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We treat definability theory as part of mathematical logic. We consider
the subject of mathematical logic to be modeling (mathematically) our rea-
soning/thinking about the world. Definability theory is about structuring
knowledge and about concept formation. Gradually, mathematical logic tries
to model more and more aspects of reasoning.

Definitions are important in communication and in a precise, axiomatic
thinking. What are definitions? Are they mere abbreviations, tools for ease
of communication? Do they have a role in concept-formation, in the process
of abstraction? We believe that they are essential in modern, axiomatic
thinking.
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1 Making definitions in First-order Logic FOL

What is a definition? When do we say that we indeed defined something?
E.g., “give me the chalk that is on the table”. We specified which chalk to
give if there is exactly one chalk on the table. Otherwise you can reply: “I
cannot give you the chalk because there is none on the table”, or “There
are more than one chalks on the table, please specify further which one
you want to have”, or “There are many chalks on the table, are any one of
them suitable for you?”. Here “Onthetable(x)” is a definition (in this room)
iff1 Thisroom |= ∃!xOnthetable(x).2 In another room this may not be a good
definition. Exactly the same thing happens when we prove from ZF set theory
that there is a unique set which has no element, and then we say: “Let ∅
denote this set”, and from here on we use ∅ as if it was a constant symbol in
our language. We adjoined a new constant symbol ∅ to the language of set
theory. This may be seen as a tool for an ease of communication, because,
we can “eliminate” this new constant symbol: for any formula containing
the symbol ∅ we can construct another formula of the old language, i.e., a
formula which does not contain ∅ such that the two formulas mean the same

1iff means “if and only if”
2∃! means: exists one and only one: ∃!xϕ(x) ⇐⇒ [∃xϕ(x) ∧ ∀x1x2(ϕ(x1) ∧ ϕ(x2) →

x1 = x2)].
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thing in ZF ∪ {∀x(x = ∅ ↔ ¬∃y y ∈ x)}. In set theory, we define the union
of two sets, intersection of two sets, ordered pair of two sets the same style
(i.e., x ∪ y, x ∩ y, 〈x, y〉). In no time, we use a rich language when talking
about sets, in spite of the fact that the language of set theory contains only
one binary relation symbol, ∈.

The same style, we can define new relations. In the following, we con-
centrate on relations.3 To define R, we say as much about a relation R that
already makes this R unique. Note that we always need some background
“knowledge” for this to happen, e.g., we rely on a theory4 Th (later we will
also talk about one given model in place of Th). Sometimes we will omit
mentioning this background theory Th, but we always mean to have one in
mind if we do not say otherwise. By a FOL language5 we mean one with
equality and perhaps with function and constant symbols. However, we will
concentrate on relation symbols only.

Definition 1.1 (definition of R in Th) Let L be a FOL language, let Th be
a theory in L, and let Σ be a theory in the language L extended with a new
n-place relation symbol R. We call Σ a description of R. We say that Σ
defines R, or Σ is a definition of R in Th iff for any model M of Th there is
exactly one R ⊆Mn such that 〈M, R〉 |= Σ. �

Note that when we define something, we give it a “name” R and a “mean-
ing”, or “specification” Σ(R) to it.6

For example, this is how we define the unary function factorial in Peano
Arithmetic PA.7 The usual way of defining the factorial of n is: factorial(n) =
1 · 2 · ... · n if n ≥ 1 and 1 for n = 0. This is equivalent to the following.

Σ(factorial) = {factorial(0) = 1, ∀n factorial(n+1) = factorial(n) · (n+1)}

This Σ defines factorial in Peano Arithmetic PA, i.e., for every model M of
PA there is exactly one unary function f :M →M such that 〈M, f〉 |= Σ(f).
For more examples see section 2.

3This is no serious restriction because we can treat an n-place function symbol to be a
special n+ 1-place relation, see section 3.

4By a theory of L we simply mean a set of L-formulas.
5FOL means First-order Logic.
6We write sometimes Σ(R) in place of Σ, just to indicate that the symbol R can occur

in Σ. Thus Σ(R) and Σ denote the same thing. In such situations Σ(R′) denotes the set
of formulas we get from Σ by replacing R everywhere with R

′.
7For the definition of PA see Def.2.2.
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It is not always easy to see about a description Σ(R) whether it is a
definition or not, modulo a theory Th. There is a kind of description, though,
when the form of the description ensures that it is a definition, this is called
explicit definition.

Definition 1.2 (explicit definition of R) Let L be a FOL language, and let R
be an n-place relation symbol not present in L. We say that Σ is an explicit
definition of R iff Σ is of form {∀x1, ..., xn(R(x1, ..., xn) ↔ ϕ)} for some L-
formula ϕ such that the free variables of ϕ are among x1, ..., xn. We also say
that Σ is an explicit definition of R via ϕ. �

To distinguish “ordinary” definitions from explicit ones, we will call the
ordinary ones implicit definitions. Implicit definitions are sometimes more
informative, more useful than explicit ones. In some sense, an implicit defini-
tion tells us “what properties make R what it is”, while an explicit definition
simply tells us “how we can construct R”. Section 2 contains examples of this
kind. Explicit definitions will be important for us when comparing two theo-
ries on different languages. The next theorem, called weak Beth definability
theorem, states that the two notions of implicit and explicit definability co-
incide in FOL, modulo theories. (We will see in section 2 that these notions
do not coincide modulo single structures.)

Theorem 1.1 (weak Beth definability theorem) Let L be a FOL language,
let Th be a theory in L, and let R be a relation symbol not in L. Each implicit
definition of R is equivalent, modulo Th, to an explicit definition of R.

Proof.8 Assume that Σ(R) defines R in Th, we will find an equivalent explicit
definition for R. By our assumption that in each model of Th there is at most
one relation satisfying Σ, we have9

Th ∪ Σ(R) ∪ Σ(R′) |= ∀x̄(R(x̄)↔ R′(x̄)),

where R′ is a new n-place relation symbol. Let c1, ..., cn be new constant
symbols, then we have

Th ∪ Σ(R) ∪ Σ(R′) |= R(c̄)↔ R′(c̄).

8You can find basically this proof in [8, Thm.2.2.22].
9x̄ denotes x1, ..., xn. We will use similar notation without warning.
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By the compactness theorem, there are formulas θ ∈ L and σ(R) such
that Th |= θ and Σ(R) |= σ(R) and θ ∧ σ(R)∧ σ(R′) |= R(c̄)↔ R′(c̄). Moving
R on one side of |=, and R′ on the other, we get

(1) θ ∧ σ(R) ∧ R(c̄) |= σ(R′)→ R′(c̄).

Now we will use Craig’s Interpolation Theorem, later we will prove it (see
Thm.1.3). From Craig’s Interpolation Theorem we get an interpoland ϕ(c̄)
in the language L expanded with the constants such that

(2) θ ∧ σ(R) ∧ R(c̄) |= ϕ(c̄), ϕ(c̄) |= σ(R′)→ R′(c̄).

Since R′ does not occur in ϕ, the latter part of equation (2) is equivalent to

(3) ϕ(c̄) |= σ(R)→ R(c̄).

From equations (2), (3) we get that

(4) θ ∧ σ(R) |= R(c̄)↔ ϕ(c̄), so

(5) θ ∧ σ(R) |= ∀x̄(R(x̄)↔ ϕ(x̄)).

Thus, by the properties of θ, σ we have10

(6) Th ∪ Σ(R) |= R↔ ϕ.

Now, using that in each model of Th there exists a relation satisfying Σ,
equation (6) implies Th |= Σ(R/ϕ), and so

(7) Th ∪ {R↔ ϕ} |= Σ(R).

Finally, (6),(7) state that Σ(R) and R ↔ ϕ are equivalent modulo Th; and
R↔ ϕ is an explicit definition. �

Why is the previous theorem called “weak Beth definability theorem”?
The reason is that there is a “stronger” version, and that stronger version
was first proved by Everett Beth in 1953. We now state the original Beth
theorem, too, its proof is analogous to the above one.

10We will write R ↔ ϕ for ∀x̄(R(x̄) ↔ ϕ), we may use similar abbreviations without
mentioning.
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Definition 1.3 (weak definitions) We say that Σ(R) weakly implicitly de-
fines R in Th if in each model of Th there is at most one relation R that
satisfies Σ(R). We say that Σ(R) weakly explicitly defines R in Th if there
is a ϕ in the language of Th such that Th ∪ Σ(R) |= R↔ ϕ.

Theorem 1.2 ((strong) Beth definability theorem) Σ(R) is a weak implicit
definition iff it is a weak explicit one (modulo any theory Th).

The proof of Theorem 1.2 is completely analogous to the proof of Theo-
rem 1.1, we leave this as an exercise.

Remark 1.1 A weak implicit definition does not require the existence of the
defined relation in each model while an ordinary implicit definition does (com-
pare Def.1.1). This is the reason for the adjective “weak” in weak definition.
There are more weak definitions than strong ones. And this is the reason
for the adjective “strong” in strong Beth definability theorem: it states ex-
istence of an equivalent explicit definition for more implicit definitions (than
the weak Beth theorem).

Chang-Keisler [8] states only the strong Beth theorem and, because of
this, implicit and explicit definitions are defined in [8], and in many other
books, as our weak corresponding notions. The (strong) Beth definability
theorem has more consequences, but the weak Beth theorem is more intuitive.
The weak Beth definability property is widely used, e.g., in abstract model
theory [3]. �

We note that Craig’s interpolation theorem, Theorem 1.3 below, belongs
to definability theory not only because it is used in the proof of Beth defin-
ability theorem. It is a typical definability theorem in that it concerns the
relationship between languages of different vocabularies.

Theorem 1.3 (Craig’s Interpolation Theorem) Let ϕ, ψ be FOL formulas
and assume ϕ |= ψ. Then there is a formula θ in the common language of
ϕ, ψ such that ϕ |= θ and θ |= ψ.

Example 1.1 We can check that ∃xR(x)∧∃x¬R(x) |= [(∃xB(x)∧∃x¬B(x))∨
∃xy(B(x)∧B(y)∧x 6= y)∨∃xy(¬B(x)∧¬B(y)∧x 6= y)]. A good interpoland
here is ∃xy x 6= y.
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Proof. Let the languages of ϕ and ψ be L1 and L2, respectively, and let L
denote the intersection of these two languages. Define T0 = {θ ∈ L : ϕ |= θ}.
We have to prove that T0 |= ψ. (This is enough to prove because by the
compactness theorem T0 |= ψ implies Γ |= ψ for some finite Γ ⊆ T0. We can
choose Γ to be nonzero because we have equality in the language and then
we can take the interpoland to be

∧
Γ.)

Assuming that T0 6|= ψ, we are going to construct a model for ϕ ∧ ¬ψ,
which contradicts our original assumption ϕ |= ψ. Let M be a model of
T0∪{¬ψ}. There is such a model by our assumption T0 6|= ψ. Let Th0 be the
set of all L-formulas valid in this model (in other words, Th0 is the theory of
the L-reduct of M),11 i.e.,

Th0 = {θ ∈ L : M |= θ}.

We want to show that Th0 ∪ {ϕ} is consistent. Indeed, if it was not, θ, ϕ
would be inconsistent for some θ ∈ Th0 by the compactness theorem, which
means that ϕ |= ¬θ. But then ¬θ ∈ T0 ⊆ Th0, contradicting θ ∈ Th0,
M |= Th0. Thus we have

Th0 ∪ {ϕ} is consistent.

Let N be a model of Th0 ∪ {ϕ}. Let M
′,N′ be the reducts of these two

models to the common language L. If M′ and N
′ happened to be the same,

then “the union of M and N” would be a model, and in this model ϕ and
¬ψ would be true, finishing the proof.

We may not assume that M
′,N′ are equal, but we know that the same

formulas are true in them, by N |= Th0. Now we will use “heavy machinery”
to finish the proof, but after that we will give also an elementary proof for
this last step. By the Keisler-Shelah ultraproduct theorem12, M′ and N

′ have
isomorphic ultrapowers. Let M” and N” be the corresponding ultrapowers
of the “richer” models M and N. Now, M” |= ¬ψ, N” |= ϕ (by M |= ¬ψ,
N |= ϕ) and the L-reducts of M” and N” are isomorphic. Then we may
assume that the L-reducts of M” and N” are the same and we can unite M”
and N” into one model of the language L1 ∪L2 in which ϕ∧¬ψ is true, and
we are done. We return to a more elementary proof below. �

11A reduct of a model is the same model without some of its functions and/or relations.
12See [8, Thm.6.1.15, Isomorphism Theorem].
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More elementary proof for the last step. We want to modify the above
idea so that in place of the Keisler-Shelah ultraproduct theorem we use more
elementary methods. This can be done as follows.

We want to construct two models, M and N simultaneously, step-by-step,
such thatM |= ¬ψ, N |= ϕ, and their L-reducts are the same. To achieve this
goal, we add countably many new constant symbols c0, c1, ... to the language,
we want to construct our models M and N so that their universes be the set
C of these constants (maybe factorized by an equivalence relation). Let L+

1

denote the language L1 together with these constants, and similarly let L+
2 ,

L+ denote the languages L2, L together with these constants. To define the
model M amounts deciding whether B(ci, cj) holds for each binary relation
symbol B and constants ci, cj in M, and the same for other basic relation
symbols of L2. We also want ¬ψ be true in M. Since ¬ψ may imply that
its models be finite, say have exactly 5 elements, we may need to construct
a finite model M, for this reason we also will decide the formulas of form
ci = cj (for i, j < ω).13 Our plan for constructing M is to list all formulas of
L+

2 , and we will “decide” them one after the other so that we always keep in
mind our previous decisions (i.e., the n-th decision should be consistent with
all the previous decisions).

In order that all the formulas we “decide” positively should indeed hold
in the model M we construct, we make sure that whenever we decide for
a formula of form ∃xχ(x) to hold, we also decide which x should satisfy
this formula, i.e., we add to our decision χ(ck) for some k. We call this step
“constant-filling step”. This latter idea and the whole method of constructing
a model this way originates with Leon Henkin, sometimes this is called “the
Henkin-method for constructing a model”. This method is described in detail
in [8, beginning of section 2.1].

Keeping the above in mind, here is the strategy for constructing models
M and N of languages L2 and L1 respectively. Our “wishes” are: M |= ¬ψ,
N |= ϕ, and their L-reducts be the same. The latter in the present case can be
achieved by requiring that they satisfy the same L+-formulas, because their
universes will be built out of the constants, therefore their whole structures
will be coded in their L+-theories. Our “tool” is: we know that there is no
interpoland between ϕ and ψ.

List all the formulas in L+
2 such that ¬ψ is the first formula, let ψ0, ψ1, ...

be this list. Do the same for the L+
1 formulas such that ϕ is the first one

13ω denotes the set of natural numbers {0, 1, ...}.
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in the list, let ϕ0, ϕ1, ... be this list. We will decide alternately from the two
lists, such that our first decision in the ψi list will be “hold” for ¬ψ, and the
first decision in the ϕi list will be “hold” for ϕ. Then we go on, step by step
deciding each formula on the two lists.

In the n-th step let ψ′
0, ψ

′
1, ..., ψ

′
n−1 represent our decisions so far (i.e., ψ′

j

is ψj if we decided ψj to hold, and let ψ′
j be ¬ψj if we decided ψj not to

hold). Let Ψn be the conjunction of all these, and let ϕ′
0, ϕ

′
1, ..., Φn be the

analogous things for the ϕi list. Then

Ψn and Φn represent our previous choices, and Ψ0 is ¬ψ, Φ0 is ϕ.

We want to maintain that Ψn and Φn do not contradict on the common
language L+, i.e.,

Φn |= θ together with Ψn |= ¬θ holds for no θ ∈ L+.

In the first two steps of this construction, the above inductive hypothesis
will hold because of our “tool” we have: if ϕ |= θ and ¬ψ |= ¬θ for some
θ ∈ L+, then ϕ |= θ |= ψ, and then the formula ∀x̄θ(x̄/c̄) in which we replace
the constants with new variables will be an interpoland, which we know we
do not have. We also have to show that in the n-th step either ψn or ¬ψn

will be a good choice (and the same for the other list). Here we can use the
inductive hypothesis that Φn−1 and Ψn−1 do not contradict on the common
language. In each case when our decision is of form ∃xχ(x) we immediately
choose a constant c not occurring in our so-far-made decisions and add the
decision χ(c) to our decisions made so far. For the details see [8, proof of
Thm.2.2.20]. �

Craig’s interpolation theorem is true for FOL without equality, but in
this case we have to add a formula

∧
∅ to the language. This last formula

usually is denoted by ⊥ or by FALSE, and then usually the dual formula ⊤
(or TRUE) is added to the language, too. We will talk about the equality-free
languages in section 3. Until then: the importance of the equality-free FOL
is that it explains equality.
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2 Examples

2.1 The role of infinite models

Example 2.1 Let N(100) = 〈{n ∈ ω : n ≤ 100}, suc〉 where suc(n) = n+ 1
if n < 100 and suc(100) = 100. Define the set E of even numbers in it!
Explicitly. Give a shorter implicit definition.

Here is an explicit definition for E which works in N(100): x = 0 ∨ x =
2 ∨ ... ∨ x = 100. Well, 0, 2, ..., 100 are not in the language of N(100), hence
we replace them with some of their explicit definitions. E.g., 0 is the unique
element which is not a successor of any other element, then 2 is suc(suc(0)),
etc. Here is an explicit definition for E with these written in:

∃z(¬∃y(z = suc(y)) ∧ (x = z ∨ x = suc(suc(z)) ∨ ... ∨ x = suc100(z)))

The above is a formula ϕ(x) on the language of N(100) with x as the only
free variable, and

N(100) |= ϕ(n) iff n ∈ E.

This explicit definition is quite a long formula. Here is an implicit definition
∆(E) which works for E in N(100):

E(0) ∧ ∀z z 6= suc(z)→ [(E(z)→ ¬E(suc(z))) ∧ (¬E(z)→ E(suc(z)))].

Of course, 0 has to be replaced with its definition as above. We can see that
this implicit definition of E is shorter, and it is not a mere enumeration of
the elements of E but it really describes it in a way by saying that E is
defined by selecting every second element. Let k be any number and define
N(k) by replacing 100 in the definition of N(100) with k (i.e., N(k) = 〈{n ∈
ω : n ≤ k}, suc〉 where suc(n) = n + 1 if n < k and suc(k) = k). Now, the
set of even numbers in N(k) can be defined with the same implicit definition
as in N(100), but its explicit definition will be a bit longer formula since we
have to list a different number of elements.

Let us try to do the same in N(ω) (defined analogously)! The implicit
definition ∆(E) of the even numbers works even here, i.e., the set E of even
numbers is the unique (unary) relation on ω that satisfies ∆(E) in N(ω). Is
there an explicit definition for E in N(ω)? The one analogous to the explicit
definitions we used above does not work, because we have to list infinitely
many elements, but a formula can list only finitely many elements. So, is
there an explicit definition of the even numbers in N(ω) at all?
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Theorem 2.1 The set E of even numbers cannot be defined explicitly in
N(ω). I.e., for each formula ϕ(x) in the language of N(ω) with one free
variable x we have that E 6= {n ∈ ω : N(ω) |= ϕ(n)}.

Proof. Add infinitely many constants ck to the language of N(ω) and let
N(ω)+ denote the expanded structure in which ck denotes k, for every k ∈ ω.
Now, add one more new constant symbol c to this language and write up the
following theory Th:

Th(N(ω)+) ∪ {c 6= ck : k ∈ ω}

It is easy to see that every finite subset of Th is consistent: let T0 be any finite
subset of Th, then finitely many constants occur in it. Let k ∈ ω be such that
no constant ci with i ≥ k occurs in T0. Let N

′ be the model we obtain from
N(ω)+ such that we expand it with c denoting k. Then N

′ |= T0. By the
compactness theorem then Th has a model M. Since the theory of successor
is contained in Th, this M consists of one island like ω and some islands like
the whole numbers with successor. More precisely, the unary function suc on
the constants ck in M behaves exactly as in N(ω). The interpretation of c
in M, is not in “this island”, and suc on this element behaves as in Z, where
Z denotes the set of whole numbers, i.e., the elements sucz(c) are all distinct
for z ∈ Z.

Let us consider the function f : M −→ M which is identity everywhere,
except on the above-mentioned island Z which it shifts upward by one, i.e.,
let us define f(sucz(c)) = sucz+1(c) for elements of this form, and let us define
f(a) = a for all other elements a ∈ M . Let M

′ be the reduct of M where
we “forget” the constants14. Then f is an automorphism of M′ (i.e., it is a
permutation of M which respects suc). This shows that all the elements in
the “island of c” are completely alike, hence they satisfy the same formulas.
I.e., it can be shown (e.g., by induction) that

M
′ |= ϕ(n) iff M

′ |= ϕ(f(n))

for all n ∈M and formula ϕ(x).
Assume now that ϕ(x) would define E in N(ω). Then

N(ω) |= ∀x(ϕ(x)↔ ¬ϕ(suc(x))).

14We used the constants only for ensuring that M′ is a real extension of our N(ω)
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So, the latter formula is in Th(N(ω)) and hence it is also true in M
′. But we

have just seen that no such thing can be true in the island of c (because of
the automorphism f). �

We have seen that the set of even numbers can be implicitly defined in
N(ω) while it cannot be explicitly defined in it. This shows that implicit
and explicit definitions have the same power only modulo a theory, and not
modulo single structures.

The present example also shows that Beth theorem does not hold for finite
model theory. Let FOL<ω denote first-order logic with only finite models.

Theorem 2.2 Beth definability theorem does not hold for FOL<ω: there is
a theory Th and a description ∆(R) that has a unique solution in each finite
model of Th, yet there is no explicit definition of R that works in each finite
model of Th.

Proof. Let K = {N(k) : k ∈ ω}. Then it is easy to show that any finite
model of Th(K) is15 isomorphic to a member of K. Thus ∆(R) is an implicit
definition (of the even numbers) in Th(K). We are going to show that ∆(E)
is not equivalent to any explicit definition in Th(K).

Let Th = Th(K) ∪ {c 6= sucn(0), sucn(c) 6= sucn+1(c) : n ∈ ω} where
c is a new constant. Then this Th is consistent because each of its finite
subsets is consistent. (In more detail: let T0 be a finite subset of Th. Then
T0 ⊆ Th(K) ∪ {c 6= sucn(0), sucn(c) 6= sucn+1(c) : n ≤ k} for some k ∈ ω.
Then T0 is true in N(2k + 2) expanded with c to denote k + 1.) Thus Th

has a model, let N be an arbitrary model of Th. This N is infinite, and the
“island of c” is like Z. From here on we can use the proof of Theorem 2.1
to show that the set of even numbers in models of Th(K) cannot be defined
explicitly. �

The above theorem shows that infinite models are needed for testing
existence of explicit definitions. Even when we are interested in one specific
model, or we are interested in finite models only, infinite models are useful
for showing whether a concrete implicit definition can or cannot be written
into an explicit one. They serve as “indicators” for non-existence of explicit
definitions. In this respect, they can be taken as “nonstandard models” for
finite model theory.

15Th(K) denotes the set of all formulas valid in K.
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2.2 Why Peano Arithmetic?

We turn to inspecting recursive definitions and why Peano’s axioms are the
way they are. In the implicit definitions below we do not write out the
universal quantifiers in order to make the formulas more readable.16

Example 2.2 Let ∆(+) = {0 + x = x, suc(y) + x = suc(y + x)}.

The above ∆(+) is a so-called recursive definition of + from suc. Recall that
0 is definable from suc as the unique number which is not a successor of any
number. Thus ∆(+) written out fully is

{∀xz(¬∃y z = suc(y)→ z + x = x), ∀yx suc(y) + x = suc(y + x)}.

This ∆(+) defines + as a kind of iteration of suc:

y + x = suc...suc︸ ︷︷ ︸
y times

(x) = sucy(x) .

This is an implicit definition of + that works in 〈ω, suc〉, i.e., there is exactly
one binary function, namely addition, that “satisfies” ∆(+) in 〈ω, suc〉. The-
orem 2.1 implies that there is no explicit definition that would be equivalent
to ∆(+) (because then the set of even numbers could be explicitly defined
by the formula ∃y x = y+ y). Beth definability theorem (Theorem 1.2) then
implies that ∆(+) is not even a weak implicit definition in Th(〈ω, suc〉), i.e.,
there is a model which is elementarily equivalent17 to 〈ω, suc〉 and in which
there are at least two solutions for ∆(+). We note that suc can be defined
from + explicitly.

Example 2.3 Let ∆(⋆) = {0 ⋆ x = 0, suc(y) ⋆ x = y + (y ⋆ x)}.

The above ∆(⋆) is a recursive definition of ⋆ from suc,+. It defines ⋆ as an
iteration of +:

y ⋆ x = x+ ...+ x︸ ︷︷ ︸
y times

.

16In this we keep to the convention that validity of an open formula in a model is defined
as validity of the universal closure of the formula in question.

17Two models are said to be elementarily equivalent if they are not distinguishable by
a formula, i.e., if their theories are the same.
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This ∆(⋆) is an implicit definition of ⋆ in 〈ω,+〉, i.e., there is exactly one
binary function, namely multiplication, that “satisfies” ∆(⋆) in it. Can this
⋆ be defined from + explicitly?

The answer is the same as in the first example: no, it cannot be defined
explicitly. However, there is a bigger “jump” in the expressive power when
we “add” multiplication to our language than when we add addition to suc-
cessor, because of the following. Both the theory of successor and the theory
of addition (called Presburger Arithmetic) are decidable18. These facts can
be proved by the so-called elimination of quantifiers method. However, the
theory of addition and multiplication (called Arithmetic) is not only not de-
cidable, but it is not even recursively enumerable19. Above, by “theory of
successor” we mean Th(〈ω, suc〉), and similarly for the other theories men-
tioned.

Why is this big jump here in complexity when we add multiplication?
What bigger jump in expressive power can we expect when we add the iter-
ation of multiplication, i.e., exponentiation, to the language?

Example 2.4 Let ∆(exp) = {x0 = 1, xsuc(y) = x ⋆ xy}, where xy denotes
exp(x, y) and 1 is the unique number for which 1 ⋆ x = x for all x.

As before,
xy = x ⋆ ... ⋆ x︸ ︷︷ ︸

y times

.

This ∆(exp) is an implicit definition in 〈ω,+, ⋆〉. Can exponentiation defined
explicitly in this structure? The answer this time is affirmative: yes, ex-
ponentiation can be explicitly defined from addition and multiplication (we
are going to show an explicit definition). So, instead of having here an even
bigger jump, we have no jump at all.

The reason both for the “big jump” between addition and addition+multi-
plication, and for the “no jump” between addition+multiplication and addi-
tion+multiplication+exponentiation is that we can express finite sequences
once we have addition and multiplication. We note that multiplication in
itself is not strong, the theory of multiplication is decidable (theorem of

18This means that one can write a computer program which, taken a formula as input,
halts in finite steps and gives a “yes” answer iff the input is in the theory.

19There is no computer program that would start printing formulas one after the other
(one formula in each step) so that it prints only formulas in the theory, and each formula
in the theory gets printed out in one of the steps.
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Mostowski, see the Feferman-Vaught paper [11]). Thus the strength comes
from the interaction between addition and multiplication.

We now turn to showing how expressibility of finite sequences ensures
expressibility of recursive definitions such as the definition of exponentia-
tion. Assuming that we can express somehow sequences, first we show how
these boost the power of explicit definitions, and then we turn to express-
ing (defining explicitly, sometimes called “coding”) sequences. Using notions
connected with sequences, here is an explicit definition of exponentiation:20

z = xy ↔

∃s [fin-seq(s) ∧ y ≤ length(s) ∧ s0 = 1 ∧ ∀i < y si+1 = x ⋆ si ∧ sy = z].

In order to convert the above into an explicit definition, we have to replace
fin-seq(s), length(s), and si with concrete formulas that express what we have
in mind.

First we express pairs. By using pairs, we can code n-tuples for any
fixed n the usual way21, but we do not have a uniform finite way (formula)
for reaching the i-th member of an n-tuple defined this way. We need this
uniform formula, because we need to talk about the i-th member of a sequence
where i is a variable. Therefore, by the help of pairs, we define sequences
proper not as n-tuples but by using a different idea. Below, mem(s, i, a)
stands for “the i-th member of sequence s is a”, and rem(x, y, z) stands for
“the remainder when dividing x with y is z”.

Definition 2.1 (pair, sequences)

pair(x, y) = (x+ y) ⋆ (x+ y) + y.

rem(x, y, a)↔ a < y ∧ ∃w x = w ⋆ y + a.

mem(s, i, a)↔ ∃xy[s = pair(x, y) ∧ rem(x, 1 + (1 + i) ⋆ y, a)]. �

We turn to showing that the above definitions express what their names
suggest.

20Ordering usually is defined from addition as x ≤ y ↔ ∃z(x + z = y), and x < y ↔
x ≤ y ∧ x 6= y).

213-tuples 〈a, b, c〉 are defined as 〈a, 〈b, c〉〉, etc
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Theorem 2.3 The following formulas are true in N := 〈ω,+, ⋆〉.

pair(x, y) = pair(x′, y′)→ (x = x′ ∧ y = y′).

x = pair(y, z)→ ∀i∃!amem(x, i, a).

∀a0, ..., an∃s (mem(s, 0, a0) ∧ · · · ∧mem(s, n, an)).

We do not prove the above theorem, for a proof we refer to [10, Lemma 37A,
pp.246-249]. �

Lets say that a number x is a pair if x = pair(y, z) holds (in N) for some
y, z. The first formula in Theorem 2.3 expresses that taking out the first
component of a pair is a function, and similarly for taking out the second
component is a function. Thus, if a number is a pair of two numbers, these
two numbers can be recovered from it. This justifies saying that x codes
the pair 〈y, z〉 if x = pair(y, z). The second formula in Theorem 2.3 states
that each pair “codes” an infinite sequence by the convention embodied in
the formula mem.22 Namely, if x = pair(y, z) then x codes the sequence s =
〈s0, s1, . . . , si, . . . 〉 where si is the remainder when dividing y with 1+(1+i)⋆z.
We will often use in the sequel that each pair codes an infinite sequence.
Not all infinite sequences are coded by numbers this way, since there are
more infinite sequences than numbers.23 However, the third statement of
Theorem 2.3 says that each finite sequence has an extension which is coded
by a number via the convention mem.

We now can write up an explicit definition of exponentiation by substi-
tuting these notions in our earlier formula.

Theorem 2.4 The formula below is an explicit definition of exponentiation
in N, i.e., the following is true in N:

z = xy ↔

∃s [mem(s, 0, 1) ∧ ∀i < y ∀v(mem(s, i, v)→ mem(s, i+ 1, x⋆v)) ∧ mem(s, y, z)].

Proof. Let x, y, z be natural numbers and let ϕ(x, y, z) denote the formula
of which we claim that it is an explicit definition of exponentiation in N,

22Note that coding always implies the existence of a “key” by the use of which we can
recover the coded thing from the code.

23They have different cardinalities in the set theoretical sense.
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and assume that z = xy. We have that z = xy iff the last member of
the y-long sequence 〈1, x, x ⋆ x, x ⋆ x ⋆ x, ..., x ⋆ ... ⋆ x〉 is z, since exponen-
tiation is defined as the iteration of ⋆. Let s be any number such that
mem(s, 0, 1), mem(s, 1, x), mem(s, 2, x⋆x), mem(s, 3, x⋆x⋆x), ...mem(s, y, z).
There is such a sequence by the second formula in Theorem 2.3. Then this
s satisfies mem(s, 0, 1) ∧ ∀i < y ∀v(mem(s, i, v) → mem(s, i+ 1, x ⋆ v)) ∧
mem(s, y, z), hence ϕ holds for our x, y, z. Conversely, assume that we have
a sequence s that satisfies the ∃s-free part of ϕ. Let ai denote the unique
number for which mem(s, i, ai) holds, for each i < ω. By our statement
then the sequence 〈a0, ..., ay〉 represents a good “computation” of xy with
the “output” z. Thus we indeed have xy = z. �

The above explicit definition of exponentiation works not only in N, but
also in each model of Peano Arithmetic PA. Let us include the definition of
PA here. The intended (or standard) model of PA is N. Hence the language
of PA contains two binary function symbols +, ⋆. Below we also use suc, since
it can be defined from +.

Definition 2.2 (Peano Arithmetic PA) Peano Arithmetic PA is defined as
the set of all formulas listed below.

∃!z¬∃y z = suc(y). Let 0 denote this unique element.

∀xy(suc(x) = suc(y)→ x = y),

0 + x = x, suc(y) + x = suc(x+ y),

0 ⋆ x = 0, suc(y) ⋆ x = x+ (y ⋆ x),

[ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(suc(x)))]→ ∀xϕ(x),
for each formula ϕ in the language of N where ϕ may contain any
number of free variables. �

All the so-called recursive definitions24 can be turned into explicit defi-
nitions that work in PA. The idea is that the recursive definition delineates
an algorithm for computing the result of the function, and this computation
can be coded by a finite sequence. We note that PA is a weaker theory than
Th(N) because the former is recursively enumerable (since PA is such) while

24For what recursive definitions are see, e.g., [9].
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the latter is not recursively enumerable. Expressibility of all recursive func-
tions is the reason why PA is such an often-used theory in spite that it is
weaker than Arithmetic. Also, we now know why the definitions of addition
and multiplication are included into PA and no further definitions such as
the definition of exponentiation are included into PA.

2.3 Undefinability of truth

Are all implicit definitions in N equivalent to explicit ones in N? The answer is
in the negative, because of the following. Each element of N can be explicitly
defined (as a constant) and so each subset of N can be implicitly defined
(as a unary relation).25 There are uncountably many subsets of N but there
are only countably many formulas–hence explicit definitions–, so there are
implicit definitions that work in N but have no equivalent explicit definitions.

However, in FOL each implicit definition is equivalent to a finite one,
by the Beth Definability Theorem Thm.1.2 and the compactness theorem
for FOL. Thus in FOL we can require implicit definitions to be finite, and
nothing important would change. There are only countably many finite im-
plicit definitions in a language with finitely many basic symbols. In view
of this, the real question for N is whether all finite implicit definitions in it
are equivalent to explicit ones. The answer to this question is also in the
negative.

Next we present a finite implicit definition which works in N yet is equiva-
lent to no explicit definition in N. This example will exploit Tarski’s theorem
on undefinability of truth, leading up to showing that weak second-order logic
(wSOL) does not have the Beth Definability Property (BDP).26 With this
example we also want to illustrate how using expressibility of sequences can
be used almost like programming any idea that we have clearly enough in
our minds.

The finite implicit definition in N that is not equivalent to any explicit
one in N will be an implicit definition of “satisfaction of formulas in N”. By
this we mean that we want to write up a description Sat(sat) of a binary
relation sat(x, y) with the intended meaning that “the formula x is satisfied

25E.g., H ⊆ ω can be defined by Σ(H) = {∀x(ϕn(x)→ H(x)) : n ∈ H} ∪ {∀x(ϕn(x)→
¬H(x)) : n /∈ H} where ϕn(x) is an explicit definition for n ∈ ω.

26We say that a logic does not have the BDP if there are theories Th and Σ(R) such
that the language of Σ(R) is that of Th extended with a new basic relation symbol R such
that Σ(R) is an implicit definition that does not have an equivalent explicit definition.
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in N when the free variables of x are evaluated according to the evaluation y
of variables”. For this, we have to code formulas and evaluations of variables
as elements of N. Concretely, we want the following conditions (S1), (S2) to
hold:

(S1) 〈ω,+, ⋆, R〉 |= Sat(sat) holds for a unique binary relation R ⊆ ω× ω.

(S2) The meaning of the R in (S1) is “satisfaction of formulas in N”. I.e.,
we define a number pϕq ∈ ω to any formula ϕ on the language of N
such that for all evaluations k : {vi : i ∈ ω} → ω of the variables and
for all h ∈ ω if mem(h, i, k(vi)) for each free variable vi of ϕ, then

N |= ϕ[k] ⇔ N |= sat(pϕq, h) .

We begin by coding formulas as numbers. We will try to code formulas as
simply as we can. For simplicity, we will consider +, ⋆ to be ternary relation
symbols rather than binary function symbols, and we will use the so-called
Polish notation, e.g., we write +(vi, vj , vk) in place of vi + vj = vk, and ∨ϕψ
in place of (ϕ ∨ ψ). The variables of the coded language will be vi for i ∈ ω.

Let us code the basic symbols v,=,+, ⋆,¬,∨, ∃ by the numbers 0,1,2,3,4,5,6
respectively (we could have chosen any other seven distinct numbers). In the
following when we write v, it is an abbreviation for 0, etc. Below, 〈x, y〉
denotes pair(x, y), 〈x, y, z〉 denotes pair(x, pair(y, z)), etc. We define

pvi = vjq as 〈=, v, i, v, j〉,
p+(vi, vj, vk)q as 〈+, v, i, v, j, v, k〉,
p⋆(vi, vj , vk)q as 〈⋆, v, i, v, j, v, k〉,
p¬ϕq as 〈¬, pϕq〉,
pϕ ∨ ψq as 〈∨, pϕq, pψq〉,
p∃viϕq as 〈∃, v, i, pϕq〉.
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For example, the code of the formula v0 = v0 is 1 because

pv0 = v0q =

〈=, v, 0, v, 0〉 =

pair(=, pair(v, pair(0, pair(v, 0)))) =

pair(1, pair(0, pair(0, pair(0, 0)))) =

pair(1, pair(0, pair(0, (0 + 0)2 + 0))) =

pair(1, pair(0, pair(0, 0)) =

pair(1, pair(0, 0)) =

pair(1, 0) = 1.

We want to define a unary relation Fm with Fm(x) meaning that “x is the
code of a formula”. The natural implicit definition would start as:

(*) {Fm(=vivj), Fm(+vivjvk), Fm(⋆vivjvk),
Fm(x)→ Fm(¬x), Fm(x)∧Fm(y)→ Fm(∨xy), Fm(x)→ Fm(∃vix)}.

In the above, i, j, k, x, y are variables, so, e.g., the open formula Fm(=vivj) in
the set stands for ∀ijFm(=vivj), i.e., for ∀ijFm(10i0j), and 10i0j abbreviates
〈1, 0, i, 0, j〉. Now, (*) above is not a definition in N, because more than one
sets satisfy it in N (one is {pϕq : ϕ ∈ L(N)} while another is ω itself). The
usual condition “and only these are formulas” is missing from (*). Because
of this, we define Fm(x) in a different way, namely we define it explicitly as

Fm(x) ↔ ∃si(si = x ∧ deriv(s, i))

where deriv(s, i) denotes the formula below. For easier readability, we will use
conventions connected with defined constants. We denote by si the unique
number for which mem(s, i, si) holds when s is a pair, and then, e.g., si =
〈¬, sk〉 abbreviates the formula ∃zw(mem(s, i, z)∧mem(s, k, w)∧z = 〈¬, w〉).

deriv(s, i)↔ ∀j ≤ i [ ∃kl sj = 〈=, v, k, v, l〉 ∨
∃klm sj = 〈+, v, k, v, l, v,m〉 ∨
∃klm sj = 〈⋆, v, k, v, l, v,m〉 ∨
∃k < j sj = 〈¬, sk〉 ∨
∃k < j∃l < j sj = 〈∨, sk, sl〉 ∨
∃k < j∃n sj = 〈∃, v, n, sk〉 ] .
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We define the formula upvar(x, n) to mean that in the formula coded by x
only variables vk with k ≤ n occur.

upvar(x, n)↔ ∃si( deriv(s, i) ∧ si = x ∧ ∀j ≤ i [
sj = 〈=, v, k, v, l〉 → (k ≤ n ∧ l ≤ n) ∧
sj = 〈+, v, k, v, l, v,m〉 → (k ≤ n ∧ l ≤ n ∧m ≤ n) ∧
sj = 〈⋆, v, k, v, l, v,m〉 → (k ≤ n ∧ l ≤ n ∧m ≤ n) ∧
sj = 〈∃, v, l, sk〉 → l ≤ n ] ) .

We are ready to define Sat(sat). For easier readability, we define eval(y) ↔
∃zw y = pair(z, w). The reason for the name is that each pair codes an infinite
sequence via the convention mem. To make the formulas more readable,
we leave out the outermost universal quantifiers of formulas, e.g., we write
sat(x, y)→ Fm(x) in place of ∀xy[sat(x, y)→ Fm(x)].

Sat(sat) = { sat(x, y)→ Fm(x), sat(x, y, )→ eval(y),
sat(〈=, v, k, v, l〉, y) ↔ yk = yl,
sat(〈+, v, k, v, l, v,m〉, y) ↔ yk + yl = ym,
sat(〈⋆, v, k, v, l, v,m〉, y) ↔ yk ⋆ yl = ym,
sat(〈¬, x〉, y) ↔ (¬sat(x, y) ∧ Fm(x) ∧ eval(y)),
sat(〈∨, x, z〉, y) ↔ (sat(x, y) ∨ sat(z, y)),
sat(〈∃, v, l, x〉, y) ↔
∃y′n(upvar(x, n) ∧ ∀i ≤ n, i 6= l y′i = yi ∧ sat(x, y′)) } .

We want to show that (S1), (S2) hold. To this end, first we show that

Fm(x) iff x = pϕq for some formula ϕ .

We can show this by induction of the lengths of the derivations for x. I.e.,
we prove by induction on i that ∀s deriv(s, i) → ∀j ≤ i ∃ϕj sj = pϕjq. Note
that the above formula is on the metalanguage, and not on the language of
N. Then we show that

the formula ϕ for which x = pϕq is unique .

Proving ∀ψ (pϕq = pψq → ϕ = ψ) by induction on ϕ suffices for this. Then
by a similar induction, we prove

upvar(pϕq, n) iff the variables occurring in ϕ are among {vi : i ≤ n} .
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When y is a pair, let y denote the evaluation that assigns yj to each variable
vj. Then we prove by induction on the length of the derivation of ϕ that

Sat(sat) ∧ sat(x, y)→ N |= ϕ[y] whenever x = pϕq .

Finally, we show

Sat(sat)∧N |= ϕ[k]→ sat(pϕq, h) whenever upvar(pϕq, n)∧∀i ≤ n hi = k(vi) .

These prove both (S1) and (S2).
Having shown that sat really expresses satisfiability of formulas in N, we

turn to proving that it cannot be explicitly defined in N. Assume, contrary,
that it can be defined by the concrete formula T (x, y), i.e.,

(S3) N |= Sat(sat)→ ∀xy[T (x, y)↔ sat(x, y)] .

We may assume that the variables x, y are v0, v1. Define

F (x) ↔ ∀y(y0 = x→ ¬T (x, y)) .

(Note that y0 = x above abbreviates mem(y, 0, x).) One can interpret F (x)
as expressing that the formula x is not satisfied at itself. Let

t = pF (x)q .

We want to know whether F (x) is true in N when x is evaluated for this
t. Let 〈t〉 denote any pair (i.e., evaluation) h for which h0 = t. Below, we
will write [x → t] for any evaluation k for which k(x) = t and similarly for
[y → 〈t〉].

N |= F (x)[x→ t] iff by definition of |=
N |= F (x)[k], where k(x) = t iff by (S2)
N |= sat(pF (x)q, 〈t〉) iff by (S3) and t = pF (x)q
N |= T (x, y)[x→ t, y → 〈t〉] iff by definition of F(x))
N |= ¬F (x)[x→ t] .

We arrived at a contradiction by assuming the existence of an explicit defi-
nition for Sat(sat). We infer that there is no explicit definition for Sat(sat)
that works in N.
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2.4 Definitions in Second-order Logic SOL

Second-order logic SOL is FOL enriched with variable symbols for n-place
relations, for all n ∈ ω. We will also care for weak second-order logic (wSOL),
where only variables ranging over finite subsets are added. We note that
when X is a variable for a unary relation and x is an individual variable,
X(x) denotes that “x has property X”. A unary relation is just a subset, so
often we will say that X ranges over subsets of the universe and we can then
also write x ∈ X for X(x). Thus wSOL is a fragment of SOL.

The fact that Sat(sat) is not equivalent in N to any explicit definition does
not contradict Theorem 1.1 because N is not a FOL-axiomatizable class of
models. SOL, however, is a stronger logic than FOL, and by SOL-formulas
N can be axiomatized. E.g., it can be axiomatized by the conjunction of the
first four statements in the definition of PA (Definition 2.2) with the following
SOL-formula

∀X [(X(0) ∧ ∀x(X(x)→ X(suc(x)))→ ∀xX(x)] .

(This last formula is called second-order induction axiom and the last schema
in the definition of PA is the scheme we obtain from this when we restrict
the variable X to range over subsets defined by FOL-formulas ϕ.)

Does this prove that SOL does not have BDP? We have a SOL-theory
and an implicit definition Sat(sat) that works in each model of this theory
and which is not equivalent to any explicit definition. Well, this implicit
definition is not equivalent to any explicit FOL definition. Just because SOL
is stronger than FOL, it may have an explicit SOL definition. The following
theorem says that it indeed does.

Theorem 2.5 (SOL has BDP for finite implicit definitions) Let Σ(R) be
a finite implicit definition in SOL. Then the following SOL-formula is an
explicit definition for R:

R(x)↔ ∃X(
∧

Σ(X) ∧X(x)). �

We note that SOL does not have BDP, because there are (in N) infinite
implicit definitions that are not equivalent to any SOL-explicit definitions
(see the cardinality argument at the beginning of section 2.3).

The opening idea of this section can be realized, however. Weak SOL is
between FOL and SOL in expressive power. We are going to show that N
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still can be axiomatized in wSOL, but there is no wSOL explicit definition
equivalent to (a slightly modified version of) Sat(sat).

Axiomatization of N in wSOL: The following formula in conjunction with
the first four statements in the definition of PA axiomatizes N. Keep in mind
that X is a second-order variable ranging over finite sets only.

∀x∃X(X(0) ∧ ∀y[(X(y) ∧ y 6= x)→ X(suc(y))]).

Next we show that there is no wSOL-formula which would be an explicit
definition for Sat(sat). In order to use the “self-referential” idea of why
Sat(sat) cannot be made explicit in FOL, we have to modify it to express
satisfiability of all wSOL-formulas in place of all FOL-formulas. Below we
include this modified version of Sat(sat).

In wSOL we have set-variables Vi (ranging over finite sets) also besides the
variables vi (ranging over elements), we have quantifiers ∃Vi, and we have
primitive formulas of form Vi(vj) for i, j ∈ ω. To code formulas of wSOL
as numbers, let us assign the number 7 to V , and let us add the following
two lines to the definition of pϕq for FOL-formulas to get the codes of all
wSOL-formulas:

pVi(vj)q as 〈V, i, v, j〉,
p∃Viϕq as 〈∃, V, i, pϕq〉.

Let us obtain the formula derivw from deriv by adding two lines to it, namely

∃kℓ sj = 〈V, k, v, ℓ〉 ∨
∃k < j∃n sj = 〈∃, V, n, sk〉

Then let Fmw denote the formula we get from Fm by replacing deriv with
derivw in it. When x is the code of a wSOL-formula, let upvarw(x, n) express
that in the formula coded by x only variables vk with k ≤ n and set-variables
Vk with k ≤ n occur. This can be expressed by changing deriv to derivw in
the definition of upvar and adding the following two lines to it:

sj = 〈V, k, v, l〉 → (k ≤ n ∧ l ≤ n) ∧
sj = 〈∃, V, l, sk〉 → l ≤ n

Having coded wSOL formulas, let us code evaluations. Evaluations of
variables in wSOL assign elements to the individual variables vi and finite
subsets to the set-variables Vi. We will code finite subsets by ranges of
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sequences.27 The reason is that each sequence coded by a pair is periodic,
hence its range is finite.28 Therefore it will be convenient for us to code
satisfiability of wSOL-formulas as a three-place relation wsat(x, h, s) where x
is the code of a wSOL formula, h is a pair (thus coding an infinite sequence
by the convention embodied in mem) and s is an infinite sequence whose
members that correspond to variables occurring in the formula x are all
sequences:

evalw(s, x)↔ ∃yz s = pair(y, z)∧∃n[upvarw(x, n)∧∀i ≤ n∃y′z′ si = pair(y′, z′)].

Let us introduce the notation

y ∈ s̃k ↔ ∃i y = (sk)i.

Below, the variables x, y, s, y′, s′, z, k, l,m, n, i denote the individual vari-
ables v0, ..., v11 .

Satw(wsat) = { wsat(x, y, s)→ (Fmw(x) ∧ eval(y) ∧ evalw(s, x)),
wsat(〈V, k, v, l〉, y, s) ↔ yl ∈ s̃k,
wsat(〈=, v, k, v, l〉, y, s) ↔ yk = yl,
wsat(〈+, v, k, v, l, v,m〉, y, s) ↔ yk + yl = ym,
wsat(〈⋆, v, k, v, l, v,m〉, y, s) ↔ yk ⋆ yl = ym,
wsat(〈¬, x〉, y, s) ↔
(¬wsat(x, y, s) ∧ Fmw(x) ∧ eval(y) ∧ evalw(s, x)),

wsat(〈∨, x, z〉, y, s) ↔ (wsat(x, y, s) ∨ wsat(z, y, s)),
wsat(〈∃, v, l, x〉, y, s) ↔ ∃y′n
(upvarw(x, n) ∧ ∀i ≤ n, i 6= l y′i = yi ∧ wsat(x, y′, Ss)),

wsat(〈∃, V, l, x〉, y, s) ↔ ∃s′n
(upvarw(x, n) ∧ ∀i ≤ n, i 6= l s̃′i = s̃i ∧ wsat(x, y, s′)) } .

As before, we can show that Satw is an implicit definition in N. Assume
T (x, y, s) is a SOL-formula which defines wsat(x, y, s) explicitly in N, we
define F (x) as ∀ys(y0 = x → ¬T (x, y, s)), and with this formula we can
repeat the previous argument to arrive at a contradiction. Thus, Satw is an

27This is the step which does not go through for SOL. In the modified version of Sat(sat)
for all SOL-formulas, we need as argument of sat an evaluation of variables to arbitrary
sets, and arbitrary subsets of N cannot be “coded” by elements of N, while finite sets can.

28It is not necessary to rely on this fact, we also could code finite sequences as ranges
of initial segments of sequences.
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implicit definition in the wSOL-theory of N which is not equivalent to any
explicit wSOL-definition. This shows that wSOL does not have the Beth
Definability Property.29

2.5 Complexity of explicit definitions

In this part we show that an implicit definition can be much simpler than
the equivalent explicit definition in the sense that we measure simplicity by
the number of variables used in the formulas.

Let n be any finite number (i.e., n ∈ ω). The n-variable fragment Ln

of a FOL language L is the set of all formulas in L which use the first n
variables only (free or bound). To make this meaningful, we can assume that
L uses the variables v0, v1, ... while Ln uses only the variables v0, v1, ..., vn−1.
In finite variable fragments we do not allow function or constant symbols.
Here is a definition of the formulas of Ln:

R(vi1 , ..., vik) is a formula of Ln if R is a k-place relation symbol and
i1, ..., ik < n.

vi = vj is a formula of Ln if i, j < n.

¬ϕ, ϕ ∧ ψ, ∃vi ϕ are formulas of Ln whenever ϕ, ψ are formulas of Ln

and i < n.

The above are all the formulas of Ln. Models, satisfiability of formulas under
evaluations of the variables, validity in Ln are the same as in FOL. Ln does
not have even the weak Beth Definability Property whenever n ≥ 3.:

Theorem 2.6 (No weak Beth Property for Ln.) Let n ≥ 3. There are
a theory Th in the language of an n-place relation symbol R together with
a binary relation symbol s and a description Σ(D) for a unary relation D
such that Σ(D) is an implicit definition of D in Th but there is no explicit
definition for D in Th, i.e., for each n-variable formula ϕ in the language of
Th we have

Th ∪ Σ(D) 6|= ∀v0[D(v0)↔ ϕ] .

29Basically this proof for wSOL not having the (weak) Beth Definability Property is
given in [19, item 7.2 on p.102] and in [3, pp.74-75]. Another nice proof, due to Tarski, is
given in [19, below item 7.2 on p.102].
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Theorem 1.1 implies that there is a FOL-formula for Th and Σ(D) as
in Thm.2.6 which explicitly defines D(v0). The above theorem then implies
that this explicit definition has to use more than n variables. Thus, both the
theory and the implicit definition use only n variables, but any equivalent
explicit definition has to use more than n variables. In our case, there is an
explicit definition that uses n + 1 variables. However, for each n ∈ ω, there
is an implicit definition that uses only 3 variables and each explicit definition
equivalent to it has to use more than n variables, see [15].

Proof. We write out the proof for n = 3. Generalizing this proof to all
n ≥ 3 will be easy. We will often write x, y, z for v0, v1, v2 and we will write
simply R for R(x, y, z). Let

U0(x)↔ ∃yzR, U1(y)↔ ∃xzR, U2(z)↔ ∃xyR.

These formulas express the domain of R, i.e., the first projection of R, and
the second and third projections of R. We will include formulas into Th that
express that U0, U1, U2 are sets of cardinalities 3, 2, 2 respectively, and they
form a partition of the universe. We will formulate these properties with 3
variables after describing the main part of the construction. Let

T ↔ U0(x) ∧ U1(y) ∧ U2(z),
big(R)↔

∧
{∃viR↔ ∃vi(T ∧ ¬R) : i = 0, 1, 2}.

In the above, T is the “rectangular hull” of R, and big(R) expresses that R
cuts this T into two parts each of which is sensitive in the sense that as soon
as we quantify over them, the information on how R cuts T into two parts
disappears. (Note that big(R) implies that ∃viR ↔ ∃viT ↔ ∃vi(T ∧ ¬R).)
Assume that |U0| = 3, |U1| = 2, |U2| = 2 and partition(U0, U1, U2) are formulas
in L3 that express the associated meanings. Then

Th = {|U0| = 3, |U1| = 2, |U2| = 2, partition(U0, U1, U2), big(R)}.

We will show that Th has exactly one model, up to isomorphisms. But before
doing that, lets turn to expressing the properties we promised about the Ui’s
with using three variables.

We will use Tarski’s way of substituting one variable for the other. Let

U1(x)↔ ∃y(x = y ∧ U1(y)), U2(x)↔ ∃z(x = z ∧ U2(z)).
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We now can express that U0, U1, U2 form a partition of the universe:

∀x(U0(x) ∨ U1(x) ∨ U2(x)), ∀x(Ui(x)→ ¬Uj(x)) for i 6= j, i, j < 3.

For expressing the sizes of the sets Ui we will use the abbreviations

U1(z)↔ ∃z(z = y ∧ U1(y)), U2(y)↔ ∃z(y = z ∧ U2(z)).

Now, for i = 1, 2 we define the formulas

|Ui| ≤ 2↔ ¬∃xyz(x 6= y ∧ x 6= y ∧ y 6= z ∧ Ui(x) ∧ Ui(y) ∧ Ui(z)),
|Ui| ≥ 2↔ ∃xy(x 6= y ∧ Ui(x) ∧ Ui(y)),
|Ui| = 2↔ |Ui| ≥ 2 ∧ |Ui| ≤ 2.

It remains to express that U0 has exactly three elements. In Ln with n ≥ 4
we can express |U0| = 3 similarly to the above, but in L3 we have to use
another tool. For expressing in L3 that U0 has exactly 3 elements, we will
use the binary relation s. (This is the sole use of s in Th.) We are going to
express that s is a cycle of order 3 on U0. The following formulas express
that s is a function on U0 without a fixed-point:

∀x∃y s(x, y), s(x, y) ∧ s(x, z)→ y = z, s(x, y)→ (U0(x) ∧ U0(y) ∧ x 6= y).

The following formula expresses that U0 consists of exactly one 3-cycle of s:

s(y, x)↔ ∃z(s(x, z) ∧ s(z, y)), s(x, y) ∨ s(y, x) ∨ x = y.

In the above, we used Tarski-style substitution of variables without mention-
ing (e.g., U0(y)) and we omitted universal quantifiers in front of formulas
(e.g., we wrote s(x, y) ∧ s(x, z) → y = z in place of ∀xy(s(x, y) ∧ s(x, z) →
y = z)).

We turn to showing that Th has exactly one model up to isomorphism.
Let M = 〈M,R, s〉 |= Th. Let Ui, T be defined as above. Then M is the
disjoint union of the Ui’s, and the sizes of the Ui’s for i = 0, 1, 2 are 3,2,2
respectively. (So M has 7 elements.) Let U1 = {b0, b1}, let c, d be the two
elements of U2 and let

X = {u ∈ U0 : 〈u, b0, c〉 ∈ R}.
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By M |= big(R) we have that 〈u, b0, d〉 /∈ R if u ∈ X and 〈u, b0, d〉 ∈ R if
u ∈ U0 −X. Hence

U0 −X = {u ∈ U0 : 〈u, b0, d〉 ∈ R}.

Also, by M |= big(R), X has one, or X has two elements. If |X| = 1 then
let’s use the notation c0 = c, c1 = d, and if |X| = 2 then let c0 = d, c1 = c.
Let us name the elements of U0 as a0, a1, a2 such that X = {a0} if |X| = 1,
X = {a1, a2} if |X| = 2 and s = {〈ai, aj〉 : j = i + 1(mod3) and i, j ≤ 3}.
This can be done by M |= Th. The setting so far determines R by M |=
big(R), as follows. For all i, j, k ≤ 2 we have 〈ai, bj , ck〉 ∈ R if and only if
〈ai, bj+1(mod2), ck〉 ∈ T − R if and only if 〈ai, bj , ck+1(mod2)〉 ∈ T − R. This is
so by M |= big(R) and by |Ui| = 2 for i = 1, 2. From this we have that

R = {〈u, bi, cj〉 : u = a0 and i+ j = 0(mod2)} ∪
{〈u, bi, cj〉 : u = a1 ∨ u = a2 and i+ j = 1(mod2)} .

We have seen that all models of Th are isomorphic to each other. By using
the above ideas, one can also see that there is no automorphism30 of M that
would move {a0}.

We are ready to formulate our implicit definition Σ(D). It will single out
{a0} in the above notation. We will write D in place of D(x).

Σ(D) = { T ∧ ¬D ∧R → ∀x(T ∧ ¬D → R)),
T ∧ ¬D ∧ ¬R → ∀x(T ∧ ¬D → ¬R)),
D → U0(x), |D| =1 }.

Then in each model of Th there is exactly one unary relation D for which
Σ(D) holds, namely D has to be the unary relation {a0} ⊆ U0. Thus Σ(D)
is a strong implicit definition of D in Th.

We show that Σ cannot be made explicit in L3, i.e., there is no 3-variable
formula ϕ in the language of Th for which Th ∪ Σ(D) |= D ↔ ϕ. Our plan
is to list all the L3-definable relations in the above model and observe that
{a0}, the relation Σ defines, is not among them. For any ϕ ∈ L3 define

mn(ϕ) = {〈a, b, c〉 : M |= ϕ[a, b, c]}.

30Automorphism of M means isomorphism between M and M.
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In the above, M |= ϕ[a, b, c] denotes that the formula ϕ is true in M when
the variables v0, v1, v2 are evaluated to a, b, c respectively, and mn abbreviates
“meaning”. Let

A = {mn(ϕ) : ϕ ∈ L3}.

Clearly, A is closed under the set Boolean operations because

mn(ϕ ∧ ψ) = mn(ϕ) ∩mn(ψ),
mn(¬ϕ) =M3 −mn(ϕ),

and so A is closed under intersection and complementation w.r.t. M3. Since
M is finite, this implies that A is atomic31 and the elements of A are exactly
the unions of some atoms.

We will list all the atoms of A. It is easy to see that the elements Ui ×
Uj × Uk for i, j, k ≤ 2 are all in A and they form a partition of M3. To list
the atoms of A, we will list the atoms below each Ui×Uj ×Uk by specifying
a partition of each. Let i, j, k ≤ 2. Let’s abbreviate the sequence 〈i, j, k〉 by
ijk.

Assume i, j, k are all distinct, i.e., |{i, j, k}| = 3. We define

X(ijk, r) = {〈ui, uj , uk〉 : 〈u0, u1, u2〉 ∈ R},
X(ijk,−r) = {〈ui, uj , uk〉 ∈ Ui × Uj × Uk : 〈u0, u1, u2〉 /∈ R}.

We note that

X(012, r) = R, and X(012,−r) = T −R.

For i, j, k a permutation of 0, 1, 2, X(ijk, r) and X(ijk,−r) are the corre-
spondingly permuted versions of R and T −R. In particular,

mn(R(vi, vj, vk)) = X(ijk, r).

Assume now that ijk is not repetition-free, i.e., |{i, j, k}| < 3. In these
cases the blocks of the partition of Ui × Uj × Uk will be put together from
partitions of Um×Un (m,n < 3). Recall that s = {〈a0, a1〉, 〈a1, a2〉, 〈a2, a0〉}.
We define

s = {〈a, b〉 : 〈b, a〉 ∈ s},
idi = {〈a, a〉 : a ∈ Ui},
dii = {〈a, b〉 : a 6= b, a, b ∈ Ui}.

31An atom in a Boolean algebra is a minimal non-zero element, and a Boolean algebra
is atomic if below each non-zero element there is an atom.
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Above, idi, dii abbreviate “identity on Ui”, and “diversity on Ui”, respectively,
and s is the inverse of s. Since s is a cycle on the three-element set U0, its
inverse s is its complement in the diversity element of U0, so {s, s, id0} is a
partition of U0×U0. Since U1 is a two-element set, {di1, id1} is a partition of
U1 × U1, and the the same holds for U2. We are ready to define the “binary
partitions” as follows

Rel00 = {s, s, id0}, Rel11 = {di1, id1}, Rel22 = {di2, id2},
Relij = {Ui × Uj} for i 6= j.

We say that “e is a good choice for ijk”, in symbols choice(e, ijk), if

e ∈ {r,−r} when |{i, j, k}| = 3, otherwise

e = 〈e01, e12, e02〉 where e01 ∈ Relij, e12 ∈ Reljk, e02 ∈ Relik,
and e02 = e01 ◦ e12 if 0 = i = j = k.

For example, e = 〈s, s, s〉 is a good choice for 000, e = 〈di1, id1, di1〉 is a good
choice for 111, e = 〈s, U0 × U1, U0 × U1〉 is a good choice for 001 and e = −r
is a good choice for 012. These choices will represent the elements

{z ∈ U0 × U0 × U0 : 〈z0, z1〉, 〈z1, z2〉 ∈ s},
{z ∈ U1 × U1 × U1 : z0 6= z1 = z2},
{z ∈ U0 × U0 × U1 : 〈z1, z0〉 ∈ s},
etc.

When e is a good choice for ijk and |{i, j, k}| < 3 we define

X(ijk, e) = {〈a, b, c〉 ∈ Ui × Uj × Uk : 〈a, b〉 ∈ e01, 〈b, c〉 ∈ e12, 〈a, c〉 ∈ e02},

B = {X(ijk, e) : i, j, k ≤ 2, choice(e, ijk)},
C = {

⋃
Y : Y ⊆ B}.

We want to prove that A = C. We show A ⊆ C by showing mn(ϕ) ∈ C for
all ϕ ∈ L3, by induction on ϕ. Atomic formulas:

mn(R(vi, vj , vk)) = X(ijk, r) when |{i, j, k}| = 3,
mn(R(vi, vj , vk)) = ∅ otherwise,
mn(s(vi, vj)) =

⋃
{X(n1n2n3, e) : ni = nj = 0, eninj

= s},

mn(vi = vj) =
⋃
{X(n1n2n3, e) : ni = nj, eninj

∈ {id0, id1, id2}}.
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Clearly, M3 ∈ C, and C is closed by complementation and intersection be-
cause B is finite and its elements are pairwise disjoint. Thus,

mn(¬ϕ) ∈ C, mn(ϕ ∧ ψ) ∈ C whenever mn(ϕ),mn(ψ) ∈ C.

To deal with the existential quantifiers, we define for arbitrary X ⊆M3

C0X = {〈a, b, c〉 ∈M3 : 〈a′, b, c〉 ∈ X for some a′},
C1X = {〈a, b, c〉 ∈M3 : 〈a, b′, c〉 ∈ X for some b′},
C2X = {〈a, b, c〉 ∈M3 : 〈a, b, c′〉 ∈ X for some c′}.

Then we have, by the definition of the meaning of the existential quantifiers,
that for all i ≤ 2

mn(∃viϕ) = Cimn(ϕ).

Thus, to show that

mn(∃viϕ) ∈ C whenever mn(ϕ) ∈ C

it is enough to show that C is closed under Ci, i.e., CiX ∈ C whenever X ∈ C
(and i ≤ 2). Since Ci is additive, i.e., Ci(X∪Y ) = Ci(X)∪Ci(Y ), it is enough
to show that

CmX(ijk, e) ∈ C for all i, j, k,m ≤ 2, and good choice e for ijk.

Assume i, j, k are distinct and e ∈ {r,−r}. Then by M |= big(R)

C0X(ijk, e) =M × Uj × Uk,
C1X(ijk, e) = Ui ×M × Uk,
C2X(ijk, e) = Ui × Uj ×M.

When i, j, k are not all distinct

C0X(ijk, e) =M × e12 = {〈a, b, c〉 : 〈b, c〉 ∈ e12} =⋃
{X(mjk, e′) : m ≤ 2, e′12 = e12},

C1X(ijk, e) = {〈a, b, c〉 : 〈a, c〉 ∈ e02} =⋃
{X(imk, e′) : m ≤ 2, e′02 = e02},

C2X(ijk, e) =
⋃
{X(ijm, e′) : m ≤ 2, e′01 = e01}.
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To show that C ⊆ A we have to check that each X(ijk, e) is the meaning
of a formula ϕ ∈ L3 in M. We already did this for X(ijk, r), i, jk distinct.
For ijk = 000 and e = 〈s, s, s〉

X(000, 〈s, s, s〉) = mn(U0(x) ∧ U0(y) ∧ U0(z) ∧ s(x, y) ∧ s(y, z) ∧ s(z, x)),
where
U0(x) = ∃yzR, U0(y) = ∃x(x = y ∧ U0(x)), U0(z) = ∃x(x = z ∧ U0(x)).

The other cases are similar, we leave checking them as an exercise.32

Finally, to show that mn(D(x)) = {〈a0, b, c〉 : b, c ∈M} /∈ A, observe that
the domain of each element in B either contains U0 or else is disjoint from it,
and therefore the same holds for their unions. This shows that mn(D) /∈ A,
i.e., D cannot be explicitly defined in M. Since M is a model of Th, this
means that Σ(D) is not equivalent to any explicit definition that contains
only 3 variables. �

Remark 2.1 The variant of Ln in which we allow only models of size ≤ n+1
has the strong BDP, for all n, see [1]. Another variant of Ln that has the
strong BDP is when we allow models of all sizes but in a model truth is
defined by using only a set of selected (so-called admissible) evaluations of
the variables (a generalized model then is a pair consisting of a model in the
usual sense and this set of admissible evaluations). For more on this see [2].
�

We note that L2 does not have the strong BDP (this is proved in [1]),
and we do not know whether it has the weak BDP. L1 has the strong BDP.

Theorem 2.6 implies that Craig’s Interpolation Theorem does not hold
for n-variable logic, either, for n ≥ 3. This is so because in the proof of the
weak Beth Definability Theorem we constructed the explicit definition from
an interpoland.

3 From pure FOL to FOL with equality

What is equality? How is equality introduced? What are functions, con-
stants? How can they be defined? (What are the rules for defining them?)

32Exercise 5.25.
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Conventions for talking about partial functions. What is many-sorted logic?
What are sorts? How can they be defined? FOL with dependent sorts
(FOLDS). These all can be considered as “syntactic sugars”, tools for sim-
plifying our formulas. In this section we deal, briefly, with equality only. We
address the question: What makes two things equal/identical?

To investigate equality, let’s start out from FOL without equality, some-
times called basic or pure FOL. We have relation symbols R1, ... of finite
arities n1, .... The logical connectives are “or”, “not”, and “exists”, in sym-
bols ∨,¬, ∃. (We consider the other often used logical connectives ∧,→,↔, ∀
as derived, compound ones.) Formulas, models, evaluations of variables and
the satisfaction relation are as usual. (An even more basic, so-called re-
stricted FOL is where only the atomic formulas R(v0, ..., vn−1) are allowed in
place of all the atomic formulas R(vi1 , ..., vin).)

To understand equality, we now use basic FOL to “talk about equality”.
We add a new special two-place relation symbol ≡ to the language and we
state the following axioms, called the equality axioms. We will write vi≡ vj
in place of ≡ (vi, vj).

x≡ y ∧ y≡ z → x≡ z, x≡ y → y≡ x, ∀x∃y x≡ y,

R(x1, ..., xn) ∧ x1≡ y1 ∧ ... ∧ xn≡ yn → R(y1, ..., yn).

The first line says that ≡ forms a partition of the universe, and the second
line says that no basic relation of the language differentiates the elements of
a block. Let M be a model of the extended language L+ and assume that
≡ satisfies the above equality axioms for the language L (i.e., the last axiom
holds for all the basic relation symbols of L). For any a ∈M let a denote the
block of ≡ containing a, and let M denote the structure M factored with
≡ , i.e.

a = {b ∈M : a≡ b}, M = {a : a ∈M},

R = {〈a1, ..., an〉 : 〈a1, ..., an〉 ∈ R} and M = 〈M,R : R ∈ L+〉.

Theorem 3.1 With using the above notation, let ϕ(x1, ..., xn) ∈ L
+ be arbi-

trary, and let a1, ..., an ∈M . Then

M |= ϕ(a1, ..., an) ⇔ M |= ϕ(a1, ..., an).
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The proof of the above theorem goes by an easy induction. �

In the factored structure M the relation ≡ denotes the identity relation
{〈m,m〉 : m ∈ M}. The passage from FOL 6= to FOL= consists of declaring
≡ to belong to the logic as a logical binary relation symbol with the fixed
meaning in all models as the identity relation. Thus FOL= is basically FOL 6=

together with a binary relation symbol ≡ for which the axioms of equality
are postulated. For convenience, we declare that the interpretation of this ≡
should be the identity relation, this belongs to the logic, so when we specify
a model, we do not have to give the meaning of ≡ because it is provided by
logic as being the identity relation. Finally, we denote ≡ by =.

We give an example. We want to get the notion of sets from the notion
of sequences by disregarding the order and number of occurrence among the
members of a sequence. For simplicity, assume that we have binary relations
Ri in our language (with the intended meaning of Ri(x, y) being “the i-th
member of the sequence x is y”). Define x≡ y to mean that “the ranges of x
and y are the same”, i.e.,

x≡ y ⇔ ∀z(∃iRi(x, z)↔ ∃jRj(y, z)).

Then define the “element of relation” E as follows:

xEy ⇔ ∃x′(x′≡ x ∧ ∃iRi(y, x
′)).

Let’s forget the relations Ri and keep only the new E in our language. Now,
≡ satisfies the axioms of equality wrt. E. Two “sets” may have the same
elements, thus equal, and yet not identical because we “did not erase the
information of the original sequence structure”. If we want to be thorough in
our formation of a new concept of set, we may want to say that “the identity
of a set is given by its elements and by nothing else”. This means that we fac-
tor out by the equivalence relation ≡ and replace it with the “true identity”
=. The factor structure satisfies the so-called Axiom of Extensionality:

∀z(z ∈ x↔ z ∈ y)→ x = y.

We usually state an axiom of extensionality when we want to emphasize that
the concept in question (in our case, set) is determined by the properties in
question (in our case, its elements).
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4 Dynamics of concept formation

In this section we investigate connections between FOL theories of different
languages. What makes two FOL languages different? Their vocabularies.
The vocabulary (sometimes called also similarity type) of a FOL language
consists of the concepts (together with their arities or ranks) we do not
analyze further in the given language. We can refine or revise this choice of
basic concepts by changing the language via the use of interpretations, see
section 4.5.

By a theory in a language L we understand a set of sentences in L, but
we will be interested in the set of its consequences

Th(T ) = {ϕ ∈ L : T |= ϕ}.

Two theories on the same languages are said to be equivalent iff their con-
sequences are equal

T ≡ T ′ ⇐⇒ Th(T ) = Th(T ′).

When we want to indicate the language L of which we consider T to be a
theory of, we write L(T ) for L. In this section, as before, in the definitions
we will assume that the languages have only relation symbols, but in the
examples we will use function and constant symbols, too.

4.1 Definitional extension

Definitional extension of a language is introducing notation, definitions for
ease of talk. Technically, definitional extension of a language (and of a the-
ory) consists of adding some new relation symbols together with explicit
definitions to them. Let Σ(R) be a set of explicit definitions for a sequence
of relation symbols not in (the vocabulary of) L(T ). Then we say that
T ∪Σ(R) is a definitional extension of T . More precisely, we say that T ′ is a
definitional extension of T , when T ′ is equivalent to T ∪Σ for some set Σ of
explicit definitions for relation symbols not in L(T ).33 In symbols, we denote

this by T
∆
−→T ′, or by T ′ ∆

←−T .
There is a strong connection between a definitional extension of a lan-

guage and the unextended language: we can consider the new formulas as

33We always assume, implicitly, that only one definition is given for a relation symbol
in Σ.
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being abbreviations of old formulas. A tangible formulation of this is to
specify a translation function tr from the extended language to the original
one, and then one can think of a new formula ϕ as being an abbreviation for
tr(ϕ). This means that after having introduced these new symbols, we can
eliminate them at any time we want.

We now specify this translation function. The idea is that we replace
R(v0, ..., vn) with its explicit definition, we replace the same atomic formula
but with a different sequence of variables R(x0, ..., xn) by the corresponding
version of ϕR we get by using Tarski’s substitution of variables, and otherwise
we leave the logical structures of the formulas as they were.34

Definition 4.1 (Eliminating explicit definitions)

tr(R(v0, ..., vn)) = ϕR if R(v0, ..., vn)↔ ϕR is in Σ.

tr(R(x0, ..., xn)) is the appropriate substituted version of ϕR

tr(S(x1, ..., xn)) = S(x1, ..., xn) if S(x1, ..., xn) ∈ L,

tr(vi = vj) = vi = vj,

tr(¬ϕ) = ¬tr(ϕ), tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ), tr(∃viϕ) = ∃vitr(ϕ). �

Theorem 4.1 Σ |= ϕ ↔ tr(ϕ) for every formula ϕ in the extended lan-
guage. Also, tr(ϕ) = ϕ for every formula in the unextended language. �

Definitional extension preserves many properties of theories, e.g., it pre-
serves finite axiomatizability, decidability, expressiveness (the same concepts
can be expressed): it leaves the “content” of the theory unchanged. However,

34On the translation of R(x0, ..., xn). The most natural way would be to define the
translation of R(x0, ..., xn) as ∃v0(v0 = x0 ∧ ... ∧ ∃vn(vn = xn ∧ ϕR). However, there
may be “collisions of variables” that would make the translated formula not to mean
what we want. E.g., from the formula R(y, x) we would get by this kind of substitution
∃x(x = y ∧ ∃y(y = x ∧ R(x, y)) which is semantically equivalent to R(y, y) and not
to R(y, x) as we would like. Therefore, to specify the translation of the substituted new
atomic formulas R(x0, ..., xn) we use auxiliary sequences y0, ..., yn of new variables to avoid
this kind of “collision of variables”. We can use any pre-agreed such new y’s that make
the job. E.g., we can agree that y0, ..., yn is suitable for vi0 , ..., vin if yi is vm+i where
m is the maximum of i0, ..., in, 0, ..., n if xi is different from vi, otherwise let yi be vi.
After this, let’s specify “the appropriate substitution of ϕ” as ∃v0(v0 = y0 ∧ ...∧∃vn(vn =
yn ∧ ∃y0(y0 = x0 ∧ ... ∧ ∃yn(yn = xn ∧ ϕ)))).
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definitional extension introduces convenience in expressing, we can express
the same thing shorter, clearer, maybe in nicer form: it enriches the ways we
can say things.

Example 4.1 The language of Zermelo-Fraenkel set theory ZF contains one
binary relation symbol, the “elementhood” relation ǫ. When working in ZF,
we use many explicitly defined concepts (one has the feeling that we use them
more extensively than ǫ itself). For example, we use x ⊆ y as an abbreviation
for ∀z(z ∈ x→ z ∈ y), we use x ∩ y = z as an abbreviation for ∀v(v ∈ z ↔
[v ∈ x ∧ v ∈ y]), we use ∅ for the unique set which has no elements at
all, we use {x, y} for the set which has x, y as elements and has no other
elements, etc. Should we translate and use all these formulas to the original
language containing only ǫ, we would go crazy and would abandon the nice
simple language of ZF.

Example 4.2 If we add a relation symbol to a language without an explicit
definition, we increase the expressive power. For example, let’s add a new
unary relation symbol R to the language of the reals. This increases the
expressive power: the FOL-theory of the reals is decidable, while the FOL-
theory of the reals on the so extended language becomes undecidable. The
reason for this is that on the extended language we can talk about subsets of
the reals, while on the original language we cannot do so. For example, we
can say that [R(0) ∧ ∀x(R(x) → R(x + 1)] → ϕ. When ϕ is existential and
talks about the elements of R only (i.e., when all the quantifiers are restricted
to elements of R), this formula will be valid in the extended theory of the reals
exactly when ϕ is valid for the integers. Solvability of Diophantine equations
in the integers is undecidable, this implies that the theory of the reals on the
extended language is undecidable. This example also shows that the integers
cannot be defined within the reals (on the original, unextended language).

Example 4.3 Groups sometimes are defined as structures with one associa-
tive, cancellative operation + which has a zero-element (x + y = x + z →
y = z, y + x = z + x → y = z, ∀x∃y x + y + z = y + x + z = z).
Groups at other times are defined as structures with an associative binary
operation +, a unary operation − and a constant 0 satisfying the equations
x + 0 = 0 + x = x, x + −x = −x + x = 0. The secondly defined class is
a definitional extension of the first class, as explicit definitions we can take
0 = z ↔ ∀xx + z = x, −x = z ↔ 0 = z + x. An advantage of the second
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definition is that it consists of equations only, and therefore we can use the
powerful methods of universal algebra. E.g., subalgebras, homomorphic im-
ages, direct products of groups with operations +,−, 0 are again groups, while
a subalgebra of a group defined in the first way may not be a group (since we
may omit the zero-element).

4.2 Definitional equivalence

Definitionally equivalent theories have the same content, but they have dif-
ferent “cloths”. We get a definitionally equivalent theory from one by intro-
ducing new relations (via explicit definitions) and at the same time forgetting
(leaving out) ones that can be expressed by the use of these newly introduced
relations. Definitionally equivalent theories may look rather different, it may
come as surprise that they are in fact equivalent, see, e.g., section 4.3. Tech-
nically, definitional equivalence is the symmetric and transitive closure of
the notion of definitional extension. Thus definitional equivalence of theories
preserves all the properties a definitional extension does.

Definition 4.2 Two theories T, T ′ are said to be definitionally equivalent, in

symbols T
∆
≡T ′, if there is a sequence T1, ..., Tn of theories such that T = T1,

T ′ = Tn, and for all 1 ≤ i < n either Ti
∆
−→Ti+1 or Ti

∆
←−Ti+1. �

Example 4.4 Renaming the relation symbols occurring in T to completely
new symbols results a theory T ′ definitionally equivalent to T . Indeed, let T ′′

be the union of T and T ′, then T ′′ is a definitional extension both of T and
of T ′.

The next theorem says that when the vocabularies of definitionally equiv-
alent theories T, T ′ are disjoint, the chain leading from T to T ′ required for
showing definitional equivalence can always be taken to have three elements
only. Thus, when T, T ′ are arbitrary and definitionally equivalent, there is
always a 5-long chain of definitional extensions between them (by Exam-
ple 4.4). We call a function f from one language to another structural if f
is the translation function associated to an explicit definition as in Def.4.1.
Let Mod(T ) denote the class of all models of T .
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Theorem 4.2 ( characterizations of definitional equivalence) Assume that T
and T ′ have disjoint vocabularies. Then the following (i)-(iv) are equivalent.

(i) T
∆
≡T ′

(ii) T and T ′ have a common definitional extension, i.e., there is a theory
T ′′ such that

T
∆
−→ T ′′ ∆

←− T ′.

(iii) There are structural translation functions tr : L(T ) → L(T ′) and tr′ :
L(T ′) → L(T ) which are inverses of each other w.r.t. T and T ′, i.e.,
for all ϕ ∈ L and ψ ∈ L′ we have

T |= ϕ↔ tr′trϕ and T ′ |= ψ ↔ trtr′ψ.

(iv) There is a bijection β between Mod(T ) and Mod(T ′) that is defined
along two explicit definitions Σ and Σ′ the following way: if M |= T
and M

′ = β(M) then the universes of M and M
′ are the same, the

relations in M
′ are the ones defined in M according to Σ and vice

versa, the relations in M are the ones defined in M
′ according to Σ′.

Various textbooks define the notion of definitional equivalence of theories
in various ways. Definitional equivalence of theories with disjoint vocabular-
ies is defined as in Thm.4.2(ii) in, e.g., [20, p.42], [14, pp.60,61], [17, section
6], definitional equivalence is defined as in Thm.4.2(iv) e.g., in [13, p.56](iv)
and generalizations of this latter definition can be found in [5]. These defi-
nitions are equivalent by the above Thm.4.2.

Definitional equivalence gives a “new cloth”, new appearance for a theory.
Definitionally equivalent theories are two presentations of the same theory.
They differ only in the choices in their basic vocabularies.

Example 4.5 Boolean algebras as ordering (having one binary relation ≤)
can be defined as strongly complemented bounded lattices. This means that
≤ is an ordering in which every two elements have a supremum (least upper
bound) and an infimum (greatest lower bound), in every interval each element
has a unique complement, and there are a lowest element and a greatest one.
This definition is very convenient when we want to visualize Boolean algebras.
Another way of defining Boolean algebras is by defining them as structures
having 2 binary functions +, ·, one unary function − and two constants 0, 1
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and postulating some equations for these. These two versions have disjoint
vocabularies but they are definitionally equivalent.

We sketch a proof of the above definitional equivalence. We use Thm.4.2(iii).
Let Th(≤) and Th(+, ·, 0, 1,−) denote the sets of the above defining formulas.
Let us choose the two sets of explicit definitions as

Σ(≤) := {x ≤ y ↔ x ∩ y = y},

Σ(+, ·, 0, 1,−) :=
{x+ y = z ↔ [z ≥ x ∧ z ≥ y ∧ ∀v(v ≥ x ∧ v ≥ y → v ≥ z)],
x · y = z ↔ [z ≥ x ∧ z ≤ y ∧ ∀v(v ≤ x ∧ v ≤ y → v ≤ z)],
0 = z ↔ ∀v(z ≤ v), 1 = z ↔ ∀v(z ≥ v),
− x = z ↔ ∀v([v ≤ x ∧ v ≤ z → ∀w v ≤ w] ∧ [v ≥ x ∧ v ≥ z →

∀w v ≥ w])}.

Let tr≤ and tr+ be the structural translation functions belonging to these two
(sets of) explicit definitions. Now, one can prove the following:

Th(≤) |= x ≤ y ↔ tr≤tr+(x ≤ y),

Th(+, ·, 0, 1,−) |= ϕ↔ tr+tr≤ϕ,
for all ϕ ∈ {x+ y = z, x · y = z, 0 = z, 1 = z, −x = 2}.

This verifies definitional equivalence of the two “versions” of Boolean alge-
bras. �

In the next section we describe an example for definitionally equivalent
theories in more detail.

4.3 Peano Arithmetic and Finite Set Theory

Let ZF0 denote Zermelo-Fraenkel Set Theory but with the Axiom of Infinity
changed to its negation (and adding explicitly the existence of transitive
supsets, since the proof of their existence in ZF needs the axiom of infinity).
The sole basic symbol of ZF0 is the elementhood relation ǫ. The intended
(or standard) model of ZF0 is the collection of hereditarily finite sets with
the membership relation H = 〈HF,∈〉. Hereditarily finite sets are sets built
explicitly from the empty set such as {{∅}, ∅, {{∅}, ∅}}, i.e., sets written
up from ∅ by using the formation of finite sets {a1, a2, ..., an}.

35 All the

35We can write ∅ as {}, then hereditarily finite sets can be identified with finite sequences
of equal numbers of { and } beginning with a { and ending with a }.
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hereditarily finite sets are definable constants in ZF0 (as well as in ZF), i.e.,
they have “names”. E.g., the “name” (or, definition as a constant) of ∅ is
“the x for which ∀y y /∈ x”, the “name” of {∅} is “the x for which ∀y(y ∈
x↔ y = ∅)”, etc. Below we briefly recall the axioms of ZF0.

Definition 4.3 (Theory ZF0 of hereditariy finite sets) The axioms of ZF0

are the following.

Extensionality ∀v(v ∈ x↔ v ∈ y)→ x = y.

Existence axioms:
Empty set ∃z∀v v /∈ z,
Unordered pairs ∃z∀v(v ∈ z ↔ [v ∈ x ∨ v ∈ y]),
Powerset ∃z∀v(v ∈ z ↔ v ⊆ x),
Union ∃z∀v(v ∈ z ↔ ∃y[y ∈ x ∧ v ∈ y]),
Transitive supsets ∃z(x ⊆ z ∧ ∀vw[v ∈ w ∧ w ∈ z → v ∈ z]),
Separation scheme ∃z∀v(v ∈ z ↔ [v ∈ x ∧ ϕ(v)]).

Regularity (or Foundation) ∃y(y ∈ x ∧ y ∩ x = ∅).

Only finite sets [f : x→ x ∧ f is one-to-one ]→ f is onto. �

It turns out that PA and ZF0 are definitionally equivalent theories, in
spite that they look rather different and their intended structures look rather
different. (E.g., the usual way we draw these models, N looks rather narrow,
it has a natural linear order, while the set of hereditarily finite sets is rather
wide, one does not see at once a natural linear order for H.)

Theorem 4.3 PA and ZF0 are definitionally equivalent theories.

Sketch of proof. In this proof we want to highlight the key ideas, for more
detail we refer to [20, sec.7.5, sec.7.6] and to [16].

The vocabularies of PA and ZF0 are +, ⋆ and ǫ, respectively. We will
exhibit an explicit definition Σ(ǫ) of ǫ in terms of the basic symbols of PA,
and we will provide a set Σ(+, ⋆) of explicit definitions for the basic symbols
of PA in terms of ǫ in such a way that the translation functions belonging to
these (Σ(ǫ) and Σ(+, ⋆)) are inverses of each other.

First we define Σ(ǫ). We design Σ(ǫ) so that it works in the standard
model N = 〈ω,+, ⋆〉 of PA, and then we check that the same definition works
in all models of PA. Let k, n ∈ ω, we have to define when k ǫ n should hold.
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The idea is that we write up n in the binary system, then we get a finite
sequence of 0’s and 1’s, and we consider this sequence to be the characteristic
function of n as the “set of its ǫ-elements”. I.e., we define k ǫ n iff in the k’th
place of the binary form of n there is a 1 (in other words, iff the k’th digit
in n’s binary form is 1). Example: Let n = 11 (i.e., n is eleven), then the
binary form of n is 1101 (23 + 21 + 20), hence 0 ǫ 11, 1 ǫ 11, 2 6 ǫ 11, 3 ǫ 11,
4 6 ǫ 11, in general k 6 ǫ 11 for all k ≥ 4. Thus, according to the definition of
ǫ we have 11 = {0, 1, 3} (in the sense of sets defined from ǫ) and similarly
0 = ∅, 1 = {∅}, 3 = {∅, {∅}}, finally

7 = {∅, {∅}, {∅, {∅}}.

Here is an explicit definition Σ(ǫ) for ǫ:

k ǫ n↔ ∃mm′r(n = m ⋆ 2k + r ∧ r < 2k ∧m = 2 ⋆ m′ + 1).

We used exponentiation 2k in the above definition, we can do that because
we have seen that exponentiation can be explicitly defined in PA. The next
claim says that if in any model of PA we add the relation ǫ as defined in
Σ(ǫ) above and then forget (i.e., omit) the original operations +, ⋆, we get a
model of ZF0. Let tr(Σ(ǫ)) denote the natural translation function belonging
to Σ(ǫ). We state the claim without proof.

Claim 4.1 PA |= tr(Σ(ǫ))(ϕ) for all ϕ ∈ ZF0.

Now we turn to re-defining +, ⋆ from the just defined ǫ. Our plan is to
begin with re-defining the ordering ≤ between numbers (from ǫ defined as in
Σ(ǫ)). From ≤ we will be able to define suc, and then +, ⋆.

As before, we design the definition of ≤ from ǫ so that it works in N, and
then we check that the so obtained definition works in all models of PA. How
can we see from the binary forms of k and n whether k ≤ n or not? If k
is smaller-or-equal than n at each binary digit, then surely k ≤ n, and the
former can be formalized in terms of ǫ as k ⊆ n. However, this is not the
only way k can be smaller than n. Assume that k ≤ n but k * n. Then
there is u such that u ǫ k ∧ ¬u ǫ n. This means that the u’th digit is 1 in k’s
binary form while it is 0 in n’s binary form. Then k ≤ n can still hold if at
a later place, say at v > u in the v’th place there is a 0 in the binary form of
k while there is a 1 in the binary form of n. So, the following is true in N,
and it fact can be proved from PA:

x ≤ y ↔ ∀u([u ǫ x ∧ ¬u ǫ y]→ ∃v[u ≤ v ∧ ¬v ǫ x ∧ v ǫ y])
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In particular, we get back that 0 ≤ y for all y since 0 has no elements at
all. The above is not an explicit definition yet, because u ≤ v occurs in the
right-hand side of the ↔. However, u and v are lower in the ǫ-hierarchy
than x and y (since they are ǫ -elements of x, y respectively). Thus to check
whether u ≤ v we have to check whether ≤ holds between some elements of
u, v, etc. This procedure has to end in a finite steps because in finite steps
we get to the empty set (by the Axiom of regularity), and we know that 0
is the least element. So, this is kind of a recursive argument. Just as in
PA, recursive definitions of the above kind can be made explicit in ZF0, as
follows. We can express pairs by using ǫ as36

〈x, y〉 = {{x}, {x, y}}

then we denote
w × w = {〈u, v〉 : u, v ǫw}

finally let trans(w) denote that ǫ is transitive in w, i.e.,

trans(w)↔ ∀uv([u ǫw ∧ v ǫ u]→ v ǫw)

Now, the above definition of ≤ can be made explicit as

x ≤ y ↔ ∃wk(x ǫw ∧ y ǫw ∧ trans(w) ∧ k ⊆ w × w ∧ 〈x, y〉 ǫ k ∧
∀p, q ǫ w(〈p, q〉 ∈ k ↔ ∀u([u ǫ p ∧ ¬u ǫ q]→ ∃v[〈u, v〉 ǫ k ∧ ¬v ǫ p ∧ v ǫ q]))

In the above, the relation k plays the same role as a finite sequence imitating
“computation” in the method of making recursive definitions explicit in PA.

By using ≤ we can define suc as

suc(x) = y ↔ ∀z(x ≤ z ≤ y → (x = z ∨ z = y))

then we can define +, ⋆ from suc recursively and make the recursive definition
explicit by using the previous technique using a relation k in a transitive set
w. Let Σ(+, ⋆) denote the set of explicit definitions for +, ⋆ from ǫ we have
just outlined. We state the following claim without proof.

Claim 4.2 PA ∪ Σ(ǫ) |= Σ(+, ⋆).

36{x} denotes the unique number n for which (k ǫ n holds iff k = x), etc.
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By this we finish the sketch of proof for Theorem 4.3. �

The above definitional equivalence enriches our views both for numbers
and finite sets. We can “see” finite sets when seeing numbers, and we can
“see” numbers when seeing finite sets. Keeping this connection in mind,
some problems may be handled more naturally as dealing with numbers, and
some as dealing with finite sets.

4.4 Concept algebra of a theory

We have talked about contents versus appearances of theories. What is the
“content” of a theory? The concept algebra CA(T ) of a theory T represents
the “content” of a theory T, stripped of syntax. Two theories on perhaps
different languages are definitionally equivalent iff their concept algebras are
isomorphic. An interpretation of T into T ′ corresponds to a homomorphism
from CA(T ) into CA(T ′), and vice versa, each such homomorphism arises
from an interpretation of T into T ′.

4.5 Interpretations between theories

Importance of breaking up a big theory into many smaller ones. Harvey
Friedman’s paper about the nature of foundational thinking. Vienna Circle
dream.

What are the basic symbols in a FOL language? Explicit definitions are
the tools for changing basic notions (into compound ones). Interpretations
are connections between languages that have different basic symbols, the
connection is established via explicit definitions. Replacing a big theory
with a hierarchy of small theories and interpretations between them. This is
absolutely necessary when applying logic in other branches of science such
as physics, sociology, computer science etc.

Omitting/relaxing axioms from a theory increases the number of concepts:
the weaker a theory is the more concepts it has. Weakening a theory is part
of understanding it. Example: reverse mathematics. Weak theories are
important, it is not a goal to always use strong theories.

We can view an interpretation in two ways. 1) We define theoretical
notions, and if they prove to be useful, we “elevate them” to the rank of basic
symbols. This way we can make the theory more elegant, more perspicuous.
2) When we investigate a phenomenon, we decide the level of basic notions.
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Later, we may want to investigate the notions we decided to be basic in more
detail. An interpretation makes a basic symbol into a defined one.

Interpretations can be used to talk about the wrapping-content duality.
I.e., what property in a theory comes from the tools we use for expressing it
and what do belong to its content. Example.

5 Exercises

Exercise 5.1 Define a translation function from the language L of ZF set
theory containing only one binary relation symbol ∈ to the one that is enriched
with a new constant symbol ∅. By such a translation we mean that each
formula ϕ of the extended L should be equivalent to its translation tr(ϕ) ∈ L
modulo ZF plus the definition of ∅, i.e., ZF + ∀x(x = ∅ ↔ ¬∃y(y ∈ x)) |=
ϕ↔ tr(ϕ).

Exercise 5.2 Is “the number which is the sum of all the numbers smaller
than it” a definition (modulo Peano’s Arithmetic PA)?

Exercise 5.3 Give an explicit definition for {n ∈ ω : n < 1000} in the
language containing 0, suc that works in the theory37 of 〈{n ∈ ω : n ≤
10000}, 0, suc〉 (where suc is modified so that suc(10000) = 10000). Give
implicit definitions, too.

Exercise 5.4 Give an explicit definition for the number-theoretic function
factorial that works in Peano’s Arithmetic! By Theorem 1.1, there is one.
(Hint: use the fact that in PA being a finite sequence is expressible. So you
can use the notion of finite sequences in your definition.)

Exercise 5.5 Show that an explicit definition is always an implicit defini-
tion, modulo any theory Th.

Exercise 5.6 Prove Theorem 1.2. Hint: Repeat the proof of Theorem 1.1
with appropriate modifications.

Exercise 5.7 Use Henkin’s method outlined in the proof of Theorem 1.1 to
prove the (strong) completeness theorem of FOL. Namely, prove that if Σ |= ϕ
then there is a proof that derives ϕ from Σ. For this purpose, you can use
any proof system that you find in a book, or you can even devise your own
favorite proof system for this goal.

37By the theory Th(M) of a model M we understand the set of all sentences true in M.
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Exercise 5.8 Show that Σ(R) is a weak but not strong definition of R in Th

whenever Th ∪ Σ(R) is inconsistent38 and Th is consistent.

Exercise 5.9 Show that the above kinds of definitions are the only weak but
not strong definitions when Th is a complete theory.39 I.e., assume that Th is
complete, Σ(R) is a weak definition w.r.t. Th, and Th has at least one model
in which there is an R satisfying Σ(R). Then Σ(R) is also a strong definition
w.r.t. Th. Hint: Use Theorem 1.2.

Exercise 5.10 Show that if Σ(R) is a weak definition in Th, then the class
of models of Th in which Σ(R) has a “solution for R” is axiomatizable.

Exercise 5.11 Assume that M and N are elementarily equivalent40 models
of L and Σ(R) has a solution in M and it does not have a solution in N.
Then Σ(R) is no weak definition for any theory Th which M is a model of.

Exercise 5.12 Assume that Σ(R,B) is a weak implicit definition for the
pair of R,B, i.e., Σ(R,B) holds only for one pair or relations in each model.
Show that then R,B have explicit definitions, i.e., there are formulas ϕR, ϕB
containing neither R nor B such that Σ(R,B) |= (R ↔ ϕR) ∧ (B ↔ ϕB).
(Hint: Use Theorem 1.2 twice.)

Exercise 5.13 Show that the ordering ≤ is not definable from successor in
〈ω, suc〉.

Exercise 5.14 Define suc from addition explicitly. I.e., write up a formula
ϕ(x, y) in the FOL language of + such that 〈ω, suc,+〉 |= ∀xy(suc(x) = y ↔
ϕ(x, y)).

Exercise 5.15 Define suc from ordering explicitly. I.e., write up a formula
ϕ(x, y) in the language of ≤ such that 〈ω, suc,≤〉 |= ∀xy(suc(x) = y ↔
ϕ(x, y)).

38A theory is consistent iff it has at least one model.
39A theory is complete in L if it implies either ϕ or ¬ϕ, but not both, for all sentences

ϕ in L.
40Two models are said to be elementarily equivalent if they are not distinguishable by

a formula, i.e., if their theories are the same.

47



Exercise 5.16 Show that addition cannot be defined from multiplication in
〈ω, ⋆〉, i.e., show that for no formula ϕ(x, y, z) in the language of ⋆ is it true
that N |= x + y = z ↔ ϕ(x, y, z). Hint: Use that each permutation of the
prime numbers induces an automorphism of 〈ω, ⋆〉.

Exercise 5.17 Show that multiplication as well as addition can be defined
from exponentiation. I.e., give two formulas ϕ, ψ in the language of 〈ω, exp〉
for which

〈ω,+, ⋆, exp〉 |= ∀xyz[(x ⋆ y = z ↔ ϕ(x, y, z)) ∧ (x+ y = z ↔ ψ(x, y, z))] .

Exercise 5.18 Prove ∀xyx′y′(pair(x, y) = pair(x′, y′) → (x = x′ ∧ y = y′)
from PA.

Exercise 5.19 Show that 3 is the smallest number which is not a pair. What
are the next two smallest numbers which are not pairs?

Exercise 5.20 Prove PA |= ∀xy∃s(mem(s, 0, x) ∧mem(s, 1, y)).

Exercise 5.21 Prove that ∆(exp) is an implicit definition in N. Prove that
∆(exp) is an implicit definition in PA also.

Exercise 5.22 Can in the definition of upvar(x, n) the quantifier ∃si be
changed to ∀si?

Exercise 5.23 As a “programming exercise” define, similarly to upvar(x, n),
a formula maxvar(x, n) with the meaning that vn is the variable with maximal
index occurring in the formula ϕ for which x = pϕq. Can you define a similar
formula freevar for listing all the free variables of a formula?

Exercise 5.24 Define a notion of pairs such that each number be a pair!
Hint: Enumerate recursively ω × ω and then give an implicit definition for
this enumeration via using the notion of sequences defined in the lectures.

Exercise 5.25 Prove that X(ijk, e) ∈ A when ijk is not repetition-free and
e is a good choice for ijk. Cf. p.33 in the proof of Theorem 2.6.

Exercise 5.26 Give an explicit definition for D(x) that is defined implicitly
in the proof of Theorem 2.6. Can you do it by using only four variables?

Exercise 5.27 Give two formulas ϕ, ψ each containing at most 3 variables
such that |= ϕ → ψ but any interpoland for them has to use more than 3
variables (i.e., if |= ϕ→ χ and |= χ→ ψ, then if χ uses only basic symbols
occurring both in ϕ and ψ then χ uses more than 3 variables).
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6 Solutions for the Exercises

Solution for Exercise 5.1: Define tr(ϕ) = ∀x(¬∃y y ∈ x → ϕ(∅/x)), where x
does not occur in ϕ.

Solution for Exercise 5.2: Yes, the number 3 is the only number which is the
sum of all the numbers smaller than it. Indeed, 0 is not the sum of all the
numbers smaller than 0 because there is no number smaller than 0. (We
understood the sum of the empty set to be undefined.) 1 6= 0, 2 6= 1, 3 = 3,
and from here on the number n is always smaller than the sum of the numbers
smaller than it. This can be proven from PA. For this provability, we have
to express, in the language of PA, the property of n that it is the sum of all
the numbers smaller than it. First we define, by recursion, the number s(n)
which is the sum of all the numbers smaller than n, and then add n = s(n),
i.e., let Σ = {s(1) = 0, s(n + 1) = s(n) + n,R(n)↔ n = s(n)}. Now, this Σ
defines two new symbols simultaneously, the unary function s and the unary
relation symbol R. We can “eliminate” s from Σ by replacing its recursive
definition by an explicit one (relying on the fact that finite sequences can be
expressed in PA, see the solution for Exercise 5.4).

Solution for Exercise 5.3: For an explicit definition you can take R(n)↔ (n =
0 ∨ n = suc(0) ∨ ... ∨ n = suc999(0)). The following is an implicit definition
for the same: suc9990 ∈ R, suc(n) ∈ R → n ∈ R, suc10000 /∈ R, n /∈ R →
suc(n) /∈ R}. We note that this implicit definition does not work in 〈ω, 0, suc〉,
because Th(ω, suc〉 has a model in which the above implicit definition has two
different solutions.

Solution for Exercise 5.4: x = factorial(n)↔ ∃s [finite-sequence(s)∧length(s) ≥
n ∧ s0 = 1 ∧ ∀y < n sy+1 = sy · (n+ 1) ∧ sn = x].

Solution for Exercise 5.5: Assume that Σ(R) is an explicit definition. Then Σ
is of form {∀x̄(R(x̄) ↔ ϕ)} for some formula ϕ in which R does not occur.
Let M be any model. We will show that in M there is exactly one relation
R that satisfies Σ in M. Indeed, if R satisfies Σ in M, then R has to be
{〈ā ∈ Mn : M |= ϕ(ā)}; and this relation satisfies Σ in M. Thus Σ has
exactly one solution in each model of Th, i.e., it is a(n implicit) definition in
Th.

Solution for Exercise 5.6: You can find this proof in [8].
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Solution for Exercise 5.7: You can rely on [8, section 2.1].

Solution for Exercise 5.8: Assume that M is any model of Th. There is no
solution of Σ(R) inM by our assumption that Th∪Σ(R) is inconsistent. Thus
Σ is a weak definition in Th. There is a model M of Th by our assumption
that Th is consistent. Σ has no solution in this model M, by the above.
Hence Σ is not a (strong) definition of R in Th.

Solution for Exercise 5.9: By Theorem 1.2, and by our assumptions, there is
an explicit definition ϕ for R in Th, i.e., Th ∪ Σ(R) |= R ↔ ϕ. Let σ(R) be
any formula in Σ. Then Th 6|= ¬σ(R/ϕ), since Th has a model in which Σ
has a solution. Then Th |= σ(R/ϕ) because Th is assumed to be complete
and σ(R/ϕ) is a formula in its language. Then Th |= Σ(R/ϕ), i.e., Σ is a
strong definition of R.

Solution for Exercise 5.10: Let ϕ be the explicit definition of R which exists
by the Beth theorem. I.e., Th ∪ Σ(R) |= R ↔ ϕ. Then in each model of
Th ∪ Σ(R/ϕ) there is a unique solution for Σ(R). On the other hand, if in
a model of Th some element σ(R/ϕ) of Σ(R/ϕ) does not hold, then in this
model there can be no solution for Σ(R). Thus, the class of models of Th in
which Σ(R) has a solution is axiomatized by the set Σ(R/ϕ).

Solution for Exercise 5.11: By Exercise 5.10, if Σ is a weak definition of R in
Th, then the class of models of Th in which Σ has a solution is axiomatizable.
Hence, either both of M and N are in this class, or neither of them are in
this class if they are elementarily equivalent.

Solution for Exercise 5.12: Consider the language L enriched with the relation
symbol R. Then Σ(R,B) is a weak definition of B on this extended language.
Hence there is an explicit definition ψ(R) on the extended language for B, i.e.,
Σ(R,B) |= B↔ ψ(R). Now, Σ(R, ψ(R)) is a weak definition for R. Therefore,
there is ϕR such that Σ(R, ψ(R)) |= R ↔ ϕR. Then ϕR and ψ(R/ϕR) are
explicit definitions for R and B implied by Σ(R,B).

Solution for Exercise 5.13: The proof is similar to the proof of Thm.2.1. Add
two new constants c, d to the language of successor and let Th be the following
theory:

Th(〈ω, suc〉)∪{c 6= sucn(0)∧c 6= sucn(d)∧d 6= sucn(0)∧d 6= sucn(c) : n ∈ ω}.
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It is easy to show that every finite subset of Th is consistent: let T0 be any
finite subset of Th, let k be the maximal number for which suck occurs in
Th0. Then if we take c, d far apart from each other and from 0, e.g., we take
them to be k+1, 2k+2 respectively, the structure 〈ω, suc, c, d〉 satisfies Th0.
Let M be any model of Th. Since the theory of successor is contained in
Th, this M consists of one island like ω and some islands like the integers Z.
Now, Th says that c, d lie in two different Z-islands. Let f : M → M be a
permutation ofM which interchanges c and d and respects suc. Assume now
that ≤ can be defined by a formula ϕ(x, y) in the language of suc, i.e.,

〈ω, suc〉 |= ∀xy(x ≤ y ↔ ϕ).

Then Th(〈ω, suc〉) |= ∀xy[(ϕ(x, y) ∨ ϕ(y, x) ∧ (ϕ(x, y) ∧ ϕ(y, x) → x = y))].
So, assume that M |= ϕ(c, d). Then M |= ϕ(d, c) because of the permutation
f that interchanges c and d and respects suc. But then c = d should be the
case by Th(〈ω, suc〉) |= ∀xy[(ϕ(x, y) ∧ ϕ(y, x) → x = y))], which is not the
case.

Solution for Exercise 5.14:

suc(x) = y ↔ ∃v[x+ v = y ∧ ∀zw(v = z + w → (v = z ∨ v = w))]

Another solution is to define first the ordering ≤ from addition as

x ≤ y ↔ ∃z x+ z = y

and then use the formula defining successor from ordering in Exercise 5.15.

Solution for Exercise 5.15:

suc(x) = y ↔ (x ≤ y ∧ ¬∃z(x ≤ z ∧ z ≤ y ∧ x 6= z ∧ z 6= y))

Solution for Exercise 5.22: Of course, it can be changed. But then the meaning
of the so changed formula won’t be the same as that of upvar(x, n). The
meaning of upvar(x, n) changes even if we replace ∃si with ∀si in a thoughtful
way, i.e., let upvar′(x, n) denote ∀si(deriv(s, i) ∧ si = x → ∀j ≤ i...). Then
deriv′(x, n) will be true iff ¬Fm(x). Indeed, if Fm(x) and n ∈ ω, then there is
a derivation of x in which the first member is =vnvn (in fact, any derivation

51



for x remains a derivation if we insert arbitrary derivations of other formulas
into it). On the other hand, if ¬Fm(x) and n ∈ ω, then there is no derivation
s for x, and therefore any formula of form ∀si(deriv(s, i) ∧ si = x → ...) is
true.

Solution for Exercise 5.25: Let

U0(x) = ∃yzR, U0(y) = ∃x(x = y ∧ U0(x)), U0(z) = ∃x(x = z ∧ U0(x)),
U1(x) = ∃y(y = x ∧ U1(y)), U1(y) = ∃xzR, U1(z) = ∃y(y = z ∧ U1(y)),
U2(x) = ∃z(z = x ∧ U2(z)), U2(y) = ∃z(z = y ∧ U2(z)), U2(z) = ∃xyR.

Then it is easy to check that for all i < 3 we have

mn(Ui(x)) = {〈a, b, c〉 : a ∈ U0},
mn(Ui(y)) = {〈a, b, c〉 : b ∈ U0},
mn(Ui(z)) = {〈a, b, c〉 : c ∈ U0}.

Let

ϕ(s) = s(x, y), ϕ(s) = s(y, x),
ϕ(idi) = Ui(x) ∧ Ui(y) ∧ x = y, ϕ(dii) = Ui(x) ∧ Ui(y) ∧ x 6= y,
ϕ(Ui × Uj) = Ui(x) ∧ Uj(y) for i 6= j.

For a formula ψ having at most x, y as free variables we define

ψ((x, z)) = ∃y(y = z ∧ ψ), ψ((y, z)) = ∃x(x = y ∧ ψ((x, z))).

Then it is easy to check that

mn(ψ((x, z))) = {〈a, b, c〉 : 〈a, c, o〉 ∈ mn(ψ) for any o},
mn(ψ((y, z))) = {〈a, b, c〉 : 〈o, b, c〉 ∈ mn(ψ) for any o},
mn(ϕ(e)) = {〈a, b, c〉 : 〈a, b〉 ∈ e} for all e ∈

⋃
{Relij : i, j < 2}.

Now

X(ijk, e) = , by definition
{〈a, b, c〉 ∈ Ui × Uj × Uk : 〈a, b〉 ∈ e01, 〈b, c〉 ∈ e12, 〈a, c〉 ∈ e02} = , by the above
mn(Ui(x)) ∩mn(Uj(y)) ∩mn(Uk(z))∩
mn(ϕ(e01)) ∩mn(ϕ(e12)((y, z))) ∩mn(ϕ(e02)((x, z))) =
mn(Ui(x) ∧ Uj(y) ∧ Uk(z) ∧ ϕ(e01) ∧ ϕ(e12)((y, z)) ∧ ϕ(e02)((x, z))).
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