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Abstract

We investigate Kerr-Newman black holes in which a rotating charged
ring-shaped singularity induces a region which contains CTCs. Con-
trary to popular belief, it turns out that the time orientation of the
CTC is opposite to the direction in which the singularity or the er-
gosphere rotates. In this sense, CTCs “counter-rotate” against the
rotating black hole. We have similar results for all spacetimes suffi-
ciently familiar to us in which rotation induces CTCs. This motivates
our conjecture that perhaps this counter-rotation is not an accidental
oddity particular to Kerr-Newman spacetimes, but instead there may
be a general and intuitively comprehensible reason for this.

1 Introduction

In the present note we investigate rotating black holes and other generally
relativistic spacetimes where rotation of matter might induce closed timelike
curves (CTCs), thus allowing for a “time traveler” who might take advantage
of this spacetime structure. Most prominently, we will discuss Kerr-Newman
black holes in which a rotating charged ring-shaped singularity induces a
region which contains CTCs. Due to the electric charge of the singular-
ity, this region is not confined to within the analytic extension “beyond the
singular ring”, but extends into the side of the ring-singularity facing the
asymptotically flat region, from whence the daring time traveler presumably
embarks upon her journey. Interestingly, some kind of “counter-rotational
phenomenon” occurs here. If a potential time traveler wants to use our Kerr-
Newman black hole for traveling into her past, she will have to orbit along
the CTC in the direction opposite to that of the rotation of the black hole. In
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technical words, the time orientation of the CTC is opposite to the direction
in which the singularity or the ergosphere rotates.

This state of affairs is at odds with the qualitative, intuitive explanations
for the mechanism creating CTCs presented in most popular books. This
will motivate the questions formulated in section 4.1 We have similar results
for all spacetimes sufficiently familiar to us in which rotation induces CTCs.
This motivates our conjecture that perhaps this counter-rotation is not an
accidental oddity particular to Kerr-Newman spacetimes, but instead there
may be a general and intuitively comprehensible reason for this.

Understanding what we take to be the most promising candidate mech-
anism to produce CTCs in an otherwise causally well-behaved spacetime,
i.e. the counter-rotational phenomenon mentioned above, is of paramount
importance in evaluating the causal stability of generally relativistic space-
times. Since one possibility to violate Hawking’s chronology protection con-
jecture or, more generally, the strong form of Penrose’s cosmic censorship
conjecture is through the emergence of acausal features via such a mecha-
nism [EW], the present paper contributes to efforts directed at the larger
projects of understanding chronology protection and cosmic censorship in
general relativity. Furthermore, the issues discussed here are also motivated
by discussions in our works [EN02] and [ND]. In those papers it turned
out that studying the geometry of rotating black holes can be relevant to
some far-reaching considerations in the foundation of mathematics and logic.
The counter-rotational phenomenon in Kerr-Newman spacetime was already
noted explicitly in [W99, p. 55], albeit without further analysis. A fascinat-
ing book providing a broad perspective for the presently discussed matters
is Earman [E95].

2 A counter-rotational phenomenon in Kerr

spacetime

We use the standard (Boyer-Lindquist) coordinates t, r, ϕ, θ for Kerr space-
time which appear e.g. in Hawking-Ellis [HE73, p. 161], O’Neill [ON95,
pp. 57-59], Wald [W84, p. 313], Misner-Thorne-Wheeler [MTW, p. 877, item

1References to popular books offering such intuitive, but misleading, explanations will
also be given in section 4.
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θ = 0, axis of rotation
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r ∈ [0,∞)

Figure 1: Illustrating coordinates r and θ. Radius r is drawn as er, so that
the shaded circle covers the negative values for r.

(33.2)]. Of these four coordinates, t, r range over the reals, i.e. −∞ < t, r <
∞ while ϕ, θ are spherical coordinates. In pictures, the radius r is drawn as
er, so r = −∞ is at the center of the figure and the r coordinate is negative
within the sphere indicated in the drawing, see Figure 1.

Using these coordinates, the metric tensor field g of the Kerr spacetime
is given by

gtt = −1 + 2Mr/ρ2, where ρ2 = r2 + a2 cos2 θ,

grr = ρ2/∆, where ∆ = r2 − 2Mr + a2,

gθθ = ρ2,

gϕϕ = (r2 + a2 + [2Mra2 sin2 θ]/ρ2) sin2 θ,

gtϕ = −2Mra sin2 θ/ρ2 and all the other gij’s are zero.

Here a denotes the angular momentum per unit mass of the rotating ring,
while M is called its mass, cf. e.g. [ON95, p. 58].
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We will concentrate on the so-called “slow-Kerr” case when 0 < a2 < M2.
In this case there are two event horizons defined by the roots of ∆ = 0:

r± = M ±
√

M2 − a2.

In case the Kerr black hole spins sufficiently fast (a2 > M2), these event
horizons vanish and we would be faced with a naked singularity. Since such
beasts may be regarded as unphysical, we disregard the “fast-Kerr” case.2

We will be interested in the “innermost” region of the black hole, defined
by r < r−, which is where the CTCs (i.e. closed timelike curves) are. This
part of the spacetime is called block III or negative exterior Kerr spacetime
(EKN−). The so-called “equatorial plane” is defined by θ = π/2. This plane
contains, in block III, the so-called ring-singularity

Σ = {〈t, r, ϕ, θ〉 : r = 0 and θ = π/2}.

For the Kerr case, i.e. for an uncharged rotating black hole, the CTCs tran-
spire inside and close to this ring-singularity, i.e. CTCs are found in regions
where r is negative but has small absolute value. This part of the spacetime
belongs to what [ON95] calls the Time Machine.3 On the other hand, the
part outside the ring-singularity and sufficiently close to it belongs to the
so-called “ergosphere.” The ergosphere (in block III) is defined to be the
place where the vectors ∂t parallel to the “time-axis” are not timelike but
spacelike. An ergosphere, thus, is a region of spacetime where no observer
can remain still with respect to the coordinate system in question. For static
black holes, such as those described by Schwarzschild spacetime, the outer
limit of the ergosphere coincides with the black hole’s event horizon. This is
no longer the case when the black holes revolve. Then, the faster the black
hole rotates, the more the ergosphere grows beyond the outer horizon r = r+.
The (r, ϕ)-surfaces close to the equatorial plane, i.e. the surfaces with fixed
t and fixed small cos θ, look similar, except that they contain no singularity
(if cos θ 6= 0).

2However, everything in this paper applies to the fast-Kerr case, too, except that some
formulations would need to be adapted in order to equally apply to the fast-Kerr case.

3The notion of a time machine, which has previously been used rather loosely in the
physics literature, has recently been subjected to a more rigorous analysis in [ESW] and
[EW]. In the full understanding of the vagueness of O’Neill’s terminology, we stick to it for
simplicity of discussion, as our main issue here is not the question of what should qualify
as a time machine.
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All our investigations below are strongly connected to the time-orienta-
tion of the spacetime being discussed. Therefore, we recall for convenience
that in O’Neill’s book [ON95, p.76 lines 7-8 and p.60 Def.2.1.2.] the time-
orientation for block III of Kerr spacetime is defined by the vector-field

V (p) := (a2 + r2)∂t(p) + a∂ϕ(p).

With the metric and a time-orientation at hand, the notion of a well-param-
eterized future-pointing curve makes sense now.

Assume that the lifeline of a particle α is given by the well-parameterized,
future-pointing curve α(τ) with τ ∈ I where I is an interval of the reals. We
say that α is rotating in the direction ∂ϕ (at τ0 ∈ I) if with increasing proper
time τ the values of the ϕ-component are increasing (at τ0), i.e. if dαϕ(τ)/dτ
is positive (at τ0). Sloppily, we could write this as “dϕ/dτ > 0” on α (at τ0).
We say that the direction of rotation of α (at τ0) is −∂ϕ if the latter value is
negative.

It is known that any particle in the ergosphere must rotate in the ∂ϕ

direction, it is not possible to avoid rotating or to rotate in the −∂ϕ direction
in the ergosphere (see e.g. [ON95, Lemma 2.4.4]). The reason is that in the
ergosphere the light cones are tilted in the ϕ direction, i.e. the light cones in
the (t, ϕ)-cylinders look like those in the left-hand side of Figure 2.

The situation is drastically different in the “Time Machine” region! There
the light cones look like those in the right-hand side of Figure 2. This means
that here it is possible to orbit in the −∂ϕ direction as well as in the positive
∂ϕ direction, but any time-traveler (i.e. one with dt/dτ ≤ 0) has to rotate
in the −∂ϕ direction, for it is the only possibility to construct a path with
dt/dτ < 0 (cf. Figure 2).

Our above statements can be formulated as saying that the ergosphere
and the “Time Machine” rotate in opposite directions. By this we mean that
a traveler in the ergosphere and a traveler moving forward in time in the
Time Machine but just preparing for entering a CTC, i.e. with dt/dτ > 0
approaching (dt/dτ = 0), move in opposite directions. The one in the er-
gosphere co-moves with the singularity (or the source) while the one on the
CTC, or almost on the CTC, moves in the opposite direction. This results
from considering the singularity as the source of the field and the assumption
that it rotates in the positive ϕ direction because the total angular momen-
tum J of the Kerr spacetime with a > 0 is positive.4

4For details, cf. [W84, pp.296-297,314], [ON95, pp.58,179].
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Light cones in the ergosphere Light cones on the CTCs

Figure 2: Light cones in the ergosphere and light cones on the CTCs look
different.

This is just what we dub a counter-rotating effect: the property that the
CTCs counter-rotate with the ring-singularity (and with the ergosphere) in
the sense just described. In other words, the time-orientations of the CTCs
point in the −∂ϕ direction while the ergosphere rotates in the opposite, +∂ϕ

direction. We note that this counter-rotational effect remains valid if we
extend our attention beyond the equatorial plane defined by θ = π/2. We
also note that this counter-rotational effect does not depend on which of the
two possible time-orientations we choose.

We can formulate this counter-rotational effect in a coordinate-independent
way by saying that where the (invariantly defined) Killing vector field ∂ϕ is
timelike, its time-orientation is negative (and hence a would-be time traveler
must orbit in the −∂ϕ direction). Here we assume that the time-orientation
is chosen such that the rotation of the source points in the positive ϕ direc-
tion. (We note that our claim that the CTCs and the ergosphere rotate in
the opposite directions can also be formulated in a coordinate-independent
way.)

3 Counter-rotation in Kerr-Newman space-

time

At this point one might be tempted to think that perhaps the cause of the
above counter-rotational phenomenon might be found in the fact that the
co-rotating area (ergosphere) and the counter-rotating area (Time Machine)
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are separated by the ring-singularity. So perhaps the counter-rotation can
be explained by saying that the ring-singularity acts like a mirror turning
directions into their negatives. Such a symmetry about the ring-singularity
would still not account for the rotational sense of the ring-singularity itself;
in particular it would keep us wondering why the singularity co-rotates with
the ergosphere but counter-rotates with the CTCs. The simplest way of
seeing that such mirroring about the singular region cannot possibly give a
hint for the diametric revolutions of the ergosphere and the Time Machine is
by looking at Kerr-Newman spacetimes where the co-rotational and counter-
rotational areas are no longer separated by the ring-singularity.5

Kerr-Newman spacetimes describe black holes with angular momentum
as in the Kerr case, but with an electric charge in addition. We are using
the definition of Kerr-Newman spacetime as given e.g. in Misner-Thorne-
Wheeler [MTW, pp. 877-881, e.g. item (33.2) on p. 877], Wald [W84, p. 313,
item (12.3.1)], d’Inverno [D92, p. 264, item (19.72)], or Wüthrich [W99].

The Kerr-Newman metric can be obtained from the Kerr metric (in
Boyer-Lindquist coordinates) by simply replacing all occurrences of 2Mr
with (2Mr − e2), where e is the electric charge of the black hole.6 Thus,
the metric will take on the form

gtt = −1 + (2Mr − e2)/ρ2, where ρ2 = r2 + a2 cos2 θ,

grr = ρ2/∆, where ∆ = r2 − 2Mr + e2 + a2,

gθθ = ρ2,

gϕϕ = (r2 + a2 + [(2Mr − e2)a2 sin2 θ]/ρ2) sin2 θ,

gtϕ = (e2 − 2Mr)a sin2 θ/ρ2 and all the other gij’s are zero.

The vector field V (p) as defined in section 2 is an admissible time-
orientation for block III of the Kerr-Newman spacetime, too. As the focus
of the present article is precisely on block III, this reassurance suffices for

5For completeness we note that a further possibility for seeing this is staying with Kerr
spacetime and focusing attention to (r, ϕ) hypersurfaces with fixed, small values of θ. In
such a hypersurface the co-rotating and counter-rotating regions still exist but they are
no longer separated by a singularity.

6This statement is a refinement of what [ON95] writes on p. 61 about the connection
between the two metrics.
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our purposes. The counter-rotating phenomenon described in the previous
section holds in the case of charged Kerr-Newman holes, too. However, this
counter-rotation effect is more poignant than in the Kerr case, for the fol-
lowing reason. In the Kerr-Newman spacetime there are CTCs both at small
positive values of r (say, at r = 0.1M) and also at small negative values of r
(say, at r = −0.1M) in the equatorial plane. Thus, the ergosphere and the
“Time Machine” are no longer separated by the ring-singularity in this case.
However, here, too, the time-orientation of the CTC at r = 0.1M points in
the direction −∂ϕ, i.e. in the negative ϕ direction. Using our terminology
introduced above, this means that a “time-traveler” inhabiting the CTC at
r = 0.1M orbits in the direction opposite to the rotation of the massive
ring. In other words, the CTC and the ring-singularity “rotate” in opposite
directions just as they did in the Kerr case, as shown in Figure 3.

Moreover, all CTCs in Kerr and Kerr-Newman spacetimes counter-rotate
with the massive ring. In particular, any ring-shaped CTC like R(r) =
{〈0, r, ϕ, θ〉 : θ = π/2 and r = r} for fixed r has time-orientation −∂ϕ (for all
possible choices of r making R(r) into a CTC).7

4 Seeking explanations

In the literature, the apparently standard account for why and how rotating
matter induces CTCs goes as follows.8 Given, for example, a Kerr-Newman
black hole, let us mentally move toward the singularity starting from a point
far away from the black hole. Let us further assume that this vantage point
is situated on the equatorial plane of the black hole. The Kerr-Newman
spacetime is asymptotically flat. Thus, at this distant point, the black hole

7We note that Wüthrich [W99, Chapter 6, pp. 75-85] is highly relevant to our investi-
gations here (e.g. it is proved there that in order to remain on a CTC, in Kerr-Newman
spacetime, the “time-traveler” has to use a prohibitive amount of fuel). Furthermore,
Figures 4.2 and 4.4 on pages 49 and 52 in [W99] depict the causality violating regions for
the Kerr and the Kerr-Newman case respectively.

8Cf. e.g. Gribbin [G83, pp. 145-152, and Fig. 8.1 on p. 151] or Gribbin [G98, pp. 214-220
(e.g. Figures 7.5 and 7.6 on p. 215 and p. 218 resp.)]. [G98] writes on the bottom of page
217 that “[t]he critical stage for the light cone tipping, as far as time travel is concerned,
is when the cone is tipped by more than 45 degrees. Since the half-angle of the cone is
45o, ...”. Further references for the standard explanation are e.g. Paul Davies [D02, first
3 pages of Section 2], Nick Herbert [He88, Fig.6-2 on p.105], Paul Horwich [Ho88, p. 113,
Figure 28], and Clifford A. Pickover [P98, Figure 14.2 (p. 185), Fig.17.1 on p. 224 might
also be relevant].
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Figure 3: This is how light cones behave in Kerr-Newman spacetimes. For
r0, r1 and computations see section 5, especially Figure 4.
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does not influence the light cones significantly and we can safely assume that
they are straight or “vertical” like in Minkowski spacetime. Let us then move
slowly towards the black hole. As it gets closer, the so-called dragging of in-
ertial frames caused by the rotation of the black hole comes into action. This
dragging effect is explained in relativity textbooks via Mach’s principle, e.g.
[W84, pp.319,187,89] or [MTW, pp.547,879,1117-1120]. So as an influence of
the rotation of our massive ring (the singularity), the light cones get tilted
in the direction ϕ of the rotation of the ring. Naturally, the closer we get
to the rotating ring, the stronger this dragging effect, and thus the tilting,
will be. The standard account goes on by saying that eventually the light
cones tip over completely (i.e. they dip below the equatorial plane), so they
become approximately “horizontal,” making ∂ϕ timelike (and ∂t spacelike).
This clearly leads to CTCs by ∂ϕ being timelike. This literature thus creates
the false impression that the proper time of the CTCs co-rotates, rather than
counter-rotates, with the matter content of the universe. The time orienta-
tion of the CTCs, according to this “official story,” therefore agrees with the
direction of rotation of the source of the field.

It is important to stress that according to this official story the time
orientation of the so obtained CTCs agrees with the direction ϕ of rotation
of the black hole—contrary to what has been established in sections 2 and
3. Hence a time traveler using such CTCs would orbit in the positive ϕ
direction, i.e. would rotate in the same direction as the black hole does. If
this explanation worked, it would yield an intuitively convincing, natural
explanation for why and how the basic principles of general relativity lead
in certain situations (such as when appropriately distributed rotating masses
are present) to CTCs. One of our main points is that the above explanation
does not work, simply because light cones behave differently in the relevant
spacetimes, as is also illustrated in Figure 3.

Let us see how the corrected story goes based on detailed computations
in Kerr-Newman spacetime. These computations will be presented in sec-
tion 5. First of all, we emphasize that the new, corrected story suggested
in the present paper does not offer any kind of explanation for the creation
of CTCs. Instead, it merely offers a description of the behavior of the light
cones. We maintain, however, that a proper understanding of this behavior,
and particularly the counter-rotation that we are interested in, at least con-
stitutes an important and promising first step toward such an explanation.
For simplicity we assume that the charge and rotation of the black hole are
sufficient for ensuring that there are CTCs at positive values of the radius
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r, i.e. outside the ring-singularity. Surely enough, the corrected story begins
exactly like the official party line: Distant light cones are erect, i.e. vertical
and they start to tilt in the ϕ direction as we begin moving towards the black
hole. But this tilting effect does not grow beyond any limit as we move to-
wards the ring-singularity. As we move inward (towards the ring), the tilting
grows for a while but then it stops growing, and eventually at a radius r0

safely outside the time-travel region, the light cone (in the tϕ-plane) is erect
again. From r0 inward, the tilting is in the other direction, i.e. in the −ϕ
direction. (Until now, i.e. at values greater than r0, the tilting was always in
the +ϕ direction.) Thus, tilting in the ϕ direction did not result in CTCs,
because r0 is safely outside the time-travel region. Moreover, tilting alone in
the −ϕ direction does not lead to CTCs, either, because from r0 inward, the
time-axis is always inside the light cone (i.e. ∂t is always timelike).

So what happens if we go closer and closer to the ring-singularity? In
other words, what creates the CTCs if not the cone tipping? The answer is
that, eventually, the light cones open up in the negative ϕ direction. This
second effect is carried to such an extreme that −∂ϕ becomes contained in
the future light cone, for sufficiently small but positive values of the radius
r. If we are close enough to the ring-singularity, then time travel becomes
possible—but only if we orbit in the negative ϕ direction. Hence the time
traveler has to orbit in the direction opposite to the rotation of the black
hole. It is this fact that we refer to as the phenomenon of counter-rotating.
Let us summarize the new story’s two most important features. These are:

(i) counter-rotation (i.e. the time orientation of the CTCs is −∂ϕ), and
(ii) it is not the tilting of the light cones due to the dragging of inertial

frames which leads to the formation of CTCs, but a second effect, primarily
resulting in their opening up in the negative ϕ direction.

The open issue we would like to raise is the following. The official story
as presented at the beginning of this section provided an intuitive physical
account as to what causes the tipping of the light cones. To repeat, our
computations show that this official story is not true and that it has to
be replaced with the new story outlined above. Unfortunately, however,
we cannot offer an equally intuitive and suggestive explanation for the new
story. Hence, we would like to issue a challenge to our readers in form of the
following question:

Question 1. Is there a qualitative—and similarly compelling—explanation
as to why the time traveler has to “counter-rotate” against the rotating ring-
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singularity in Kerr-Newman spacetime? Can one find a physical mechanism
which qualitatively explains why and how CTCs are “created” by rotation
of matter?

In the above description of the “new story” we concentrated on Kerr-
Newman black holes for simplicity. The situation is similar in many space-
times where rotation of relatively large masses leads to the formation of
CTCs. For example, our corrected story applies equally to Kerr black holes,
with appropriate modifications to adapt the train of thought to the fact that
in the Kerr case the CTCs only transpire in the negative radius region.9 10

5 Computations.

In this section, we present computations supporting the claims made in sec-
tion 4. We do the computations for the Kerr-Newman metric; we assume
a 6= 0, e 6= 0 and M >

√
a2 + e2. We are in the equatorial plane, i.e. θ = π/2,

cos θ = 0, and sin θ = 1. We are interested in what the light cones look
like in the tϕ-planes, as a function of the radius r, and we are interested in
positive r only as this suffices to study the tilting and widening of the light
cones. Using the shorthand

E = (2Mr − e2)/r2 we have

gtt = E − 1, gtϕ = −aE, and gϕϕ = r2 + a2 + a2E.

9To see the counter-rotation effect in action in the Kerr case, our metaphorical spaceship
must approach the causality-violating region somewhat “from above” the equatorial plane,
for it would crash into the ring-singularity otherwise. In other words, we choose some fixed
θ with cos θ > 0 which, however, must be sufficiently small for intersecting the causality
violating region. This slight change of itinerary does not alter in principle the counter-
rotational effect we discussed at length for the Kerr-Newman case.

10Despite the seemingly widely held presupposition that the CTCs co-rotate rather
than counter-rotate with the black hole, we seem to have an ally in Brandon Carter, at
least as far as the Kerr case is concerned. He seems to concur with our conclusion that
the outlined counter-rotation does not arise from a coordinate artefact, but constitutes a
tangible physical process when he writes that “in order to make up literally for the lost
time, the path must enter the region [where CTCs transpire]. Here time can be gained
but only at the expense of clocking up a large change (negative for a > 0) in the angle ϕ̂.”
[C68, p. 1566, below item (28); our emphasis]. A second ally is Robert L. Forward [F88]
who on p. 172 describes time travel via Kerr spacetime as “travelling near the rotating
ring in the direction against rotation of the ring for a number of rotations”. Cf. also his
Fig. 10 on p. 176.
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These functions are depicted in Figure 4.

ergosphere

gtt

gϕϕ

gtϕ

R+ R− 0r0 r1

CTCs

r

Figure 4: Illustration for the Kerr-Newman metric. The picture faithfully
represents the order of the roots (i.e. zeros) of gtϕ, gtt and gϕϕ and where
these three functions are negative or positive; the picture does not faithfully
represent the proportions of the distances and their magnitudes. The ergo-
sphere and the “Time Machine” (where the CTCs are) are disjoint, and the
light cone is erect between them at r0. In some sense, gtϕ represents the
tilting of the light cones. See also Figure 3.

Let us first check where the CTCs are. We have CTCs where gϕϕ is
negative, and this is exactly where

G(r) := r2gϕϕ = r4 + a2r2 + 2a2Mr − a2e2

is negative. The radial derivative of G is G′ = 4r3 + 2a2r + 2a2M , this is
everywhere positive because r ≥ 0 and M > 0. Hence G is monotonically
increasing (as we move from 0 to infinity). We have G(0) = −a2e2 < 0 and
G tends to infinity as r tends to positive infinity; hence there is a unique
value r1 where G is zero, above which G is positive and below which G is
negative. Hence the same is true for gϕϕ. Thus r1 (which is the root of gϕϕ)
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is the place where CTCs “appear”, and we will be interested in seeing what
the light cones do as we move towards r1 from greater values of r.

In order to see how the light cones tilt and widen in the tϕ-planes, we
want to know for what values y is the direction v = ∂t + y∂ϕ lightlike, i.e. for
which y we have g(v, v) = 0. These values are the solutions of the equation

y2gϕϕ + 2ygtϕ + gtt = 0, hence

y =
(

−gtϕ ±
√

g2
tϕ − gϕϕgtt

)

/gϕϕ. Let

c := (−gtϕ)/gϕϕ, for center of light cone,

d := (
√

g2
tϕ − gϕϕgtt)/gϕϕ, for half-diameter of light cone, see Figure 5.

ℓ2 ℓ1

cd d

1

∂t

∂ϕ

≤ a−1

Figure 5: The light cone in the tϕ-plane, between r0 and r1. We draw the
light cones with respect to the Killing vector fields ∂t, ∂ϕ. As we move towards
the time machine region, i.e. towards r1, ℓ2 lowers to horizontal while ℓ1 is
less than or equal a−1.

The light cone is erect, i.e. is not tilted, where c = 0. This is where E = 0,
i.e. at r0 := e2/2M . At r = r0 we have E = 0, thus gtt = −1, gtϕ = 0, and
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gϕϕ = r2
0 + a2. This is almost the same as in Minkowski spacetime, the only

difference being that gϕϕ is not r2, but a bit larger. Hence the light cones at
r0 are “standing”, but they are a bit narrower than at infinity (the bigger a
is, the narrower the light cones). See also Figure 3.

We show that r0 > r1. Since the function G(r) = r2gϕϕ decreases mono-
tonically as we approach 0 and G(r1) = 0, in order to show r0 > r1 it is
enough to show G(r0) > 0, and in order to show this it is enough to show
gϕϕ(r0) > 0 (since r0 6= 0). That this is the case can easily be seen:

gϕϕ(r0) = r2
0 + a2 + a2E = r2

0 + a2 = (e4/4M2) + a2 > 0 since a 6= 0.

Let’s have a look at the roots of gtt. The smaller root of gtt, i.e. R− =
M −

√
M2 − e2, is bigger than r0, because of the following:

e2

2M
< M −

√
M2 − e2 iff

e2

2M
(M +

√
M2 − e2) < (M −

√
M2 − e2)(M +

√
M2 − e2) iff

e2

2M
(M +

√
M2 − e2) < e2 iff

M +
√

M2 − e2 < 2M , which always holds for e 6= 0.

The ergosphere is between R+ and R−. With R− > r0 > r1 we thus
have shown that the light cones are erect somewhere between the ergosphere
and the “Time Machine” (as we claimed in section 4). We note that the
two event horizons are at r± = M ±

√
M2 − e2 − a2 (these are the roots of

∆ = r2 − 2Mr + e2 + a2). For r+, r− and r0, r1 see also Figure 3. We have
established the following, see Figure 4:

R+ > r+ > M > r− > R− > r0 > r1 > 0 .

We are interested in the behavior of the light cones as we move from
r0 towards r1. We have just shown that in this interval the time-axis is
always timelike, i.e. that it is within the light cone. We will now establish
the following statements concerning the light cones as depicted in Figure 5
as we move from r0 to r1:

(1) the center c of the light cone moves from zero to minus infinity, mono-
tonically,

(2) the diameter of the light cone grows to infinity, monotonically,
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(3) the right side of the light cone is always “slower” than a−1.

As a consequence of (1) and (2), the left side of the light cone lowers towards
the horizontal plain. We could summarize these statements as “the light cone
tilts in the negative ϕ direction and opens up”.

To prove (1) and (2), first we show that

gϕϕ = r2 + a2 + a2(2Mr − e2)/r2

decreases monotonically as we move from r0 towards r1. Its radial derivative
is

(gϕϕ)′ = 2[r + a2(e2 − Mr)/r3].

By 0 < r ≤ r0 = e2

2M
< e2

M
we have (gϕϕ)′ ≥ 0. Thus, gϕϕ decreases

monotonically as we move from r0 to r1. Furthermore, the reader is reminded
that gϕϕ is positive in the open interval ]r1, r0[ and zero for r1.

Now, as can be seen in Figure 4, −gtϕ is negative and decreases mono-
tonically as we move from r0 to r1. Hence c = −gtϕ/gϕϕ is negative and
approaches monotonically minus infinity as we move from r0 to r1. This
proves (1).

To prove (2), we first compute:

g2
tϕ − gϕϕgtt = a2E2 − (r2 + a2 + a2E)(E − 1) = r2 + a2 − Er2

= r2 + a2 + e2 − 2Mr.

This is always positive for r ≤ r0, and since it is a second-order polynomial
in r whose roots are larger than r0, it increases as we move from r0 to r1. The
same is true for the square root of the above expression. Since gϕϕ decreases
monotonically, this shows that the “diameter” of the light cone increases
monotonically as we move from r0 towards r1. It approaches infinity because
r1 is the root of gϕϕ. Thus, (2) has been proved.

It remains to show that c + d ≤ a−1, i.e. y1 ≤ a−1 where

y1 :=
(

−gtϕ +
√

g2
tϕ − gϕϕgtt

)

/gϕϕ. Let us use the notation S :=
√

g2
tϕ − gϕϕgtt.

Now

y1 = (−gtϕ + S)/gϕϕ = (S − gtϕ)(S + gtϕ)/(gϕϕ(S + gtϕ)) =

[(g2
tϕ − gϕϕgtt) − g2

tϕ]/[gϕϕ(S + gtϕ)] =
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−gtt/(S + gtϕ).

We are interested in the behavior of the above expression as we move r
from r0 towards r1. When substituting the values for gtt and gϕϕ we get

y1 = (r2 − 2Mr + e2)/[r2S + ae2 − 2Mar] ≤

(r2 − 2Mr + e2)/(ar2 − 2Mar + ae2) = a−1

because S =
√

r2 + a2 + e2 − 2Mr ≥ a if r ≤ r0. With this, (3) has been
proved.

6 A generic phenomenon?

We have seen in sections 4 and 5 that if you want to time travel in a Kerr-
Newman spacetime, you have to orbit around the θ = 0 axis in the direction
opposite to the rotation carried out by the singularity. In other words, a
time traveler must counter-rotate with the singularity. The same happens
in Kerr spacetime, see section 3. As it turns, however, the phenomenon of
counter-rotation is not limited to these important classes of spacetimes.

The same counter-rotation phenomenon is present in van Stockum’s rotat-
ing dust solution ([vS37]), in the Tipler - van Stockum fast-rotating cylinder
([T74], [T77]), and in Gödel’s rotating universe ([G]). Counter-rotation in
the first two examples is discussed in [ANW], for counter-rotation in the
third example see [AMN]. Moreover, the same phenomenon is also present
in the case of Gott’s cosmic strings based CTCs, cf. [G91], [G01, Fig. 14,
p. 108]. There the CTCs counter-rotate with the system formed by the pair
of strings.

In sum, thus, in at least five of the most prominent examples of spacetimes
involving CTCs, the future direction on the CTCs opposes the rotational
sense of the source of the gravitational field.11

This raises a question: Is this counter-rotation an accident or is it a
mathematical or at least physical necessity in some sense, e.g. under some

11In case of asymptotically flat spacetimes (like Kerr-Newman ones) the counter-rotating
effect can be formulated in an invariant way as we did in section 2 in this paper. For the
rest of our examples, we use slightly different invariant formulations. For example, in
Gödel’s spacetime an invariant formulation can be obtained by following Gödel’s wording
in [G, p.271, lines 1-10]. Gödel uses gyroscopes as “compasses of inertia” in the sense of
[MTW] and Rindler [R01, p.197, under the name “gyrocompass”].
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suitable physical assumptions, all of which must of course be satisfied by the
five examples above? One of these assumptions is that the CTCs in question
are “created” by rotation of matter, i.e. rotation of the gravitational source.
In its present form this question is somewhat loose and rather programmatic.
Let us thus give a more tangible formulation of this question.

Question 2. In general, how important is it for the CTCs to counter-rotate
against the rotational sense of the gravitating matter which brings about the
CTCs? In particular, is there any example of a spacetime where the CTCs
are generated by rotating matter and there is no counter-rotation effect?

We believe that our calculations and our arguments above and in [ANW]
not only admit the relevance and interest in asking this question, but more-
over, strongly suggest that there might well be a general principle at work:
a principle which states that CTCs generated by rotating matter must spi-
ral in the opposite direction from the rotational sense of the matter. We
are not sure how much work such a principle would offer toward a general
understanding of the mechanisms which bring about spacetime structures
that contain CTCs. But it strikes us as an observation which is potentially
crucial for such an endeavor, particularly because the phenomenon seems so
pervasive in such an important set of spacetimes with CTCs.
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