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Alfred Tarski in 1953 formalized set theory in the equational theory of re-
lation algebras [37, 38]. Why did he do so? Because the equational theory of
relation algebras (RA) corresponds to a logic without individual variables, in
other words, to a propositional logic. This is why the title of the book [39]
is “Formalizing set theory without variables”. Tarski got the surprising result
that a propositional logic can be strong enough to “express all of mathemat-
ics”, to be the arena for mathematics. The classical view before this result was
that propositional logics in general were weak in expressive power, decidable,
uninteresting in a sense. By using the fact that set theory can be built up in
it, Tarski proved that the equational theory of RA is undecidable. This was the
first propositional logic shown to be undecidable.

From the above it is clear that replacing RA in Tarski’s result with a “weaker”
class of algebras is an improvement of the result and it is worth doing. For more
on this see the open problem formulated in Tarski-Givant [39, p.89, line 2 bottom
up – p.90, line 4 and footnote 17 on p.90].

A result of J. D. Monk says that for every finite n there is a 3-variable first-
order logic (FOL) formula which is valid but which can be proved (in FOL) with
more than n variables only (cf. [14, 3.2.85]). Intuitively this means that during
any proof of this formula there are steps when we have to use n independent
data (stored in the n variables as in n machine registers). For example, the
associativity of relation composition of binary relations can be expressed with
3 variables but 4 variables are needed for any of its proofs.

Tarski’s main idea in [39] is to use pairing functions to form ordered pairs,
and so to store two pieces of data in one register. He used this technique to
translate usual infinite-variable first-order logic into the three-variable fragment
of it. From then on, he used the fact that any three-variable -formula about
binary relations can be expressed by an RA-equation, [14, 5.3.12]. He used two
registers for storing the data belonging to a binary relation and he had one more
register available for making computations belonging to a proof.

The finite-variable fragment hierarchy of FOL corresponds to the appropriate
hierarchy of cylindric algebras (CAn’s). The n-variable fragment Ln of FOL
consists of all FOL-formulas which use only the first n variables. By Monk’s
result, Ln is essentially incomplete for all n ≥ 3, it cannot have a finite Hilbert-
style complete and strongly sound inference system. We get a finite Hilbert-style
inference system |——

n for Ln by restricting a usual complete one for infinite-
variable FOL to the first n variables (see [14, sec. 4.3]). This inference system
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|——
n belonging to Ln is a translation of an equational axiom system for CAn,

it is strongly sound but not complete: |——
n is much weaker than validity |=n

(which is the restriction of |= to the formulas in Ln).
Relation algebras are halfway between CA3 and CA4, the classes of 3-dimen-

sional and 4-dimensional cylindric algebras, respectively. We sometimes jokingly
say that RA is CA3.5. Why is RA stronger than CA3? Because, the so-called
relation-algebra-type reduct of a CA3 is not necessarily an RA, e.g., associativity
of relation composition can fail in the reduct. See [14, sec 5.3], and for more
in this line see Németi-Simon [32]. Why is CA4 stronger than RA? Because
not every RA can be obtained, up to isomorphism, as the relation-algebra-type
reduct of a CA4, and consequently not every 4-variable sentence can be expressed
as an RA-term. However, the same equations are true in RA and in the class
of all relation-algebra-type reducts of CA4’s (Maddux’s result, see [14, sec 5.3]).
Thus Tarski formulated set theory, roughly, in CA4, i.e., in L4 with |——

4 , or in
L3 with validity |=3.

Németi [26], [27] improved this result by formalizing set theory in CA3, i.e.,
in L3 with |——

3 in place of validity |=3. The main idea for this improvement was
using the pairing functions to store all data always, during every step of a proof,
in one register only, so as to get two registers to work with in the proofs. In
this approach one represents binary relations as unary ones (of ordered pairs).

First-order logic has equality as a built-in relation. One of the uses of equality
in FOL is that it can be used to express (simulate) substitutions of variables,
thus to “transfer” content of one variable to the other. The reduct SCA3 of CA3

“forgets” equality dij but retains substitution in the form of the term-definable
operations sij . The logic belonging to SCA3 is weaker than 3-variable fragment
of FOL. Zalán Gyenis [13] improved parts of Németi’s result by extending them
from CA3 to SCA3.

We get a much weaker logic by forgetting substitutions, too, this is the logic
corresponding to Df3 in which FOL and set theory were formalized in Andréka-
Németi [4].

Three-dimensional diagonal-free cylindric algebras, Df3’s, are Boolean alge-
bras with 3 commuting complemented closure operators, see [14, 1.1.2] or [17].
The logic Ldf3 corresponding to Df3 has several intuitive forms, one is 3-variable
equality- and substitution-free fragment of first-order logic with a rather weak
proof system |——

df , another form of this same logic is modal logic [S5, S5, S5],
see [17] and [12]. Not only set theory but the whole of FOL is recaptured in
Ldf3. This is a novelty w.r.t. previous results in this line. All the formalizability
theorems mentioned above follow from this last result.

In section 1 we define our weak “target logic” Ldf3 and we state the exis-
tence of a structural translation mapping of FOL with countably many relation
symbols of arbitrary ranks, Lω, into Ldf3 with a single ternary relation symbol,
see Theorem 1.6. If equality is available in our target logic, then we can do with
one binary relation symbol, we do not need a ternary one, see Theorem 1.7. For
theories in which a conjugated pair of quasi-pairing functions can be defined,
such as most set theories, we can define a similar translation function which
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preserves meaning of formulas a bit more closely, see Theorem 1.6(ii), Theo-
rem 1.7(ii). Theorem 1.6(ii) is a very strong version of Tarski’s main result in
[39, Theorem (xxxiv),p.122], which states roughly the same for the logic corre-
sponding to RA in place of Df3. After Theorem 1.7 we discuss the conditions in
both Theorem 1.6 and Theorem 1.7, and we obtain that almost all of them are
needed and that they cannot be substantially weakened.

In sections 2 and 3 we concentrate on the applications of the theorems stated
in section 1. In section 2 we show that our translation functions are useful in
proving properties for n-variable logics as well as for other “weak” logics. In
particular, we prove a partial completeness theorem for the n-variable fragment
of FOL (n ≥ 3) and we prove that Gödel’s incompleteness property holds for it.

In section 3 we review some results and problems on free cylindric-like al-
gebras from the literature since 1985. As an application of the theorems in
section 1, we show that the free cylindric algebras are not atomic (solution for
[14, Problem 4.14]) and that these free algebras are not “wide”, i.e., the k + 1-
generated free cylindric algebra cannot be embedded into the k-generated one,
but these free algebras have many k-element irredundant non-free generator sets
(solution for [14, Problem 2.7]).

1 Interpreting FOL in its small fragments

Instead of Df3 and CA3, we will work with fragments of FOL which are equivalent
to them because this will be convenient when stating our theorems. We treat
FOL as [14] does, i.e., with equality and with no operation symbols. We deviate
from [14] in that our connectives are ∨,¬,∃vi, vi = vj , i, j ∈ ω and we treat the

rest as derived ones, by defining φ∧ψ d
= ¬(¬φ∨¬ψ), ⊥ d

= (v0 = v0∧¬v0 = v0),

⊤ d
= ¬⊥. We will use the derived connectives ∀,→,↔, too, as abbreviations:

∀vφ d
= ¬∃v¬φ, φ → ψ

d
= ¬φ ∨ ψ, φ ↔ ψ

d
= (φ → ψ) ∧ (ψ → φ). We will

use x, y, z to denote the first three variables v0, v1, v2. Sometimes we will write,
e.g., ∃xy or ∀xyz in place of ∃x∃y or ∀x∀y∀z, respectively.

We begin with defining the fragment Ldf3(P, 3) of FOL. It contains three
variables and one ternary relation symbol P . It is a fragment of FOL in which we
omit the equality, quantifiers ∃v for v distinct from x, y, z, and atomic formulas
P (u, v, w) for uvw ̸= xyz; and we omit all relation symbols distinct from P .

Definition 1.1. (3-variable restricted FOL without equality Ldf3(P, 3))

(i) The language of our system contains one atomic formula, namely P (x, y, z).
(E.g., the formula P (y, x, z) is not available in this language, this feature
is what the adjective “restricted” refers to.) The logical connectives are
∨,¬,∃x,∃y, ∃z. Thus, the set Fdf 3 of formulas of Ldf3(P, 3) is the smallest
set F containing P (x, y, z) and such that φ ∨ ψ,¬φ,∃xφ,∃yφ, ∃zφ ∈ F
whenever φ,ψ ∈ F .

(ii) The proof system |——
df which we will use is a Hilbert-style one with the

following logical axiom schemes and rules.
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The logical axiom schemes are the following. Let φ,ψ ∈ Fdf 3 and v, w ∈
{x, y, z}.
((1)) φ, if φ is a propositional tautology.
((2)) ∀v(φ→ ψ)→ (∃vφ→ ∃vψ).
((3)) φ→ ∃vφ.
((4)) ∃v∃vφ→ ∃vφ.
((5)) ∃v(φ ∨ ψ)↔ (∃vφ ∨ ∃vψ).
((6)) ∃v¬∃vφ→ ¬∃vφ.
((7)) ∃v∃wφ→ ∃w∃vφ.
The inference rules are Modus Ponens ((MP), or detachment), and Gen-
eralization ((G)).

(iii) We define Ldf3(P, 3) as the logic with formulas Fdf 3 and with proof system
|——
df .

(iv) We define Ldfn(R, ρ) where n is an ordinal, R is a sequence of relation
symbols and ρ is the sequence of their ranks (i.e., numbers of arguments),
all ≤ n, analogously to Ldf3(P, 3). When we do not indicate R, ρ in
Ldfn(R, ρ), we mean to have infinitely many n-place relation symbols.

The fragment Lca3 is similar to the above fragment Ldf3, except that we do
not omit equality from the language, hence we will have u = v as formulas for
u, v ∈ {x, y, z}, and we will have two more axiom schemes concerning equality
in the proof system. Since we have equality, our “smallest interesting” language
will be when we have one binary relation symbol E.

Definition 1.2. (3-variable restricted FOL with equality Lca3(E, 2))

(i) The language of our system contains one atomic formula, namely E(x, y).
The logical connectives are ∨,¬,∃x,∃y, ∃z together with u = v for u, v ∈
{x, y, z} as zero-place connectives. Thus, x = x, x = y, etc are formulas
of Lca3. We denote the set of formulas (of Lca3) by Fca3.

(ii) The proof system |——
ca which we will use is a Hilbert-style one with the

logical axiom schemes and rules of Ldf3 (understood as schemes for Lca3)
extended with the following two axiom schemes:

Let φ ∈ Fca3 and u, v, w ∈ {x, y, z}.
((8)) (u = v → v = u) ∧ (u = v ∧ v = w → u = w) ∧ ∃v u = v.
((9)) u = v ∧ ∃v(u = v ∧ φ)→ φ, where u, v are distinct.

(iii) We define Lca3(E, 2) as the logic with formulas Fca3 and with proof system
|——
ca .

(iv) We define Lcan(R, ρ) where n is an ordinal, R is a sequence of relation
symbols and ρ is the sequence of their ranks, all ≤ n, analogously to
Lca3(E, 2). When we do not indicate R, ρ in Lcan(R, ρ), we mean to
have infinitely many n-place relation symbols.
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Remark 1.3. (On the fragment Ldf3 of FOL)
(i) The proof system |——

df is a direct translation of the equational axiom sys-
tem of Df3. Axiom ((2)) is needed for ensuring that the equivalence relation
defined on the formula algebra by φ ≡ ψ ⇔ |——

df φ↔ ψ be a congruence with
respect to (w.r.t.) the operation ∃v. It is congruence w.r.t. the Boolean con-
nectives ∨,¬ by axiom ((1)). Axiom ((1)) expresses that the formula algebra
factorized with ≡ is a Boolean algebra, axiom ((5)) expresses that the quan-
tifiers ∃v are operators on this Boolean algebra (i.e., they distribute over ∨),
axioms ((3)),((4)) express that these quantifiers are closure operations, axiom
((6)) expresses that they are complemented closure operators (i.e., the negation
of a closed element is closed again). Together with ((5)) they imply that the
closed elements form a Boolean subalgebra, and hence the quantifiers are nor-
mal operators (i.e., the Boolean zero is a closed element). Finally, axiom ((7))
expresses that the quantifiers commute with each other. We note that ((1)) is
not an axiom scheme in the sense of [6] since it is not a formula scheme, but
it can be replaced with three formula schemes, see [14, Problem 1.1] (solved in
[23]).

(ii) The logic Ldf3 corresponds to Df3 in the sense of [14, sec.4.3], as fol-
lows. What is said in (i) above immediately implies that the proof-theoretic
(Lindenbaum-Tarski) formula algebra of Ldf3 (which is just the natural formula-
algebra factorized by the equivalence relation ≡ defined in (i) above) is the in-
finitely generated Df3-free algebra, and that of Ldf3(P, 3) is the one-generated
Df3-free algebra. Moreover, valid formulas of Ldf3 correspond to equations valid
in Df3, namely we claim that Ldf3 |——

df φ⇐⇒ Df3 |= τµ(φ) = 1 for all φ ∈ Fdf 3,
where τµ(φ) is as defined in [14, 4.3.55].

(iii) The logic Ldf3 inherits a natural semantics from first-order logic (namely
Mod, the class of models of FOL, and |=3, the validity relation restricted to 3-
variable formulas). The proof system |——

df is strongly sound with respect to this
semantics, but it is not complete, for more on this see section 2. We note that
just as Df3 corresponds to the logic Ldf3 = ⟨Fdf 3, |——

df ⟩, the class of algebras
corresponding to ⟨Fdf 3, |=3⟩ is the class RDf3 of representable diagonal-free
cylindric algebras ([14, 5.1.33(v)]). For more on connections between logics and
classes of algebras, besides [14, sec.4.3], see [6], or [33].

The expressive power of Ldf3 is seemingly very small. It’s not only that “we
cannot count” due to lack of the equality, we cannot transfer any information
from one variable to the other by the use of the equality, so all such transfer
must go through an atomic formula. Hence if we have only binary relation
symbols, in the restricted language there is just no way of meaningfully using
the third variable z, and we basically have two-variable logic which is decidable.
However, Theorem 1.6 below says that if we have at least one ternary relation
symbol and we are willing to express formulas in a more complicated way (than
the most natural one would be), then we can express any sentence that we can
in FOL.

(iv) In the present paper we will use Ldf3 as introduced above because it
will be convenient to consider it a fragment of FOL. However, Ldf3 has several
different but equivalent forms, each of which has advantages and disadvan-
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tages. Some of the different forms are reviewed in [4, sec.2]. We mention two
of the equivalent forms. One is modal logic [S5, S5, S5], this is equivalent to
Ldf3 (while the modal logic S5× S5× S5 introduced in [17] is equivalent with
⟨Fdf 3, |=3⟩), see [12, p.379]. The other equivalent form is just equational logic
with the defining equations of Df3 as extra axioms.

Remark 1.4. (On the fragment Lca3 of FOL)
(i) The logic Lca3 corresponds to CA3 just the way Ldf3 corresponds to Df3.

The proof system |——
ca is a direct translation of the equational axiom system of

CA3. ((8)) expresses that = is an equivalence relation and ((9)) expresses that
formulas do not distinguish equivalent (equal) elements. Take the Hilbert-style
proof system with axiom schemes ((1))-((9)) and rules as (MP) and (G). Add
the axioms
((0)) R(vi1, ..., vin)↔ ∃vjR(vi1, ..., vin) for R an n-place relation symbol and

j /∈ {i1, ..., in}.
Then the so obtained proof system is complete for FOL (with usual semantics
Mod, |=). Hence, Ldf3 and Lca3 are “proof-theoretic” fragments of FOL when
taking this complete proof system for FOL.

(ii) The expressive power of Lca3 is much greater than that of Ldf3, due to
the presence of equality. E.g., one can express that a binary relation is actually
a function, one can express composition of binary relations, one can express
(simulate) substitution of variables. However, the proof system |——

ca is still very
weak, e.g., one can express but cannot prove the following: the composition of
two functions is a function again, composition of binary relations is associative,
converse of the converse of a binary relation is the original one, interchanging
the variables x, y in two different ways by using z as “auxiliary register” results
in an equivalent formula (this is the famous Merry Go Round equation [14,
3.2.88], see also [11], [36]). More precisely, one cannot prove these statements
if one expresses them the most natural ways. Our theorems below say that
if we express the same statements in more involved ways, they become |——

ca -
provable.

Let Lω denote usual FOL with countably many variables and with countably
many relation symbols for each rank, i.e., we have countably many n-place
relation symbols for all positive n. Let Lω denote the set of formulas of Lω.
Thus Lω = ⟨Lω,⊢⟩ where ⊢ is either the proof system outlined in Remark 1.4(i)
above, or just the usual semantic consequence relation |=. We assume that E is a
binary and P is a ternary relation symbol in Lω. Then Lω(E, 2) denotes the set
of formulas in Lω in which only E occurs from the relation symbols. Zermelo-
Fraenkel set theory written up in Lω(E, 2) is denoted by ZF . A formula of Lω

is called a sentence if it does not contain free variables.

Definition 1.5. (Structural translations) Let L = ⟨F,⊢⟩ be a logic (in the sense
of Remark 1.8(i) below). Assume that ∨,¬ are connectives in L, and let →
denote the corresponding derived connective in L, too. Let f : Lω → F be an
arbitrary function. We say that f is structural iff the following (i)-(ii) hold for
all sentences φ,ψ ∈ Lω.
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(i) ⊢ f(φ ∨ ψ)↔ [f(φ) ∨ f(ψ)],

(ii) ⊢ f(φ→ ψ)→ [f(φ)→ f(ψ)].

The following is proved in Andréka-Németi [4]
together with [5], by defining concrete translations tr. For the role of ¬tr(⊥)

in (ii) below see Remark 1.8(iii),(iv).

Theorem 1.6. (Formalizability of FOL in Ldf3)
(i) There is a structural computable translation function tr : Lω −→ Ldf3(P, 3)

such that tr has a decidable range and the following (a),(b) are true for all sets
of sentences Th ∪ {φ} in Lω:

(a) Th |= φ iff tr(Th) |——df tr(φ).

(b) Th |= φ iff tr(Th) |= tr(φ).

(ii) There is a structural computable translation function tr : Lω(E, 2) −→
Ldf3(P, 3) such that tr has a decidable range and the following (c),(d) are true,
where ∆ denotes the set of the following two formulas:

E(x, y)←→ ∀zP (x, y, z) ∧ ∃xyz[P (x, y, z) ∧ ¬∀zP (x, y, z)],

x = y = z ←→ P (x, y, z) ∧ ¬E(x, y).

(c) Statements (a) and (b) in (i) above hold for all sets of sentences Th ∪{φ}
in Lω(E, 2) such that Th ∪∆ |= ¬tr(⊥). Further, ZF ∪∆ |= ¬tr(⊥).

(d) ∆ ∪ {¬tr(⊥)} |= φ↔ tr(φ) for all sentences φ ∈ Lω(E, 2).

The following is proved in Németi [26], [27] (taken together with [5]), by
constructing concrete tr’s. It says that we can replace the ternary relation
symbol P with a binary one in Theorem 1.6 if we have equality.

Theorem 1.7. (Formalizability of FOL in Lca3)
(i) There is a computable, structural translation function tr : Lω −→ Lca3(E, 2)

such that tr has a decidable range and the following (a),(b) are true for all sets
of sentences Th ∪ {φ} in Lω:

(a) Th |= φ iff tr(Th) |——ca tr(φ).

(b) Th |= φ iff tr(Th) |= tr(φ).

(ii) There is a computable, structural translation function tr : Lω(E, 2) −→
Lca3(E, 2) such that tr has a decidable range and the following (c),(d) are true:

(c) Statements (a) and (b) in (i) above hold for all sets of sentences Th ∪{φ}
in Lω(E, 2) such that Th |= ¬tr(⊥). Further, ZF |= ¬tr(⊥).

(d) ¬tr(⊥) |= φ↔ tr(φ), for all sentences φ ∈ Lω(E, 2).
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On the proof of Theorem 1.7: The most difficult part of this theorem is
proving |= φ⇒ |——

ca tr(φ), for all φ ∈ Lω, therefore we will outline the ideas for
proving this part. So, we want to prove a kind of completeness theorem for |——

ca .
Formulas φ(x, y) with two free variables x, y represent binary relations and

then the natural way of expressing relation composition of binary relations is
the following:

(φ ◦ ψ)(x, y) d
= ∃z(φ(x, z) ∧ ψ(z, y)), where

φ(x, z)
d
= ∃y(y = z ∧ φ(x, y)) and ψ(z, y)

d
= ∃x(x = z ∧ ψ(x, y)).

Now, assume that we have two unary partial functions, p, q which form pairing
functions, i.e. for which the following formula π holds:

π
d
= ∀xy∃z(p(z) = x ∧ q(z) = y).

For supporting intuition, let us write z0 = x and z1 = y in place of p(z) = x
and q(z) = y, and let ⟨x, y⟩ denote an arbitrary z for which z0 = x and z1 = y.
Now, we can “code” binary relations as unary ones, i.e., if φ(x) is a formula with
one free variable x, then we can think of it as representing the binary relation
{⟨x0, x1⟩ : φ(x)}. With this in mind then a natural way of representing relation
composition is the following

(φ⊙ψ)(x) d
= ∃y(φ(y0)∧ψ(y1)∧x0 = y00∧y01 = y10∧y11 = x1), see Figure 1.

Figure 1: Illustration of φ⊙ψ

As we said in Remark 1.4(ii), associativity of ◦ cannot be proved by |——
ca ,

i.e., there are formulas φ,ψ, η in Fca3 such that

̸ |——
ca ((φ ◦ ψ) ◦ η)(x, y)↔ (φ ◦ (ψ ◦ η))(x, y).

However, associativity of relation composition expressed in the unary form can
be proved, by assuming a formula Ax ∈ Fca3 which is semantically equivalent
with π but proof-theoretically stronger:
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Ax |——
ca ((φ⊙ψ)⊙η)(x)↔ (φ⊙(ψ⊙η))(x)

for all formulas φ,ψ, η with one free variable x such that |——
ca φ(x) → pair(x),

etc, where pair(x)
d
= ∃yx0 = y ∧ ∃yx1 = y. (I.e., pair(x) holds for x if both

p and q are defined on it.) We note that π is not strong enough for proving
associativity of ⊙, and even Ax is not strong enough for proving associativity
of ◦, see [27, 15T(ii),(iv)]. We mentioned already that |——

ca cannot prove that
composition of functions is a function again. Roughly, Ax is π together with
stating that composition of at most three “copies” of p, q is a function again
(i.e., p ◦ p ◦ q, p ◦ q etc are all functions). Similarly to the above, we can
express converse of binary relations and the identity relation (coded for their
unary form) and prove for these by |——

ca all the relation algebraic equations,
from Ax of course. Thus we defined relation-algebra-type operations on the
set of formulas of form φ(x) ∧ pair(x), and we can prove from Ax that these
operations form an RA. If p, q can be expressed as above, then we have a so-
called quasi-projective RA, a QRA, which are representable by [39, 8.4(iii)], and
we know that representation theorems help us to get provability from validity
(i.e., the hard direction of completeness theorems). It remains to get suitable
pairing formulas p, q (see (1) below) and to translate all FOL-formulas, in a
meaning-preserving way, to the above QRA-fragment of Lca3 (see (2) below).

(1) We can get p, q by “brute force”: we add a new binary relation sym-
bol E to our language, intuitively we will think of it as the element-of relation
∈. Then we express ordered pairs the way usually done in set theory (i.e.,

⟨x, y⟩ d
= {{x}, {x, y}}), and realize that we can write up the two projection

functions belonging to these using only three variables. By using these pro-
jection functions we can convert every FOL-formula to one in Fca3 so that we
preserve validity (we can use the pairing-technique to code all the relations into
one binary one, and then we can code up all the variables into the first three
ones). This part is not so difficult because we may think “semantically”.

(2) It remains now to translate all 3-variable formulas φ ∈ Fca3 into the
QRA-fragment of Lca3 we obtained above. The paper Simon [34] comes to our
aid. In [34], to every QRA a CA3-type subreduct is defined which is repre-
sentable, i.e., which is in RCA3. Let C be this subreduct of our above-defined
QRA, then the universe of C is a subset of Fca3 and the operations of C are
defined in terms of formulas of Fca3, too. Let f : Fca3 → C be a homomor-
phism (where the CA3-type operations of Fca3 are the natural ones), and then

we define tr : Fca3 → Fca3 by tr(φ)
d
= Ax → f(φ). Now, one can check that

|= φ ⇒ |——
ca tr(φ). For the details of the proof outlined above and for the proof

of Theorem 1.6 we refer the reader to [4, 5, 26, 27].

Remark 1.8. (Discussion of the conditions in Theorems 1.6,1.7)
(i) In Abstract Algebraic Logic, AAL, and/or in Universal Logic the key

concept is a logical system (logic in short) ⟨F,⊢⟩ where F is a set (thought of as
the set of formulas) and ⊢⊆ Sb(F )× F (thought of as a consequence relation),
where Sb(F ) denotes the powerset of F . If f : F → F ′ is a function between two
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logics L = ⟨F,⊢⟩ and L′ = ⟨F ′,⊢′⟩, then f is called a translation iff it preserves
⊢, i.e., iff Th ⊢ φ⇒ f(Th) ⊢′ f(φ) holds for all Th ∪{φ} ⊆ F , and f is called a
conservative translation if ⇒ can be replaced by ⇔ in the above. Jeřábek [15]
proved that FOL can be conservatively translated even to classical propositional
calculus (CPC); and moreover, every countable logic can be conservatively trans-
lated to CPC. In this sense, the existence of conservative translations does not
mean much in itself. However, if we require the translation to be computable
in addition, then undecidability is preserved along the translation, and so FOL
can be translated to undecidable logics only (i.e., where {φ ∈ F : ∅ ⊢ φ} is
undecidable), and so it cannot be translated to CPC. For this reason, the con-
ditions that we have at least one at least ternary relation symbol, we have at
least 3 quantifiers (closure operators), and that they commute are all necessary
conditions for our target logic in Theorem 1.6 since without these conditions
we get decidable logics. (We have seen that Ldf3(P, 2) is basically 2-variable
logic which is decidable [14, 4.2.7], and the logic we get from Ldfn by omitting
the axiom scheme ((7)) requiring that the quantifiers commute is proved to be
decidable in [27, Chap.III], [29, Theorem 1.1]). If we require more properties
for the translation function to hold, then more properties are preserved along
them. E.g., structural computable conservative translations preserve Gödel’s
incompleteness property from one logic to the other, see Theorem 2.4.

(ii) The achievement (of Theorems 1.6,1.7) that the range of the translation
is decidable can be omitted, since if we have a translation function then by using
the trick in [10] we can modify this function so that its range becomes decidable
and keep all the other good properties, at least in our case when our logics are
extensions of CPC.

(iii) There are sentences in Lω(E, 2) which are not equivalent semantically
to any formula in L3(E, 2), hence there is no function f : Lω → L3(E, 2) for
which |= φ↔ f(φ) would hold for all sentences φ ∈ Lω. For this reason, ¬tr(⊥)
cannot be omitted in Theorems 1.6(ii)(d),1.7(ii)(d). For example, such a 4-
variable sentence is exhibited in [27, p.39]. We note that ∆ in Theorem 1.6(ii)
is an explicit “definition” of E and = from P .

(iv) Our translation functions are not Boolean homomorphisms in general,
e.g., the translations tr we define in the proofs of Theorems 1.6,1.7 do not
preserve negation in the way they preserve disjunction. Consequently, ¬tr(⊥)
is not the same as tr(⊤), and more importantly, ¬tr(⊥) is not a valid formula.
From the fact that tr is structural, it can be proved that ⊢ tr(φ) ↔ [¬tr(⊥) →
tr(φ)]. Hence, ¬tr(⊥) seems to be the weakest assumption under which one
can expect semantical equivalence of φ with tr(φ). Intuitively, ¬tr(⊥) is the
“background knowledge” we assume for the translation function tr to preserve
meaning. This is the role of ¬tr(⊥) in Theorems 1.6(ii),1.7(ii).

(v) A logic ⟨F,⊢⟩ is defined to be a propositional logic (or sentential logic)
in AAL if F is built up from some set, called propositional variables, by using
connectives and ⊢ is substitutional, i.e., ⊢ is preserved by substitution of ar-
bitrary formulas for propositional variables. In this sense, Ldf3 and Lca3 are
propositional logics, but Lω is not, see e.g., [6] or [33].

(vi) Any logic L = ⟨F,⊢⟩ which is between Ldf3(P, 3) and Lω can be taken in
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Theorem 1.6 in place of Ldf3(P, 3). (We say that a logic L = ⟨F,⊢⟩ is contained
in another one, L′ = ⟨F ′,⊢′⟩, if F ⊆ F ′ and ⊢⊆⊢′.) This is easy to check.

Problem 1.9. (Interpreting FOL in weaker fragments) Can the requirement of the
closure operators being complemented be omitted in our theorems? I.e., is there
a computable (structural) conservative translation from Lω to the equational
theory EqBf3 of Bf3 where Bf3 denotes the class of all Boolean algebras with
three commuting (not necessarily complemented) closure operators? Is EqBf3
undecidable?

2 Applications of the interpretation

There are many applications, of different flavors, of the interpretability theo-
rems of which Theorem 1.6 is presently the strongest one. In this and the next
sections we state some of these applications. We will concentrate on conse-
quences for cylindric algebras, CAn,RCAn and their logical counterparts, but
analogous results hold for all their variants, e.g., for diagonal-free cylindric al-
gebras Dfn,RDfn, substitution-cylindrification algebras SCAn, RSCAn, polyadic
equality algebras PEAn, RPEAn, polyadic algebras PAn, RPAn, for relation al-
gebras SA, RA, RRA and their logical counterparts. For the definition of these
classes of algebras see, e.g., [14], [19], [22].

The first applications we talk about here concern completeness theorems.
Tarski used his translation in [39] to transfer the completeness theorem for Lω

into a kind of completeness theorem for his target logic, which in algebraic
form is stated as a representation theorem, namely that every quasi-projective
relation algebra is representable. (Later Maddux [20] gave a purely algebraic
proof for this.) It is shown in [26, 3.7-3.10], [27, 17T(viii)] that RA cannot
be replaced with CA3 in this consequence, namely, quasi-projective CA3’s are
rather far from being representable (and the same is true for the class SA of
semi-associative relation algebras, in place of CA3). So, in this respect, Tarski’s
result cannot be improved.

Yet, we can use our translations in Theorems 1.6,1.7 to prove completeness
results for our target logics, but in a different way. We begin with recalling
some definitions from [6, D.33, D.48]. A proof system is called Hilbert-style if it
is given by finitely many axiom schemes and rules where the rules are of form
φ1, ..., φk ⊢ φ0 for some formula schemes φ0, ..., φk. A proof system ⊢ is called
sound w.r.t. the semantics |= iff ⊢ φ implies |= φ, strongly sound if Th ⊢ φ
implies Th |= φ, complete, strongly complete when “implies” is replaced with
“implied by” in the above, for all sets Th ∪ {φ} of formulas. Finally, we define
Ln = ⟨Ln,⊢n⟩, the usual n-variable fragment of Lω, as restricting Lω to those
formulas of Lω which contain only the first n variables. (E.g., R(y, x, x, z) ∈ L3

when R is a 4-place relation symbol in Lω.) More precisely, ⊢n is the provability
relation we get from the axiom schemes ((0))-((9)) understood as schemes for Ln

and rules (MP),(G), cf. Remark 1.4(i). Throughout this section, we assume that
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E is a binary relation symbol in Lω and n ≥ 3 is finite. Hence, in Theorem 1.7
we can replace Lca3(E, 2) with Ln (see Remark 1.8(vi)).

We know that Ln is inherently incomplete, i.e., there is no complete and
strongly sound Hilbert-style proof system for the “standard” validity |= re-
stricted to Ln. In the literature, there are approaches aimed at getting around
this inherent incompleteness of Ln. One goes by replacing “standard” models
and validity with “nonstandard” models and validity which one can obtain from
CAn. This approach originates with Leon Henkin. The other approach is keep-
ing the standard semantics and using new complete inference systems which are
sound but not strongly sound. Such inference systems are introduced, e.g., in
Venema [40], [41] and in Simon [35]. Problem 7.2 in [33], as well as [14, Problem
4.16], and [3, Problem 1(a) (p.730), Problems 49,50 (p.740)] are strongly related
to this direction.

Let |——
nt denote the proof system we obtain from |——

n by adding the rule
which infers φ from tr(φ) when φ is a sentence in Ln, where tr is the translation
in Theorem 1.7(i). This last rule is sound but not strongly sound, i.e., |——

nt φ

implies |= φ, but it is not true that Th |——
nt φ implies Th |= φ (namely, tr(φ) |——

nt φ
for all φ, but tr(φ) |= φ is not true for all φ).

Our first theorem in this section is an immediate corollary of Theorem 1.7(i).
It says that the “standard” Hilbert-style proof system |——

n is strongly complete
and strongly sound within a large enough subset of Ln; and the “nonstandard”
proof system |——

nt is complete and sound for the whole of Ln.
In more detail, the first part of Corollary 2.1 below says that we can select a

subset G of formulas, call it the set of “formulas of good shape”, such that the
natural Hilbert-style proof system |——

n is strongly complete within this subset;
moreover we can decide whether a formula is in good shape, and every formula
φ can be algorithmically converted to one in a good-shape such that meaning
is preserved in the sense described in Theorem 1.7(i).

Corollary 2.1. Let G denote the range of tr in Theorem 1.7(i) and let n > 2
be finite. Then (i)-(iii) below hold:

(i) |——n is strongly complete within G ⊆ Ln, i.e., for all Th ∪ {φ} ⊆ G we have

that Th |= φ⇐⇒ Th |——n φ.

(ii) G is large enough in the sense that tr(φ) ∈ G for all φ ∈ Ln and
|= φ ⇐⇒ |= tr(φ).

(iii) |——nt is complete and sound in the whole of Ln, i.e., for all formulas φ ∈ Ln

we have |= φ⇐⇒ |——nt φ.

The next corollary concerns connections between RCAn and its finitary ap-
proximation, CAn. Let ⊗ denote the complement of the symmetric difference,

i.e., x⊗ y d
= (x · y) + (−x · −y). We note that ⊗ is the algebraic counterpart

of ↔.
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Corollary 2.2. There is a computable function f mapping CAn-terms to CAn-
terms such that for all CAn-terms τ, σ we have

(i) RCAn |= τ = σ iff CAn |= f(τ ⊗ σ) = 1, or, in an equivalent form

(ii) RCAn |= τ = 1 iff CAn |= f(τ) = 1.

The above corollary of Theorem 1.7 justifies, in a way, the introduction of
CAn. Namely, CAn was devised in order to “control”, have a firm grasp on
equations true in RCAn. Nonfinite axiomatizability of RCAn implies that this
firm grasp cannot be attained in the form of EqCAn = EqRCAn where EqK
denotes the equational theory of the class K of algebras. By contrast, the above
theorem says that a firm grasp can be obtained by using the computable function
f ; the axioms of CAn together with the definition of f provide a finitary tool
that captures (reconstructs completely) EqRCAn.

A corollary of Theorem 1.6 says that the computational complexity of FOL is
the same as that of the equational theory of Df3. We recall from [9], informally,
that the Turing-degree of S ⊆ ω is less than or equal to that of Z ⊆ ω, in
symbols S ≤T Z, if by using a decision procedure for Z we can decide S. The
Turing-degrees of S and Z are the same, in symbols S ≡T Z, if S ≤T Z and
Z ≤T S. The same notion can be applied to the equational theories of various
classes of algebras, and to various FOL-theories. Let Th(∅) denote the set of
valid formulas of Lω.

The following corollary says that if we have a decision procedure for any
one of Th(∅), EqK with K one of Dfn, RDfn, CAn, RCAn, SCAn, RSCAn, ...,
RA, RRA, 3 ≤ n < ω then we can e any other of the same list. In short, the
Turing-degrees of all these classes are the same. This corollary follows from
Theorems 1.6,1.7.

Corollary 2.3. Let 3 ≤ n < ω and let K be any one of Dfn, RDfn, CAn, RCAn,
SCAn, RSCAn, PAn, RPAn, PEAn, RPEAn, SA, RA, RRA. Then (i) and (ii)
below hold.

(i) EqDf3 ≡T EqK.

(ii) EqDf3 ≡T Th(∅).

The above applications are all relevant to Problem 4.1 of [14]. Indeed, from
Corollary 2.2 we can get a decidable equational base for EqRCAn similar to that
in [14, 4.1.9], and |——

nt gives a kind of solution for [14, Problem 4.1] similar to
[14, 4.1.20].

Now we turn to other kinds of applications. Tarski introduced and used
translation functions from a logic L into a logic L′ in order to transfer some
properties of L to L′. For example, if the translation function is computable,
then undecidability of the valid formulas of L implies the same for L′. This is
how Tarski proved that EqRA was undecidable. The same way, Theorem 1.6
immediately implies that the sets of validities of Ldfn,Lcan as well as the equa-
tional theories of Dfn,CAn for n ≥ 3 are undecidable. These have been known
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and have been proved by using Tarski’s translation of set theory into RA for
n ≥ 4, and for n = 3 it is a result of Maddux [21], proved by an algebraic
method.

The next theorem says that structural computable translations are capable
of transferring Gödel’s incompleteness property. For Lca3 this is proved in [26,
Theorem 1.6], and for Ldf3 it is proved in [4, Theorem 2.3].

Theorem 2.4. (Gödel-style incompleteness theorem for Ldf3) There is a formula
φ ∈ Fdf 3 such that no consistent decidable extension T of φ is complete, and
moreover, no decidable extension of φ separates the |——df -consequences of φ from
the φ-refutable sentences (where ψ is φ-refutable iff φ |——df ¬ψ). The same is true
for Lca3 and Ln in place of Ldf3.

The proof of Theorem 2.4 goes by showing that the translation of an in-
separable formula which is consistent with ¬tr(⊥) by a structural computable
translation function tr is inseparable again.

In algebraic logic, the algebraic property corresponding to the logical prop-
erty of Gödel’s incompleteness is atomicity of free algebras (see [14, 4.3.32]
and [26, Proposition 1.8]). Indeed, Theorem 2.4 above implies non-atomicity
of free cylindric algebras, this way providing a solution for [14, Problem 4.14].
We devote the next section entirely to free cylindric algebras, because of their
importance.

3 Structure of free cylindric algebras

In general, the free algebras of a variety are important because they show, in a
sense, the structure of the different “concepts” (represented by terms) of the va-
riety. In algebraic logic, the free algebras of a variety corresponding to a logic L
are even more important, because they correspond to the so-called Lindenbaum-
Tarski algebras of L. This implies that the structures of free cylindric algebras
are quite rich, since these reflect the whole of FOL, in a sense. Thus proving
properties about free cylindric algebras is not easy in general. Often, one proves
properties of free algebras by applying logical results to algebras, and it is a task
then to find purely algebraic proofs, too. Chapter 2.5 of [14] is devoted to free
cylindric algebras. Most of what we say here about free cylindric algebras gen-
eralizes to its variants such as Dfn, RDfn, PAn,... by using Theorem 1.6 in place
of Theorem 1.7 and keeping Remark 1.8(vi) in mind.

Atoms in the Lindenbaum-Tarski algebras of sentences correspond to finitely
axiomatizable complete theories, while atoms in the Lindenbaum-Tarski alge-
bras of formulas with n free variables of FOL are related to the Omitting Type
theorems and prime models, see [8, sec.2.3].

FrkK denotes the k-generated K-free algebra, see [14, 0.4.19]. We usually
assume k ̸= 0, just for simplicity. FrkCAn is atomless if k is infinite (Pigozzi,
[14, 2.5.13]). Assume k is finite, nonzero. If n < 2 then FrkCAn is finite
([14, 2.5.3(i)]), hence atomic. FrkCA2 is infinite but still atomic (Henkin, [14,
2.5.3(ii), 2.5.7(ii)]). If 2 ≤ n < ω then FrkCAn has infinitely many atoms
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(Tarski, [14, 2.5.9]), and it was asked in [14] as Problem 4.14 whether it is
atomic or not. The following solution is proved in [26], [27].

Theorem 3.1. Let 0 < k < ω and n ≥ 3. Then FrkCAn is not atomic.

A proof of the above theorem is based on Theorem 2.4. This is a metalogical
proof, “transferring” Gödel’s incompleteness theorem for FOL to three-variable
logic. [14, Problem 4.14] also raised the problem of finding purely algebraic
proofs for these properties of free algebras. Németi [25] contains direct, purely
algebraic proofs showing that FrkCAn is not atomic, for n ≥ 4. However, those
proofs do not work for n = 3 (counterexamples show that the crucial lemmas
fail for n = 3), and they are longer than the present metalogical proof.

So, in particular, it remains open to find a direct, algebraic proof for non-
atomicity of FrkDf3, k > 0.

In the proof of Theorem 3.1 we had to show that there is an element in the
free algebra below which there is no atom. Problem 2.5 in [14], still open, asks if
the sum of all atoms in FrkCAn exists for finite k and 3 ≤ n < ω. This problem
is equivalent to asking if there is a biggest element in the free algebra below
which there is no atom.

Remark 3.2. (On zero-dimensional atoms)
FrkCAn has exactly 2k zero-dimensional atoms (Pigozzi, [14, 2.5.11]). It

was conjectured that these are all the atoms if n ≥ ω (see [14, 2.5.12, Problem
2.6]). We note that there may be many more atoms in ZdFrkCAn, the zero-
dimensional part of FrkCAn, than the zero-dimensional atoms of FrkCAn. I.e.,
the atoms of ZdFrkCAn usually are not atoms in FrkCAn.

The metalogical proof of Theorem 3.1 automatically proves that ZdFrkCAn

is not atomic either, if 2 < n < ω. In [18], the locally finite part of FrkCAα for
infinite α is characterized, and this solves [14, Problem 2.10]. This implies that
ZdFrkCAα is atomic if α ≥ ω > n.

On the other hand, the algebraic proofs in [25] show that there is an atom
of ZdFrkCAn (for 0 < k < ω and 4 ≤ n < ω) below which there is no atom
of FrkCAn. We do not know whether this holds for n = 3 or not. As for the
conjecture in [14] about the nonzero-dimensional atoms in the case α ≥ ω, in
[25] we prove that it is true for the free representable CAα (α ≥ ω), and we have
some partial results that might point into the opposite direction for the free
CAα. Namely, in [25] we show that there is a nonzero element in FrkCAα which
is below dij for all i, j ∈ α, i, j /∈ 2. This cannot happen in the representable
case.

The proof that FrkCA2 for finite k is atomic relies on the fact that CA2 is
a discriminator variety and the equational theory of CA2 is the same as the
equational theory of finite CA2’s. See [14, 2.5.7] and [2, Theorem 4.1]. Let n
be finite. Then Crsn, the class of cylindric-relativized set algebras of dimension
n [14, 3.1.1(iv)], satisfies the second condition, i.e., it is generated by its finite
members as a variety (see Andréka-Hodkinson-Németi [1]) but it is not a dis-
criminator variety. The same holds for the variety NCAn of non-commutative
cylindric algebras (see [27, 5T, p.112]) and for the varieties WA and NA of
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weakly associative and non-associative relation algebras (by [1], [28])); for the
definitions of NA, WA, SA see [22] or, e.g., [2]. It is proved in [26] that neither
one of FrkRA and FrkSA is atomic.

Problem 3.3. Let k, n be finite. Are the k-generated free Crsn’s and NCAn’s
atomic? Is FrkWA atomic? Is FrkNA atomic?

Our next subject is generating and free subsets of free algebras. FrkCAn

cannot be generated by fewer than k elements by [14, 2.5.20] and all free gen-
erator sets have cardinality k. By [14, 2.5.23], every k-element generator set of
FrkCAn is a free generator set, if n ≤ 2 and k is finite. Problem 2.7 of [14] asks
if this continues to hold for 3 ≤ n and finite k. The following theorem, proved
as [27, Theorem 19, p.100], gives a negative answer. Its proof essentially uses
the translation mapping in the present Theorem 1.7.

Theorem 3.4. There is a k-element irredundant non-free generator set in
FrkCAn, for every 0 < k and 3 ≤ n.

The proof of the above theorem goes by finding such generator sets in
FrkRCAω, which allows us to think in a model theoretical way, and then us-
ing the translation function (in a non-trivial way) of Theorem 1.7 to translate
the idea from RCAω to CAn.

Andréka-Jónsson-Németi [2, Theorem 9.1] generalizes the existence of non-
free generator sets in Theorem 3.4 from CAn to many subvarieties of SA. We note
that Jónsson-Tarski [16] proves that if a variety is generated by finite algebras
then any k-element generator set of the k-generated free algebra generates it
freely. Thus CAn in Theorem 3.4 cannot be replaced with Crsn or NCAn or WA
or NA.

Are there big, not necessarily generating but free subsets in FrkCAn? A way
of formalizing this question is whether Frk+1CAn can be embedded in FrkCAn.
This question is investigated thoroughly in [2] and the following negative answer
is proved as part of [2, Theorem 10.3].

Theorem 3.5. Frk+1CAn is not embeddable into FrkCAn, for 0 < k < ω.

Many properties of free cylindric algebras are proved in [2]. E.g., [2, Theo-
rem 10.1] gives a complete structural description of the free CA1’s, i.e., of the
free monadic algebras. The number of elements of this free algebra is given in
[14, 2.5.62]. The cardinality of finitely generated free monadic Tarski algebras
(which is a reduct of CA1) is given in [24].

We had many illuminating discussions in the subject of this paper, during
writing it, with Barry Cooper, Steven Givant, Ági Kurucz, András Simon and
with the members of the Logic and Philosophy of Mathematics student and
faculty seminar of the Eötvös University Budapest. This research was supported
by the Hungarian Scientific Research Fund grant No T81188.
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