\left[C_{x y z}\right]=C_{z y x}^{-1}$.
(vii) $\varphi_{x y}\left[C_{x y z}\right]=C_{z y x}^{-1}$.
(viii) $C_{x y z} \circ C_{x z w}=\varphi_{y x}\left[C_{y z w} \circ H_{y x}\right] \circ C_{x y w}$.

Open Problems

OProblem1. Are these all the nonrepresentable LPGs?

OProblem2.
Can each measurable RA be embedded into an atomic measurable RA?

OProblem3.
Are all representable measurable RAs completely representable?

The same for other structures, general systems theory

Steven Givant • Hajnal Andréka

Simple Relation Algebras

