A marriage of groups and Boolean algebras. In memory of Steven R. Givant

Andréka, H. and Németi, I.

Relation Algebras

Already in his 1941 article, Tarski remarked that the theory of relation algebras seemed to be a kind of union of the theories of Boolean algebras and of groups. The penultimate theorem we shall discuss provides an explanation of this connection.

RA = Groups + BA

GROUPS

Group: (A, •, 1', ⁻¹)

binary operation
a•b in A, for all a,b
Invertible monoid

Brandt groupoid: (A, •, I, ⁻¹)

partial binary operation
 a b in A, for some a,b
 Invertible monoid

Polygroupoid: (A, •, I, ⁻¹)

- many-valued binary operation
 a•b subset of A, for all a,b
- Invertible monoid

Group: (A, ●, 1′, ⁻¹)

binary operationa•b in A, for all a,b

Invertible monoid

• associative: a(bc)=(ab)c

1' is identity: a1' = 1'a =a

⁻¹ is inverse: $aa^{-1} = a^{-1}a = 1'$

Brandt groupoid: (A, •, I, ⁻¹)

partial binary operation
a•b in A, for some a,b

Invertible monoid

associative: a(bc)=(ab)c if ab, bc exist

e in I is identity: ae = a, ea =a, if exist

⁻¹ is inverse: aa ⁻¹a=a, and aa ⁻¹a exists

Polygroupoid: $(A, \bullet, I, -1)$

- multivalued binary operation
- a•b subset of A, for all a,b

Invertible monoid

- associative: a(bc)=(ab)c
- l is set of identities: al = la =a
- ⁻¹ is inverse: multivalued version

Polygroupoid: (A, •, I, ⁻¹)

- multivalued binary operation
- a•b subset of A, for all a,b

Invertible monoid

associative: a(bc)=(ab)c complex multiplication

I is identity: al=la=a

⁻¹ is inverse:

a in bc iff b in ac^{-1} iff c in $b^{-1}a$.

Complex multiplication: XY = unionof { ab : a in X, b in Y}

GROUPS

Cayley representation

Cayley representation: A is set of permutations on a set Composition, identity map, inverse

Suc = { (0,1), (1,2), (2,3), (3,0) }

Group: (A, ●, 1', ⁻¹) ● binary operation

Inverse

Cayley representation: A is set of permutations on a set Composition, identity map, inverse

 $Suc^{-1} = \{ (1,0), (2,1), (3,2), (0,3) \}$

Group: (A, ●, 1', ⁻¹) ● binary operation Composition, identity

Cayley representation: A is set of permutations on a set Composition, identity map, inverse

Suc⁻¹ = { (1,0), (2,1), (3,2), (0,3) } Suc² = { (0,2), (1,3), (2,0), (3,1) }

Cayley representation of Z₆

BRANDT GROUPOIDS

Brandt groupoid structure

Structure:

Copies of a group on the full graph on I

Brandt groupoid: $(A, \bullet, I, -1)$

• partial binary operation

Brandt groupoid with I={p,q} and G=Z₃

POLYGROUPOIDS

Polygroupoid: $(A, \bullet, I, -1)$

Structure:

• many-valued binary operation

Theorem (Comer, 1983) Polygroupoids are exactly atom-structures of atomic relation algebras.

RA = SCm PG.

Representation of a polygroupoid:
Elements of A with binary relations
as composition of binary relations
I as identity relation
-1 as converse of a relation

Complete representations of RA: determined by polygroupoid Incomplete representations of RA: determined by BA structure Subject of second part of the talk

STORY

- Representation theorem of Jónsson and Tarski 1952
- Discovery of Roger Maddux 1991
- Idea of Steven Givant 1991
- Vision of Steve Comer 1983

Loop polygroupoids

a is a loop if there is x in I such that xax=a.

A polygroupoid is a loop-polygroupoid iff the product on loops is a partial function. LPG

A relation algebra is measurable iff the identity is the sum of atoms, and for each subidentity atom x the square x;1;x is the supremum of functional elements. MRA

The structure of LPGs is very similar to BGs:

Groups on the vertices, but different groups possible,

Factor groups on the edges.

Plus a common factor group in the middle of each triangle.

LOOP POLYGROUPOIDS

LOOP POLYGROUPOIDS

REPRESENTABLE EXAMPLES

Multicategory (on blackboard)

Fig. 10.3 (a) The Cayley representation of the group complex algebra \mathfrak{C} . (b) The same representation with a reordered base set to show that the representation of ι is an equivalence relation on *G* with equivalence classes $\{0,2,4\}$ and $\{1,3,5\}$. (c) The induced representation of \mathfrak{C}/ι . (d) The induced representation with a reordered base set. (e) The contracted representation of \mathfrak{C}/ι .

Loop polygroupoid with $I=\{p,q,r\}$ and $G_x=Z4$ and $G_{xy}=Z1$

Loop polygroupoid with I={p,q,r} and G_x =Z4 and G_{xy} =Z2

Loop polygroupoid with $I=\{p,q,r\}$ and $G_x=Z_1$

Pair dense RA: $(A, \bullet, I, {}^{-1})$ all the groups are one- or two-element

Loop polygroupoid with $I=\{p,q,r,s,t\}$ and $G_x=Z_2$ or $G_x=Z_1$

Pair dense RA: $(A, \bullet, I, {}^{-1})$ all the groups are one- or two-element

Loop polygroupoid with I={p,q,r,s,t} and $G_p=G_q=G_r=G_{pq}=Z_2$, all the others are Z_1

Theorem (G): Representable LPGs are exactly the structures belonging to group systems.

Problem: are all LPGs representable?

Partial results (AG): LPGs with I having less than 5 elements are representable. LPGs with all groups direct products of at most two finite cyclic groups are representable. LPGs with less than "three levels" are representable.

Surprise (AG): There is a nonrepresentable LPG with I having 5 elements, the groups on the vertices Z2xZ2xZ2, the groups on the edges Z2xZ2, and the group in the middle Z2.

NONREPRESENTABLE LPG

On blackboard

Loop polygroupoid: (A, •, I, -1)

partial binary operation on loops

 $\mathsf{G}_{\mathsf{x}\mathsf{y}}$ G_x€ G_v $A = \{ (x,g,y) : x,y \text{ in } I \text{ and } g \text{ in } G_{xy} \}$ $(x,g,y) \bullet (y,h,z) = \{ (x, ghC_{xyz}, z) \}$

Structure:

Groups on the vertices, factor groups on the edges of the full graph on I, a group with a shift in the middle of each triangle

Loop polygroupoid structure in general

Representation Theorem for LPG (AG): LPGs are exactly the structures belonging to shifted group systems.

element of factor group G_{xyz} of Gx C_{xyz} is called the shift in the triangle xyz

Conditions on next slide

- (i) φ_{xx} is the identity function on $G_x/\{e_x\}$, where e_x is the identity element of G_x .
- (ii) φ_{yx} is the inverse of φ_{xy} . In particular, $K_{xy} = H_{yx}$.
- (iii) $\varphi_{xy}[H_{xz}/H_{xy}] = H_{yz}/H_{yx}.$

Assume that (iii) holds. Define $\varphi_{xy}^z(g/(H_{xy} \circ H_{xz})) = \varphi_{xy}(g/H_{xy}) \circ H_{yz}$. (iv) $\varphi_{xy}^z \mid \varphi_{yz}^x = \tau(C_{xyz}) \mid \varphi_{xz}^y$.

(v) $C_{xyy} = H_{xy}$. (vi) $\varphi_{xz}[C_{xyz}] = C_{zyx}^{-1}$. (vii) $\varphi_{xy}[C_{xyz}] = C_{zyx}^{-1}$. (viii) $C_{xyz} \circ C_{xzw} = \varphi_{yx}[C_{yzw} \circ H_{yx}] \circ C_{xyw}$.

Open Problems

OProblem1.

Are these all the nonrepresentable LPGs?

OProblem2. Can each measurable RA be embedded into an atomic measurable RA?

OProblem3. Are all representable measurable RAs completely representable?

The same for other structures, general systems theory

Steven Givant · Hajnal Andréka Simple Relation Algebras D Springer