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Abstract . The main result gives a sufficient condition for a class K of finite
dimensional cylindric algebras to have the property that not every epimorphism in
K is surjective. In particular, not all epimorphisms are surjective in the classes CAn

of n-dimensional cylindric algebras and the class of representable algebras in CAn

for finite n > 1, solving Problem 10 of [28] for finite n. By a result of Németi, this
shows that the Beth-definability property fails for the finite-variable fragments of
first order logic as long as the number n of variables available is > 1 and we allow
models of size ≥ n + 2, but holds if we allow only models of size ≤ n + 1. We also
use our results in the present paper to prove that several results in the literature
concerning injective algebras and definability of polyadic operations in CAn are best
possible. We raise several open problems.

§0. INTRODUCTION AND THE MAIN RESULTS
In algebra, the properties of epimorphisms (in the categorial sense) being

surjective and the amalgamation property in a class of algebras are well in-
vestigated, see e.g. [1] and [37]. In algebraic logic these properties turn out
to be the algebraic equivalents of Beth’s definability property and Craig’s in-
terpolation property, respectively (of the logic under algebraization), see [27,
sec 5.6 Thm 5.6.10] for the first equivalence and [57, Thm 1.2.8] for the sec-
ond equivalence. We understand Beth’s and Craig’s properties of abstract
(or general) logics in the abstract model theoretic sense, cf. Barwise-Feferman
[13, p.32, Def 1.2.4], or [9, sec 6]. The equivalence result concerning Craig’s
property can be traced back to Daigneault [19] in the context of polyadic alge-
bras. Pigozzi [57] is a milestone for working out such equivalences for cylindric
algebras, an alternative equational formalism of first order logic. The cor-
responding algebraic question (amalgamation property of cylindric algebras)
was largely settled by Comer [16] (the finite dimensional case) and Pigozzi
[57] (the infinite dimensional case). The equivalence between amalgamation
and interpolation is studied in more general contexts in [40],[41] and [42]. The
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equivalence result concerning Beth’s property is due to Németi [51] and ap-
plies to all algebraizable logics. That part of the result which is relevant for
the present paper is fully cited and proved as Thm 5.6.10 in [27, sec 5.6].
However, unlike Pigozzi [57], Németi [51] did not settle the corresponding al-
gebraic question i.e. whether epimorphisms are surjective in (various classes
of) cylindric algebras. This appears as open Problem 10 on p.310 of [28]. In
the present paper we settle this algebraic question (Problem 10 of [28]) for the
finite dimensional case. The infinite dimensional case is settled by Madarász
[43], [44]. Then, by the quoted Thm 5.6.10 of [27], our result will imply fail-
ure of Beth’s definability property for a large variety of first order logics with
finitely many variables. A precursor of the present work is the manuscript [4]
which contains the first proof of the fact that Beth’s definability property fails
in finite variable logic. It has been improved in various ways in the meantime
by the new co-authors. The results of [4] were announced in [5].

To formulate our main result we need to recall some notation.
Throughout this paper n and µ denote cardinal numbers. Unless otherwise

specified, n is always finite. Concerning the classes of cylindric algebras we
deal with, we follow the standard terminology of the monographs [26] and [27].
In particular, CAn is the class of cylindric algebras of dimension n and Csn

is the class of cylindric set algebras of dimension n. The greatest element of
a Csn is always a Cartesian space i.e. a set of the form nU for some set U ,
where nU denotes the set of all U -termed sequences of length n. This U is
called the base of the algebra. µCsn is the class of those members of Csn

which are of base of cardinality µ. Gsn is the class of generalized cylindric set
algebras as defined in [27]. The greatest element of a Gsn is a disjoint union
of Cartesian spaces each of dimension n. If the greatest element of a Gsn is
of the form ∪i∈I

nUi, then each Ui is called a subbase of the algebra. µGsn is
the class of those members of Gsn each subbase of which has cardinality µ.
For the purposes of the present paper it is enough to know that an algebra
is isomorphic to a Gsn iff it is representable, which in turn means that it is
isomorphic to a subdirect product of Csn’s. Similarly, an algebra is isomorphic
to a µGsn iff it is isomorphic to a subdirect product of µCsn’s. It might be
useful to recall from [27] that the classes CAn, Gsn and µGsn are varieties,
up to isomorphism. In the following, n < ω means that n is finite. Our main
result is the following:

Proposition 1 . For 4 ≤ n + 2 ≤ µ and n < ω, not all epimorphisms are
surjective in the following classes: CAn, Csn, Gsn, µCsn and µGsn.

The result above is a corollary to (the stronger) Theorem 6 formulated
and proved in section 2. It settles Problem 10 on p.310 of [28] for the finite
dimensional case. The result complements that epimorphisms are surjective in
the following classes:
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(1) CAn where n ≤ 1 (see [16]).

(2) µGsn where µ ≤ n + 1 < ω (see [17]).

(3) Crsα for every ordinal α where Crsα is the class of cylindric relativized
set algebras, i.e. the ones with greatest element an arbitrary set of α-ary
sequences (see [53]).

(4) Boα (Boolean algebras with operators having the same similarity type
as CAα) and their diagonal free reducts (see [53] and [60]).

The constructions developed in this paper to prove Proposition 1 will be
used to show that several results (concerning injective CAn’s in the sense of
[17] and definability of polyadic operations in cylindric algebras in [8]) are best
possible. This is done in Theorems 6 and 8 in this paper. We should mention
that these results are quoted in [17] from the precursor [4] of the present work,
but the proofs appear in print for the first time in the present paper.

Organization. The layout of this paper is as follows. Section 1 contains
the algebraic investigations proving our results. In section 2 we describe the
logical consequences of the algebraic investigations in section 1. In the final
section we review, and in the process comment on, related results and give
some historical notes.

§1. ALGEBRAIC RESULTS AND THEIR PROOFS
In this section we state and prove our results in algebraic form. We start

off by recalling the notation mostly used. This includes the notation in which
we deviate from the fundamental monographs [26] and [27]. Otherwise our
notation is in conformity with [26] and [27].

Notation .

(i) The full cylindric set algebra with base U and dimension n is denoted
by A(n, U). Full here means that the universe of A(n, U) is ℘(nU), the
power set of nU. The operations of A(n, U) are the Boolean set opera-
tions of forming union of two subsets of nU and forming the complement

w.r.t. nU of a subset of nU , together with the unary operations of i-
th cylindrifications Ci and the diagonal constants Dij, for each i, j < n
defined as follows

Ci(X) = {s(i|u) : s ∈ X, u ∈ U} where s(i|u) denotes the sequence we
obtain from s by changing its i-th member to be u, and

Dij = {s ∈ nU : si = sj}.
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(ii) For a given CAn, we let dn, or even sometimes simply d, stand for the
principal diagonal element that is

dn = d =
∏

{dkl : k, l < n}.

We let d̄ stand for the principal co-diagonal that is

d̄ =
∏

{−dkl : k, l < n, k 6= l}.

(iii) We use natural numbers in the von Neumann sense, i.e. 0 is the empty
set and n+1 = n∪{n}, hence n+1 = {0, 1, . . . , n}. A sequence s ∈ nU is
considered to be a function mapping n to U such that if s = 〈s0, . . . , sn−1〉
then s(i) = si for all i ∈ n.

(iv) Let σ be a permutation of the base U of A(n, U). Then σ induces an
automorphism on A(n, U); which we denote by σ̄, or sometimes also by
σ, when no confusion is likely to ensue. More specifically for X ⊆ nU ,
and σ a permutation of U , we let

σ(X) = {σ ◦ y : y ∈ X}.

(v) The symmetric group on a set U is denoted by SU . In particular, the
universe of SU is the set of all permutations of U .

(vi) Aut(A) denotes the set of all automorphisms of the algebra A. For
B ⊆ A, we let G∗(B,A), or simply G∗(B) when the big algebra is clear
from context, be the subgroup of Aut(A), fixing B elementwise. That is

G∗(B) = {σ ∈ Aut(A) : σ(b) = b for all b ∈ B}.

We often refer to G∗(B) as the Galois group of B.

(vii) IdX denotes the identity map with domain X; the subscript X will
be dropped when the domain is clear. |X| denotes the cardinality of
X. Rg(f) for a given function f denotes the range of f and f ↾ X
denotes the restriction of f to X. The composition of the functions f
and g is defined so that the righthand-most function acts first, that is
(f ◦ g)(x) = f(g(x)) whenever g(x) ∈ Rg(f).

To prove Proposition 1, we need several lemmas. From now on, unless
otherwise specified, it is assumed that n is a natural number > 1, U is a set,
and H ⊆ U . For x ∈ H, we let

ax = n × {x} = {〈x : i < n〉}
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be the atom of A(n, U) corresponding to the function with constant value x.
Let

A(n, U,H)

denote the subalgebra of A(n, U) generated by the set {ax : x ∈ H}. In par-
ticular, this subalgebra contains the element nH if H is finite (since n is finite,
too). Let K be a class of algebras and let h : A → B be a homomorphism
between elements of K. We say that h is an epimorphism in K if it has the
right-cancellation property, i.e. if f ◦ h = g ◦ h implies g = h for any C ∈ K
and homomorphisms f, g : B → C. Now we are ready to formulate and prove
our first lemma.

Lemma 1 . Suppose n < ω, H is finite, and B ⊆ A(n, U,H) such that nH ∈
B. Let A denote A(n, U,H). Then IdB : B → A(n, U,H) is an epimorphism
in CAn if and only if G∗(B,A) = {IdA} (i.e. iff IdA is the only automorphism
of A fixing all elements of B).

Proof. The “only if” part is obvious. Now we prove the “if” part. Assume
that G∗(B) = {Id}. Let C ∈ CAn and suppose that f : A(n, U,H) → C and
g : A(n, U,H) → C are given homomorphisms that agree on B. We now show
that f = g. Since A(n, U,H) is simple (by n < ω) f and g are either both
equal to the zero map, or are both injective. We assume the latter, for else
there is nothing more to prove. We first show that

(*) Rg(f) = Rg(g).

Let h denote nH. Observe that
∑

{ax : x ∈ H} = h · d ∈ B and thus∑
{f(ax) : x ∈ H} = f(h · d), and the same for g in place of f , since H is

finite. Now each atom ax is a rectangular element 1 and is below the principal
diagonal. Since f is an injective homomorphism it follows that f(ax) is also
rectangular and is below the principal diagonal. By [26, 1.10.13(ii)], we have
then that f(ax) is an atom in C and f(ax) ≤ f(h · d). Similarly g(ax) is an
atom in C that is below g(h · d). But h · d is in B and f and g agree on B,
hence

f(h · d) = g(h · d).

Thus the atoms below each coincide, i.e. we have

{f(ax) : x ∈ H} = {g(ax) : x ∈ H}.

Now (∗) readily follows since A(n, U,H) is generated by {ax : x ∈ H}. From
(∗) it follows that g−1 ◦f is an automorphism of A(n, U,H) that is the identity

1We recall from [26] that an element a in a CAn is rectangular if c(∆)a · c(Γ)a = c(∆∩Γ)a

for all ∆,Γ ⊆ n.
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on B. But G∗(B) = {Id} by assumption, so f = g which shows that the
identity map IdB is an epimorphism.

To formulate the next two lemmas we need the notion of two elements of
a cylindric algebra always belonging to the same cylinders. Namely, X,Y in
a CAn are called cylindrically equivalent iff ciX = ciY for all i < n. We also
need the following notation. For X ∈ A and A ∈ Csn, we let S[0,1]X = {s ∈
nU : s ◦ [0, 1] ∈ X} = {〈s1, s0, s2, . . . 〉 : s ∈ X}. Here [0, 1] is the transposition
on n that interchanges 0 and 1. The next Lemma is the key technical result
in this paper. In fact, the element X ∈ A(n, U,H) provided by Lemma 2 will
play a key role in proving all of our results. Let h̄ denote nH ∩ d̄.

Lemma 2 . For 4 ≤ n + 2 ≤ |H| < ω with H ⊆ U , there exists X ∈
A(n, U,H) for which X ⊆ h̄ and (1), (2), (3) and (4) below hold:

(1) {σ ∈ SH : σ̄(X) = X} = {IdH}, i.e. “X is rigid”.

(2) Both X and h̄ r X are cylindrically equivalent to h̄.

(3) |X| 6= |h̄ r X|.

(4) Furthermore, if H = U (when h̄ = d̄, A(n, U,H) = A(n, U), the full set
algebra with base U) then the following condition holds:

S[0,1]X /∈ {X, d̄ r X}.

Proof. We start by constructing a set X that satisfies (1), (2) and (3). This will
be done by induction on n. Then we prove (4). Since A(n, U,H) ∼= A(n, U,H ′)
whenever |H| = |H ′|, we can assume without loss of generality that H is an
initial segment of the natural numbers, i.e.

H = m = {0, . . . ,m − 1}, where |H| = m.

Now the base step of the induction is easy.
For n = 2 and 4 ≤ m < ω, we let

X = {s ∈ 2m : s1 = s0 + 1(mod(m))} ∪ {(0, 2)}.

Then it is not hard to check that X ⊆ h̄ and that (1), (2), and (3) hold.
For the induction step we assume that X ⊆ h̄ has been defined satisfying

(1),(2) and (3), and we define X̄ ⊆ n+1(m + 1) = H̄ (for short) which also
satisfies (1), (2) and (3). First we define

N = {s ∈ H̄ : m /∈ Rg(s)}
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and for i ≤ n, we let
Zi = {s ∈ H̄ : si = m}.

Then the set {N} ∪ {Zi : i ≤ n} forms a partition of H̄ (which will be used to
separate cases). We define for each i ∈ n

Ai = {s ∈ Zi : s(i|sn) ↾ n ∈ X}

and we let

X̄ = {s ∈ N : s ↾ n ∈ X} ∪ {s ∈ Zn : s ↾ n /∈ X} ∪ ∪i<nAi.

We show that X̄ is as desired. Clearly X̄ ⊆ H̄. We now consider (2), then (3),
and then (1).

Proof of (2)
Suppose i ≤ n. Clearly ciX̄ ⊆ ciH̄. We show the reverse inclusion, namely

H̄ ⊆ ciX̄. Towards this end, assume that s ∈ H̄. We must show that s ∈ ciX̄.
We distinguish between two cases.

Case 1. s ∈ N ∪ Zn.
Subcase 1.1. i < n.
If s ∈ N , then m /∈ Rg(s), and so s ↾ n ∈ h̄. Also, if s ∈ Zn, then s(n) = m,

and since s is one to one, it follows that s(j) 6= m for all j < n, hence we also
have s ↾ n ∈ h̄. Since s ↾ n ∈ h̄ and by induction we have h̄ ⊆ ciX, it follows
that there is an a ∈ m such that

[s ↾ n](i|a) = s(i|a) ↾ n ∈ X.

One of two things. Either a 6= sn or a = sn. In the former case we get
s(i|a) ∈ X̄. In the latter we have s(i|m) ∈ X̄ since s(i|m) ∈ Zi and

s(i|m)(i|sn) ↾ n = s(i|a) ↾ n ∈ X.

We have proved that s ∈ ciX̄. Therefore X̄ satisfies (2).
Subcase 1.2. i = n.
If s ↾ n /∈ X, then by definition s(n|m) ∈ X̄. Else s ↾ n ∈ X. Since

m > n + 1, there exists a ∈ m r Rg(s ↾ n). Thus s(n|a) ∈ N, which in turn
implies that s(n|a) is in X̄. In either case we get that s ∈ cnX̄ = ciX̄.

Case 2. s ∈ Zk, k < n and i ∈ {k, n}.
Subcase 2.1. i = k.
Since h̄ ⊆ ckX, there exists a ∈ m such that s(k|a) ↾ n ∈ X. Thus,

s(n|a) ∈ X̄ so s ∈ cnX̄. If a 6= sn, then s(k|a) ∈ X̄; otherwise s ∈ X̄. In either
case, s ∈ ckX̄.

Subcase 2.2. i = n.
Since s(k|sn) ↾ n ∈ h̄ ⊆ ciX there exists a ∈ m such that s(k|sn)(i|a) ↾ n ∈

X. Thus s(i|a) ∈ X̄, and so s ∈ ciX̄ as desired.
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By Cases 1 and 2 above it follows that H̄ ⊆ ciX̄ hence ciH̄ = ciX̄. The
proof that ciH̄ = ci(H̄ r X̄) is completely analogous and is therefore omitted.
By this we have proved that X̄ satisfies (2).

Proof of (3)
We now prove that X̄ satisfies (3). For the sake of brevity, we write Y =

h̄ r X, Ȳ = H̄ r X̄, and we set for each a ≤ m

Xa = {s ∈ X̄ : sn = a},

and for i ≤ n

Bi = {s(i|m)(n|a) : s ↾ n ∈ X and si = a}.

Note that
|Xm| = |{s ∈ H̄ : s ↾ n ∈ Y and sn = m}| = |Y |.

For a ∈ m, we have

Xa = {s ∈ H̄ : s ↾ n ∈ X and a /∈ Rg(s ↾ n)} ∪ ∪{Bi : i ∈ n}

showing that |Xa| = |X|. Thus, |X̄| = |Y | + m|X|. An analogous argument
shows that |Ȳ | = |X| + m|Y |, so |X̄| − |Ȳ | = (m − 1)(|X| − |Y |) from which
it follows that |X| 6= |Y | which in turn implies that |X̄| 6= |Ȳ |.

Proof of (1)
We now prove that X̄ satisfies (1). Suppose σ ∈ Sm+1 and that σ 6= Id.

We distinguish between two cases.
Case 1. σ(m) = m.
In this case σ ↾ m = τ ∈ Sm, τ 6= Id. Since by induction (1) holds for

X, τ̄X 6= X and thus τ̄Y 6= Y . Choose p ∈ Y for which τ(p) /∈ Y and set
f = p ∪ {(n,m)}. Then f ∈ X̄ while σ(f) = τ(p) ∪ {(n,m)} /∈ X̄.

Case 2. σ(a) = m for some a ∈ m.
If σ̄X̄ = X̄ then σ̄Xa = Xm. But |σXa| = |X| 6= |Y | = |Xm| by (3), and

so σ̄X̄ = X̄. This completes the proof of the induction step, hence X̄ satisfies
(1), (2) and (3).

Now we prove (4). We distinguish between the case n = 2 and the case
n > 2. Let n = 2. Let X be as defined above in the base step of the induction.
Then we have (1, 2) ∈ X but (2, 1) /∈ X. This shows that S[0,1]X 6= X. Also
(1, 3) /∈ X and (3, 1) /∈ X, hence S[0,1]X 6= d̄ r X. Now let 2 < n. Let
p = {(0, 1), (1, 2), (3, 0)} ∪ {(i,m + i − 2) : 3 ≤ i < n}. Then p ∈ nm. For
2 ≤ β ≤ n, we denote X and N , constructed above in the induction step for
dimension β by Xβ and Nβ, respectively. It is not hard to see that by the
construction of Xβ, we get

(∀2 ≤ β < n)(p ↾ β + 1 ∈ Xβ+1 iff p ↾ β ∈ Xβ).
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In particular, p ∈ Xn iff p ↾ 2 ∈ X2. It follows thus that p ∈ Xn but S[0,1]p /∈ Xn.
Thus S[0,1]Xn 6= Xn. Now let q = {(0, 1), (1, 3), (3, 0)}∪{(i,m+ i−2) : 3 ≤ i <
n}. Then it is easy to see that q /∈ Xn and S[0,1]q /∈ Xn. Thus S[0,1]Xn 6= d̄rXn.
By this the proof of Lemma 2 is complete.

We let Bon stand for the class of Boolean algebras with operators with
same similarity type as CAn. Let D ∈ Bon. Then BlD denotes the Boolean
reduct of D which is of course a Boolean algebra. Recall that an atom of a
Boolean algebra is a minimal non-zero element. At(D) denotes the set of all
atoms of BlD. For an algebra A and X ⊆ A, SgAX or simply SgX when A
is clear from context, denotes the subalgebra of A generated by X.

Lemma 3 . Suppose A is a finite subalgebra of C ∈ Bon. Let W be an atom
of A and let Y be a partition of W into finitely many elements, each of which
is cylindrically equivalent to W . Let B = SgC(A∪ Y ), i.e. B is the subalgebra
of C generated by A ∪ Y . Then (i) and (ii) below hold:

(i) Y ⊆ At(B).

(ii) B = SgBlC(A ∪ Y ), i.e B coincides with the Boolean subalgebra of C
generated by A ∪ Y.

Proof. For the sake of brevity, let D = SgBlC(A ∪ Y ). We first show that
D = B. Clearly D ⊆ B, since B is closed under the Boolean operations. Since
D, by definition, is closed under the Boolean operations and contains all the
diagonal elements, to show that B ⊆ D it remains to show that D is closed
under cylindrifications. Towards this end, let

Z = (At(A) r {W}) ∪ Y.

Then D = SgBlCZ because W =
∑

Y and because A is generated as a Boolean
algebra by its atoms. Therefore

(iii) Y ⊆ At(D) and
(iv) Every element of D is a sum of a subset of Z.
Now for each z ∈ Z, ciz ∈ A because A ⊆ C and for each y ∈ Y , we have

ciy = ciW ∈ A. Since ci is additive (iv) implies cib ∈ A for all b ∈ D. It
follows that D = B which proves (ii). Now (i) readily follows from (iii).

Our final lemma before proving Proposition 1 shows that a certain subal-
gebra A0 of A(n, U,H) is finite (even when U is infinite).

Lemma 4 . For 4 ≤ n + 2 ≤ |H| < ω and H ⊆ U , the subalgebra of
A(n, U,H) generated by nH is finite.
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Proof. Let G = {σ ∈ SU : σ(u) ∈ H for all u ∈ H}. Let us call a subset
a of nU G-stable if σ̄(a) = a for all σ ∈ G. It is easy to see that G-stable
elements generate G-stable ones. Since nH is clearly G-stable, it suffices to
show that there are only finitely many G-stable elements. Now each atom of
the Boolean algebra whose universe is the set of all G-stable elements has the
form fG for some f ∈ nU where fG = {σ ◦ f : σ ∈ G} is the G-orbit of f
under the action of G on nU. For a function f : A → B, the kernel of f is
defined as ker(f) = {(a, b) ∈ A × A : f(a) = f(b)}. It is easy to see that
fG = {s ∈ nU : ker(s) = ker(f) and [si ∈ H iff fi ∈ H]}. Let

Πn = {(π, λ) : π is a partition of n and λ : n/π → {0, 1}}.

Here n/π is the set of all blocks of the partition. Then of course Πn is finite.
Moreover we have

|{fG : f ∈ nU}| = |Πn|,

because fG corresponds to the pair (π, λ) where π = kerf and λ(i/π) = 0 if
f(i) ∈ H and 1 otherwise. The Lemma follows.

Lemma 5 . Suppose 4 ≤ n + 2 ≤ |H| < ω, H ⊆ U and assume that
X ⊆ nH ∩ d̄ satisfies (1)-(2) of Lemma 2. Then (i) and (ii) below hold.

(i) X is an atom in the subalgebra of A(n, U,H) generated by {X}.

(ii) Suppose B ⊆ A(n, U,H) is such that X is an atom in B. Then IdB :
B → A(n, U,H) is a non-surjective epimorphism in CAn.

Proof. For the sake of brevity let C = A(n, U,H), let h̄ = nH ∩ d̄ and let A0

be the subalgebra of C generated by nH. Then A0 is finite and h̄ is an atom
of A0. Let B be the subalgebra of C generated by {X}. Then h̄ ∈ B because
h̄ = c0h̄ ∩ c1h̄ ∩ −d01 = c0X ∩ c1X ∩ −d01 by property (2) of X. Hence

B = SgC{X} = SgC[{X, h̄ r X} ∪ A0],

and so X is an atom of B by Lemma 3 (i). This proves (i) of Lemma 5.
To prove (ii), assume the hypotheses. To prove that IdB is an epimorphism

we apply Lemma 1. Let s be an arbitrary element of G∗(B), the Galois group
of B, i.e. s an automorphism of C that fixes B elementwise. We shall prove
that s = IdC by which we will be done. Now s fixes nH ∩ d =

∑
{ax : x ∈ H}

because the latter is in B, thus it permutes the set {ax : x ∈ H}. Therefore
there is a permutation of H, σ say, such that σ̄(ax) = s(ax) for all x ∈ H. But
{ax : x ∈ H} generates C and so σ̄ = s. By property (1) of X (i.e. by X being
“rigid”), we get σ = IdH because s fixes X ∈ B. Thus s = ĪdH = ĪdC and
G∗(B) = {IdC}. It follows from Lemma 1 that IdB is an epimorphism in CAn

from B to C. To see that this map is not surjective it suffices to show that B
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is a proper subalgebra of C. By property (2) of X we get that |X| ≥ 2. But it
is easy to see that {f} is in C for every f ∈ nH. Since X ⊆ nH we get that X
is not an atom of C. On the other hand, by our assumptions X is an atom of
B. Thus B 6= C as desired. By this the proof of Lemma 5 is complete.

Now we are ready to prove our main algebraic proposition stated in the
introduction. For a class K, SK and IK denote the classes of all subalge-
bras and of all isomorphic copies of members of K, respectively. We prove
something stronger than Proposition 1, namely:

Theorem 5 . Let 1 < n < ω and let U be a set, µ = |U |. Let K ⊆ CAn

be such that SK = K and A(n, U,H) ∈ K, for some H ⊆ U with n + 2 ≤
|H| < ω. Then not all epimorphisms in K are surjective. In particular, not all
epimorphisms are surjective in CAn, Csn, µCsn, Gsn and µGsn.

Proof. Theorem 5 immediately follows from Lemma 5.

It is proved in [17] and [8] that n-dimensional cylindric set algebras of base
≤ n + 1 have rather nice properties, e.g. the full Csn with base µ ≤ n + 1 is
homogeneous and is IµGsn-injective, and the substitution-operations are term
definable in Csn’s with base ≤ n+1. The construction in the proof of Lemma
2 can be used to show that all these nice properties get lost if the base is bigger
than n + 1. Thus n + 1 is a kind of “turning point” for these properties.

Now we turn to showing that 2.8, 2.9, 3.7, 3.8, 3.10, 5.2(2) and 5.5 of [17]
cannot be improved. In the proof we apply the ideas used above to the special
case where H = U , |U | = µ. For 4 ≤ n + 2 ≤ µ < ω and H = U observe
that A(n, U,H) is the full set algebra A(n, U). It is easily seen (cf. the proof
of Lemma 5) that every s ∈ Aut(A(n, U)) is induced by a permutation on U ,
i.e. has the form s = σ̄ for some σ ∈ SU the symmetric group on U . In what
follows, for undefined terminology the reader is referred to [17].

We recall that for B ⊆ A(n, U), G∗(B) denotes the Galois group of B. For
ρ ∈ nU , we let ρG(B) denote the orbit of ρ under the action of G∗(B) on nU ,
and we let XB

ρ denote the atom of B that contains ρ.

Theorem 6 . Suppose 4 ≤ n + 2 ≤ µ < ω and |U | = µ. Then

(i) A(n, U) is neither homogeneous nor IµGsn-injective.

(ii) IµGsn does not have enough injectives.

(iii) There exists B ⊆ A(n, U) for which G∗(B) = {Id}, B 6= A(n, U)G(B) and
XB

ρ 6= ρG(B) for all ρ ∈ d̄.

Proof. Choose B ⊆ A(n, U) similarly as in the proof of Lemma 5, i.e. let X ⊆
d̄ satisfy conditions (1)−(3) of Lemma 2 and let B be the subalgebra of A(n, U)

11



generated by X. Let f ∈ Aut(B) be the automorphism that interchanges the
atoms X and Y = d̄ r X of B. Such an automorphism exists since B is
generated by its atoms. By (3) of Lemma 2 we have |X| 6= |Y | and so f
cannot be induced by a permutation of U . This shows that A(n, U) is not
homogenous since f does not extend to an automorphism of A(n, U). Since
A(n, U) is simple, a similar argument shows that A(n, U) is not IµGsn injective
and cannot be embedded in one. (i) and (ii) follow. The first two properties
of B in (iii) follow from the proof of Lemma 5. For ρ ∈ d̄ we have ρG(B) = {ρ}
because G(B) = {Id} and XB

ρ is either X or d̄ r X. Thus ρG(B) 6= XB
ρ and

the proof of Theorem 6 is now complete.

Theorem 2.5 of [17] states that all subalgebras of a full cylindric set algebra
of dimension n and with base ≤ n + 1 are one-generated. We do not know
whether Theorem 2.5 of [17] can be extended to µ = n + 2, or is [17, Thm.5.2]
also best possible. In more detail:

Open question 1 . Are all subalgebras of A(n, n + 2) one-generated if
5 ≤ n < ω?

On the background of this problem: By using the lemmas in this paper, it is not
difficult to show that if d̄ of A(n, U) can be partitioned into three cylindrically
equivalent subsets, then these three subsets generate a subalgebra which is
not one-generated. It is proved in [56] that d̄(n, n + 2) = {s ∈ n(n + 2) :
(∀i < j < n)si 6= sj} can be partitioned into three cylindrically equivalent
subsets if and only if 1 < n < 5. This shows that there are subalgebras of
A(n, n+2) which are not one-generated if 1 < n < 5. We do not know whether
all subalgebras of A(5, 7) are one-generated or not. Related information can
be found in [28, I.4.8(p.65), Problem I.2(p.127), Problem 8 (p.311)], see also
[27, Problem 3.3(p.103)]. We note that the technique of using cylindrically
equivalent subsets of d̄, first used in [7], proved to be rather fruitful in all
kinds of later investigations, cf., e.g., [3], [15], [31], [39, p.38], [43], [68], [69].

Our next result formulated as Theorem 8 below concerns definability of
substitutions in cylindric algebras. It shows that Theorem 1 of [8] to be quoted
below is best possible. Before formulating our result, we review some needed
notation and terminology. Let n be arbitrary. Let V ⊆ nU . Let X ⊆ V . Let
i, j ∈ n. Then

SV
[i,j]X = {f ∈ V : f ◦ [i, j] ∈ X}.

The superscript V is omitted when no confusion is likely to ensue. S[i,j] is
called a substitution operation corresponding to the transposition [i, j] on n,
or simply a substitution. Quasipolyadic (generalized) set algebras of dimension
n are (generalized) cylindric set algebras of dimension n expanded with the
substitution operations S[i,j] for every i, j ∈ n and RPEAn stands for the class
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of all quasipolyadic generalized set algebras of dimension n. On the other hand,
QPEAn stands for the class of (abstract) quasipolyadic equality algebras as
defined in [27]. We adopt the equivalent formalism of QPEAn as defined in
[63]. We recall from [63] that QPEAn are expansions of CAn with unary
(substitution) operations pij for i, j ∈ n. The interpretation of the abstract
operation pij in set algebras is the concrete operation S[i,j]. For A ∈ QPEAn,
the cylindric algebra RdcaA denotes the cylindric reduct of A obtained by
discarding the pij’s. Before formulating Theorem 8 we need a lemma which
roughly says that any unary operation f defined on full generalized cylindric
set algebras satisfying the polyadic axioms of the (abstract) substitution pij is
the “genuine” substitution. 2 More precisely:

Lemma 7 . Let n > 1. Let A ∈ QPEAn. Assume that RdcaA is a full Gsn.
Then pAijX = S[i,j]X, for every i, j ∈ n.

Proof. We will prove more. Namely, let n be an arbitrary ordinal (not
necessarily finite). Let Gwsn be the class of generalized weak set algebras in
the sense of [27, Def. 3.1.2]. Let A ∈ Gwsn be such that every x ∈ A is a
(possibly infinite) union of rectangular elements of A. Note that Gwsn = Gsn

when n is finite. Furthermore, it is easy to see that every full Gsn when n < ω
satisfies the above conditions. Assume that A = RdcaC for some C ∈ QPEAn.
We first show that

(**) pCijx = {f ∈ 1A : f ◦ [i, j] ∈ x}

for all i, j ∈ n and all x ∈ A. (This is equivalent to showing that C is a rep-
resentable QPEAn.) In what follows we use the axiomatization (P0)− (P11)
of polyadic algebras in [27, 5.4.3] restricted to the similarity type of QPEAn

involving—besides the cylindric operations—only the substitution operations
pij and sj

i for i < j < n. We note that the unary operations sj
i are term

definable in CAn (and QPEAn) by sj
ix = ci(x · dij). Now let i < j < n. Let x

be rectangular. Then x = cix ∩ cjx. Then we have by (P8), (P9) and (P10)

pijx = pij(cix · cjx) = pijcix · pijcjx = sj
icix · si

jcjx.

Next we show that when x ∈ A is rectangular, we have

sj
icix ∩ si

jcjx = {f ∈ 1A : f ◦ [i, j] ∈ X},

by which we will be done. The inclusion ≥ always holds. Assume that f ∈
sj

icix ∩ si
jcjx. Then f ∈ cj(dij · cix), hence f(j|fi) ∈ cix, thus f(j|fi, i|fj) =

f ◦ [i, j] ∈ cix. Similarly f ∈ si
jcjx implies f ◦ [i, j] ∈ cjx. Thus f ◦ [i, j] ∈

2We note that it can well happen that A is a QPEAn such RdcaA is representable while
A is not a representable QPEAn, i.e. pij remains abstract in any representation of A.
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cix ∩ cjx = x. We have seen that (∗∗) holds for every rectangular x ∈ A.
Next we show that (∗∗) holds for every element of A. Let R = {x ∈ A :
x is rectangular }. Let y ∈ A be arbitrary. Then y =

∑
{x ∈ R : x ≤ y}

and pijy =
∑

{x ∈ R : x ≤ pijy} by our assumption on A and since pij

preserves sums. It is not hard to show that pijx is rectangular for all x ∈ R.
Thus pijy =

⋃
{pijx : x ∈ R, x ≤ y}. Hence (∗∗) holds. By this the proof is

complete.

We are ready to formulate and prove our final theorem in this section. We
let Wsα be the class of α-dimensional weak cylindric set algebras as defined
in [27, Def.3.1.2]. We recall from [27] that Csn = Wsn when n < ω.

Theorem 8 . Substitutions are term definable neither in µCsn nor in Wsα

for 2 ≤ n < ω, µ ≥ n + 2 and α ≥ 2. In more detail, there exists a C ∈ µCsn,
such that no term function f ∈ CC would satisfy the polyadic axioms for S[0,1];
and the same for Wsα in place of µCsn.

Proof. We start with the case of Cs’s. Let 1 < n < ω. Let everything be
as in the hypothesis of Lemma 2(4) with H = U , µ = |U | = n + 2. For
brevity let C = A(n, U) be the full Csn with base U . Assume f ∈ AA satisfies
the axioms for p01. Then by Lemma 7 we have f = S[0,1]. We now show
that the algebra B = SgCX constructed in Theorem 5 is not closed under the
substitution operation S[0,1]. By Lemma 2(2), applied to the special case when
H = U , we have X, d̄ r X, and d̄ are cylindrically equivalent. By Lemma 3
(i) we have that X, d̄ r X are atoms of B. By the definition of S[0,1] we have
that |S[0,1]X| = |X|, thus S[0,1]X 6= d̄. Then S[0,1]X /∈ B since by the above
and Lemma 3(4) we have that S[0,1]X /∈ {0, d̄, X, d̄ r X}.

Now we consider the case of Ws’s. We assume that n ≥ ω. Here we use a
construction of Németi in [52]. Let A be the weak set algebra constructed in
[52, Statement 1]. Let C be the full weak set algebra having the same unit as
A. Then by the proof of Lemma 7 we have that in C any function satisfying
the polyadic axioms for p01 is S[0,1]. But A ⊆ C is a cylindric subalgebra of C
that is not closed under S[0,1] as shown in [52, Statement 2].

Theorem 8 complements the result that subsititutions are term definable
in CAn when n ≤ 1 and in <µGsn for every n and every µ ≤ n + 1, a result
of Andréka and Németi, cf. [8, Theorem 1]. This result was preceded by the
classical result of Comer and Henkin addressing the case when µ < n, see [27,
Theorem 3.2.53]. In this case <µGsn coincides with the class of the so-called
cylindric algebras of positive characteristic [26].

§2. LOGICAL CONSEQUENCES
The logical consequences concern the (Beth definability property for) finite-

variable fragments of first order logic. Both the finite-variable fragments and
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Beth Definability property are quite well investigated. Historical notes on both
of these are given at the end of the paper, in section 3 (7)-(9).

The n-variable fragment Ln of first order logic (FOL) is the usual FOL
where we use only the first n variables {v0, . . . , vn−1}; and for simplicity we
do not allow constant or function symbols and we use only n-place relation
symbols. Otherwise, the formulas, models, validity are the usual. Let M be a
class of cardinal numbers. Then n-variable (fragment of first order) logic with

models of size in M is denoted as MLn, this is the same as Ln except that we
use only models of size µ where µ ∈ M . With this notation, Ln is the same as

CardLn where Card denotes the class of all cardinal numbers.
The atomic formulas of Ln are not “independent” of each other, because of

the presence of substitution of variables in the atomic formulas R(vi1 . . . vin).
In usual FOL, all atomic formulas R(vi1 . . . vin) are semantically equivalent to
formulas built up from R(v0 . . . vn−1) and vi = vj for some i, j. This allows one
to concentrate on the so-called substitution-free fragment L−

n of FOL, which is
that part of FOL which uses only atomic formulas of the form R(v0 . . . vn−1)
(and of course vi = vj) where n is the rank of R.3 Though FOL is equivalent
with its substitution-free fragment, we loose this equivalence in the n-variable
logic if we do not restrict the size of the models, this is what Corollary 1
below states. Let ML−

n denote n-variable first order substitution-free logic with
models of size in M . We call two languages equivalent if there is a translation
function between their sets of formulas which preserves validity and semantical
consequence.

Corollary 1 . Let 2 ≤ n < ω. Then n-variable fragment is equivalent with
n-variable substitution-free fragment iff we use only models of size < n + 2,
i.e. for a class M of cardinal numbers we have

MLn is equivalent with ML−
n iff M ⊆ n + 2.

Proof. For M ⊆ n + 2 the statement follows from [8, Thm.1] which states
that substitutions are term definable in µCsn where µ ≤ n+1. For M 6⊆ n+2
the statement follows from Theorem 8 in section 1 which states in a strong
form that substitutions are not term definable in µCsn if µ ≥ n + 2.

The name Beth Definability Theorem is a generic title for assertions of
the form “A logic has the Beth definability property”. What Beth himself
proved is that first order logic has the Beth definability property. The Beth
Definability Theorem is one of the cornerstones of first order logic. Indeed, the
Beth Definability Theorem together with the so-called Downward Löwenheim
Skolem Theorem characterizes first order logic. This, in turn, is known as

3These are called “restricted” formulas in [27, sec. 4.3].
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Lindström Theorem. The Beth Definability Theorem (for first order logic)
relates two notions of definability, implicit definability and explicit definability.
A set Σ of formulas implicitly defines a relation symbol P if for any structure of
the symbols in Σr{P} this structure has at most one expansion that is a model
of Σ. On the other hand, Σ defines P explicitly if there is a formula built up
of symbols distinct from P that turns out to be equivalent to P in any model
of Σ. It is straightforward to see that explicit definability implies implicit
definability. The converse which is nothing more than the Beth Definability
Theorem is true for first order logic. But when we restrict our attention to
finitely many variables (and do not restrict the sizes of the models) we loose
this nice property of first order logic. This was first proved by Németi in [51]
as announced in [5].

We now turn to formulating our main results. We start by writing out the
notions of implicit and explicit definitions in more detail. Let L = 〈Fm,Mod〉
be a fragment of FOL where Fm denotes the set of formulas of L, and Mod
denotes the class of all models of L. Let Fmn and Fm−

n denote the sets of for-
mulas of Ln and L−

n respectively, and let Modn denote the class of all first order
models with only n-place relations. With this notation, Ln = 〈Fmn,Modn〉,
and ML−

n = 〈Fm−
n , {A ∈ Modn : |A| ∈ M}〉.

Definition 1 . Let L = 〈Fm,Mod〉 be a fragment of FOL. Let Σ ⊆ Fm,
k < ω, P and P ′ be relation symbols of rank k +1 such that P ′ does not occur
in Σ. Then Σ[P/P ′] denotes the set of formulas obtained from Σ by replacing
every occurrence of P by P ′. Now, we recall from [18, p.87] definitions (i) and
(ii) below.

(i) Σ defines P implicitly iff

Σ ∪ Σ[P/P ′] |= ∀v0 . . . vk[P (v0 . . . vk) ←→ P ′(v0 . . . vk)].

(ii) Σ defines P explicitly iff there is a φ(v0 . . . vk) ∈ Fm such that P does
not occur in φ and

Σ |= ∀v0 . . . vk[φ(v0 · · · vk) ←→ P (v0 · · · vk)].

(iii) A logic has the semantic Beth definability property (cf. [13, p.32, Def.1.2.4])
if implicit definability of P implies explicit definability of P (for every Σ
and P as above).

The following is an improvement of the result that Ln fails to have the
Beth definability property announced in [5].

Corollary 2 . Let 1 < n < ω. First order logic with n variables has the
semantic Beth definability property iff we restrict the models to be of size
≤ n + 1. In more detail,
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(i) n-variable first order logic with models of size ≤ n+1 as well as n-variable
substitution-free logic with models of size ≤ n+1 have the semantic Beth
definability property.

(ii) n-variable substitution-free logic with models of size in M where M 6⊆
n + 2 does not have the semantic Beth definability property. In more
detail, there are Σ and P as in Definition 1, such that Σ defines P
implicitly but not explicitly.

(iii) n-variable logic with models of size in M where M 6⊆ 2n + 1 does not
have the semantic Beth definability property.

Proof. Corollary 2 follows from algebraic results via using Theorem 5.6.10
in the monograph [27]. Let t be the similarity type of CAn’s, let X de-
note the set of our relation symbols, and let K = IMGsn = I{A ∈ Gsn :
all subbases of A have cardinality ∈ M}. Using the notation of [27, p.259]

then it is easy to see that ML−
n is equivalent with the logic denoted in [27,

p.259] as 〈FrX , K〉, and K is closed under taking subalgebras and forming
direct products. Now, [27, Thm.5.6.10] states that the semantical Beth de-
finability property holds for 〈FrX , K〉 iff all almost-onto epimorphisms in K
are surjective. Here, a homomorphism h : A → B is called almost-onto iff B
is generated (as an algebra) by the range of h together with a single element
of B. Epimorphisms are surjective in µGsn for µ ≤ n + 1 (cf. [17]), hence
the semantical Beth definability property holds for ML−

n if M ⊆ n + 2, by
[27, Thm.5.6.10]. On the other hand, let n + 2 ≤ µ < ω, and take a homo-
morphism f : B → A(n, U,H) from Lemma 5 with |U | = µ. Lemma 5 (ii)
states that f is an epimorphism which is not surjective. We have that f is
almost-onto because the algebra A(n, U,H) is generated by the single element
{〈hi, hi+1, u1, . . . , un−2〉 : i + 1 < |H|, u1, . . . , un−2 ∈ H} where h : |H| → H
is any bijection. Hence ML−

n does not have the semantical Beth definability
property if M 6⊆ n + 2.

To prove Corollary 2 (iii), we can use the construction given in [43]. We
recall the construction. Let 1 < n < ω, let U0, U1, . . . , Un−1 be disjoint sets
such that |U0| ≥ 3 and |Ui| = 2 for 1 ≤ i < n. Let U =

⋃
{Ui : i < n},

T = U0 × U1 × · · · × Un−1, let q ∈ T and a ∈ U0 be arbitrary and define

X = {s ∈ T : s0 = a and |{0 < i < n : si 6= q}| is odd},

Y = {s ∈ T : s0 6= a and |{0 < i < n : si 6= q}| is even}.

Let B be the RPEAn with base U generated by {X}, and let A be the RPEAn

with base U generated by {X ∪ Y }. It is proved in [43] that the inclusion
homomorphism Id : B → A is a non-surjective RPEAn epimorphism.

Open question 2 . Let 2 < n < ω and n + 2 ≤ µ < 2n + 1. Does n-variable
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logic with models of size µ have the semantic Beth definability property? In
algebraic form this question is the following. Are the epimorphisms surjective
in µRPEAn if 2 < n < ω and n + 2 ≤ µ ≤ 2n?

To formulate Corollary 3 which is the proof theoretic consequence of our
algebraic proposition in section 0, we will use the syntactical derivability rela-
tion ⊢n,r, or briefly ⊢r, of first order logic with n variables as defined in [27,
p.157]. Roughly, ⊢r is obtained by restricting the usual Hilbert-style axioms
and proof rules of first order logic to the formulas of L−

n (i.e. only n variables

and substitution-free formulas can be used in proofs). As proved in [27], ⊢r

is not complete. In fact, for every m > n > 2, there is a formula built up of
n variables and one relation symbol, φ say, such that φ can be proved using
m+1 variables but cannot be proved using m variables [29]. Thus ⊢r is differ-
ent from the semantical consequence relation |= . A survey of properties of this
provability relation can be found in [9, Def.65, pp.223-228]. The syntactical
version of the Beth definability property is:

Definition 2 . Let L, Σ, P, P ′ and k be as in Definition 1.

(i) Σ defines P implicitly via ⊢r iff

Σ ∪ Σ[P/P ′] ⊢r ∀v0 . . . vk[P (v0 . . . vk) ←→ P ′(v0 . . . vk)].

(ii) Σ defines P explicitly via ⊢r iff there is a φ(v0 · · · vk) ∈ Fm such that P
does not occur in φ and

Σ ⊢r ∀v0 · · · vk[φ(v0 · · · vk) ←→ P (v0 · · · vk)].

(iii) The provability relation ⊢r has the syntactical Beth definability property

if implicit definability via ⊢r implies explicit definability via ⊢r for every
Σ as above.

Corollary 3 . Let 1 < n < ω. Then the provability relation ⊢n,r of first order
logic fails to have the syntactic Beth definability property. In more detail, there
are Σ and P as in Definition 2, such that Σ defines P implicitly via ⊢n,r but
Σ does not define P explicitly via ⊢n,r .

Corollary 3 follows from our algebraic proposition by Thm 5.6.10 and the
first ten pages of sec 4.3 (“Connections between logic and CA′s”) of the mono-
graph [27], in the spirit of the proof of Corollary 2. In more detail, Theorems
4.3.25 and 4.3.28(i) of [27] state that CAn and ⊢n,r correspond to each other
in such a way that [27, Thm.5.6.10] becomes applicable.

In fact a stronger statement follows from our theorems in section 1. Namely,
there is an implicit definition which is already valid in a very weak version of
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first order logic (corresponding to CAn) for which there is no explicit definition
which would be valid semantically on standard first order models. (A result of
this spirit is proved for certain modal logics in [49].) In more detail:

Corollary 4 . Let 1 < n < ω. There are Σ and P as in Definition 1, such
that Σ defines P implicitly via ⊢n,r but Σ does not define P explicitly via |=;
in particular Σ does not define P explicitly via ⊢m,r for any m ≥ n.

§3. Related results and some historical notes
After the first version of this paper was completed, several results were

obtained by various people related to the subject matter of the paper. Such
results address surjectiveness of epimorphisms, (strong) amalgamation, and
(strong) embedding properties in the sense of [57] in classes of algebras fre-
quently studied in algebraic logic, and Beth definability properties in finite
variable fragments. Some of these answer problems posed by Pigozzi in his
landmark paper [57]. We now briefly review those related results.

(1) In [64] Sayed Ahmed proves that for 1 < n < ω and µ < n, the class
I<µGsn (of CAn’s of positive characteristic) has the strong amalgamation
property strengthening Comer’s result quoted in the introduction, for it
is known that in the case of varieties strong amalgamation implies that
epimorphisms are surjective. He also proves that cylindric algebras of
positive characteristic of any dimension has the strong amalgamation
property answering a question of Pigozzi in [57].

(2) ∞Csα stands for the class of cylindric set algebras of dimension α with
infinite base. I.e. ∞Csα =

⋃
{µCsα : µ ≥ ω}. Similarly for ∞Gsα.

For a class K of algebras we write ES holds in K if epimorphisms are
surjective in K. For α ≥ ω, Madarász [44] proves the infinite analogue of
Proposition 1 herein, namely that ES fails in Gsα, ∞Gsα and ∞Csα. It
follows that these classes fail to have the strong amalgamation property.
Madarász also proves that the classes of the so-called diagonal cylindric
algebras in the sense of [57] and semisimple algebras of infinite dimension
fail to have ES. Madarász also proves that such classes fail to have the
strong amalgamation property even if the strong amalgam is sought in
the bigger class of representable algebras. Sayed Ahmed proves that
such classes together with the class of infinite dimensional representable
cylindric algebras have the strong embedding property [44]. In contrast,
the classes of algebras addressed in our Proposition 1 do not have even
the embedding property, cf. [16] and [48].

(3) Madarász and Simon prove that CAω does not have the embedding prop-
erty [44], [70]. However, if we add the so-called merry go round iden-
tities to CAω, the resulting class has the embedding property [64]. On
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the connections between the merry go round identities and cylindric and
quasipolyadic algebras see also [21], [22].

(4) Dfα, QPAα and QPEAα stand for the classes of diagonal free reducts
of cylindric algebras, quasipolyadic algebras and quasipolyadic equality
algebras of dimension α, respectively. Sain [60] proves that ES fails for
QPAn and QPEAn when 1 < n < ω, together with their concrete ver-
sions namely the representable ones, by adapting the proof of Theorem
5 herein (which was available in [4]). The infinite analogue is proved by
Madarász [44]. Sain [60] proves that ES fails in Dfα for α > 1. The
α < ω case can also be obtained from the present proof of Proposition 1
by adapting the proof of Lemma 3 on p.313 of [16]. In [16] Comer proves
that CAn for n > 1 does not have the embedding property. Marx [48]
contains a stronger version of Comer’s quoted Lemma in one direction,
showing that the embedding property fails in finite dimensional algebras
having the same similarity type as CAn under rather mild conditions,
namely that the first two cylindrifications commute one way. We do not
know whether commutativity of the first two cylindrifications kills ES.
Sayed Ahmed [67] proves that Dfn and RDfn have the strong embedding
property for any n. Comer [16] proves that the amalgamation property
fails for Dfn for n > 1.

(5) We note that by the results of this paper and of [43], almost all of the
questions concerning ES in varieties of cylindric algebras are solved.
However, a few remains open and some of these are given in the survey
paper [44].

(6) Concerning relation algebras, let RA and RRA stand for the classes of
relation algebras, and representable relation algebras. ∞RRA—the rela-
tion algebraic version of ∞Gsα—consists of subdirect products of RA’s
representable such that the greatest element is of the form U × U for
some infinite set U . Németi [54] proves that ES fails in RA, RRA and

∞RRA. He also proved that the amalgamation property fails and the
embedding property holds in ∞RRA complementing a result of McKen-
zie [46, p.116]. Now let QRA stand for the class of Q-relation algebras as
defined in e.g. [71]. Sain [60] proves that ES holds for QRA by proving
that QRA has the strong amalgamation property. 4 Marx [50] shows
that a weak form of associativity in algebras having the same similarity
type as RA’s forms a borderline; in the sense that any K containing RRA
in which K |= (x; 1); 1 ≤ x; 1 fails to have the embedding property. Here

4The cylindric version of QRA’s, is the class of the so-called directed CA3’s. This class
is introduced by Németi and is investigated in e.g. [58]. The class of directed CA3’s has the
strong amalgamation is proved by Sayed Ahmed and Sági [59].
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; stands for the binary operation abstracting the concrete operation of
composition of binary relations. In particular, the class of semiassocia-
tive RA’s, or SA for short, fails to have the embedding property. This is
independently proved by Madarász [44]. The CA analogue of Marx’s re-
sults is the result of Marx quoted in the previous item, since associativity
in RA-like algebras of relations corresponds to commutativity in CA-like
algebras of relations. In contrast, Németi [54] and Marx [50] prove that
the class of weakly associative RA’s, or WA’s for short, has the strong
amalgamation property. The reader is referred to [50] for definitions of
SA and WA. These classes were originally introduced by Maddux.

(7) Johnson [36] proves that the class of polyadic algebras of infinite dimen-
sion has the strong amalgamation property. Sayed Ahmed [65] proves
that various reducts thereof like the classes of algebras investigated in
[62] also have the strong amalgamation property, complementing a result
of Madarász in [44]. The latter states that ES fails for those reducts of
polyadic algebras of infinite dimension for which the substitutions avail-
able are indexed by surjective transformations. The main result in [65]
shows that surjectiveness here is necessary.

(8) Let ω > n > 1. Let Ln denote first order logic restricted to the first n
variables. B́ıró [15] uses the construction developed herein in Lemma 2
to show that Vaught’s Theorem on the existence of prime models fails
for Ln. Another construction showing that Vaught’s Theorem fails for
Ln is due to Andréka [2]. This was used by Sayed Ahmed to show that
the Henkin-Orey omitting types Theorem fails for Ln, cf. [12], [66] and
[11]. Ln was first systematically studied in Henkin [25], more results on
Ln are surveyed in [27, sec.4.3], [30], [9, sec.7, pp.220-231,237].

(9) Beth definability property (BDP) can be traced back to Padoa’s method
for showing definability of primitive notions in a language. E. W. Beth
[14] proved that first order logic (FOL) has the BDP, he was motivated
by applications of logic in science. Classical propositional logic, intu-
itionistic propositional logic, the minimal modal logic K and all normal
extensions of the modal logic K4 have the BDP, see [45]. Failure of BDP
for Ln was first announced in [5], proved in [51] via the methods of al-
gebraic logic. Sain [60] proves that BDP fails for Ln without equality.
Gurevich [23] shows that FOL with only finite models fails BDP. Finite
model theory is intimately connected to finite variable logics, and there
is a strong connection between definability properties and complexity
issues in computer science. This is the main issue of descriptive com-
plexity theory, see e.g. [20]. E.g., BDP fails for FOL with finite models,
finitely many variables, but infinite conjunctions (Lω

∞ω), see Kolaitis [38],
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Hodkinson [30], [20], [24].

(10) We should mention that for the highly relevant guarded and loosely
guarded fragments of first order logic the Beth definability property holds
even for the finite-variable case [34] [35].

(11) An important variant of BDP is the weak BDP, see e.g. [13, pp.73-76,689-
716]. An implicit definition Σ(R) is called strong if in all models it has
exactly one solution R. The weak BDP requires explicit definitions for
strong implicit definitions only. Sain [60],[61], Hoogland [32],[33] and
[9, chap.6] contain algebraic characterizations for the weak BDP. The
question whether the distinguished kinds of CAn’s have these properties
remains open. For example, is Csreg

ω contained in a full reflective proper
subcategory K of IGsω? More on this can be found in [9, Def.56–Thm.59
on pp.212-214, and pp.228-229], [33], [61]. Even weak BDP fails for Ln,
a result of Németi, Simon and Hodkinson, see [55] for n = 3 and [30]
for large n (i.e., for all n ≥ N for some N ≥ 5). Also, weak BDP often
fails in finite model theory, see [20], [24], [30], [38]. There is a version
of the Beth property, called “weak local BDP” which holds for Ln, for
arbitrary n, see [9, p.228, below Thm.70].

The following question concerning cylindric algebra for both finite and
infinite dimensions is (to the best of our knowledge) still open:

Open question 3 . Let α ≥ 2. Is every Gsα-epimorphism a CAα-
epimorphism?

Acknowledgements. This research was supported by Hungarian Research
grants OTKA T43242, T73601 as well as by a Bolyai Grant for Judit X.
Madarász.

References
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[51] Németi I. Beth definability is equivalent to surjectiveness of epimor-

phisms in general algebraic logic. Preprint of the Hungarian Academy
of Sciences, Budapest 1984. 35 pp.
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